WorldWideScience

Sample records for functional genomics experiments

  1. Babelomics: advanced functional profiling of transcriptomics, proteomics and genomics experiments

    Science.gov (United States)

    Al-Shahrour, Fátima; Carbonell, José; Minguez, Pablo; Goetz, Stefan; Conesa, Ana; Tárraga, Joaquín; Medina, Ignacio; Alloza, Eva; Montaner, David; Dopazo, Joaquín

    2008-01-01

    We present a new version of Babelomics, a complete suite of web tools for the functional profiling of genome scale experiments, with new and improved methods as well as more types of functional definitions. Babelomics includes different flavours of conventional functional enrichment methods as well as more advanced gene set analysis methods that makes it a unique tool among the similar resources available. In addition to the well-known functional definitions (GO, KEGG), Babelomics includes new ones such as Biocarta pathways or text mining-derived functional terms. Regulatory modules implemented include transcriptional control (Transfac, CisRed) and other levels of regulation such as miRNA-mediated interference. Moreover, Babelomics allows for sub-selection of terms in order to test more focused hypothesis. Also gene annotation correspondence tables can be imported, which allows testing with user-defined functional modules. Finally, a tool for the ‘de novo’ functional annotation of sequences has been included in the system. This allows using yet unannotated organisms in the program. Babelomics has been extensively re-engineered and now it includes the use of web services and Web 2.0 technology features, a new user interface with persistent sessions and a new extended database of gene identifiers. Babelomics is available at http://www.babelomics.org PMID:18515841

  2. The MGED Ontology: A Framework for Describing Functional Genomics Experiments

    OpenAIRE

    Stoeckert, Christian J.; Parkinson, Helen

    2003-01-01

    The Microarray Gene Expression Data (MGED) society was formed with an initial focus on experiments involving microarray technology. Despite the diversity of applications, there are common concepts used and a common need to capture experimental information in a standardized manner. In building the MGED ontology, it was recognized that it would be impractical to cover all the different types of experiments on all the different types of organisms by listing and defining all the types of organism...

  3. Functional genomics of tomato

    Indian Academy of Sciences (India)

    2014-10-20

    Oct 20, 2014 ... 1Repository of Tomato Genomics Resources, Department of Plant Sciences, School .... Due to its position at the crossroads of Sanger's sequencing .... replacement for the microarray-based expression profiling. .... during RNA fragmentation step prior to library construction, ...... tomato pollen as a test case.

  4. The DNA Data Bank of Japan launches a new resource, the DDBJ Omics Archive of functional genomics experiments.

    Science.gov (United States)

    Kodama, Yuichi; Mashima, Jun; Kaminuma, Eli; Gojobori, Takashi; Ogasawara, Osamu; Takagi, Toshihisa; Okubo, Kousaku; Nakamura, Yasukazu

    2012-01-01

    The DNA Data Bank of Japan (DDBJ; http://www.ddbj.nig.ac.jp) maintains and provides archival, retrieval and analytical resources for biological information. The central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: the 'DDBJ Omics Archive' (DOR; http://trace.ddbj.nig.ac.jp/dor) and BioProject (http://trace.ddbj.nig.ac.jp/bioproject). DOR is an archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides an organizational framework to access metadata about research projects and the data from the projects that are deposited into different databases. In this article, we describe major changes and improvements introduced to the DDBJ services, and the launch of two new resources: DOR and BioProject.

  5. 2004 Structural, Function and Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  6. Finding function: evaluation methods for functional genomic data

    Directory of Open Access Journals (Sweden)

    Barrett Daniel R

    2006-07-01

    Full Text Available Abstract Background Accurate evaluation of the quality of genomic or proteomic data and computational methods is vital to our ability to use them for formulating novel biological hypotheses and directing further experiments. There is currently no standard approach to evaluation in functional genomics. Our analysis of existing approaches shows that they are inconsistent and contain substantial functional biases that render the resulting evaluations misleading both quantitatively and qualitatively. These problems make it essentially impossible to compare computational methods or large-scale experimental datasets and also result in conclusions that generalize poorly in most biological applications. Results We reveal issues with current evaluation methods here and suggest new approaches to evaluation that facilitate accurate and representative characterization of genomic methods and data. Specifically, we describe a functional genomics gold standard based on curation by expert biologists and demonstrate its use as an effective means of evaluation of genomic approaches. Our evaluation framework and gold standard are freely available to the community through our website. Conclusion Proper methods for evaluating genomic data and computational approaches will determine how much we, as a community, are able to learn from the wealth of available data. We propose one possible solution to this problem here but emphasize that this topic warrants broader community discussion.

  7. Functional Insights from Structural Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Forouhar,F.; Kuzin, A.; Seetharaman, J.; Lee, I.; Zhou, W.; Abashidze, M.; Chen, Y.; Montelione, G.; Tong, L.; et al

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).

  8. Genome projects and the functional-genomic era.

    Science.gov (United States)

    Sauer, Sascha; Konthur, Zoltán; Lehrach, Hans

    2005-12-01

    The problems we face today in public health as a result of the -- fortunately -- increasing age of people and the requirements of developing countries create an urgent need for new and innovative approaches in medicine and in agronomics. Genomic and functional genomic approaches have a great potential to at least partially solve these problems in the future. Important progress has been made by procedures to decode genomic information of humans, but also of other key organisms. The basic comprehension of genomic information (and its transfer) should now give us the possibility to pursue the next important step in life science eventually leading to a basic understanding of biological information flow; the elucidation of the function of all genes and correlative products encoded in the genome, as well as the discovery of their interactions in a molecular context and the response to environmental factors. As a result of the sequencing projects, we are now able to ask important questions about sequence variation and can start to comprehensively study the function of expressed genes on different levels such as RNA, protein or the cell in a systematic context including underlying networks. In this article we review and comment on current trends in large-scale systematic biological research. A particular emphasis is put on technology developments that can provide means to accomplish the tasks of future lines of functional genomics.

  9. Functional Genomics Group. Program Description

    National Research Council Canada - National Science Library

    Burian, Dennis

    2008-01-01

    .... This article reviews mechanisms of gene regulation and discusses how genomics is changing the way medicine is practiced today as a means of demonstrating that molecular medicine is here to stay...

  10. Convergent functional genomics of psychiatric disorders.

    Science.gov (United States)

    Niculescu, Alexander B

    2013-10-01

    Genetic and gene expression studies, in humans and animal models of psychiatric and other medical disorders, are becoming increasingly integrated. Particularly for genomics, the convergence and integration of data across species, experimental modalities and technical platforms is providing a fit-to-disease way of extracting reproducible and biologically important signal, in contrast to the fit-to-cohort effect and limited reproducibility of human genetic analyses alone. With the advent of whole-genome sequencing and the realization that a major portion of the non-coding genome may contain regulatory variants, Convergent Functional Genomics (CFG) approaches are going to be essential to identify disease-relevant signal from the tremendous polymorphic variation present in the general population. Such work in psychiatry can provide an example of how to address other genetically complex disorders, and in turn will benefit by incorporating concepts from other areas, such as cancer, cardiovascular diseases, and diabetes. © 2013 Wiley Periodicals, Inc.

  11. Functional genomics by mass spectrometry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Mann, M

    2000-01-01

    Systematic analysis of the function of genes can take place at the oligonucleotide or protein level. The latter has the advantage of being closest to function, since it is proteins that perform most of the reactions necessary for the cell. For most protein based ('proteomic') approaches to gene f...... numbers of intact proteins by mass spectrometry directly. Examples from this laboratory illustrate biological problem solving by modern mass spectrometric techniques. These include the analysis of the structure and function of the nucleolus and the analysis of signaling complexes....

  12. FGWAS: Functional genome wide association analysis.

    Science.gov (United States)

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Annotating functional RNAs in genomes using Infernal.

    Science.gov (United States)

    Nawrocki, Eric P

    2014-01-01

    Many different types of functional non-coding RNAs participate in a wide range of important cellular functions but the large majority of these RNAs are not routinely annotated in published genomes. Several programs have been developed for identifying RNAs, including specific tools tailored to a particular RNA family as well as more general ones designed to work for any family. Many of these tools utilize covariance models (CMs), statistical models of the conserved sequence, and structure of an RNA family. In this chapter, as an illustrative example, the Infernal software package and CMs from the Rfam database are used to identify RNAs in the genome of the archaeon Methanobrevibacter ruminantium, uncovering some additional RNAs not present in the genome's initial annotation. Analysis of the results and comparison with family-specific methods demonstrate some important strengths and weaknesses of this general approach.

  14. Functional genomics strategies with transposons in rice

    NARCIS (Netherlands)

    Greco, R.

    2003-01-01

    Rice is a major staple food crop and a recognizedmonocotylenedousmodel plant from which gene function discovery is projected to contribute to improvements in a variety of cereals like wheat and maize. The recent release of rough drafts of the rice genome sequence for public

  15. MIPS bacterial genomes functional annotation benchmark dataset.

    Science.gov (United States)

    Tetko, Igor V; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Fobo, Gisela; Ruepp, Andreas; Antonov, Alexey V; Surmeli, Dimitrij; Mewes, Hans-Wernen

    2005-05-15

    Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. BFAB is available at http://mips.gsf.de/proj/bfab

  16. Functional genomics approaches in parasitic helminths.

    Science.gov (United States)

    Hagen, J; Lee, E F; Fairlie, W D; Kalinna, B H

    2012-01-01

    As research on parasitic helminths is moving into the post-genomic era, an enormous effort is directed towards deciphering gene function and to achieve gene annotation. The sequences that are available in public databases undoubtedly hold information that can be utilized for new interventions and control but the exploitation of these resources has until recently remained difficult. Only now, with the emergence of methods to genetically manipulate and transform parasitic worms will it be possible to gain a comprehensive understanding of the molecular mechanisms involved in nutrition, metabolism, developmental switches/maturation and interaction with the host immune system. This review focuses on functional genomics approaches in parasitic helminths that are currently used, to highlight potential applications of these technologies in the areas of cell biology, systems biology and immunobiology of parasitic helminths. © 2011 Blackwell Publishing Ltd.

  17. Functional Associations by Response Overlap (FARO), a functional genomics approach matching gene expression phenotypes

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Mundy, J.; Willenbrock, Hanni

    2007-01-01

    The systematic comparison of transcriptional responses of organisms is a powerful tool in functional genomics. For example, mutants may be characterized by comparing their transcript profiles to those obtained in other experiments querying the effects on gene expression of many experimental facto...

  18. The functional genomic studies of curcumin.

    Science.gov (United States)

    Huminiecki, Lukasz; Horbańczuk, Jarosław; Atanasov, Atanas G

    2017-10-01

    Curcumin is a natural plant-derived compound that has attracted a lot of attention for its anti-cancer activities. Curcumin can slow proliferation of and induce apoptosis in cancer cell lines, but the precise mechanisms of these effects are not fully understood. However, many lines of evidence suggested that curcumin has a potent impact on gene expression profiles; thus, functional genomics should be the key to understanding how curcumin exerts its anti-cancer activities. Here, we review the published functional genomic studies of curcumin focusing on cancer. Typically, a cancer cell line or a grafted tumor were exposed to curcumin and profiled with microarrays, methylation assays, or RNA-seq. Crucially, these studies are in agreement that curcumin has a powerful effect on gene expression. In the majority of the studies, among differentially expressed genes we found genes involved in cell signaling, apoptosis, and the control of cell cycle. Curcumin can also induce specific methylation changes, and is a powerful regulator of the expression of microRNAs which control oncogenesis. We also reflect on how the broader technological progress in transcriptomics has been reflected on the field of curcumin. We conclude by discussing the areas where more functional genomic studies are highly desirable. Integrated OMICS approaches will clearly be the key to understanding curcumin's anticancer and chemopreventive effects. Such strategies may become a template for elucidating the mode of action of other natural products; many natural products have pleiotropic effects that are well suited for a systems-level analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Functional genomics of beer-related physiological processes in yeast

    NARCIS (Netherlands)

    Hazelwood, L.A.

    2009-01-01

    Since the release of the entire genome sequence of the S. cerevisiae laboratory strain S288C in 1996, many functional genomics tools have been introduced in fundamental and application-oriented yeast research. In this thesis, the applicability of functional genomics for the improvement of yeast in

  20. Plant Metabolomics : the missiong link in functional genomics strategies

    NARCIS (Netherlands)

    Hall, R.D.; Beale, M.; Fiehn, O.; Hardy, N.; Summer, L.; Bino, R.

    2002-01-01

    After the establishment of technologies for high-throughput DNA sequencing (genomics), gene expression analysis (transcriptomics), and protein analysis (proteomics), the remaining functional genomics challenge is that of metabolomics. Metabolomics is the term coined for essentially comprehensive,

  1. Functional genomics in forage and turf - present status and future ...

    African Journals Online (AJOL)

    The combination of bioinformatics and genomics will enhance our understanding ... This review focuses on recent advances and applications of functional genomics for large-scale EST projects, global gene expression analyses, proteomics, and ... ESTs, microarray, proteomics, metabolomics, Medicago truncatula, legume.

  2. Genomic analysis of Xenopus organizer function

    Directory of Open Access Journals (Sweden)

    Suhai Sándor

    2006-06-01

    Full Text Available Abstract Background Studies of the Xenopus organizer have laid the foundation for our understanding of the conserved signaling pathways that pattern vertebrate embryos during gastrulation. The two primary activities of the organizer, BMP and Wnt inhibition, can regulate a spectrum of genes that pattern essentially all aspects of the embryo during gastrulation. As our knowledge of organizer signaling grows, it is imperative that we begin knitting together our gene-level knowledge into genome-level signaling models. The goal of this paper was to identify complete lists of genes regulated by different aspects of organizer signaling, thereby providing a deeper understanding of the genomic mechanisms that underlie these complex and fundamental signaling events. Results To this end, we ectopically overexpress Noggin and Dkk-1, inhibitors of the BMP and Wnt pathways, respectively, within ventral tissues. After isolating embryonic ventral halves at early and late gastrulation, we analyze the transcriptional response to these molecules within the generated ectopic organizers using oligonucleotide microarrays. An efficient statistical analysis scheme, combined with a new Gene Ontology biological process annotation of the Xenopus genome, allows reliable and faithful clustering of molecules based upon their roles during gastrulation. From this data, we identify new organizer-related expression patterns for 19 genes. Moreover, our data sub-divides organizer genes into separate head and trunk organizing groups, which each show distinct responses to Noggin and Dkk-1 activity during gastrulation. Conclusion Our data provides a genomic view of the cohorts of genes that respond to Noggin and Dkk-1 activity, allowing us to separate the role of each in organizer function. These patterns demonstrate a model where BMP inhibition plays a largely inductive role during early developmental stages, thereby initiating the suites of genes needed to pattern dorsal tissues

  3. Determining and comparing protein function in Bacterial genome sequences

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla

    of this class have very little homology to other known genomes making functional annotation based on sequence similarity very difficult. Inspired in part by this analysis, an approach for comparative functional annotation was created based public sequenced genomes, CMGfunc. Functionally related groups......In November 2013, there was around 21.000 different prokaryotic genomes sequenced and publicly available, and the number is growing daily with another 20.000 or more genomes expected to be sequenced and deposited by the end of 2014. An important part of the analysis of this data is the functional...... annotation of genes – the descriptions assigned to genes that describe the likely function of the encoded proteins. This process is limited by several factors, including the definition of a function which can be more or less specific as well as how many genes can actually be assigned a function based...

  4. Functional genomics and proteomics - the role of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Haberkorn, U. [Heidelberg Univ. (Germany). Abt. fuer Klinische Nuklearmedizin; German Cancer Research Center, Heidelberg (Germany); Altmann, A. [German Cancer Research Center, Heidelberg (Germany); Eisenhut, M. [German Cancer Research Center, Heidelberg (Germany). Dept. of Radiopharmacy

    2002-01-01

    Now that the sequencing of the human genome has been completed, the basic challenges are finding the genes, locating their coding regions and predicting their functions. This will result in a new understanding of human biology as well as in the design of new molecular structures as potential novel diagnostic or drug discovery targets. The assessment of gene function may be performed using the tools of the genome program. These tools represent high-throughput methods used to evaluate changes in the expression of many or all genes of an organism at the same time in order to investigate genetic pathways for normal development and disease. This will lead to a shift in the scientific paradigm: In the pre-proteomics era, functional assignments were derived from hypothesis-driven experiments designed to understand specific cellular processes. The new tools describe proteins on a proteome-wide scale, thereby creating a new way of doing cell research which results in the determination of three-dimensional protein structures and the description of protein networks. These descriptions may then be used for the design of new hypotheses and experiments in the traditional physiological, biochemical and pharmacological sense. The evaluation of genetically manipulated animals or newly designed biomolecules will require a thorough understanding of physiology, biochemistry and pharmacology and the experimental approaches will involve many new technologies, including in vivo imaging with single-photon emission tomography and positron emission tomography. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in vivo reporter genes such as enzymes, receptors, antigens or transporters. Pharmacogenomics will identify new surrogate markers for therapy monitoring which may represent potential new tracers for imaging. Also, drug distribution studies for new therapeutic biomolecules are needed, at least

  5. Functional genomics and proteomics - the role of nuclear medicine

    International Nuclear Information System (INIS)

    Haberkorn, U.; Altmann, A.; Eisenhut, M.

    2002-01-01

    Now that the sequencing of the human genome has been completed, the basic challenges are finding the genes, locating their coding regions and predicting their functions. This will result in a new understanding of human biology as well as in the design of new molecular structures as potential novel diagnostic or drug discovery targets. The assessment of gene function may be performed using the tools of the genome program. These tools represent high-throughput methods used to evaluate changes in the expression of many or all genes of an organism at the same time in order to investigate genetic pathways for normal development and disease. This will lead to a shift in the scientific paradigm: In the pre-proteomics era, functional assignments were derived from hypothesis-driven experiments designed to understand specific cellular processes. The new tools describe proteins on a proteome-wide scale, thereby creating a new way of doing cell research which results in the determination of three-dimensional protein structures and the description of protein networks. These descriptions may then be used for the design of new hypotheses and experiments in the traditional physiological, biochemical and pharmacological sense. The evaluation of genetically manipulated animals or newly designed biomolecules will require a thorough understanding of physiology, biochemistry and pharmacology and the experimental approaches will involve many new technologies, including in vivo imaging with single-photon emission tomography and positron emission tomography. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in vivo reporter genes such as enzymes, receptors, antigens or transporters. Pharmacogenomics will identify new surrogate markers for therapy monitoring which may represent potential new tracers for imaging. Also, drug distribution studies for new therapeutic biomolecules are needed, at least

  6. Characterizing genomic alterations in cancer by complementary functional associations.

    Science.gov (United States)

    Kim, Jong Wook; Botvinnik, Olga B; Abudayyeh, Omar; Birger, Chet; Rosenbluh, Joseph; Shrestha, Yashaswi; Abazeed, Mohamed E; Hammerman, Peter S; DiCara, Daniel; Konieczkowski, David J; Johannessen, Cory M; Liberzon, Arthur; Alizad-Rahvar, Amir Reza; Alexe, Gabriela; Aguirre, Andrew; Ghandi, Mahmoud; Greulich, Heidi; Vazquez, Francisca; Weir, Barbara A; Van Allen, Eliezer M; Tsherniak, Aviad; Shao, Diane D; Zack, Travis I; Noble, Michael; Getz, Gad; Beroukhim, Rameen; Garraway, Levi A; Ardakani, Masoud; Romualdi, Chiara; Sales, Gabriele; Barbie, David A; Boehm, Jesse S; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2016-05-01

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.

  7. Toxicogenomics: Applications of new functional genomics technologies in toxicology

    NARCIS (Netherlands)

    Heijne, W.H.M.

    2004-01-01

    Toxicogenomics studies toxic effects of substances on organisms in relation to the composition of the genome. It applies the functional genomics technologies transcriptomics, proteomics and metabolomics that determine expression of the genes, proteins and metabolites in a sample. These methods could

  8. Partnering for functional genomics research conference: Abstracts of poster presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    This reports contains abstracts of poster presentations presented at the Functional Genomics Research Conference held April 16--17, 1998 in Oak Ridge, Tennessee. Attention is focused on the following areas: mouse mutagenesis and genomics; phenotype screening; gene expression analysis; DNA analysis technology development; bioinformatics; comparative analyses of mouse, human, and yeast sequences; and pilot projects to evaluate methodologies.

  9. Whole-genome sequence-based analysis of thyroid function

    DEFF Research Database (Denmark)

    Taylor, Peter N.; Porcu, Eleonora; Chew, Shelby

    2015-01-01

    Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome seque...

  10. Putting the Function in Maize Genomics

    Directory of Open Access Journals (Sweden)

    Stephen P. Moose

    2009-07-01

    Full Text Available The 51st Maize Genetics Conference was held March 12–15, 2009 at Pheasant Run Resort in St. Charles, Illinois. Nearly 500 attendees participated in a scientific program (available at covering a wide range of topics which integrate the rich biology of maize with recent discoveries in our understanding of the highly dynamic maize genome. Among the many research themes highlighted at the conference, the historical emphasis on studying the tremendous phenotypic diversity of maize now serves as the foundation for maize as a leading experimental system to characterize the mechanisms that generate variation in complex plant genomes and associate evolutionary change with phenotypes of interest.

  11. SNUGB: a versatile genome browser supporting comparative and functional fungal genomics

    Directory of Open Access Journals (Sweden)

    Kim Seungill

    2008-12-01

    Full Text Available Abstract Background Since the full genome sequences of Saccharomyces cerevisiae were released in 1996, genome sequences of over 90 fungal species have become publicly available. The heterogeneous formats of genome sequences archived in different sequencing centers hampered the integration of the data for efficient and comprehensive comparative analyses. The Comparative Fungal Genomics Platform (CFGP was developed to archive these data via a single standardized format that can support multifaceted and integrated analyses of the data. To facilitate efficient data visualization and utilization within and across species based on the architecture of CFGP and associated databases, a new genome browser was needed. Results The Seoul National University Genome Browser (SNUGB integrates various types of genomic information derived from 98 fungal/oomycete (137 datasets and 34 plant and animal (38 datasets species, graphically presents germane features and properties of each genome, and supports comparison between genomes. The SNUGB provides three different forms of the data presentation interface, including diagram, table, and text, and six different display options to support visualization and utilization of the stored information. Information for individual species can be quickly accessed via a new tool named the taxonomy browser. In addition, SNUGB offers four useful data annotation/analysis functions, including 'BLAST annotation.' The modular design of SNUGB makes its adoption to support other comparative genomic platforms easy and facilitates continuous expansion. Conclusion The SNUGB serves as a powerful platform supporting comparative and functional genomics within the fungal kingdom and also across other kingdoms. All data and functions are available at the web site http://genomebrowser.snu.ac.kr/.

  12. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    Science.gov (United States)

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-05-27

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.

  13. The Functional Genomics Initiative at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dabney; Justice, Monica; Beattle, Ken; Buchanan, Michelle; Ramsey, Michael; Ramsey, Rose; Paulus, Michael; Ericson, Nance; Allison, David; Kress, Reid; Mural, Richard; Uberbacher, Ed; Mann, Reinhold

    1997-12-31

    The Functional Genomics Initiative at the Oak Ridge National Laboratory integrates outstanding capabilities in mouse genetics, bioinformatics, and instrumentation. The 50 year investment by the DOE in mouse genetics/mutagenesis has created a one-of-a-kind resource for generating mutations and understanding their biological consequences. It is generally accepted that, through the mouse as a surrogate for human biology, we will come to understand the function of human genes. In addition to this world class program in mammalian genetics, ORNL has also been a world leader in developing bioinformatics tools for the analysis, management and visualization of genomic data. Combining this expertise with new instrumentation technologies will provide a unique capability to understand the consequences of mutations in the mouse at both the organism and molecular levels. The goal of the Functional Genomics Initiative is to develop the technology and methodology necessary to understand gene function on a genomic scale and apply these technologies to megabase regions of the human genome. The effort is scoped so as to create an effective and powerful resource for functional genomics. ORNL is partnering with the Joint Genome Institute and other large scale sequencing centers to sequence several multimegabase regions of both human and mouse genomic DNA, to identify all the genes in these regions, and to conduct fundamental surveys to examine gene function at the molecular and organism level. The Initiative is designed to be a pilot for larger scale deployment in the post-genome era. Technologies will be applied to the examination of gene expression and regulation, metabolism, gene networks, physiology and development.

  14. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  15. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions.

    Science.gov (United States)

    Gerlt, John A

    2017-08-22

    The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of "genomic enzymology" web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence-function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems.

  16. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project : open letter

    NARCIS (Netherlands)

    Archibald, A.L.; Bottema, C.D.; Brauning, R.; Burgess, S.C.; Burt, D.W.; Casas, E.; Cheng, H.H.; Clarke, L.; Couldrey, C.; Dalrymple, B.P.; Elsik, C.G.; Foissac, S.; Giuffra, E.; Groenen, M.A.M.; Hayes, B.J.; Huang, L.S.; Khatib, H.; Kijas, J.W.; Kim, H.; Lunney, J.K.; McCarthy, F.M.; McEwan, J.; Moore, S.; Nanduri, B.; Notredame, C.; Palti, Y.; Plastow, G.S.; Reecy, J.M.; Rohrer, G.; Sarropoulou, E.; Schmidt, C.J.; Silverstein, J.; Tellam, R.L.; Tixier-Boichard, M.; Tosser-klopp, G.; Tuggle, C.K.; Vilkki, J.; White, S.N.; Zhao, S.; Zhou, H.

    2015-01-01

    We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.

  17. Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB, target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB, it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  18. Mapping genomic features to functional traits through microbial whole genome sequences.

    Science.gov (United States)

    Zhang, Wei; Zeng, Erliang; Liu, Dan; Jones, Stuart E; Emrich, Scott

    2014-01-01

    Recently, the utility of trait-based approaches for microbial communities has been identified. Increasing availability of whole genome sequences provide the opportunity to explore the genetic foundations of a variety of functional traits. We proposed a machine learning framework to quantitatively link the genomic features with functional traits. Genes from bacteria genomes belonging to different functional traits were grouped to Cluster of Orthologs (COGs), and were used as features. Then, TF-IDF technique from the text mining domain was applied to transform the data to accommodate the abundance and importance of each COG. After TF-IDF processing, COGs were ranked using feature selection methods to identify their relevance to the functional trait of interest. Extensive experimental results demonstrated that functional trait related genes can be detected using our method. Further, the method has the potential to provide novel biological insights.

  19. Exploring the post-genomic world: differing explanatory and manipulatory functions of post-genomic sciences.

    Science.gov (United States)

    Holmes, Christina; Carlson, Siobhan M; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-01-02

    Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics.

  20. Public attitudes to genomic science: an experiment in information provision.

    Science.gov (United States)

    Sturgis, Patrick; Brunton-Smith, Ian; Fife-Schaw, Chris

    2010-03-01

    We use an experimental panel study design to investigate the effect of providing "value-neutral" information about genomic science in the form of a short film to a random sample of the British public. We find little evidence of attitude change as a function of information provision. However, our results show that information provision significantly increased dropout from the study amongst less educated respondents. Our findings have implications both for our understanding of the knowledge-attitude relationship in public opinion toward genomic science and for science communication more generally.

  1. Distinguishing between "function" and "effect" in genome biology.

    Science.gov (United States)

    Doolittle, W Ford; Brunet, Tyler D P; Linquist, Stefan; Gregory, T Ryan

    2014-05-09

    Much confusion in genome biology results from conflation of possible meanings of the word "function." We suggest that, in this connection, attention should be paid to evolutionary biologists and philosophers who have previously dealt with this problem. We need only decide that although all genomic structures have effects, only some of them should be said to have functions. Although it will very often be difficult or impossible to establish function (strictly defined), it should not automatically be assumed. We enjoin genomicists in particular to pay greater attention to parsing biological effects. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Budding off: bringing functional genomics to Candida albicans

    Science.gov (United States)

    Anderson, Matthew Z.

    2016-01-01

    Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein–DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species. PMID:26424829

  3. compendiumdb: an R package for retrieval and storage of functional genomics data

    NARCIS (Netherlands)

    Nandal, Umesh K.; van Kampen, Antoine H. C.; Moerland, Perry D.

    2016-01-01

    Currently, the Gene Expression Omnibus (GEO) contains public data of over 1 million samples from more than 40 000 microarray-based functional genomics experiments. This provides a rich source of information for novel biological discoveries. However, unlocking this potential often requires retrieving

  4. Functional genomic analysis of C. elegans molting.

    Directory of Open Access Journals (Sweden)

    Alison R Frand

    2005-10-01

    Full Text Available Although the molting cycle is a hallmark of insects and nematodes, neither the endocrine control of molting via size, stage, and nutritional inputs nor the enzymatic mechanism for synthesis and release of the exoskeleton is well understood. Here, we identify endocrine and enzymatic regulators of molting in C. elegans through a genome-wide RNA-interference screen. Products of the 159 genes discovered include annotated transcription factors, secreted peptides, transmembrane proteins, and extracellular matrix enzymes essential for molting. Fusions between several genes and green fluorescent protein show a pulse of expression before each molt in epithelial cells that synthesize the exoskeleton, indicating that the corresponding proteins are made in the correct time and place to regulate molting. We show further that inactivation of particular genes abrogates expression of the green fluorescent protein reporter genes, revealing regulatory networks that might couple the expression of genes essential for molting to endocrine cues. Many molting genes are conserved in parasitic nematodes responsible for human disease, and thus represent attractive targets for pesticide and pharmaceutical development.

  5. The cacao Criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies.

    Science.gov (United States)

    Argout, X; Martin, G; Droc, G; Fouet, O; Labadie, K; Rivals, E; Aury, J M; Lanaud, C

    2017-09-15

    Theobroma cacao L., native to the Amazonian basin of South America, is an economically important fruit tree crop for tropical countries as a source of chocolate. The first draft genome of the species, from a Criollo cultivar, was published in 2011. Although a useful resource, some improvements are possible, including identifying misassemblies, reducing the number of scaffolds and gaps, and anchoring un-anchored sequences to the 10 chromosomes. We used a NGS-based approach to significantly improve the assembly of the Belizian Criollo B97-61/B2 genome. We combined four Illumina large insert size mate paired libraries with 52x of Pacific Biosciences long reads to correct misassembled regions and reduced the number of scaffolds. We then used genotyping by sequencing (GBS) methods to increase the proportion of the assembly anchored to chromosomes. The scaffold number decreased from 4,792 in assembly V1 to 554 in V2 while the scaffold N50 size has increased from 0.47 Mb in V1 to 6.5 Mb in V2. A total of 96.7% of the assembly was anchored to the 10 chromosomes compared to 66.8% in the previous version. Unknown sites (Ns) were reduced from 10.8% to 5.7%. In addition, we updated the functional annotations and performed a new RefSeq structural annotation based on RNAseq evidence. Theobroma cacao Criollo genome version 2 will be a valuable resource for the investigation of complex traits at the genomic level and for future comparative genomics and genetics studies in cacao tree. New functional tools and annotations are available on the Cocoa Genome Hub ( http://cocoa-genome-hub.southgreen.fr ).

  6. Functional annotation from the genome sequence of the giant panda

    OpenAIRE

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-01-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided in...

  7. Functional genomics in renal transplantation and chronic kidney disease

    International Nuclear Information System (INIS)

    Wilflingseder, J.

    2010-01-01

    For the past decade, the development of genomic technology has revolutionized modern biological research. Functional genomic analyses enable biologists to study genetic events on a genome wide scale. Examples of applications are gene discovery, biomarker determination, disease classification, and drug target identification. Global expression profiles performed with microarrays enable a better understanding of molecular signature of human disease, including acute and chronic kidney disease. About 10 % of the population in western industrialized nations suffers from chronic kidney disease (CKD). Treatment of end stage renal disease, the final stage of CKD is performed by either hemo- or peritoneal dialysis or renal transplantation. The preferred treatment is renal transplantation, because of the higher quality of life. But the pathophysiology of the disease on a molecular level is not well enough understood and early biomarkers for acute and chronic kidney disease are missing. In my studies I focused on genomics of allograft biopsies, prevention of delayed graft function after renal transplantation, anemia after renal transplantation, biocompatibility of hemodialysis membranes and peritoneal dialysis fluids and cardiovascular diseases and bone disorders in CKD patients. Gene expression profiles, pathway analysis and protein-protein interaction networks were used to elucidate the underlying pathophysiological mechanism of the disease or phenomena, identifying early biomarkers or predictors of disease state and potentially drug targets. In summery my PhD thesis represents the application of functional genomic analyses in chronic kidney disease and renal transplantation. The results provide a deeper view into the molecular and cellular mechanisms of kidney disease. Nevertheless, future multicenter collaborative studies, meta-analyses of existing data, incorporation of functional genomics into large-scale prospective clinical trials are needed and will give biomedical

  8. Exploring Protein Function Using the Saccharomyces Genome Database.

    Science.gov (United States)

    Wong, Edith D

    2017-01-01

    Elucidating the function of individual proteins will help to create a comprehensive picture of cell biology, as well as shed light on human disease mechanisms, possible treatments, and cures. Due to its compact genome, and extensive history of experimentation and annotation, the budding yeast Saccharomyces cerevisiae is an ideal model organism in which to determine protein function. This information can then be leveraged to infer functions of human homologs. Despite the large amount of research and biological data about S. cerevisiae, many proteins' functions remain unknown. Here, we explore ways to use the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org ) to predict the function of proteins and gain insight into their roles in various cellular processes.

  9. Genomic and functional features of the biosurfactant producing Bacillus sp. AM13.

    Science.gov (United States)

    Shaligram, Shraddha; Kumbhare, Shreyas V; Dhotre, Dhiraj P; Muddeshwar, Manohar G; Kapley, Atya; Joseph, Neetha; Purohit, Hemant P; Shouche, Yogesh S; Pawar, Shrikant P

    2016-09-01

    Genomic studies provide deeper insights into secondary metabolites produced by diverse bacterial communities, residing in various environmental niches. This study aims to understand the potential of a biosurfactant producing Bacillus sp. AM13, isolated from soil. An integrated approach of genomic and chemical analysis was employed to characterize the antibacterial lipopeptide produced by the strain AM13. Genome analysis revealed that strain AM13 harbors a nonribosomal peptide synthetase (NRPS) cluster; highly similar with known biosynthetic gene clusters from surfactin family: lichenysin (85 %) and surfactin (78 %). These findings were substantiated with supplementary experiments of oil displacement assay and surface tension measurements, confirming the biosurfactant production. Further investigation using LCMS approach exhibited similarity of the biomolecule with biosurfactants of the surfactin family. Our consolidated effort of functional genomics provided chemical as well as genetic leads for understanding the biochemical characteristics of the bioactive compound.

  10. Genomic Functionalization: The Next Revolution In Biology

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Peter [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schoeniger, Joseph S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Imbro, Paula M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  11. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Using functional genomics to study PINK1 and metabolic physiology

    DEFF Research Database (Denmark)

    Scheele, Camilla; Larsson, Ola; Timmons, James A

    2009-01-01

    Genome sequencing projects have provided the substrate for an unimaginable number of biological experiments. Further, genomic technologies such as microarrays and quantitative and exquisitely sensitive techniques such as real-time quantitative polymerase chain reaction have made it possible to re...... to be simpler than the in vivo mammalian tissue and thus the methods discussed largely apply to this cell biology phase. We apologize for not referring to all relevant publications and for any technical considerations we have also failed to factor into our discussion....

  13. Resurrection of DNA function in vivo from an extinct genome.

    Directory of Open Access Journals (Sweden)

    Andrew J Pask

    2008-05-01

    Full Text Available There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine, obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity.

  14. Functional annotation from the genome sequence of the giant panda.

    Science.gov (United States)

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-08-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.

  15. The functional matrix hypothesis revisited. 3. The genomic thesis.

    Science.gov (United States)

    Moss, M L

    1997-09-01

    Although the initial versions of the functional matrix hypothesis (FMH) theoretically posited the ontogenetic primacy of "function," it is only in recent years that advances in the morphogenetic, engineering, and computer sciences provided an integrated experimental and numerical data base that permitted recent significant revisions of the FMH--revisions that strongly support the primary role of function in craniofacial growth and development. Acknowledging that the currently dominant scientific paradigm suggests that genomic, instead of epigenetic (functional) factors, regulate (cause, control) such growth, an analysis of this continuing controversy was deemed useful. Accordingly the method of dialectical analysis, is employed, stating a thesis, an antithesis, and a resolving synthesis based primarily on an extensive review of the pertinent current literature. This article extensively reviews the genomic hypothesis and offers a critique intended to remove some of the unintentional conceptual obscurantism that has recently come to surround it.

  16. Assaying gene function by growth competition experiment.

    Science.gov (United States)

    Merritt, Joshua; Edwards, Jeremy S

    2004-07-01

    High-throughput screening and analysis is one of the emerging paradigms in biotechnology. In particular, high-throughput methods are essential in the field of functional genomics because of the vast amount of data generated in recent and ongoing genome sequencing efforts. In this report we discuss integrated functional analysis methodologies which incorporate both a growth competition component and a highly parallel assay used to quantify results of the growth competition. Several applications of the two most widely used technologies in the field, i.e., transposon mutagenesis and deletion strain library growth competition, and individual applications of several developing or less widely reported technologies are presented.

  17. Functional RNA structures throughout the Hepatitis C Virus genome.

    Science.gov (United States)

    Adams, Rebecca L; Pirakitikulr, Nathan; Pyle, Anna Marie

    2017-06-01

    The single-stranded Hepatitis C Virus (HCV) genome adopts a set of elaborate RNA structures that are involved in every stage of the viral lifecycle. Recent advances in chemical probing, sequencing, and structural biology have facilitated analysis of RNA folding on a genome-wide scale, revealing novel structures and networks of interactions. These studies have underscored the active role played by RNA in every function of HCV and they open the door to new types of RNA-targeted therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Functional validation of candidate genes detected by genomic feature models

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Østergaard, Solveig; Kristensen, Torsten Nygaard

    2018-01-01

    to investigate locomotor activity, and applied genomic feature prediction models to identify gene ontology (GO) cate- gories predictive of this phenotype. Next, we applied the covariance association test to partition the genomic variance of the predictive GO terms to the genes within these terms. We...... then functionally assessed whether the identified candidate genes affected locomotor activity by reducing gene expression using RNA interference. In five of the seven candidate genes tested, reduced gene expression altered the phenotype. The ranking of genes within the predictive GO term was highly correlated......Understanding the genetic underpinnings of complex traits requires knowledge of the genetic variants that contribute to phenotypic variability. Reliable statistical approaches are needed to obtain such knowledge. In genome-wide association studies, variants are tested for association with trait...

  19. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity.

    Science.gov (United States)

    Moin, Mazahar; Bakshi, Achala; Saha, Anusree; Dutta, Mouboni; Kirti, P B

    2017-07-01

    The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Genomic islands predict functional adaptation in marine actinobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  1. Functional noncoding sequences derived from SINEs in the mammalian genome.

    Science.gov (United States)

    Nishihara, Hidenori; Smit, Arian F A; Okada, Norihiro

    2006-07-01

    Recent comparative analyses of mammalian sequences have revealed that a large number of nonprotein-coding genomic regions are under strong selective constraint. Here, we report that some of these loci have been derived from a newly defined family of ancient SINEs (short interspersed repetitive elements). This is a surprising result, as SINEs and other transposable elements are commonly thought to be genomic parasites. We named the ancient SINE family AmnSINE1, for Amniota SINE1, because we found it to be present in mammals as well as in birds, and some copies predate the mammalian-bird split 310 million years ago (Mya). AmnSINE1 has a chimeric structure of a 5S rRNA and a tRNA-derived SINE, and is related to five tRNA-derived SINE families that we characterized here in the coelacanth, dogfish shark, hagfish, and amphioxus genomes. All of the newly described SINE families have a common central domain that is also shared by zebrafish SINE3, and we collectively name them the DeuSINE (Deuterostomia SINE) superfamily. Notably, of the approximately 1000 still identifiable copies of AmnSINE1 in the human genome, 105 correspond to loci phylogenetically highly conserved among mammalian orthologs. The conservation is strongest over the central domain. Thus, AmnSINE1 appears to be the best example of a transposable element of which a significant fraction of the copies have acquired genomic functionality.

  2. Resources for Functional Genomics Studies in Drosophila melanogaster

    Science.gov (United States)

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  3. Functional genomics in the study of mind-body therapies.

    Science.gov (United States)

    Niles, Halsey; Mehta, Darshan H; Corrigan, Alexandra A; Bhasin, Manoj K; Denninger, John W

    2014-01-01

    Mind-body therapies (MBTs) are used throughout the world in treatment, disease prevention, and health promotion. However, the mechanisms by which MBTs exert their positive effects are not well understood. Investigations into MBTs using functional genomics have revolutionized the understanding of MBT mechanisms and their effects on human physiology. We searched the literature for the effects of MBTs on functional genomics determinants using MEDLINE, supplemented by a manual search of additional journals and a reference list review. We reviewed 15 trials that measured global or targeted transcriptomic, epigenomic, or proteomic changes in peripheral blood. Sample sizes ranged from small pilot studies (n=2) to large trials (n=500). While the reliability of individual genes from trial to trial was often inconsistent, genes related to inflammatory response, particularly those involved in the nuclear factor-kappa B (NF-κB) pathway, were consistently downregulated across most studies. In general, existing trials focusing on gene expression changes brought about by MBTs have revealed intriguing connections to the immune system through the NF-κB cascade, to telomere maintenance, and to apoptotic regulation. However, these findings are limited to a small number of trials and relatively small sample sizes. More rigorous randomized controlled trials of healthy subjects and specific disease states are warranted. Future research should investigate functional genomics areas both upstream and downstream of MBT-related gene expression changes-from epigenomics to proteomics and metabolomics.

  4. Functional Associations by Response Overlap (FARO, a functional genomics approach matching gene expression phenotypes.

    Directory of Open Access Journals (Sweden)

    Henrik Bjørn Nielsen

    2007-08-01

    Full Text Available The systematic comparison of transcriptional responses of organisms is a powerful tool in functional genomics. For example, mutants may be characterized by comparing their transcript profiles to those obtained in other experiments querying the effects on gene expression of many experimental factors including treatments, mutations and pathogen infections. Similarly, drugs may be discovered by the relationship between the transcript profiles effectuated or impacted by a candidate drug and by the target disease. The integration of such data enables systems biology to predict the interplay between experimental factors affecting a biological system. Unfortunately, direct comparisons of gene expression profiles obtained in independent, publicly available microarray experiments are typically compromised by substantial, experiment-specific biases. Here we suggest a novel yet conceptually simple approach for deriving 'Functional Association(s by Response Overlap' (FARO between microarray gene expression studies. The transcriptional response is defined by the set of differentially expressed genes independent from the magnitude or direction of the change. This approach overcomes the limited comparability between studies that is typical for methods that rely on correlation in gene expression. We apply FARO to a compendium of 242 diverse Arabidopsis microarray experimental factors, including phyto-hormones, stresses and pathogens, growth conditions/stages, tissue types and mutants. We also use FARO to confirm and further delineate the functions of Arabidopsis MAP kinase 4 in disease and stress responses. Furthermore, we find that a large, well-defined set of genes responds in opposing directions to different stress conditions and predict the effects of different stress combinations. This demonstrates the usefulness of our approach for exploiting public microarray data to derive biologically meaningful associations between experimental factors. Finally, our

  5. PROBING GENOME MAINTENANCE FUNCTIONS OF HUMAN RECQ1

    Directory of Open Access Journals (Sweden)

    Furqan Sami

    2013-03-01

    Full Text Available The RecQ helicases are a highly conserved family of DNA-unwinding enzymes that play key roles in protecting the genome stability in all kingdoms of life.'Human RecQ homologs include RECQ1, BLM, WRN, RECQ4, and RECQ5β.'Although the individual RecQ-related diseases are characterized by a variety of clinical features encompassing growth defects (Bloom Syndrome and Rothmund Thomson Syndrome to premature aging (Werner Syndrome, all these patients have a high risk of cancer predisposition.'Here, we present an overview of recent progress towards elucidating functions of RECQ1 helicase, the most abundant but poorly characterized RecQ homolog in humans.'Consistent with a conserved role in genome stability maintenance, deficiency of RECQ1 results in elevated frequency of spontaneous sister chromatid exchanges, chromosomal instability, increased DNA damage and greater sensitivity to certain genotoxic stress.'Delineating what aspects of RECQ1 catalytic functions contribute to the observed cellular phenotypes, and how this is regulated is critical to establish its biological functions in DNA metabolism.'Recent studies have identified functional specialization of RECQ1 in DNA repair; however, identification of fundamental similarities will be just as critical in developing a unifying theme for RecQ actions, allowing the functions revealed from studying one homolog to be extrapolated and generalized to other RecQ homologs.

  6. Event-based text mining for biology and functional genomics

    Science.gov (United States)

    Thompson, Paul; Nawaz, Raheel; McNaught, John; Kell, Douglas B.

    2015-01-01

    The assessment of genome function requires a mapping between genome-derived entities and biochemical reactions, and the biomedical literature represents a rich source of information about reactions between biological components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner. In response, recent text mining research in the biology domain has been largely focused on the identification and extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities, from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event extraction systems facilitate the development of sophisticated semantic search applications, allowing researchers to formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved. This article provides an overview of recent research into event extraction. We cover annotated corpora on which systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several concrete applications of event extraction are covered, together with emerging directions of research. PMID:24907365

  7. Avian genomics lends insights into endocrine function in birds.

    Science.gov (United States)

    Mello, C V; Lovell, P V

    2018-01-15

    The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly conserved syntenic clusters in other vertebrates is very intriguing, given the physiological importance of many of these genes. A considerable number of them play prominent endocrine roles, suggesting that birds evolved compensatory genetic or physiological mechanisms that allowed them to survive and thrive in spite of these losses. While further studies are needed to establish the exact extent of avian gene losses, these findings point to birds as potentially highly relevant model organisms for exploring the genetic basis and possible therapeutic approaches for a wide range of endocrine functions and disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bordetella pertussis evolution in the (functional) genomics era

    Science.gov (United States)

    Belcher, Thomas; Preston, Andrew

    2015-01-01

    The incidence of whooping cough caused by Bordetella pertussis in many developed countries has risen dramatically in recent years. This has been linked to the use of an acellular pertussis vaccine. In addition, it is thought that B. pertussis is adapting under acellular vaccine mediated immune selection pressure, towards vaccine escape. Genomics-based approaches have revolutionized the ability to resolve the fine structure of the global B. pertussis population and its evolution during the era of vaccination. Here, we discuss the current picture of B. pertussis evolution and diversity in the light of the current resurgence, highlight import questions raised by recent studies in this area and discuss the role that functional genomics can play in addressing current knowledge gaps. PMID:26297914

  9. Functional food ingredients against colorectal cancer. An example project integrating functional genomics, nutrition and health

    NARCIS (Netherlands)

    Stierum, R.; Burgemeister, R.; Helvoort, van A.; Peijnenburg, A.; Schütze, K.; Seidelin, M.; Vang, O.; Ommen, van B.

    2001-01-01

    Functional Food Ingredients Against Colorectal Cancer is one of the first European Union funded Research Projects at the cross-road of functional genomics [comprising transcriptomics, the measurement of the expression of all messengers RNA (mRNAs) and proteomics, the measurement of expression/state

  10. Introns: The Functional Benefits of Introns in Genomes

    Directory of Open Access Journals (Sweden)

    Bong-Seok Jo

    2015-12-01

    Full Text Available The intron has been a big biological mystery since it was first discovered in several aspects. First, all of the completely sequenced eukaryotes harbor introns in the genomic structure, whereas no prokaryotes identified so far carry introns. Second, the amount of total introns varies in different species. Third, the length and number of introns vary in different genes, even within the same species genome. Fourth, all introns are copied into RNAs by transcription and DNAs by replication processes, but intron sequences do not participate in protein-coding sequences. The existence of introns in the genome should be a burden to some cells, because cells have to consume a great deal of energy to copy and excise them exactly at the correct positions with the help of complicated spliceosomal machineries. The existence throughout the long evolutionary history is explained, only if selective advantages of carrying introns are assumed to be given to cells to overcome the negative effect of introns. In that regard, we summarize previous research about the functional roles or benefits of introns. Additionally, several other studies strongly suggesting that introns should not be junk will be introduced.

  11. Introns: The Functional Benefits of Introns in Genomes.

    Science.gov (United States)

    Jo, Bong-Seok; Choi, Sun Shim

    2015-12-01

    The intron has been a big biological mystery since it was first discovered in several aspects. First, all of the completely sequenced eukaryotes harbor introns in the genomic structure, whereas no prokaryotes identified so far carry introns. Second, the amount of total introns varies in different species. Third, the length and number of introns vary in different genes, even within the same species genome. Fourth, all introns are copied into RNAs by transcription and DNAs by replication processes, but intron sequences do not participate in protein-coding sequences. The existence of introns in the genome should be a burden to some cells, because cells have to consume a great deal of energy to copy and excise them exactly at the correct positions with the help of complicated spliceosomal machineries. The existence throughout the long evolutionary history is explained, only if selective advantages of carrying introns are assumed to be given to cells to overcome the negative effect of introns. In that regard, we summarize previous research about the functional roles or benefits of introns. Additionally, several other studies strongly suggesting that introns should not be junk will be introduced.

  12. QTL Analysis and Functional Genomics of Animal Model

    DEFF Research Database (Denmark)

    Farajzadeh, Leila

    , for example, has enabled scientists to examine more complex interactions in connection with studies of properties and diseases. In her PhD project, Leila Farajzadeh integrated different organisational levels in biology, including genotype, phenotype, association studies, transcription profiles and genetic......In recent years, the use of functional genomics and next-generation sequencing technologies has increased the probability of success in studies of complex properties. The integration of large data sets from association studies, DNA resequencing, gene expression profiles and phenotypic data...

  13. Functional validation of candidate genes detected by genomic feature models

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Østergaard, Solveig; Kristensen, Torsten Nygaard

    2018-01-01

    Understanding the genetic underpinnings of complex traits requires knowledge of the genetic variants that contribute to phenotypic variability. Reliable statistical approaches are needed to obtain such knowledge. In genome-wide association studies, variants are tested for association with trait...... then functionally assessed whether the identified candidate genes affected locomotor activity by reducing gene expression using RNA interference. In five of the seven candidate genes tested, reduced gene expression altered the phenotype. The ranking of genes within the predictive GO term was highly correlated...

  14. Zebrafish models for the functional genomics of neurogenetic disorders.

    Science.gov (United States)

    Kabashi, Edor; Brustein, Edna; Champagne, Nathalie; Drapeau, Pierre

    2011-03-01

    In this review, we consider recent work using zebrafish to validate and study the functional consequences of mutations of human genes implicated in a broad range of degenerative and developmental disorders of the brain and spinal cord. Also we present technical considerations for those wishing to study their own genes of interest by taking advantage of this easily manipulated and clinically relevant model organism. Zebrafish permit mutational analyses of genetic function (gain or loss of function) and the rapid validation of human variants as pathological mutations. In particular, neural degeneration can be characterized at genetic, cellular, functional, and behavioral levels. Zebrafish have been used to knock down or express mutations in zebrafish homologs of human genes and to directly express human genes bearing mutations related to neurodegenerative disorders such as spinal muscular atrophy, ataxia, hereditary spastic paraplegia, amyotrophic lateral sclerosis (ALS), epilepsy, Huntington's disease, Parkinson's disease, fronto-temporal dementia, and Alzheimer's disease. More recently, we have been using zebrafish to validate mutations of synaptic genes discovered by large-scale genomic approaches in developmental disorders such as autism, schizophrenia, and non-syndromic mental retardation. Advances in zebrafish genetics such as multigenic analyses and chemical genetics now offer a unique potential for disease research. Thus, zebrafish hold much promise for advancing the functional genomics of human diseases, the understanding of the genetics and cell biology of degenerative and developmental disorders, and the discovery of therapeutics. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Wheat EST resources for functional genomics of abiotic stress

    Directory of Open Access Journals (Sweden)

    Links Matthew G

    2006-06-01

    Full Text Available Abstract Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets. Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in

  16. The FUN of identifying gene function in bacterial pathogens; insights from Salmonella functional genomics.

    Science.gov (United States)

    Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D

    2013-10-01

    The availability of thousands of genome sequences of bacterial pathogens poses a particular challenge because each genome contains hundreds of genes of unknown function (FUN). How can we easily discover which FUN genes encode important virulence factors? One solution is to combine two different functional genomic approaches. First, transcriptomics identifies bacterial FUN genes that show differential expression during the process of mammalian infection. Second, global mutagenesis identifies individual FUN genes that the pathogen requires to cause disease. The intersection of these datasets can reveal a small set of candidate genes most likely to encode novel virulence attributes. We demonstrate this approach with the Salmonella infection model, and propose that a similar strategy could be used for other bacterial pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    International Nuclear Information System (INIS)

    Arneodo, Alain; Vaillant, Cedric; Audit, Benjamin; Argoul, Francoise; D'Aubenton-Carafa, Yves; Thermes, Claude

    2011-01-01

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  18. Epigenetic control of mobile DNA as an interface between experience and genome change

    Directory of Open Access Journals (Sweden)

    James A. Shapiro

    2014-04-01

    Full Text Available Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration.

  19. Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications

    Science.gov (United States)

    Hilson, Pierre; Allemeersch, Joke; Altmann, Thomas; Aubourg, Sébastien; Avon, Alexandra; Beynon, Jim; Bhalerao, Rishikesh P.; Bitton, Frédérique; Caboche, Michel; Cannoot, Bernard; Chardakov, Vasil; Cognet-Holliger, Cécile; Colot, Vincent; Crowe, Mark; Darimont, Caroline; Durinck, Steffen; Eickhoff, Holger; de Longevialle, Andéol Falcon; Farmer, Edward E.; Grant, Murray; Kuiper, Martin T.R.; Lehrach, Hans; Léon, Céline; Leyva, Antonio; Lundeberg, Joakim; Lurin, Claire; Moreau, Yves; Nietfeld, Wilfried; Paz-Ares, Javier; Reymond, Philippe; Rouzé, Pierre; Sandberg, Goran; Segura, Maria Dolores; Serizet, Carine; Tabrett, Alexandra; Taconnat, Ludivine; Thareau, Vincent; Van Hummelen, Paul; Vercruysse, Steven; Vuylsteke, Marnik; Weingartner, Magdalena; Weisbeek, Peter J.; Wirta, Valtteri; Wittink, Floyd R.A.; Zabeau, Marc; Small, Ian

    2004-01-01

    Microarray transcript profiling and RNA interference are two new technologies crucial for large-scale gene function studies in multicellular eukaryotes. Both rely on sequence-specific hybridization between complementary nucleic acid strands, inciting us to create a collection of gene-specific sequence tags (GSTs) representing at least 21,500 Arabidopsis genes and which are compatible with both approaches. The GSTs were carefully selected to ensure that each of them shared no significant similarity with any other region in the Arabidopsis genome. They were synthesized by PCR amplification from genomic DNA. Spotted microarrays fabricated from the GSTs show good dynamic range, specificity, and sensitivity in transcript profiling experiments. The GSTs have also been transferred to bacterial plasmid vectors via recombinational cloning protocols. These cloned GSTs constitute the ideal starting point for a variety of functional approaches, including reverse genetics. We have subcloned GSTs on a large scale into vectors designed for gene silencing in plant cells. We show that in planta expression of GST hairpin RNA results in the expected phenotypes in silenced Arabidopsis lines. These versatile GST resources provide novel and powerful tools for functional genomics. PMID:15489341

  20. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project

    DEFF Research Database (Denmark)

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya

    2007-01-01

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses...

  1. Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project

    OpenAIRE

    Dunlap, Jay C.; Borkovich, Katherine A.; Henn, Matthew R.; Turner, Gloria E.; Sachs, Matthew S.; Glass, N. Louise; McCluskey, Kevin; Plamann, Michael; Galagan, James E.; Birren, Bruce W.; Weiss, Richard L.; Townsend, Jeffrey P.; Loros, Jennifer J.; Nelson, Mary Anne; Lambreghts, Randy

    2007-01-01

    A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to acccomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of nonyeast fungi. Building fr...

  2. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  3. Functional Analysis of Shewanella, a cross genome comparison.

    Energy Technology Data Exchange (ETDEWEB)

    Serres, Margrethe H.

    2009-05-15

    The bacterial genus Shewanella includes a group of highly versatile organisms that have successfully adapted to life in many environments ranging from aquatic (fresh and marine) to sedimentary (lake and marine sediments, subsurface sediments, sea vent). A unique respiratory capability of the Shewanellas, initially observed for Shewanella oneidensis MR-1, is the ability to use metals and metalloids, including radioactive compounds, as electron acceptors. Members of the Shewanella genus have also been shown to degrade environmental pollutants i.e. halogenated compounds, making this group highly applicable for the DOE mission. S. oneidensis MR-1 has in addition been found to utilize a diverse set of nutrients and to have a large set of genes dedicated to regulation and to sensing of the environment. The sequencing of the S. oneidensis MR-1 genome facilitated experimental and bioinformatics analyses by a group of collaborating researchers, the Shewanella Federation. Through the joint effort and with support from Department of Energy S. oneidensis MR-1 has become a model organism of study. Our work has been a functional analysis of S. oneidensis MR-1, both by itself and as part of a comparative study. We have improved the annotation of gene products, assigned metabolic functions, and analyzed protein families present in S. oneidensis MR-1. The data has been applied to analysis of experimental data (i.e. gene expression, proteome) generated for S. oneidensis MR-1. Further, this work has formed the basis for a comparative study of over 20 members of the Shewanella genus. The species and strains selected for genome sequencing represented an evolutionary gradient of DNA relatedness, ranging from close to intermediate, and to distant. The organisms selected have also adapted to a variety of ecological niches. Through our work we have been able to detect and interpret genome similarities and differences between members of the genus. We have in this way contributed to the

  4. GIANT API: an application programming interface for functional genomics.

    Science.gov (United States)

    Roberts, Andrew M; Wong, Aaron K; Fisk, Ian; Troyanskaya, Olga G

    2016-07-08

    GIANT API provides biomedical researchers programmatic access to tissue-specific and global networks in humans and model organisms, and associated tools, which includes functional re-prioritization of existing genome-wide association study (GWAS) data. Using tissue-specific interaction networks, researchers are able to predict relationships between genes specific to a tissue or cell lineage, identify the changing roles of genes across tissues and uncover disease-gene associations. Additionally, GIANT API enables computational tools like NetWAS, which leverages tissue-specific networks for re-prioritization of GWAS results. The web services covered by the API include 144 tissue-specific functional gene networks in human, global functional networks for human and six common model organisms and the NetWAS method. GIANT API conforms to the REST architecture, which makes it stateless, cacheable and highly scalable. It can be used by a diverse range of clients including web browsers, command terminals, programming languages and standalone apps for data analysis and visualization. The API is freely available for use at http://giant-api.princeton.edu. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Plant ion channels: gene families, physiology, and functional genomics analyses.

    Science.gov (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  6. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    Directory of Open Access Journals (Sweden)

    Antommattei Frances M

    2008-10-01

    Full Text Available Abstract Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70 homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively. Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors

  7. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals.

    Science.gov (United States)

    Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is "mammalian-specific genomic functions", a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of "mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons", based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes.

  8. GeNemo: a search engine for web-based functional genomic data.

    Science.gov (United States)

    Zhang, Yongqing; Cao, Xiaoyi; Zhong, Sheng

    2016-07-08

    A set of new data types emerged from functional genomic assays, including ChIP-seq, DNase-seq, FAIRE-seq and others. The results are typically stored as genome-wide intensities (WIG/bigWig files) or functional genomic regions (peak/BED files). These data types present new challenges to big data science. Here, we present GeNemo, a web-based search engine for functional genomic data. GeNemo searches user-input data against online functional genomic datasets, including the entire collection of ENCODE and mouse ENCODE datasets. Unlike text-based search engines, GeNemo's searches are based on pattern matching of functional genomic regions. This distinguishes GeNemo from text or DNA sequence searches. The user can input any complete or partial functional genomic dataset, for example, a binding intensity file (bigWig) or a peak file. GeNemo reports any genomic regions, ranging from hundred bases to hundred thousand bases, from any of the online ENCODE datasets that share similar functional (binding, modification, accessibility) patterns. This is enabled by a Markov Chain Monte Carlo-based maximization process, executed on up to 24 parallel computing threads. By clicking on a search result, the user can visually compare her/his data with the found datasets and navigate the identified genomic regions. GeNemo is available at www.genemo.org. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Computational approaches to identify functional genetic variants in cancer genomes

    DEFF Research Database (Denmark)

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris

    2013-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discu......The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result...... of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype....

  10. Symbiodinium genomes reveal adaptive evolution of functions related to symbiosis

    KAUST Repository

    Liu, Huanle; Stephens, Timothy G.; Gonzá lez-Pech, Raú l; Beltran, Victor H.; Lapeyre, Bruno; Bongaerts, Pim; Cooke, Ira; Bourne, David G.; Forê t, Sylvain; Miller, David John; van Oppen, Madeleine J. H.; Voolstra, Christian R.; Ragan, Mark A.; Chan, Cheong Xin

    2017-01-01

    Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world's coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp), previously sequenced as strain CCMP2468, to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identified extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding Symbiodinium biology and the coral-algal symbiosis.

  11. Symbiodinium genomes reveal adaptive evolution of functions related to symbiosis

    KAUST Repository

    Liu, Huanle

    2017-10-06

    Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world\\'s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp), previously sequenced as strain CCMP2468, to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identified extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding Symbiodinium biology and the coral-algal symbiosis.

  12. The eukaryotic genome is structurally and functionally more like a social insect colony than a book.

    Science.gov (United States)

    Qiu, Guo-Hua; Yang, Xiaoyan; Zheng, Xintian; Huang, Cuiqin

    2017-11-01

    Traditionally, the genome has been described as the 'book of life'. However, the metaphor of a book may not reflect the dynamic nature of the structure and function of the genome. In the eukaryotic genome, the number of centrally located protein-coding sequences is relatively constant across species, but the amount of noncoding DNA increases considerably with the increase of organismal evolutional complexity. Therefore, it has been hypothesized that the abundant peripheral noncoding DNA protects the genome and the central protein-coding sequences in the eukaryotic genome. Upon comparison with the habitation, sociality and defense mechanisms of a social insect colony, it is found that the genome is similar to a social insect colony in various aspects. A social insect colony may thus be a better metaphor than a book to describe the spatial organization and physical functions of the genome. The potential implications of the metaphor are also discussed.

  13. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures

    DEFF Research Database (Denmark)

    Stark, Alexander; Lin, Michael F; Kheradpour, Pouya

    2007-01-01

    Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional e...... individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies....

  14. Clinical Implications of Human Population Differences in Genome-wide Rates of Functional Genotypes

    Directory of Open Access Journals (Sweden)

    Ali eTorkamani

    2012-11-01

    Full Text Available There have been a number of recent successes in the use of whole genome sequencing and sophisticated bioinformatics techniques to identify pathogenic DNA sequence variants responsible for individual idiopathic congenital conditions. However, the success of this identification process is heavily influenced by the ancestry or genetic background of a patient with an idiopathic condition. This is so because potential pathogenic variants in a patient’s genome must be contrasted with variants in a reference set of genomes made up of other individuals’ genomes of the same ancestry as the patient. We explored the effect of ignoring the ancestries of both an individual patient and the individuals used to construct reference genomes. We pursued this exploration in two major steps. We first considered variation in the per-genome number and rates likely functional derived (i.e., non-ancestral, based on the chimp genome single nucleotide variants and small indels in 52 individual whole human genomes sampled from 10 different global populations. We took advantage of a suite of computational and bioinformatics techniques to predict the functional effect of over 24 million genomic variants, both coding and non-coding, across these genomes. We found that the typical human genome harbors ~5.5-6.1 million total derived variants, of which ~12,000 are likely to have a functional effect (~5000 coding and ~7000 non-coding. We also found that the rates of functional genotypes per the total number of genotypes in individual whole genomes differ dramatically between human populations. We then created tables showing how the use of comparator or reference genome panels comprised of genomes from individuals that do not have the same ancestral background as a patient can negatively impact pathogenic variant identification. Our results have important implications for clinical sequencing initiatives.

  15. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.

    Science.gov (United States)

    Birney, Ewan; Stamatoyannopoulos, John A; Dutta, Anindya; Guigó, Roderic; Gingeras, Thomas R; Margulies, Elliott H; Weng, Zhiping; Snyder, Michael; Dermitzakis, Emmanouil T; Thurman, Robert E; Kuehn, Michael S; Taylor, Christopher M; Neph, Shane; Koch, Christoph M; Asthana, Saurabh; Malhotra, Ankit; Adzhubei, Ivan; Greenbaum, Jason A; Andrews, Robert M; Flicek, Paul; Boyle, Patrick J; Cao, Hua; Carter, Nigel P; Clelland, Gayle K; Davis, Sean; Day, Nathan; Dhami, Pawandeep; Dillon, Shane C; Dorschner, Michael O; Fiegler, Heike; Giresi, Paul G; Goldy, Jeff; Hawrylycz, Michael; Haydock, Andrew; Humbert, Richard; James, Keith D; Johnson, Brett E; Johnson, Ericka M; Frum, Tristan T; Rosenzweig, Elizabeth R; Karnani, Neerja; Lee, Kirsten; Lefebvre, Gregory C; Navas, Patrick A; Neri, Fidencio; Parker, Stephen C J; Sabo, Peter J; Sandstrom, Richard; Shafer, Anthony; Vetrie, David; Weaver, Molly; Wilcox, Sarah; Yu, Man; Collins, Francis S; Dekker, Job; Lieb, Jason D; Tullius, Thomas D; Crawford, Gregory E; Sunyaev, Shamil; Noble, William S; Dunham, Ian; Denoeud, France; Reymond, Alexandre; Kapranov, Philipp; Rozowsky, Joel; Zheng, Deyou; Castelo, Robert; Frankish, Adam; Harrow, Jennifer; Ghosh, Srinka; Sandelin, Albin; Hofacker, Ivo L; Baertsch, Robert; Keefe, Damian; Dike, Sujit; Cheng, Jill; Hirsch, Heather A; Sekinger, Edward A; Lagarde, Julien; Abril, Josep F; Shahab, Atif; Flamm, Christoph; Fried, Claudia; Hackermüller, Jörg; Hertel, Jana; Lindemeyer, Manja; Missal, Kristin; Tanzer, Andrea; Washietl, Stefan; Korbel, Jan; Emanuelsson, Olof; Pedersen, Jakob S; Holroyd, Nancy; Taylor, Ruth; Swarbreck, David; Matthews, Nicholas; Dickson, Mark C; Thomas, Daryl J; Weirauch, Matthew T; Gilbert, James; Drenkow, Jorg; Bell, Ian; Zhao, XiaoDong; Srinivasan, K G; Sung, Wing-Kin; Ooi, Hong Sain; Chiu, Kuo Ping; Foissac, Sylvain; Alioto, Tyler; Brent, Michael; Pachter, Lior; Tress, Michael L; Valencia, Alfonso; Choo, Siew Woh; Choo, Chiou Yu; Ucla, Catherine; Manzano, Caroline; Wyss, Carine; Cheung, Evelyn; Clark, Taane G; Brown, James B; Ganesh, Madhavan; Patel, Sandeep; Tammana, Hari; Chrast, Jacqueline; Henrichsen, Charlotte N; Kai, Chikatoshi; Kawai, Jun; Nagalakshmi, Ugrappa; Wu, Jiaqian; Lian, Zheng; Lian, Jin; Newburger, Peter; Zhang, Xueqing; Bickel, Peter; Mattick, John S; Carninci, Piero; Hayashizaki, Yoshihide; Weissman, Sherman; Hubbard, Tim; Myers, Richard M; Rogers, Jane; Stadler, Peter F; Lowe, Todd M; Wei, Chia-Lin; Ruan, Yijun; Struhl, Kevin; Gerstein, Mark; Antonarakis, Stylianos E; Fu, Yutao; Green, Eric D; Karaöz, Ulaş; Siepel, Adam; Taylor, James; Liefer, Laura A; Wetterstrand, Kris A; Good, Peter J; Feingold, Elise A; Guyer, Mark S; Cooper, Gregory M; Asimenos, George; Dewey, Colin N; Hou, Minmei; Nikolaev, Sergey; Montoya-Burgos, Juan I; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Huang, Haiyan; Zhang, Nancy R; Holmes, Ian; Mullikin, James C; Ureta-Vidal, Abel; Paten, Benedict; Seringhaus, Michael; Church, Deanna; Rosenbloom, Kate; Kent, W James; Stone, Eric A; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross C; Haussler, David; Miller, Webb; Sidow, Arend; Trinklein, Nathan D; Zhang, Zhengdong D; Barrera, Leah; Stuart, Rhona; King, David C; Ameur, Adam; Enroth, Stefan; Bieda, Mark C; Kim, Jonghwan; Bhinge, Akshay A; Jiang, Nan; Liu, Jun; Yao, Fei; Vega, Vinsensius B; Lee, Charlie W H; Ng, Patrick; Shahab, Atif; Yang, Annie; Moqtaderi, Zarmik; Zhu, Zhou; Xu, Xiaoqin; Squazzo, Sharon; Oberley, Matthew J; Inman, David; Singer, Michael A; Richmond, Todd A; Munn, Kyle J; Rada-Iglesias, Alvaro; Wallerman, Ola; Komorowski, Jan; Fowler, Joanna C; Couttet, Phillippe; Bruce, Alexander W; Dovey, Oliver M; Ellis, Peter D; Langford, Cordelia F; Nix, David A; Euskirchen, Ghia; Hartman, Stephen; Urban, Alexander E; Kraus, Peter; Van Calcar, Sara; Heintzman, Nate; Kim, Tae Hoon; Wang, Kun; Qu, Chunxu; Hon, Gary; Luna, Rosa; Glass, Christopher K; Rosenfeld, M Geoff; Aldred, Shelley Force; Cooper, Sara J; Halees, Anason; Lin, Jane M; Shulha, Hennady P; Zhang, Xiaoling; Xu, Mousheng; Haidar, Jaafar N S; Yu, Yong; Ruan, Yijun; Iyer, Vishwanath R; Green, Roland D; Wadelius, Claes; Farnham, Peggy J; Ren, Bing; Harte, Rachel A; Hinrichs, Angie S; Trumbower, Heather; Clawson, Hiram; Hillman-Jackson, Jennifer; Zweig, Ann S; Smith, Kayla; Thakkapallayil, Archana; Barber, Galt; Kuhn, Robert M; Karolchik, Donna; Armengol, Lluis; Bird, Christine P; de Bakker, Paul I W; Kern, Andrew D; Lopez-Bigas, Nuria; Martin, Joel D; Stranger, Barbara E; Woodroffe, Abigail; Davydov, Eugene; Dimas, Antigone; Eyras, Eduardo; Hallgrímsdóttir, Ingileif B; Huppert, Julian; Zody, Michael C; Abecasis, Gonçalo R; Estivill, Xavier; Bouffard, Gerard G; Guan, Xiaobin; Hansen, Nancy F; Idol, Jacquelyn R; Maduro, Valerie V B; Maskeri, Baishali; McDowell, Jennifer C; Park, Morgan; Thomas, Pamela J; Young, Alice C; Blakesley, Robert W; Muzny, Donna M; Sodergren, Erica; Wheeler, David A; Worley, Kim C; Jiang, Huaiyang; Weinstock, George M; Gibbs, Richard A; Graves, Tina; Fulton, Robert; Mardis, Elaine R; Wilson, Richard K; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B; Chang, Jean L; Lindblad-Toh, Kerstin; Lander, Eric S; Koriabine, Maxim; Nefedov, Mikhail; Osoegawa, Kazutoyo; Yoshinaga, Yuko; Zhu, Baoli; de Jong, Pieter J

    2007-06-14

    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

  16. The W22 genome: a foundation for maize functional genomics and transposon biology

    Science.gov (United States)

    The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using small-read sequencing technologies. We show that significant structural heterogeneity exists in ...

  17. Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.

    Science.gov (United States)

    Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue

    2013-03-01

    The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.

  18. Genomic and Functional Approaches to Understanding Cancer Aneuploidy

    NARCIS (Netherlands)

    Taylor, Alison M.; Shih, Juliann; Ha, Gavin; Gao, Galen F.; Zhang, Xiaoyang; Berger, Ashton C.; Schumacher, Steven E.; Wang, Chen; Hu, Hai; Liu, Jianfang; Lazar, Alexander J.; Caesar-Johnson, Samantha J.; Demchok, John A.; Felau, Ina; Kasapi, Melpomeni; Ferguson, Martin L.; Hutter, Carolyn M.; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Cho, Juok; DeFreitas, Timothy; Frazer, Scott; Gehlenborg, Nils; Getz, Gad; Heiman, David I.; Kim, Jaegil; Lawrence, Michael S.; Lin, Pei; Meier, Sam; Noble, Michael S.; Saksena, Gordon; Voet, Doug; Zhang, Hailei; Bernard, Brady; Chambwe, Nyasha; Dhankani, Varsha; Knijnenburg, Theo; Kramer, Roger; Leinonen, Kalle; Liu, Yuexin; Miller, Michael; Reynolds, Sheila; Shmulevich, Ilya; Thorsson, Vesteinn; Zhang, Wei; Akbani, Rehan; Broom, Bradley M.; Hegde, Apurva M.; Ju, Zhenlin; Kanchi, Rupa S.; Korkut, Anil; Li, Jun; Liang, Han; Ling, Shiyun; Liu, Wenbin; Lu, Yiling; Mills, Gordon B.; Ng, Kwok Shing; Rao, Arvind; Ryan, Michael; Wang, Jing; Weinstein, John N.; Zhang, Jiexin; Abeshouse, Adam; Armenia, Joshua; Chakravarty, Debyani; Chatila, Walid K.; de Bruijn, Ino; Gao, Jianjiong; Gross, Benjamin E.; Heins, Zachary J.; Kundra, Ritika; La, Konnor; Ladanyi, Marc; Luna, Augustin; Nissan, Moriah G.; Ochoa, Angelica; Phillips, Sarah M.; Reznik, Ed; Sanchez-Vega, Francisco; Sander, Chris; Schultz, Nikolaus; Sheridan, Robert; Sumer, S. Onur; Sun, Yichao; Taylor, Barry S.; Wang, Jioajiao; Zhang, Hongxin; Anur, Pavana; Peto, Myron; Spellman, Paul; Benz, Christopher; Stuart, Joshua M.; Wong, Christopher K.; Yau, Christina; Hayes, D. Neil; Parker, Joel S.; Wilkerson, Matthew D.; Ally, Adrian; Balasundaram, Miruna; Bowlby, Reanne; Brooks, Denise; Carlsen, Rebecca; Chuah, Eric; Dhalla, Noreen; Holt, Robert; Jones, Steven J.M.; Kasaian, Katayoon; Lee, Darlene; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Moore, Richard A.; Mungall, Andrew J.; Mungall, Karen; Robertson, A. Gordon; Sadeghi, Sara; Schein, Jacqueline E.; Sipahimalani, Payal; Tam, Angela; Thiessen, Nina; Tse, Kane; Wong, Tina; Berger, Ashton C.; Beroukhim, Rameen; Cherniack, Andrew D.; Cibulskis, Carrie; Gabriel, Stacey B.; Gao, Galen F.; Ha, Gavin; Meyerson, Matthew; Schumacher, Steven E.; Shih, Juliann; Kucherlapati, Melanie H.; Kucherlapati, Raju S.; Baylin, Stephen; Cope, Leslie; Danilova, Ludmila; Bootwalla, Moiz S.; Lai, Phillip H.; Maglinte, Dennis T.; Van Den Berg, David J.; Weisenberger, Daniel J.; Auman, J. Todd; Balu, Saianand; Bodenheimer, Tom; Fan, Cheng; Hoadley, Katherine A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Corbin D.; Meng, Shaowu; Mieczkowski, Piotr A.; Mose, Lisle E.; Perou, Amy H.; Perou, Charles M.; Roach, Jeffrey; Shi, Yan; Simons, Janae V.; Skelly, Tara; Soloway, Matthew G.; Tan, Donghui; Veluvolu, Umadevi; Fan, Huihui; Hinoue, Toshinori; Laird, Peter W.; Shen, Hui; Zhou, Wanding; Bellair, Michelle; Chang, Kyle; Covington, Kyle; Creighton, Chad J.; Dinh, Huyen; Doddapaneni, Harsha Vardhan; Donehower, Lawrence A.; Drummond, Jennifer; Gibbs, Richard A.; Glenn, Robert; Hale, Walker; Han, Yi; Hu, Jianhong; Korchina, Viktoriya; Lee, Sandra; Lewis, Lora; Li, Wei; Liu, Xiuping; Morgan, Margaret; Morton, Donna; Muzny, Donna; Santibanez, Jireh; Sheth, Margi; Shinbrot, Eve; Wang, Linghua; Wang, Min; Wheeler, David A.; Xi, Liu; Zhao, Fengmei; Hess, Julian; Appelbaum, Elizabeth L.; Bailey, Matthew; Cordes, Matthew G.; Ding, Li; Fronick, Catrina C.; Fulton, Lucinda A.; Fulton, Robert S.; Kandoth, Cyriac; Mardis, Elaine R.; McLellan, Michael D.; Miller, Christopher A.; Schmidt, Heather K.; Wilson, Richard K.; Crain, Daniel; Curley, Erin; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph; Penny, Robert; Shelton, Candace; Shelton, Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Wise, Lisa; Zmuda, Erik; Corcoran, Niall; Costello, Tony; Hovens, Christopher; Carvalho, Andre L.; de Carvalho, Ana C.; Fregnani, José H.; Longatto-Filho, Adhemar; Reis, Rui M.; Scapulatempo-Neto, Cristovam; Silveira, Henrique C.S.; Vidal, Daniel O.; Burnette, Andrew; Eschbacher, Jennifer; Hermes, Beth; Noss, Ardene; Singh, Rosy; Anderson, Matthew L.; Castro, Patricia D.; Ittmann, Michael; Huntsman, David; Kohl, Bernard; Le, Xuan; Thorp, Richard; Andry, Chris; Duffy, Elizabeth R.; Lyadov, Vladimir; Paklina, Oxana; Setdikova, Galiya; Shabunin, Alexey; Tavobilov, Mikhail; McPherson, Christopher; Warnick, Ronald; Berkowitz, Ross; Cramer, Daniel; Feltmate, Colleen; Horowitz, Neil; Kibel, Adam; Muto, Michael; Raut, Chandrajit P.; Malykh, Andrei; Barnholtz-Sloan, Jill S.; Barrett, Wendi; Devine, Karen; Fulop, Jordonna; Ostrom, Quinn T.; Shimmel, Kristen; Wolinsky, Yingli; Sloan, Andrew E.; De Rose, Agostino; Giuliante, Felice; Goodman, Marc; Karlan, Beth Y.; Hagedorn, Curt H.; Eckman, John; Harr, Jodi; Myers, Jerome; Tucker, Kelinda; Zach, Leigh Anne; Deyarmin, Brenda; Hu, Hai; Kvecher, Leonid; Larson, Caroline; Mural, Richard J.; Somiari, Stella; Vicha, Ales; Zelinka, Tomas; Bennett, Joseph; Iacocca, Mary; Rabeno, Brenda; Swanson, Patricia; Latour, Mathieu; Lacombe, Louis; Têtu, Bernard; Bergeron, Alain; McGraw, Mary; Staugaitis, Susan M.; Chabot, John; Hibshoosh, Hanina; Sepulveda, Antonia; Su, Tao; Wang, Timothy; Potapova, Olga; Voronina, Olga; Desjardins, Laurence; Mariani, Odette; Roman-Roman, Sergio; Sastre, Xavier; Stern, Marc Henri; Cheng, Feixiong; Signoretti, Sabina; Berchuck, Andrew; Bigner, Darell; Lipp, Eric; Marks, Jeffrey; McCall, Shannon; McLendon, Roger; Secord, Angeles; Sharp, Alexis; Behera, Madhusmita; Brat, Daniel J.; Chen, Amy; Delman, Keith; Force, Seth; Khuri, Fadlo; Magliocca, Kelly; Maithel, Shishir; Olson, Jeffrey J.; Owonikoko, Taofeek; Pickens, Alan; Ramalingam, Suresh; Shin, Dong M.; Sica, Gabriel; Van Meir, Erwin G.; Zhang, Hongzheng; Eijckenboom, Wil; Gillis, Ad; Korpershoek, Esther; Looijenga, Leendert; Oosterhuis, Wolter; Stoop, Hans; van Kessel, Kim E.; Zwarthoff, Ellen C.; Calatozzolo, Chiara; Cuppini, Lucia; Cuzzubbo, Stefania; DiMeco, Francesco; Finocchiaro, Gaetano; Mattei, Luca; Perin, Alessandro; Pollo, Bianca; Chen, Chu; Houck, John; Lohavanichbutr, Pawadee; Hartmann, Arndt; Stoehr, Christine; Stoehr, Robert; Taubert, Helge; Wach, Sven; Wullich, Bernd; Kycler, Witold; Murawa, Dawid; Wiznerowicz, Maciej; Chung, Ki; Edenfield, W. Jeffrey; Martin, Julie; Baudin, Eric; Bubley, Glenn; Bueno, Raphael; De Rienzo, Assunta; Richards, William G.; Kalkanis, Steven; Mikkelsen, Tom; Noushmehr, Houtan; Scarpace, Lisa; Girard, Nicolas; Aymerich, Marta; Campo, Elias; Giné, Eva; Guillermo, Armando López; Van Bang, Nguyen; Hanh, Phan Thi; Phu, Bui Duc; Tang, Yufang; Colman, Howard; Evason, Kimberley; Dottino, Peter R.; Martignetti, John A.; Gabra, Hani; Juhl, Hartmut; Akeredolu, Teniola; Stepa, Serghei; Hoon, Dave; Ahn, Keunsoo; Kang, Koo Jeong; Beuschlein, Felix; Breggia, Anne; Birrer, Michael; Bell, Debra; Borad, Mitesh; Bryce, Alan H.; Castle, Erik; Chandan, Vishal; Cheville, John; Copland, John A.; Farnell, Michael; Flotte, Thomas; Giama, Nasra; Ho, Thai; Kendrick, Michael; Kocher, Jean Pierre; Kopp, Karla; Moser, Catherine; Nagorney, David; O'Brien, Daniel; O'Neill, Brian Patrick; Patel, Tushar; Petersen, Gloria; Que, Florencia; Rivera, Michael; Roberts, Lewis; Smallridge, Robert; Smyrk, Thomas; Stanton, Melissa; Thompson, R. Houston; Torbenson, Michael; Yang, Ju Dong; Zhang, Lizhi; Brimo, Fadi; Ajani, Jaffer A.; Angulo Gonzalez, Ana Maria; Behrens, Carmen; Bondaruk, Jolanta; Broaddus, Russell; Czerniak, Bogdan; Esmaeli, Bita; Fujimoto, Junya; Gershenwald, Jeffrey; Guo, Charles; Lazar, Alexander J.; Logothetis, Christopher; Meric-Bernstam, Funda; Moran, Cesar; Ramondetta, Lois; Rice, David; Sood, Anil; Tamboli, Pheroze; Thompson, Timothy; Troncoso, Patricia; Tsao, Anne; Wistuba, Ignacio; Carter, Candace; Haydu, Lauren; Hersey, Peter; Jakrot, Valerie; Kakavand, Hojabr; Kefford, Richard; Lee, Kenneth; Long, Georgina; Mann, Graham; Quinn, Michael; Saw, Robyn; Scolyer, Richard; Shannon, Kerwin; Spillane, Andrew; Stretch, Jonathan; Synott, Maria; Thompson, John; Wilmott, James; Al-Ahmadie, Hikmat; Chan, Timothy A.; Ghossein, Ronald; Gopalan, Anuradha; Levine, Douglas A.; Reuter, Victor; Singer, Samuel; Singh, Bhuvanesh; Tien, Nguyen Viet; Broudy, Thomas; Mirsaidi, Cyrus; Nair, Praveen; Drwiega, Paul; Miller, Judy; Smith, Jennifer; Zaren, Howard; Park, Joong Won; Hung, Nguyen Phi; Kebebew, Electron; Linehan, W. Marston; Metwalli, Adam R.; Pacak, Karel; Pinto, Peter A.; Schiffman, Mark; Schmidt, Laura S.; Vocke, Cathy D.; Wentzensen, Nicolas; Worrell, Robert; Yang, Hannah; Moncrieff, Marc; Goparaju, Chandra; Melamed, Jonathan; Pass, Harvey; Botnariuc, Natalia; Caraman, Irina; Cernat, Mircea; Chemencedji, Inga; Clipca, Adrian; Doruc, Serghei; Gorincioi, Ghenadie; Mura, Sergiu; Pirtac, Maria; Stancul, Irina; Tcaciuc, Diana; Albert, Monique; Alexopoulou, Iakovina; Arnaout, Angel; Bartlett, John; Engel, Jay; Gilbert, Sebastien; Parfitt, Jeremy; Sekhon, Harman; Thomas, George; Rassl, Doris M.; Rintoul, Robert C.; Bifulco, Carlo; Tamakawa, Raina; Urba, Walter; Hayward, Nicholas; Timmers, Henri; Antenucci, Anna; Facciolo, Francesco; Grazi, Gianluca; Marino, Mirella; Merola, Roberta; de Krijger, Ronald; Gimenez-Roqueplo, Anne Paule; Piché, Alain; Chevalier, Simone; McKercher, Ginette; Birsoy, Kivanc; Barnett, Gene; Brewer, Cathy; Farver, Carol; Naska, Theresa; Pennell, Nathan A.; Raymond, Daniel; Schilero, Cathy; Smolenski, Kathy; Williams, Felicia; Morrison, Carl; Borgia, Jeffrey A.; Liptay, Michael J.; Pool, Mark; Seder, Christopher W.; Junker, Kerstin; Omberg, Larsson; Dinkin, Mikhail; Manikhas, George; Alvaro, Domenico; Bragazzi, Maria Consiglia; Cardinale, Vincenzo; Carpino, Guido; Gaudio, Eugenio; Chesla, David; Cottingham, Sandra; Dubina, Michael; Moiseenko, Fedor; Dhanasekaran, Renumathy; Becker, Karl Friedrich; Janssen, Klaus Peter; Slotta-Huspenina, Julia; Abdel-Rahman, Mohamed H.; Aziz, Dina; Bell, Sue; Cebulla, Colleen M.; Davis, Amy; Duell, Rebecca; Elder, J. Bradley; Hilty, Joe; Kumar, Bahavna; Lang, James; Lehman, Norman L.; Mandt, Randy; Nguyen, Phuong; Pilarski, Robert; Rai, Karan; Schoenfield, Lynn; Senecal, Kelly; Wakely, Paul; Hansen, Paul; Lechan, Ronald; Powers, James; Tischler, Arthur; Grizzle, William E.; Sexton, Katherine C.; Kastl, Alison; Henderson, Joel; Porten, Sima; Waldmann, Jens; Fassnacht, Martin; Asa, Sylvia L.; Schadendorf, Dirk; Couce, Marta; Graefen, Markus; Huland, Hartwig; Sauter, Guido; Schlomm, Thorsten; Simon, Ronald; Tennstedt, Pierre; Olabode, Oluwole; Nelson, Mark; Bathe, Oliver; Carroll, Peter R.; Chan, June M.; Disaia, Philip; Glenn, Pat; Kelley, Robin K.; Landen, Charles N.; Phillips, Joanna; Prados, Michael; Simko, Jeffry; Smith-McCune, Karen; VandenBerg, Scott; Roggin, Kevin; Fehrenbach, Ashley; Kendler, Ady; Sifri, Suzanne; Steele, Ruth; Jimeno, Antonio; Carey, Francis; Forgie, Ian; Mannelli, Massimo; Carney, Michael; Hernandez, Brenda; Campos, Benito; Herold-Mende, Christel; Jungk, Christin; Unterberg, Andreas; von Deimling, Andreas; Bossler, Aaron; Galbraith, Joseph; Jacobus, Laura; Knudson, Michael; Knutson, Tina; Ma, Deqin; Milhem, Mohammed; Sigmund, Rita; Godwin, Andrew K.; Madan, Rashna; Rosenthal, Howard G.; Adebamowo, Clement; Adebamowo, Sally N.; Boussioutas, Alex; Beer, David; Giordano, Thomas; Mes-Masson, Anne Marie; Saad, Fred; Bocklage, Therese; Landrum, Lisa; Mannel, Robert; Moore, Kathleen; Moxley, Katherine; Postier, Russel; Walker, Joan; Zuna, Rosemary; Feldman, Michael; Valdivieso, Federico; Dhir, Rajiv; Luketich, James; Mora Pinero, Edna M.; Quintero-Aguilo, Mario; Carlotti, Carlos Gilberto; Dos Santos, Jose Sebastião; Kemp, Rafael; Sankarankuty, Ajith; Tirapelli, Daniela; Catto, James; Agnew, Kathy; Swisher, Elizabeth; Creaney, Jenette; Robinson, Bruce; Shelley, Carl Simon; Godwin, Eryn M.; Kendall, Sara; Shipman, Cassaundra; Bradford, Carol; Carey, Thomas; Haddad, Andrea; Moyer, Jeffey; Peterson, Lisa; Prince, Mark; Rozek, Laura; Wolf, Gregory; Bowman, Rayleen; Fong, Kwun M.; Yang, Ian; Korst, Robert; Rathmell, W. Kimryn; Fantacone-Campbell, J. Leigh; Hooke, Jeffrey A.; Kovatich, Albert J.; Shriver, Craig D.; DiPersio, John; Drake, Bettina; Govindan, Ramaswamy; Heath, Sharon; Ley, Timothy; Van Tine, Brian; Westervelt, Peter; Rubin, Mark A.; Lee, Jung Il; Aredes, Natália D.; Mariamidze, Armaz; Cherniack, Andrew D.; Beroukhim, Rameen; Meyerson, Matthew

    2018-01-01

    Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was

  19. ChloroMitoCU: Codon patterns across organelle genomes for functional genomics and evolutionary applications.

    Science.gov (United States)

    Sablok, Gaurav; Chen, Ting-Wen; Lee, Chi-Ching; Yang, Chi; Gan, Ruei-Chi; Wegrzyn, Jill L; Porta, Nicola L; Nayak, Kinshuk C; Huang, Po-Jung; Varotto, Claudio; Tang, Petrus

    2017-06-01

    Organelle genomes are widely thought to have arisen from reduction events involving cyanobacterial and archaeal genomes, in the case of chloroplasts, or α-proteobacterial genomes, in the case of mitochondria. Heterogeneity in base composition and codon preference has long been the subject of investigation of topics ranging from phylogenetic distortion to the design of overexpression cassettes for transgenic expression. From the overexpression point of view, it is critical to systematically analyze the codon usage patterns of the organelle genomes. In light of the importance of codon usage patterns in the development of hyper-expression organelle transgenics, we present ChloroMitoCU, the first-ever curated, web-based reference catalog of the codon usage patterns in organelle genomes. ChloroMitoCU contains the pre-compiled codon usage patterns of 328 chloroplast genomes (29,960 CDS) and 3,502 mitochondrial genomes (49,066 CDS), enabling genome-wide exploration and comparative analysis of codon usage patterns across species. ChloroMitoCU allows the phylogenetic comparison of codon usage patterns across organelle genomes, the prediction of codon usage patterns based on user-submitted transcripts or assembled organelle genes, and comparative analysis with the pre-compiled patterns across species of interest. ChloroMitoCU can increase our understanding of the biased patterns of codon usage in organelle genomes across multiple clades. ChloroMitoCU can be accessed at: http://chloromitocu.cgu.edu.tw/. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. A Rapid and Efficient Method for Purifying High Quality Total RNA from Peaches (Prunus persica for Functional Genomics Analyses

    Directory of Open Access Journals (Sweden)

    LEE MEISEL

    2005-01-01

    Full Text Available Prunus persica has been proposed as a genomic model for deciduous trees and the Rosaceae family. Optimized protocols for RNA isolation are necessary to further advance studies in this model species such that functional genomics analyses may be performed. Here we present an optimized protocol to rapidly and efficiently purify high quality total RNA from peach fruits (Prunus persica. Isolating high-quality RNA from fruit tissue is often difficult due to large quantities of polysaccharides and polyphenolic compounds that accumulate in this tissue and co-purify with the RNA. Here we demonstrate that a modified version of the method used to isolate RNA from pine trees and the woody plant Cinnamomun tenuipilum is ideal for isolating high quality RNA from the fruits of Prunus persica. This RNA may be used for many functional genomic based experiments such as RT-PCR and the construction of large-insert cDNA libraries.

  1. Identification of novel biomass-degrading enzymes from genomic dark matter: Populating genomic sequence space with functional annotation.

    Science.gov (United States)

    Piao, Hailan; Froula, Jeff; Du, Changbin; Kim, Tae-Wan; Hawley, Erik R; Bauer, Stefan; Wang, Zhong; Ivanova, Nathalia; Clark, Douglas S; Klenk, Hans-Peter; Hess, Matthias

    2014-08-01

    Although recent nucleotide sequencing technologies have significantly enhanced our understanding of microbial genomes, the function of ∼35% of genes identified in a genome currently remains unknown. To improve the understanding of microbial genomes and consequently of microbial processes it will be crucial to assign a function to this "genomic dark matter." Due to the urgent need for additional carbohydrate-active enzymes for improved production of transportation fuels from lignocellulosic biomass, we screened the genomes of more than 5,500 microorganisms for hypothetical proteins that are located in the proximity of already known cellulases. We identified, synthesized and expressed a total of 17 putative cellulase genes with insufficient sequence similarity to currently known cellulases to be identified as such using traditional sequence annotation techniques that rely on significant sequence similarity. The recombinant proteins of the newly identified putative cellulases were subjected to enzymatic activity assays to verify their hydrolytic activity towards cellulose and lignocellulosic biomass. Eleven (65%) of the tested enzymes had significant activity towards at least one of the substrates. This high success rate highlights that a gene context-based approach can be used to assign function to genes that are otherwise categorized as "genomic dark matter" and to identify biomass-degrading enzymes that have little sequence similarity to already known cellulases. The ability to assign function to genes that have no related sequence representatives with functional annotation will be important to enhance our understanding of microbial processes and to identify microbial proteins for a wide range of applications. © 2014 Wiley Periodicals, Inc.

  2. KENeV: A web-application for the automated reconstruction and visualization of the enriched metabolic and signaling super-pathways deriving from genomic experiments

    Directory of Open Access Journals (Sweden)

    Eleftherios Pilalis

    2015-01-01

    In conclusion, KENeV (available online at http://www.grissom.gr/kenev provides an integrative tool, suitable for users with no programming experience, for the functional interpretation, at both the metabolic and signaling level, of differentially expressed gene subsets deriving from genomic experiments.

  3. Comparative analyses identified species-specific functional roles in oral microbial genomes

    Science.gov (United States)

    Chen, Tsute; Gajare, Prasad; Olsen, Ingar; Dewhirst, Floyd E.

    2017-01-01

    ABSTRACT The advent of next generation sequencing is producing more genomic sequences for various strains of many human oral microbial species and allows for insightful functional comparisons at both intra- and inter-species levels. This study performed in-silico functional comparisons for currently available genomic sequences of major species associated with periodontitis including Aggregatibacter actinomycetemcomitans (AA), Porphyromonas gingivalis (PG), Treponema denticola (TD), and Tannerella forsythia (TF), as well as several cariogenic and commensal streptococcal species. Complete or draft sequences were annotated with the RAST to infer structured functional subsystems for each genome. The subsystems profiles were clustered to groups of functions with similar patterns. Functional enrichment and depletion were evaluated based on hypergeometric distribution to identify subsystems that are unique or missing between two groups of genomes. Unique or missing metabolic pathways and biological functions were identified in different species. For example, components involved in flagellar motility were found only in the motile species TD, as expected, with few exceptions scattered in several streptococcal species, likely associated with chemotaxis. Transposable elements were only found in the two Bacteroidales species PG and TF, and half of the AA genomes. Genes involved in CRISPR were prevalent in most oral species. Furthermore, prophage related subsystems were also commonly found in most species except for PG and Streptococcus mutans, in which very few genomes contain prophage components. Comparisons between pathogenic (P) and nonpathogenic (NP) genomes also identified genes potentially important for virulence. Two such comparisons were performed between AA (P) and several A. aphrophilus (NP) strains, and between S. mutans + S. sobrinus (P) and other oral streptococcal species (NP). This comparative genomics approach can be readily used to identify functions unique to

  4. compendiumdb: an R package for retrieval and storage of functional genomics data.

    Science.gov (United States)

    Nandal, Umesh K; van Kampen, Antoine H C; Moerland, Perry D

    2016-09-15

    Currently, the Gene Expression Omnibus (GEO) contains public data of over 1 million samples from more than 40 000 microarray-based functional genomics experiments. This provides a rich source of information for novel biological discoveries. However, unlocking this potential often requires retrieving and storing a large number of expression profiles from a wide range of different studies and platforms. The compendiumdb R package provides an environment for downloading functional genomics data from GEO, parsing the information into a local or remote database and interacting with the database using dedicated R functions, thus enabling seamless integration with other tools available in R/Bioconductor. The compendiumdb package is written in R, MySQL and Perl. Source code and binaries are available from CRAN (http://cran.r-project.org/web/packages/compendiumdb/) for all major platforms (Linux, MS Windows and OS X) under the GPLv3 license. p.d.moerland@amc.uva.nl Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. A survey of single nucleotide polymorphisms identified from whole-genome sequencing and their functional effect in the porcine genome.

    Science.gov (United States)

    Keel, B N; Nonneman, D J; Rohrer, G A

    2017-08-01

    Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  6. Functional Insights into Sponge Microbiology by Single Cell Genomics

    KAUST Repository

    Hentschel, Ute

    2011-04-09

    Marine Sponges (Porifera) are known to harbor enormous amounts of microorganisms with members belonging to at least 30 different bacterial phyla including several candidate phyla and both archaeal lineages. Here, we applied single cell genomics to the mic

  7. Genomic and Functional Approaches to Understanding Cancer Aneuploidy.

    Science.gov (United States)

    Taylor, Alison M; Shih, Juliann; Ha, Gavin; Gao, Galen F; Zhang, Xiaoyang; Berger, Ashton C; Schumacher, Steven E; Wang, Chen; Hu, Hai; Liu, Jianfang; Lazar, Alexander J; Cherniack, Andrew D; Beroukhim, Rameen; Meyerson, Matthew

    2018-04-09

    Aneuploidy, whole chromosome or chromosome arm imbalance, is a near-universal characteristic of human cancers. In 10,522 cancer genomes from The Cancer Genome Atlas, aneuploidy was correlated with TP53 mutation, somatic mutation rate, and expression of proliferation genes. Aneuploidy was anti-correlated with expression of immune signaling genes, due to decreased leukocyte infiltrates in high-aneuploidy samples. Chromosome arm-level alterations show cancer-specific patterns, including loss of chromosome arm 3p in squamous cancers. We applied genome engineering to delete 3p in lung cells, causing decreased proliferation rescued in part by chromosome 3 duplication. This study defines genomic and phenotypic correlates of cancer aneuploidy and provides an experimental approach to study chromosome arm aneuploidy. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Functional profiling of cyanobacterial genomes and its role in ecological adaptations

    Directory of Open Access Journals (Sweden)

    Ratna Prabha

    2016-09-01

    Full Text Available With the availability of complete genome sequences of many cyanobacterial species, it is becoming feasible to study the broad prospective of the environmental adaptation and the overall changes at transcriptional and translational level in these organisms. In the evolutionary phase, niche-specific competitive forces have resulted in specific features of the cyanobacterial genomes. In this study, functional composition of the 84 different cyanobacterial genomes and their adaptations to different environments was examined by identifying the genomic composition for specific cellular processes, which reflect their genomic functional profile and ecological adaptation. It was identified that among cyanobacterial genomes, metabolic genes have major share over other categories and differentiation of genomic functional profile was observed for the species inhabiting different habitats. The cyanobacteria of freshwater and other habitats accumulate large number of poorly characterized genes. Strain specific functions were also reported in many cyanobacterial members, of which an important feature was the occurrence of phage-related sequences. From this study, it can be speculated that habitat is one of the major factors in giving the shape of functional composition of cyanobacterial genomes towards their ecological adaptations.

  9. Methodological principles for optimising functional MRI experiments

    International Nuclear Information System (INIS)

    Wuestenberg, T.; Giesel, F.L.; Strasburger, H.

    2005-01-01

    Functional magnetic resonance imaging (fMRI) is one of the most common methods for localising neuronal activity in the brain. Even though the sensitivity of fMRI is comparatively low, the optimisation of certain experimental parameters allows obtaining reliable results. In this article, approaches for optimising the experimental design, imaging parameters and analytic strategies will be discussed. Clinical neuroscientists and interested physicians will receive practical rules of thumb for improving the efficiency of brain imaging experiments. (orig.) [de

  10. Functional genomics for food microbiology: Molecular mechanisms of weak organic acid preservative adaptation in yeast

    NARCIS (Netherlands)

    Brul, S.; Kallemeijn, W.; Smits, G.

    2008-01-01

    The recent era of genomics has offered tremendous possibilities to biology. This concise review describes the possibilities of applying (functional) genomics studies to the field of microbial food stability. In doing so, the studies on weak-organic-acid stress response in yeast are discussed by way

  11. GWIS: Genome-Wide Inferred Statistics for Functions of Multiple Phenotypes

    NARCIS (Netherlands)

    Nieuwboer, H.A.; Pool, R.; Dolan, C.V.; Boomsma, D.I.; Nivard, M.G.

    2016-01-01

    Here we present a method of genome-wide inferred study (GWIS) that provides an approximation of genome-wide association study (GWAS) summary statistics for a variable that is a function of phenotypes for which GWAS summary statistics, phenotypic means, and covariances are available. A GWIS can be

  12. New bioinformatic tool for quick identification of functionally relevant endogenous retroviral inserts in human genome.

    Science.gov (United States)

    Garazha, Andrew; Ivanova, Alena; Suntsova, Maria; Malakhova, Galina; Roumiantsev, Sergey; Zhavoronkov, Alex; Buzdin, Anton

    2015-01-01

    Endogenous retroviruses (ERVs) and LTR retrotransposons (LRs) occupy ∼8% of human genome. Deep sequencing technologies provide clues to understanding of functional relevance of individual ERVs/LRs by enabling direct identification of transcription factor binding sites (TFBS) and other landmarks of functional genomic elements. Here, we performed the genome-wide identification of human ERVs/LRs containing TFBS according to the ENCODE project. We created the first interactive ERV/LRs database that groups the individual inserts according to their familial nomenclature, number of mapped TFBS and divergence from their consensus sequence. Information on any particular element can be easily extracted by the user. We also created a genome browser tool, which enables quick mapping of any ERV/LR insert according to genomic coordinates, known human genes and TFBS. These tools can be used to easily explore functionally relevant individual ERV/LRs, and for studying their impact on the regulation of human genes. Overall, we identified ∼110,000 ERV/LR genomic elements having TFBS. We propose a hypothesis of "domestication" of ERV/LR TFBS by the genome milieu including subsequent stages of initial epigenetic repression, partial functional release, and further mutation-driven reshaping of TFBS in tight coevolution with the enclosing genomic loci.

  13. Functional genomics of physiological plasticity and local adaptation in killifish.

    Science.gov (United States)

    Whitehead, Andrew; Galvez, Fernando; Zhang, Shujun; Williams, Larissa M; Oleksiak, Marjorie F

    2011-01-01

    Evolutionary solutions to the physiological challenges of life in highly variable habitats can span the continuum from evolution of a cosmopolitan plastic phenotype to the evolution of locally adapted phenotypes. Killifish (Fundulus sp.) have evolved both highly plastic and locally adapted phenotypes within different selective contexts, providing a comparative system in which to explore the genomic underpinnings of physiological plasticity and adaptive variation. Importantly, extensive variation exists among populations and species for tolerance to a variety of stressors, and we exploit this variation in comparative studies to yield insights into the genomic basis of evolved phenotypic variation. Notably, species of Fundulus occupy the continuum of osmotic habitats from freshwater to marine and populations within Fundulus heteroclitus span far greater variation in pollution tolerance than across all species of fish. Here, we explore how transcriptome regulation underpins extreme physiological plasticity on osmotic shock and how genomic and transcriptomic variation is associated with locally evolved pollution tolerance. We show that F. heteroclitus quickly acclimate to extreme osmotic shock by mounting a dramatic rapid transcriptomic response including an early crisis control phase followed by a tissue remodeling phase involving many regulatory pathways. We also show that convergent evolution of locally adapted pollution tolerance involves complex patterns of gene expression and genome sequence variation, which is confounded with body-weight dependence for some genes. Similarly, exploiting the natural phenotypic variation associated with other established and emerging model organisms is likely to greatly accelerate the pace of discovery of the genomic basis of phenotypic variation.

  14. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes.

    Science.gov (United States)

    Thybert, David; Roller, Maša; Navarro, Fábio C P; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C; Laukaitis, Christina M; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M; Odom, Duncan T; Flicek, Paul

    2018-04-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli , which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. © 2018 Thybert et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes

    Science.gov (United States)

    Thybert, David; Roller, Maša; Navarro, Fábio C.P.; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C.; Laukaitis, Christina M.; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A.; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J.; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M.; Odom, Duncan T.; Flicek, Paul

    2018-01-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. PMID:29563166

  16. Genome-Wide Association and Functional Follow-Up Reveals New Loci for Kidney Function

    Science.gov (United States)

    Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C.; O'Seaghdha, Conall M.; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V.; O'Connell, Jeffrey R.; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D.; Gierman, Hinco J.; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J.; Lohman, Kurt; Cornelis, Marilyn C.; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G.; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y.; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B.; Launer, Lenore J.; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D.; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B.; Demirkan, Ayse; Oostra, Ben A.; de Andrade, Mariza; Turner, Stephen T.; Ding, Jingzhong; Andrews, Jeanette S.; Freedman, Barry I.; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H.-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E.; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H.; Wright, Alan F.; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K.; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G.; Rivadeneira, Fernando; Aulchenko, Yurii S.; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K.; Portas, Laura; Ford, Ian; Buckley, Brendan M.; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K.; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J. Wouter; Probst-Hensch, Nicole M.; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R.; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S.; van Duijn, Cornelia M.; Borecki, Ingrid; Kardia, Sharon L. R.; Liu, Yongmei; Curhan, Gary C.; Rudan, Igor; Gyllensten, Ulf; Wilson, James F.; Franke, Andre; Pramstaller, Peter P.; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C. M.; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M.; Goessling, Wolfram; Chasman, Daniel I.; Kao, W. H. Linda; Fox, Caroline S.

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD. PMID:22479191

  17. Genome-wide association and functional follow-up reveals new loci for kidney function.

    Science.gov (United States)

    Pattaro, Cristian; Köttgen, Anna; Teumer, Alexander; Garnaas, Maija; Böger, Carsten A; Fuchsberger, Christian; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Åsa; Tönjes, Anke; Dehghan, Abbas; Chouraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank B; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Kolcic, Ivana; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Endlich, Karlhans; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Giulianini, Franco; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Metzger, Marie; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline C M; Hayward, Caroline; Ridker, Paul; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Goessling, Wolfram; Chasman, Daniel I; Kao, W H Linda; Fox, Caroline S

    2012-01-01

    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

  18. Genome-wide association and functional follow-up reveals new loci for kidney function.

    Directory of Open Access Journals (Sweden)

    Cristian Pattaro

    Full Text Available Chronic kidney disease (CKD is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR, the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.

  19. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.

    2017-01-17

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  20. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.; Michell, Craig; Apprill, Amy; Voolstra, Christian R.

    2017-01-01

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  1. New developments of RNAi in Paracoccidioides brasiliensis: prospects for high-throughput, genome-wide, functional genomics.

    Directory of Open Access Journals (Sweden)

    Tercio Goes

    2014-10-01

    Full Text Available The Fungal Genome Initiative of the Broad Institute, in partnership with the Paracoccidioides research community, has recently sequenced the genome of representative isolates of this human-pathogen dimorphic fungus: Pb18 (S1, Pb03 (PS2 and Pb01. The accomplishment of future high-throughput, genome-wide, functional genomics will rely upon appropriate molecular tools and straightforward techniques to streamline the generation of stable loss-of-function phenotypes. In the past decades, RNAi has emerged as the most robust genetic technique to modulate or to suppress gene expression in diverse eukaryotes, including fungi. These molecular tools and techniques, adapted for RNAi, were up until now unavailable for P. brasiliensis.In this paper, we report Agrobacterium tumefaciens mediated transformation of yeast cells for high-throughput applications with which higher transformation frequencies of 150±24 yeast cell transformants per 1×106 viable yeast cells were obtained. Our approach is based on a bifunctional selective marker fusion protein consisted of the Streptoalloteichus hindustanus bleomycin-resistance gene (Shble and the intrinsically fluorescent monomeric protein mCherry which was codon-optimized for heterologous expression in P. brasiliensis. We also report successful GP43 gene knock-down through the expression of intron-containing hairpin RNA (ihpRNA from a Gateway-adapted cassette (cALf which was purpose-built for gene silencing in a high-throughput manner. Gp43 transcript levels were reduced by 73.1±22.9% with this approach.We have a firm conviction that the genetic transformation technique and the molecular tools herein described will have a relevant contribution in future Paracoccidioides spp. functional genomics research.

  2. Genomic resources for gene discovery, functional genome annotation, and evolutionary studies of maize and its close relatives.

    Science.gov (United States)

    Wang, Chao; Shi, Xue; Liu, Lin; Li, Haiyan; Ammiraju, Jetty S S; Kudrna, David A; Xiong, Wentao; Wang, Hao; Dai, Zhaozhao; Zheng, Yonglian; Lai, Jinsheng; Jin, Weiwei; Messing, Joachim; Bennetzen, Jeffrey L; Wing, Rod A; Luo, Meizhong

    2013-11-01

    Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.

  3. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.

    Science.gov (United States)

    Meinicke, Peter

    2009-09-02

    Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  4. Genome 3D-architecture: Its plasticity in relation to function

    Indian Academy of Sciences (India)

    Kundan Sengupta

    Mini-Review. Genome 3D-architecture: Its plasticity in relation to function. KUNDAN ... MS received 23 October 2017; accepted 14 February 2018; published online 7 April 2018 .... moter Communication and T Cell Fate. Cell 171 103–119.

  5. The Yeast Deletion Collection: A Decade of Functional Genomics

    Science.gov (United States)

    Giaever, Guri; Nislow, Corey

    2014-01-01

    The yeast deletion collections comprise >21,000 mutant strains that carry precise start-to-stop deletions of ∼6000 open reading frames. This collection includes heterozygous and homozygous diploids, and haploids of both MATa and MATα mating types. The yeast deletion collection, or yeast knockout (YKO) set, represents the first and only complete, systematically constructed deletion collection available for any organism. Conceived during the Saccharomyces cerevisiae sequencing project, work on the project began in 1998 and was completed in 2002. The YKO strains have been used in numerous laboratories in >1000 genome-wide screens. This landmark genome project has inspired development of numerous genome-wide technologies in organisms from yeast to man. Notable spinoff technologies include synthetic genetic array and HIPHOP chemogenomics. In this retrospective, we briefly describe the yeast deletion project and some of its most noteworthy biological contributions and the impact that these collections have had on the yeast research community and on genomics in general. PMID:24939991

  6. Genome-wide identification, functional analysis and expression ...

    African Journals Online (AJOL)

    The plant pleiotropic drug resistance (PDR) family of ATP-binding cassette (ABC) transporters has comprehensively been researched in relation to transport of antifungal agents and resistant pathogens. In our study, analyses of the whole family of PDR genes present in the potato genome were provided. This analysis ...

  7. Cubozoan genome illuminates functional diversification of opsins and photoreceptor evolution

    Czech Academy of Sciences Publication Activity Database

    Liegertová, Michaela; Pergner, Jiří; Kozmiková, Iryna; Fabian, Peter; Pombinho, António R.; Strnad, Hynek; Pačes, Jan; Vlček, Čestmír; Bartůněk, Petr; Kozmik, Zbyněk

    2015-01-01

    Roč. 5, Jul 8 (2015) ISSN 2045-2322 R&D Projects: GA ČR GAP305/10/2141; GA MŠk LO1220 Institutional support: RVO:68378050 Keywords : Cubozoan genome * opsins * photoreceptor * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2015

  8. A functional genomics study of extracellular protease production by Aspergillus niger

    OpenAIRE

    Braaksma, Machtelt

    2010-01-01

    The objective of the project described in this thesis was to study the complex induction of extracellular proteases in the filamentous fungus Aspergillus niger using information gathered with functional genomics technologies. A special emphasis is given to the requirements for performing a successful systems biology study and addressing the challenges met in analyzing the large, information-rich data sets generated with functional genomics technologies. The role that protease activity plays i...

  9. Development of electronic barcodes for use in plant pathology and functional genomics.

    Science.gov (United States)

    Kumagai, Monto H; Miller, Philip

    2006-06-01

    We have developed a novel 'electronic barcode' system that uses radio frequency identification (RFID) tags, cell phones, and portable computers to link phenotypic, environmental, and genomic data. We describe a secure, inexpensive system to record and retrieve data from plant samples. It utilizes RFID tags, computers, PDAs, and cell phones to link, record, and retrieve positional, and functional genomic data. Our results suggest that RFID tags can be used in functional genomic screens to record information that is involved in plant development or disease.

  10. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  11. Functional assessment of human enhancer activities using whole-genome STARR-sequencing.

    Science.gov (United States)

    Liu, Yuwen; Yu, Shan; Dhiman, Vineet K; Brunetti, Tonya; Eckart, Heather; White, Kevin P

    2017-11-20

    Genome-wide quantification of enhancer activity in the human genome has proven to be a challenging problem. Recent efforts have led to the development of powerful tools for enhancer quantification. However, because of genome size and complexity, these tools have yet to be applied to the whole human genome.  In the current study, we use a human prostate cancer cell line, LNCaP as a model to perform whole human genome STARR-seq (WHG-STARR-seq) to reliably obtain an assessment of enhancer activity. This approach builds upon previously developed STARR-seq in the fly genome and CapSTARR-seq techniques in targeted human genomic regions. With an improved library preparation strategy, our approach greatly increases the library complexity per unit of starting material, which makes it feasible and cost-effective to explore the landscape of regulatory activity in the much larger human genome. In addition to our ability to identify active, accessible enhancers located in open chromatin regions, we can also detect sequences with the potential for enhancer activity that are located in inaccessible, closed chromatin regions. When treated with the histone deacetylase inhibitor, Trichostatin A, genes nearby this latter class of enhancers are up-regulated, demonstrating the potential for endogenous functionality of these regulatory elements. WHG-STARR-seq provides an improved approach to current pipelines for analysis of high complexity genomes to gain a better understanding of the intricacies of transcriptional regulation.

  12. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling

    Science.gov (United States)

    Medina, Ignacio; Carbonell, José; Pulido, Luis; Madeira, Sara C.; Goetz, Stefan; Conesa, Ana; Tárraga, Joaquín; Pascual-Montano, Alberto; Nogales-Cadenas, Ruben; Santoyo, Javier; García, Francisco; Marbà, Martina; Montaner, David; Dopazo, Joaquín

    2010-01-01

    Babelomics is a response to the growing necessity of integrating and analyzing different types of genomic data in an environment that allows an easy functional interpretation of the results. Babelomics includes a complete suite of methods for the analysis of gene expression data that include normalization (covering most commercial platforms), pre-processing, differential gene expression (case-controls, multiclass, survival or continuous values), predictors, clustering; large-scale genotyping assays (case controls and TDTs, and allows population stratification analysis and correction). All these genomic data analysis facilities are integrated and connected to multiple options for the functional interpretation of the experiments. Different methods of functional enrichment or gene set enrichment can be used to understand the functional basis of the experiment analyzed. Many sources of biological information, which include functional (GO, KEGG, Biocarta, Reactome, etc.), regulatory (Transfac, Jaspar, ORegAnno, miRNAs, etc.), text-mining or protein–protein interaction modules can be used for this purpose. Finally a tool for the de novo functional annotation of sequences has been included in the system. This provides support for the functional analysis of non-model species. Mirrors of Babelomics or command line execution of their individual components are now possible. Babelomics is available at http://www.babelomics.org. PMID:20478823

  13. Aerobic mitochondria of parasitic protists: diverse genomes and complex functions

    Czech Academy of Sciences Publication Activity Database

    Zíková, Alena; Hampl, V.; Paris, Zdeněk; Týč, Jiří; Lukeš, Julius

    2016-01-01

    Roč. 209, 1-2 (2016), s. 46-57 ISSN 0166-6851 R&D Projects: GA ČR GA15-21974S; GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : protists * mitochondrion * genomes * repliation * RNA editing * ribosomes * electron transport chain * iron-sulfur cluster * heme Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.536, year: 2016

  14. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling | Office of Cancer Genomics

    Science.gov (United States)

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.

  15. Experimental-confirmation and functional-annotation of predicted proteins in the chicken genome

    Directory of Open Access Journals (Sweden)

    McCarthy Fiona M

    2007-11-01

    Full Text Available Abstract Background The chicken genome was sequenced because of its phylogenetic position as a non-mammalian vertebrate, its use as a biomedical model especially to study embryology and development, its role as a source of human disease organisms and its importance as the major source of animal derived food protein. However, genomic sequence data is, in itself, of limited value; generally it is not equivalent to understanding biological function. The benefit of having a genome sequence is that it provides a basis for functional genomics. However, the sequence data currently available is poorly structurally and functionally annotated and many genes do not have standard nomenclature assigned. Results We analysed eight chicken tissues and improved the chicken genome structural annotation by providing experimental support for the in vivo expression of 7,809 computationally predicted proteins, including 30 chicken proteins that were only electronically predicted or hypothetical translations in human. To improve functional annotation (based on Gene Ontology, we mapped these identified proteins to their human and mouse orthologs and used this orthology to transfer Gene Ontology (GO functional annotations to the chicken proteins. The 8,213 orthology-based GO annotations that we produced represent an 8% increase in currently available chicken GO annotations. Orthologous chicken products were also assigned standardized nomenclature based on current chicken nomenclature guidelines. Conclusion We demonstrate the utility of high-throughput expression proteomics for rapid experimental structural annotation of a newly sequenced eukaryote genome. These experimentally-supported predicted proteins were further annotated by assigning the proteins with standardized nomenclature and functional annotation. This method is widely applicable to a diverse range of species. Moreover, information from one genome can be used to improve the annotation of other genomes and

  16. Data for constructing insect genome content matrices for phylogenetic analysis and functional annotation

    Directory of Open Access Journals (Sweden)

    Jeffrey Rosenfeld

    2016-03-01

    Full Text Available Twenty one fully sequenced and well annotated insect genomes were used to construct genome content matrices for phylogenetic analysis and functional annotation of insect genomes. To examine the role of e-value cutoff in ortholog determination we used scaled e-value cutoffs and a single linkage clustering approach.. The present communication includes (1 a list of the genomes used to construct the genome content phylogenetic matrices, (2 a nexus file with the data matrices used in phylogenetic analysis, (3 a nexus file with the Newick trees generated by phylogenetic analysis, (4 an excel file listing the Core (CORE genes and Unique (UNI genes found in five insect groups, and (5 a figure showing a plot of consistency index (CI versus percent of unannotated genes that are apomorphies in the data set for gene losses and gains and bar plots of gains and losses for four consistency index (CI cutoffs.

  17. Human otolith function, experiment M009

    Science.gov (United States)

    Graybiel, A.; Miller, E. F., II

    1971-01-01

    The experiments that were performed during the Gemini 5 and 7 missions resulted in quantitative information concerning otolithic function and orientation of four subjects exposed to an orbiting spacecraft environment for prolonged periods of time. Preflight counterrolling measurements revealed significant differences between crewmembers with regard to the basic magnitude of otolith response. However, after the flight, each crewmember maintained his respective preflight level of response. This was indicative that no significant change in otolithic sensitivity occurred as a result of the flight, or at least no change persisted long enough to be recorded several hours after recovery. The EVLH data recorded for each subject confirmed the observation that a coordinate space sense exists even in a weightless environment if contact cues are adequate. However, it was noted that the apparent location of the horizontal within the spacecraft may not agree necessarily with its physical correlate in the spacecraft.

  18. Two functions of early language experience.

    Science.gov (United States)

    Arshavsky, Yuri I

    2009-05-01

    The unique human ability of linguistic communication, defined as the ability to produce a practically infinite number of meaningful messages using a finite number of lexical items, is determined by an array of "linguistic" genes, which are expressed in neurons forming domain-specific linguistic centers in the brain. In this review, I discuss the idea that infants' early language experience performs two complementary functions. In addition to allowing infants to assimilate the words and grammar rules of their mother language, early language experience initiates genetic programs underlying language production and comprehension. This hypothesis explains many puzzling characteristics of language acquisition, such as the existence of a critical period for acquiring the first language and the absence of a critical period for the acquisition of additional language(s), a similar timetable for language acquisition in children belonging to families of different social and cultural status, the strikingly similar timetables in the acquisition of oral and sign languages, and the surprisingly small correlation between individuals' final linguistic competence and the intensity of their training. Based on the studies of microcephalic individuals, I argue that genetic factors determine not only the number of neurons and organization of interneural connections within linguistic centers, but also the putative internal properties of neurons that are not limited to their electrophysiological and synaptic properties.

  19. Hot functional test chemistry - long term experience

    International Nuclear Information System (INIS)

    Vonkova, K.; Kysela, J.; Marcinsky, M.; Martykan, M.

    2010-01-01

    Primary circuit materials undergo general corrosion in high temperature, deoxygenated, neutral or mildly alkaline solutions to form thin oxide films. These oxide layers (films) serve as protective film and mitigate the further corrosion of primary materials. Inner chromium-rich oxide layer has low cation diffusion coefficients and thus control iron and nickel transport from the metal surface to the outer layer and their dissolution into the coolant. Much less corrosion products are generated by the compact, integral and stable oxide (passivation) layer. For the latest Czech and Slovak stations commissioned (Temelin and Mochovce) a modified Hot Functional Test (HFT) chemistry was developed in the NRI Rez. Chromium rich surface layer formatted due to modified HTF chemistry ensures lower corrosion rates and radiation field formation and thus also mitigates crud formation during operation. This procedure was also designed to prepare the commissioned unit for the further proper water chemistry practise. Mochovce 1 (SK) was the first station commissioned using these recommendations in 1998. Mochovce 2 (1999) and Temelin 1 and 2 (CZ - 2000 and 2002) were subsequently commissioned using these guidelines too. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. Samples from Mochovce indicated that duplex oxide layers up to 20 μm thick were produced, which were mainly magnetite substituted with nickel and chromium (e.g. 60-65% Fe, 18-28% Cr, 9-12% Ni, <1% Mn and 1-2% Si on a stainless steel primary circuit sample). Long term operation experience from both nuclear power plants are discussed in this paper. Radiation field, occupational radiation exposure and corrosion layers evolution during the first c. ten years of operation are

  20. Interactions of photosynthesis with genome size and function

    Science.gov (United States)

    Raven, John A.; Beardall, John; Larkum, Anthony W. D.; Sánchez-Baracaldo, Patricia

    2013-01-01

    Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280–320 nm), whose flux at the Earth's surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements PMID:23754816

  1. An Upper Limit on the Functional Fraction of the Human Genome.

    Science.gov (United States)

    Graur, Dan

    2017-07-01

    For the human population to maintain a constant size from generation to generation, an increase in fertility must compensate for the reduction in the mean fitness of the population caused, among others, by deleterious mutations. The required increase in fertility due to this mutational load depends on the number of sites in the genome that are functional, the mutation rate, and the fraction of deleterious mutations among all mutations in functional regions. These dependencies and the fact that there exists a maximum tolerable replacement level fertility can be used to put an upper limit on the fraction of the human genome that can be functional. Mutational load considerations lead to the conclusion that the functional fraction within the human genome cannot exceed 25%, and is probably considerably lower. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. GeneViTo: Visualizing gene-product functional and structural features in genomic datasets

    Directory of Open Access Journals (Sweden)

    Promponas Vasilis J

    2003-10-01

    Full Text Available Abstract Background The availability of increasing amounts of sequence data from completely sequenced genomes boosts the development of new computational methods for automated genome annotation and comparative genomics. Therefore, there is a need for tools that facilitate the visualization of raw data and results produced by bioinformatics analysis, providing new means for interactive genome exploration. Visual inspection can be used as a basis to assess the quality of various analysis algorithms and to aid in-depth genomic studies. Results GeneViTo is a JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of "poor" annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. A compilation of properly formatted GeneViTo input data for demonstration is available to interested readers for two completely sequenced prokaryotes, Chlamydia trachomatis and Methanococcus jannaschii. Conclusions GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application is compatible with Linux or Windows ME-2000-XP operating

  3. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics

    Science.gov (United States)

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In cer...

  4. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function

    NARCIS (Netherlands)

    D.B. Hancock (Dana); M. Eijgelsheim (Mark); J.B. Wilk (Jemma); S.A. Gharib (Sina); L.R. Loehr (Laura); K. Marciante (Kristin); N. Franceschini (Nora); Y.M.T.A. van Durme; T.H. Chen; R.G. Barr (Graham); M.B. Schabath (Matthew); D.J. Couper (David); G.G. Brusselle (Guy); B.M. Psaty (Bruce); P. Tikka-Kleemola (Päivi); J.I. Rotter (Jerome); A.G. Uitterlinden (André); A. Hofman (Albert); N.M. Punjabi (Naresh); F. Rivadeneira Ramirez (Fernando); A.C. Morrison (Alanna); P.L. Enright (Paul); K.E. North (Kari); S.R. Heckbert (Susan); T. Lumley (Thomas); B.H.Ch. Stricker (Bruno); G.T. O'Connor (George); S.J. London (Stephanie)

    2010-01-01

    textabstractSpirometric measures of lung function are heritable traits that reflect respiratory health and predict morbidity and mortality. We meta-analyzed genome-wide association studies for two clinically important lung-function measures: forced expiratory volume in the first second (FEV1) and

  5. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions.

    Science.gov (United States)

    Zíková, Alena; Hampl, Vladimír; Paris, Zdeněk; Týč, Jiří; Lukeš, Julius

    In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Infrastructure for genomic interactions: Bioconductor classes for Hi-C, ChIA-PET and related experiments [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Aaron T. L. Lun

    2016-05-01

    Full Text Available The study of genomic interactions has been greatly facilitated by techniques such as chromatin conformation capture with high-throughput sequencing (Hi-C. These genome-wide experiments generate large amounts of data that require careful analysis to obtain useful biological conclusions. However, development of the appropriate software tools is hindered by the lack of basic infrastructure to represent and manipulate genomic interaction data. Here, we present the InteractionSet package that provides classes to represent genomic interactions and store their associated experimental data, along with the methods required for low-level manipulation and processing of those classes. The InteractionSet package exploits existing infrastructure in the open-source Bioconductor project, while in turn being used by Bioconductor packages designed for higher-level analyses. For new packages, use of the functionality in InteractionSet will simplify development, allow access to more features and improve interoperability between packages.

  7. Infrastructure for genomic interactions: Bioconductor classes for Hi-C, ChIA-PET and related experiments [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Aaron T. L. Lun

    2016-06-01

    Full Text Available The study of genomic interactions has been greatly facilitated by techniques such as chromatin conformation capture with high-throughput sequencing (Hi-C. These genome-wide experiments generate large amounts of data that require careful analysis to obtain useful biological conclusions. However, development of the appropriate software tools is hindered by the lack of basic infrastructure to represent and manipulate genomic interaction data. Here, we present the InteractionSet package that provides classes to represent genomic interactions and store their associated experimental data, along with the methods required for low-level manipulation and processing of those classes. The InteractionSet package exploits existing infrastructure in the open-source Bioconductor project, while in turn being used by Bioconductor packages designed for higher-level analyses. For new packages, use of the functionality in InteractionSet will simplify development, allow access to more features and improve interoperability between packages.

  8. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences

    Directory of Open Access Journals (Sweden)

    Meinicke Peter

    2009-09-01

    Full Text Available Abstract Background Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Description Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. Conclusion For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  9. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome.

    Science.gov (United States)

    Pingault, Lise; Choulet, Frédéric; Alberti, Adriana; Glover, Natasha; Wincker, Patrick; Feuillet, Catherine; Paux, Etienne

    2015-02-10

    Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.

  10. Functional interrogation of non-coding DNA through CRISPR genome editing.

    Science.gov (United States)

    Canver, Matthew C; Bauer, Daniel E; Orkin, Stuart H

    2017-05-15

    Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Functional and genomic analyses of alpha-solenoid proteins.

    Science.gov (United States)

    Fournier, David; Palidwor, Gareth A; Shcherbinin, Sergey; Szengel, Angelika; Schaefer, Martin H; Perez-Iratxeta, Carol; Andrade-Navarro, Miguel A

    2013-01-01

    Alpha-solenoids are flexible protein structural domains formed by ensembles of alpha-helical repeats (Armadillo and HEAT repeats among others). While homology can be used to detect many of these repeats, some alpha-solenoids have very little sequence homology to proteins of known structure and we expect that many remain undetected. We previously developed a method for detection of alpha-helical repeats based on a neural network trained on a dataset of protein structures. Here we improved the detection algorithm and updated the training dataset using recently solved structures of alpha-solenoids. Unexpectedly, we identified occurrences of alpha-solenoids in solved protein structures that escaped attention, for example within the core of the catalytic subunit of PI3KC. Our results expand the current set of known alpha-solenoids. Application of our tool to the protein universe allowed us to detect their significant enrichment in proteins interacting with many proteins, confirming that alpha-solenoids are generally involved in protein-protein interactions. We then studied the taxonomic distribution of alpha-solenoids to discuss an evolutionary scenario for the emergence of this type of domain, speculating that alpha-solenoids have emerged in multiple taxa in independent events by convergent evolution. We observe a higher rate of alpha-solenoids in eukaryotic genomes and in some prokaryotic families, such as Cyanobacteria and Planctomycetes, which could be associated to increased cellular complexity. The method is available at http://cbdm.mdc-berlin.de/~ard2/.

  12. Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes

    Science.gov (United States)

    Oliveros, Juan C.; Franch, Mònica; Tabas-Madrid, Daniel; San-León, David; Montoliu, Lluis; Cubas, Pilar; Pazos, Florencio

    2016-01-01

    The CRISPR/Cas technology is enabling targeted genome editing in multiple organisms with unprecedented accuracy and specificity by using RNA-guided nucleases. A critical point when planning a CRISPR/Cas experiment is the design of the guide RNA (gRNA), which directs the nuclease and associated machinery to the desired genomic location. This gRNA has to fulfil the requirements of the nuclease and lack homology with other genome sites that could lead to off-target effects. Here we introduce the Breaking-Cas system for the design of gRNAs for CRISPR/Cas experiments, including those based in the Cas9 nuclease as well as others recently introduced. The server has unique features not available in other tools, including the possibility of using all eukaryotic genomes available in ENSEMBL (currently around 700), placing variable PAM sequences at 5′ or 3′ and setting the guide RNA length and the scores per nucleotides. It can be freely accessed at: http://bioinfogp.cnb.csic.es/tools/breakingcas, and the code is available upon request. PMID:27166368

  13. Genomics, proteomics, and metabolomics in nutraceuticals and functional foods

    National Research Council Canada - National Science Library

    Bagchi, Debasis; Lau, Francis; Bagchi, Manashi

    2010-01-01

    .... This has brought a corresponding shift in research focus and in public awareness. Understanding the relevance of the scientific principles in determining the safety and effectiveness of functional foods and nutraceuticals is increasingly important...

  14. Pulmonary function in microgravity: KC-135 experience

    Science.gov (United States)

    Guy, Harold J.; Prisk, G. K.

    1991-01-01

    We have commenced a KC-135 program that parallels and proceeds our Spacelab (SLS-1) pulmonary function experiment. Our first task was to elucidate the affect of normal gravitation on the shape of the maximum expiratory flow volume (MEFV) curve. Nine normal subjects performed multiple MEFV maneuvers at 0-G, 1-G, and approximately 1.7-G. The MEFV curves for each subject were filtered, aligned at RV, and ensemble-averaged to produce an average MEFV curve for each state, allowing differences to be studied. Most subjects showed a decrease in the FVC at 0-G, which we attribute to an increased intrathoracic blood volume. In most of these subjects, the mean lung volume associated with a given flow was lower at 0-G, over about the upper half of the vital capacity. This is similar to the change previously reported during heat out immersion and is consistent with the known affect of engorgement of the lung with blood, on elastic recoil. There were also consistent but highly individual changes in the position and magnitude of detailed features of the curve, the individual patterns being similar to those previously reported on transition from the erect to the supine position. This supports the idea that the location and motion of choke points which determine the detailed individual configuration of MEFV curves, can be significantly influenced by gravitational forces, presumably via the effects of change in longitudinal tension on local airway pressure-diameter behavior and wave speed. We have developed a flight mass spectrometer and have commenced a study of single breath gradients in gas exchange, inert gas washouts, and rebreathing cardiac outputs and lung volumes at 0-G, 1-G, and 1.7-G. Comparison of our results with those from SLS-1 should identify the opportunities and limitations of the KC-135 as an accessible microgravity resource.

  15. GenomeRunner web server: regulatory similarity and differences define the functional impact of SNP sets.

    Science.gov (United States)

    Dozmorov, Mikhail G; Cara, Lukas R; Giles, Cory B; Wren, Jonathan D

    2016-08-01

    The growing amount of regulatory data from the ENCODE, Roadmap Epigenomics and other consortia provides a wealth of opportunities to investigate the functional impact of single nucleotide polymorphisms (SNPs). Yet, given the large number of regulatory datasets, researchers are posed with a challenge of how to efficiently utilize them to interpret the functional impact of SNP sets. We developed the GenomeRunner web server to automate systematic statistical analysis of SNP sets within a regulatory context. Besides defining the functional impact of SNP sets, GenomeRunner implements novel regulatory similarity/differential analyses, and cell type-specific regulatory enrichment analysis. Validated against literature- and disease ontology-based approaches, analysis of 39 disease/trait-associated SNP sets demonstrated that the functional impact of SNP sets corresponds to known disease relationships. We identified a group of autoimmune diseases with SNPs distinctly enriched in the enhancers of T helper cell subpopulations, and demonstrated relevant cell type-specificity of the functional impact of other SNP sets. In summary, we show how systematic analysis of genomic data within a regulatory context can help interpreting the functional impact of SNP sets. GenomeRunner web server is freely available at http://www.integrativegenomics.org/ mikhail.dozmorov@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. eXframe: reusable framework for storage, analysis and visualization of genomics experiments

    Directory of Open Access Journals (Sweden)

    Sinha Amit U

    2011-11-01

    Full Text Available Abstract Background Genome-wide experiments are routinely conducted to measure gene expression, DNA-protein interactions and epigenetic status. Structured metadata for these experiments is imperative for a complete understanding of experimental conditions, to enable consistent data processing and to allow retrieval, comparison, and integration of experimental results. Even though several repositories have been developed for genomics data, only a few provide annotation of samples and assays using controlled vocabularies. Moreover, many of them are tailored for a single type of technology or measurement and do not support the integration of multiple data types. Results We have developed eXframe - a reusable web-based framework for genomics experiments that provides 1 the ability to publish structured data compliant with accepted standards 2 support for multiple data types including microarrays and next generation sequencing 3 query, analysis and visualization integration tools (enabled by consistent processing of the raw data and annotation of samples and is available as open-source software. We present two case studies where this software is currently being used to build repositories of genomics experiments - one contains data from hematopoietic stem cells and another from Parkinson's disease patients. Conclusion The web-based framework eXframe offers structured annotation of experiments as well as uniform processing and storage of molecular data from microarray and next generation sequencing platforms. The framework allows users to query and integrate information across species, technologies, measurement types and experimental conditions. Our framework is reusable and freely modifiable - other groups or institutions can deploy their own custom web-based repositories based on this software. It is interoperable with the most important data formats in this domain. We hope that other groups will not only use eXframe, but also contribute their own

  17. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders.

    Science.gov (United States)

    Pain, Oliver; Dudbridge, Frank; Cardno, Alastair G; Freeman, Daniel; Lu, Yi; Lundstrom, Sebastian; Lichtenstein, Paul; Ronald, Angelica

    2018-03-31

    This study aimed to test for overlap in genetic influences between psychotic-like experience traits shown by adolescents in the community, and clinically-recognized psychiatric disorders in adulthood, specifically schizophrenia, bipolar disorder, and major depression. The full spectra of psychotic-like experience domains, both in terms of their severity and type (positive, cognitive, and negative), were assessed using self- and parent-ratings in three European community samples aged 15-19 years (Final N incl. siblings = 6,297-10,098). A mega-genome-wide association study (mega-GWAS) for each psychotic-like experience domain was performed. Single nucleotide polymorphism (SNP)-heritability of each psychotic-like experience domain was estimated using genomic-relatedness-based restricted maximum-likelihood (GREML) and linkage disequilibrium- (LD-) score regression. Genetic overlap between specific psychotic-like experience domains and schizophrenia, bipolar disorder, and major depression was assessed using polygenic risk score (PRS) and LD-score regression. GREML returned SNP-heritability estimates of 3-9% for psychotic-like experience trait domains, with higher estimates for less skewed traits (Anhedonia, Cognitive Disorganization) than for more skewed traits (Paranoia and Hallucinations, Parent-rated Negative Symptoms). Mega-GWAS analysis identified one genome-wide significant association for Anhedonia within IDO2 but which did not replicate in an independent sample. PRS analysis revealed that the schizophrenia PRS significantly predicted all adolescent psychotic-like experience trait domains (Paranoia and Hallucinations only in non-zero scorers). The major depression PRS significantly predicted Anhedonia and Parent-rated Negative Symptoms in adolescence. Psychotic-like experiences during adolescence in the community show additive genetic effects and partly share genetic influences with clinically-recognized psychiatric disorders, specifically schizophrenia and

  18. Using beta-binomial regression for high-precision differential methylation analysis in multifactor whole-genome bisulfite sequencing experiments

    Science.gov (United States)

    2014-01-01

    Background Whole-genome bisulfite sequencing currently provides the highest-precision view of the epigenome, with quantitative information about populations of cells down to single nucleotide resolution. Several studies have demonstrated the value of this precision: meaningful features that correlate strongly with biological functions can be found associated with only a few CpG sites. Understanding the role of DNA methylation, and more broadly the role of DNA accessibility, requires that methylation differences between populations of cells are identified with extreme precision and in complex experimental designs. Results In this work we investigated the use of beta-binomial regression as a general approach for modeling whole-genome bisulfite data to identify differentially methylated sites and genomic intervals. Conclusions The regression-based analysis can handle medium- and large-scale experiments where it becomes critical to accurately model variation in methylation levels between replicates and account for influence of various experimental factors like cell types or batch effects. PMID:24962134

  19. Impact of genomic damage and ageing on stem cell function

    Science.gov (United States)

    Behrens, Axel; van Deursen, Jan M.; Rudolph, K. Lenhard; Schumacher, Björn

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cell dysfunction with ageing. Here, we review the impact of the various types of DNA damage that accumulate with ageing on stem cell functionality, as well as the development of cancer. We discuss DNA-damage-induced cell intrinsic and extrinsic alterations that influence these processes, and review recent advances in understanding systemic adjustments to DNA damage and how they affect stem cells. PMID:24576896

  20. Genome mining and functional genomics for siderophore production in Aspergillus niger.

    Science.gov (United States)

    Franken, Angelique C W; Lechner, Beatrix E; Werner, Ernst R; Haas, Hubertus; Lokman, B Christien; Ram, Arthur F J; van den Hondel, Cees A M J J; de Weert, Sandra; Punt, Peter J

    2014-11-01

    Iron is an essential metal for many organisms, but the biologically relevant form of iron is scarce because of rapid oxidation resulting in low solubility. Simultaneously, excessive accumulation of iron is toxic. Consequently, iron uptake is a highly controlled process. In most fungal species, siderophores play a central role in iron handling. Siderophores are small iron-specific chelators that can be secreted to scavenge environmental iron or bind intracellular iron with high affinity. A second high-affinity iron uptake mechanism is reductive iron assimilation (RIA). As shown in Aspergillus fumigatus and Aspergillus nidulans, synthesis of siderophores in Aspergilli is predominantly under control of the transcription factors SreA and HapX, which are connected by a negative transcriptional feedback loop. Abolishing this fine-tuned regulation corroborates iron homeostasis, including heme biosynthesis, which could be biotechnologically of interest, e.g. the heterologous production of heme-dependent peroxidases. Aspergillus niger genome inspection identified orthologues of several genes relevant for RIA and siderophore metabolism, as well as sreA and hapX. Interestingly, genes related to synthesis of the common fungal extracellular siderophore triacetylfusarinine C were absent. Reverse-phase high-performance liquid chromatography (HPLC) confirmed the absence of triacetylfusarinine C, and demonstrated that the major secreted siderophores of A. niger are coprogen B and ferrichrome, which is also the dominant intracellular siderophore. In A. niger wild type grown under iron-replete conditions, the expression of genes involved in coprogen biosynthesis and RIA was low in the exponential growth phase but significantly induced during ascospore germination. Deletion of sreA in A. niger resulted in elevated iron uptake and increased cellular ferrichrome accumulation. Increased sensitivity toward phleomycin and high iron concentration reflected the toxic effects of excessive

  1. Genome-wide identification, functional analysis and expression ...

    African Journals Online (AJOL)

    Fuyou Fu

    2013-07-24

    Jul 24, 2013 ... Key words: ABC transporter, potato, pleiotropic drug resistance (PDR), RNA-seq. INTRODUCTION ..... of relative transcript accumulation of each of 55 PDR genes as determined by RNA-seq analysis are presented as a heatmap, with ... specificities provide clues to the endogenous function of the individual ...

  2. Transposons As Tools for Functional Genomics in Vertebrate Models.

    Science.gov (United States)

    Kawakami, Koichi; Largaespada, David A; Ivics, Zoltán

    2017-11-01

    Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Functional Genomics Approaches to Studying Symbioses between Legumes and Nitrogen-Fixing Rhizobia.

    Science.gov (United States)

    Lardi, Martina; Pessi, Gabriella

    2018-05-18

    Biological nitrogen fixation gives legumes a pronounced growth advantage in nitrogen-deprived soils and is of considerable ecological and economic interest. In exchange for reduced atmospheric nitrogen, typically given to the plant in the form of amides or ureides, the legume provides nitrogen-fixing rhizobia with nutrients and highly specialised root structures called nodules. To elucidate the molecular basis underlying physiological adaptations on a genome-wide scale, functional genomics approaches, such as transcriptomics, proteomics, and metabolomics, have been used. This review presents an overview of the different functional genomics approaches that have been performed on rhizobial symbiosis, with a focus on studies investigating the molecular mechanisms used by the bacterial partner to interact with the legume. While rhizobia belonging to the alpha-proteobacterial group (alpha-rhizobia) have been well studied, few studies to date have investigated this process in beta-proteobacteria (beta-rhizobia).

  4. Pathways over Time: Functional Genomics Research in an Introductory Laboratory Course.

    Science.gov (United States)

    Reeves, Todd D; Warner, Douglas M; Ludlow, Larry H; O'Connor, Clare M

    2018-01-01

    National reports have called for the introduction of research experiences throughout the undergraduate curriculum, but practical implementation at many institutions faces challenges associated with sustainability, cost, and large student populations. We describe a novel course-based undergraduate research experience (CURE) that introduces introductory-level students to research in functional genomics in a 3-credit, multisection laboratory class. In the Pathways over Time class project, students study the functional conservation of the methionine biosynthetic pathway between divergent yeast species. Over the five semesters described in this study, students ( N = 793) showed statistically significant and sizable growth in content knowledge ( d = 1.85) and in self-reported research methods skills ( d = 0.65), experimental design, oral and written communication, database use, and collaboration. Statistical analyses indicated that content knowledge growth was larger for underrepresented minority students and that growth in content knowledge, but not research skills, varied by course section. Our findings add to the growing body of evidence that CUREs can support the scientific development of large numbers of students with diverse characteristics. The Pathways over Time project is designed to be sustainable and readily adapted to other institutional settings. © 2018 T. D. Reeves et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Mining a database of single amplified genomes from Red Sea brine pool extremophiles-improving reliability of gene function prediction using a profile and pattern matching algorithm (PPMA).

    KAUST Repository

    Grö tzinger, Stefan W.; Alam, Intikhab; Ba Alawi, Wail; Bajic, Vladimir B.; Stingl, Ulrich; Eppinger, Jö rg

    2014-01-01

    Reliable functional annotation of genomic data is the key-step in the discovery of novel enzymes. Intrinsic sequencing data quality problems of single amplified genomes (SAGs) and poor homology of novel extremophile's genomes pose significant

  6. Efficient Server-Aided Secure Two-Party Function Evaluation with Applications to Genomic Computation

    Directory of Open Access Journals (Sweden)

    Blanton Marina

    2016-10-01

    Full Text Available Computation based on genomic data is becoming increasingly popular today, be it for medical or other purposes. Non-medical uses of genomic data in a computation often take place in a server-mediated setting where the server offers the ability for joint genomic testing between the users. Undeniably, genomic data is highly sensitive, which in contrast to other biometry types, discloses a plethora of information not only about the data owner, but also about his or her relatives. Thus, there is an urgent need to protect genomic data. This is particularly true when the data is used in computation for what we call recreational non-health-related purposes. Towards this goal, in this work we put forward a framework for server-aided secure two-party computation with the security model motivated by genomic applications. One particular security setting that we treat in this work provides stronger security guarantees with respect to malicious users than the traditional malicious model. In particular, we incorporate certified inputs into secure computation based on garbled circuit evaluation to guarantee that a malicious user is unable to modify her inputs in order to learn unauthorized information about the other user’s data. Our solutions are general in the sense that they can be used to securely evaluate arbitrary functions and offer attractive performance compared to the state of the art. We apply the general constructions to three specific types of genomic tests: paternity, genetic compatibility, and ancestry testing and implement the constructions. The results show that all such private tests can be executed within a matter of seconds or less despite the large size of one’s genomic data.

  7. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    Science.gov (United States)

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  8. Agrobacterium-mediated transformation as a tool for functional genomics in fungi

    NARCIS (Netherlands)

    Michielse, C.B.; Hooykaas, P.J.J.; Hondel, C.A.M.J.J. van den; Ram, A.F.J.

    2005-01-01

    In the era of functional genomics, the need for tools to perform large-scale targeted and random mutagenesis is increasing. A potential tool is Agrobacterium-mediated fungal transformation. A. tumefaciens is able to transfer a part of its DNA (transferred DNA; T-DNA) to a wide variety of fungi and

  9. A functional genomics study of extracellular protease production by Aspergillus niger

    NARCIS (Netherlands)

    Braaksma, Machtelt

    2010-01-01

    The objective of the project described in this thesis was to study the complex induction of extracellular proteases in the filamentous fungus Aspergillus niger using information gathered with functional genomics technologies. A special emphasis is given to the requirements for performing a

  10. Integrating proteomic and functional genomic technologies in discovery-driven translational breast cancer research

    DEFF Research Database (Denmark)

    Celis, Julio E; Gromov, Pavel; Gromova, Irina

    2003-01-01

    The application of state-of-the-art proteomics and functional genomics technologies to the study of cancer is rapidly shifting toward the analysis of clinically relevant samples derived from patients, as the ultimate aim of translational research is to bring basic discoveries closer to the bedside...

  11. Functional annotation of rare gene aberration drivers of pancreatic cancer | Office of Cancer Genomics

    Science.gov (United States)

    As we enter the era of precision medicine, characterization of cancer genomes will directly influence therapeutic decisions in the clinic. Here we describe a platform enabling functionalization of rare gene mutations through their high-throughput construction, molecular barcoding and delivery to cancer models for in vivo tumour driver screens. We apply these technologies to identify oncogenic drivers of pancreatic ductal adenocarcinoma (PDAC).

  12. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Sabeeha S

    2007-04-09

    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

  13. FSPP: A Tool for Genome-Wide Prediction of smORF-Encoded Peptides and Their Functions

    Directory of Open Access Journals (Sweden)

    Hui Li

    2018-04-01

    Full Text Available smORFs are small open reading frames of less than 100 codons. Recent low throughput experiments showed a lot of smORF-encoded peptides (SEPs played crucial rule in processes such as regulation of transcription or translation, transportation through membranes and the antimicrobial activity. In order to gather more functional SEPs, it is necessary to have access to genome-wide prediction tools to give profound directions for low throughput experiments. In this study, we put forward a functional smORF-encoded peptides predictor (FSPP which tended to predict authentic SEPs and their functions in a high throughput method. FSPP used the overlap of detected SEPs from Ribo-seq and mass spectrometry as target objects. With the expression data on transcription and translation levels, FSPP built two co-expression networks. Combing co-location relations, FSPP constructed a compound network and then annotated SEPs with functions of adjacent nodes. Tested on 38 sequenced samples of 5 human cell lines, FSPP successfully predicted 856 out of 960 annotated proteins. Interestingly, FSPP also highlighted 568 functional SEPs from these samples. After comparison, the roles predicted by FSPP were consistent with known functions. These results suggest that FSPP is a reliable tool for the identification of functional small peptides. FSPP source code can be acquired at https://www.bioinfo.org/FSPP.

  14. A genome-wide association study of cognitive function in Chinese adult twins

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Zhang, Dongfeng; Wu, Yili

    2017-01-01

    Multiple loci or genes have been identified using genome-wide association studies mainly in western countries but with inconsistent results. No similar studies have been conducted in the world's largest and rapidly aging Chinese population. The paper aimed to identify the specific genetic variants....... Gene-based analysis was performed on VEGAS2. The statistically significant genes were then subject to gene set enrichment analysis to further identify the specific biological pathways associated with cognitive function. No SNPs reached genome-wide significance although there were 13 SNPs of suggestive...

  15. Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp.

    Science.gov (United States)

    Xu, Min; Wang, Yemin; Zhao, Zhilong; Gao, Guixi; Huang, Sheng-Xiong; Kang, Qianjin; He, Xinyi; Lin, Shuangjun; Pang, Xiuhua; Deng, Zixin

    2016-01-01

    ABSTRACT Genome sequencing projects in the last decade revealed numerous cryptic biosynthetic pathways for unknown secondary metabolites in microbes, revitalizing drug discovery from microbial metabolites by approaches called genome mining. In this work, we developed a heterologous expression and functional screening approach for genome mining from genomic bacterial artificial chromosome (BAC) libraries in Streptomyces spp. We demonstrate mining from a strain of Streptomyces rochei, which is known to produce streptothricins and borrelidin, by expressing its BAC library in the surrogate host Streptomyces lividans SBT5, and screening for antimicrobial activity. In addition to the successful capture of the streptothricin and borrelidin biosynthetic gene clusters, we discovered two novel linear lipopeptides and their corresponding biosynthetic gene cluster, as well as a novel cryptic gene cluster for an unknown antibiotic from S. rochei. This high-throughput functional genome mining approach can be easily applied to other streptomycetes, and it is very suitable for the large-scale screening of genomic BAC libraries for bioactive natural products and the corresponding biosynthetic pathways. IMPORTANCE Microbial genomes encode numerous cryptic biosynthetic gene clusters for unknown small metabolites with potential biological activities. Several genome mining approaches have been developed to activate and bring these cryptic metabolites to biological tests for future drug discovery. Previous sequence-guided procedures relied on bioinformatic analysis to predict potentially interesting biosynthetic gene clusters. In this study, we describe an efficient approach based on heterologous expression and functional screening of a whole-genome library for the mining of bioactive metabolites from Streptomyces. The usefulness of this function-driven approach was demonstrated by the capture of four large biosynthetic gene clusters for metabolites of various chemical types, including

  16. Functional Genomic Approaches for the Study of Fetal/Placental Development in Swine with Special Emphasis on Imprinted Genes

    Science.gov (United States)

    The overall focus of this chapter will be the application of functional genomic approaches for the study of the imprinted gene family in swine. While there are varied definitions of “functional genomics” in general they focus on the application of genomic approaches such as DNA microarrays, single n...

  17. Enabling a community to dissect an organism: overview of the Neurospora functional genomics project.

    Science.gov (United States)

    Dunlap, Jay C; Borkovich, Katherine A; Henn, Matthew R; Turner, Gloria E; Sachs, Matthew S; Glass, N Louise; McCluskey, Kevin; Plamann, Michael; Galagan, James E; Birren, Bruce W; Weiss, Richard L; Townsend, Jeffrey P; Loros, Jennifer J; Nelson, Mary Anne; Lambreghts, Randy; Colot, Hildur V; Park, Gyungsoon; Collopy, Patrick; Ringelberg, Carol; Crew, Christopher; Litvinkova, Liubov; DeCaprio, Dave; Hood, Heather M; Curilla, Susan; Shi, Mi; Crawford, Matthew; Koerhsen, Michael; Montgomery, Phil; Larson, Lisa; Pearson, Matthew; Kasuga, Takao; Tian, Chaoguang; Baştürkmen, Meray; Altamirano, Lorena; Xu, Junhuan

    2007-01-01

    A consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large. Project 2, through a primary focus in Annotation and Bioinformatics, has developed a platform for electronically capturing community feedback and data about the existing annotation, while building and maintaining a database to capture and display information about phenotypes. Oligonucleotide-based microarrays created in Project 3 are being used to collect baseline expression data for the nearly 11,000 distinguishable transcripts in Neurospora under various conditions of growth and development, and eventually to begin to analyze the global effects of loss of novel genes in strains created by Project 1. cDNA libraries generated in Project 4 document the overall complexity of expressed sequences in Neurospora, including alternative splicing alternative promoters and antisense transcripts. In addition, these studies have driven the assembly of an SNP map presently populated by nearly 300 markers that will greatly accelerate the positional cloning of genes.

  18. A Parvovirus B19 synthetic genome: sequence features and functional competence.

    Science.gov (United States)

    Manaresi, Elisabetta; Conti, Ilaria; Bua, Gloria; Bonvicini, Francesca; Gallinella, Giorgio

    2017-08-01

    Central to genetic studies for Parvovirus B19 (B19V) is the availability of genomic clones that may possess functional competence and ability to generate infectious virus. In our study, we established a new model genetic system for Parvovirus B19. A synthetic approach was followed, by design of a reference genome sequence, by generation of a corresponding artificial construct and its molecular cloning in a complete and functional form, and by setup of an efficient strategy to generate infectious virus, via transfection in UT7/EpoS1 cells and amplification in erythroid progenitor cells. The synthetic genome was able to generate virus with biological properties paralleling those of native virus, its infectious activity being dependent on the preservation of self-complementarity and sequence heterogeneity within the terminal regions. A virus of defined genome sequence, obtained from controlled cell culture conditions, can constitute a reference tool for investigation of the structural and functional characteristics of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    Science.gov (United States)

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC 3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC 3 -rich genes (GC 3  ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC 3 -rich and intronless), as well as those associated with important functions, such as FA

  20. Metabolomics for functional genomics, systems biology, and biotechnology.

    Science.gov (United States)

    Saito, Kazuki; Matsuda, Fumio

    2010-01-01

    Metabolomics now plays a significant role in fundamental plant biology and applied biotechnology. Plants collectively produce a huge array of chemicals, far more than are produced by most other organisms; hence, metabolomics is of great importance in plant biology. Although substantial improvements have been made in the field of metabolomics, the uniform annotation of metabolite signals in databases and informatics through international standardization efforts remains a challenge, as does the development of new fields such as fluxome analysis and single cell analysis. The principle of transcript and metabolite cooccurrence, particularly transcriptome coexpression network analysis, is a powerful tool for decoding the function of genes in Arabidopsis thaliana. This strategy can now be used for the identification of genes involved in specific pathways in crops and medicinal plants. Metabolomics has gained importance in biotechnology applications, as exemplified by quantitative loci analysis, prediction of food quality, and evaluation of genetically modified crops. Systems biology driven by metabolome data will aid in deciphering the secrets of plant cell systems and their application to biotechnology.

  1. Assessing computational genomics skills: Our experience in the H3ABioNet African bioinformatics network.

    Directory of Open Access Journals (Sweden)

    C Victor Jongeneel

    2017-06-01

    Full Text Available The H3ABioNet pan-African bioinformatics network, which is funded to support the Human Heredity and Health in Africa (H3Africa program, has developed node-assessment exercises to gauge the ability of its participating research and service groups to analyze typical genome-wide datasets being generated by H3Africa research groups. We describe a framework for the assessment of computational genomics analysis skills, which includes standard operating procedures, training and test datasets, and a process for administering the exercise. We present the experiences of 3 research groups that have taken the exercise and the impact on their ability to manage complex projects. Finally, we discuss the reasons why many H3ABioNet nodes have declined so far to participate and potential strategies to encourage them to do so.

  2. Assessing computational genomics skills: Our experience in the H3ABioNet African bioinformatics network.

    Science.gov (United States)

    Jongeneel, C Victor; Achinike-Oduaran, Ovokeraye; Adebiyi, Ezekiel; Adebiyi, Marion; Adeyemi, Seun; Akanle, Bola; Aron, Shaun; Ashano, Efejiro; Bendou, Hocine; Botha, Gerrit; Chimusa, Emile; Choudhury, Ananyo; Donthu, Ravikiran; Drnevich, Jenny; Falola, Oluwadamila; Fields, Christopher J; Hazelhurst, Scott; Hendry, Liesl; Isewon, Itunuoluwa; Khetani, Radhika S; Kumuthini, Judit; Kimuda, Magambo Phillip; Magosi, Lerato; Mainzer, Liudmila Sergeevna; Maslamoney, Suresh; Mbiyavanga, Mamana; Meintjes, Ayton; Mugutso, Danny; Mpangase, Phelelani; Munthali, Richard; Nembaware, Victoria; Ndhlovu, Andrew; Odia, Trust; Okafor, Adaobi; Oladipo, Olaleye; Panji, Sumir; Pillay, Venesa; Rendon, Gloria; Sengupta, Dhriti; Mulder, Nicola

    2017-06-01

    The H3ABioNet pan-African bioinformatics network, which is funded to support the Human Heredity and Health in Africa (H3Africa) program, has developed node-assessment exercises to gauge the ability of its participating research and service groups to analyze typical genome-wide datasets being generated by H3Africa research groups. We describe a framework for the assessment of computational genomics analysis skills, which includes standard operating procedures, training and test datasets, and a process for administering the exercise. We present the experiences of 3 research groups that have taken the exercise and the impact on their ability to manage complex projects. Finally, we discuss the reasons why many H3ABioNet nodes have declined so far to participate and potential strategies to encourage them to do so.

  3. Clinical providers' experiences with returning results from genomic sequencing: an interview study.

    Science.gov (United States)

    Wynn, Julia; Lewis, Katie; Amendola, Laura M; Bernhardt, Barbara A; Biswas, Sawona; Joshi, Manasi; McMullen, Carmit; Scollon, Sarah

    2018-05-08

    Current medical practice includes the application of genomic sequencing (GS) in clinical and research settings. Despite expanded use of this technology, the process of disclosure of genomic results to patients and research participants has not been thoroughly examined and there are no established best practices. We conducted semi-structured interviews with 21 genetic and non-genetic clinicians returning results of GS as part of the NIH funded Clinical Sequencing Exploratory Research (CSER) Consortium projects. Interviews focused on the logistics of sessions, participant/patient reactions and factors influencing them, how the sessions changed with experience, and resources and training recommended to return genomic results. The length of preparation and disclosure sessions varied depending on the type and number of results and their implications. Internal and external databases, online resources and result review meetings were used to prepare. Respondents reported that participants' reactions were variable and ranged from enthusiasm and relief to confusion and disappointment. Factors influencing reactions were types of results, expectations and health status. A recurrent challenge was managing inflated expectations about GS. Other challenges included returning multiple, unanticipated and/or uncertain results and navigating a rare diagnosis. Methods to address these challenges included traditional genetic counseling techniques and modifying practice over time in order to provide anticipatory guidance and modulate expectations. Respondents made recommendations to improve access to genomic resources and genetic referrals to prepare future providers as the uptake of GS increases in both genetic and non-genetic settings. These findings indicate that returning genomic results is similar to return of results in traditional genetic testing but is magnified by the additional complexity and potential uncertainty of the results. Managing patient expectations, initially

  4. The Use of Functional Genomics in Conjunction with Metabolomics for Mycobacterium tuberculosis Research

    Science.gov (United States)

    Swanepoel, Conrad C.

    2014-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a fatal infectious disease, resulting in 1.4 million deaths globally per annum. Over the past three decades, genomic studies have been conducted in an attempt to elucidate the functionality of the genome of the pathogen. However, many aspects of this complex genome remain largely unexplored, as approaches like genomics, proteomics, and transcriptomics have failed to characterize them successfully. In turn, metabolomics, which is relatively new to the “omics” revolution, has shown great potential for investigating biological systems or their modifications. Furthermore, when these data are interpreted in combination with previously acquired genomics, proteomics and transcriptomics data, using what is termed a systems biology approach, a more holistic understanding of these systems can be achieved. In this review we discuss how metabolomics has contributed so far to characterizing TB, with emphasis on the resulting improved elucidation of M. tuberculosis in terms of (1) metabolism, (2) growth and replication, (3) pathogenicity, and (4) drug resistance, from the perspective of systems biology. PMID:24771957

  5. The Use of Functional Genomics in Conjunction with Metabolomics for Mycobacterium tuberculosis Research

    Directory of Open Access Journals (Sweden)

    Conrad C. Swanepoel

    2014-01-01

    Full Text Available Tuberculosis (TB, caused by Mycobacterium tuberculosis, is a fatal infectious disease, resulting in 1.4 million deaths globally per annum. Over the past three decades, genomic studies have been conducted in an attempt to elucidate the functionality of the genome of the pathogen. However, many aspects of this complex genome remain largely unexplored, as approaches like genomics, proteomics, and transcriptomics have failed to characterize them successfully. In turn, metabolomics, which is relatively new to the “omics” revolution, has shown great potential for investigating biological systems or their modifications. Furthermore, when these data are interpreted in combination with previously acquired genomics, proteomics and transcriptomics data, using what is termed a systems biology approach, a more holistic understanding of these systems can be achieved. In this review we discuss how metabolomics has contributed so far to characterizing TB, with emphasis on the resulting improved elucidation of M. tuberculosis in terms of (1 metabolism, (2 growth and replication, (3 pathogenicity, and (4 drug resistance, from the perspective of systems biology.

  6. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    Science.gov (United States)

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  8. Genic intolerance to functional variation and the interpretation of personal genomes.

    Directory of Open Access Journals (Sweden)

    Slavé Petrovski

    Full Text Available A central challenge in interpreting personal genomes is determining which mutations most likely influence disease. Although progress has been made in scoring the functional impact of individual mutations, the characteristics of the genes in which those mutations are found remain largely unexplored. For example, genes known to carry few common functional variants in healthy individuals may be judged more likely to cause certain kinds of disease than genes known to carry many such variants. Until now, however, it has not been possible to develop a quantitative assessment of how well genes tolerate functional genetic variation on a genome-wide scale. Here we describe an effort that uses sequence data from 6503 whole exome sequences made available by the NHLBI Exome Sequencing Project (ESP. Specifically, we develop an intolerance scoring system that assesses whether genes have relatively more or less functional genetic variation than expected based on the apparently neutral variation found in the gene. To illustrate the utility of this intolerance score, we show that genes responsible for Mendelian diseases are significantly more intolerant to functional genetic variation than genes that do not cause any known disease, but with striking variation in intolerance among genes causing different classes of genetic disease. We conclude by showing that use of an intolerance ranking system can aid in interpreting personal genomes and identifying pathogenic mutations.

  9. The duplicated genes database: identification and functional annotation of co-localised duplicated genes across genomes.

    Directory of Open Access Journals (Sweden)

    Marion Ouedraogo

    Full Text Available BACKGROUND: There has been a surge in studies linking genome structure and gene expression, with special focus on duplicated genes. Although initially duplicated from the same sequence, duplicated genes can diverge strongly over evolution and take on different functions or regulated expression. However, information on the function and expression of duplicated genes remains sparse. Identifying groups of duplicated genes in different genomes and characterizing their expression and function would therefore be of great interest to the research community. The 'Duplicated Genes Database' (DGD was developed for this purpose. METHODOLOGY: Nine species were included in the DGD. For each species, BLAST analyses were conducted on peptide sequences corresponding to the genes mapped on a same chromosome. Groups of duplicated genes were defined based on these pairwise BLAST comparisons and the genomic location of the genes. For each group, Pearson correlations between gene expression data and semantic similarities between functional GO annotations were also computed when the relevant information was available. CONCLUSIONS: The Duplicated Gene Database provides a list of co-localised and duplicated genes for several species with the available gene co-expression level and semantic similarity value of functional annotation. Adding these data to the groups of duplicated genes provides biological information that can prove useful to gene expression analyses. The Duplicated Gene Database can be freely accessed through the DGD website at http://dgd.genouest.org.

  10. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics.

    Directory of Open Access Journals (Sweden)

    Mohit Verma

    Full Text Available Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB, which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database features many tools for similarity search, functional annotation (putative function, PFAM domain and gene ontology search and comparative gene expression analysis. The current release of CTDB (v2.0 hosts transcriptome datasets with high quality functional annotation from cultivated (desi and kabuli types and wild chickpea. A catalog of transcription factor families and their expression profiles in chickpea are available in the database. The gene expression data have been integrated to study the expression profiles of chickpea transcripts in major tissues/organs and various stages of flower development. The utilities, such as similarity search, ortholog identification and comparative gene expression have also been implemented in the database to facilitate comparative genomic studies among different legumes and Arabidopsis. Furthermore, the CTDB represents a resource for the discovery of functional molecular markers (microsatellites and single nucleotide polymorphisms between different chickpea types. We anticipate that integrated information content of this database will accelerate the functional and applied genomic research for improvement of chickpea. The CTDB web service is freely available at http://nipgr.res.in/ctdb.html.

  11. Functional Annotation of All Salmonid Genomes (FAASG): an international initiative supporting future salmonid research, conservation and aquaculture.

    Science.gov (United States)

    Macqueen, Daniel J; Primmer, Craig R; Houston, Ross D; Nowak, Barbara F; Bernatchez, Louis; Bergseth, Steinar; Davidson, William S; Gallardo-Escárate, Cristian; Goldammer, Tom; Guiguen, Yann; Iturra, Patricia; Kijas, James W; Koop, Ben F; Lien, Sigbjørn; Maass, Alejandro; Martin, Samuel A M; McGinnity, Philip; Montecino, Martin; Naish, Kerry A; Nichols, Krista M; Ólafsson, Kristinn; Omholt, Stig W; Palti, Yniv; Plastow, Graham S; Rexroad, Caird E; Rise, Matthew L; Ritchie, Rachael J; Sandve, Simen R; Schulte, Patricia M; Tello, Alfredo; Vidal, Rodrigo; Vik, Jon Olav; Wargelius, Anna; Yáñez, José Manuel

    2017-06-27

    We describe an emerging initiative - the 'Functional Annotation of All Salmonid Genomes' (FAASG), which will leverage the extensive trait diversity that has evolved since a whole genome duplication event in the salmonid ancestor, to develop an integrative understanding of the functional genomic basis of phenotypic variation. The outcomes of FAASG will have diverse applications, ranging from improved understanding of genome evolution, to improving the efficiency and sustainability of aquaculture production, supporting the future of fundamental and applied research in an iconic fish lineage of major societal importance.

  12. MicrobesOnline: an integrated portal for comparative and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir; Joachimiak, Marcin; Price, Morgan; Bates, John; Baumohl, Jason; Chivian, Dylan; Friedland, Greg; Huang, Kathleen; Keller, Keith; Novichkov, Pavel; Dubchak, Inna; Alm, Eric; Arkin, Adam

    2011-07-14

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  13. MicrobesOnline: an integrated portal for comparative and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Dehal, Paramvir S.; Joachimiak, Marcin P.; Price, Morgan N.; Bates, John T.; Baumohl, Jason K.; Chivian, Dylan; Friedland, Greg D.; Huang, Katherine H.; Keller, Keith; Novichkov, Pavel S.; Dubchak, Inna L.; Alm, Eric J.; Arkin, Adam P.

    2009-09-17

    Since 2003, MicrobesOnline (http://www.microbesonline.org) has been providing a community resource for comparative and functional genome analysis. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.

  14. Psychotic experiences and social functioning: a longitudinal study.

    Science.gov (United States)

    Sullivan, Sarah; Lewis, Glyn; Wiles, Nicola; Thompson, Andrew; Evans, Jonathan

    2013-07-01

    Both adolescent psychotic experiences and poor social functioning precede psychotic disorder; however, whether poor social functioning is also a risk factor for rather than a consequence of adolescent psychotic experiences is not clear. We investigate this question as well as whether deterioration in social functioning confers the strongest risk of psychotic experiences and whether theory of mind ability mediates any association, in a large community sample. Measures of social functioning (peer problems and prosocial behaviour) at ages 7 and 11 and theory of mind ability and psychotic experiences at age 12 were collected in a large community sample (n = 3,592). The association between social functioning and psychotic experiences was examined using logistic regression models at each age and any additional impact of deterioration in social functioning between ages 7 and 11. The potential role of theory of mind as a mediator was also investigated. Peer problems at both ages were independently associated with psychotic experiences at age 12 (7 years OR 1.11 95 % CI 1.03, 1.20), (11 years OR 1.13 95 % CI 1.05, 1.22). Theory of mind ability did not mediate this association. The association was not restricted to those with deteriorating social functioning (interaction term; p = 0.49). Poor childhood social functioning precedes adolescent psychotic experiences. There was no evidence that those with deteriorating social functioning were at greatest risk.

  15. Transcriptional and Genomic Targets of Neural Stem Cells for Functional Recovery after Hemorrhagic Stroke

    Directory of Open Access Journals (Sweden)

    Le Zhang

    2017-01-01

    Full Text Available Hemorrhagic stroke is a life-threatening disease characterized by a sudden rupture of cerebral blood vessels, and it is widely believed that neural cell death occurs after exposure to blood metabolites or subsequently damaged cells. Neural stem cells (NSCs, which maintain neurogenesis and are found in subgranular zone and subventricular zone, are thought to be an endogenous neuroprotective mechanism for these brain injuries. However, due to the complexity of NSCs and their microenvironment, current strategies cannot satisfactorily enhance functional recovery after hemorrhagic stroke. It is well known that transcriptional and genomic pathways play important roles in ensuring the normal functions of NSCs, including proliferation, migration, differentiation, and neural reconnection. Recently, emerging evidence from the use of new technologies such as next-generation sequencing and transcriptome profiling has provided insight into our understanding of genomic function and regulation of NSCs. In the present article, we summarize and present the current data on the control of NSCs at both the transcriptional and genomic levels. Using bioinformatics methods, we sought to predict novel therapeutic targets of endogenous neurogenesis and exogenous NSC transplantation for functional recovery after hemorrhagic stroke, which could also advance our understanding of its pathophysiology.

  16. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    Science.gov (United States)

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  18. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance.

    Science.gov (United States)

    van Oers, Johanna M M; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Hou, Harry; Sellers, Rani S; Modrich, Paul; Scharff, Matthew D; Edelmann, Winfried

    2010-07-27

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.

  19. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.

    Science.gov (United States)

    Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi

    2016-11-11

    The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.

  20. Simple Math is Enough: Two Examples of Inferring Functional Associations from Genomic Data

    Science.gov (United States)

    Liang, Shoudan

    2003-01-01

    Non-random features in the genomic data are usually biologically meaningful. The key is to choose the feature well. Having a p-value based score prioritizes the findings. If two proteins share a unusually large number of common interaction partners, they tend to be involved in the same biological process. We used this finding to predict the functions of 81 un-annotated proteins in yeast.

  1. Exploiting the functional and taxonomic structure of genomic data by probabilistic topic modeling.

    Science.gov (United States)

    Chen, Xin; Hu, Xiaohua; Lim, Tze Y; Shen, Xiajiong; Park, E K; Rosen, Gail L

    2012-01-01

    In this paper, we present a method that enable both homology-based approach and composition-based approach to further study the functional core (i.e., microbial core and gene core, correspondingly). In the proposed method, the identification of major functionality groups is achieved by generative topic modeling, which is able to extract useful information from unlabeled data. We first show that generative topic model can be used to model the taxon abundance information obtained by homology-based approach and study the microbial core. The model considers each sample as a “document,” which has a mixture of functional groups, while each functional group (also known as a “latent topic”) is a weight mixture of species. Therefore, estimating the generative topic model for taxon abundance data will uncover the distribution over latent functions (latent topic) in each sample. Second, we show that, generative topic model can also be used to study the genome-level composition of “N-mer” features (DNA subreads obtained by composition-based approaches). The model consider each genome as a mixture of latten genetic patterns (latent topics), while each functional pattern is a weighted mixture of the “N-mer” features, thus the existence of core genomes can be indicated by a set of common N-mer features. After studying the mutual information between latent topics and gene regions, we provide an explanation of the functional roles of uncovered latten genetic patterns. The experimental results demonstrate the effectiveness of proposed method.

  2. Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi.

    Science.gov (United States)

    Knapp, Dániel G; Németh, Julianna B; Barry, Kerrie; Hainaut, Matthieu; Henrissat, Bernard; Johnson, Jenifer; Kuo, Alan; Lim, Joanne Hui Ping; Lipzen, Anna; Nolan, Matt; Ohm, Robin A; Tamás, László; Grigoriev, Igor V; Spatafora, Joseph W; Nagy, László G; Kovács, Gábor M

    2018-04-20

    Dark septate endophytes (DSE) are a form-group of root endophytic fungi with elusive functions. Here, the genomes of two common DSE of semiarid areas, Cadophora sp. and Periconia macrospinosa were sequenced and analyzed with another 32 ascomycetes of different lifestyles. Cadophora sp. (Helotiales) and P. macrospinosa (Pleosporales) have genomes of 70.46 Mb and 54.99 Mb with 22,766 and 18,750 gene models, respectively. The majority of DSE-specific protein clusters lack functional annotation with no similarity to characterized proteins, implying that they have evolved unique genetic innovations. Both DSE possess an expanded number of carbohydrate active enzymes (CAZymes), including plant cell wall degrading enzymes (PCWDEs). Those were similar in three other DSE, and contributed a signal for the separation of root endophytes in principal component analyses of CAZymes, indicating shared genomic traits of DSE fungi. Number of secreted proteases and lipases, aquaporins, and genes linked to melanin synthesis were also relatively high in our fungi. In spite of certain similarities between our two DSE, we observed low levels of convergence in their gene family evolution. This suggests that, despite originating from the same habitat, these two fungi evolved along different evolutionary trajectories and display considerable functional differences within the endophytic lifestyle.

  3. Colony size measurement of the yeast gene deletion strains for functional genomics

    Directory of Open Access Journals (Sweden)

    Mir-Rashed Nadereh

    2007-04-01

    Full Text Available Abstract Background Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences. Results Here, we developed a computerized image analysis system called Growth Detector (GD, to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. Conclusion GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.

  4. Development of FuGO: An Ontology for Functional Genomics Investigations

    Science.gov (United States)

    Whetzel, Patricia L.; Brinkman, Ryan R.; Causton, Helen C.; Fan, Liju; Field, Dawn; Fostel, Jennifer; Fragoso, Gilberto; Gray, Tanya; Heiskanen, Mervi; Hernandez-Boussard, Tina; Morrison, Norman; Parkinson, Helen; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Schober, Daniel; Smith, Barry; Stevens, Robert; Stoeckert, Christian J.; Taylor, Chris; White, Joe; Wood, Andrew

    2009-01-01

    The development of the Functional Genomics Investigation Ontology (FuGO) is a collaborative, international effort that will provide a resource for annotating functional genomics investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. FuGO will contain both terms that are universal to all functional genomics investigations and those that are domain specific. In this way, the ontology will serve as the “semantic glue” to provide a common understanding of data from across these disparate data sources. In addition, FuGO will reference out to existing mature ontologies to avoid the need to duplicate these resources, and will do so in such a way as to enable their ease of use in annotation. This project is in the early stages of development; the paper will describe efforts to initiate the project, the scope and organization of the project, the work accomplished to date, and the challenges encountered, as well as future plans. PMID:16901226

  5. Genetic recombination is directed away from functional genomic elements in mice.

    Science.gov (United States)

    Brick, Kevin; Smagulova, Fatima; Khil, Pavel; Camerini-Otero, R Daniel; Petukhova, Galina V

    2012-05-13

    Genetic recombination occurs during meiosis, the key developmental programme of gametogenesis. Recombination in mammals has been recently linked to the activity of a histone H3 methyltransferase, PR domain containing 9 (PRDM9), the product of the only known speciation-associated gene in mammals. PRDM9 is thought to determine the preferred recombination sites--recombination hotspots--through sequence-specific binding of its highly polymorphic multi-Zn-finger domain. Nevertheless, Prdm9 knockout mice are proficient at initiating recombination. Here we map and analyse the genome-wide distribution of recombination initiation sites in Prdm9 knockout mice and in two mouse strains with different Prdm9 alleles and their F(1) hybrid. We show that PRDM9 determines the positions of practically all hotspots in the mouse genome, with the exception of the pseudo-autosomal region (PAR)--the only area of the genome that undergoes recombination in 100% of cells. Surprisingly, hotspots are still observed in Prdm9 knockout mice, and as in wild type, these hotspots are found at H3 lysine 4 (H3K4) trimethylation marks. However, in the absence of PRDM9, most recombination is initiated at promoters and at other sites of PRDM9-independent H3K4 trimethylation. Such sites are rarely targeted in wild-type mice, indicating an unexpected role of the PRDM9 protein in sequestering the recombination machinery away from gene-promoter regions and other functional genomic elements.

  6. Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis.

    Science.gov (United States)

    Pan, Xiong; Lin, Dunli; Zheng, Yuan; Zhang, Qian; Yin, Yuanming; Cai, Lin; Fang, Hua; Yu, Yunlong

    2016-02-18

    A novel bacterium capable of utilizing 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) as the sole carbon and energy source was isolated from a contaminated soil which was identified as Stenotrophomonas sp. DDT-1 based on morphological characteristics, BIOLOG GN2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate DDT-1 showed a 4,514,569 bp genome size, 66.92% GC content, 4,033 protein-coding genes, and 76 RNA genes including 8 rRNA genes. Totally, 2,807 protein-coding genes were assigned to Clusters of Orthologous Groups (COGs), and 1,601 protein-coding genes were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The degradation half-lives of DDT increased with substrate concentration from 0.1 to 10.0 mg/l, whereas decreased with temperature from 15 °C to 35 °C. Neutral condition was the most favorable for DDT biodegradation. Based on genome annotation of DDT degradation genes and the metabolites detected by GC-MS, a mineralization pathway was proposed for DDT biodegradation in which it was orderly converted into DDE/DDD, DDMU, DDOH, and DDA via dechlorination, hydroxylation, and carboxylation, and ultimately mineralized to carbon dioxide. The results indicate that the isolate DDT-1 is a promising bacterial resource for the removal or detoxification of DDT residues in the environment.

  7. Functional role of a highly repetitive DNA sequence in anchorage of the mouse genome.

    Science.gov (United States)

    Neuer-Nitsche, B; Lu, X N; Werner, D

    1988-09-12

    The major portion of the eukaryotic genome consists of various categories of repetitive DNA sequences which have been studied with respect to their base compositions, organizations, copy numbers, transcription and species specificities; their biological roles, however, are still unclear. A novel quality of a highly repetitive mouse DNA sequence is described which points to a functional role: All copies (approximately 50,000 per haploid genome) of this DNA sequence reside on genomic Alu I DNA fragments each associated with nuclear polypeptides that are not released from DNA by proteinase K, SDS and phenol extraction. By this quality the repetitive DNA sequence is classified as a member of the sub-set of DNA sequences involved in tight DNA-polypeptide complexes which have been previously shown to be components of the subnuclear structure termed 'nuclear matrix'. From these results it has to be concluded that the repetitive DNA sequence characterized in this report represents or comprises a signal for a large number of site specific attachment points of the mouse genome in the nuclear matrix.

  8. Functional genomics highlights differential induction of antiviral pathways in the lungs of SARS-CoV-infected macaques.

    Directory of Open Access Journals (Sweden)

    Anna de Lang

    2007-08-01

    Full Text Available The pathogenesis of severe acute respiratory syndrome coronavirus (SARS-CoV is likely mediated by disproportional immune responses and the ability of the virus to circumvent innate immunity. Using functional genomics, we analyzed early host responses to SARS-CoV infection in the lungs of adolescent cynomolgus macaques (Macaca fascicularis that show lung pathology similar to that observed in human adults with SARS. Analysis of gene signatures revealed induction of a strong innate immune response characterized by the stimulation of various cytokine and chemokine genes, including interleukin (IL-6, IL-8, and IP-10, which corresponds to the host response seen in acute respiratory distress syndrome. As opposed to many in vitro experiments, SARS-CoV induced a wide range of type I interferons (IFNs and nuclear translocation of phosphorylated signal transducer and activator of transcription 1 in the lungs of macaques. Using immunohistochemistry, we revealed that these antiviral signaling pathways were differentially regulated in distinctive subsets of cells. Our studies emphasize that the induction of early IFN signaling may be critical to confer protection against SARS-CoV infection and highlight the strength of combining functional genomics with immunohistochemistry to further unravel the pathogenesis of SARS.

  9. Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes.

    Science.gov (United States)

    Grim, Christopher J; Kozlova, Elena V; Sha, Jian; Fitts, Eric C; van Lier, Christina J; Kirtley, Michelle L; Joseph, Sandeep J; Read, Timothy D; Burd, Eileen M; Tall, Ben D; Joseph, Sam W; Horneman, Amy J; Chopra, Ashok K; Shak, Joshua R

    2013-04-23

    Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966(T), and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966(T). The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966(T) and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. Aeromonas hydrophila is a common aquatic bacterium that has increasingly been implicated in serious human infections. While many determinants of virulence have been identified in Aeromonas, rapid identification of pathogenic versus nonpathogenic

  10. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG.

    Directory of Open Access Journals (Sweden)

    François P Douillard

    Full Text Available Lactobacillus rhamnosus is a lactic acid bacterium that is found in a large variety of ecological habitats, including artisanal and industrial dairy products, the oral cavity, intestinal tract or vagina. To gain insights into the genetic complexity and ecological versatility of the species L. rhamnosus, we examined the genomes and phenotypes of 100 L. rhamnosus strains isolated from diverse sources. The genomes of 100 L. rhamnosus strains were mapped onto the L. rhamnosus GG reference genome. These strains were phenotypically characterized for a wide range of metabolic, antagonistic, signalling and functional properties. Phylogenomic analysis showed multiple groupings of the species that could partly be associated with their ecological niches. We identified 17 highly variable regions that encode functions related to lifestyle, i.e. carbohydrate transport and metabolism, production of mucus-binding pili, bile salt resistance, prophages and CRISPR adaptive immunity. Integration of the phenotypic and genomic data revealed that some L. rhamnosus strains possibly resided in multiple niches, illustrating the dynamics of bacterial habitats. The present study showed two distinctive geno-phenotypes in the L. rhamnosus species. The geno-phenotype A suggests an adaptation to stable nutrient-rich niches, i.e. milk-derivative products, reflected by the alteration or loss of biological functions associated with antimicrobial activity spectrum, stress resistance, adaptability and fitness to a distinctive range of habitats. In contrast, the geno-phenotype B displays adequate traits to a variable environment, such as the intestinal tract, in terms of nutrient resources, bacterial population density and host effects.

  11. Suicidal function of DNA methylation in age-related genome disintegration.

    Science.gov (United States)

    Mazin, Alexander L

    2009-10-01

    This article is dedicated to the 60th anniversary of 5-methylcytosine discovery in DNA. Cytosine methylation can affect genetic and epigenetic processes, works as a part of the genome-defense system and has mutagenic activity; however, the biological functions of this enzymatic modification are not well understood. This review will put forward the hypothesis that the host-defense role of DNA methylation in silencing and mutational destroying of retroviruses and other intragenomic parasites was extended during evolution to most host genes that have to be inactivated in differentiated somatic cells, where it acquired a new function in age-related self-destruction of the genome. The proposed model considers DNA methylation as the generator of 5mC>T transitions that induce 40-70% of all spontaneous somatic mutations of the multiple classes at CpG and CpNpG sites and flanking nucleotides in the p53, FIX, hprt, gpt human genes and some transgenes. The accumulation of 5mC-dependent mutations explains: global changes in the structure of the vertebrate genome throughout evolution; the loss of most 5mC from the DNA of various species over their lifespan and the Hayflick limit of normal cells; the polymorphism of methylation sites, including asymmetric mCpNpN sites; cyclical changes of methylation and demethylation in genes. The suicidal function of methylation may be a special genetic mechanism for increasing DNA damage and the programmed genome disintegration responsible for cell apoptosis and organism aging and death.

  12. Comparative Genomic and Functional Analysis of 100 Lactobacillus rhamnosus Strains and Their Comparison with Strain GG

    Science.gov (United States)

    Pietilä, Taija E.; Järvinen, Hanna M.; Messing, Marcel; Randazzo, Cinzia L.; Paulin, Lars; Laine, Pia; Ritari, Jarmo; Caggia, Cinzia; Lähteinen, Tanja; Brouns, Stan J. J.; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; Palva, Airi; de Vos, Willem M.

    2013-01-01

    Lactobacillus rhamnosus is a lactic acid bacterium that is found in a large variety of ecological habitats, including artisanal and industrial dairy products, the oral cavity, intestinal tract or vagina. To gain insights into the genetic complexity and ecological versatility of the species L. rhamnosus, we examined the genomes and phenotypes of 100 L. rhamnosus strains isolated from diverse sources. The genomes of 100 L. rhamnosus strains were mapped onto the L. rhamnosus GG reference genome. These strains were phenotypically characterized for a wide range of metabolic, antagonistic, signalling and functional properties. Phylogenomic analysis showed multiple groupings of the species that could partly be associated with their ecological niches. We identified 17 highly variable regions that encode functions related to lifestyle, i.e. carbohydrate transport and metabolism, production of mucus-binding pili, bile salt resistance, prophages and CRISPR adaptive immunity. Integration of the phenotypic and genomic data revealed that some L. rhamnosus strains possibly resided in multiple niches, illustrating the dynamics of bacterial habitats. The present study showed two distinctive geno-phenotypes in the L. rhamnosus species. The geno-phenotype A suggests an adaptation to stable nutrient-rich niches, i.e. milk-derivative products, reflected by the alteration or loss of biological functions associated with antimicrobial activity spectrum, stress resistance, adaptability and fitness to a distinctive range of habitats. In contrast, the geno-phenotype B displays adequate traits to a variable environment, such as the intestinal tract, in terms of nutrient resources, bacterial population density and host effects. PMID:23966868

  13. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.

    Science.gov (United States)

    Xu, Kelin; Jin, Li; Xiong, Momiao

    2017-05-18

    Epistasis plays an essential rule in understanding the regulation mechanisms and is an essential component of the genetic architecture of the gene expressions. However, interaction analysis of gene expressions remains fundamentally unexplored due to great computational challenges and data availability. Due to variation in splicing, transcription start sites, polyadenylation sites, post-transcriptional RNA editing across the entire gene, and transcription rates of the cells, RNA-seq measurements generate large expression variability and collectively create the observed position level read count curves. A single number for measuring gene expression which is widely used for microarray measured gene expression analysis is highly unlikely to sufficiently account for large expression variation across the gene. Simultaneously analyzing epistatic architecture using the RNA-seq and whole genome sequencing (WGS) data poses enormous challenges. We develop a nonlinear functional regression model (FRGM) with functional responses where the position-level read counts within a gene are taken as a function of genomic position, and functional predictors where genotype profiles are viewed as a function of genomic position, for epistasis analysis with RNA-seq data. Instead of testing the interaction of all possible pair-wises SNPs, the FRGM takes a gene as a basic unit for epistasis analysis, which tests for the interaction of all possible pairs of genes and use all the information that can be accessed to collectively test interaction between all possible pairs of SNPs within two genome regions. By large-scale simulations, we demonstrate that the proposed FRGM for epistasis analysis can achieve the correct type 1 error and has higher power to detect the interactions between genes than the existing methods. The proposed methods are applied to the RNA-seq and WGS data from the 1000 Genome Project. The numbers of pairs of significantly interacting genes after Bonferroni correction

  14. From Genome to Function: Systematic Analysis of the Soil Bacterium Bacillus Subtilis

    Science.gov (United States)

    Crawshaw, Samuel G.; Wipat, Anil

    2001-01-01

    Bacillus subtilis is a sporulating Gram-positive bacterium that lives primarily in the soil and associated water sources. Whilst this bacterium has been studied extensively in the laboratory, relatively few studies have been undertaken to study its activity in natural environments. The publication of the B. subtilis genome sequence and subsequent systematic functional analysis programme have provided an opportunity to develop tools for analysing the role and expression of Bacillus genes in situ. In this paper we discuss analytical approaches that are being developed to relate genes to function in environments such as the rhizosphere. PMID:18628943

  15. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Science.gov (United States)

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  16. CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants

    DEFF Research Database (Denmark)

    Spisák, Sándor; Lawrenson, Kate; Fu, Yanfang

    2015-01-01

    a general pipeline in which candidate functional SNPs are first evaluated by fine mapping, epigenomic profiling, and epigenome editing, and then interrogated for causal function by using genome editing to create isogenic cell lines followed by phenotypic characterization. To validate this approach, we......me2 histone mark at the rs339331 region compared to lines homozygous for the 'C' protective allele. The cell lines also differed in cellular morphology and adhesion, and pathway analysis of differentially expressed genes suggested an influence of androgens. In summary, we have developed and validated...

  17. Reverse gyrase functions in genome integrity maintenance by protecting DNA breaks in vivo

    DEFF Research Database (Denmark)

    Han, Wenyuan; Feng, Xu; She, Qunxin

    2017-01-01

    Reverse gyrase introduces positive supercoils to circular DNA and is implicated in genome stability maintenance in thermophiles. The extremely thermophilic crenarchaeon Sulfolobus encodes two reverse gyrase proteins, TopR1 (topoisomerase reverse gyrase 1) and TopR2, whose functions in thermophilic...... and subsequent DNA degradation. The former occurred immediately after drug treatment, leading to chromosomal DNA degradation that concurred with TopR1 degradation, followed by chromatin protein degradation and DNA-less cell formation. To gain a further insight into TopR1 function, the expression of the enzyme...

  18. Construction and Use of Recombinant Isogenic Cell Libraries in Functional Genomics

    DEFF Research Database (Denmark)

    Christiansen, Helle

      While nowadays robotics enable performing whole genome functional screens within a few days, the availability of suitable cellular systems to investigate the function or pathway of choice represents as a major bottleneck. In most applications, it is desirable to use cell lines with stably...... or inactivation of a gene of choice in a constitutive or tetracycline-inducible fashion. We also provide proof-of-principle that this technique can be used for the construction of double recombinant cell lines, which allows for analyses at advanced levels of complexity, e. g. by the construction of double...

  19. Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics.

    Science.gov (United States)

    Douillard, François P; Ribbera, Angela; Järvinen, Hanna M; Kant, Ravi; Pietilä, Taija E; Randazzo, Cinzia; Paulin, Lars; Laine, Pia K; Caggia, Cinzia; von Ossowski, Ingemar; Reunanen, Justus; Satokari, Reetta; Salminen, Seppo; Palva, Airi; de Vos, Willem M

    2013-03-01

    Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities.

  20. Convergent functional genomics in addiction research - a translational approach to study candidate genes and gene networks.

    Science.gov (United States)

    Spanagel, Rainer

    2013-01-01

    Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.

  1. RICD: A rice indica cDNA database resource for rice functional genomics

    Directory of Open Access Journals (Sweden)

    Zhang Qifa

    2008-11-01

    Full Text Available Abstract Background The Oryza sativa L. indica subspecies is the most widely cultivated rice. During the last few years, we have collected over 20,000 putative full-length cDNAs and over 40,000 ESTs isolated from various cDNA libraries of two indica varieties Guangluai 4 and Minghui 63. A database of the rice indica cDNAs was therefore built to provide a comprehensive web data source for searching and retrieving the indica cDNA clones. Results Rice Indica cDNA Database (RICD is an online MySQL-PHP driven database with a user-friendly web interface. It allows investigators to query the cDNA clones by keyword, genome position, nucleotide or protein sequence, and putative function. It also provides a series of information, including sequences, protein domain annotations, similarity search results, SNPs and InDels information, and hyperlinks to gene annotation in both The Rice Annotation Project Database (RAP-DB and The TIGR Rice Genome Annotation Resource, expression atlas in RiceGE and variation report in Gramene of each cDNA. Conclusion The online rice indica cDNA database provides cDNA resource with comprehensive information to researchers for functional analysis of indica subspecies and for comparative genomics. The RICD database is available through our website http://www.ncgr.ac.cn/ricd.

  2. Polytene Chromosomes - A Portrait of Functional Organization of the Drosophila Genome.

    Science.gov (United States)

    Zykova, Tatyana Yu; Levitsky, Victor G; Belyaeva, Elena S; Zhimulev, Igor F

    2018-04-01

    This mini-review is devoted to the problem genetic meaning of main polytene chromosome structures - bands and interbands. Generally, densely packed chromatin forms black bands, moderately condensed regions form grey loose bands, whereas decondensed regions of the genome appear as interbands. Recent progress in the annotation of the Drosophila genome and epigenome has made it possible to compare the banding pattern and the structural organization of genes, as well as their activity. This was greatly aided by our ability to establish the borders of bands and interbands on the physical map, which allowed to perform comprehensive side-by-side comparisons of cytology, genetic and epigenetic maps and to uncover the association between the morphological structures and the functional domains of the genome. These studies largely conclude that interbands 5'-ends of housekeeping genes that are active across all cell types. Interbands are enriched with proteins involved in transcription and nucleosome remodeling, as well as with active histone modifications. Notably, most of the replication origins map to interband regions. As for grey loose bands adjacent to interbands, they typically host the bodies of house-keeping genes. Thus, the bipartite structure composed of an interband and an adjacent grey band functions as a standalone genetic unit. Finally, black bands harbor tissue-specific genes with narrow temporal and tissue expression profiles. Thus, the uniform and permanent activity of interbands combined with the inactivity of genes in bands forms the basis of the universal banding pattern observed in various Drosophila tissues.

  3. Simultaneous genome-wide inference of physical, genetic, regulatory, and functional pathway components.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    2010-11-01

    Full Text Available Biomolecular pathways are built from diverse types of pairwise interactions, ranging from physical protein-protein interactions and modifications to indirect regulatory relationships. One goal of systems biology is to bridge three aspects of this complexity: the growing body of high-throughput data assaying these interactions; the specific interactions in which individual genes participate; and the genome-wide patterns of interactions in a system of interest. Here, we describe methodology for simultaneously predicting specific types of biomolecular interactions using high-throughput genomic data. This results in a comprehensive compendium of whole-genome networks for yeast, derived from ∼3,500 experimental conditions and describing 30 interaction types, which range from general (e.g. physical or regulatory to specific (e.g. phosphorylation or transcriptional regulation. We used these networks to investigate molecular pathways in carbon metabolism and cellular transport, proposing a novel connection between glycogen breakdown and glucose utilization supported by recent publications. Additionally, 14 specific predicted interactions in DNA topological change and protein biosynthesis were experimentally validated. We analyzed the systems-level network features within all interactomes, verifying the presence of small-world properties and enrichment for recurring network motifs. This compendium of physical, synthetic, regulatory, and functional interaction networks has been made publicly available through an interactive web interface for investigators to utilize in future research at http://function.princeton.edu/bioweaver/.

  4. Structural and functional analysis of the finished genome of the recently isolated toxic Anabaena sp. WA102.

    Science.gov (United States)

    Brown, Nathan M; Mueller, Ryan S; Shepardson, Jonathan W; Landry, Zachary C; Morré, Jeffrey T; Maier, Claudia S; Hardy, F Joan; Dreher, Theo W

    2016-06-13

    Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture. The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90. Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.

  5. Comparative Genomics Unravels the Functional Roles of Co-occurring Acidophilic Bacteria in Bioleaching Heaps

    Science.gov (United States)

    Zhang, Xian; Liu, Xueduan; Liang, Yili; Xiao, Yunhua; Ma, Liyuan; Guo, Xue; Miao, Bo; Liu, Hongwei; Peng, Deliang; Huang, Wenkun; Yin, Huaqun

    2017-01-01

    The spatial-temporal distribution of populations in various econiches is thought to be potentially related to individual differences in the utilization of nutrients or other resources, but their functional roles in the microbial communities remain elusive. We compared differentiation in gene repertoire and metabolic profiles, with a focus on the potential functional traits of three commonly recognized members (Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans) in bioleaching heaps. Comparative genomics revealed that intra-species divergence might be driven by horizontal gene transfer. These co-occurring bacteria shared a few homologous genes, which significantly suggested the genomic differences between these organisms. Notably, relatively more genes assigned to the Clusters of Orthologous Groups category [G] (carbohydrate transport and metabolism) were identified in Sulfobacillus thermosulfidooxidans compared to the two other species, which probably indicated their mixotrophic capabilities that assimilate both organic and inorganic forms of carbon. Further inspection revealed distinctive metabolic capabilities involving carbon assimilation, nitrogen uptake, and iron-sulfur cycling, providing robust evidence for functional differences with respect to nutrient utilization. Therefore, we proposed that the mutual compensation of functionalities among these co-occurring organisms might provide a selective advantage for efficiently utilizing the limited resources in their habitats. Furthermore, it might be favorable to chemoautotrophs' lifestyles to form mutualistic interactions with these heterotrophic and/or mixotrophic acidophiles, whereby the latter could degrade organic compounds to effectively detoxify the environments. Collectively, the findings shed light on the genetic traits and potential metabolic activities of these organisms, and enable us to make some inferences about genomic and functional differences that might

  6. Comparative Genomics Unravels the Functional Roles of Co-occurring Acidophilic Bacteria in Bioleaching Heaps

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    2017-05-01

    Full Text Available The spatial-temporal distribution of populations in various econiches is thought to be potentially related to individual differences in the utilization of nutrients or other resources, but their functional roles in the microbial communities remain elusive. We compared differentiation in gene repertoire and metabolic profiles, with a focus on the potential functional traits of three commonly recognized members (Acidithiobacillus caldus, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans in bioleaching heaps. Comparative genomics revealed that intra-species divergence might be driven by horizontal gene transfer. These co-occurring bacteria shared a few homologous genes, which significantly suggested the genomic differences between these organisms. Notably, relatively more genes assigned to the Clusters of Orthologous Groups category [G] (carbohydrate transport and metabolism were identified in Sulfobacillus thermosulfidooxidans compared to the two other species, which probably indicated their mixotrophic capabilities that assimilate both organic and inorganic forms of carbon. Further inspection revealed distinctive metabolic capabilities involving carbon assimilation, nitrogen uptake, and iron-sulfur cycling, providing robust evidence for functional differences with respect to nutrient utilization. Therefore, we proposed that the mutual compensation of functionalities among these co-occurring organisms might provide a selective advantage for efficiently utilizing the limited resources in their habitats. Furthermore, it might be favorable to chemoautotrophs' lifestyles to form mutualistic interactions with these heterotrophic and/or mixotrophic acidophiles, whereby the latter could degrade organic compounds to effectively detoxify the environments. Collectively, the findings shed light on the genetic traits and potential metabolic activities of these organisms, and enable us to make some inferences about genomic and functional

  7. Experiences with Matlab and VRML in Functional Neuroimaging Visualizations

    DEFF Research Database (Denmark)

    Nielsen, Finn Årup; Hansen, Lars Kai

    2000-01-01

    We describe some experiences with Matlab and VRML. We are developing a toolbox for neuroinformatics and describe some of the functionalities we have implemented or will implement and how Matlab and VRML support the implementation....

  8. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism’s genome (such as the mouse genome in order to make physiological inferences about the role of genes and proteins in a less characterized organism’s genome (such as the Burmese python. We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1 production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2 enhanced assisted reproduction technology for endangered and captive reptiles; and (3 novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.

  9. Runs of homozygosity and distribution of functional variants in cattle genome

    DEFF Research Database (Denmark)

    Zhang, Qianqian; Guldbrandtsen, Bernt; Bosse, Mirte

    Runs of homozygosity (ROH) are identified in four dairy cattle breeds using NGS data. Cattle populations have been exposed to strong artificial selection for some generations. Genomic regions under selection will show increased levels of ROH. By investigating the relationship between ROH and dist......Runs of homozygosity (ROH) are identified in four dairy cattle breeds using NGS data. Cattle populations have been exposed to strong artificial selection for some generations. Genomic regions under selection will show increased levels of ROH. By investigating the relationship between ROH...... and distribution of predicted deleterious and tolerated variants, we can gain insight into how selection shapes the distribution of functional variants in inbred regions. We observe that predicted deleterious variants are more enriched in ROHs than predicted tolerated variants. Moreover, increase of enrichment...

  10. Identification of a new genomic hot spot of evolutionary diversification of protein function.

    Directory of Open Access Journals (Sweden)

    Aline Winkelmann

    Full Text Available Establishment of phylogenetic relationships remains a challenging task because it is based on computational analysis of genomic hot spots that display species-specific sequence variations. Here, we identify a species-specific thymine-to-guanine sequence variation in the Glrb gene which gives rise to species-specific splice donor sites in the Glrb genes of mouse and bushbaby. The resulting splice insert in the receptor for the inhibitory neurotransmitter glycine (GlyR conveys synaptic receptor clustering and specific association with a particular synaptic plasticity-related splice variant of the postsynaptic scaffold protein gephyrin. This study identifies a new genomic hot spot which contributes to phylogenetic diversification of protein function and advances our understanding of phylogenetic relationships.

  11. The Persistent Contributions of RNA to Eukaryotic Gen(om)e Architecture and Cellular Function

    Science.gov (United States)

    Brosius, Jürgen

    2014-01-01

    Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery. PMID:25081515

  12. Functional conservation of nucleosome formation selectively biases presumably neutral molecular variation in yeast genomes.

    Science.gov (United States)

    Babbitt, Gregory A; Cotter, C R

    2011-01-01

    One prominent pattern of mutational frequency, long appreciated in comparative genomics, is the bias of purine/pyrimidine conserving substitutions (transitions) over purine/pyrimidine altering substitutions (transversions). Traditionally, this transitional bias has been thought to be driven by the underlying rates of DNA mutation and/or repair. However, recent sequencing studies of mutation accumulation lines in model organisms demonstrate that substitutions generally do not accumulate at rates that would indicate a transitional bias. These observations have called into question a very basic assumption of molecular evolution; that naturally occurring patterns of molecular variation in noncoding regions accurately reflect the underlying processes of randomly accumulating neutral mutation in nuclear genomes. Here, in Saccharomyces yeasts, we report a very strong inverse association (r = -0.951, P < 0.004) between the genome-wide frequency of substitutions and their average energetic effect on nucleosome formation, as predicted by a structurally based energy model of DNA deformation around the nucleosome core. We find that transitions occurring at sites positioned nearest the nucleosome surface, which are believed to function most importantly in nucleosome formation, alter the deformation energy of DNA to the nucleosome core by only a fraction of the energy changes typical of most transversions. When we examined the same substitutions set against random background sequences as well as an existing study reporting substitutions arising in mutation accumulation lines of Saccharomyces cerevisiae, we failed to find a similar relationship. These results support the idea that natural selection acting to functionally conserve chromatin organization may contribute significantly to genome-wide transitional bias, even in noncoding regions. Because nucleosome core structure is highly conserved across eukaryotes, our observations may also help to further explain locally elevated

  13. A Genome-Scale Resource for the Functional Characterization of Arabidopsis Transcription Factors

    Directory of Open Access Journals (Sweden)

    Jose L. Pruneda-Paz

    2014-07-01

    Full Text Available Extensive transcriptional networks play major roles in cellular and organismal functions. Transcript levels are in part determined by the combinatorial and overlapping functions of multiple transcription factors (TFs bound to gene promoters. Thus, TF-promoter interactions provide the basic molecular wiring of transcriptional regulatory networks. In plants, discovery of the functional roles of TFs is limited by an increased complexity of network circuitry due to a significant expansion of TF families. Here, we present the construction of a comprehensive collection of Arabidopsis TFs clones created to provide a versatile resource for uncovering TF biological functions. We leveraged this collection by implementing a high-throughput DNA binding assay and identified direct regulators of a key clock gene (CCA1 that provide molecular links between different signaling modules and the circadian clock. The resources introduced in this work will significantly contribute to a better understanding of the transcriptional regulatory landscape of plant genomes.

  14. Biofilm function and variability in a hydrothermal ecosystem: insights from environmental genomes

    Science.gov (United States)

    Meyer-Dombard, D. R.; Raymond, J.; Shock, E. L.

    2007-12-01

    The ability to adapt to variable environmental conditions is key to survival for all organisms, but may be especially crucial to microorganisms in extreme environments such as hydrothermal systems. Streamer biofilm communities (SBCs) made up of thermophilic chemotrophic microorganisms are common in alkaline-chloride geothermal environments worldwide, but the in situ physiochemical growth parameters and requirements of SBCs are largely unknown [1]. Hot springs in Yellowstone National Park's alkaline geyser basins support SBC growth. However, despite the relative geochemical homogeneity of source pools and widespread ecosystem suitability in these regions (as indicated by energetic profiling [2]), SBCs are not ubiquitous in these ecosystems. The ability of hydrothermal systems to support the growth of SBCs, the relationship between these geochemically driven environments and the microbes that live there, and the function of individuals in these communities are aspects that are adressed here by applying environmental genomics. Analysis of 16S rRNA and total membrane lipid extracts have revealed that community composition of SBCs in "Bison Pool" varies as a function of changing environmental conditions along the outflow channel. In addition, a significant crenarchaeal component was discovered in the "Bison Pool" SBCs. In general, the SBC bacterial diversity triples while the archaeal component varies little (from 3 to 2 genera) in a 5-10°C gradient with distance from the source. While these SBCs are low in overall diversity, the majority of the taxa identified represent uncultured groups of Bacteria and Archaea. As a result, the community function of these taxa and their role in the formation of the biofilms is unknown. However, recent genomic analysis from environmental DNA affords insight into the roles of specific organisms within SBCs at "Bison Pool," and integration of these data with an extensive corresponding geochemical dataset may indicate shifting community

  15. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  16. On the Immortality of Television Sets: ?Function? in the Human Genome According to the Evolution-Free Gospel of ENCODE

    OpenAIRE

    Graur, Dan; Zheng, Yichen; Price, Nicholas; Azevedo, Ricardo B.R.; Zufall, Rebecca A.; Elhaik, Eran

    2013-01-01

    A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selec...

  17. From prediction to function using evolutionary genomics: human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions.

    Science.gov (United States)

    Spinler, Jennifer K; Sontakke, Amrita; Hollister, Emily B; Venable, Susan F; Oh, Phaik Lyn; Balderas, Miriam A; Saulnier, Delphine M A; Mistretta, Toni-Ann; Devaraj, Sridevi; Walter, Jens; Versalovic, James; Highlander, Sarah K

    2014-06-19

    The vertebrate gut symbiont Lactobacillus reuteri has diversified into separate clades reflecting host origin. Strains show evidence of host adaptation, but how host-microbe coevolution influences microbial-derived effects on hosts is poorly understood. Emphasizing human-derived strains of L. reuteri, we combined comparative genomic analyses with functional assays to examine variations in host interaction among genetically distinct ecotypes. Within clade II or VI, the genomes of human-derived L. reuteri strains are highly conserved in gene content and at the nucleotide level. Nevertheless, they share only 70-90% of total gene content, indicating differences in functional capacity. Human-associated lineages are distinguished by genes related to bacteriophages, vitamin biosynthesis, antimicrobial production, and immunomodulation. Differential production of reuterin, histamine, and folate by 23 clade II and VI strains was demonstrated. These strains also differed with respect to their ability to modulate human cytokine production (tumor necrosis factor, monocyte chemoattractant protein-1, interleukin [IL]-1β, IL-5, IL-7, IL-12, and IL-13) by myeloid cells. Microarray analysis of representative clade II and clade VI strains revealed global regulation of genes within the reuterin, vitamin B12, folate, and arginine catabolism gene clusters by the AraC family transcriptional regulator, PocR. Thus, human-derived L. reuteri clade II and VI strains are genetically distinct and their differences affect their functional repertoires and probiotic features. These findings highlight the biological impact of microbe:host coevolution and illustrate the functional significance of subspecies differences in the human microbiome. Consideration of host origin and functional differences at the subspecies level may have major impacts on probiotic strain selection and considerations of microbial ecology in mammalian species. © The Author(s) 2014. Published by Oxford University Press on

  18. Single Amplified Genomes as Source for Novel Extremozymes: Annotation, Expression and Functional Assessment

    KAUST Repository

    Grötzinger, Stefan

    2017-12-01

    Enzymes, as nature’s catalysts, show remarkable abilities that can revolutionize the chemical, biotechnological, bioremediation, agricultural and pharmaceutical industries. However, the narrow range of stability of the majority of described biocatalysts limits their use for many applications. To overcome these restrictions, extremozymes derived from microorganisms thriving under harsh conditions can be used. Extremophiles living in high salinity are especially interesting as they operate at low water activity, which is similar to conditions used in standard chemical applications. Because only about 0.1 % of all microorganisms can be cultured, the traditional way of culture-based enzyme function determination needs to be overcome. The rise of high-throughput next-generation-sequencing technologies allows for deep insight into nature’s variety. Single amplified genomes (SAGs) specifically allow for whole genome assemblies from small sample volumes with low cell yields, as are typical for extreme environments. Although these technologies have been available for years, the expected boost in biotechnology has held off. One of the main reasons is the lack of reliable functional annotation of the genomic data, which is caused by the low amount (0.15 %) of experimentally described genes. Here, we present a novel annotation algorithm, designed to annotate the enzymatic function of genomes from microorganisms with low homologies to described microorganisms. The algorithm was established on SAGs from the extreme environment of selected hypersaline Red Sea brine pools with 4.3 M salinity and temperatures up to 68°C. Additionally, a novel consensus pattern for the identification of γ-carbonic anhydrases was created and applied in the algorithm. To verify the annotation, selected genes were expressed in the hypersaline expression system Halobacterium salinarum. This expression system was established and optimized in a continuously stirred tank reactor, leading to

  19. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development.

    Science.gov (United States)

    Cui, Miao; Lin, Che-Yi; Su, Yi-Hsien

    2017-09-01

    Studies on the gene regulatory networks (GRNs) of sea urchin embryos have provided a basic understanding of the molecular mechanisms controlling animal development. The causal links in GRNs have been verified experimentally through perturbation of gene functions. Microinjection of antisense morpholino oligonucleotides (MOs) into the egg is the most widely used approach for gene knockdown in sea urchin embryos. The modification of MOs into a membrane-permeable form (vivo-MOs) has allowed gene knockdown at later developmental stages. Recent advances in genome editing tools, such as zinc-finger nucleases, transcription activator-like effector-based nucleases and the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system, have provided methods for gene knockout in sea urchins. Here, we review the use of vivo-MOs and genome editing tools in sea urchin studies since the publication of its genome in 2006. Various applications of the CRISPR/Cas9 system and their potential in studying sea urchin development are also discussed. These new tools will provide more sophisticated experimental methods for studying sea urchin development. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Towards a TILLING platform for functional genomics in Piel de Sapo melons

    Directory of Open Access Journals (Sweden)

    Pujol Marta

    2011-08-01

    Full Text Available Abstract Background The availability of genetic and genomic resources for melon has increased significantly, but functional genomics resources are still limited for this crop. TILLING is a powerful reverse genetics approach that can be utilized to generate novel mutations in candidate genes. A TILLING resource is available for cantalupensis melons, but not for inodorus melons, the other main commercial group. Results A new ethyl methanesulfonate-mutagenized (EMS melon population was generated for the first time in an andromonoecious non-climacteric inodorus Piel de Sapo genetic background. Diverse mutant phenotypes in seedlings, vines and fruits were observed, some of which were of possible commercial interest. The population was first screened for mutations in three target genes involved in disease resistance and fruit quality (Cm-PDS, Cm-eIF4E and Cm-eIFI(iso4E. The same genes were also tilled in the available monoecious and climacteric cantalupensis EMS melon population. The overall mutation density in this first Piel de Sapo TILLING platform was estimated to be 1 mutation/1.5 Mb by screening four additional genes (Cm-ACO1, Cm-NOR, Cm-DET1 and Cm-DHS. Thirty-three point mutations were found for the seven gene targets, six of which were predicted to have an impact on the function of the protein. The genotype/phenotype correlation was demonstrated for a loss-of-function mutation in the Phytoene desaturase gene, which is involved in carotenoid biosynthesis. Conclusions The TILLING approach was successful at providing new mutations in the genetic background of Piel de Sapo in most of the analyzed genes, even in genes for which natural variation is extremely low. This new resource will facilitate reverse genetics studies in non-climacteric melons, contributing materially to future genomic and breeding studies.

  1. Functional genomic characterization of virulence factors from necrotizing fasciitis-causing strains of Aeromonas hydrophila.

    Science.gov (United States)

    Grim, Christopher J; Kozlova, Elena V; Ponnusamy, Duraisamy; Fitts, Eric C; Sha, Jian; Kirtley, Michelle L; van Lier, Christina J; Tiner, Bethany L; Erova, Tatiana E; Joseph, Sandeep J; Read, Timothy D; Shak, Joshua R; Joseph, Sam W; Singletary, Ed; Felland, Tracy; Baze, Wallace B; Horneman, Amy J; Chopra, Ashok K

    2014-07-01

    The genomes of 10 Aeromonas isolates identified and designated Aeromonas hydrophila WI, Riv3, and NF1 to NF4; A. dhakensis SSU; A. jandaei Riv2; and A. caviae NM22 and NM33 were sequenced and annotated. Isolates NF1 to NF4 were from a patient with necrotizing fasciitis (NF). Two environmental isolates (Riv2 and -3) were from the river water from which the NF patient acquired the infection. While isolates NF2 to NF4 were clonal, NF1 was genetically distinct. Outside the conserved core genomes of these 10 isolates, several unique genomic features were identified. The most virulent strains possessed one of the following four virulence factors or a combination of them: cytotoxic enterotoxin, exotoxin A, and type 3 and 6 secretion system effectors AexU and Hcp. In a septicemic-mouse model, SSU, NF1, and Riv2 were the most virulent, while NF2 was moderately virulent. These data correlated with high motility and biofilm formation by the former three isolates. Conversely, in a mouse model of intramuscular infection, NF2 was much more virulent than NF1. Isolates NF2, SSU, and Riv2 disseminated in high numbers from the muscular tissue to the visceral organs of mice, while NF1 reached the liver and spleen in relatively lower numbers on the basis of colony counting and tracking of bioluminescent strains in real time by in vivo imaging. Histopathologically, degeneration of myofibers with significant infiltration of polymorphonuclear cells due to the highly virulent strains was noted. Functional genomic analysis provided data that allowed us to correlate the highly infectious nature of Aeromonas pathotypes belonging to several different species with virulence signatures and their potential ability to cause NF. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes.

    Science.gov (United States)

    Adu-Oppong, Boahemaa; Gasparrini, Andrew J; Dantas, Gautam

    2017-01-01

    Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications. © 2016 New York Academy of Sciences.

  3. Bioinformatic analysis of microRNA biogenesis and function related proteins in eleven animal genomes.

    Science.gov (United States)

    Liu, Xiuying; Luo, GuanZheng; Bai, Xiujuan; Wang, Xiu-Jie

    2009-10-01

    MicroRNAs are approximately 22 nt long small non-coding RNAs that play important regulatory roles in eukaryotes. The biogenesis and functional processes of microRNAs require the participation of many proteins, of which, the well studied ones are Dicer, Drosha, Argonaute and Exportin 5. To systematically study these four protein families, we screened 11 animal genomes to search for genes encoding above mentioned proteins, and identified some new members for each family. Domain analysis results revealed that most proteins within the same family share identical or similar domains. Alternative spliced transcript variants were found for some proteins. We also examined the expression patterns of these proteins in different human tissues and identified other proteins that could potentially interact with these proteins. These findings provided systematic information on the four key proteins involved in microRNA biogenesis and functional pathways in animals, and will shed light on further functional studies of these proteins.

  4. Development of radiation-induced mutation techniques and functional genomics studies

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Kang, Si Yong; Kim, Jin Baek

    2012-01-01

    This project has been performed to develop plant genetic resources using radiation (gamma-rays, ion-beam, space environments), to conduct functional genomics studies with mutant resources, and to develop new radiation plant breeding techniques using various radiation sources during 3 years. In the first section, we developed flower genetic resources, functional crop resources, and bio-industrial plant resources. In the second section, we cloned several mutated genes and studied mechanisms of gene expression and genetic diversity of mutations induced by gamma-rays. In the third section, we developed new plant breeding techniques using gamma-phytotron, heavy ion-beam, and space environments. Based on these results, a total of 8 cultivars containing Chrysanthemum, Hibiscus, kenaf, rice, and soybean were applied for plant variety protection (PVP) and a total of 4 cultivars were registered for PVP. Also, license agreement for the dwarf type Hibiscus mutant 'Ggoma' was conducted with Supro co. and the manufacturing technology for natural antioxidant pear-grape vinegar was transferred into Enzenic co. Also, 8 gene sequences, such as F3'H and LDOX genes associated with flower color in Chrysanthemum and EPSPS gene from Korean lawn grass, were registered in the database of National Center for Biotechnology Information (NCBI). In the future study, we will develop new radiation mutation breeding techniques through the mutation spectrum induced by various radiation sources, the studies for mechanism of the cellular response to radiation, and the comparative·structural·functional genomics studies for useful traits

  5. DNA methylation in the APOE genomic region is associated with cognitive function in African Americans.

    Science.gov (United States)

    Liu, Jiaxuan; Zhao, Wei; Ware, Erin B; Turner, Stephen T; Mosley, Thomas H; Smith, Jennifer A

    2018-05-08

    Genetic variations in apolipoprotein E (APOE) and proximal genes (PVRL2, TOMM40, and APOC1) are associated with cognitive function and dementia, particularly Alzheimer's disease. Epigenetic mechanisms such as DNA methylation play a central role in the regulation of gene expression. Recent studies have found evidence that DNA methylation may contribute to the pathogenesis of dementia, but its association with cognitive function in populations without dementia remains unclear. We assessed DNA methylation levels of 48 CpG sites in the APOE genomic region in peripheral blood leukocytes collected from 289 African Americans (mean age = 67 years) from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Using linear regression, we examined the relationship between methylation in the APOE genomic region and multiple cognitive measures including learning, memory, processing speed, concentration, language and global cognitive function. We identified eight CpG sites in three genes (PVRL2, TOMM40, and APOE) that showed an inverse association between methylation level and delayed recall, a measure of memory, after adjusting for age and sex (False Discovery Rate q-value accounting for known genetic predictors for cognition. Our findings highlight the important role of epigenetic mechanisms in influencing cognitive performance, and suggest that changes in blood methylation may be an early indicator of individuals at risk for dementia as well as potential targets for intervention in asymptomatic populations.

  6. Distinct functions for the Drosophila piRNA pathway in genome maintenance and telomere protection.

    Directory of Open Access Journals (Sweden)

    Jaspreet S Khurana

    2010-12-01

    Full Text Available Transposons and other selfish DNA elements can be found in all phyla, and mobilization of these elements can compromise genome integrity. The piRNA (PIWI-interacting RNA pathway silences transposons in the germline, but it is unclear if this pathway has additional functions during development. Here we show that mutations in the Drosophila piRNA pathway genes, armi, aub, ago3, and rhi, lead to extensive fragmentation of the zygotic genome during the cleavage stage of embryonic divisions. Additionally, aub and armi show defects in telomere resolution during meiosis and the cleavage divisions; and mutations in lig-IV, which disrupt non-homologous end joining, suppress these fusions. By contrast, lig-IV mutations enhance chromosome fragmentation. Chromatin immunoprecipitation studies show that aub and armi mutations disrupt telomere binding of HOAP, which is a component of the telomere protection complex, and reduce expression of a subpopulation of 19- to 22-nt telomere-specific piRNAs. Mutations in rhi and ago3, by contrast, do not block HOAP binding or production of these piRNAs. These findings uncover genetically separable functions for the Drosophila piRNA pathway. The aub, armi, rhi, and ago3 genes silence transposons and maintain chromosome integrity during cleavage-stage embryonic divisions. However, the aub and armi genes have an additional function in assembly of the telomere protection complex.

  7. Integrative Functional Genomics for Systems Genetics in GeneWeaver.org.

    Science.gov (United States)

    Bubier, Jason A; Langston, Michael A; Baker, Erich J; Chesler, Elissa J

    2017-01-01

    The abundance of existing functional genomics studies permits an integrative approach to interpreting and resolving the results of diverse systems genetics studies. However, a major challenge lies in assembling and harmonizing heterogeneous data sets across species for facile comparison to the positional candidate genes and coexpression networks that come from systems genetic studies. GeneWeaver is an online database and suite of tools at www.geneweaver.org that allows for fast aggregation and analysis of gene set-centric data. GeneWeaver contains curated experimental data together with resource-level data such as GO annotations, MP annotations, and KEGG pathways, along with persistent stores of user entered data sets. These can be entered directly into GeneWeaver or transferred from widely used resources such as GeneNetwork.org. Data are analyzed using statistical tools and advanced graph algorithms to discover new relations, prioritize candidate genes, and generate function hypotheses. Here we use GeneWeaver to find genes common to multiple gene sets, prioritize candidate genes from a quantitative trait locus, and characterize a set of differentially expressed genes. Coupling a large multispecies repository curated and empirical functional genomics data to fast computational tools allows for the rapid integrative analysis of heterogeneous data for interpreting and extrapolating systems genetics results.

  8. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Davey Smith, G; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  9. New Markov Model Approaches to Deciphering Microbial Genome Function and Evolution: Comparative Genomics of Laterally Transferred Genes

    Energy Technology Data Exchange (ETDEWEB)

    Borodovsky, M.

    2013-04-11

    Algorithmic methods for gene prediction have been developed and successfully applied to many different prokaryotic genome sequences. As the set of genes in a particular genome is not homogeneous with respect to DNA sequence composition features, the GeneMark.hmm program utilizes two Markov models representing distinct classes of protein coding genes denoted "typical" and "atypical". Atypical genes are those whose DNA features deviate significantly from those classified as typical and they represent approximately 10% of any given genome. In addition to the inherent interest of more accurately predicting genes, the atypical status of these genes may also reflect their separate evolutionary ancestry from other genes in that genome. We hypothesize that atypical genes are largely comprised of those genes that have been relatively recently acquired through lateral gene transfer (LGT). If so, what fraction of atypical genes are such bona fide LGTs? We have made atypical gene predictions for all fully completed prokaryotic genomes; we have been able to compare these results to other "surrogate" methods of LGT prediction.

  10. A novel data mining method to identify assay-specific signatures in functional genomic studies

    Directory of Open Access Journals (Sweden)

    Guidarelli Jack W

    2006-08-01

    Full Text Available Abstract Background: The highly dimensional data produced by functional genomic (FG studies makes it difficult to visualize relationships between gene products and experimental conditions (i.e., assays. Although dimensionality reduction methods such as principal component analysis (PCA have been very useful, their application to identify assay-specific signatures has been limited by the lack of appropriate methodologies. This article proposes a new and powerful PCA-based method for the identification of assay-specific gene signatures in FG studies. Results: The proposed method (PM is unique for several reasons. First, it is the only one, to our knowledge, that uses gene contribution, a product of the loading and expression level, to obtain assay signatures. The PM develops and exploits two types of assay-specific contribution plots, which are new to the application of PCA in the FG area. The first type plots the assay-specific gene contribution against the given order of the genes and reveals variations in distribution between assay-specific gene signatures as well as outliers within assay groups indicating the degree of importance of the most dominant genes. The second type plots the contribution of each gene in ascending or descending order against a constantly increasing index. This type of plots reveals assay-specific gene signatures defined by the inflection points in the curve. In addition, sharp regions within the signature define the genes that contribute the most to the signature. We proposed and used the curvature as an appropriate metric to characterize these sharp regions, thus identifying the subset of genes contributing the most to the signature. Finally, the PM uses the full dataset to determine the final gene signature, thus eliminating the chance of gene exclusion by poor screening in earlier steps. The strengths of the PM are demonstrated using a simulation study, and two studies of real DNA microarray data – a study of

  11. Genomics Portals: integrative web-platform for mining genomics data.

    Science.gov (United States)

    Shinde, Kaustubh; Phatak, Mukta; Johannes, Freudenberg M; Chen, Jing; Li, Qian; Vineet, Joshi K; Hu, Zhen; Ghosh, Krishnendu; Meller, Jaroslaw; Medvedovic, Mario

    2010-01-13

    A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be used in such analysis. The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  12. Genomics Portals: integrative web-platform for mining genomics data

    Directory of Open Access Journals (Sweden)

    Ghosh Krishnendu

    2010-01-01

    Full Text Available Abstract Background A large amount of experimental data generated by modern high-throughput technologies is available through various public repositories. Our knowledge about molecular interaction networks, functional biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new insights into functioning of living systems. Results Genomics Portals platform integrates access to an extensive knowledge base and a large database of human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing and interpreting new experimental data and the tool for effective mining of a large number of publicly available genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics, computationally predicted binding sites, etc, and the integration with an extensive knowledge base that can be used in such analysis. Conclusion The integrated access to primary genomics data, functional knowledge and analytical tools makes Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and used freely at http://GenomicsPortals.org.

  13. Considerations in the identification of functional RNA structural elements in genomic alignments

    Directory of Open Access Journals (Sweden)

    Blencowe Benjamin J

    2007-01-01

    Full Text Available Abstract Background Accurate identification of novel, functional noncoding (nc RNA features in genome sequence has proven more difficult than for exons. Current algorithms identify and score potential RNA secondary structures on the basis of thermodynamic stability, conservation, and/or covariance in sequence alignments. Neither the algorithms nor the information gained from the individual inputs have been independently assessed. Furthermore, due to issues in modelling background signal, it has been difficult to gauge the precision of these algorithms on a genomic scale, in which even a seemingly small false-positive rate can result in a vast excess of false discoveries. Results We developed a shuffling algorithm, shuffle-pair.pl, that simultaneously preserves dinucleotide frequency, gaps, and local conservation in pairwise sequence alignments. We used shuffle-pair.pl to assess precision and recall of six ncRNA search tools (MSARI, QRNA, ddbRNA, RNAz, Evofold, and several variants of simple thermodynamic stability on a test set of 3046 alignments of known ncRNAs. Relative to mononucleotide shuffling, preservation of dinucleotide content in shuffling the alignments resulted in a drastic increase in estimated false-positive detection rates for ncRNA elements, precluding evaluation of higher order alignments, which cannot not be adequately shuffled maintaining both dinucleotides and alignment structure. On pairwise alignments, none of the covariance-based tools performed markedly better than thermodynamic scoring alone. Although the high false-positive rates call into question the veracity of any individual predicted secondary structural element in our analysis, we nevertheless identified intriguing global trends in human genome alignments. The distribution of ncRNA prediction scores in 75-base windows overlapping UTRs, introns, and intergenic regions analyzed using both thermodynamic stability and EvoFold (which has no thermodynamic component was

  14. Insights from early experience of a Rare Disease Genomic Medicine Multidisciplinary Team: a qualitative study.

    Science.gov (United States)

    Ormondroyd, Elizabeth; Mackley, Michael P; Blair, Edward; Craft, Jude; Knight, Julian C; Taylor, John; Taylor, Jenny C; Wilkie, Andrew Om; Watkins, Hugh

    2017-06-01

    Whole-exome/whole-genome sequencing (WES/WGS) has the potential to enhance genetic diagnosis of rare disease, and is increasingly becoming part of routine clinical care in mainstream medicine. Effective translation will require ongoing efforts in a number of areas including: selection of appropriate patients, provision of effective consent, pre- and post-test genetic counselling, improving variant interpretation algorithms and practices, and management of secondary findings including those found incidentally and those actively sought. Allied to this is the need for an effective education programme for all members of clinical teams involved in care of patients with rare disease, as well as to maintain public confidence in the use of these technologies. We established a Genomic Medicine Multidisciplinary Team (GM-MDT) in 2014 to build on the experiences of earlier successful research-based WES/WGS studies, to address these needs and to review results including pertinent and secondary findings. Here we report on a qualitative study of decision-making in the GM-MDT combined with analysis of semi-structured interviews with GM-MDT members. Study findings show that members appreciate the clinical and scientific diversity of the GM-MDT and value it for education and oversight. To date, discussions have focussed on case selection including the extent and interpretation of clinical and family history information required to establish likely monogenic aetiology and inheritance model. Achieving a balance between effective use of WES/WGS - prioritising cases in a diverse and highly complex patient population where WES/WGS will be tractable - and meeting the recruitment targets of a large project is considered challenging.

  15. Theory Meets Experiment: Metal Ion Effects in HCV Genomic RNA Kissing Complex Formation

    Directory of Open Access Journals (Sweden)

    Li-Zhen Sun

    2017-12-01

    Full Text Available The long-range base pairing between the 5BSL3. 2 and 3′X domains in hepatitis C virus (HCV genomic RNA is essential for viral replication. Experimental evidence points to the critical role of metal ions, especially Mg2+ ions, in the formation of the 5BSL3.2:3′X kissing complex. Furthermore, NMR studies suggested an important ion-dependent conformational switch in the kissing process. However, for a long time, mechanistic understanding of the ion effects for the process has been unclear. Recently, computational modeling based on the Vfold RNA folding model and the partial charge-based tightly bound ion (PCTBI model, in combination with the NMR data, revealed novel physical insights into the role of metal ions in the 5BSL3.2-3′X system. The use of the PCTBI model, which accounts for the ion correlation and fluctuation, gives reliable predictions for the ion-dependent electrostatic free energy landscape and ion-induced population shift of the 5BSL3.2:3′X kissing complex. Furthermore, the predicted ion binding sites offer insights about how ion-RNA interactions shift the conformational equilibrium. The integrated theory-experiment study shows that Mg2+ ions may be essential for HCV viral replication. Moreover, the observed Mg2+-dependent conformational equilibrium may be an adaptive property of the HCV genomic RNA such that the equilibrium is optimized to the intracellular Mg2+ concentration in liver cells for efficient viral replication.

  16. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Berta Alquézar

    2017-08-01

    Full Text Available Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck genome sequence allowed us to characterize for the first time the terpene synthase (TPS family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  17. Functional genomics indicate that schizophrenia may be an adult vascular-ischemic disorder.

    Science.gov (United States)

    Moises, H W; Wollschläger, D; Binder, H

    2015-08-11

    In search for the elusive schizophrenia pathway, candidate genes for the disorder from a discovery sample were localized within the energy-delivering and ischemia protection pathway. To test the adult vascular-ischemic (AVIH) and the competing neurodevelopmental hypothesis (NDH), functional genomic analyses of practically all available schizophrenia-associated genes from candidate gene, genome-wide association and postmortem expression studies were performed. Our results indicate a significant overrepresentation of genes involved in vascular function (P < 0.001), vasoregulation (that is, perivascular (P < 0.001) and shear stress (P < 0.01), cerebral ischemia (P < 0.001), neurodevelopment (P < 0.001) and postischemic repair (P < 0.001) among schizophrenia-associated genes from genetic association studies. These findings support both the NDH and the AVIH. The genes from postmortem studies showed an upregulation of vascular-ischemic genes (P = 0.020) combined with downregulated synaptic (P = 0.005) genes, and ND/repair (P = 0.003) genes. Evidence for the AVIH and the NDH is critically discussed. We conclude that schizophrenia is probably a mild adult vascular-ischemic and postischemic repair disorder. Adult postischemic repair involves ND genes for adult neurogenesis, synaptic plasticity, glutamate and increased long-term potentiation of excitatory neurotransmission (i-LTP). Schizophrenia might be caused by the cerebral analog of microvascular angina.

  18. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies.

    Science.gov (United States)

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; Pham, Nikki T; Martin, Joel A; Wei, Tong; Schackwitz, Wendy S; Lipzen, Anna M; Duong, Phat Q; Jones, Kyle C; Jiang, Liangrong; Ruan, Deling; Bauer, Diane; Peng, Yi; Barry, Kerrie W; Schmutz, Jeremy; Ronald, Pamela C

    2017-06-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake ( Oryza sativa ssp japonica ), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. © 2017 American Society of Plant Biologists. All rights reserved.

  19. RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis.

    Directory of Open Access Journals (Sweden)

    Trung Anh Trieu

    2017-01-01

    Full Text Available Mucorales are an emerging group of human pathogens that are responsible for the lethal disease mucormycosis. Unfortunately, functional studies on the genetic factors behind the virulence of these organisms are hampered by their limited genetic tractability, since they are reluctant to classical genetic tools like transposable elements or gene mapping. Here, we describe an RNAi-based functional genomic platform that allows the identification of new virulence factors through a forward genetic approach firstly described in Mucorales. This platform contains a whole-genome collection of Mucor circinelloides silenced transformants that presented a broad assortment of phenotypes related to the main physiological processes in fungi, including virulence, hyphae morphology, mycelial and yeast growth, carotenogenesis and asexual sporulation. Selection of transformants with reduced virulence allowed the identification of mcplD, which encodes a Phospholipase D, and mcmyo5, encoding a probably essential cargo transporter of the Myosin V family, as required for a fully virulent phenotype of M. circinelloides. Knock-out mutants for those genes showed reduced virulence in both Galleria mellonella and Mus musculus models, probably due to a delayed germination and polarized growth within macrophages. This study provides a robust approach to study virulence in Mucorales and as a proof of concept identified new virulence determinants in M. circinelloides that could represent promising targets for future antifungal therapies.

  20. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome.

    Science.gov (United States)

    Ferlaino, Michael; Rogers, Mark F; Shihab, Hashem A; Mort, Matthew; Cooper, David N; Gaunt, Tom R; Campbell, Colin

    2017-10-06

    Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome.

  1. PRISM offers a comprehensive genomic approach to transcription factor function prediction

    KAUST Repository

    Wenger, A. M.; Clarke, S. L.; Guturu, H.; Chen, J.; Schaar, B. T.; McLean, C. Y.; Bejerano, G.

    2013-01-01

    The human genome encodes 1500-2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells.

  2. PRISM offers a comprehensive genomic approach to transcription factor function prediction

    KAUST Repository

    Wenger, A. M.

    2013-02-04

    The human genome encodes 1500-2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells.

  3. Genes Important for Schizosaccharomyces pombe Meiosis Identified Through a Functional Genomics Screen

    Science.gov (United States)

    Blyth, Julie; Makrantoni, Vasso; Barton, Rachael E.; Spanos, Christos; Rappsilber, Juri; Marston, Adele L.

    2018-01-01

    Meiosis is a specialized cell division that generates gametes, such as eggs and sperm. Errors in meiosis result in miscarriages and are the leading cause of birth defects; however, the molecular origins of these defects remain unknown. Studies in model organisms are beginning to identify the genes and pathways important for meiosis, but the parts list is still poorly defined. Here we present a comprehensive catalog of genes important for meiosis in the fission yeast, Schizosaccharomyces pombe. Our genome-wide functional screen surveyed all nonessential genes for roles in chromosome segregation and spore formation. Novel genes important at distinct stages of the meiotic chromosome segregation and differentiation program were identified. Preliminary characterization implicated three of these genes in centrosome/spindle pole body, centromere, and cohesion function. Our findings represent a near-complete parts list of genes important for meiosis in fission yeast, providing a valuable resource to advance our molecular understanding of meiosis. PMID:29259000

  4. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells.

    Science.gov (United States)

    Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J; Snyder, Michael; Weng, Zhiping; Struhl, Kevin

    2010-05-01

    Genome-wide occupancy profiles of five components of the RNA polymerase III (Pol III) machinery in human cells identified the expected tRNA and noncoding RNA targets and revealed many additional Pol III-associated loci, mostly near short interspersed elements (SINEs). Several genes are targets of an alternative transcription factor IIIB (TFIIIB) containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike nonexpressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.

  5. Locating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes

    DEFF Research Database (Denmark)

    Lin, Michael F; Kheradpour, Pouya; Washietl, Stefan

    2011-01-01

    conservation compared to typical protein-coding genes—especially at synonymous sites. In this study, we use genome alignments of 29 placental mammals to systematically locate short regions within human ORFs that show conspicuously low estimated rates of synonymous substitution across these species. The 29......-species alignment provides statistical power to locate more than 10,000 such regions with resolution down to nine-codon windows, which are found within more than a quarter of all human protein-coding genes and contain ~2% of their synonymous sites. We collect numerous lines of evidence that the observed...... synonymous constraint in these regions reflects selection on overlapping functional elements including splicing regulatory elements, dual-coding genes, RNA secondary structures, microRNA target sites, and developmental enhancers. Our results show that overlapping functional elements are common in mammalian...

  6. The value of cows in reference populations for genomic selection of new functional traits

    DEFF Research Database (Denmark)

    Buch, Line Hjortø; Kargo, Morten; Berg, Peer

    2012-01-01

    Today, almost all reference populations consist of progeny tested bulls. However, older progeny tested bulls do not have reliable estimated breeding values (EBV) for new traits. Thus, to be able to select for these new traits, it is necessary to build a reference population. We used a deterministic...... of the direct genomic values (DGV) for a new functional trait, regardless of its heritability. For small-scale recording, we compared two scenarios where the reference population consisted of the 2000 cows with phenotypic records or the 30 sires of these cows in the first year with measurements of the new...... to achieve accuracies of the DGV that enable selection for new functional traits recorded on a large scale within 3 years from commencement of recording; and (iv) a higher heritability benefits a reference population of cows more than a reference population of bulls....

  7. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens by Using Proteomic Data from a Field Biostimulation Experiment

    Science.gov (United States)

    Fang, Yilin; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-01-01

    Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment. PMID:23042184

  8. Brain function in carriers of a genome-wide supported bipolar disorder variant.

    Science.gov (United States)

    Erk, Susanne; Meyer-Lindenberg, Andreas; Schnell, Knut; Opitz von Boberfeld, Carola; Esslinger, Christine; Kirsch, Peter; Grimm, Oliver; Arnold, Claudia; Haddad, Leila; Witt, Stephanie H; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Walter, Henrik

    2010-08-01

    The neural abnormalities underlying genetic risk for bipolar disorder, a severe, common, and highly heritable psychiatric condition, are largely unknown. An opportunity to define these mechanisms is provided by the recent discovery, through genome-wide association, of a single-nucleotide polymorphism (rs1006737) strongly associated with bipolar disorder within the CACNA1C gene, encoding the alpha subunit of the L-type voltage-dependent calcium channel Ca(v)1.2. To determine whether the genetic risk associated with rs1006737 is mediated through hippocampal function. Functional magnetic resonance imaging study. University hospital. A total of 110 healthy volunteers of both sexes and of German descent in the Hardy-Weinberg equilibrium for rs1006737. Blood oxygen level-dependent signal during an episodic memory task and behavioral and psychopathological measures. Using an intermediate phenotype approach, we show that healthy carriers of the CACNA1C risk variant exhibit a pronounced reduction of bilateral hippocampal activation during episodic memory recall and diminished functional coupling between left and right hippocampal regions. Furthermore, risk allele carriers exhibit activation deficits of the subgenual anterior cingulate cortex, a region repeatedly associated with affective disorders and the mediation of adaptive stress-related responses. The relevance of these findings for affective disorders is supported by significantly higher psychopathology scores for depression, anxiety, obsessive-compulsive thoughts, interpersonal sensitivity, and neuroticism in risk allele carriers, correlating negatively with the observed regional brain activation. Our data demonstrate that rs1006737 or genetic variants in linkage disequilibrium with it are functional in the human brain and provide a neurogenetic risk mechanism for bipolar disorder backed by genome-wide evidence.

  9. Functional MRI experiments : acquisition, analysis and interpretation of data

    NARCIS (Netherlands)

    Ramsey, NF; Hoogduin, H; Jansma, JM

    2002-01-01

    Functional MRI is widely used to address basic and clinical neuroscience questions. In the key domains of fMRI experiments, i.e. acquisition, processing and analysis, and interpretation of data, developments are ongoing. The main issues are sensitivity for changes in fMRI signal that are associated

  10. Radiation-induced genomic instability, and the cloning and functional analysis of its related gene

    International Nuclear Information System (INIS)

    Muto, Masahiro; Kanari, Yasuyoshi; Kubo, Eiko; Yamada, Yutaka

    2000-01-01

    Exposure to ionizing radiation produces a number of biological consequences including gene mutations, chromosome aberrations, cellular transformation and cell death. The classical view has been that mutations occur at the sites of DNA damage, that is, damage produced by radiation is converted into a mutation during subsequent DNA replication or as a consequence of enzymatic repair processes. However, many investigators have presented evidence for an alternative mechanism to explain these biological effects. This evidence suggests that radiation may induce a process of genomic instability that is transmissible over many generations of cell replication and that serves to enhance the probability of the occurrence of such genetic effects among the progeny of the irradiated cell after many generations of cell replication. If such a process exists in vivo, it could have significant implications for mechanisms of carcinogenesis. Exposure of B10 mice to fractionated X-irradiation induces a high incidence of thymic lymphomas, whereas the incidence in STS/A mice is very low. Such strain differences are presumably determined genetically, and various genetic factors have been reported to be involved in radiation-induced lymphomagenesis. The mechanism of radiation-induced lymphomagenesis appears to develop through a complex and multistep process. Using this experimental system, we characterized the prelymphoma cells induced by radiation, and identified the genetic changes preceding the development of thymic lymphomas by comparing the oncogenic alterations with the pattern of T cell receptor (TCR) γ rearrangements. In these studies, the latent expression of some chromosomal aberrations and p53 mutations in irradiated progeny has been interpreted to be a manifestation of genomic instability. In the present report we review the results of in vivo studies conducted in our laboratory that support the hypothesis of genomic instability induced by radiation, and we describe the

  11. Brachypodium distachyon. A New Model System for Functional Genomics in Grasses1

    Science.gov (United States)

    Draper, John; Mur, Luis A.J.; Jenkins, Glyn; Ghosh-Biswas, Gadab C.; Bablak, Pauline; Hasterok, Robert; Routledge, Andrew P.M.

    2001-01-01

    A new model for grass functional genomics is described based on Brachypodium distachyon, which in the evolution of the Pooideae diverged just prior to the clade of “core pooid” genera that contain the majority of important temperate cereals and forage grasses. Diploid ecotypes of B. distachyon (2n = 10) have five easily distinguishable chromosomes that display high levels of chiasma formation at meiosis. The B. distachyon nuclear genome was indistinguishable in size from that of Arabidopsis, making it the simplest genome described in grasses to date. B. distachyon is a self-fertile, inbreeding annual with a life cycle of less than 4 months. These features, coupled with its small size (approximately 20 cm at maturity), lack of seed-head shatter, and undemanding growth requirements should make it amenable to high-throughput genetics and mutant screens. Immature embryos exhibited a high capacity for plant regeneration via somatic embryogenesis. Regenerated plants display very low levels of albinism and have normal fertility. A simple transformation system has been developed based on microprojectile bombardment of embryogenic callus and hygromycin selection. Selected B. distachyon ecotypes were resistant to all tested cereal-adapted Blumeria graminis species and cereal brown rusts (Puccinia reconditia). In contrast, different ecotypes displayed resistance or disease symptoms following challenge with the rice blast pathogen (Magnaporthe grisea) and wheat/barley yellow stripe rusts (Puccinia striformis). Despite its small stature, B. distachyon has large seeds that should prove useful for studies on grain filling. Such biological characteristics represent important traits for study in temperate cereals. PMID:11743099

  12. Genome-wide resequencing of KRICE_CORE reveals their potential for future breeding, as well as functional and evolutionary studies in the post-genomic era.

    Science.gov (United States)

    Kim, Tae-Sung; He, Qiang; Kim, Kyu-Won; Yoon, Min-Young; Ra, Won-Hee; Li, Feng Peng; Tong, Wei; Yu, Jie; Oo, Win Htet; Choi, Buung; Heo, Eun-Beom; Yun, Byoung-Kook; Kwon, Soon-Jae; Kwon, Soon-Wook; Cho, Yoo-Hyun; Lee, Chang-Yong; Park, Beom-Seok; Park, Yong-Jin

    2016-05-26

    Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remains challenging, it is important to establish practical methods to manage them. A core collection, by definition, refers to a subset of the entire population that preserves the majority of genetic diversity, enhancing the efficiency of germplasm utilization. Here, we report whole-genome resequencing of the 137 rice mini core collection or Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in the Korean genebank of the Rural Development Administration (RDA). We implemented the Illumina HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8 depths using Nipponbare as a reference. Comparisons of the sequences with the reference genome yielded more than 15 million (M) single nucleotide polymorphisms (SNPs) and 1.3 M INDELs. Phylogenetic and population analyses using 2,046,529 high-quality SNPs successfully assigned rice accessions to the relevant rice subgroups, suggesting that these SNPs capture evolutionary signatures that have accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for four exemplary agronomic traits in the KRIC_CORE manifest the utility of KRICE_CORE; that is, identifying previously defined genes or novel genetic factors that potentially regulate important phenotypes. This study provides strong evidence that the size of KRICE_CORE is small but contains high genetic and functional diversity across the genome. Thus, our resequencing results will be useful for future breeding, as well as functional and evolutionary studies, in the post-genomic era.

  13. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  14. Transcriptional interference networks coordinate the expression of functionally related genes clustered in the same genomic loci.

    Science.gov (United States)

    Boldogköi, Zsolt

    2012-01-01

    The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organization, transcription, various post-transcriptional processes, and translation. In this study, the Transcriptional Interference Network (TIN) hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighboring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronized cascade of gene expression in functionally linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular organisms too.

  15. Development of radiation-induced mutation techniques and functional genomics studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sub; Kang, Si Yong; Kim, Jin Baek [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    This project has been performed to develop plant genetic resources using radiation (gamma-rays, ion-beam, space environments), to conduct functional genomics studies with mutant resources, and to develop new radiation plant breeding techniques using various radiation sources during 3 years. In the first section, we developed flower genetic resources, functional crop resources, and bio-industrial plant resources. In the second section, we cloned several mutated genes and studied mechanisms of gene expression and genetic diversity of mutations induced by gamma-rays. In the third section, we developed new plant breeding techniques using gamma-phytotron, heavy ion-beam, and space environments. Based on these results, a total of 8 cultivars containing Chrysanthemum, Hibiscus, kenaf, rice, and soybean were applied for plant variety protection (PVP) and a total of 4 cultivars were registered for PVP. Also, license agreement for the dwarf type Hibiscus mutant 'Ggoma' was conducted with Supro co. and the manufacturing technology for natural antioxidant pear-grape vinegar was transferred into Enzenic co. Also, 8 gene sequences, such as F3'H and LDOX genes associated with flower color in Chrysanthemum and EPSPS gene from Korean lawn grass, were registered in the database of National Center for Biotechnology Information (NCBI). In the future study, we will develop new radiation mutation breeding techniques through the mutation spectrum induced by various radiation sources, the studies for mechanism of the cellular response to radiation, and the comparative{center_dot}structural{center_dot}functional genomics studies for useful traits.

  16. MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics

    Directory of Open Access Journals (Sweden)

    Hardy Nigel

    2006-06-01

    Full Text Available Abstract Background The genome sequencing projects have shown our limited knowledge regarding gene function, e.g. S. cerevisiae has 5–6,000 genes of which nearly 1,000 have an uncertain function. Their gross influence on the behaviour of the cell can be observed using large-scale metabolomic studies. The metabolomic data produced need to be structured and annotated in a machine-usable form to facilitate the exploration of the hidden links between the genes and their functions. Description MeMo is a formal model for representing metabolomic data and the associated metadata. Two predominant platforms (SQL and XML are used to encode the model. MeMo has been implemented as a relational database using a hybrid approach combining the advantages of the two technologies. It represents a practical solution for handling the sheer volume and complexity of the metabolomic data effectively and efficiently. The MeMo model and the associated software are available at http://dbkgroup.org/memo/. Conclusion The maturity of relational database technology is used to support efficient data processing. The scalability and self-descriptiveness of XML are used to simplify the relational schema and facilitate the extensibility of the model necessitated by the creation of new experimental techniques. Special consideration is given to data integration issues as part of the systems biology agenda. MeMo has been physically integrated and cross-linked to related metabolomic and genomic databases. Semantic integration with other relevant databases has been supported through ontological annotation. Compatibility with other data formats is supported by automatic conversion.

  17. Effector genomics accelerates discovery and functional profiling of potato disease resistance and phytophthora infestans avirulence genes.

    Directory of Open Access Journals (Sweden)

    Vivianne G A A Vleeshouwers

    Full Text Available Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R genes into potato (Solanum tuberosum is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.

  18. Characterisation of work function fluctuations for high-precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahlenberg, Jan; Bickmann, Edward; Heil, Werner; Otten, Ernst W.; Schmidt, Christian; Wunderle, Alexander [Johannes Gutenberg-Universitaet Mainz (Germany); Babutzka, Martin; Schoenung, Kerstin [Karlsruher Institut fuer Technologie (Germany); Beck, Marcus [Johannes Gutenberg-Universitaet Mainz (Germany); Helmholtz-Institut Mainz (Germany)

    2016-07-01

    For a wide range of high-precision experiments in physics, well-defined electric potentials for achieving high measurement accuracies are required. An accurate determination of the electric potential is crucial for the measurement of the neutrino mass (KATRIN) as well as the measurement of the e{sup -} anti ν{sub e} correlation coefficient a in free neutron decay (aSPECT). Work function fluctuations on the electrodes lead to uncertainties in the distribution of the electric potential. For aSPECT, the electric potential has to be known at an accuracy of 10 mV. However, due to the patch effect of gold, work function fluctuations of several 100 meV can occur. Therefore, the work function distributions of the gold-plated electrodes have been measured using a Kelvin probe. Furthermore, the change of work function distributions over time as well as the influence of relative humidity on the work function measurement have been investigated. For aSPECT, the work function distributions of the gold-plated electrodes have been measured using a Kelvin probe. Due to the patch effect of gold, work function fluctuations of up to 160 meV occur. This would lead to a significant uncertainty of the potential barrier, which should be known at an accuracy of 10 mV. Furthermore, the change of work function distributions over time as well as the influence of relative humidity on the work function measurement have been investigated.

  19. Annotating non-coding regions of the genome.

    Science.gov (United States)

    Alexander, Roger P; Fang, Gang; Rozowsky, Joel; Snyder, Michael; Gerstein, Mark B

    2010-08-01

    Most of the human genome consists of non-protein-coding DNA. Recently, progress has been made in annotating these non-coding regions through the interpretation of functional genomics experiments and comparative sequence analysis. One can conceptualize functional genomics analysis as involving a sequence of steps: turning the output of an experiment into a 'signal' at each base pair of the genome; smoothing this signal and segmenting it into small blocks of initial annotation; and then clustering these small blocks into larger derived annotations and networks. Finally, one can relate functional genomics annotations to conserved units and measures of conservation derived from comparative sequence analysis.

  20. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.

    Science.gov (United States)

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E

    2014-07-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement.

    Science.gov (United States)

    Maghuly, Fatemeh; Laimer, Margit

    2013-10-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. From genetics to functional genomics: Improvement in drought signaling and tolerance in wheat

    Directory of Open Access Journals (Sweden)

    Hikmet eBudak

    2015-11-01

    Full Text Available Drought being a yield limiting factor has become a major threat to international food security. It is a complex trait and drought tolerance response is carried out by various genes, transcription factors (TFs, microRNAs (miRNAs, hormones, proteins, co-factors, ions and metabolites. This complexity has limited the development of wheat cultivars for drought tolerance by classical breeding. However, attempts have been made to fill the lost genetic diversity by crossing wheat with wild wheat relatives. In recent years, several molecular markers including single nucleotide polymorphisms (SNPs and quantitative trait loci (QTLs associated with genes for drought signaling pathways have been reported. Screening of large wheat collections by marker assisted selection (MAS and transformation of wheat with different genes/TFs has improved drought signaling pathways and tolerance. Several miRNAs also provide drought tolerance to wheat by regulating various TFs/genes. Emergence of OMICS techniques including transcriptomics, proteomics, metabolomics and ionomics has helped to identify and characterize the genes, proteins, metabolites and ions involved in drought signaling pathways. Together, all these efforts helped in understanding the complex drought tolerance mechanism. Here, we have reviewed the advances in wide hybridization, MAS, QTL mapping, miRNAs, transgenic technique, genome editing system and above mentioned functional genomics tools for identification and utility of signaling molecules for improvement in wheat drought tolerance

  3. Genome-Wide Association of Copy Number Polymorphisms and Kidney Function.

    Directory of Open Access Journals (Sweden)

    Man Li

    Full Text Available Genome-wide association studies (GWAS using single nucleotide polymorphisms (SNPs have identified more than 50 loci associated with estimated glomerular filtration rate (eGFR, a measure of kidney function. However, significant SNPs account for a small proportion of eGFR variability. Other forms of genetic variation have not been comprehensively evaluated for association with eGFR. In this study, we assess whether changes in germline DNA copy number are associated with GFR estimated from serum creatinine, eGFRcrea. We used hidden Markov models (HMMs to identify copy number polymorphic regions (CNPs from high-throughput SNP arrays for 2,514 African (AA and 8,645 European ancestry (EA participants in the Atherosclerosis Risk in Communities (ARIC study. Separately for the EA and AA cohorts, we used Bayesian Gaussian mixture models to estimate copy number at regions identified by the HMM or previously reported in the HapMap Project. We identified 312 and 464 autosomal CNPs among individuals of EA and AA, respectively. Multivariate models adjusted for SNP-derived covariates of population structure identified one CNP in the EA cohort near genome-wide statistical significance (Bonferroni-adjusted p = 0.067 located on chromosome 5 (876-880kb. Overall, our findings suggest a limited role of CNPs in explaining eGFR variability.

  4. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.

    Science.gov (United States)

    Holmes, Avram J; Hollinshead, Marisa O; O'Keefe, Timothy M; Petrov, Victor I; Fariello, Gabriele R; Wald, Lawrence L; Fischl, Bruce; Rosen, Bruce R; Mair, Ross W; Roffman, Joshua L; Smoller, Jordan W; Buckner, Randy L

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset's utility.

  5. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides

    Science.gov (United States)

    Geiselman, Gina M; Ito, Masakazu; Mondo, Stephen J; Reilly, Morgann C; Cheng, Ya-Fang; Bauer, Stefan; Grigoriev, Igor V; Gladden, John M; Simmons, Blake A; Brem, Rachel B

    2018-01-01

    The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources. It has great potential as a model for the cellular biology of lipid droplets and for sustainable chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with predicted function in signaling cascades, gene expression, protein modification and vesicular trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown function. These results greatly advance our understanding of lipid metabolism in this oleaginous species and demonstrate a general approach for barcoded mutagenesis that should enable functional genomics in diverse fungi. PMID:29521624

  6. Comparative and functional characterization of intragenic tandem repeats in 10 Aspergillus genomes.

    Science.gov (United States)

    Gibbons, John G; Rokas, Antonis

    2009-03-01

    Intragenic tandem repeats (ITRs) are consecutive repeats of three or more nucleotides found in coding regions. ITRs are the underlying cause of several human genetic diseases and have been associated with phenotypic variation, including pathogenesis, in several clades of the tree of life. We have examined the evolution and functional role of ITRs in 10 genomes spanning the fungal genus Aspergillus, a clade of relevance to medicine, agriculture, and industry. We identified several hundred ITRs in each of the species examined. ITR content varied extensively between species, with an average 79% of ITRs unique to a given species. For the fraction of conserved ITR regions, sequence comparisons within species and between close relatives revealed that they were highly variable. ITR-containing proteins were evolutionarily less conserved, compositionally distinct, and overrepresented for domains associated with cell-surface localization and function relative to the rest of the proteome. Furthermore, ITRs were preferentially found in proteins involved in transcription, cellular communication, and cell-type differentiation but were underrepresented in proteins involved in metabolism and energy. Importantly, although ITRs were evolutionarily labile, their functional associations appeared. To be remarkably conserved across eukaryotes. Fungal ITRs likely participate in a variety of developmental processes and cell-surface-associated functions, suggesting that their contribution to fungal lifestyle and evolution may be more general than previously assumed.

  7. FunCoup 3.0: database of genome-wide functional coupling networks.

    Science.gov (United States)

    Schmitt, Thomas; Ogris, Christoph; Sonnhammer, Erik L L

    2014-01-01

    We present an update of the FunCoup database (http://FunCoup.sbc.su.se) of functional couplings, or functional associations, between genes and gene products. Identifying these functional couplings is an important step in the understanding of higher level mechanisms performed by complex cellular processes. FunCoup distinguishes between four classes of couplings: participation in the same signaling cascade, participation in the same metabolic process, co-membership in a protein complex and physical interaction. For each of these four classes, several types of experimental and statistical evidence are combined by Bayesian integration to predict genome-wide functional coupling networks. The FunCoup framework has been completely re-implemented to allow for more frequent future updates. It contains many improvements, such as a regularization procedure to automatically downweight redundant evidences and a novel method to incorporate phylogenetic profile similarity. Several datasets have been updated and new data have been added in FunCoup 3.0. Furthermore, we have developed a new Web site, which provides powerful tools to explore the predicted networks and to retrieve detailed information about the data underlying each prediction.

  8. Exploring the function of protein kinases in schistosomes: perspectives from the laboratory and from comparative genomics

    Directory of Open Access Journals (Sweden)

    Anthony John Walker

    2014-07-01

    Full Text Available Eukaryotic protein kinases are well conserved through evolution. The genome of Schistosoma mansoni, which causes intestinal schistosomiasis, encodes over 250 putative protein kinases with all of the main eukaryotic groups represented. However, unraveling functional roles for these kinases is a considerable endeavour, particularly as protein kinases regulate multiple and sometimes overlapping cell and tissue functions in organisms. In this article, elucidating protein kinase signal transduction and function in schistosomes is considered from the perspective of the state-of-the-art methodologies used and comparative organismal biology, with a focus on current advances and future directions. Using the free-living nematode Caenorhabditis elegans as a comparator we predict roles for various schistosome protein kinases in processes vital for host invasion and successful parasitism such as sensory behaviour, growth and development. It is anticipated that the characterization of schistosome protein kinases in the context of parasite function will catalyze cutting edge research into host-parasite interactions and will reveal new targets for developing drug interventions against human schistosomiasis.

  9. The expanding universe of cohesin functions: a new genome stability caretaker involved in human disease and cancer.

    Science.gov (United States)

    Mannini, Linda; Menga, Stefania; Musio, Antonio

    2010-06-01

    Cohesin is responsible for sister chromatid cohesion, ensuring the correct chromosome segregation. Beyond this role, cohesin and regulatory cohesin genes seem to play a role in preserving genome stability and gene transcription regulation. DNA damage is thought to be a major culprit for many human diseases, including cancer. Our present knowledge of the molecular basis underlying genome instability is extremely limited. Mutations in cohesin genes cause human diseases such as Cornelia de Lange syndrome and Roberts syndrome/SC phocomelia, and all the cell lines derived from affected patients show genome instability. Cohesin mutations have also been identified in colorectal cancer. Here, we will discuss the human disorders caused by alterations of cohesin function, with emphasis on the emerging role of cohesin as a genome stability caretaker.

  10. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

    Science.gov (United States)

    Raviram, Ramya; Rocha, Pedro P; Müller, Christian L; Miraldi, Emily R; Badri, Sana; Fu, Yi; Swanzey, Emily; Proudhon, Charlotte; Snetkova, Valentina; Bonneau, Richard; Skok, Jane A

    2016-03-01

    4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.

  11. Emerging applications of read profiles towards the functional annotation of the genome

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Poirazi, Panayiota; Gorodkin, Jan

    2015-01-01

    is typically a result of the protocol designed to address specific research questions. The sequencing results in reads, which when mapped to a reference genome often leads to the formation of distinct patterns (read profiles). Interpretation of these read profiles is essential for their analysis in relation...... to the research question addressed. Several strategies have been employed at varying levels of abstraction ranging from a somewhat ad hoc to a more systematic analysis of read profiles. These include methods which can compare read profiles, e.g., from direct (non-sequence based) alignments to classification...... of patterns into functional groups. In this review, we highlight the emerging applications of read profiles for the annotation of non-coding RNA and cis-regulatory elements (CREs) such as enhancers and promoters. We also discuss the biological rationale behind their formation....

  12. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.

    Science.gov (United States)

    Damoiseaux, Robert

    2014-05-01

    The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.

  13. Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available The flaviviruses dengue virus (DENV and Zika virus (ZIKV are severe health threats with rapidly expanding ranges. To identify the host cell dependencies of DENV and ZIKV, we completed orthologous functional genomic screens using RNAi and CRISPR/Cas9 approaches. The screens recovered the ZIKV entry factor AXL as well as multiple host factors involved in endocytosis (RAB5C and RABGEF, heparin sulfation (NDST1 and EXT1, and transmembrane protein processing and maturation, including the endoplasmic reticulum membrane complex (EMC. We find that both flaviviruses require the EMC for their early stages of infection. Together, these studies generate a high-confidence, systems-wide view of human-flavivirus interactions and provide insights into the role of the EMC in flavivirus replication.

  14. A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs.

    Science.gov (United States)

    Karlas, Alexander; Berre, Stefano; Couderc, Thérèse; Varjak, Margus; Braun, Peter; Meyer, Michael; Gangneux, Nicolas; Karo-Astover, Liis; Weege, Friderike; Raftery, Martin; Schönrich, Günther; Klemm, Uwe; Wurzlbauer, Anne; Bracher, Franz; Merits, Andres; Meyer, Thomas F; Lecuit, Marc

    2016-05-12

    Chikungunya virus (CHIKV) is a globally spreading alphavirus against which there is no commercially available vaccine or therapy. Here we use a genome-wide siRNA screen to identify 156 proviral and 41 antiviral host factors affecting CHIKV replication. We analyse the cellular pathways in which human proviral genes are involved and identify druggable targets. Twenty-one small-molecule inhibitors, some of which are FDA approved, targeting six proviral factors or pathways, have high antiviral activity in vitro, with low toxicity. Three identified inhibitors have prophylactic antiviral effects in mouse models of chikungunya infection. Two of them, the calmodulin inhibitor pimozide and the fatty acid synthesis inhibitor TOFA, have a therapeutic effect in vivo when combined. These results demonstrate the value of loss-of-function screening and pathway analysis for the rational identification of small molecules with therapeutic potential and pave the way for the development of new, host-directed, antiviral agents.

  15. Fish genomes : a powerful tool to uncover new functional elements in vertebrates

    NARCIS (Netherlands)

    Stupka, Elia

    2011-01-01

    This thesis spans several years of work dedicated to understanding fish genomes. In the first chapter it describes the genome of the first fish for which the entire genome was sequenced through a large-scale international project, Fugu rubripes. the pufferfish. In particular, it highlights how this

  16. Generating information-rich high-throughput experimental materials genomes using functional clustering via multitree genetic programming and information theory.

    Science.gov (United States)

    Suram, Santosh K; Haber, Joel A; Jin, Jian; Gregoire, John M

    2015-04-13

    High-throughput experimental methodologies are capable of synthesizing, screening and characterizing vast arrays of combinatorial material libraries at a very rapid rate. These methodologies strategically employ tiered screening wherein the number of compositions screened decreases as the complexity, and very often the scientific information obtained from a screening experiment, increases. The algorithm used for down-selection of samples from higher throughput screening experiment to a lower throughput screening experiment is vital in achieving information-rich experimental materials genomes. The fundamental science of material discovery lies in the establishment of composition-structure-property relationships, motivating the development of advanced down-selection algorithms which consider the information value of the selected compositions, as opposed to simply selecting the best performing compositions from a high throughput experiment. Identification of property fields (composition regions with distinct composition-property relationships) in high throughput data enables down-selection algorithms to employ advanced selection strategies, such as the selection of representative compositions from each field or selection of compositions that span the composition space of the highest performing field. Such strategies would greatly enhance the generation of data-driven discoveries. We introduce an informatics-based clustering of composition-property functional relationships using a combination of information theory and multitree genetic programming concepts for identification of property fields in a composition library. We demonstrate our approach using a complex synthetic composition-property map for a 5 at. % step ternary library consisting of four distinct property fields and finally explore the application of this methodology for capturing relationships between composition and catalytic activity for the oxygen evolution reaction for 5429 catalyst compositions in a

  17. Genome Wide Distributions and Functional Characterization of Copy Number Variations between Chinese and Western Pigs.

    Directory of Open Access Journals (Sweden)

    Hongyang Wang

    Full Text Available Copy number variations (CNVs refer to large insertions, deletions and duplications in the genomic structure ranging from one thousand to several million bases in size. Since the development of next generation sequencing technology, several methods have been well built for detection of copy number variations with high credibility and accuracy. Evidence has shown that CNV occurring in gene region could lead to phenotypic changes due to the alteration in gene structure and dosage. However, it still remains unexplored whether CNVs underlie the phenotypic differences between Chinese and Western domestic pigs. Based on the read-depth methods, we investigated copy number variations using 49 individuals derived from both Chinese and Western pig breeds. A total of 3,131 copy number variation regions (CNVRs were identified with an average size of 13.4 Kb in all individuals during domestication, harboring 1,363 genes. Among them, 129 and 147 CNVRs were Chinese and Western pig specific, respectively. Gene functional enrichments revealed that these CNVRs contribute to strong disease resistance and high prolificacy in Chinese domestic pigs, but strong muscle tissue development in Western domestic pigs. This finding is strongly consistent with the morphologic characteristics of Chinese and Western pigs, indicating that these group-specific CNVRs might have been preserved by artificial selection for the favored phenotypes during independent domestication of Chinese and Western pigs. In this study, we built high-resolution CNV maps in several domestic pig breeds and discovered the group specific CNVs by comparing Chinese and Western pigs, which could provide new insight into genomic variations during pigs' independent domestication, and facilitate further functional studies of CNV-associated genes.

  18. Genome organization in the nucleus: From dynamic measurements to a functional model.

    Science.gov (United States)

    Vivante, Anat; Brozgol, Eugene; Bronshtein, Irena; Garini, Yuval

    2017-07-01

    A biological system is by definition a dynamic environment encompassing kinetic processes that occur at different length scales and time ranges. To explore this type of system, spatial information needs to be acquired at different time scales. This means overcoming significant hurdles, including the need for stable and precise labeling of the required probes and the use of state of the art optical methods. However, to interpret the acquired data, biophysical models that can account for these biological mechanisms need to be developed. The structure and function of a biological system are closely related to its dynamic properties, thus further emphasizing the importance of identifying the rules governing the dynamics that cannot be directly deduced from information on the structure itself. In eukaryotic cells, tens of thousands of genes are packed in the small volume of the nucleus. The genome itself is organized in chromosomes that occupy specific volumes referred to as chromosome territories. This organization is preserved throughout the cell cycle, even though there are no sub-compartments in the nucleus itself. This organization, which is still not fully understood, is crucial for a large number of cellular functions such as gene regulation, DNA breakage repair and error-free cell division. Various techniques are in use today, including imaging, live cell imaging and molecular methods such as chromosome conformation capture (3C) methods to better understand these mechanisms. Live cell imaging methods are becoming well established. These include methods such as Single Particle Tracking (SPT), Continuous Photobleaching (CP), Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS) that are currently used for studying proteins, RNA, DNA, gene loci and nuclear bodies. They provide crucial information on its mobility, reorganization, interactions and binding properties. Here we describe how these dynamic methods can be used to

  19. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  20. On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE.

    Science.gov (United States)

    Graur, Dan; Zheng, Yichen; Price, Nicholas; Azevedo, Ricardo B R; Zufall, Rebecca A; Elhaik, Eran

    2013-01-01

    A recent slew of ENCyclopedia Of DNA Elements (ENCODE) Consortium publications, specifically the article signed by all Consortium members, put forward the idea that more than 80% of the human genome is functional. This claim flies in the face of current estimates according to which the fraction of the genome that is evolutionarily conserved through purifying selection is less than 10%. Thus, according to the ENCODE Consortium, a biological function can be maintained indefinitely without selection, which implies that at least 80 - 10 = 70% of the genome is perfectly invulnerable to deleterious mutations, either because no mutation can ever occur in these "functional" regions or because no mutation in these regions can ever be deleterious. This absurd conclusion was reached through various means, chiefly by employing the seldom used "causal role" definition of biological function and then applying it inconsistently to different biochemical properties, by committing a logical fallacy known as "affirming the consequent," by failing to appreciate the crucial difference between "junk DNA" and "garbage DNA," by using analytical methods that yield biased errors and inflate estimates of functionality, by favoring statistical sensitivity over specificity, and by emphasizing statistical significance rather than the magnitude of the effect. Here, we detail the many logical and methodological transgressions involved in assigning functionality to almost every nucleotide in the human genome. The ENCODE results were predicted by one of its authors to necessitate the rewriting of textbooks. We agree, many textbooks dealing with marketing, mass-media hype, and public relations may well have to be rewritten.

  1. Cross-study analysis of genomic data defines the ciliate multigenic epiplasmin family: strategies for functional analysis in Paramecium tetraurelia

    Directory of Open Access Journals (Sweden)

    Ravet Viviane

    2009-06-01

    Full Text Available Abstract Background The sub-membranous skeleton of the ciliate Paramecium, the epiplasm, is composed of hundreds of epiplasmic scales centered on basal bodies, and presents a complex set of proteins, epiplasmins, which belong to a multigenic family. The repeated duplications observed in the P. tetraurelia genome present an interesting model of the organization and evolution of a multigenic family within a single cell. Results To study this multigenic family, we used phylogenetic, structural, and analytical transcriptional approaches. The phylogenetic method defines 5 groups of epiplasmins in the multigenic family. A refined analysis by Hydrophobic Cluster Analysis (HCA identifies structural characteristics of 51 epiplasmins, defining five separate groups, and three classes. Depending on the sequential arrangement of their structural domains, the epiplasmins are defined as symmetric, asymmetric or atypical. The EST data aid in this classification, in the identification of putative regulating sequences such as TATA or CAAT boxes. When specific RNAi experiments were conducted using sequences from either symmetric or asymmetric classes, phenotypes were drastic. Local effects show either disrupted or ill-shaped epiplasmic scales. In either case, this results in aborted cell division. Using structural features, we show that 4 epiplasmins are also present in another ciliate, Tetrahymena thermophila. Their affiliation with the distinctive structural groups of Paramecium epiplasmins demonstrates an interspecific multigenic family. Conclusion The epiplasmin multigenic family illustrates the history of genomic duplication in Paramecium. This study provides a framework which can guide functional analysis of epiplasmins, the major components of the membrane skeleton in ciliates. We show that this set of proteins handles an important developmental information in Paramecium since maintenance of epiplasm organization is crucial for cell morphogenesis.

  2. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing

    Directory of Open Access Journals (Sweden)

    Jianguo Wen

    2017-06-01

    Full Text Available Abstract Background Sickle cell disease (SCD is a disorder of red blood cells (RBCs expressing abnormal hemoglobin-S (HbS due to genetic inheritance of homologous HbS gene. However, people with the sickle cell trait (SCT carry a single allele of HbS and do not usually suffer from SCD symptoms, thus providing a rationale to treat SCD. Methods To validate gene therapy potential, hematopoietic stem cells were isolated from the SCD patient blood and treated with CRISPR/Cas9 approach. To precisely dissect genome-editing effects, erythroid progenitor cells were cloned from single colonies of CRISPR-treated cells and then expanded for simultaneous gene, protein, and cellular function studies. Results Genotyping and sequencing analysis revealed that the genome-edited erythroid progenitor colonies were converted to SCT genotype from SCD genotype. HPLC protein assays confirmed reinstallation of normal hemoglobin at a similar level with HbS in the cloned genome-edited erythroid progenitor cells. For cell function evaluation, in vitro RBC differentiation of the cloned erythroid progenitor cells was induced. As expected, cell sickling assays indicated function reinstitution of the genome-edited offspring SCD RBCs, which became more resistant to sickling under hypoxia condition. Conclusions This study is an exploration of genome editing of SCD HSPCs.

  3. HelmCoP: an online resource for helminth functional genomics and drug and vaccine targets prioritization.

    Directory of Open Access Journals (Sweden)

    Sahar Abubucker

    Full Text Available A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes. Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention, built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html.

  4. Folic acid functionalized surface highlights 5-methylcytosine-genomic content within circulating tumor cells

    KAUST Repository

    Malara, Natalia; Coluccio, Maria Laura; Limongi, Tania; Asande, Monica; Trunzo, Valentina; Cojoc, Gheorghe; Raso, Cinzia; Candeloro, Patrizio; Perozziello, Gerardo; Raimondo, Raffaella; De Vitis, Stefania; Roveda, Laura; Renne, Maria; Prati, Ubaldo; Mollace, Vincenzo; Di Fabrizio, Enzo M.

    2014-01-01

    Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor's stadiation, therapy, and early relapsing lesions. Within surface's bio-functionalization and cell's isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient's blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. C-RAF function at the genome-wide transcriptome level: A systematic view.

    Science.gov (United States)

    Huang, Ying; Zhang, Xin-Yu; An, Su; Yang, Yang; Liu, Ying; Hao, Qian; Guo, Xiao-Xi; Xu, Tian-Rui

    2018-05-20

    C-RAF was the first member of the RAF kinase family to be discovered. Since its discovery, C-RAF has been found to regulate many fundamental cell processes, such as cell proliferation, cell death, and metabolism. However, the majority of these functions are achieved through interactions with different proteins; the genes regulated by C-RAF in its active or inactive state remain unclear. In the work, we used RNA-seq analysis to study the global transcriptomes of C-RAF bearing or C-RAF knockout cells in quiescent or EGF activated states. We identified 3353 genes that are promoted or suppressed by C-RAF. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these genes are involved in drug addiction, cardiomyopathy, autoimmunity, and regulation of cell metabolism. Our results provide a panoramic view of C-RAF function, including known and novel functions, and have revealed potential targets for elucidating the role of C-RAF. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Folic acid functionalized surface highlights 5-methylcytosine-genomic content within circulating tumor cells

    KAUST Repository

    Malara, Natalia

    2014-07-01

    Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor\\'s stadiation, therapy, and early relapsing lesions. Within surface\\'s bio-functionalization and cell\\'s isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient\\'s blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Large gene overlaps in prokaryotic genomes: result of functional constraints or mispredictions?

    Directory of Open Access Journals (Sweden)

    Harrington Eoghan D

    2008-07-01

    Full Text Available Abstract Background Across the fully sequenced microbial genomes there are thousands of examples of overlapping genes. Many of these are only a few nucleotides long and are thought to function by permitting the coordinated regulation of gene expression. However, there should also be selective pressure against long overlaps, as the existence of overlapping reading frames increases the risk of deleterious mutations. Here we examine the longest overlaps and assess whether they are the product of special functional constraints or of erroneous annotation. Results We analysed the genes that overlap by 60 bps or more among 338 fully-sequenced prokaryotic genomes. The likely functional significance of an overlap was determined by comparing each of the genes to its respective orthologs. If a gene showed a significantly different length from its orthologs it was considered unlikely to be functional and therefore the result of an error either in sequencing or gene prediction. Focusing on 715 co-directional overlaps longer than 60 bps, we classified the erroneous ones into five categories: i 5'-end extension of the downstream gene due to either a mispredicted start codon or a frameshift at 5'-end of the gene (409 overlaps, ii fragmentation of a gene caused by a frameshift (163, iii 3'-end extension of the upstream gene due to either a frameshift at 3'-end of a gene or point mutation at the stop codon (68, iv Redundant gene predictions (4, v 5' & 3'-end extension which is a combination of i and iii (71. We also studied 75 divergent overlaps that could be classified as misannotations of group i. Nevertheless we found some convergent long overlaps (54 that might be true overlaps, although an important part of convergent overlaps could be classified as group iii (124. Conclusion Among the 968 overlaps larger than 60 bps which we analysed, we did not find a single real one among the co-directional and divergent orientations and concluded that there had been an

  8. Functional Analysis of Nuclear Estrogen Receptors in Zebrafish Reproduction by Genome Editing Approach.

    Science.gov (United States)

    Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei

    2017-07-01

    Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.

  9. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  10. Perspectives on Genetic and Genomic Technologies in an Academic Medical Center: The Duke Experience

    Science.gov (United States)

    Katsanis, Sara Huston; Minear, Mollie A.; Vorderstrasse, Allison; Yang, Nancy; Reeves, Jason W.; Rakhra-Burris, Tejinder; Cook-Deegan, Robert; Ginsburg, Geoffrey S.; Simmons, Leigh Ann

    2015-01-01

    In this age of personalized medicine, genetic and genomic testing is expected to become instrumental in health care delivery, but little is known about its actual implementation in clinical practice. Methods. We surveyed Duke faculty and healthcare providers to examine the extent of genetic and genomic testing adoption. We assessed providers’ use of genetic and genomic testing options and indications in clinical practice, providers’ awareness of pharmacogenetic applications, and providers’ opinions on returning research-generated genetic test results to participants. Most clinician respondents currently use family history routinely in their clinical practice, but only 18 percent of clinicians use pharmacogenetics. Only two respondents correctly identified the number of drug package inserts with pharmacogenetic indications. We also found strong support for the return of genetic research results to participants. Our results demonstrate that while Duke healthcare providers are enthusiastic about genomic technologies, use of genomic tools outside of research has been limited. Respondents favor return of research-based genetic results to participants, but clinicians lack knowledge about pharmacogenetic applications. We identified challenges faced by this institution when implementing genetic and genomic testing into patient care that should inform a policy and education agenda to improve provider support and clinician-researcher partnerships. PMID:25854543

  11. Perspectives on Genetic and Genomic Technologies in an Academic Medical Center: The Duke Experience

    Directory of Open Access Journals (Sweden)

    Sara Huston Katsanis

    2015-04-01

    Full Text Available In this age of personalized medicine, genetic and genomic testing is expected to become instrumental in health care delivery, but little is known about its actual implementation in clinical practice. Methods. We surveyed Duke faculty and healthcare providers to examine the extent of genetic and genomic testing adoption. We assessed providers’ use of genetic and genomic testing options and indications in clinical practice, providers’ awareness of pharmacogenetic applications, and providers’ opinions on returning research-generated genetic test results to participants. Most clinician respondents currently use family history routinely in their clinical practice, but only 18 percent of clinicians use pharmacogenetics. Only two respondents correctly identified the number of drug package inserts with pharmacogenetic indications. We also found strong support for the return of genetic research results to participants. Our results demonstrate that while Duke healthcare providers are enthusiastic about genomic technologies, use of genomic tools outside of research has been limited. Respondents favor return of research-based genetic results to participants, but clinicians lack knowledge about pharmacogenetic applications. We identified challenges faced by this institution when implementing genetic and genomic testing into patient care that should inform a policy and education agenda to improve provider support and clinician-researcher partnerships.

  12. Personal genome testing in medical education: student experiences with genotyping in the classroom.

    Science.gov (United States)

    Vernez, Simone Lucia; Salari, Keyan; Ormond, Kelly E; Lee, Sandra Soo-Jin

    2013-01-01

    Direct-to-consumer (DTC) personal genotyping services are beginning to be adopted by educational institutions as pedagogical tools for learning about human genetics. However, there is little known about student reactions to such testing. This study investigated student experiences and attitudes towards DTC personal genome testing. Individual interviews were conducted with students who chose to undergo personal genotyping in the context of an elective genetics course. Ten medical and graduate students were interviewed before genotyping occurred, and at 2 weeks and 6 months after receiving their genotype results. Qualitative analysis of interview transcripts assessed the expectations and experiences of students who underwent personal genotyping, how they interpreted and applied their results; how the testing affected the quality of their learning during the course, and what were their perceived needs for support. Students stated that personal genotyping enhanced their engagement with the course content. Although students expressed skepticism over the clinical utility of some test results, they expressed significant enthusiasm immediately after receiving their personal genetic analysis, and were particularly interested in results such as drug response and carrier testing. However, few reported making behavioral changes or following up on specific results through a healthcare provider. Students did not report utilizing genetic counseling, despite feeling strongly that the 'general public' would need these services. In follow-up interviews, students exhibited poor recall on details of the consent and biobanking agreements, but expressed little regret over their decision to undergo genotyping. Students reported mining their raw genetic data, and conveyed a need for further consultation support in their exploration of genetic variants. Personal genotyping may improve students' self-reported motivation and engagement with course material. However, consultative support that

  13. Nickel-resistance determinants in Acidiphilium sp. PM identified by genome-wide functional screening.

    Directory of Open Access Journals (Sweden)

    Patxi San Martin-Uriz

    Full Text Available Acidiphilium spp. are conspicuous dwellers of acidic, metal-rich environments. Indeed, they are among the most metal-resistant organisms; yet little is known about the mechanisms behind the metal tolerance in this genus. Acidiphilium sp. PM is an environmental isolate from Rio Tinto, an acidic, metal-laden river located in southwestern Spain. The characterization of its metal resistance revealed a remarkable ability to tolerate high Ni concentrations. Here we report the screening of a genomic library of Acidiphilium sp. PM to identify genes involved in Ni resistance. This approach revealed seven different genes conferring Ni resistance to E. coli, two of which form an operon encoding the ATP-dependent protease HslVU (ClpQY. This protease was found to enhance resistance to both Ni and Co in E. coli, a function not previously reported. Other Ni-resistance determinants include genes involved in lipopolysaccharide biosynthesis and the synthesis of branched amino acids. The diversity of molecular functions of the genes recovered in the screening suggests that Ni resistance in Acidiphilium sp. PM probably relies on different molecular mechanisms.

  14. Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.

  15. Non-canonical ribosomal DNA segments in the human genome, and nucleoli functioning.

    Science.gov (United States)

    Kupriyanova, Natalia S; Netchvolodov, Kirill K; Sadova, Anastasia A; Cherepanova, Marina D; Ryskov, Alexei P

    2015-11-10

    Ribosomal DNA (rDNA) in the human genome is represented by tandem repeats of 43 kb nucleotide sequences that form nucleoli organizers (NORs) on each of five pairs of acrocentric chromosomes. RDNA-similar segments of different lengths are also present on (NOR)(-) chromosomes. Many of these segments contain nucleotide substitutions, supplementary microsatellite clusters, and extended deletions. Recently, it was shown that, in addition to ribosome biogenesis, nucleoli exhibit additional functions, such as cell-cycle regulation and response to stresses. In particular, several stress-inducible loci located in the ribosomal intergenic spacer (rIGS) produce stimuli-specific noncoding nucleolus RNAs. By mapping the 5'/3' ends of the rIGS segments scattered throughout (NOR)(-) chromosomes, we discovered that the bonds in the rIGS that were most often susceptible to disruption in the rIGS were adjacent to, or overlapped with stimuli-specific inducible loci. This suggests the interconnection of the two phenomena - nucleoli functioning and the scattering of rDNA-like sequences on (NOR)(-) chromosomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Genome-wide function of H2B ubiquitylation in promoter and genic regions.

    Science.gov (United States)

    Batta, Kiran; Zhang, Zhenhai; Yen, Kuangyu; Goffman, David B; Pugh, B Franklin

    2011-11-01

    Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).

  17. The genus Romboutsia : genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract

    NARCIS (Netherlands)

    Gerritsen, J.

    2015-01-01

    The genus Romboutsia: genomic and functional characterization of novel bacteria dedicated to life in the intestinal tract

    PhD thesis Jacoline Gerritsen, 2015

    Abstract

    Humans, like other mammals, are not single-species organisms, but they

  18. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations | Office of Cancer Genomics

    Science.gov (United States)

    Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.

  19. Pharmacotherapy for Pain in a Family With Inherited Erythromelalgia Guided by Genomic Analysis and Functional Profiling.

    Science.gov (United States)

    Geha, Paul; Yang, Yang; Estacion, Mark; Schulman, Betsy R; Tokuno, Hajime; Apkarian, A Vania; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2016-06-01

    There is a need for more effective pharmacotherapy for chronic pain, including pain in inherited erythromelalgia (IEM) in which gain-of-function mutations of sodium channel NaV1.7 make dorsal root ganglion (DRG) neurons hyperexcitable. To determine whether pain in IEM can be attenuated via pharmacotherapy guided by genomic analysis and functional profiling. Pain in 2 patients with IEM due to the NaV1.7 S241T mutation, predicted by structural modeling and functional analysis to be responsive to carbamazepine, was assessed in a double-blind, placebo-controlled study conducted from September 2014 to April 21, 2015. Functional magnetic resonance imaging assessed patterns of brain activity associated with pain during treatment with placebo or carbamazepine. Multielectrode array technology was used to assess the effect of carbamazepine on firing of DRG neurons carrying S241T mutant channels. Behavioral assessment of pain; functional magnetic resonance imaging; and assessment of firing in DRG neurons carrying S241T mutant channels. This study included 2 patients from the same family with IEM and the S241T NaV1.7 mutation. We showed that, as predicted by molecular modeling, thermodynamic analysis, and functional profiling, carbamazepine attenuated pain in patients with IEM due to the S241T NaV1.7 mutation. Patient 1 reported a reduction in mean time in pain (TIP) per day during the 15-day maintenance period, from 424 minutes while taking placebo to 231.9 minutes while taking carbamazepine (400 mg/day), and a reduction in total TIP over the 15-day maintenance period, from 6360 minutes while taking placebo to 3015 minutes while taking carbamazepine. Patient 2 reported a reduction in mean TIP per day during the maintenance period, from 61 minutes while taking placebo to 9.1 minutes while taking carbamazepine (400 mg then 200 mg/day), and a reduction in total TIP, from 915 minutes while taking placebo over the 15-day maintenance period to 136 minutes while taking carbamazepine

  20. G-Quadruplexes Involving Both Strands of Genomic DNA Are Highly Abundant and Colocalize with Functional Sites in the Human Genome.

    Directory of Open Access Journals (Sweden)

    Andrzej S Kudlicki

    Full Text Available The G-quadruplex is a non-canonical DNA structure biologically significant in DNA replication, transcription and telomere stability. To date, only G4s with all guanines originating from the same strand of DNA have been considered in the context of the human nuclear genome. Here, I discuss interstrand topological configurations of G-quadruplex DNA, consisting of guanines from both strands of genomic DNA; an algorithm is presented for predicting such structures. I have identified over 550,000 non-overlapping interstrand G-quadruplex forming sequences in the human genome--significantly more than intrastrand configurations. Functional analysis of interstrand G-quadruplex sites shows strong association with transcription initiation, the results are consistent with the XPB and XPD transcriptional helicases binding only to G-quadruplex DNA with interstrand topology. Interstrand quadruplexes are also enriched in origin of replication sites. Several topology classes of interstrand quadruplex-forming sequences are possible, and different topologies are enriched in different types of structural elements. The list of interstrand quadruplex forming sequences, and the computer program used for their prediction are available at the web address http://moment.utmb.edu/allquads.

  1. Executive functions in children who experience bullying situations

    Directory of Open Access Journals (Sweden)

    Wandersonia Medeiros

    2016-08-01

    Full Text Available Bullying is characterized by intentional, repetitive, and persistent aggressive behavior that causes damage to the victim. Many studies investigate the social and emotional aspects related to bullying, but few assess the cognitive aspects it involves. Studies with aggressive individuals indicate impairment in executive functioning and decision-making. The objective of this study was to assess hot and cold executive functions in children who experience bullying. A total of 60 children between 10 and 11 years of age were included in the study. They were divided into four groups: aggressors (bullies, victims, bully-victims, and control. Tests for decision-making, inhibitory control, working memory, and cognitive flexibility were used. The bully group made more unfavorable choices on the Iowa Gambling Task (IGT, which may indicate difficulties in the decision-making process. The victim group took longer to complete the Trail Making Test (Part B than aggressors, suggesting lower cognitive flexibility in victims. The hypothesis that aggressors would have lower performance in other executive functions such as inhibitory control, working memory and cognitive flexibility has not been confirmed. This study indicates that bullies have an impairment of hot executive functions whereas victims have a comparatively lower performance in cold executive functions. In addition to social and cultural variables, neurocognitive and emotional factors seem to influence the behavior of children in bullying situations.

  2. Genome-wide siRNA-based functional genomics of pigmentation identifies novel genes and pathways that impact melanogenesis in human cells.

    Directory of Open Access Journals (Sweden)

    Anand K Ganesan

    2008-12-01

    Full Text Available Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo, neurologic disorders (Parkinson's disease, auditory disorders (Waardenburg's syndrome, and opthalmologic disorders (age related macular degeneration. Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype

  3. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information

  4. Telescience testbed: Operational support functions for biomedical experiments

    Science.gov (United States)

    Yamashita, Masamichi; Watanabe, Satoru; Shoji, Takatoshi; Clarke, Andrew H.; Suzuki, Hiroyuki; Yanagihara, Dai

    A telescience testbed was conducted to study the methodology of space biomedicine with simulated constraints imposed on space experiments. An experimental subject selected for this testbedding was an elaborate surgery of animals and electrophysiological measurements conducted by an operator onboard. The standing potential in the ampulla of the pigeon's semicircular canal was measured during gravitational and caloric stimulation. A principal investigator, isolated from the operation site, participated in the experiment interactively by telecommunication links. Reliability analysis was applied to the whole layers of experimentation, including design of experimental objectives and operational procedures. Engineering and technological aspects of telescience are discussed in terms of reliability to assure quality of science. Feasibility of robotics was examined for supportive functions to reduce the workload of the onboard operator.

  5. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions

    Directory of Open Access Journals (Sweden)

    Ruiz-Llorente Sergio

    2012-04-01

    Full Text Available Abstract Background The transcription factor Pax8 is essential for the differentiation of thyroid cells. However, there are few data on genes transcriptionally regulated by Pax8 other than thyroid-related genes. To better understand the role of Pax8 in the biology of thyroid cells, we obtained transcriptional profiles of Pax8-silenced PCCl3 thyroid cells using whole genome expression arrays and integrated these signals with global cis-regulatory sequencing studies performed by ChIP-Seq analysis Results Exhaustive analysis of Pax8 immunoprecipitated peaks demonstrated preferential binding to intragenic regions and CpG-enriched islands, which suggests a role of Pax8 in transcriptional regulation of orphan CpG regions. In addition, ChIP-Seq allowed us to identify Pax8 partners, including proteins involved in tertiary DNA structure (CTCF and chromatin remodeling (Sp1, and these direct transcriptional interactions were confirmed in vivo. Moreover, both factors modulate Pax8-dependent transcriptional activation of the sodium iodide symporter (Nis gene promoter. We ultimately combined putative and novel Pax8 binding sites with actual target gene expression regulation to define Pax8-dependent genes. Functional classification suggests that Pax8-regulated genes may be directly involved in important processes of thyroid cell function such as cell proliferation and differentiation, apoptosis, cell polarity, motion and adhesion, and a plethora of DNA/protein-related processes. Conclusion Our study provides novel insights into the role of Pax8 in thyroid biology, exerted through transcriptional regulation of important genes involved in critical thyrocyte processes. In addition, we found new transcriptional partners of Pax8, which functionally cooperate with Pax8 in the regulation of thyroid gene transcription. Besides, our data demonstrate preferential location of Pax8 in non-promoter CpG regions. These data point to an orphan CpG island-mediated mechanism

  6. Incorporating Functional Genomic Information in Genetic Association Studies Using an Empirical Bayes Approach.

    Science.gov (United States)

    Spencer, Amy V; Cox, Angela; Lin, Wei-Yu; Easton, Douglas F; Michailidou, Kyriaki; Walters, Kevin

    2016-04-01

    There is a large amount of functional genetic data available, which can be used to inform fine-mapping association studies (in diseases with well-characterised disease pathways). Single nucleotide polymorphism (SNP) prioritization via Bayes factors is attractive because prior information can inform the effect size or the prior probability of causal association. This approach requires the specification of the effect size. If the information needed to estimate a priori the probability density for the effect sizes for causal SNPs in a genomic region isn't consistent or isn't available, then specifying a prior variance for the effect sizes is challenging. We propose both an empirical method to estimate this prior variance, and a coherent approach to using SNP-level functional data, to inform the prior probability of causal association. Through simulation we show that when ranking SNPs by our empirical Bayes factor in a fine-mapping study, the causal SNP rank is generally as high or higher than the rank using Bayes factors with other plausible values of the prior variance. Importantly, we also show that assigning SNP-specific prior probabilities of association based on expert prior functional knowledge of the disease mechanism can lead to improved causal SNPs ranks compared to ranking with identical prior probabilities of association. We demonstrate the use of our methods by applying the methods to the fine mapping of the CASP8 region of chromosome 2 using genotype data from the Collaborative Oncological Gene-Environment Study (COGS) Consortium. The data we analysed included approximately 46,000 breast cancer case and 43,000 healthy control samples. © 2016 The Authors. *Genetic Epidemiology published by Wiley Periodicals, Inc.

  7. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome.

    Science.gov (United States)

    Klann, Tyler S; Black, Joshua B; Chellappan, Malathi; Safi, Alexias; Song, Lingyun; Hilton, Isaac B; Crawford, Gregory E; Reddy, Timothy E; Gersbach, Charles A

    2017-06-01

    Large genome-mapping consortia and thousands of genome-wide association studies have identified non-protein-coding elements in the genome as having a central role in various biological processes. However, decoding the functions of the millions of putative regulatory elements discovered in these studies remains challenging. CRISPR-Cas9-based epigenome editing technologies have enabled precise perturbation of the activity of specific regulatory elements. Here we describe CRISPR-Cas9-based epigenomic regulatory element screening (CERES) for improved high-throughput screening of regulatory element activity in the native genomic context. Using dCas9 KRAB repressor and dCas9 p300 activator constructs and lentiviral single guide RNA libraries to target DNase I hypersensitive sites surrounding a gene of interest, we carried out both loss- and gain-of-function screens to identify regulatory elements for the β-globin and HER2 loci in human cells. CERES readily identified known and previously unidentified regulatory elements, some of which were dependent on cell type or direction of perturbation. This technology allows the high-throughput functional annotation of putative regulatory elements in their native chromosomal context.

  8. Discovering and validating biological hypotheses from coherent patterns in functional genomics data

    Energy Technology Data Exchange (ETDEWEB)

    Joachimiak, Marcin Pawel

    2008-08-12

    The area of transcriptomics analysis is among the more established in computational biology, having evolved in both technology and experimental design. Transcriptomics has a strong impetus to develop sophisticated computational methods due to the large amounts of available whole-genome datasets for many species and because of powerful applications in regulatory network reconstruction as well as elucidation and modeling of cellular transcriptional responses. While gene expression microarray data can be noisy and comparisons across experiments challenging, there are a number of sophisticated methods that aid in arriving at statistically and biologically significant conclusions. As such, computational transcriptomics analysis can provide guidance for analysis of results from newer experimental technologies. More recently, search methods have been developed to identify modules of genes, which exhibit coherent expression patterns in only a subset of experimental conditions. The latest advances in these methods allow to integrate multiple data types anddatasets, both experimental and computational, within a single statistical framework accounting for data confidence and relevance to specific biological questions. Such frameworks provide a unified environment for the exploration of specific biological hypothesis and for the discovery of coherent data patterns along with the evidence supporting them.

  9. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen [University of Chicago

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  10. Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages

    NARCIS (Netherlands)

    Murphy, James; Bottacini, Francesca; Mahony, Jennifer; Kelleher, Philip; Neve, Horst; Zomer, Aldert; Nauta, Arjen; van Sinderen, Douwe

    2016-01-01

    Genome sequencing and comparative analysis of bacteriophage collections has greatly enhanced our understanding regarding their prevalence, phage-host interactions as well as the overall biodiversity of their genomes. This knowledge is very relevant to phages infecting Lactococcus lactis, since they

  11. Functional and comparative genome analysis of novel virulent actinophages belonging to Streptomyces flavovirens

    Czech Academy of Sciences Publication Activity Database

    Sharaf, Abdoallah; Mercati, F.; Elmaghraby, I.; Elbaz, R. M.; Marei, E. M.

    2017-01-01

    Roč. 17, 3 March (2017), č. článku 51. ISSN 1471-2180 Institutional support: RVO:60077344 Keywords : bacteriophage * biological stability * whole genome sequence * ngs * comparative genomics Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.644, year: 2016

  12. On the limits of computational functional genomics for bacterial lifestyle prediction

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Röttger, Richard; Hauschild, Anne-Christin

    2014-01-01

    We review the level of genomic specificity regarding actinobacterial pathogenicity. As they occupy various niches in diverse habitats, one may assume the existence of lifestyle-specific genomic features. We include 240 actinobacteria classified into four pathogenicity classes: human pathogens (HPs...

  13. Novel and rare functional genomic variants in multiple autoimmune syndrome and Sjögren's syndrome.

    Science.gov (United States)

    Johar, Angad S; Mastronardi, Claudio; Rojas-Villarraga, Adriana; Patel, Hardip R; Chuah, Aaron; Peng, Kaiman; Higgins, Angela; Milburn, Peter; Palmer, Stephanie; Silva-Lara, Maria Fernanda; Velez, Jorge I; Andrews, Dan; Field, Matthew; Huttley, Gavin; Goodnow, Chris; Anaya, Juan-Manuel; Arcos-Burgos, Mauricio

    2015-06-02

    Multiple autoimmune syndrome (MAS), an extreme phenotype of autoimmune disorders, is a very well suited trait to tackle genomic variants of these conditions. Whole exome sequencing (WES) is a widely used strategy for detection of protein coding and splicing variants associated with inherited diseases. The DNA of eight patients affected by MAS [all of whom presenting with Sjögren's syndrome (SS)], four patients affected by SS alone and 38 unaffected individuals, were subject to WES. Filters to identify novel and rare functional (pathogenic-deleterious) homozygous and/or compound heterozygous variants in these patients and controls were applied. Bioinformatics tools such as the Human gene connectome as well as pathway and network analysis were applied to test overrepresentation of genes harbouring these variants in critical pathways and networks involved in autoimmunity. Eleven novel and rare functional variants were identified in cases but not in controls, harboured in: MACF1, KIAA0754, DUSP12, ICA1, CELA1, LRP1/STAT6, GRIN3B, ANKLE1, TMEM161A, and FKRP. These were subsequently subject to network analysis and their functional relatedness to genes already associated with autoimmunity was evaluated. Notably, the LRP1/STAT6 novel mutation was homozygous in one MAS affected patient and heterozygous in another. LRP1/STAT6 disclosed the strongest plausibility for autoimmunity. LRP1/STAT6 are involved in extracellular and intracellular anti-inflammatory pathways that play key roles in maintaining the homeostasis of the immune system. Further; networks, pathways, and interaction analyses showed that LRP1 is functionally related to the HLA-B and IL10 genes and it has a substantial impact within immunological pathways and/or reaction to bacterial and other foreign proteins (phagocytosis, regulation of phospholipase A2 activity, negative regulation of apoptosis and response to lipopolysaccharides). Further, ICA1 and STAT6 were also closely related to AIRE and IRF5, two very

  14. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism.

    Science.gov (United States)

    Le-Niculescu, H; Case, N J; Hulvershorn, L; Patel, S D; Bowker, D; Gupta, J; Bell, R; Edenberg, H J; Tsuang, M T; Kuczenski, R; Geyer, M A; Rodd, Z A; Niculescu, A B

    2011-04-26

    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.

  15. Functional and Structural Overview of G-Protein-Coupled Receptors Comprehensively Obtained from Genome Sequences

    Directory of Open Access Journals (Sweden)

    Makiko Suwa

    2011-04-01

    Full Text Available An understanding of the functional mechanisms of G-protein-coupled receptors (GPCRs is very important for GPCR-related drug design. We have developed an integrated GPCR database (SEVENS http://sevens.cbrc.jp/ that includes 64,090 reliable GPCR genes comprehensively identified from 56 eukaryote genome sequences, and overviewed the sequences and structure spaces of the GPCRs. In vertebrates, the number of receptors for biological amines, peptides, etc. is conserved in most species, whereas the number of chemosensory receptors for odorant, pheromone, etc. significantly differs among species. The latter receptors tend to be single exon type or a few exon type and show a high ratio in the numbers of GPCRs, whereas some families, such as Class B and Class C receptors, have long lengths due to the presence of many exons. Statistical analyses of amino acid residues reveal that most of the conserved residues in Class A GPCRs are found in the cytoplasmic half regions of transmembrane (TM helices, while residues characteristic to each subfamily found on the extracellular half regions. The 69 of Protein Data Bank (PDB entries of complete or fragmentary structures could be mapped on the TM/loop regions of Class A GPCRs covering 14 subfamilies.

  16. A mechanism misregulating p27 in tumors discovered in a functional genomic screen.

    Directory of Open Access Journals (Sweden)

    Carrie M Garrett-Engele

    2007-12-01

    Full Text Available The cyclin-dependent kinase inhibitor p27(KIP1 is a tumor suppressor gene in mice, and loss of p27 protein is a negative prognostic indicator in human cancers. Unlike other tumor suppressors, the p27 gene is rarely mutated in tumors. Therefore misregulation of p27, rather than loss of the gene, is responsible for tumor-associated decreases in p27 protein levels. We performed a functional genomic screen in p27(+/- mice to identify genes that regulate p27 during lymphomagenesis. This study demonstrated that decreased p27 expression in tumors resulted from altered transcription of the p27 gene, and the retroviral tagging strategy enabled us to pinpoint relevant transcription factors. inhibitor of DNA binding 3 (Id3 was isolated and validated as a transcriptional repressor of p27. We further demonstrated that p27 was a downstream target of Id3 in src-family kinase Lck-driven thymic lymphomagenesis and that p27 was an essential regulator of Lck-dependent thymic maturation during normal T-cell development. Thus, we have identified and characterized transcriptional repression of p27 by Id3 as a new mechanism decreasing p27 protein in tumors.

  17. Functional Genomic Screening Reveals Core Modulators of Echinocandin Stress Responses in Candida albicans

    Directory of Open Access Journals (Sweden)

    Tavia Caplan

    2018-05-01

    Full Text Available Summary: Candida albicans is a leading cause of death due to fungal infection. Treatment of systemic candidiasis often relies on echinocandins, which disrupt cell wall synthesis. Resistance is readily acquired via mutations in the drug target gene, FKS1. Both basal tolerance and resistance to echinocandins require cellular stress responses. We performed a systematic analysis of 3,030 C. albicans mutants to define circuitry governing cellular responses to echinocandins. We identified 16 genes for which deletion or transcriptional repression enhanced echinocandin susceptibility, including components of the Pkc1-MAPK signaling cascade. We discovered that the molecular chaperone Hsp90 is required for the stability of Pkc1 and Bck1, establishing key mechanisms through which Hsp90 mediates echinocandin resistance. We also discovered that perturbation of the CCT chaperonin complex causes enhanced echinocandin sensitivity, altered cell wall architecture, and aberrant septin localization. Thus, we provide insights into the mechanisms by which cellular chaperones enable crucial responses to echinocandin-induced stress. : Caplan et al. screen 3,030 Candida albicans mutants to define circuitry governing cellular responses to echinocandins, the first-line therapy for systemic candidiasis. They reveal that the molecular chaperone Hsp90 is required for stability of Pkc1 and Bck1 and that the CCT chaperonin complex is a key modulator of echinocandin susceptibility. Keywords: fungal pathogen, Candida albicans, echinocandins, Hsp90, Pkc1, CCT complex, client protein, stress response, functional genomic screen, drug resistance

  18. 4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

    Directory of Open Access Journals (Sweden)

    Ramya Raviram

    2016-03-01

    Full Text Available 4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait" that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.

  19. MicroScope-an integrated resource for community expertise of gene functions and comparative analysis of microbial genomic and metabolic data.

    Science.gov (United States)

    Médigue, Claudine; Calteau, Alexandra; Cruveiller, Stéphane; Gachet, Mathieu; Gautreau, Guillaume; Josso, Adrien; Lajus, Aurélie; Langlois, Jordan; Pereira, Hugo; Planel, Rémi; Roche, David; Rollin, Johan; Rouy, Zoe; Vallenet, David

    2017-09-12

    The overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Starting from the results of our syntactic, functional and relational annotation pipelines, MicroScope provides an integrated environment for the expert annotation and comparative analysis of prokaryotic genomes. It combines tools and graphical interfaces to analyze genomes and to perform the manual curation of gene function in a comparative genomics and metabolic context. In this article, we describe the free-of-charge MicroScope services for the annotation and analysis of microbial (meta)genomes, transcriptomic and re-sequencing data. Then, the functionalities of the platform are presented in a way providing practical guidance and help to the nonspecialists in bioinformatics. Newly integrated analysis tools (i.e. prediction of virulence and resistance genes in bacterial genomes) and original method recently developed (the pan-genome graph representation) are also described. Integrated environments such as MicroScope clearly contribute, through the user community, to help maintaining accurate resources. © The Author 2017. Published by Oxford University Press.

  20. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits.

    Science.gov (United States)

    Smith, Andrew J P; Deloukas, Panos; Munroe, Patricia B

    2018-04-13

    Over the last decade, genome-wide association studies (GWAS) have propelled the discovery of thousands of loci associated with complex diseases. The focus is now turning towards the function of these association signals, determining the causal variant(s) amongst those in strong linkage disequilibrium, and identifying their underlying mechanisms, such as long-range gene regulation. Genome-editing techniques utilising zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs) and clustered regularly-interspaced short palindromic repeats with Cas9 nuclease (CRISPR-Cas9), are becoming the tools of choice to establish functionality for these variants, due to the ability to assess effects of single variants in vivo. This review will discuss examples of how these technologies have begun to aid functional analysis of GWAS loci for complex traits such as cardiovascular disease, type 2 diabetes, cancer, obesity and autoimmune disease. We focus on analysis of variants occurring within non-coding genomic regions, as these comprise the majority of GWAS variants, providing the greatest challenges to determining functionality, and compare editing strategies that provide different levels of evidence for variant functionality. The review describes molecular insights into some of these potentially causal variants, and how these may relate to the pathology of the trait, and look towards future directions for these technologies in post-GWAS analysis, such as base-editing.

  1. Our experience with radioiodine therapy of thyroid functional autonomies

    International Nuclear Information System (INIS)

    Kraft, Otakar

    2005-01-01

    Full text: In this paper the author presents his experience with radioiodine therapy of thyroid functional autonomies. The objectives of this study were to establish the efficacy and determine the adverse effects of radioiodine therapy of patients with thyroid functional autonomies. The main pathologic attribute of thyroid functional autonomies is the loss of regulation in the axis of hypothalamus-hypophysis-thyroid. The main cause of functional autonomy of the thyroid is iodine deficiency. Over a period of 30 years (1974-2004) 799 patients (age from 33 to 86 years; average age 58.7 years; the female: male ration was 7.4:1) with unifocal functional autonomy (UFA), multifocal functional autonomy (MFA) and disseminated functional autonomy (DFA) received at least one treatment of radioiodine. For diagnostics and the evaluation of radioiodine therapeutic effect of functional autonomies a thyroid scintigraphy is the basic and necessary procedure. In some patients a common scintigraphy with special imaging modulation, in some patients a scintigraphy after suppression or stimulation by means of thyroid hormones or TSH were done. We have also performed a thyroid ultrasonography, an assessment of a serum level of a total and free thyroxine, total triiodothyronine, TSH, radioiodine accumulation test, estimation of radioiodine effective half-life, in some patients TRH-TSH test. The follow-up examinations were done in all patients after 4-6 months, another examination after one year in 545 patients and after two years in 254 patients. One therapeutic dose received 733 patients (91.74%) and it was sufficient for an elimination of functional autonomies. Some patients were retreated if there was the evidence of small or no treatment effect and no elimination of functional autonomies. Two radioiodine treatments received 62 patients (7.76%) and three treatments 4 patients (0.5%). We advocate individual pre-therapeutic dosimetry to determine the activity necessary to achieve a

  2. Genome Regions Associated with Functional Performance of Soybean Stem Fibers in Polypropylene Thermoplastic Composites.

    Directory of Open Access Journals (Sweden)

    Yarmilla Reinprecht

    Full Text Available Plant fibers can be used to produce composite materials for automobile parts, thus reducing plastic used in their manufacture, overall vehicle weight and fuel consumption when they replace mineral fillers and glass fibers. Soybean stem residues are, potentially, significant sources of inexpensive, renewable and biodegradable natural fibers, but are not curretly used for biocomposite production due to the functional properties of their fibers in composites being unknown. The current study was initiated to investigate the effects of plant genotype on the performance characteristics of soybean stem fibers when incorporated into a polypropylene (PP matrix using a selective phenotyping approach. Fibers from 50 lines of a recombinant inbred line population (169 RILs grown in different environments were incorporated into PP at 20% (wt/wt by extrusion. Test samples were injection molded and characterized for their mechanical properties. The performance of stem fibers in the composites was significantly affected by genotype and environment. Fibers from different genotypes had significantly different chemical compositions, thus composites prepared with these fibers displayed different physical properties. This study demonstrates that thermoplastic composites with soybean stem-derived fibers have mechanical properties that are equivalent or better than wheat straw fiber composites currently being used for manufacturing interior automotive parts. The addition of soybean stem residues improved flexural, tensile and impact properties of the composites. Furthermore, by linkage and in silico mapping we identified genomic regions to which quantitative trait loci (QTL for compositional and functional properties of soybean stem fibers in thermoplastic composites, as well as genes for cell wall synthesis, were co-localized. These results may lead to the development of high value uses for soybean stem residue.

  3. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula.

    Science.gov (United States)

    Demissie, Zerihun A; Cella, Monica A; Sarker, Lukman S; Thompson, Travis J; Rheault, Mark R; Mahmoud, Soheil S

    2012-07-01

    Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni-NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with K ( m ) and k ( cat ) values of 5.75 μM and 8.8 × 10(-3) s(-1), respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon-intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.

  4. Isotope-based medical research in the post genome era: Gene-orchestrated life functions in medicine seen and affected by isotopes. Workshop report

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    1997-01-01

    The US Department of Energy (DOE) and the National Institutes of Health (NIH) conducted a workshop on Isotope-Based Medical Research in the Post Genome Era at NIH, Bethesda, Maryland, November 12--14, 1997. The workshop aimed at identifying the role of stable and radioisotopes for advanced diagnosis and therapy of a wide range of illnesses using the new information that comes from the human genome program. In this sense, the agenda addressed the challenge of functional genomics in humans. The workshop addressed: functional genomics in clinical medicine; new diagnostic potentials; new therapy potentials; challenge to tracer- and effector-pharmaceutical chemistry; and project plans for joint ventures

  5. Isotope-based medical research in the post genome era: Gene-orchestrated life functions in medicine seen and affected by isotopes. Workshop report

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E.

    1997-12-31

    The US Department of Energy (DOE) and the National Institutes of Health (NIH) conducted a workshop on Isotope-Based Medical Research in the Post Genome Era at NIH, Bethesda, Maryland, November 12--14, 1997. The workshop aimed at identifying the role of stable and radioisotopes for advanced diagnosis and therapy of a wide range of illnesses using the new information that comes from the human genome program. In this sense, the agenda addressed the challenge of functional genomics in humans. The workshop addressed: functional genomics in clinical medicine; new diagnostic potentials; new therapy potentials; challenge to tracer- and effector-pharmaceutical chemistry; and project plans for joint ventures.

  6. Early stages of functional diversification in the Rab GTPase gene family revealed by genomic and localization studies in Paramecium species.

    Science.gov (United States)

    Bright, Lydia J; Gout, Jean-Francois; Lynch, Michael

    2017-04-15

    New gene functions arise within existing gene families as a result of gene duplication and subsequent diversification. To gain insight into the steps that led to the functional diversification of paralogues, we tracked duplicate retention patterns, expression-level divergence, and subcellular markers of functional diversification in the Rab GTPase gene family in three Paramecium aurelia species. After whole-genome duplication, Rab GTPase duplicates are more highly retained than other genes in the genome but appear to be diverging more rapidly in expression levels, consistent with early steps in functional diversification. However, by localizing specific Rab proteins in Paramecium cells, we found that paralogues from the two most recent whole-genome duplications had virtually identical localization patterns, and that less closely related paralogues showed evidence of both conservation and diversification. The functionally conserved paralogues appear to target to compartments associated with both endocytic and phagocytic recycling functions, confirming evolutionary and functional links between the two pathways in a divergent eukaryotic lineage. Because the functionally diversifying paralogues are still closely related to and derived from a clade of functionally conserved Rab11 genes, we were able to pinpoint three specific amino acid residues that may be driving the change in the localization and thus the function in these proteins. © 2017 Bright et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Convergent functional genomics of anxiety disorders: translational identification of genes, biomarkers, pathways and mechanisms.

    Science.gov (United States)

    Le-Niculescu, H; Balaraman, Y; Patel, S D; Ayalew, M; Gupta, J; Kuczenski, R; Shekhar, A; Schork, N; Geyer, M A; Niculescu, A B

    2011-05-24

    Anxiety disorders are prevalent and disabling yet understudied from a genetic standpoint, compared with other major psychiatric disorders such as bipolar disorder and schizophrenia. The fact that they are more common, diverse and perceived as embedded in normal life may explain this relative oversight. In addition, as for other psychiatric disorders, there are technical challenges related to the identification and validation of candidate genes and peripheral biomarkers. Human studies, particularly genetic ones, are susceptible to the issue of being underpowered, because of genetic heterogeneity, the effect of variable environmental exposure on gene expression, and difficulty of accrual of large, well phenotyped cohorts. Animal model gene expression studies, in a genetically homogeneous and experimentally tractable setting, can avoid artifacts and provide sensitivity of detection. Subsequent translational integration of the animal model datasets with human genetic and gene expression datasets can ensure cross-validatory power and specificity for illness. We have used a pharmacogenomic mouse model (involving treatments with an anxiogenic drug--yohimbine, and an anti-anxiety drug--diazepam) as a discovery engine for identification of anxiety candidate genes as well as potential blood biomarkers. Gene expression changes in key brain regions for anxiety (prefrontal cortex, amygdala and hippocampus) and blood were analyzed using a convergent functional genomics (CFG) approach, which integrates our new data with published human and animal model data, as a translational strategy of cross-matching and prioritizing findings. Our work identifies top candidate genes (such as FOS, GABBR1, NR4A2, DRD1, ADORA2A, QKI, RGS2, PTGDS, HSPA1B, DYNLL2, CCKBR and DBP), brain-blood biomarkers (such as FOS, QKI and HSPA1B), pathways (such as cAMP signaling) and mechanisms for anxiety disorders--notably signal transduction and reactivity to environment, with a prominent role for the

  8. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.

    Science.gov (United States)

    Traverso, Lucila; Lavore, Andrés; Sierra, Ivana; Palacio, Victorio; Martinez-Barnetche, Jesús; Latorre-Estivalis, José Manuel; Mougabure-Cueto, Gaston; Francini, Flavio; Lorenzo, Marcelo G; Rodríguez, Mario Henry; Ons, Sheila; Rivera-Pomar, Rolando V

    2017-02-01

    Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs), Cytochromes P450 (CYPs) and Carboxyl/Cholinesterases (CCEs). Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease. The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms on the high

  9. Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families.

    Directory of Open Access Journals (Sweden)

    Lucila Traverso

    2017-02-01

    Full Text Available Triatomine insects are vectors of Trypanosoma cruzi, a protozoan parasite that is the causative agent of Chagas' disease. This is a neglected disease affecting approximately 8 million people in Latin America. The existence of diverse pyrethroid resistant populations of at least two species demonstrates the potential of triatomines to develop high levels of insecticide resistance. Therefore, the incorporation of strategies for resistance management is a main concern for vector control programs. Three enzymatic superfamilies are thought to mediate xenobiotic detoxification and resistance: Glutathione Transferases (GSTs, Cytochromes P450 (CYPs and Carboxyl/Cholinesterases (CCEs. Improving our knowledge of key triatomine detoxification enzymes will strengthen our understanding of insecticide resistance processes in vectors of Chagas' disease.The discovery and description of detoxification gene superfamilies in normalized transcriptomes of three triatomine species: Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis is presented. Furthermore, a comparative analysis of these superfamilies among the triatomine transcriptomes and the genome of Rhodnius prolixus, also a triatomine vector of Chagas' disease, and other well-studied insect genomes was performed. The expression pattern of detoxification genes in R. prolixus transcriptomes from key organs was analyzed. The comparisons reveal gene expansions in Sigma class GSTs, CYP3 in CYP superfamily and clade E in CCE superfamily. Moreover, several CYP families identified in these triatomines have not yet been described in other insects. Conversely, several groups of insecticide resistance related enzymes within each enzyme superfamily are reduced or lacking in triatomines. Furthermore, our qRT-PCR results showed an increase in the expression of a CYP4 gene in a T. infestans population resistant to pyrethroids. These results could point to an involvement of metabolic detoxification mechanisms

  10. Experience from large scale use of the EuroGenomics custom SNP chip in cattle

    DEFF Research Database (Denmark)

    Boichard, Didier A; Boussaha, Mekki; Capitan, Aurélien

    2018-01-01

    This article presents the strategy to evaluate candidate mutations underlying QTL or responsible for genetic defects, based upon the design and large-scale use of the Eurogenomics custom SNP chip set up for bovine genomic selection. Some variants under study originated from mapping genetic defect...

  11. Genome-Wide Distribution, Organisation and Functional Characterization of Disease Resistance and Defence Response Genes across Rice Species

    Science.gov (United States)

    Singh, Sangeeta; Chand, Suresh; Singh, N. K.; Sharma, Tilak Raj

    2015-01-01

    The resistance (R) genes and defense response (DR) genes have become very important resources for the development of disease resistant cultivars. In the present investigation, genome-wide identification, expression, phylogenetic and synteny analysis was done for R and DR-genes across three species of rice viz: Oryza sativa ssp indica cv 93-11, Oryza sativa ssp japonica and wild rice species, Oryza brachyantha. We used the in silico approach to identify and map 786 R -genes and 167 DR-genes, 672 R-genes and 142 DR-genes, 251 R-genes and 86 DR-genes in the japonica, indica and O. brachyanth a genomes, respectively. Our analysis showed that 60.5% and 55.6% of the R-genes are tandemly repeated within clusters and distributed over all the rice chromosomes in indica and japonica genomes, respectively. The phylogenetic analysis along with motif distribution shows high degree of conservation of R- and DR-genes in clusters. In silico expression analysis of R-genes and DR-genes showed more than 85% were expressed genes showing corresponding EST matches in the databases. This study gave special emphasis on mechanisms of gene evolution and duplication for R and DR genes across species. Analysis of paralogs across rice species indicated 17% and 4.38% R-genes, 29% and 11.63% DR-genes duplication in indica and Oryza brachyantha, as compared to 20% and 26% duplication of R-genes and DR-genes in japonica respectively. We found that during the course of duplication only 9.5% of R- and DR-genes changed their function and rest of the genes have maintained their identity. Syntenic relationship across three genomes inferred that more orthology is shared between indica and japonica genomes as compared to brachyantha genome. Genome wide identification of R-genes and DR-genes in the rice genome will help in allele mining and functional validation of these genes, and to understand molecular mechanism of disease resistance and their evolution in rice and related species. PMID:25902056

  12. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112 151)

    Science.gov (United States)

    Davies, G; Marioni, R E; Liewald, D C; Hill, W D; Hagenaars, S P; Harris, S E; Ritchie, S J; Luciano, M; Fawns-Ritchie, C; Lyall, D; Cullen, B; Cox, S R; Hayward, C; Porteous, D J; Evans, J; McIntosh, A M; Gallacher, J; Craddock, N; Pell, J P; Smith, D J; Gale, C R; Deary, I J

    2016-01-01

    People's differences in cognitive functions are partly heritable and are associated with important life outcomes. Previous genome-wide association (GWA) studies of cognitive functions have found evidence for polygenic effects yet, to date, there are few replicated genetic associations. Here we use data from the UK Biobank sample to investigate the genetic contributions to variation in tests of three cognitive functions and in educational attainment. GWA analyses were performed for verbal–numerical reasoning (N=36 035), memory (N=112 067), reaction time (N=111 483) and for the attainment of a college or a university degree (N=111 114). We report genome-wide significant single-nucleotide polymorphism (SNP)-based associations in 20 genomic regions, and significant gene-based findings in 46 regions. These include findings in the ATXN2, CYP2DG, APBA1 and CADM2 genes. We report replication of these hits in published GWA studies of cognitive function, educational attainment and childhood intelligence. There is also replication, in UK Biobank, of SNP hits reported previously in GWA studies of educational attainment and cognitive function. GCTA-GREML analyses, using common SNPs (minor allele frequency>0.01), indicated significant SNP-based heritabilities of 31% (s.e.m.=1.8%) for verbal–numerical reasoning, 5% (s.e.m.=0.6%) for memory, 11% (s.e.m.=0.6%) for reaction time and 21% (s.e.m.=0.6%) for educational attainment. Polygenic score analyses indicate that up to 5% of the variance in cognitive test scores can be predicted in an independent cohort. The genomic regions identified include several novel loci, some of which have been associated with intracranial volume, neurodegeneration, Alzheimer's disease and schizophrenia. PMID:27046643

  13. Selfing for the design of genomic selection experiments in biparental plant populations.

    Science.gov (United States)

    McClosky, Benjamin; LaCombe, Jason; Tanksley, Steven D

    2013-11-01

    Self-fertilization (selfing) is commonly used for population development in plant breeding, and it is well established that selfing increases genetic variance between lines, thus increasing response to phenotypic selection. Furthermore, numerous studies have explored how selfing can be deployed to maximal benefit in the context of traditional plant breeding programs (Cornish in Heredity 65:201-211,1990a, Heredity 65:213-220,1990b; Liu et al. in Theor Appl Genet 109:370-376, 2004; Pooni and Jinks in Heredity 54:255-260, 1985). However, the impact of selfing on response to genomic selection has not been explored. In the current study we examined how selfing impacts the two key aspects of genomic selection-GEBV prediction (training) and selection response. We reach the following conclusions: (1) On average, selfing increases genomic selection gains by more than 70 %. (2) The gains in genomic selection response attributable to selfing hold over a wide range population sizes (100-500), heritabilities (0.2-0.8), and selection intensities (0.01-0.1). However, the benefits of selfing are dramatically reduced as the number of QTLs drops below 20. (3) The major cause of the improved response to genomic selection with selfing is through an increase in the occurrence of superior genotypes and not through improved GEBV predictions. While performance of the training population improves with selfing (especially with low heritability and small population sizes), the magnitude of these improvements is relatively small compared with improvements observed in the selection population. To illustrate the value of these insights, we propose a practical genomic selection scheme that substantially shortens the number of generations required to fully capture the benefits of selfing. Specifically, we provide simulation evidence that indicates the proposed scheme matches or exceeds the selection gains observed in advanced populations (i.e. F 8 and doubled haploid) across a broad range of

  14. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions.

    Science.gov (United States)

    Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B; Sandalio, Luisa M; del Río, Luis A

    2005-08-01

    In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5' untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of

  15. Functional annotation of the genome unravels probiotic potential of Bacillus coagulans HS243.

    Science.gov (United States)

    Kapse, N G; Engineer, A S; Gowdaman, V; Wagh, S; Dhakephalkar, P K

    2018-05-30

    Spore forming Bacillus species are widely used as probiotics for human dietary supplements and in animal feeds. However, information on genetic basis of their probiotic action is obscure. Therefore, the present investigation was undertaken to elucidate probiotic traits of B. coagulans HS243 through its genome analysis. Genome mining revealed the presence of an arsenal of marker genes attributed to genuine probiotic traits. In silico analysis of HS243 genome revealed the presence of multi subunit ATPases, ADI pathway genes, chologlycine hydrolase, adhesion proteins for surviving and colonizing harsh gastric transit. HS243 genome harbored vitamin and essential amino acid biosynthetic genes, suggesting the use of HS243 as a nutrient supplement. Bacteriocin producing genes highlighted the disease preventing potential of HS243. Thus, this work established that HS243 possessed the genetic repertoire required for surviving harsh gastric transit and conferring health benefits to the host which were further validated by wet lab evidences. Copyright © 2018. Published by Elsevier Inc.

  16. K-mer Content, Correlation, and Position Analysis of Genome DNA Sequences for the Identification of Function and Evolutionary Features

    Directory of Open Access Journals (Sweden)

    Aaron Sievers

    2017-04-01

    Full Text Available In genome analysis, k-mer-based comparison methods have become standard tools. However, even though they are able to deliver reliable results, other algorithms seem to work better in some cases. To improve k-mer-based DNA sequence analysis and comparison, we successfully checked whether adding positional resolution is beneficial for finding and/or comparing interesting organizational structures. A simple but efficient algorithm for extracting and saving local k-mer spectra (frequency distribution of k-mers was developed and used. The results were analyzed by including positional information based on visualizations as genomic maps and by applying basic vector correlation methods. This analysis was concentrated on small word lengths (1 ≤ k ≤ 4 on relatively small viral genomes of Papillomaviridae and Herpesviridae, while also checking its usability for larger sequences, namely human chromosome 2 and the homologous chromosomes (2A, 2B of a chimpanzee. Using this alignment-free analysis, several regions with specific characteristics in Papillomaviridae and Herpesviridae formerly identified by independent, mostly alignment-based methods, were confirmed. Correlations between the k-mer content and several genes in these genomes have been found, showing similarities between classified and unclassified viruses, which may be potentially useful for further taxonomic research. Furthermore, unknown k-mer correlations in the genomes of Human Herpesviruses (HHVs, which are probably of major biological function, are found and described. Using the chromosomes of a chimpanzee and human that are currently known, identities between the species on every analyzed chromosome were reproduced. This demonstrates the feasibility of our approach for large data sets of complex genomes. Based on these results, we suggest k-mer analysis with positional resolution as a method for closing a gap between the effectiveness of alignment-based methods (like NCBI BLAST and the

  17. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species

    DEFF Research Database (Denmark)

    Werren, John H; Richards, Stephen; Desjardins, Christopher A

    2010-01-01

    We report here genome sequences and comparative analyses of three closely related parasitoid wasps: Nasonia vitripennis, N. giraulti, and N. longicornis. Parasitoids are important regulators of arthropod populations, including major agricultural pests and disease vectors, and Nasonia is an emerging...... of genes involved in nuclear-mitochondrial interactions that are implicated in speciation. Newly developed genome resources advance Nasonia for genetic research, accelerate mapping and cloning of quantitative trait loci, and will ultimately provide tools and knowledge for further increasing the utility...

  18. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection.

    Science.gov (United States)

    Bencke-Malato, Marta; Cabreira, Caroline; Wiebke-Strohm, Beatriz; Bücker-Neto, Lauro; Mancini, Estefania; Osorio, Marina B; Homrich, Milena S; Turchetto-Zolet, Andreia Carina; De Carvalho, Mayra C C G; Stolf, Renata; Weber, Ricardo L M; Westergaard, Gastón; Castagnaro, Atílio P; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C; Margis-Pinheiro, Márcia; Bodanese-Zanettini, Maria Helena

    2014-09-10

    Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.

  19. Ethical challenges and innovations in the dissemination of genomic data: the experience of the PERSPECTIVE project

    Directory of Open Access Journals (Sweden)

    Lévesque E

    2015-08-01

    Full Text Available Emmanuelle Lévesque,1 Bartha Maria Knoppers,1 Jacques Simard,2 1Department of Human Genetics, Centre for Genomics and Policy, McGill University, Montréal, 2Genomics Centre, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec City, QC, Canada Abstract: The importance of making genomic data available for future research is now widely recognized among the scientific community and policymakers. In this era of shared responsibility for data dissemination, improved patient care through research depends on the development of powerful and secure data-sharing systems. As part of the concerted effort to share research resources, the project entitled Personalized Risk Stratification for Prevention and Early Detection of Breast Cancer (PERSPECTIVE makes effective data sharing through the development of a data-sharing framework, one of its goals. The secondary uses of data from PERSPECTIVE for future research promise to enhance our knowledge of breast cancer etiologies without duplicating data-gathering efforts. Despite its benefit for research, we recognize the ethical challenges of data sharing on the local, national, and international levels. The effective management of ethical approvals for projects spanning across jurisdictions, the return of results to research participants, and research incentives and recognition for data production, are but a few pressing issues that need to be properly addressed. We discuss how we managed these issues and suggest how ongoing innovations might help to facilitate data sharing in future genomic research projects. Keywords: data sharing, research ethics, cancer

  20. Integrative analysis of functional genomic annotations and sequencing data to identify rare causal variants via hierarchical modeling

    Directory of Open Access Journals (Sweden)

    Marinela eCapanu

    2015-05-01

    Full Text Available Identifying the small number of rare causal variants contributing to disease has beena major focus of investigation in recent years, but represents a formidable statisticalchallenge due to the rare frequencies with which these variants are observed. In thiscommentary we draw attention to a formal statistical framework, namely hierarchicalmodeling, to combine functional genomic annotations with sequencing data with theobjective of enhancing our ability to identify rare causal variants. Using simulations weshow that in all configurations studied, the hierarchical modeling approach has superiordiscriminatory ability compared to a recently proposed aggregate measure of deleteriousness,the Combined Annotation-Dependent Depletion (CADD score, supportingour premise that aggregate functional genomic measures can more accurately identifycausal variants when used in conjunction with sequencing data through a hierarchicalmodeling approach

  1. Alzheimer’s disease models and functional genomics - How many needles are there in the haystack?

    Directory of Open Access Journals (Sweden)

    Jurgen eGotz

    2012-08-01

    Full Text Available Alzheimer's disease (AD and frontotemporal lobar degeneration (FTLD are complex human brain disorders that affect an increasing number of people worldwide. With the identification first of the proteins that aggregate in AD and FTLD brains and subsequently of pathogenic gene mutations that cause their formation in the familial cases, the foundation was laid for the generation of animal models. These recapitulate essential aspects of the human conditions; expression of mutant forms of the amyloid-β protein-encoding APP gene in mice reproduces amyloid-β (Aβ plaque formation in AD, while that of mutant forms of the tau-encoding MAPT gene reproduces tau-containing neurofibrillary tangle formation, a lesion that is also prevalent in FTLD-Tau. The mouse models have been complemented by those in lower species such as C. elegans or Drosophila, highlighting the crucial role for Aβ and tau in human neurodegenerative disease. In this review, we will introduce selected AD/FTLD models and discuss how they were instrumental, by identifying deregulated mRNAs, miRNAs and proteins, in dissecting pathogenic mechanisms in neurodegenerative disease. We will discuss some recent examples, which includes miRNA species that are specifically deregulated by Aβ, mitochondrial proteins that are targets of both Aβ and tau, and the nuclear splicing factor SFPQ that accumulates in the cytoplasm in a tau-dependent manner. These examples illustrate how a functional genomics approach followed by a careful validation in experimental models and human tissue leads to a deeper understanding of the pathogenesis of AD and FTLD and ultimately, may help in finding a cure.

  2. Modulated modularity clustering as an exploratory tool for functional genomic inference.

    Directory of Open Access Journals (Sweden)

    Eric A Stone

    2009-05-01

    Full Text Available In recent years, the advent of high-throughput assays, coupled with their diminishing cost, has facilitated a systems approach to biology. As a consequence, massive amounts of data are currently being generated, requiring efficient methodology aimed at the reduction of scale. Whole-genome transcriptional profiling is a standard component of systems-level analyses, and to reduce scale and improve inference clustering genes is common. Since clustering is often the first step toward generating hypotheses, cluster quality is critical. Conversely, because the validation of cluster-driven hypotheses is indirect, it is critical that quality clusters not be obtained by subjective means. In this paper, we present a new objective-based clustering method and demonstrate that it yields high-quality results. Our method, modulated modularity clustering (MMC, seeks community structure in graphical data. MMC modulates the connection strengths of edges in a weighted graph to maximize an objective function (called modularity that quantifies community structure. The result of this maximization is a clustering through which tightly-connected groups of vertices emerge. Our application is to systems genetics, and we quantitatively compare MMC both to the hierarchical clustering method most commonly employed and to three popular spectral clustering approaches. We further validate MMC through analyses of human and Drosophila melanogaster expression data, demonstrating that the clusters we obtain are biologically meaningful. We show MMC to be effective and suitable to applications of large scale. In light of these features, we advocate MMC as a standard tool for exploration and hypothesis generation.

  3. Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses

    Directory of Open Access Journals (Sweden)

    Dibari Bianca

    2012-06-01

    Full Text Available Abstract Background Carotenoids are isoprenoid pigments, essential for photosynthesis and photoprotection in plants. The enzyme phytoene synthase (PSY plays an essential role in mediating condensation of two geranylgeranyl diphosphate molecules, the first committed step in carotenogenesis. PSY are nuclear enzymes encoded by a small gene family consisting of three paralogous genes (PSY1-3 that have been widely characterized in rice, maize and sorghum. Results In wheat, for which yellow pigment content is extremely important for flour colour, only PSY1 has been extensively studied because of its association with QTLs reported for yellow pigment whereas PSY2 has been partially characterized. Here, we report the isolation of bread wheat PSY3 genes from a Renan BAC library using Brachypodium as a model genome for the Triticeae to develop Conserved Orthologous Set markers prior to gene cloning and sequencing. Wheat PSY3 homoeologous genes were sequenced and annotated, unravelling their novel structure associated with intron-loss events and consequent exonic fusions. A wheat PSY3 promoter region was also investigated for the presence of cis-acting elements involved in the response to abscisic acid (ABA, since carotenoids also play an important role as precursors of signalling molecules devoted to plant development and biotic/abiotic stress responses. Expression of wheat PSYs in leaves and roots was investigated during ABA treatment to confirm the up-regulation of PSY3 during abiotic stress. Conclusions We investigated the structural and functional determinisms of PSY genes in wheat. More generally, among eudicots and monocots, the PSY gene family was found to be associated with differences in gene copy numbers, allowing us to propose an evolutionary model for the entire PSY gene family in Grasses.

  4. Genome-wide identification and function analyses of heat shock transcription factors in potato

    Directory of Open Access Journals (Sweden)

    Ruimin eTang

    2016-04-01

    Full Text Available Heat shock transcription factors (Hsfs play vital roles in the regulation of tolerance to various stresses in living organisms. To dissect the mechanisms of the Hsfs in potato adaptation to abiotic stresses, genome and transcriptome analyses of Hsf gene family were investigated in Solanum tuberosum L. Twenty-seven StHsf members were identified by bioinformatics and phylogenetic analyses and were classified into A, B and C groups according to their structural and phylogenetic features. StHsfs in the same class shared similar gene structures and conserved motifs. The chromosomal location analysis showed that 27 Hsfs were located in 10 of 12 chromosomes (except chromosome 1 and chromosome 5 and that 18 of these genes formed 9 paralogous pairs. Expression profiles of StHsfs in 12 different organs and tissues uncovered distinct spatial expression patterns of these genes and their potential roles in the process of growth and development. Promoter and quantitative real-time polymerase chain reaction (qRT-PCR detections of StHsfs were conducted and demonstrated that these genes were all responsive to various stresses. StHsf004, StHsf007, StHsf009, StHsf014 and StHsf019 were constitutively expressed under non-stress conditions, and some specific Hsfs became the predominant Hsfs in response to different abiotic stresses, indicating their important and diverse regulatory roles in adverse conditions. A co-expression network between StHsfs and StHsf-co-expressed genes was generated based on the publicly-available potato transcriptomic databases and identified key candidate StHsfs for further functional studies.

  5. The Ever-Evolving Concept of the Gene: The Use of RNA/Protein Experimental Techniques to Understand Genome Functions

    Directory of Open Access Journals (Sweden)

    Andrea Cipriano

    2018-03-01

    Full Text Available The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as “junk” DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs, which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years.

  6. Bilingual experience and executive functioning in young children.

    Science.gov (United States)

    Carlson, Stephanie M; Meltzoff, Andrew N

    2008-03-01

    Advanced inhibitory control skills have been found in bilingual speakers as compared to monolingual controls (Bialystok, 1999). We examined whether this effect is generalized to an unstudied language group (Spanish-English bilingual) and multiple measures of executive function by administering a battery of tasks to 50 kindergarten children drawn from three language groups: native bilinguals, monolinguals (English), and English speakers enrolled in second-language immersion kindergarten. Despite having significantly lower verbal scores and parent education/income level, Spanish-English bilingual children's raw scores did not differ from their peers. After statistically controlling for these factors and age, native bilingual children performed significantly better on the executive function battery than both other groups. Importantly, the relative advantage was significant for tasks that appear to call for managing conflicting attentional demands (Conflict tasks); there was no advantage on impulse-control (Delay tasks). These results advance our understanding of both the generalizability and specificity of the compensatory effects of bilingual experience for children's cognitive development.

  7. Genome-wide functional divergence after the symbiosis of proteobacteria with insects unraveled through a novel computational approach.

    Directory of Open Access Journals (Sweden)

    Christina Toft

    2009-04-01

    Full Text Available Symbiosis has been among the most important evolutionary steps to generate biological complexity. The establishment of symbiosis required an intimate metabolic link between biological systems with different complexity levels. The strict endo-cellular symbiotic bacteria of insects are beautiful examples of the metabolic coupling between organisms belonging to different kingdoms, a eukaryote and a prokaryote. The host (eukaryote provides the endosymbiont (prokaryote with a stable cellular environment while the endosymbiont supplements the host's diet with essential metabolites. For such communication to take place, endosymbionts' genomes have suffered dramatic modifications and reconfigurations of proteins' functions. Two of the main modifications, loss of genes redundant for endosymbiotic bacteria or the host and bacterial genome streamlining, have been extensively studied. However, no studies have accounted for possible functional shifts in the endosymbiotic proteomes. Here, we develop a simple method to screen genomes for evidence of functional divergence between two species clusters, and we apply it to identify functional shifts in the endosymbiotic proteomes. Despite the strong effects of genetic drift in the endosymbiotic systems, we unexpectedly identified genes to be under stronger selective constraints in endosymbionts of aphids and ants than in their free-living bacterial relatives. These genes are directly involved in supplementing the host's diet with essential metabolites. A test of functional divergence supports a strong relationship between the endosymbiosis and the functional shifts of proteins involved in the metabolic communication with the insect host. The correlation between functional divergence in the endosymbiotic bacterium and the ecological requirements of the host uncovers their intimate biochemical and metabolic communication and provides insights on the role of symbiosis in generating species diversity.

  8. Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity.

    Directory of Open Access Journals (Sweden)

    Li Jia

    Full Text Available The androgen receptor (AR is a steroid-activated transcription factor that binds at specific DNA locations and plays a key role in the etiology of prostate cancer. While numerous studies have identified a clear connection between AR binding and expression of target genes for a limited number of loci, high-throughput elucidation of these sites allows for a deeper understanding of the complexities of this process.We have mapped 189 AR occupied regions (ARORs and 1,388 histone H3 acetylation (AcH3 loci to a 3% continuous stretch of human genomic DNA using chromatin immunoprecipitation (ChIP microarray analysis. Of 62 highly reproducible ARORs, 32 (52% were also marked by AcH3. While the number of ARORs detected in prostate cancer cells exceeded the number of nearby DHT-responsive genes, the AcH3 mark defined a subclass of ARORs much more highly associated with such genes -- 12% of the genes flanking AcH3+ARORs were DHT-responsive, compared to only 1% of genes flanking AcH3-ARORs. Most ARORs contained enhancer activities as detected in luciferase reporter assays. Analysis of the AROR sequences, followed by site-directed ChIP, identified binding sites for AR transcriptional coregulators FoxA1, CEBPbeta, NFI and GATA2, which had diverse effects on endogenous AR target gene expression levels in siRNA knockout experiments.We suggest that only some ARORs function under the given physiological conditions, utilizing diverse mechanisms. This diversity points to differential regulation of gene expression by the same transcription factor related to the chromatin structure.

  9. Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types.

    Science.gov (United States)

    Franssen, Susanne U; Gu, Jenny; Winters, Gidon; Huylmans, Ann-Kathrin; Wienpahl, Isabell; Sparwel, Maximiliane; Coyer, James A; Olsen, Jeanine L; Reusch, Thorsten B H; Bornberg-Bauer, Erich

    2014-06-01

    Genome-wide transcription analysis between related species occurring in overlapping ranges can provide insights into the molecular basis underlying different ecological niches. The co-occurring seagrass species, Zostera marina and Nanozostera noltii, are found in marine coastal environments throughout the northern hemisphere. Z. marina is often dominant in subtidal environments and subjected to fewer temperature extremes compared to the predominately intertidal and more stress-tolerant N. noltii. We exposed plants of both species to a realistic heat wave scenario in a common-stress-garden experiment. Using RNA-seq (~7million reads/library), four Z. marina and four N. noltii libraries were compared representing northern (Denmark) and southern (Italy) locations within the co-occurring range of the species' European distribution. A total of 8977 expressed genes were identified, of which 78 were directly related to heat stress. As predicted, both species were negatively affected by the heat wave, but showed markedly different molecular responses. In Z. marina the heat response was similar across locations in response to the heatwave at 26°C, with a complex response in functions related to protein folding, synthesis of ribosomal chloroplast proteins, proteins involved in cell wall modification and heat shock proteins (HSPs). In N. noltii the heat response markedly differed between locations, while HSP genes were not induced in either population. Our results suggest that as coastal seawater temperatures increase, Z. marina will disappear along its southern most ranges, whereas N. noltii will continue to move north. As a consequence, sub- and intertidal habitat partitioning may weaken in more northern regions because the higher thermal tolerance of N. noltii provides a competitive advantage in both habitats. Although previous studies have focused on HSPs, the present study clearly demonstrates that a broader examination of stress related genes is necessary. Copyright

  10. A Solution to the C-Value Paradox and the Function of Junk DNA: The Genome Balance Hypothesis.

    Science.gov (United States)

    Freeling, Michael; Xu, Jie; Woodhouse, Margaret; Lisch, Damon

    2015-06-01

    The Genome Balance Hypothesis originated from a recent study that provided a mechanism for the phenomenon of genome dominance in ancient polyploids: unique 24nt RNA coverage near genes is greater in genes on the recessive subgenome irrespective of differences in gene expression. 24nt RNAs target transposons. Transposon position effects are now hypothesized to balance the expression of networked genes and provide spring-like tension between pericentromeric heterochromatin and microtubules. The balance (coordination) of gene expression and centromere movement is under selection. Our hypothesis states that this balance can be maintained by many or few transposons about equally well. We explain known balanced distributions of junk DNA within genomes and between subgenomes in allopolyploids (and our hypothesis passes "the onion test" for any so-called solution to the C-value paradox). Importantly, when the allotetraploid maize chromosomes delete redundant genes, their nearby transposons are also lost; this result is explained if transposons near genes function. The Genome Balance Hypothesis is hypothetical because the position effect mechanisms implicated are not proved to apply to all junk DNA, and the continuous nature of the centromeric and gene position effects have not yet been studied as a single phenomenon. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  11. A novel ATM-dependent checkpoint defect distinct from loss of function mutation promotes genomic instability in melanoma.

    Science.gov (United States)

    Spoerri, Loredana; Brooks, Kelly; Chia, KeeMing; Grossman, Gavriel; Ellis, Jonathan J; Dahmer-Heath, Mareike; Škalamera, Dubravka; Pavey, Sandra; Burmeister, Bryan; Gabrielli, Brian

    2016-05-01

    Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM-dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM-dependent checkpoint arrest, and over-expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM-dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over-express PLK1, and a significant proportion of melanomas have high levels of PLK1 over-expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM-dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Genome-Wide Comparative Functional Analyses Reveal Adaptations of Salmonella sv. Newport to a Plant Colonization Lifestyle

    Directory of Open Access Journals (Sweden)

    Marcos H. de Moraes

    2018-05-01

    Full Text Available Outbreaks of salmonellosis linked to the consumption of vegetables have been disproportionately associated with strains of serovar Newport. We tested the hypothesis that strains of sv. Newport have evolved unique adaptations to persistence in plants that are not shared by strains of other Salmonella serovars. We used a genome-wide mutant screen to compare growth in tomato fruit of a sv. Newport strain from an outbreak traced to tomatoes, and a sv. Typhimurium strain from animals. Most genes in the sv. Newport strain that were selected during persistence in tomatoes were shared with, and similarly selected in, the sv. Typhimurium strain. Many of their functions are linked to central metabolism, including amino acid biosynthetic pathways, iron acquisition, and maintenance of cell structure. One exception was a greater need for the core genes involved in purine metabolism in sv. Typhimurium than in sv. Newport. We discovered a gene, papA, that was unique to sv. Newport and contributed to the strain’s fitness in tomatoes. The papA gene was present in about 25% of sv. Newport Group III genomes and generally absent from other Salmonella genomes. Homologs of papA were detected in the genomes of Pantoea, Dickeya, and Pectobacterium, members of the Enterobacteriacea family that can colonize both plants and animals.

  13. Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

    Science.gov (United States)

    Muhire, Brejnev Muhizi; Golden, Michael; Murrell, Ben; Lefeuvre, Pierre; Lett, Jean-Michel; Gray, Alistair; Poon, Art Y F; Ngandu, Nobubelo Kwanele; Semegni, Yves; Tanov, Emil Pavlov; Monjane, Adérito Luis; Harkins, Gordon William; Varsani, Arvind; Shepherd, Dionne Natalie; Martin, Darren Patrick

    2014-02-01

    Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

  14. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus genome

    Directory of Open Access Journals (Sweden)

    McGuire Michael J

    2012-01-01

    Full Text Available Abstract Background The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach. Results The genome of Parapoxvirus ovis (Orf virus was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer. Conclusion A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration

  15. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

    Science.gov (United States)

    Kelleher, Philip; Bottacini, Francesca; Mahony, Jennifer; Kilcawley, Kieran N; van Sinderen, Douwe

    2017-03-29

    Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production. In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon. Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.

  16. On the limits of computational functional genomics for bacterial lifestyle prediction

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Röttger, Richard; Hauschild, Anne-Christin

    2014-01-01

    We review the level of genomic specificity regarding actinobacterial pathogenicity. As they occupy various niches in diverse habitats, one may assume the existence of lifestyle-specific genomic features. We include 240 actinobacteria classified into four pathogenicity classes: human pathogens (HPs...... of an observation bias, i.e. many HPs might yet be unclassified BPs. (H4) There is no intrinsic genomic characteristic of OPs compared with pathogens, as small mutations are likely to play a more dominant role to survive the immune system. To study these hypotheses, we implemented a bioinformatics pipeline...... that combines evolutionary sequence analysis with statistical learning methods (Random Forest with feature selection, model tuning and robustness analysis). Essentially, we present orthologous gene sets that computationally distinguish pathogens from NPs (H1). We further show a clear limit in differentiating...

  17. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer.

    Science.gov (United States)

    Tang, Yew Chung; Ho, Szu-Chi; Tan, Elisabeth; Ng, Alvin Wei Tian; McPherson, John R; Goh, Germaine Yen Lin; Teh, Bin Tean; Bard, Frederic; Rozen, Steven G

    2018-03-22

    Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Six genes showed PTEN

  18. Internally deleted WNV genomes isolated from exotic birds in New Mexico: function in cells, mosquitoes, and mice.

    Science.gov (United States)

    Pesko, Kendra N; Fitzpatrick, Kelly A; Ryan, Elizabeth M; Shi, Pei-Yong; Zhang, Bo; Lennon, Niall J; Newman, Ruchi M; Henn, Matthew R; Ebel, Gregory D

    2012-05-25

    Most RNA viruses exist in their hosts as a heterogeneous population of related variants. Due to error prone replication, mutants are constantly generated which may differ in individual fitness from the population as a whole. Here we characterize three WNV isolates that contain, along with full-length genomes, mutants with large internal deletions to structural and nonstructural protein-coding regions. The isolates were all obtained from lorikeets that died from WNV at the Rio Grande Zoo in Albuquerque, NM between 2005 and 2007. The deletions are approximately 2kb, in frame, and result in the elimination of the complete envelope, and portions of the prM and NS-1 proteins. In Vero cell culture, these internally deleted WNV genomes function as defective interfering particles, reducing the production of full-length virus when introduced at high multiplicities of infection. In mosquitoes, the shortened WNV genomes reduced infection and dissemination rates, and virus titers overall, and were not detected in legs or salivary secretions at 14 or 21 days post-infection. In mice, inoculation with internally deleted genomes did not attenuate pathogenesis relative to full-length or infectious clone derived virus, and shortened genomes were not detected in mice at the time of death. These observations provide evidence that large deletions may occur within flavivirus populations more frequently than has generally been appreciated and suggest that they impact population phenotype minimally. Additionally, our findings suggest that highly similar mutants may frequently occur in particular vertebrate hosts. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Functional analysis of the Escherichia coli genome for members of the alpha/beta hydrolase family.

    Science.gov (United States)

    Zhang, L; Godzik, A; Skolnick, J; Fetrow, J S

    1998-01-01

    Database-searching methods based on sequence similarity have become the most commonly used tools for characterizing newly sequenced proteins. Due to the often underestimated functional diversity in protein families and superfamilies, however, it is difficult to make the characterization specific and accurate. In this work, we have extended a method for active-site identification from predicted protein structures. The structural conservation and variation of the active sites of the alpha/beta hydrolases with known structures were studied. The similarities were incorporated into a three-dimensional motif that specifies essential requirements for the enzymatic functions. A threading algorithm was used to align 651 Escherichia coli open reading frames (ORFs) to one of the members of the alpha/beta hydrolase fold family. These ORFs were then screened according to our three-dimensional motif and with an extra requirement that demands conservation of the key active-site residues among the proteins that bear significant sequence similarity to the ORFs. 17 ORFs from E. coli were predicted to have hydrolase activity and their putative active-site residues were identified. Most were in agreement with the experiments and results of other database-searching methods. The study further suggests that YHET_ECOLI, a hypothetical protein classified as a member of the UPF0017 family (an uncharacterized protein family), bears all the hallmarks of the alpha/beta hydrolase family. The novel feature of our method is that it uses three-dimensional structural information for function prediction. The results demonstrate the importance and necessity of such a method to fill the gap between sequence alignment and function prediction; furthermore, the method provides a way to verify the structure predictions, which enables an expansion of the applicable scope of the threading algorithms.

  20. [Functional analysis of Grp and Iris, the gag and env domesticated errantivirus genes, in the Drosophila melanogaster genome].

    Science.gov (United States)

    Makhnovskii, P A; Kuzmin, I V; Nefedova, L N; Kima, A I

    2016-01-01

    Drosophila melanogaster is the only invertebrate that contains endogenous retroviruses, which are called errantiviruses. Two domesticated genes, Grp and Iris, which originate from errantivirus gag and env, respectively, have been found in the D. melanogaster genome. The functions performed by the genes in Drosophila are still unclear. To identify the functions of domesticated gag and env in the D. melanogaster genome, expression of Iris and Grp was studied in strains differing by the presence or absence of the functional gypsy errantivirus. In addition, the expression levels were measured after injection of gram-positive and gram-negative bacteria, which activate different immune response pathways, and exposure to various abiotic stress factors. The presence of functional D. melanogaster retrovirus gypsy was found to increase the Grp expression level in somatic tissues of the carcass, while exerting no effect on the Iris expression level. Activation of the immune response in D. melanogaster by bacteria Bacillus cereus increased the Grp expression level and did not affect Iris expression. As for the effects of abiotic stress factors (oxidative stress, starvation, and heat and cold stress), the Grp expression level increased in response to starvation in D. melanogaster females, and the Iris expression level was downregulated in heat shock and oxidative stress. Based on the findings, Grp was assumed to play a direct role in the immune response in D. melanogaster; Iris is not involved in immune responses, but and apparently performs a cell function that is inhibited in stress.

  1. VAT: a computational framework to functionally annotate variants in personal genomes within a cloud-computing environment.

    Science.gov (United States)

    Habegger, Lukas; Balasubramanian, Suganthi; Chen, David Z; Khurana, Ekta; Sboner, Andrea; Harmanci, Arif; Rozowsky, Joel; Clarke, Declan; Snyder, Michael; Gerstein, Mark

    2012-09-01

    The functional annotation of variants obtained through sequencing projects is generally assumed to be a simple intersection of genomic coordinates with genomic features. However, complexities arise for several reasons, including the differential effects of a variant on alternatively spliced transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large structural variants. Taking these factors into consideration, we developed the Variant Annotation Tool (VAT) to functionally annotate variants from multiple personal genomes at the transcript level as well as obtain summary statistics across genes and individuals. VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data from the underlying individuals and facilitates comparative analysis between different groups of individuals. VAT can either be run through a command-line interface or as a web application. Finally, in order to enable on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-computing environment. VAT is implemented in C and PHP. The VAT web service, Amazon Machine Image, source code and detailed documentation are available at vat.gersteinlab.org.

  2. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  3. Focusing on function to mine cancer genome data | Center for Cancer Research

    Science.gov (United States)

    CCR scientists have devised a strategy to sift through the tens of thousands of mutations in cancer genome data to find mutations that actually drive the disease. They have used the method to discover that the JNK signaling pathway, which in different contexts can either spur cancerous growth or rein it in, acts as a tumor suppressor in gastric cancers. 

  4. Genomic and functional integrity of the hematopoietic system requires tolerance of oxidative DNA lesions

    DEFF Research Database (Denmark)

    Martín-Pardillos, Ana; Tsaalbi-Shtylik, Anastasia; Chen, Si

    2017-01-01

    -distorting nucleotide lesions, resulted in the perinatal loss of hematopoietic stem cells, progressive loss of bone marrow, and fatal aplastic anemia between 3 and 4 months of age. This was associated with replication stress, genomic breaks, DNA damage signaling, senescence, and apoptosis in bone marrow. Surprisingly...

  5. Sh ble and Cre adapted for functional genomics and metabolic engineering of Pichia stipitis

    Science.gov (United States)

    Jose M. Laplaza; Beatriz Rivas Torres; Yong-Su Jin; Thomas W. Jeffries

    2006-01-01

    Pichia stipitis is widely studied for its capacity to ferment d-xylose to ethanol. Strain improvement has been facilitated by recent completion of the P. stipitis genome. P. stipitis uses CUG to code for serine rather than leucine, as is the case for the universal genetic code thereby limiting the availability of heterologous drug resistance markers for transformation...

  6. A systematic genome-wide analysis of zebrafish protein-coding gene function

    NARCIS (Netherlands)

    Kettleborough, R.N.; Busch-Nentwich, E.M.; Harvey, S.A.; Dooley, C.M.; de Bruijn, E.; van Eeden, F.; Sealy, I.; White, R.J.; Herd, C.; Nijman, I.J.; Fenyes, F.; Mehroke, S.; Scahill, C.; Gibbons, R.; Wali, N.; Carruthers, S.; Hall, A.; Yen, J.; Cuppen, E.; Stemple, D.L.

    2013-01-01

    Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms,

  7. Functional organization of the genome may shape the species boundary in the house mouse

    Czech Academy of Sciences Publication Activity Database

    Janoušek, Václav; Munclinger, P.; Wang, L.; Teeter, K. C.; Tucker, P. K.

    2015-01-01

    Roč. 32, č. 5 (2015), s. 1208-1220 ISSN 0737-4038 R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 Keywords : hybrid zone * mouse genome * speciation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 13.649, year: 2015

  8. Generation of EST and Microarray Resources for Functional Genomic Studies on Chicken Intestinal Health

    NARCIS (Netherlands)

    Hemert, van S.; Ebbelaar, B.H.; Smits, M.A.; Rebel, J.M.J.

    2003-01-01

    Expressed sequenced tags (ESTs) and microarray resources have a great impact on the ability to study host response in mice and humans. Unfortunately, these resources are not yet available for domestic farm animals. The aim of this study was to provide genomic resources to study chicken intestinal

  9. Molecular target discovery for neural repair in the functional genomics era

    NARCIS (Netherlands)

    Verhaagen, J.; van Kesteren, R.E.; Bossers, K.A.; Mac Gillavry, H.D.; Mason, M.R.; Smit, A.B.

    2012-01-01

    A comprehensive understanding of the molecular pathways activated by traumatic neural injury is of major importance for the development of treatments for spinal cord injury (SCI). High-throughput gene expression profiling is a powerful approach to reveal genome-wide changes in gene expression during

  10. Comparative Genomic and Functional Analysis of Lactobacillus casei and Lactobacillus rhamnosus Strains Marketed as Probiotics

    NARCIS (Netherlands)

    Douillard, F.P.; Ribbera, A.; Järvinen, H.M.; Kant, R.; Pietilä, T.E.; Randazzo, C.L.; Paulin, L.; Laine, P.K.; Caggia, C.; Ossowski, von I.; Reunanen, J.; Satokari, R.; Salminen, S.; Palva, A.; Vos, de W.M.

    2013-01-01

    Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in

  11. Genome-wide gene expression regulation as a function of genotype and age in C. elegans

    NARCIS (Netherlands)

    Viñuela Rodriguez, A.; Snoek, L.B.; Riksen, J.A.G.; Kammenga, J.E.

    2010-01-01

    Gene expression becomes more variable with age, and it is widely assumed that this is due to a decrease in expression regulation. But currently there is no understanding how gene expression regulatory patterns progress with age. Here we explored genome-wide gene expression variation and regulatory

  12. Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing

    Science.gov (United States)

    Wambui Njunguna; Aaron Liston; Richard Cronn; Tia-Lynn Ashman; Nahla Bassil

    2013-01-01

    The cultivated strawberry is one of the youngest domesticated plants, developed in France in the 1700s from chance hybridization between two western hemisphere octoploid species. However, little is known about the evolution of the species that gave rise to this important fruit crop. Phylogenetic analysis of chloroplast genome sequences of 21 Fragaria...

  13. Modification Of The Electron Energy Distribution Function During Lithium Experiments On The National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, M A; Gray, T K; Kaita, R; Kallman, J; Kugel, H; LeBlanc, B; McLean, A; Sabbagh, S A; Soukanovskii, V; Stotler, D P

    2011-06-03

    The National Spherical Torus Experiment (NSTX) has recently studied the use of a liquid lithium divertor (LLD). Divertor Langmuir probes have also been installed for making measurements of the local plasma conditions. A non-local probe interpretation method is used to supplement the classical probe interpretation and obtain measurements of the electron energy distribution function (EEDF) which show the occurrence of a hot-electron component. Analysis is made of two discharges within a sequence that exhibited changes in plasma fueling efficiency. It is found that the local electron temperature increases and that this increase is most strongly correlated with the energy contained within the hot-electron population. Preliminary interpretative modeling indicates that kinetic effects are likely in the NSTX.

  14. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    KAUST Repository

    Alam, Intikhab; Antunes, André ; Kamau, Allan; Ba Alawi, Wail; Kalkatawi, Manal M.; Stingl, Ulrich; Bajic, Vladimir B.

    2013-01-01

    The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes.

  15. INDIGO - INtegrated data warehouse of microbial genomes with examples from the red sea extremophiles.

    KAUST Repository

    Alam, Intikhab

    2013-12-06

    The next generation sequencing technologies substantially increased the throughput of microbial genome sequencing. To functionally annotate newly sequenced microbial genomes, a variety of experimental and computational methods are used. Integration of information from different sources is a powerful approach to enhance such annotation. Functional analysis of microbial genomes, necessary for downstream experiments, crucially depends on this annotation but it is hampered by the current lack of suitable information integration and exploration systems for microbial genomes.

  16. A New Approach to Predict Microbial Community Assembly and Function Using a Stochastic, Genome-Enabled Modeling Framework

    Science.gov (United States)

    King, E.; Brodie, E.; Anantharaman, K.; Karaoz, U.; Bouskill, N.; Banfield, J. F.; Steefel, C. I.; Molins, S.

    2016-12-01

    Characterizing and predicting the microbial and chemical compositions of subsurface aquatic systems necessitates an understanding of the metabolism and physiology of organisms that are often uncultured or studied under conditions not relevant for one's environment of interest. Cultivation-independent approaches are therefore important and have greatly enhanced our ability to characterize functional microbial diversity. The capability to reconstruct genomes representing thousands of populations from microbial communities using metagenomic techniques provides a foundation for development of predictive models for community structure and function. Here, we discuss a genome-informed stochastic trait-based model incorporated into a reactive transport framework to represent the activities of coupled guilds of hypothetical microorganisms. Metabolic pathways for each microbe within a functional guild are parameterized from metagenomic data with a unique combination of traits governing organism fitness under dynamic environmental conditions. We simulate the thermodynamics of coupled electron donor and acceptor reactions to predict the energy available for cellular maintenance, respiration, biomass development, and enzyme production. While `omics analyses can now characterize the metabolic potential of microbial communities, it is functionally redundant as well as computationally prohibitive to explicitly include the thousands of recovered organisms into biogeochemical models. However, one can derive potential metabolic pathways from genomes along with trait-linkages to build probability distributions of traits. These distributions are used to assemble groups of microbes that couple one or more of these pathways. From the initial ensemble of microbes, only a subset will persist based on the interaction of their physiological and metabolic traits with environmental conditions, competing organisms, etc. Here, we analyze the predicted niches of these hypothetical microbes and

  17. Challenges and strategies for implementing genomic services in diverse settings: experiences from the Implementing GeNomics In pracTicE (IGNITE) network.

    Science.gov (United States)

    Sperber, Nina R; Carpenter, Janet S; Cavallari, Larisa H; J Damschroder, Laura; Cooper-DeHoff, Rhonda M; Denny, Joshua C; Ginsburg, Geoffrey S; Guan, Yue; Horowitz, Carol R; Levy, Kenneth D; Levy, Mia A; Madden, Ebony B; Matheny, Michael E; Pollin, Toni I; Pratt, Victoria M; Rosenman, Marc; Voils, Corrine I; W Weitzel, Kristen; Wilke, Russell A; Ryanne Wu, R; Orlando, Lori A

    2017-05-22

    To realize potential public health benefits from genetic and genomic innovations, understanding how best to implement the innovations into clinical care is important. The objective of this study was to synthesize data on challenges identified by six diverse projects that are part of a National Human Genome Research Institute (NHGRI)-funded network focused on implementing genomics into practice and strategies to overcome these challenges. We used a multiple-case study approach with each project considered as a case and qualitative methods to elicit and describe themes related to implementation challenges and strategies. We describe challenges and strategies in an implementation framework and typology to enable consistent definitions and cross-case comparisons. Strategies were linked to challenges based on expert review and shared themes. Three challenges were identified by all six projects, and strategies to address these challenges varied across the projects. One common challenge was to increase the relative priority of integrating genomics within the health system electronic health record (EHR). Four projects used data warehousing techniques to accomplish the integration. The second common challenge was to strengthen clinicians' knowledge and beliefs about genomic medicine. To overcome this challenge, all projects developed educational materials and conducted meetings and outreach focused on genomic education for clinicians. The third challenge was engaging patients in the genomic medicine projects. Strategies to overcome this challenge included use of mass media to spread the word, actively involving patients in implementation (e.g., a patient advisory board), and preparing patients to be active participants in their healthcare decisions. This is the first collaborative evaluation focusing on the description of genomic medicine innovations implemented in multiple real-world clinical settings. Findings suggest that strategies to facilitate integration of genomic

  18. Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316

    Science.gov (United States)

    Guo, Jing; Jing, Xueping; Peng, Wen-Lei; Nie, Qiyu; Zhai, Yile; Shao, Zongze; Zheng, Longyu; Cai, Minmin; Li, Guangyu; Zuo, Huaiyu; Zhang, Zhitao; Wang, Rui-Ru; Huang, Dian; Cheng, Wanli; Yu, Ziniu; Chen, Ling-Ling; Zhang, Jibin

    2016-01-01

    We isolated Pseudomonas putida (P. putida) strain 1A00316 from Antarctica. This bacterium has a high efficiency against Meloidogyne incognita (M. incognita) in vitro and under greenhouse conditions. The complete genome of P. putida 1A00316 was sequenced using PacBio single molecule real-time (SMRT) technology. A comparative genomic analysis of 16 Pseudomonas strains revealed that although P. putida 1A00316 belonged to P. putida, it was phenotypically more similar to nematicidal Pseudomonas fluorescens (P. fluorescens) strains. We characterized the diversity and specificity of nematicidal factors in P. putida 1A00316 with comparative genomics and functional analysis, and found that P. putida 1A00316 has diverse nematicidal factors including protein alkaline metalloproteinase AprA and two secondary metabolites, hydrogen cyanide and cyclo-(l-isoleucyl-l-proline). We show for the first time that cyclo-(l-isoleucyl-l-proline) exhibit nematicidal activity in P. putida. Interestingly, our study had not detected common nematicidal factors such as 2,4-diacetylphloroglucinol (2,4-DAPG) and pyrrolnitrin in P. putida 1A00316. The results of the present study reveal the diversity and specificity of nematicidal factors in P. putida strain 1A00316. PMID:27384076

  19. Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing.

    Science.gov (United States)

    Swarts, Daan C; Jinek, Martin

    2018-05-22

    Cas9 and Cas12a are multidomain CRISPR-associated nucleases that can be programmed with a guide RNA to bind and cleave complementary DNA targets. The guide RNA sequence can be varied, making these effector enzymes versatile tools for genome editing and gene regulation applications. While Cas9 is currently the best-characterized and most widely used nuclease for such purposes, Cas12a (previously named Cpf1) has recently emerged as an alternative for Cas9. Cas9 and Cas12a have distinct evolutionary origins and exhibit different structural architectures, resulting in distinct molecular mechanisms. Here we compare the structural and mechanistic features that distinguish Cas9 and Cas12a, and describe how these features modulate their activity. We discuss implications for genome editing, and how they may influence the choice of Cas9 or Cas12a for specific applications. Finally, we review recent studies in which Cas12a has been utilized as a genome editing tool. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes. © 2018 Wiley Periodicals, Inc.

  20. Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells.

    Science.gov (United States)

    Lee, Guinevere Q; Orlova-Fink, Nina; Einkauf, Kevin; Chowdhury, Fatema Z; Sun, Xiaoming; Harrington, Sean; Kuo, Hsiao-Hsuan; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Reddy, Kavidha; Dong, Krista; Ndung'u, Thumbi; Walker, Bruce D; Rosenberg, Eric S; Yu, Xu G; Lichterfeld, Mathias

    2017-06-30

    HIV-1 causes a chronic, incurable disease due to its persistence in CD4+ T cells that contain replication-competent provirus, but exhibit little or no active viral gene expression and effectively resist combination antiretroviral therapy (cART). These latently infected T cells represent an extremely small proportion of all circulating CD4+ T cells but possess a remarkable long-term stability and typically persist throughout life, for reasons that are not fully understood. Here we performed massive single-genome, near-full-length next-generation sequencing of HIV-1 DNA derived from unfractionated peripheral blood mononuclear cells, ex vivo-isolated CD4+ T cells, and subsets of functionally polarized memory CD4+ T cells. This approach identified multiple sets of independent, near-full-length proviral sequences from cART-treated individuals that were completely identical, consistent with clonal expansion of CD4+ T cells harboring intact HIV-1. Intact, near-full-genome HIV-1 DNA sequences that were derived from such clonally expanded CD4+ T cells constituted 62% of all analyzed genome-intact sequences in memory CD4 T cells, were preferentially observed in Th1-polarized cells, were longitudinally detected over a duration of up to 5 years, and were fully replication- and infection-competent. Together, these data suggest that clonal proliferation of Th1-polarized CD4+ T cells encoding for intact HIV-1 represents a driving force for stabilizing the pool of latently infected CD4+ T cells.

  1. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.

    Science.gov (United States)

    Gu, Yunyan; Wang, Hongwei; Qin, Yao; Zhang, Yujing; Zhao, Wenyuan; Qi, Lishuang; Zhang, Yuannv; Wang, Chenguang; Guo, Zheng

    2013-03-01

    The heterogeneity of genetic alterations in human cancer genomes presents a major challenge to advancing our understanding of cancer mechanisms and identifying cancer driver genes. To tackle this heterogeneity problem, many approaches have been proposed to investigate genetic alterations and predict driver genes at the individual pathway level. However, most of these approaches ignore the correlation of alteration events between pathways and miss many genes with rare alterations collectively contributing to carcinogenesis. Here, we devise a network-based approach to capture the cooperative functional modules hidden in genome-wide somatic mutation and copy number alteration profiles of glioblastoma (GBM) from The Cancer Genome Atlas (TCGA), where a module is a set of altered genes with dense interactions in the protein interaction network. We identify 7 pairs of significantly co-altered modules that involve the main pathways known to be altered in GBM (TP53, RB and RTK signaling pathways) and highlight the striking co-occurring alterations among these GBM pathways. By taking into account the non-random correlation of gene alterations, the property of co-alteration could distinguish oncogenic modules that contain driver genes involved in the progression of GBM. The collaboration among cancer pathways suggests that the redundant models and aggravating models could shed new light on the potential mechanisms during carcinogenesis and provide new indications for the design of cancer therapeutic strategies.

  2. Genetic counselors' views and experiences with the clinical integration of genome sequencing.

    Science.gov (United States)

    Machini, Kalotina; Douglas, Jessica; Braxton, Alicia; Tsipis, Judith; Kramer, Kate

    2014-08-01

    In recent years, new sequencing technologies known as next generation sequencing (NGS) have provided scientists the ability to rapidly sequence all known coding as well as non-coding sequences in the human genome. As the two emerging approaches, whole exome (WES) and whole genome (WGS) sequencing, have started to be integrated in the clinical arena, we sought to survey health care professionals who are likely to be involved in the implementation process now and/or in the future (e.g., genetic counselors, geneticists and nurse practitioners). Two hundred twenty-one genetic counselors- one third of whom currently offer WES/WGS-participated in an anonymous online survey. The aims of the survey were first, to identify barriers to the implementation of WES/WGS, as perceived by survey participants; second, to provide the first systematic report of current practices regarding the integration of WES/WGS in clinic and/or research across the US and Canada and to illuminate the roles and challenges of genetic counselors participating in this process; and third to evaluate the impact of WES/WGS on patient care. Our results showed that genetic counseling practices with respect to WES/WGS are consistent with the criteria set forth in the ACMG 2012 policy statement, which highlights indications for testing, reporting, and pre/post test considerations. Our respondents described challenges related to offering WES/WGS, which included billing issues, the duration and content of the consent process, result interpretation and disclosure of incidental findings and variants of unknown significance. In addition, respondents indicated that specialty area (i.e., prenatal and cancer), lack of clinical utility of WES/WGS and concerns about interpretation of test results were factors that prevented them from offering this technology to patients. Finally, study participants identified the aspects of their professional training which have been most beneficial in aiding with the integration of

  3. High Throughput Screening in Duchenne Muscular Dystrophy: From Drug Discovery to Functional Genomics

    OpenAIRE

    Thomas J.J. Gintjee; Alvin S.H. Magh; Carmen Bertoni

    2014-01-01

    Centers for the screening of biologically active compounds and genomic libraries are becoming common in the academic setting and have enabled researchers devoted to developing strategies for the treatment of diseases or interested in studying a biological phenomenon to have unprecedented access to libraries that, until few years ago, were accessible only by pharmaceutical companies. As a result, new drugs and genetic targets have now been identified for the treatment of Duchenne muscular dyst...

  4. PBX1 Genomic Pioneer Function Drives ERα Signaling Underlying Progression in Breast Cancer

    Science.gov (United States)

    Magnani, Luca; Ballantyne, Elizabeth B.; Zhang, Xiaoyang; Lupien, Mathieu

    2011-01-01

    Altered transcriptional programs are a hallmark of diseases, yet how these are established is still ill-defined. PBX1 is a TALE homeodomain protein involved in the development of different types of cancers. The estrogen receptor alpha (ERα) is central to the development of two-thirds of all breast cancers. Here we demonstrate that PBX1 acts as a pioneer factor and is essential for the ERα-mediated transcriptional response driving aggressive tumors in breast cancer. Indeed, PBX1 expression correlates with ERα in primary breast tumors, and breast cancer cells depleted of PBX1 no longer proliferate following estrogen stimulation. Profiling PBX1 recruitment and chromatin accessibility across the genome of breast cancer cells through ChIP-seq and FAIRE-seq reveals that PBX1 is loaded and promotes chromatin openness at specific genomic locations through its capacity to read specific epigenetic signatures. Accordingly, PBX1 guides ERα recruitment to a specific subset of sites. Expression profiling studies demonstrate that PBX1 controls over 70% of the estrogen response. More importantly, the PBX1-dependent transcriptional program is associated with poor-outcome in breast cancer patients. Correspondingly, PBX1 expression alone can discriminate a priori the outcome in ERα-positive breast cancer patients. These features are markedly different from the previously characterized ERα-associated pioneer factor FoxA1. Indeed, PBX1 is the only pioneer factor identified to date that discriminates outcome such as metastasis in ERα-positive breast cancer patients. Together our results reveal that PBX1 is a novel pioneer factor defining aggressive ERα-positive breast tumors, as it guides ERα genomic activity to unique genomic regions promoting a transcriptional program favorable to breast cancer progression. PMID:22125492

  5. Functional genomics provides insights into the role of Propionibacterium freudenreichii ssp. shermanii JS in cheese ripening.

    Science.gov (United States)

    Ojala, Teija; Laine, Pia K S; Ahlroos, Terhi; Tanskanen, Jarna; Pitkänen, Saara; Salusjärvi, Tuomas; Kankainen, Matti; Tynkkynen, Soile; Paulin, Lars; Auvinen, Petri

    2017-01-16

    Propionibacterium freudenreichii is a commercially important bacterium that is essential for the development of the characteristic eyes and flavor of Swiss-type cheeses. These bacteria grow actively and produce large quantities of flavor compounds during cheese ripening at warm temperatures but also appear to contribute to the aroma development during the subsequent cold storage of cheese. Here, we advance our understanding of the role of P. freudenreichii in cheese ripening by presenting the 2.68-Mbp annotated genome sequence of P. freudenreichii ssp. shermanii JS and determining its global transcriptional profiles during industrial cheese-making using transcriptome sequencing. The annotation of the genome identified a total of 2377 protein-coding genes and revealed the presence of enzymes and pathways for formation of several flavor compounds. Based on transcriptome profiling, the expression of 348 protein-coding genes was altered between the warm and cold room ripening of cheese. Several propionate, acetate, and diacetyl/acetoin production related genes had higher expression levels in the warm room, whereas a general slowing down of the metabolism and an activation of mobile genetic elements was seen in the cold room. A few ripening-related and amino acid catabolism involved genes were induced or remained active in cold room, indicating that strain JS contributes to the aroma development also during cold room ripening. In addition, we performed a comparative genomic analysis of strain JS and 29 other Propionibacterium strains of 10 different species, including an isolate of both P. freudenreichii subspecies freudenreichii and shermanii. Ortholog grouping of the predicted protein sequences revealed that close to 86% of the ortholog groups of strain JS, including a variety of ripening-related ortholog groups, were conserved across the P. freudenreichii isolates. Taken together, this study contributes to the understanding of the genomic basis of P. freudenreichii

  6. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae.

    OpenAIRE

    Enyenihi, Akon H; Saunders, William S

    2003-01-01

    We have used a single-gene deletion mutant bank to identify the genes required for meiosis and sporulation among 4323 nonessential Saccharomyces cerevisiae annotated open reading frames (ORFs). Three hundred thirty-four sporulation-essential genes were identified, including 78 novel ORFs and 115 known genes without previously described sporulation defects in the comprehensive Saccharomyces Genome (SGD) or Yeast Proteome (YPD) phenotype databases. We have further divided the uncharacterized sp...

  7. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    Science.gov (United States)

    2012-11-15

    development of such an algal model system for basic discovery, we sequenced the genome and two sets of transcriptomes of N. oceanica CCMP1779, assembled...CCMP1779 has a gene encoding a highly conserved violax- anthin de-epoxidase ( VDE ) protein like that found in plants (Table S9). In Arabidopsis, VDE is...HLA3 or LCI1 were present. This result suggests that CCMP1779 might have a plastid Ci transport system similar to that of Chlamydomonas, but a distinct

  8. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics

    OpenAIRE

    Verma, Mohit; Kumar, Vinay; Patel, Ravi K.; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB), which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database fea...

  9. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    Full Text Available BACKGROUND: Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP comprises four distinct families: expansin A (EXPA, expansin B (EXPB, expansin-like A (EXLA and expansin-like B (EXLB. There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. METHODOLOGY/PRINCIPAL FINDINGS: We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa, compared to those from Arabidopsis thaliana and rice (Oryza sativa. We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. CONCLUSION: Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the

  10. Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function.

    Science.gov (United States)

    Chasman, Daniel I; Fuchsberger, Christian; Pattaro, Cristian; Teumer, Alexander; Böger, Carsten A; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Taliun, Daniel; Li, Man; Gao, Xiaoyi; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; O'Seaghdha, Conall M; Glazer, Nicole; Isaacs, Aaron; Liu, Ching-Ti; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Johnson, Andrew D; Gierman, Hinco J; Feitosa, Mary F; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Lambert, Jean-Charles; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Coassin, Stefan; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Cavalieri, Margherita; Rao, Madhumathi; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; de Andrade, Mariza; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Meisinger, Christa; Gieger, Christian; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Ketkar, Shamika; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Kim, Stuart K; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; Siscovick, David S; van Duijn, Cornelia M; Borecki, Ingrid B; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Parsa, Afshin; Bochud, Murielle; Heid, Iris M; Kao, W H Linda; Fox, Caroline S; Köttgen, Anna

    2012-12-15

    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10(-9)) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10(-4)-2.2 × 10(-7). Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in general.

  11. An Efficient Genome Fragment Assembling Using GA with Neighborhood Aware Fitness Function

    Directory of Open Access Journals (Sweden)

    Satoko Kikuchi

    2012-01-01

    Full Text Available To decode a long genome sequence, shotgun sequencing is the state-of-the-art technique. It needs to properly sequence a very large number, sometimes as large as millions, of short partially readable strings (fragments. Arranging those fragments in correct sequence is known as fragment assembling, which is an NP-problem. Presently used methods require enormous computational cost. In this work, we have shown how our modified genetic algorithm (GA could solve this problem efficiently. In the proposed GA, the length of the chromosome, which represents the volume of the search space, is reduced with advancing generations, and thereby improves search efficiency. We also introduced a greedy mutation, by swapping nearby fragments using some heuristics, to improve the fitness of chromosomes. We compared results with Parsons’ algorithm which is based on GA too. We used fragments with partial reads on both sides, mimicking fragments in real genome assembling process. In Parsons’ work base-pair array of the whole fragment is known. Even then, we could obtain much better results, and we succeeded in restructuring contigs covering 100% of the genome sequences.

  12. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).

    Science.gov (United States)

    Sharma, Ranu; Suresh, C G

    2015-01-01

    Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Genome-wide imaging association study implicates functional activity and glial homeostasis of the caudate in smoking addiction.

    Science.gov (United States)

    Qian, David C; Molfese, David L; Jin, Jennifer L; Titus, Alexander J; He, Yixuan; Li, Yafang; Vaissié, Maxime; Viswanath, Humsini; Baldwin, Philip R; Krahe, Ralf; Salas, Ramiro; Amos, Christopher I

    2017-09-19

    Nearly 6 million deaths and over a half trillion dollars in healthcare costs worldwide are attributed to tobacco smoking each year. Extensive research efforts have been pursued to elucidate the molecular underpinnings of smoking addiction and facilitate cessation. In this study, we genotyped and obtained both resting state and task-based functional magnetic resonance imaging from 64 non-smokers and 42 smokers. Smokers were imaged after having smoked normally ("sated") and after having not smoked for at least 12 h ("abstinent"). While abstinent smokers did not differ from non-smokers with respect to pairwise resting state functional connectivities (RSFCs) between 12 brain regions of interest, RSFCs involving the caudate and putamen of sated smokers significantly differed from those of non-smokers (P smoking status (P = 0.015). Moreover, abstinent smokers with lower CR experienced greater withdrawal symptoms (P = 0.024), which suggests CR may be related to smoking urges. Associations between genetic variants and CR, adjusted for smoking status, were identified by genome-wide association study (GWAS). Genes containing or exhibiting caudate-specific expression regulation by these variants were enriched within Gene Ontology terms that describe cytoskeleton functions, synaptic organization, and injury response (P < 0.001, FDR < 0.05). By integrating genomic and imaging data, novel insights into potential mechanisms of caudate activation and homeostasis are revealed that may guide new directions of research toward improving our understanding of addiction pathology.

  14. Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Laura eGomez-Valero

    2011-10-01

    Full Text Available Although best known for its ability to cause severe pneumonia in people whose immune defenses are weakened, Legionella pneumophila and Legionella longbeachae are two species of a large genus of bacteria that are ubiquitous in nature, where they parasitize protozoa. Adaptation to the host environment and exploitation of host cell functions are critical for the success of these intracellular pathogens. The establishment and publication of the complete genome sequences of L. pneumophila and L. longbeachae isolates paved the way for major breakthroughs in understanding the biology of these organisms. In this review we present the knowledge gained from the analyses and comparison of the complete genome sequences of different L. pneumophila and L. longbeachae strains. Emphasis is given on putative virulence and Legionella life cycle related functions, such as the identification of an extended array of eukaryotic-like proteins, many of which have been shown to modulate host cell functions to the pathogen's advantage. Surprisingly, many of the eukaryotic domain proteins identified in L. pneumophila as well as many substrates of the Dot/Icm type IV secretion system essential for intracellular replication are different between these two species, although they cause the same disease. Finally, evolutionary aspects regarding the eukaryotic like proteins in Legionella are discussed.

  15. High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE.

    Directory of Open Access Journals (Sweden)

    Stefano Castellana

    2017-06-01

    Full Text Available 24,189 are all the possible non-synonymous amino acid changes potentially affecting the human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so far, while the pathogenicity of the vast majority was only assessed in-silico by software predictors. Since these tools proved to be rather incongruent, we have designed and implemented APOGEE, a machine-learning algorithm that outperforms all existing prediction methods in estimating the harmfulness of mitochondrial non-synonymous genome variations. We provide a detailed description of the underlying algorithm, of the selected and manually curated training and test sets of variants, as well as of its classification ability.

  16. Development of functional genomic tools in trematodes: RNA interference and luciferase reporter gene activity in Fasciola hepatica.

    Directory of Open Access Journals (Sweden)

    Gabriel Rinaldi

    2008-07-01

    Full Text Available The growing availability of sequence information from diverse parasites through genomic and transcriptomic projects offer new opportunities for the identification of key mediators in the parasite-host interaction. Functional genomics approaches and methods for the manipulation of genes are essential tools for deciphering the roles of genes and to identify new intervention targets in parasites. Exciting advances in functional genomics for parasitic helminths are starting to occur, with transgene expression and RNA interference (RNAi reported in several species of nematodes, but the area is still in its infancy in flatworms, with reports in just three species. While advancing in model organisms, there is a need to rapidly extend these technologies to other parasites responsible for several chronic diseases of humans and cattle. In order to extend these approaches to less well studied parasitic worms, we developed a test method for the presence of a viable RNAi pathway by silencing the exogenous reporter gene, firefly luciferase (fLUC. We established the method in the human blood fluke Schistosoma mansoni and then confirmed its utility in the liver fluke Fasciola hepatica. We transformed newly excysted juveniles of F. hepatica by electroporation with mRNA of fLUC and three hours later were able to detect luciferase enzyme activity, concentrated mainly in the digestive ceca. Subsequently, we tested the presence of an active RNAi pathway in F. hepatica by knocking down the exogenous luciferase activity by introduction into the transformed parasites of double-stranded RNA (dsRNA specific for fLUC. In addition, we tested the RNAi pathway targeting an endogenous F. hepatica gene encoding leucine aminopeptidase (FhLAP, and observed a significant reduction in specific mRNA levels. In summary, these studies demonstrated the utility of RNAi targeting reporter fLUC as a reporter gene assay to establish the presence of an intact RNAi pathway in helminth

  17. Improving Genomic Prediction in Cassava Field Experiments by Accounting for Interplot Competition.

    Science.gov (United States)

    Elias, Ani A; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2018-03-02

    Plants competing for available resources is an unavoidable phenomenon in a field. We conducted studies in cassava ( Manihot esculenta Crantz) in order to understand the pattern of this competition. Taking into account the competitive ability of genotypes while selecting parents for breeding advancement or commercialization can be very useful. We assumed that competition could occur at two levels: (i) the genotypic level, which we call interclonal, and (ii) the plot level irrespective of the type of genotype, which we call interplot competition or competition error. Modification in incidence matrices was applied in order to relate neighboring genotype/plot to the performance of a target genotype/plot with respect to its competitive ability. This was added into a genomic selection (GS) model to simultaneously predict the direct and competitive ability of a genotype. Predictability of the models was tested through a 10-fold cross-validation method repeated five times. The best model was chosen as the one with the lowest prediction root mean squared error (pRMSE) compared to that of the base model having no competitive component. Results from our real data studies indicated that value reached up to 25% with a GS-competition error model. We also found that the competitive influence of a cassava clone is not just limited to the adjacent neighbors but spreads beyond them. Through simulations, we found that a 26% increase of accuracy in estimating trait genotypic effect can be achieved even in the presence of high competitive variance. Copyright © 2018 Elias et al.

  18. Metabolomic and Genomic Markers of Atherosclerosis as Related to Oxidative Stress, Inflammation, and Vascular Function in Twin Astronauts

    Science.gov (United States)

    Lee, Stuart M. C.; Rana, Brinda K.; Stenger, Michael B.; Sears, Dorothy D.; Smith, Scott M.; Zwart, Sara R.; Macias, Brandon R.; Hargans, Alan R.; Sharma, Kumar; De Vivo, Immaculata

    2017-01-01

    BACKGROUND: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and his ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine spaceflight-related atherosclerosis risk that is independent of the confounding factors associated with different genotypes. PURPOSE: The purpose of this investigation was to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we simultaneously assessed gene expression and DNA methylation in leukocytes. HYPOTHESIS: We predict that, compared to the ground-based twin, the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift

  19. The Role of Advisory Committees on Regulatory functions: Argentine Experience

    International Nuclear Information System (INIS)

    Larcher, A. M.; Arias, C.; Kunst, J. J.; Perez, R. M.; Rudelli, M.

    2004-01-01

    The Argentine Nuclear Regulatory Authority (NRA) has appointed a consultants body that advises its Board of Directors on aspects related to authorization's granting to individuals for the use of radioisotopes and ionizing radiation in medicine, research and industry. Such committee, whose existence goes back to the year 1958, is integrated by prominent professionals knowledgeable about ionizing radiation and radioisotopes applications in the medical, biomedical and industrial fields, representing important professional associations or institutions related to the practices in question. Originally, the committee was conceived as a consultation body to fulfil two important functions: To produce, in a regular way, authorized opinions at experts level to settle down questions relative to the regulation of practices, new at that time in the country, and To submit to a peer review applications for individual authorization for different uses of ionizing radiation previously it's granting by the Regulatory Authority. In this paper the role of the advisory council is analyzed from a historical perspective trying to emphasize an outstanding aspect not sufficiently analyzed linked to the capability that advisory bodies, with representative users' presence, can reach in the interpretation of regulatory standards based on a performance philosophy. Such approach outlines the permanent dilemma about the performance level of the licensee that should satisfy the Regulatory Authority. Once the broad objectives of radiation protection has been defined professional criteria is required for applying them to different practices. Balance between flexibility and avoidance of excessive uncertainty is desirable. In the authors' opinion the inclusion, inside the regulator's structure of consultants bodies giving direct participation to qualified stakeholders, far from harming the necessary independence that should characterize the regulator, on the contrary, allows to have an excellent social

  20. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes.

    Science.gov (United States)

    Ranade, Sonali Sachin; García-Gil, María Rosario; Rosselló, Josep A

    2016-04-01

    Many genes have been lost from the prokaryote plastidial genome during the early events of endosymbiosis in eukaryotes. Some of them were definitively lost, but others were relocated and functionally integrated to the host nuclear genomes through serial events of gene transfer during plant evolution. In gymnosperms, plastid genome sequencing has revealed the loss of ndh genes from several species of Gnetales and Pinaceae, including Norway spruce (Picea abies). This study aims to trace the ndh genes in the nuclear and organellar Norway spruce genomes. The plastid genomes of higher plants contain 11 ndh genes which are homologues of mitochondrial genes encoding subunits of the proton-pumping NADH-dehydrogenase (nicotinamide adenine dinucleotide dehydrogenase) or complex I (electron transport chain). Ndh genes encode 11 NDH polypeptides forming the Ndh complex (analogous to complex I) which seems to be primarily involved in chloro-respiration processes. We considered ndh genes from the plastidial genome of four gymnosperms (Cryptomeria japonica, Cycas revoluta, Ginkgo biloba, Podocarpus totara) and a single angiosperm species (Arabidopsis thaliana) to trace putative homologs in the nuclear and organellar Norway spruce genomes using tBLASTn to assess the evolutionary fate of ndh genes in Norway spruce and to address their genomic location(s), structure, integrity and functionality. The results obtained from tBLASTn were subsequently analyzed by performing homology search for finding ndh specific conserved domains using conserved domain search. We report the presence of non-functional plastid ndh gene fragments, excepting ndhE and ndhG genes, in the nuclear genome of Norway spruce. Regulatory transcriptional elements like promoters, TATA boxes and enhancers were detected in the upstream regions of some ndh fragments. We also found transposable elements in the flanking regions of few ndh fragments suggesting nuclear rearrangements in those regions. These evidences

  1. DNA Methylation: A Mechanism for Embedding Early Life Experiences in the Genome

    Science.gov (United States)

    Szyf, Moshe; Bick, Johanna

    2013-01-01

    Although epidemiological data provide evidence that early life experience plays a critical role in human development, the mechanism of how this works remains in question. Recent data from human and animal literature suggest that epigenetic changes, such as DNA methylation, are involved not only in cellular differentiation but also in the…

  2. Multiscale modeling of three-dimensional genome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  3. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  4. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    Science.gov (United States)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  5. Large-scale genome-wide association studies and meta-analyses of longitudinal change in adult lung function.

    Directory of Open Access Journals (Sweden)

    Wenbo Tang

    Full Text Available Genome-wide association studies (GWAS have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function.We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1 in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis.The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7. In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8 at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively.In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.

  6. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Yong Guo

    Full Text Available The Dof domain protein family is a classic plant-specific zinc-finger transcription factor family involved in a variety of biological processes. There is great diversity in the number of Dof genes in different plants. However, there are only very limited reports on the characterization of Dof transcription factors in soybean (Glycine max. In the present study, 78 putative Dof genes were identified from the whole-genome sequence of soybean. The predicted GmDof genes were non-randomly distributed within and across 19 out of 20 chromosomes and 97.4% (38 pairs were preferentially retained duplicate paralogous genes located in duplicated regions of the genome. Soybean-specific segmental duplications contributed significantly to the expansion of the soybean Dof gene family. These Dof proteins were phylogenetically clustered into nine distinct subgroups among which the gene structure and motif compositions were considerably conserved. Comparative phylogenetic analysis of these Dof proteins revealed four major groups, similar to those reported for Arabidopsis and rice. Most of the GmDofs showed specific expression patterns based on RNA-seq data analyses. The expression patterns of some duplicate genes were partially redundant while others showed functional diversity, suggesting the occurrence of sub-functionalization during subsequent evolution. Comprehensive expression profile analysis also provided insights into the soybean-specific functional divergence among members of the Dof gene family. Cis-regulatory element analysis of these GmDof genes suggested diverse functions associated with different processes. Taken together, our results provide useful information for the functional characterization of soybean Dof genes by combining phylogenetic analysis with global gene-expression profiling.

  7. Genome-scale characterization of RNA tertiary structures and their functional impact by RNA solvent accessibility prediction.

    Science.gov (United States)

    Yang, Yuedong; Li, Xiaomei; Zhao, Huiying; Zhan, Jian; Wang, Jihua; Zhou, Yaoqi

    2017-01-01

    As most RNA structures are elusive to structure determination, obtaining solvent accessible surface areas (ASAs) of nucleotides in an RNA structure is an important first step to characterize potential functional sites and core structural regions. Here, we developed RNAsnap, the first machine-learning method trained on protein-bound RNA structures for solvent accessibility prediction. Built on sequence profiles from multiple sequence alignment (RNAsnap-prof), the method provided robust prediction in fivefold cross-validation and an independent test (Pearson correlation coefficients, r, between predicted and actual ASA values are 0.66 and 0.63, respectively). Application of the method to 6178 mRNAs revealed its positive correlation to mRNA accessibility by dimethyl sulphate (DMS) experimentally measured in vivo (r = 0.37) but not in vitro (r = 0.07), despite the lack of training on mRNAs and the fact that DMS accessibility is only an approximation to solvent accessibility. We further found strong association across coding and noncoding regions between predicted solvent accessibility of the mutation site of a single nucleotide variant (SNV) and the frequency of that variant in the population for 2.2 million SNVs obtained in the 1000 Genomes Project. Moreover, mapping solvent accessibility of RNAs to the human genome indicated that introns, 5' cap of 5' and 3' cap of 3' untranslated regions, are more solvent accessible, consistent with their respective functional roles. These results support conformational selections as the mechanism for the formation of RNA-protein complexes and highlight the utility of genome-scale characterization of RNA tertiary structures by RNAsnap. The server and its stand-alone downloadable version are available at http://sparks-lab.org. © 2016 Yang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  8. Genome-wide linkage, exome sequencing and functional analyses identify ABCB6 as the pathogenic gene of dyschromatosis universalis hereditaria.

    Directory of Open Access Journals (Sweden)

    Hong Liu

    Full Text Available As a genetic disorder of abnormal pigmentation, the molecular basis of dyschromatosis universalis hereditaria (DUH had remained unclear until recently when ABCB6 was reported as a causative gene of DUH.We performed genome-wide linkage scan using Illumina Human 660W-Quad BeadChip and exome sequencing analyses using Agilent SureSelect Human All Exon Kits in a multiplex Chinese DUH family to identify the pathogenic mutations and verified the candidate mutations using Sanger sequencing. Quantitative RT-PCR and Immunohistochemistry was performed to verify the expression of the pathogenic gene, Zebrafish was also used to confirm the functional role of ABCB6 in melanocytes and pigmentation.Genome-wide linkage (assuming autosomal dominant inheritance mode and exome sequencing analyses identified ABCB6 as the disease candidate gene by discovering a coding mutation (c.1358C>T; p.Ala453Val that co-segregates with the disease phenotype. Further mutation analysis of ABCB6 in four other DUH families and two sporadic cases by Sanger sequencing confirmed the mutation (c.1358C>T; p.Ala453Val and discovered a second, co-segregating coding mutation (c.964A>C; p.Ser322Lys in one of the four families. Both mutations were heterozygous in DUH patients and not present in the 1000 Genome Project and dbSNP database as well as 1,516 unrelated Chinese healthy controls. Expression analysis in human skin and mutagenesis interrogation in zebrafish confirmed the functional role of ABCB6 in melanocytes and pigmentation. Given the involvement of ABCB6 mutations in coloboma, we performed ophthalmological examination of the DUH carriers of ABCB6 mutations and found ocular abnormalities in them.Our study has advanced our understanding of DUH pathogenesis and revealed the shared pathological mechanism between pigmentary DUH and ocular coloboma.

  9. Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states

    DEFF Research Database (Denmark)

    Cho, Byung-Kwan; Kim, Donghyuk; Knight, Eric M.

    2014-01-01

    Background: At the beginning of the transcription process, the RNA polymerase (RNAP) core enzyme requires a sigma-factor to recognize the genomic location at which the process initiates. Although the crucial role of sigma-factors has long been appreciated and characterized for many individual...... to transcription units (TUs), representing an increase of more than 300% over what has been previously reported. The reconstructed network was used to investigate competition between alternative sigma-factors (the sigma(70) and sigma(38) regulons), confirming the competition model of sigma substitution...

  10. Structural and functional insights of β-glucosidases identified from the genome of Aspergillus fumigatus

    Science.gov (United States)

    Dodda, Subba Reddy; Aich, Aparajita; Sarkar, Nibedita; Jain, Piyush; Jain, Sneha; Mondal, Sudipa; Aikat, Kaustav; Mukhopadhyay, Sudit S.

    2018-03-01

    Thermostable glucose tolerant β-glucosidase from Aspergillus species has attracted worldwide interest for their potentiality in industrial applications and bioethanol production. A strain of Aspergillus fumigatus (AfNITDGPKA3) identified by our laboratory from straw retting ground showed higher cellulase activity, specifically the β-glucosidase activity, compared to other contemporary strains. Though A. fumigatus has been known for high cellulase activity, detailed identification and characterization of the cellulase genes from their genome is yet to be done. In this work we have been analyzed the cellulase genes from the genome sequence database of Aspergillus fumigatus (Af293). Genome analysis suggests two cellobiohydrolase, eleven endoglucanase and seventeen β-glucosidase genes present. β-Glucosidase genes belong to either Glycohydro1 (GH1 or Bgl1) or Glycohydro3 (GH3 or Bgl3) family. The sequence similarity suggests that Bgl1 and Bgl3 of A. fumagatus are phylogenetically close to those of A. fisheri and A. oryzae. The modelled structure of the Bgl1 predicts the (β/α)8 barrel type structure with deep and narrow active site, whereas, Bgl3 shows the (α/β)8 barrel and (α/β)6 sandwich structure with shallow and open active site. Docking results suggest that amino acids Glu544, Glu466, Trp408,Trp567,Tyr44,Tyr222,Tyr770,Asp844,Asp537,Asn212,Asn217 of Bgl3 and Asp224,Asn242,Glu440, Glu445, Tyr367, Tyr365,Thr994,Trp435,Trp446 of Bgl1 are involved in the hydrolysis. Binding affinity analyses suggest that Bgl3 and Bgl1 enzymes are more active on the substrates like 4-methylumbelliferyl glycoside (MUG) and p-nitrophenyl-β-D-1, 4-glucopyranoside (pNPG) than on cellobiose. Further docking with glucose suggests that Bgl1 is more glucose tolerant than Bgl3. Analysis of the Aspergillus fumigatus genome may help to identify a β-glucosidase enzyme with better property and the structural information may help to develop an engineered recombinant enzyme.

  11. Exploratory analysis of genomic segmentations with Segtools

    Directory of Open Access Journals (Sweden)

    Buske Orion J

    2011-10-01

    Full Text Available Abstract Background As genome-wide experiments and annotations become more prevalent, researchers increasingly require tools to help interpret data at this scale. Many functional genomics experiments involve partitioning the genome into labeled segments, such that segments sharing the same label exhibit one or more biochemical or functional traits. For example, a collection of ChlP-seq experiments yields a compendium of peaks, each labeled with one or more associated DNA-binding proteins. Similarly, manually or automatically generated annotations of functional genomic elements, including cis-regulatory modules and protein-coding or RNA genes, can also be summarized as genomic segmentations. Results We present a software toolkit called Segtools that simplifies and automates the exploration of genomic segmentations. The software operates as a series of interacting tools, each of which provides one mode of summarization. These various tools can be pipelined and summarized in a single HTML page. We describe the Segtools toolkit and demonstrate its use in interpreting a collection of human histone modification data sets and Plasmodium falciparum local chromatin structure data sets. Conclusions Segtools provides a convenient, powerful means of interpreting a genomic segmentation.

  12. Yeast 2.0-connecting the dots in the construction of the world's first functional synthetic eukaryotic genome.

    Science.gov (United States)

    Pretorius, I S; Boeke, J D

    2018-06-01

    Historians of the future may well describe 2018 as the year that the world's first functional synthetic eukaryotic genome became a reality. Without the benefit of hindsight, it might be hard to completely grasp the long-term significance of a breakthrough moment in the history of science like this. The role of synthetic biology in the imminent birth of a budding Saccharomyces cerevisiae yeast cell carrying 16 man-made chromosomes causes the world of science to teeter on the threshold of a future-defining scientific frontier. The genome-engineering tools and technologies currently being developed to produce the ultimate yeast genome will irreversibly connect the dots between our improved understanding of the fundamentals of a complex cell containing its DNA in a specialised nucleus and the application of bioengineered eukaryotes designed for advanced biomanufacturing of beneficial products. By joining up the dots between the findings and learnings from the international Synthetic Yeast Genome project (known as the Yeast 2.0 or Sc2.0 project) and concurrent advancements in biodesign tools and smart data-intensive technologies, a future world powered by a thriving bioeconomy seems realistic. This global project demonstrates how a collaborative network of dot connectors-driven by a tinkerer's indomitable curiosity to understand how things work inside a eukaryotic cell-are using cutting-edge biodesign concepts and synthetic biology tools to advance science and to positively frame human futures (i.e. improved quality of life) in a planetary context (i.e. a sustainable environment). Explorations such as this have a rich history of resulting in unexpected discoveries and unanticipated applications for the benefit of people and planet. However, we must learn from past explorations into controversial futuristic sciences and ensure that researchers at the forefront of an emerging science such as synthetic biology remain connected to all stakeholders' concerns about the

  13. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling.

    Science.gov (United States)

    Yu, Jiyang; Silva, Jose; Califano, Andrea

    2016-01-15

    Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives. Indeed, rigorous statistical analysis of high-throughput FG screening data remains challenging, particularly when integrative analyses are used to combine multiple sh/sgRNAs targeting the same gene in the library. We use large RNAi and CRISPR repositories that are publicly available to evaluate a novel meta-analysis approach for FG screens via Bayesian hierarchical modeling, Screening Bayesian Evaluation and Analysis Method (ScreenBEAM). Results from our analysis show that the proposed strategy, which seamlessly combines all available data, robustly outperforms classical algorithms developed for microarray data sets as well as recent approaches designed for next generation sequencing technologies. Remarkably, the ScreenBEAM algorithm works well even when the quality of FG screens is relatively low, which accounts for about 80-95% of the public datasets. R package and source code are available at: https://github.com/jyyu/ScreenBEAM. ac2248@columbia.edu, jose.silva@mssm.edu, yujiyang@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Use of the Operon Structure of the C. elegans Genome as a Tool to Identify Functionally Related Proteins

    Directory of Open Access Journals (Sweden)

    Silvia Dossena

    2013-12-01

    Full Text Available One of the most pressing challenges in the post genomic era is the identification and characterization of protein-protein interactions (PPIs, as these are essential in understanding the cellular physiology of health and disease. Experimental techniques suitable for characterizing PPIs (X-ray crystallography or nuclear magnetic resonance spectroscopy, among others are usually laborious, time-consuming and often difficult to apply to membrane proteins, and therefore require accurate prediction of the candidate interacting partners. High-throughput experimental methods (yeast two-hybrid and affinity purification succumb to the same shortcomings, and can also lead to high rates of false positive and negative results. Therefore, reliable tools for predicting PPIs are needed. The use of the operon structure in the eukaryote Caenorhabditis elegans genome is a valuable, though underserved, tool for identifying physically or functionally interacting proteins. Based on the concept that genes organized in the same operon may encode physically or functionally related proteins, this algorithm is easy to be applied and, importantly, gives a limited number of candidate partners of a given protein, allowing for focused experimental verification. Moreover, this approach can be successfully used to predict PPIs in the human system, including those of membrane proteins.

  15. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  16. Genomic Encyclopedia of Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-08-10

    Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.

  17. The Functional Measurement Experiment Builder suite: two Java-based programs to generate and run functional measurement experiments.

    Science.gov (United States)

    Mairesse, Olivier; Hofmans, Joeri; Theuns, Peter

    2008-05-01

    We propose a free, easy-to-use computer program that does not requires prior knowledge of computer programming to generate and run experiments using textual or pictorial stimuli. Although the FM Experiment Builder suite was initially programmed for building and conducting FM experiments, it can also be applied for non-FM experiments that necessitate randomized, single, or multifactorial designs. The program is highly configurable, allowing multilingual use and a wide range of different response formats. The outputs of the experiments are Microsoft Excel compatible .xls files that allow easy copy-paste of the results into Weiss's FM CalSTAT program (2006) or any other statistical package. Its Java-based structure is compatible with both Windows and Macintosh operating systems, and its compactness (< 1 MB) makes it easily distributable over the Internet.

  18. Binary codes with impulse autocorrelation functions for dynamic experiments

    International Nuclear Information System (INIS)

    Corran, E.R.; Cummins, J.D.

    1962-09-01

    A series of binary codes exist which have autocorrelation functions approximating to an impulse function. Signals whose behaviour in time can be expressed by such codes have spectra which are 'whiter' over a limited bandwidth and for a finite time than signals from a white noise generator. These codes are used to determine system dynamic responses using the correlation technique. Programmes have been written to compute codes of arbitrary length and to compute 'cyclic' autocorrelation and cross-correlation functions. Complete listings of these programmes are given, and a code of 1019 bits is presented. (author)

  19. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes

    OpenAIRE

    Li, Xinxin; Deng, Zhiping; Liu, Zhanzhi; Yan, Yongliang; Wang, Tianshu; Xie, Jianbo; Lin, Min; Cheng, Qi; Chen, Sanfeng

    2014-01-01

    Background Most biological nitrogen fixation is catalyzed by the molybdenum nitrogenase. This enzyme is a complex which contains the MoFe protein encoded by nifDK and the Fe protein encoded by nifH. In addition to nifHDK, nifHDK-like genes were found in some Archaea and Firmicutes, but their function is unclear. Results We sequenced the genome of Paenibacillus sabinae T27. A total of 4,793 open reading frames were predicted from its 5.27 Mb genome. The genome of P. sabinae T27 contains fiftee...

  20. From the genome to the phenome and back: linking genes with human brain function and structure using genetically informed neuroimaging

    DEFF Research Database (Denmark)

    Siebner, H R; Callicott, J H; Sommer, T

    2009-01-01

    In recent years, an array of brain mapping techniques has been successfully employed to link individual differences in circuit function or structure in the living human brain with individual variations in the human genome. Several proof-of-principle studies provided converging evidence that brain...... imaging can establish important links between genes and behaviour. The overarching goal is to use genetically informed brain imaging to pinpoint neurobiological mechanisms that contribute to behavioural intermediate phenotypes or disease states. This special issue on "Linking Genes to Brain Function...... in Health and Disease" provides an overview over how the "imaging genetics" approach is currently applied in the various fields of systems neuroscience to reveal the genetic underpinnings of complex behaviours and brain diseases. While the rapidly emerging field of imaging genetics holds great promise...

  1. Anismus as a cause of functional constipation: Experience from Serbia

    Directory of Open Access Journals (Sweden)

    Jovanović Igor

    2015-01-01

    Full Text Available Backround/Aim. Anismus is paradoxal pressure increase or pressure decrease less than 20% of external anal sphincter during defecation straining. This study analyzed the presence of anismus as within a group of patients with the positive Rome III criteria for functional constipation. We used anorectal manometry as the determination method for anismus. Methods. We used anorectal waterperfused manometry in 60 patients with obstructive defecation defined by the Rome III criteria for functional constipation. We also analyzed anorectal function in 30 healthy subjects. Results. The presence of anismus is more frequent in the group of patients with obstructive defecation compared to the control group (a highly statistically significant difference, p < 0.01. Furthermore, we found that the Rome III criteria for functional constipation showed 90% accuracy in predicting obstructive defecation. We analyzed the correlation of anismus with the presence of weak external anal sphincter, rectal sensibility disorders, enlarged piles, diverticular disease and anatomic variations of colon. We found no correlation between them in any of these cases. Conclusion. There is a significant correlation between anismus and positive Rome III criteria for functional constipation. Anorectal manometry should be performed in all patients with the positive Rome III criteria for functional constipation.

  2. Societal preferences for the return of incidental findings from clinical genomic sequencing: a discrete-choice experiment.

    Science.gov (United States)

    Regier, Dean A; Peacock, Stuart J; Pataky, Reka; van der Hoek, Kimberly; Jarvik, Gail P; Hoch, Jeffrey; Veenstra, David

    2015-04-07

    An important challenge with the application of next-generation sequencing technology is the possibility of uncovering incidental genomic findings. A paucity of evidence on personal utility for incidental findings has hindered clinical guidelines. Our objective was to estimate personal utility for complex information derived from incidental genomic findings. We used a discrete-choice experiment to evaluate participants' personal utility for the following attributes: disease penetrance, disease treatability, disease severity, carrier status and cost. Study participants were drawn from the Canadian public. We analyzed the data with a mixed logit model. In total, 1200 participants completed our questionnaire (available in English and French). Participants valued receiving information about high-penetrance disorders but expressed disutility for receiving information on low-penetrance disorders. The average willingness to pay was $445 (95% confidence interval [CI] $322-$567) to receive incidental findings in a scenario where clinicians returned information about high-penetrance, medically treatable disorders, but only 66% of participants (95% CI 63%-71%) indicated that they would choose to receive information in that scenario. On average, participants placed an important value ($725, 95% CI $600-$850) on having a choice about what type of findings they would receive, including receipt of information about high-penetrance, treatable disorders or receipt of information about high-penetrance disorders with or without available treatment. The predicted uptake of that scenario was 76% (95% CI 72%-79%). Most participants valued receiving incidental findings, but personal utility depended on the type of finding, and not all participants wanted to receive incidental results, regardless of the potential health implications. These results indicate that to maximize benefit, participant-level preferences should inform the decision about whether to return incidental findings. © 2015

  3. Sexual Experience in Female Rodents: Cellular Mechanisms and Functional Consequences

    Science.gov (United States)

    Meisel, Robert L.; Mullins, Amanda J.

    2007-01-01

    The neurobiology of female sexual behavior has largely focused on mechanisms of hormone action on nerve cells and how these effects translate into the display of copulatory motor patterns. Of equal importance, though less studied, are some of the consequences of engaging in sexual behavior, including the rewarding properties of sexual interactions and how sexual experience alters copulatory efficiency. This review summarizes the effects of sexual experience on reward processes and copulation in female Syrian hamsters. Neural correlates of these sexual interactions include long-term cellular changes in dopamine transmission and postsynaptic signaling pathways related to neuronal plasticity (e.g., dendritic spine formation). Taken together, these studies suggest that sexual experience enhances the reinforcing properties of sexual behavior, which has the coincident outcome of increasing copulatory efficiency in a way that can increase reproductive success. PMID:16978593

  4. Editor's Highlight: High-Throughput Functional Genomics Identifies Modulators of TCE Metabolite Genotoxicity and Candidate Susceptibility Genes.

    Science.gov (United States)

    De La Rosa, Vanessa Y; Asfaha, Jonathan; Fasullo, Michael; Loguinov, Alex; Li, Peng; Moore, Lee E; Rothman, Nathaniel; Nakamura, Jun; Swenberg, James A; Scelo, Ghislaine; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D

    2017-11-01

    Trichloroethylene (TCE), an industrial chemical and environmental contaminant, is a human carcinogen. Reactive metabolites are implicated in renal carcinogenesis associated with TCE exposure, yet the toxicity mechanisms of these metabolites and their contribution to cancer and other adverse effects remain unclear. We employed an integrated functional genomics approach that combined functional profiling studies in yeast and avian DT40 cell models to provide new insights into the specific mechanisms contributing to toxicity associated with TCE metabolites. Genome-wide profiling studies in yeast identified the error-prone translesion synthesis (TLS) pathway as an import mechanism in response to TCE metabolites. The role of TLS DNA repair was further confirmed by functional profiling in DT40 avian cell lines, but also revealed that TLS and homologous recombination DNA repair likely play competing roles in cellular susceptibility to TCE metabolites in higher eukaryotes. These DNA repair pathways are highly conserved between yeast, DT40, and humans. We propose that in humans, mutagenic TLS is favored over homologous recombination repair in response to TCE metabolites. The results of these studies contribute to the body of evidence supporting a mutagenic mode of action for TCE-induced renal carcinogenesis mediated by reactive metabolites in humans. Our approach illustrates the potential for high-throughput in vitro functional profiling in yeast to elucidate toxicity pathways (molecular initiating events, key events) and candidate susceptibility genes for focused study. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Do emotional and functional customer experiences influence customer satisfaction, recommendation and loyalty?

    OpenAIRE

    Claeys, Christel; Roozen, Irene

    2012-01-01

    This paper investigates whether both the functional and the emotional component of customer experiences contribute to customer satisfaction, recommendation and loyalty. The research is conducted in two different contexts: hedonic experiences and services. The research results show that both components explain satisfaction, recommendation and loyalty of the customers, however the impact differs according to the context of the experience. A negative functional experience is significantly more s...

  6. A genome-wide gene function prediction resource for Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Han Yan

    2010-08-01

    Full Text Available Predicting gene functions by integrating large-scale biological data remains a challenge for systems biology. Here we present a resource for Drosophila melanogaster gene function predictions. We trained function-specific classifiers to optimize the influence of different biological datasets for each functional category. Our model predicted GO terms and KEGG pathway memberships for Drosophila melanogaster genes with high accuracy, as affirmed by cross-validation, supporting literature evidence, and large-scale RNAi screens. The resulting resource of prioritized associations between Drosophila genes and their potential functions offers a guide for experimental investigations.

  7. Multi detector input and function generator for polarized neutron experiments

    International Nuclear Information System (INIS)

    De Blois, J.; Beunes, A.J.H.; Ende, P. v.d.; Osterholt, E.A.; Rekveldt, M.T.; Schipper, M.N.; Velthuis, S.G.E. te

    1998-01-01

    In this paper a VME module is described for static or stroboscopic measurements with a neutron scattering instrument, consisting essentially of a series of up to 64 3 He neutron detectors around a sample environment. Each detector is provided with an amplifier and a discriminator to separate the neutrons from noise. To reduce the wiring, the discriminator outputs are connected to the module by coding boxes. Two 16-inputs to one-output coding boxes generate serial output codes on a fiber optic connection. This basically fast connection reduces the dead time introduced by the coding, and the influence of environmental noise. With stroboscopic measurements a periodic function is used to affect the sample surrounded by a field coil. Each detected neutron is labeled with a data label containing the detector number and the time of detection with respect to a time reference. The data time base can be programmed on a linear or a nonlinear scale. An external source or an attribute of the periodic function may generate the time reference pulse. A 12-bit DAC connected to the output of an 8 K, 16-bits memory, where the pattern of the current has been stored before, generates the function. The function memory is scanned by the programmable function time base. Attributes are set by the four remaining bits of the memory. One separate detector input connects a monitor detector in the neutron beam with a 32-bit counter/timer that provides measuring on a preset count, preset time or preset frame. (orig.)

  8. Phytozome Comparative Plant Genomics Portal

    Energy Technology Data Exchange (ETDEWEB)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  9. The Eukaryotic Pathogen Databases: a functional genomic resource integrating data from human and veterinary parasites.

    Science.gov (United States)

    Harb, Omar S; Roos, David S

    2015-01-01

    Over the past 20 years, advances in high-throughput biological techniques and the availability of computational resources including fast Internet access have resulted in an explosion of large genome-scale data sets "big data." While such data are readily available for download and personal use and analysis from a variety of repositories, often such analysis requires access to seldom-available computational skills. As a result a number of databases have emerged to provide scientists with online tools enabling the interrogation of data without the need for sophisticated computational skills beyond basic knowledge of Internet browser utility. This chapter focuses on the Eukaryotic Pathogen Databases (EuPathDB: http://eupathdb.org) Bioinformatic Resource Center (BRC) and illustrates some of the available tools and methods.

  10. Combining Functional and Structural Genomics to Sample the Essential Burkholderia Structome

    Science.gov (United States)

    Baugh, Loren; Gallagher, Larry A.; Patrapuvich, Rapatbhorn; Clifton, Matthew C.; Gardberg, Anna S.; Edwards, Thomas E.; Armour, Brianna; Begley, Darren W.; Dieterich, Shellie H.; Dranow, David M.; Abendroth, Jan; Fairman, James W.; Fox, David; Staker, Bart L.; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W.; Stacy, Robin; Myler, Peter J.; Stewart, Lance J.; Manoil, Colin; Van Voorhis, Wesley C.

    2013-01-01

    Background The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. Methodology/Principal Findings We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an “ortholog rescue” strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. Conclusions/Significance This collection of structures, solubility and experimental essentiality data

  11. Combining functional and structural genomics to sample the essential Burkholderia structome.

    Directory of Open Access Journals (Sweden)

    Loren Baugh

    Full Text Available The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite.We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq. We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail.This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against

  12. Combining functional and structural genomics to sample the essential Burkholderia structome.

    Science.gov (United States)

    Baugh, Loren; Gallagher, Larry A; Patrapuvich, Rapatbhorn; Clifton, Matthew C; Gardberg, Anna S; Edwards, Thomas E; Armour, Brianna; Begley, Darren W; Dieterich, Shellie H; Dranow, David M; Abendroth, Jan; Fairman, James W; Fox, David; Staker, Bart L; Phan, Isabelle; Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Nguyen, Mary Trang; Napuli, Alberto; Barrett, Lynn; Buchko, Garry W; Stacy, Robin; Myler, Peter J; Stewart, Lance J; Manoil, Colin; Van Voorhis, Wesley C

    2013-01-01

    The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases

  13. Diagnosis and management of functional neurological symptoms: The Dutch experience

    NARCIS (Netherlands)

    de Schipper, Laura J.; Vermeulen, Marinus; Eeckhout, Augustinus M.; Foncke, Elisabeth M. J.

    2014-01-01

    Functional neurological symptoms (FNS) were considered as a psychiatric disorder at the beginning of the 20th century (conversion disorder). Psychiatrists performed diagnosis and treatment throughout most of the past century in the Netherlands, but in the latest decades patients were usually firstly

  14. Diagnosis and management of functional neurological symptoms: The Dutch experience

    NARCIS (Netherlands)

    de Schipper, L.J.; Vermeulen, M; Eeckhout, A.M.; Foncke, E.M.J.

    2014-01-01

    Objectives Functional neurological symptoms (FNS) were considered as a psychiatric disorder at the beginning of the 20th century (conversion disorder). Psychiatrists performed diagnosis and treatment throughout most of the past century in the Netherlands, but in the latest decades patients were

  15. Transcriptional interference networks coordinate the expression of functionally-related genes clustered in the same genomic loci

    Directory of Open Access Journals (Sweden)

    Zsolt eBoldogkoi

    2012-07-01

    Full Text Available The regulation of gene expression is essential for normal functioning of biological systems in every form of life. Gene expression is primarily controlled at the level of transcription, especially at the phase of initiation. Non-coding RNAs are one of the major players at every level of genetic regulation, including the control of chromatin organisation, transcription, various post-transcriptional processes and translation. In this study, the Transcriptional Interference Network (TIN hypothesis was put forward in an attempt to explain the global expression of antisense RNAs and the overall occurrence of tandem gene clusters in the genomes of various biological systems ranging from viruses to mammalian cells. The TIN hypothesis suggests the existence of a novel layer of genetic regulation, based on the interactions between the transcriptional machineries of neighbouring genes at their overlapping regions, which are assumed to play a fundamental role in coordinating gene expression within a cluster of functionally-linked genes. It is claimed that the transcriptional overlaps between adjacent genes are much more widespread in genomes than is thought today. The Waterfall model of the TIN hypothesis postulates a unidirectional effect of upstream genes on the transcription of downstream genes within a cluster of tandemly-arrayed genes, while the Seesaw model proposes a mutual interdependence of gene expression between the oppositely-oriented genes. The TIN represents an auto-regulatory system with an exquisitely timed and highly synchronised cascade of gene expression in functionally-linked genes located in close physical proximity to each other. In this study, we focused on herpesviruses. The reason for this lies in the compressed nature of viral genes, which allows a tight regulation and an easier investigation of the transcriptional interactions between genes. However, I believe that the same or similar principles can be applied to cellular

  16. Characterization of Aeromonas hydrophila Wound Pathotypes by Comparative Genomic and Functional Analyses of Virulence Genes

    Science.gov (United States)

    Grim, Christopher J.; Kozlova, Elena V.; Sha, Jian; Fitts, Eric C.; van Lier, Christina J.; Kirtley, Michelle L.; Joseph, Sandeep J.; Read, Timothy D.; Burd, Eileen M.; Tall, Ben D.; Joseph, Sam W.; Horneman, Amy J.; Chopra, Ashok K.; Shak, Joshua R.

    2013-01-01

    ABSTRACT Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966T, and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966T. The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966T and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. PMID:23611906

  17. Genomic structure and promoter functional analysis of GnRH3 gene in large yellow croaker (Larimichthys crocea).

    Science.gov (United States)

    Huang, Wei; Zhang, Jianshe; Liao, Zhi; Lv, Zhenming; Wu, Huifei; Zhu, Aiyi; Wu, Changwen

    2016-01-15

    Gonadotropin-releasing hormone III (GnRH3) is considered to be a key neurohormone in fish reproduction control. In