WorldWideScience

Sample records for functional connectivity predict

  1. Link prediction boosted psychiatry disorder classification for functional connectivity network

    Science.gov (United States)

    Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang

    2017-02-01

    Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.

  2. Intrinsic functional connectivity predicts individual differences in distractibility.

    Science.gov (United States)

    Poole, Victoria N; Robinson, Meghan E; Singleton, Omar; DeGutis, Joseph; Milberg, William P; McGlinchey, Regina E; Salat, David H; Esterman, Michael

    2016-06-01

    Distractor suppression, the ability to filter and ignore task-irrelevant information, is critical for efficient task performance. While successful distractor suppression relies on a balance of activity in neural networks responsible for attention maintenance (dorsal attention network; DAN), reorientation (ventral attention network; VAN), and internal thought (default mode network, DMN), the degree to which intrinsic connectivity within and between these networks contributes to individual differences in distractor suppression ability is not well-characterized. For the purposes of understanding these interactions, the current study collected resting-state fMRI data from 32 Veterans and, several months later (7±5 months apart), performance on the additional singleton paradigm, a measure of distractor suppression. Using multivariate support vector regression models composed of resting state connectivity between regions of the DAN, VAN, and DMN, and a leave-one-subject-out cross-validation procedure, we were able to predict an individual's task performance, yielding a significant correlation between the actual and predicted distractor suppression (r=0.48, p=0.0053). Network-level analyses revealed that greater within-network DMN connectivity was predictive of better distractor suppression, while greater connectivity between the DMN and attention networks was predictive of poorer distractor suppression. The strongest connection hubs were determined to be the right frontal eye field and temporoparietal junction of the DAN and VAN, respectively, and medial (ventromedial prefrontal and posterior cingulate cortices) and bilateral prefrontal regions of the DMN. These results are amongst a small but growing number of studies demonstrating that resting state connectivity is related to stable individual differences in cognitive ability, and suggest that greater integrity and independence of the DMN is related to better attentional ability.

  3. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation.

    Science.gov (United States)

    Yeo, B T Thomas; Tandi, Jesisca; Chee, Michael W L

    2015-05-01

    Significant inter-individual differences in vigilance decline following sleep deprivation exist. We characterized functional connectivity in 68 healthy young adult participants in rested wakefulness and following a night of total sleep deprivation. After whole brain signal regression, functionally connected cortical networks during the well-rested state exhibited reduced correlation following sleep deprivation, suggesting that highly integrated brain regions become less integrated during sleep deprivation. In contrast, anti-correlations in the well-rested state became less so following sleep deprivation, suggesting that highly segregated networks become less segregated during sleep deprivation. Subjects more resilient to vigilance decline following sleep deprivation showed stronger anti-correlations among several networks. The weaker anti-correlations overlapped with connectivity alterations following sleep deprivation. Resilient individuals thus evidence clearer separation of highly segregated cortical networks in the well-rested state. In contrast to corticocortical connectivity, subcortical-cortical connectivity was comparable across resilient and vulnerable groups despite prominent state-related changes in both groups. Because sleep deprivation results in a significant elevation of whole brain signal amplitude, the aforesaid signal changes and group contrasts may be masked in analyses omitting their regression, suggesting possible value in regressing whole brain signal in certain experimental contexts.

  4. The anatomical distance of functional connections predicts brain network topology in health and schizophrenia.

    Science.gov (United States)

    Alexander-Bloch, Aaron F; Vértes, Petra E; Stidd, Reva; Lalonde, François; Clasen, Liv; Rapoport, Judith; Giedd, Jay; Bullmore, Edward T; Gogtay, Nitin

    2013-01-01

    The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive "pruning" of short-distance functional connections in schizophrenia.

  5. Resting-state striato-frontal functional connectivity is sensitive to DAT1 genotype and predicts executive function.

    Science.gov (United States)

    Gordon, Evan M; Devaney, Joseph M; Bean, Stephanie; Vaidya, Chandan J

    2015-02-01

    Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Structural and Functional Brain Connectivity of People with Obesity and Prediction of Body Mass Index Using Connectivity.

    Directory of Open Access Journals (Sweden)

    Bo-yong Park

    Full Text Available Obesity is a medical condition affecting billions of people. Various neuroimaging methods including magnetic resonance imaging (MRI have been used to obtain information about obesity. We adopted a multi-modal approach combining diffusion tensor imaging (DTI and resting state functional MRI (rs-fMRI to incorporate complementary information and thus better investigate the brains of non-healthy weight subjects. The objective of this study was to explore multi-modal neuroimaging and use it to predict a practical clinical score, body mass index (BMI. Connectivity analysis was applied to DTI and rs-fMRI. Significant regions and associated imaging features were identified based on group-wise differences between healthy weight and non-healthy weight subjects. Six DTI-driven connections and 10 rs-fMRI-driven connectivities were identified. DTI-driven connections better reflected group-wise differences than did rs-fMRI-driven connectivity. We predicted BMI values using multi-modal imaging features in a partial least-square regression framework (percent error 15.0%. Our study identified brain regions and imaging features that can adequately explain BMI. We identified potentially good imaging biomarker candidates for obesity-related diseases.

  7. Organization of intrinsic functional brain connectivity predicts decisions to reciprocate social behavior.

    Science.gov (United States)

    Cáceda, Ricardo; James, G Andrew; Gutman, David A; Kilts, Clinton D

    2015-10-01

    Reciprocation of trust exchanges is central to the development of interpersonal relationships and societal well-being. Understanding how humans make pro-social and self-centered decisions in dyadic interactions and how to predict these choices has been an area of great interest in social neuroscience. A functional magnetic resonance imaging (fMRI) based technology with potential clinical application is the study of resting state brain connectivity. We tested if resting state connectivity may predict choice behavior in a social context. Twenty-nine healthy adults underwent resting state fMRI before performing the Trust Game, a two person monetary exchange game. We assessed the ability of patterns of resting-state functional brain organization, demographic characteristics and a measure of moral development, the Defining Issues Test (DIT-2), to predict individuals' decisions to reciprocate money during the Trust Game. Subjects reciprocated in 74.9% of the trials. Independent component analysis identified canonical resting-state networks. Increased functional connectivity between the salience (bilateral insula/anterior cingulate) and central executive (dorsolateral prefrontal cortex/ posterior parietal cortex) networks significantly predicted the choice to reciprocate pro-social behavior (R(2) = 0.20, p = 0.015). Stepwise linear regression analysis showed that functional connectivity between these two networks (p = 0.002), age (p = 0.007) and DIT-2 personal interest schema score (p = 0.032) significantly predicted reciprocity behavior (R(2) = 0.498, p = 0.001). Intrinsic functional connectivity between neural networks in conjunction with other individual characteristics may be a valuable tool for predicting performance during social interactions. Future replication and temporal extension of these findings may bolster the understanding of decision making in clinical, financial and marketing settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Resting-brain functional connectivity predicted by analytic measures of network communication

    Science.gov (United States)

    Goñi, Joaquín; van den Heuvel, Martijn P.; Avena-Koenigsberger, Andrea; Velez de Mendizabal, Nieves; Betzel, Richard F.; Griffa, Alessandra; Hagmann, Patric; Corominas-Murtra, Bernat; Thiran, Jean-Philippe; Sporns, Olaf

    2014-01-01

    The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures—search information and path transitivity—which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways. PMID:24379387

  9. Functional connectivity estimated from intracranial EEG predicts surgical outcome in intractable temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Arun R Antony

    Full Text Available This project aimed to determine if a correlation-based measure of functional connectivity can identify epileptogenic zones from intracranial EEG signals, as well as to investigate the prognostic significance of such a measure on seizure outcome following temporal lobe lobectomy. To this end, we retrospectively analyzed 23 adult patients with intractable temporal lobe epilepsy (TLE who underwent an invasive stereo-EEG (SEEG evaluation between January 2009 year and January 2012. A follow-up of at least one year was required. The primary outcome measure was complete seizure-freedom at last follow-up. Functional connectivity between two areas in the temporal lobe that were sampled by two SEEG electrode contacts was defined as Pearson's correlation coefficient of interictal activity between those areas. SEEG signals were filtered between 5 and 50 Hz prior to computing this correlation. The mean and standard deviation of the off diagonal elements in the connectivity matrix were also calculated. Analysis of the mean and standard deviation of the functional connections for each patient reveals that 90% of the patients who had weak and homogenous connections were seizure free one year after temporal lobectomy, whereas 85% of the patients who had stronger and more heterogeneous connections within the temporal lobe had recurrence of seizures. This suggests that temporal lobectomy is ineffective in preventing seizure recurrence for patients in whom the temporal lobe is characterized by weakly connected, homogenous networks. This pilot study shows promising potential of a simple measure of functional brain connectivity to identify epileptogenicity and predict the outcome of epilepsy surgery.

  10. Associative Encoding and Retrieval Are Predicted by Functional Connectivity in Distinct Hippocampal Area CA1 Pathways

    Science.gov (United States)

    Duncan, Katherine; Tompary, Alexa

    2014-01-01

    Determining how the hippocampus supports the unique demands of memory encoding and retrieval is fundamental for understanding the biological basis of episodic memory. One possibility proposed by theoretical models is that the distinct computational demands of encoding and retrieval are accommodated by shifts in the functional interaction between the hippocampal CA1 subregion and its input structures. However, empirical tests of this hypothesis are lacking. To test this in humans, we used high-resolution fMRI to measure functional connectivity between hippocampal area CA1 and regions of the medial temporal lobe and midbrain during extended blocks of associative encoding and retrieval tasks. We found evidence for a double dissociation between the pathways supporting successful encoding and retrieval. Specifically, during the associative encoding task, but not the retrieval task, functional connectivity only between area CA1 and the ventral tegmental area predicted associative long-term memory. In contrast, connectivity between area CA1 and DG/CA3 was greater, on average, during the retrieval task compared with the encoding task, and, importantly, the strength of this connectivity significantly correlated with retrieval success. Together, these findings serve as an important first step toward understanding how the demands of fundamental memory processes may be met by changes in the relative strength of connectivity within hippocampal pathways. PMID:25143600

  11. Intrinsic Functional Connectivity Patterns Predict Consciousness Level and Recovery Outcome in Acquired Brain Injury

    Science.gov (United States)

    Wu, Xuehai; Zou, Qihong; Hu, Jin; Tang, Weijun; Mao, Ying; Gao, Liang; Zhu, Jianhong; Jin, Yi; Wu, Xin; Lu, Lu; Zhang, Yaojun; Zhang, Yao; Dai, Zhengjia; Gao, Jia-Hong; Weng, Xuchu; Northoff, Georg; Giacino, Joseph T.; He, Yong

    2015-01-01

    For accurate diagnosis and prognostic prediction of acquired brain injury (ABI), it is crucial to understand the neurobiological mechanisms underlying loss of consciousness. However, there is no consensus on which regions and networks act as biomarkers for consciousness level and recovery outcome in ABI. Using resting-state fMRI, we assessed intrinsic functional connectivity strength (FCS) of whole-brain networks in a large sample of 99 ABI patients with varying degrees of consciousness loss (including fully preserved consciousness state, minimally conscious state, unresponsive wakefulness syndrome/vegetative state, and coma) and 34 healthy control subjects. Consciousness level was evaluated using the Glasgow Coma Scale and Coma Recovery Scale-Revised on the day of fMRI scanning; recovery outcome was assessed using the Glasgow Outcome Scale 3 months after the fMRI scanning. One-way ANOVA of FCS, Spearman correlation analyses between FCS and the consciousness level and recovery outcome, and FCS-based multivariate pattern analysis were performed. We found decreased FCS with loss of consciousness primarily distributed in the posterior cingulate cortex/precuneus (PCC/PCU), medial prefrontal cortex, and lateral parietal cortex. The FCS values of these regions were significantly correlated with consciousness level and recovery outcome. Multivariate support vector machine discrimination analysis revealed that the FCS patterns predicted whether patients with unresponsive wakefulness syndrome/vegetative state and coma would regain consciousness with an accuracy of 81.25%, and the most discriminative region was the PCC/PCU. These findings suggest that intrinsic functional connectivity patterns of the human posteromedial cortex could serve as a potential indicator for consciousness level and recovery outcome in individuals with ABI. SIGNIFICANCE STATEMENT Varying degrees of consciousness loss and recovery are commonly observed in acquired brain injury patients, yet the

  12. Interhemispheric Resting-State Functional Connectivity Predicts Severity of Idiopathic Normal Pressure Hydrocephalus.

    Science.gov (United States)

    Ogata, Yousuke; Ozaki, Akihiko; Ota, Miho; Oka, Yurie; Nishida, Namiko; Tabu, Hayato; Sato, Noriko; Hanakawa, Takashi

    2017-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is characterized by a clinical triad (gait disturbance, dementia, and urinary incontinence), and by radiological findings of enlarged ventricles reflecting disturbance of central spinal fluid circulation. A diagnosis of iNPH is sometimes challenging, and the pathophysiological mechanisms underlying the clinical symptoms of iNPH remain largely unknown. Here, we used an emerging MRI technique, resting-state functional connectivity MRI (rsfcMRI), to develop a subsidiary diagnostic technique and to explore the underlying pathophysiological mechanisms of iNPH. rsfcMRI data were obtained from 11 patients with iNPH and 11 age-matched healthy volunteers, yielding rsfcMRI-derived functional connectivity (FC) from both groups. A linear support vector machine classifier was trained to distinguish the patterns of FCs of the patients with iNPH from those of the healthy volunteers. After dimensional reduction, the support vector machine successfully classified the two groups with an accuracy of 80%. Moreover, we found that rsfcMRI-derived FC carried information to predict the severity of the triad in iNPH. FCs relevant to the classification of severity were mainly based on interhemispheric connectivity, suggesting that disruption of the corpus callosum fibers due to ventricular enlargement may explain the triad of iNPH. The present results support the usefulness of rsfcMRI as a tool to understand pathophysiology of iNPH, and also to help with its clinical diagnosis.

  13. Interhemispheric Resting-State Functional Connectivity Predicts Severity of Idiopathic Normal Pressure Hydrocephalus

    Directory of Open Access Journals (Sweden)

    Yousuke Ogata

    2017-09-01

    Full Text Available Idiopathic normal pressure hydrocephalus (iNPH is characterized by a clinical triad (gait disturbance, dementia, and urinary incontinence, and by radiological findings of enlarged ventricles reflecting disturbance of central spinal fluid circulation. A diagnosis of iNPH is sometimes challenging, and the pathophysiological mechanisms underlying the clinical symptoms of iNPH remain largely unknown. Here, we used an emerging MRI technique, resting-state functional connectivity MRI (rsfcMRI, to develop a subsidiary diagnostic technique and to explore the underlying pathophysiological mechanisms of iNPH. rsfcMRI data were obtained from 11 patients with iNPH and 11 age-matched healthy volunteers, yielding rsfcMRI-derived functional connectivity (FC from both groups. A linear support vector machine classifier was trained to distinguish the patterns of FCs of the patients with iNPH from those of the healthy volunteers. After dimensional reduction, the support vector machine successfully classified the two groups with an accuracy of 80%. Moreover, we found that rsfcMRI-derived FC carried information to predict the severity of the triad in iNPH. FCs relevant to the classification of severity were mainly based on interhemispheric connectivity, suggesting that disruption of the corpus callosum fibers due to ventricular enlargement may explain the triad of iNPH. The present results support the usefulness of rsfcMRI as a tool to understand pathophysiology of iNPH, and also to help with its clinical diagnosis.

  14. Intrinsic functional connectivity between amygdala and hippocampus during rest predicts enhanced memory under stress.

    Science.gov (United States)

    de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J

    2017-01-01

    Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Regional functional connectivity predicts distinct cognitive impairments in Alzheimer’s disease spectrum

    Directory of Open Access Journals (Sweden)

    Kamalini G. Ranasinghe

    2014-01-01

    Full Text Available Understanding neural network dysfunction in neurodegenerative disease is imperative to effectively develop network-modulating therapies. In Alzheimer’s disease (AD, cognitive decline associates with deficits in resting-state functional connectivity of diffuse brain networks. The goal of the current study was to test whether specific cognitive impairments in AD spectrum correlate with reduced functional connectivity of distinct brain regions. We recorded resting-state functional connectivity of alpha-band activity in 27 patients with AD spectrum − 22 patients with probable AD (5 logopenic variant primary progressive aphasia, 7 posterior cortical atrophy, and 10 early-onset amnestic/dysexecutive AD and 5 patients with mild cognitive impairment due to AD. We used magnetoencephalographic imaging (MEGI to perform an unbiased search for regions where patterns of functional connectivity correlated with disease severity and cognitive performance. Functional connectivity measured the strength of coherence between a given region and the rest of the brain. Decreased neural connectivity of multiple brain regions including the right posterior perisylvian region and left middle frontal cortex correlated with a higher degree of disease severity. Deficits in executive control and episodic memory correlated with reduced functional connectivity of the left frontal cortex, whereas visuospatial impairments correlated with reduced functional connectivity of the left inferior parietal cortex. Our findings indicate that reductions in region-specific alpha-band resting-state functional connectivity are strongly correlated with, and might contribute to, specific cognitive deficits in AD spectrum. In the future, MEGI functional connectivity could be an important biomarker to map and follow defective networks in the early stages of AD.

  16. Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals

    Directory of Open Access Journals (Sweden)

    Yasmin Zakiniaeiz

    2017-01-01

    Full Text Available Alcohol dependence is a chronic relapsing illness. Alcohol and stress cues have consistently been shown to increase craving and relapse risk in recovering alcohol dependent (AUD patients. However, differences in functional connectivity in response to these cues have not been studied using data-driven approaches. Here, voxel-wise connectivity is used in a whole-brain investigation of functional connectivity differences associated with alcohol and stress cues and to examine whether these differences are related to subsequent relapse. In Study 1, 45, 4- to 8-week abstinent, recovering AUD patients underwent functional magnetic resonance imaging during individualized imagery of alcohol, stress, and neutral cues. Relapse measures were collected prospectively for 90 days post-discharge from inpatient treatment. AUD patients showed blunted anterior (ACC, mid (MCC and posterior cingulate cortex (PCC, voxel-wise connectivity responses to stress compared to neutral cues and blunted PCC response to alcohol compared to neutral cues. Using Cox proportional hazard regression, weaker connectivity in ACC and MCC during neutral exposure was associated with longer time to relapse (better recovery outcome. Similarly, greater connectivity in PCC during alcohol-cue compared to stress cue was associated with longer time to relapse. In Study 2, a sub-group of 30 AUD patients were demographically-matched to 30 healthy control (HC participants for group comparisons. AUD compared to HC participants showed reduced cingulate connectivity during alcohol and stress cues. Using novel data-driven approaches, the cingulate cortex emerged as a key region in the disruption of functional connectivity during alcohol and stress-cue processing in AUD patients and as a marker of subsequent alcohol relapse.

  17. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards

    Directory of Open Access Journals (Sweden)

    Mark Plitt

    2015-01-01

    Conclusions: While individuals can be classified as having ASD with statistically significant accuracy from their rs-fMRI scans alone, this method falls short of biomarker standards. Classification methods provided further evidence that ASD functional connectivity is characterized by dysfunction of large-scale functional networks, particularly those involved in social information processing.

  18. Amygdala functional connectivity with medial prefrontal cortex at rest predicts the positivity effect in older adults' memory.

    Science.gov (United States)

    Sakaki, Michiko; Nga, Lin; Mather, Mara

    2013-08-01

    As people get older, they tend to remember more positive than negative information. This age-by-valence interaction has been called "positivity effect." The current study addressed the hypotheses that baseline functional connectivity at rest is predictive of older adults' brain activity when learning emotional information and their positivity effect in memory. Using fMRI, we examined the relationship among resting-state functional connectivity, subsequent brain activity when learning emotional faces, and individual differences in the positivity effect (the relative tendency to remember faces expressing positive vs. negative emotions). Consistent with our hypothesis, older adults with a stronger positivity effect had increased functional coupling between amygdala and medial PFC (MPFC) during rest. In contrast, younger adults did not show the association between resting connectivity and memory positivity. A similar age-by-memory positivity interaction was also found when learning emotional faces. That is, memory positivity in older adults was associated with (a) enhanced MPFC activity when learning emotional faces and (b) increased negative functional coupling between amygdala and MPFC when learning negative faces. In contrast, memory positivity in younger adults was related to neither enhanced MPFC activity to emotional faces, nor MPFC-amygdala connectivity to negative faces. Furthermore, stronger MPFC-amygdala connectivity during rest was predictive of subsequent greater MPFC activity when learning emotional faces. Thus, emotion-memory interaction in older adults depends not only on the task-related brain activity but also on the baseline functional connectivity.

  19. Amygdala perfusion is predicted by its functional connectivity with the ventromedial prefrontal cortex and negative affect.

    Directory of Open Access Journals (Sweden)

    Garth Coombs

    Full Text Available BACKGROUND: Previous studies have shown that the activity of the amygdala is elevated in people experiencing clinical and subclinical levels of anxiety and depression (negative affect. It has been proposed that a reduction in inhibitory input to the amygdala from the prefrontal cortex and resultant over-activity of the amygdala underlies this association. Prior studies have found relationships between negative affect and 1 amygdala over-activity and 2 reduced amygdala-prefrontal connectivity. However, it is not known whether elevated amygdala activity is associated with decreased amygdala-prefrontal connectivity during negative affect states. METHODS: Here we used resting-state arterial spin labeling (ASL and blood oxygenation level dependent (BOLD functional magnetic resonance imaging (fMRI in combination to test this model, measuring the activity (regional cerebral blood flow, rCBF and functional connectivity (correlated fluctuations in the BOLD signal of one subregion of the amygdala with strong connections with the prefrontal cortex, the basolateral nucleus (BLA, and subsyndromal anxiety levels in 38 healthy subjects. RESULTS: BLA rCBF was strongly correlated with anxiety levels. Moreover, both BLA rCBF and anxiety were inversely correlated with the strength of the functional coupling of the BLA with the caudal ventromedial prefrontal cortex. Lastly, BLA perfusion was found to be a mediator of the relationship between BLA-prefrontal connectivity and anxiety. CONCLUSIONS: These results show that both perfusion of the BLA and a measure of its functional coupling with the prefrontal cortex directly index anxiety levels in healthy subjects, and that low BLA-prefrontal connectivity may lead to increased BLA activity and resulting anxiety. Thus, these data provide key evidence for an often-cited circuitry model of negative affect, using a novel, multi-modal imaging approach.

  20. Strength of Structural and Functional Frontostriatal Connectivity Predicts Self-Control in the Healthy Elderly

    Science.gov (United States)

    Hänggi, Jürgen; Lohrey, Corinna; Drobetz, Reinhard; Baetschmann, Hansruedi; Forstmeier, Simon; Maercker, Andreas; Jäncke, Lutz

    2016-01-01

    Self-regulation refers to the successful use of executive functions and initiation of top-down processes to control one's thoughts, behavior, and emotions, and it is crucial to perform self-control. Self-control is needed to overcome impulses and can be assessed by delay of gratification (DoG) and delay discounting (DD) paradigms. In children/adolescents, good DoG/DD ability depends on the maturity of frontostriatal connectivity, and its decline in strength with advancing age might adversely affect self-control because prefrontal brain regions are more prone to normal age-related atrophy than other regions. Here, we aimed at highlighting the relationship between frontostriatal connectivity strength and DoG performance in advanced age. We recruited 40 healthy elderly individuals (mean age 74.0 ± 7.7 years) and assessed the DoG ability using the German version of the DoG test for adults in addition to the delay discounting (DD) paradigm. Based on diffusion-weighted and resting-state functional magnetic resonance imaging data, respectively, the structural and functional whole-brain connectome were reconstructed based on 90 different brain regions of interest in addition to a 12-node frontostriatal DoG-specific network and the resulting connectivity matrices were subjected to network-based statistics. The 90-nodes whole-brain connectome analyses revealed subnetworks significantly associated with DoG and DD with a preponderance of frontostriatal nodes involved suggesting a high specificity of the findings. Structural and functional connectivity strengths between the putamen, caudate nucleus, and nucleus accumbens on the one hand and orbitofrontal, dorsal, and ventral lateral prefrontal cortices on the other hand showed strong positive correlations with DoG and negative correlations with DD corrected for age, sex, intracranial volume, and head motion parameters. These associations cannot be explained by differences in impulsivity and executive functioning. This pattern

  1. Resting state functional connectivity within the cingulate cortex jointly predicts agreeableness and stressor-evoked cardiovascular reactivity.

    Science.gov (United States)

    Ryan, John P; Sheu, Lei K; Gianaros, Peter J

    2011-03-01

    Exaggerated cardiovascular reactivity to stress is a risk factor for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of corticolimbic brain systems, particularly areas of the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the associations between (i) a particular personality trait, Agreeableness, which is associated with emotional reactions to conflict, (ii) resting state functional connectivity within the cingulate cortex, and (iii) stressor-evoked blood pressure (BP) reactivity. Participants (N=39, 19 men, aged 20-37 years) completed a resting functional connectivity MRI protocol, followed by two standardized stressor tasks that engaged conflict processing and evoked BP reactivity. Agreeableness covaried positively with BP reactivity across individuals. Moreover, connectivity analyses demonstrated that a more positive functional connectivity between the posterior cingulate (BA31) and the perigenual anterior cingulate (BA32) covaried positively with Agreeableness and with BP reactivity. Finally, statistical mediation analyses demonstrated that BA31-BA32 connectivity mediated the covariation between Agreeableness and BP reactivity. Functional connectivity within the cingulate appears to link Agreeableness and a risk factor for cardiovascular disease, stressor-evoked BP reactivity.

  2. Longitudinal Changes in Functional Brain Connectivity Predicts Conversion to Alzheimer's Disease.

    Science.gov (United States)

    Serra, Laura; Cercignani, Mara; Mastropasqua, Chiara; Torso, Mario; Spanò, Barbara; Makovac, Elena; Viola, Vanda; Giulietti, Giovanni; Marra, Camillo; Caltagirone, Carlo; Bozzali, Marco

    2016-01-01

    This longitudinal study investigates the modifications in structure and function occurring to typical Alzheimer's disease (AD) brains over a 2-year follow-up, from pre-dementia stages of disease, with the aim of identifying biomarkers of prognostic value. Thirty-one patients with amnestic mild cognitive impairment were recruited and followed-up with clinical, neuropsychological, and MRI assessments. Patients were retrospectively classified as AD Converters or Non-Converters, and the data compared between groups. Cross-sectional MRI data at baseline, assessing volume and functional connectivity abnormalities, confirmed previous findings, showing a more severe pattern of regional grey matter atrophy and default-mode network disconnection in Converters than in Non-Converters. Longitudinally, Converters showed more grey matter atrophy in the frontotemporal areas, accompanied by increased connectivity in the precuneus. Discriminant analysis revealed that functional connectivity of the precuneus within the default mode network at baseline is the parameter able to correctly classify patients in Converters and Non-Converters with high sensitivity, specificity, and accuracy.

  3. Individual differences in structural and functional connectivity predict speed of emotion discrimination.

    Science.gov (United States)

    Marstaller, Lars; Burianová, Hana; Reutens, David C

    2016-12-01

    In social interactions, individuals who are slower at differentiating between facial expressions signalling direct and indirect threat might be at a serious disadvantage. However, the neurobiological underpinnings of individual differences in face processing are not yet fully understood. The aim of this study was to use multimodal neuroimaging to investigate how the speed of emotion recognition is related to the structural and functional connectivity underlying the differentiation of direct and indirect threat displays. Our results demonstrate that individuals, who are faster at discriminating angry faces, engaged areas of the extended emotional system more strongly than individuals with slower reaction times, showed higher white matter integrity in the inferior longitudinal fasciculus (ILF), as well as stronger functional connectivity with the right amygdala. In contrast, individuals, who were faster at discriminating fearful faces, engaged visual-attentional regions outside of the face processing network more strongly than individuals with slower reaction times, showed higher white matter integrity in the ILF, as well as reduced functional connectivity with the right amygdala. Our findings suggest that the high survival value of rapid and appropriate responses to threat has defined but separate neurobiological correlates for angry and fearful facial expressions.

  4. Resting-state functional connectivity patterns predict Chinese word reading competency.

    Directory of Open Access Journals (Sweden)

    Xiaosha Wang

    Full Text Available Resting-state functional connectivity (RSFC offers a novel approach to reveal the temporal synchronization of functionally related brain regions. Recent studies have identified several RSFCs whose strength was associated with reading competence in alphabetic languages. In the present study, we examined the role of intrinsic functional relations for reading a non-alphabetic language--Chinese--by correlating RSFC maps of nine Chinese reading-related seed regions and reaction time in the single-character reading task. We found that Chinese reading efficiency was positively correlated with the connection between left inferior occipital gyrus and left superior parietal lobule, between right posterior fusiform gyrus and right superior parietal lobule, and between left inferior temporal gyrus and left inferior parietal lobule. These results could not be attributed to inter-individual differences arising from the peripheral processes of the reading task such as visual input detection and articulation. The observed RSFC-reading correlation relationships are discussed in the framework of Chinese character reading, including visuospatial analyses and semantic/phonological processes.

  5. Prediction of rat behavior outcomes in memory tasks using functional connections among neurons.

    Science.gov (United States)

    Lu, Hu; Yang, Shengtao; Lin, Longnian; Li, Baoming; Wei, Hui

    2013-01-01

    Analyzing the neuronal organizational structures and studying the changes in the behavior of the organism is key to understanding cognitive functions of the brain. Although some studies have indicated that spatiotemporal firing patterns of neuronal populations have a certain relationship with the behavioral responses, the issues of whether there are any relationships between the functional networks comprised of these cortical neurons and behavioral tasks and whether it is possible to take advantage of these networks to predict correct and incorrect outcomes of single trials of animals are still unresolved. This paper presents a new method of analyzing the structures of whole-recorded neuronal functional networks (WNFNs) and local neuronal circuit groups (LNCGs). The activity of these neurons was recorded in several rats. The rats performed two different behavioral tasks, the Y-maze task and the U-maze task. Using the results of the assessment of the WNFNs and LNCGs, this paper describes a realization procedure for predicting the behavioral outcomes of single trials. The methodology consists of four main parts: construction of WNFNs from recorded neuronal spike trains, partitioning the WNFNs into the optimal LNCGs using social community analysis, unsupervised clustering of all trials from each dataset into two different clusters, and predicting the behavioral outcomes of single trials. The results show that WNFNs and LNCGs correlate with the behavior of the animal. The U-maze datasets show higher accuracy for unsupervised clustering results than those from the Y-maze task, and these datasets can be used to predict behavioral responses effectively. The results of the present study suggest that a methodology proposed in this paper is suitable for analysis of the characteristics of neuronal functional networks and the prediction of rat behavior. These types of structures in cortical ensemble activity may be critical to information representation during the execution of

  6. Prediction of rat behavior outcomes in memory tasks using functional connections among neurons.

    Directory of Open Access Journals (Sweden)

    Hu Lu

    Full Text Available BACKGROUND: Analyzing the neuronal organizational structures and studying the changes in the behavior of the organism is key to understanding cognitive functions of the brain. Although some studies have indicated that spatiotemporal firing patterns of neuronal populations have a certain relationship with the behavioral responses, the issues of whether there are any relationships between the functional networks comprised of these cortical neurons and behavioral tasks and whether it is possible to take advantage of these networks to predict correct and incorrect outcomes of single trials of animals are still unresolved. METHODOLOGY/PRINCIPAL FINDINGS: This paper presents a new method of analyzing the structures of whole-recorded neuronal functional networks (WNFNs and local neuronal circuit groups (LNCGs. The activity of these neurons was recorded in several rats. The rats performed two different behavioral tasks, the Y-maze task and the U-maze task. Using the results of the assessment of the WNFNs and LNCGs, this paper describes a realization procedure for predicting the behavioral outcomes of single trials. The methodology consists of four main parts: construction of WNFNs from recorded neuronal spike trains, partitioning the WNFNs into the optimal LNCGs using social community analysis, unsupervised clustering of all trials from each dataset into two different clusters, and predicting the behavioral outcomes of single trials. The results show that WNFNs and LNCGs correlate with the behavior of the animal. The U-maze datasets show higher accuracy for unsupervised clustering results than those from the Y-maze task, and these datasets can be used to predict behavioral responses effectively. CONCLUSIONS/SIGNIFICANCE: The results of the present study suggest that a methodology proposed in this paper is suitable for analysis of the characteristics of neuronal functional networks and the prediction of rat behavior. These types of structures in cortical

  7. Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke.

    Science.gov (United States)

    Carter, Alex R; Astafiev, Serguei V; Lang, Catherine E; Connor, Lisa T; Rengachary, Jennifer; Strube, Michael J; Pope, Daniel L W; Shulman, Gordon L; Corbetta, Maurizio

    2010-03-01

    Focal brain lesions can have important remote effects on the function of distant brain regions. The resulting network dysfunction may contribute significantly to behavioral deficits observed after stroke. This study investigates the behavioral significance of changes in the coherence of spontaneous activity in distributed networks after stroke by measuring resting state functional connectivity (FC) using functional magnetic resonance imaging. In acute stroke patients, we measured FC in a dorsal attention network and an arm somatomotor network, and determined the correlation of FC with performance obtained in a separate session on tests of attention and motor function. In particular, we compared the behavioral correlation with intrahemispheric FC to the behavioral correlation with interhemispheric FC. In the attention network, disruption of interhemispheric FC was significantly correlated with abnormal detection of visual stimuli (Pearson r with field effect = -0.624, p = 0.002). In the somatomotor network, disruption of interhemispheric FC was significantly correlated with upper extremity impairment (Pearson r with contralesional Action Research Arm Test = 0.527, p = 0.036). In contrast, intrahemispheric FC within the normal or damaged hemispheres was not correlated with performance in either network. Quantitative lesion analysis demonstrated that our results could not be explained by structural damage alone. These results suggest that lesions cause state changes in the spontaneous functional architecture of the brain, and constrain behavioral output. Clinically, these results validate using FC for assessing the health of brain networks, with implications for prognosis and recovery from stroke, and underscore the importance of interhemispheric interactions.

  8. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    Science.gov (United States)

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  9. Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study.

    Science.gov (United States)

    Li, Peng; Jing, Ri-Xing; Zhao, Rong-Jiang; Ding, Zeng-Bo; Shi, Le; Sun, Hong-Qiang; Lin, Xiao; Fan, Teng-Teng; Dong, Wen-Tian; Fan, Yong; Lu, Lin

    2017-05-11

    Previous studies suggested that electroconvulsive therapy can influence regional metabolism and dopamine signaling, thereby alleviating symptoms of schizophrenia. It remains unclear what patients may benefit more from the treatment. The present study sought to identify biomarkers that predict the electroconvulsive therapy response in individual patients. Thirty-four schizophrenia patients and 34 controls were included in this study. Patients were scanned prior to treatment and after 6 weeks of treatment with antipsychotics only (n = 16) or a combination of antipsychotics and electroconvulsive therapy (n = 13). Subject-specific intrinsic connectivity networks were computed for each subject using a group information-guided independent component analysis technique. Classifiers were built to distinguish patients from controls and quantify brain states based on intrinsic connectivity networks. A general linear model was built on the classification scores of first scan (referred to as baseline classification scores) to predict treatment response. Classifiers built on the default mode network, the temporal lobe network, the language network, the corticostriatal network, the frontal-parietal network, and the cerebellum achieved a cross-validated classification accuracy of 83.82%, with specificity of 91.18% and sensitivity of 76.47%. After the electroconvulsive therapy, psychosis symptoms of the patients were relieved and classification scores of the patients were decreased. Moreover, the baseline classification scores were predictive for the treatment outcome. Schizophrenia patients exhibited functional deviations in multiple intrinsic connectivity networks which were able to distinguish patients from healthy controls at an individual level. Patients with lower classification scores prior to treatment had better treatment outcome, indicating that the baseline classification scores before treatment is a good predictor for treatment outcome. CONNECTIVITY NETWORKS

  10. Posterior cingulate cross-hemispheric functional connectivity predicts the level of consciousness in traumatic brain injury.

    Science.gov (United States)

    Zhang, Haosu; Dai, Rui; Qin, Pengmin; Tang, Weijun; Hu, Jin; Weng, Xuchu; Wu, Xing; Mao, Ying; Wu, Xuehai; Northoff, Georg

    2017-03-24

    Previous studies have demonstrated that altered states of consciousness are related to changes in resting state activity in the default-mode network (DMN). Anatomically, the DMN can be divided into anterior and posterior regions. The anterior DMN includes the perigenual anterior cingulate cortex and other medial prefrontal cortical regions, whereas the posterior DMN includes regions such as the posterior cingulate cortex (PCC) and the temporal parietal junction (TPJ). Although differential roles have been attributed to the anterior and posterior DMN regions, their exact contributions to consciousness levels remain unclear. To investigate the specific role of the posterior DMN in consciousness levels, we investigated 20 healthy controls (7 females, mean age = 33.6 years old) and 20 traumatic brain injury (TBI) patients (5 females, mean age = 43 years old) whose brain lesions were mainly restricted to the bilateral frontal cortex but retained a well-preserved posterior DMN (e.g., the PCC and the TPJ) and who exhibited varying levels of consciousness. We investigated the intra- and cross-functional connectivity strengths (FCSs) between the right/left PCC and the right/left TPJ and their correlation with consciousness levels. Significant reductions in both the intra- and cross-hemispheric FCSs were observed in patients compared with controls. A significant correlation with consciousness levels was observed only for the cross-hemispheric PCC-TPJ FCS but not for the intra-hemispheric PCC-TPJ FCS. Taken together, our results show that the cross-hemispheric posterior DMN is related to consciousness levels in a specific group of patients without posterior structural lesions. We therefore propose that the PCC may be central in maintaining consciousness through its cross-hemispheric FC with the TPJ.

  11. Epigenetic variation in the serotonin transporter gene predicts resting state functional connectivity strength within the salience-network.

    Science.gov (United States)

    Muehlhan, Markus; Kirschbaum, Clemens; Wittchen, Hans-Ulrich; Alexander, Nina

    2015-11-01

    Genetic variation in the serotonin transporter gene (SLC6A4) has been associated with psychopathology and aberrant brain functioning in a plethora of clinical and imaging studies. In contrast, the neurobiological correlates of epigenetic signatures in SLC6A4, such as DNA methylation profiles, have only recently been explored in human brain imaging research. The present study is the first to apply a resting state functional magnetic resonance imaging approach to identify changes in brain networks related to SLC6A4 promoter methylation (N=74 healthy individuals). The amygdalae were defined as seed regions given that resting state functional connectivity in this brain area is under serotonergic control and relates to a broad range of psychiatric phenotypes. We further used bisulfite pyrosequencing to analyze quantitative methylation at 83 CpG sites within a promoter-associated CpG island of SLC6A4 from blood-derived DNA samples. The major finding of this study indicates a positive relation of SLC6A4 promoter methylation and amygdaloid resting state functional coupling with key nodes of the salience network (SN) including the anterior insulae and the dorsal anterior cingulate cortices. Increased intra-network connectivity in the SN is thought to facilitate the detection and subsequent processing of potentially negative stimuli and reflects a core feature of psychopathology. As such, epigenetic changes within the SLC6A4 gene predict connectivity patterns in clinically and behaviorally relevant brain networks which may in turn convey increased disease susceptibility. © 2015 Wiley Periodicals, Inc.

  12. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    Science.gov (United States)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  13. Cognitive decline and reorganization of functional connectivity in healthy aging: the pivotal role of the salience network in the prediction of age and cognitive performances

    Directory of Open Access Journals (Sweden)

    Valentina La Corte

    2016-08-01

    Full Text Available Normal aging is related to a decline in specific cognitive processes, in particular in executive functions and memory. In recent years a growing number of studies have focused on changes in brain functional connectivity related to cognitive aging. A common finding is the decreased connectivity within multiple resting state networks, including the default mode network and the salience network. In this study, we measured resting state activity using fMRI and explored whether cognitive decline is related to altered functional connectivity. To this end we used a machine learning approach to classify young and old participants from functional connectivity data. The originality of the approach consists in the prediction of the performance and age of the subjects based on functional connectivity. Our findings showed that the connectivity profile between specific networks predicts both the age of the subjects and their cognitive abilities. In particular, we report that the connectivity profiles between the salience and visual networks, and the salience and the anterior part of the default mode network, were the features that best predicted the age. Moreover, independently of the age of the subject, connectivity between the salience network and various specific networks (i.e., visual, frontal predicted episodic memory skills either based on a standard assessment or on an autobiographical memory task, and short-term binding.Finally, the connectivity between the salience and the frontal networks predicted inhibition and updating performance, but this link was no longer significant after removing the effect of age. Our findings confirm the crucial role of episodic memory and executive functions in cognitive aging and suggest a pivotal role of the salience network in neural reorganization in aging.

  14. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans.

    Directory of Open Access Journals (Sweden)

    Niall W Duncan

    Full Text Available Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc, dorsomedial thalamus (DMT, and periaqueductal grey (PAG. It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.

  15. Strengthening connections: functional connectivity and brain plasticity

    OpenAIRE

    2014-01-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses c...

  16. Resting State Functional Connectivity within the Cingulate Cortex Jointly Predicts Agreeableness and Stressor-Evoked Cardiovascular Reactivity

    OpenAIRE

    Ryan, John P.; Sheu, Lei K.; Peter J Gianaros

    2010-01-01

    Exaggerated cardiovascular reactivity to stress confers risk for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of cortical and limbic brain areas, particularly within the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the association...

  17. Reduced resting state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa

    Directory of Open Access Journals (Sweden)

    Luca eLavagnino

    2014-08-01

    Full Text Available BackgroundAlterations in the resting state functional connectivity (rs-FC of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN. The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women. MethodsSixteen medication-free women with BN (age=23±5 years and 18 matched controls (age=23±3 years underwent a functional magnetic resonance resting state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain. ResultsBN patients showed a decreased resting state functional connectivity both within the somatosensory network (t=9.0, df=1, P=0.005 and with posterior cingulate cortex (PCC and two visual areas (the right middle occipital gyrus and the right cuneus(P=0.05 corrected for multiple comparison. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area, or EBA. The rs-FC of the left paracentral lobule with the EBA correlated with psychopathology measures like bulimia (r=-0.4; P=0.02 and interoceptive awareness (r=-0.4; P=0.01. Analyses were conducted using age, BMI (body mass index and depressive symptoms as covariates. ConclusionsOur findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

  18. Strengthening connections: functional connectivity and brain plasticity.

    Science.gov (United States)

    Kelly, Clare; Castellanos, F Xavier

    2014-03-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist's toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypotheses for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology.

  19. Investigation into Methods for Predicting Connection Temperatures

    Directory of Open Access Journals (Sweden)

    K. Anderson

    2009-01-01

    Full Text Available The mechanical response of connections in fire is largely based on material strength degradation and the interactions between the various components of the connection. In order to predict connection performance in fire, temperature profiles must initially be established in order to evaluate the material strength degradation over time. This paper examines two current methods for predicting connection temperatures: The percentage method, where connection temperatures are calculated as a percentage of the adjacent beam lower-flange, mid-span temperatures; and the lumped capacitance method, based on the lumped mass of the connection. Results from the percentage method do not correlate well with experimental results, whereas the lumped capacitance method shows much better agreement with average connection temperatures. A 3D finite element heat transfer model was also created in Abaqus, and showed good correlation with experimental results. 

  20. Prediction of the main cortical areas and connections involved in the tactile function of the visual cortex by network analysis.

    Science.gov (United States)

    Négyessy, László; Nepusz, Tamás; Kocsis, László; Bazsó, Fülöp

    2006-04-01

    We explored the cortical pathways from the primary somatosensory cortex to the primary visual cortex (V1) by analysing connectional data in the macaque monkey using graph-theoretical tools. Cluster analysis revealed the close relationship of the dorsal visual stream and the sensorimotor cortex. It was shown that prefrontal area 46 and parietal areas VIP and 7a occupy a central position between the different clusters in the visuo-tactile network. Among these structures all the shortest paths from primary somatosensory cortex (3a, 1 and 2) to V1 pass through VIP and then reach V1 via MT, V3 and PO. Comparison of the input and output fields suggested a larger specificity for the 3a/1-VIP-MT/V3-V1 pathways among the alternative routes. A reinforcement learning algorithm was used to evaluate the importance of the aforementioned pathways. The results suggest a higher role for V3 in relaying more direct sensorimotor information to V1. Analysing cliques, which identify areas with the strongest coupling in the network, supported the role of VIP, MT and V3 in visuo-tactile integration. These findings indicate that areas 3a, 1, VIP, MT and V3 play a major role in shaping the tactile information reaching V1 in both sighted and blind subjects. Our observations greatly support the findings of the experimental studies and provide a deeper insight into the network architecture underlying visuo-tactile integration in the primate cerebral cortex.

  1. Precentral gyrus functional connectivity signatures of autism

    Directory of Open Access Journals (Sweden)

    Mary Beth eNebel

    2014-05-01

    Full Text Available Motor impairments are prevalent in children with autism spectrum disorders (ASD and are perhaps the earliest symptoms to develop. In addition, motor skills relate to the communicative/social deficits at the core of ASD diagnosis, and these behavioral deficits may reflect abnormal connectivity within brain networks underlying motor control and learning. Despite the fact that motor abnormalities in ASD are well-characterized, there remains a fundamental disconnect between the complexity of the clinical presentation of ASD and the underlying neurobiological mechanisms. In this study, we examined connectivity within and between functional subregions of a key component of the motor control network, the precentral gyrus, using resting state functional Magnetic Resonance Imaging data collected from a large, heterogeneous sample of individuals with ASD as well as neurotypical controls. We found that the strength of connectivity within and between distinct functional subregions of the precentral gyrus was related to ASD diagnosis and to the severity of ASD traits. In particular, connectivity involving the dorsomedial (lower limb/trunk subregion was abnormal in ASD individuals as predicted by models using a dichotomous variable coding for the presence of ASD, as well as models using symptom severity ratings. These findings provide further support for a link between motor and social/communicative abilities in ASD.

  2. Brain Connectivity Predicts Placebo Response across Chronic Pain Clinical Trials

    Science.gov (United States)

    Tétreault, Pascal; Mansour, Ali; Vachon-Presseau, Etienne; Schnitzer, Thomas J.; Apkarian, A. Vania

    2016-01-01

    Placebo response in the clinical trial setting is poorly understood and alleged to be driven by statistical confounds, and its biological underpinnings are questioned. Here we identified and validated that clinical placebo response is predictable from resting-state functional magnetic-resonance-imaging (fMRI) brain connectivity. This also led to discovering a brain region predicting active drug response and demonstrating the adverse effect of active drug interfering with placebo analgesia. Chronic knee osteoarthritis (OA) pain patients (n = 56) underwent pretreatment brain scans in two clinical trials. Study 1 (n = 17) was a 2-wk single-blinded placebo pill trial. Study 2 (n = 39) was a 3-mo double-blinded randomized trial comparing placebo pill to duloxetine. Study 3, which was conducted in additional knee OA pain patients (n = 42), was observational. fMRI-derived brain connectivity maps in study 1 were contrasted between placebo responders and nonresponders and compared to healthy controls (n = 20). Study 2 validated the primary biomarker and identified a brain region predicting drug response. In both studies, approximately half of the participants exhibited analgesia with placebo treatment. In study 1, right midfrontal gyrus connectivity best identified placebo responders. In study 2, the same measure identified placebo responders (95% correct) and predicted the magnitude of placebo’s effectiveness. By subtracting away linearly modeled placebo analgesia from duloxetine response, we uncovered in 6/19 participants a tendency of duloxetine enhancing predicted placebo response, while in another 6/19, we uncovered a tendency for duloxetine to diminish it. Moreover, the approach led to discovering that right parahippocampus gyrus connectivity predicts drug analgesia after correcting for modeled placebo-related analgesia. Our evidence is consistent with clinical placebo response having biological underpinnings and shows that the method can also reveal that active

  3. Functional connectivity change as shared signal dynamics

    Science.gov (United States)

    Cole, Michael W.; Yang, Genevieve J.; Murray, John D.; Repovš, Grega; Anticevic, Alan

    2015-01-01

    Background An increasing number of neuroscientific studies gain insights by focusing on differences in functional connectivity – between groups, individuals, temporal windows, or task conditions. We found using simulations that additional insights into such differences can be gained by forgoing variance normalization, a procedure used by most functional connectivity measures. Simulations indicated that these functional connectivity measures are sensitive to increases in independent fluctuations (unshared signal) in time series, consistently reducing functional connectivity estimates (e.g., correlations) even though such changes are unrelated to corresponding fluctuations (shared signal) between those time series. This is inconsistent with the common notion of functional connectivity as the amount of inter-region interaction. New Method Simulations revealed that a version of correlation without variance normalization – covariance – was able to isolate differences in shared signal, increasing interpretability of observed functional connectivity change. Simulations also revealed cases problematic for non-normalized methods, leading to a “covariance conjunction” method combining the benefits of both normalized and non-normalized approaches. Results We found that covariance and covariance conjunction methods can detect functional connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional MRI datasets. Comparison with Existing Method(s) We verified using a variety of tasks and rest in both clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, covariance, or covariance conjunction methods are used. Conclusions These results demonstrate the practical and theoretical utility of isolating changes in shared signal, improving the ability to interpret observed functional connectivity change. PMID:26642966

  4. Predicting the Dynamics of Network Connectivity in the Neocortex.

    Science.gov (United States)

    Loewenstein, Yonatan; Yanover, Uri; Rumpel, Simon

    2015-09-09

    Dynamic remodeling of connectivity is a fundamental feature of neocortical circuits. Unraveling the principles underlying these dynamics is essential for the understanding of how neuronal circuits give rise to computations. Moreover, as complete descriptions of the wiring diagram in cortical tissues are becoming available, deciphering the dynamic elements in these diagrams is crucial for relating them to cortical function. Here, we used chronic in vivo two-photon imaging to longitudinally follow a few thousand dendritic spines in the mouse auditory cortex to study the determinants of these spines' lifetimes. We applied nonlinear regression to quantify the independent contribution of spine age and several morphological parameters to the prediction of the future survival of a spine. We show that spine age, size, and geometry are parameters that can provide independent contributions to the prediction of the longevity of a synaptic connection. In addition, we use this framework to emulate a serial sectioning electron microscopy experiment and demonstrate how incorporation of morphological information of dendritic spines from a single time-point allows estimation of future connectivity states. The distinction between predictable and nonpredictable connectivity changes may be used in the future to identify the specific adaptations of neuronal circuits to environmental changes. The full dataset is publicly available for further analysis. Significance statement: The neural architecture in the neocortex exhibits constant remodeling. The functional consequences of these modifications are poorly understood, in particular because the determinants of these changes are largely unknown. Here, we aimed to identify those modifications that are predictable from current network state. To that goal, we repeatedly imaged thousands of dendritic spines in the auditory cortex of mice to assess the morphology and lifetimes of synaptic connections. We developed models based on morphological

  5. Altered thalamic functional connectivity in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yaou; Liang, Peipeng; Duan, Yunyun; Huang, Jing; Ren, Zhuoqiong; Jia, Xiuqin [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Dong, Huiqing; Ye, Jing [Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Shi, Fu-Dong [Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052 (China); Butzkueven, Helmut [Department of Medicine, University of Melbourne, Parkville 3010 (Australia); Li, Kuncheng, E-mail: kunchengli55@gmail.com [Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2015-04-15

    Highlights: •We demonstrated decreased connectivity between thalamus and cortical regions in MS. •Increased intra- and inter-thalamic connectivity was also observed in MS. •The increased functional connectivity is attenuated by increasing disease duration. -- Abstract: Objective: To compare thalamic functional connectivity (FC) in patients with multiple sclerosis (MS) and healthy controls (HC), and correlate these connectivity measures with other MRI and clinical variables. Methods: We employed resting-state functional MRI (fMRI) to examine changes in thalamic connectivity by comparing thirty-five patients with MS and 35 age- and sex-matched HC. Thalamic FC was investigated by correlating low frequency fMRI signal fluctuations in thalamic voxels with voxels in all other brain regions. Additionally thalamic volume fraction (TF), T2 lesion volume (T2LV), EDSS and disease duration were recorded and correlated with the FC changes. Results: MS patients were found to have a significantly lower TF than HC in bilateral thalami. Compared to HC, the MS group showed significantly decreased FC between thalamus and several brain regions including right middle frontal and parahippocampal gyri, and the left inferior parietal lobule. Increased intra- and inter-thalamic FC was observed in the MS group compared to HC. These FC alterations were not correlated with T2LV, thalamic volume or lesions. In the MS group, however, there was a negative correlation between disease duration and inter-thalamic connectivity (r = −0.59, p < 0.001). Conclusion: We demonstrated decreased FC between thalamus and several cortical regions, while increased intra- and inter-thalamic connectivity in MS patients. These complex functional changes reflect impairments and/or adaptations that are independent of T2LV, thalamic volume or presence of thalamic lesions. The negative correlation between disease duration and inter-thalamic connectivity could indicate an adaptive role of thalamus that is

  6. Connecting Representations: Using Predict, Check, Explain

    Science.gov (United States)

    Roy, George J.; Fueyo, Vivian; Vahey, Philip; Knudsen, Jennifer; Rafanan, Ken; Lara-Meloy, Teresa

    2016-01-01

    Although educators agree that making connections with the real world, as advocated by "Principles to Actions: Ensuring Mathematical Success for All" (NCTM 2014), is important, making such connections while addressing important mathematics is elusive. The authors have found that math content coupled with the instructional strategy of…

  7. Decreased functional brain connectivity in adolescents with internet addiction.

    Directory of Open Access Journals (Sweden)

    Soon-Beom Hong

    Full Text Available BACKGROUND: Internet addiction has become increasingly recognized as a mental disorder, though its neurobiological basis is unknown. This study used functional neuroimaging to investigate whole-brain functional connectivity in adolescents diagnosed with internet addiction. Based on neurobiological changes seen in other addiction related disorders, it was predicted that connectivity disruptions in adolescents with internet addiction would be most prominent in cortico-striatal circuitry. METHODS: Participants were 12 adolescents diagnosed with internet addiction and 11 healthy comparison subjects. Resting-state functional magnetic resonance images were acquired, and group differences in brain functional connectivity were analyzed using the network-based statistic. We also analyzed network topology, testing for between-group differences in key graph-based network measures. RESULTS: Adolescents with internet addiction showed reduced functional connectivity spanning a distributed network. The majority of impaired connections involved cortico-subcortical circuits (∼24% with prefrontal and ∼27% with parietal cortex. Bilateral putamen was the most extensively involved subcortical brain region. No between-group difference was observed in network topological measures, including the clustering coefficient, characteristic path length, or the small-worldness ratio. CONCLUSIONS: Internet addiction is associated with a widespread and significant decrease of functional connectivity in cortico-striatal circuits, in the absence of global changes in brain functional network topology.

  8. A systematic framework for functional connectivity measures

    Directory of Open Access Journals (Sweden)

    Huifang Elizabeth Wang

    2014-12-01

    Full Text Available Various methods have been proposed to characterize the functional connectivity between nodes in a network measured with different modalities (electrophysiology, functional magnetic resonance imaging etc.. Since different measures of functional connectivity yield different results for the same dataset, it is important to assess when and how they can be used. In this work, we provide a systematic framework for evaluating the performance of a large range of functional connectivity measures – based upon a comprehensive portfolio of models generating measurable responses. Specifically, we benchmarked 42 methods using 10,000 simulated datasets from 5 different types of generative models with different connectivity structures. Since all functional connectivity methods require the setting of some parameters (window size and number, model order etc., we first optimized these parameters using performance criteria based upon (threshold free ROC analysis. We then evaluated the performance of the methods on data simulated with different types of models. Finally, we assessed the performance of the methods against different levels of signal-to-noise ratios and network configurations. A MATLAB toolbox is provided to perform such analyses using other methods and simulated datasets.

  9. Heat capacity prediction of complex molecules by mass connectivity index

    Directory of Open Access Journals (Sweden)

    Koutchoukali O.

    2013-07-01

    Full Text Available Heat capacity prediction and estimation methods of solid organic compounds in terms of temperature are limited, particularly concerning complex molecules with functional groups such as active principles and intermediaries used in pharmaceutical field. Recently a correlation between heat capacity at constant pressure (Cp, temperature and a new concept named mass connectivity index (MCI, for ionic liquids, was published [1-3]. In this predictive method, heat capacity can be calculated at different temperatures, if standard heat capacity at 298.15 K is known. The effect of molecular structure on heat capacity is accounted for in this model by the mass connectivity index, a molecular descriptor, which differentiates between compounds. The Valderrama generalized correlation admits, in addition, two universal coefficients, which are obtained from experimental data regression. In the present work, a similar approach is used to predict solid state heat capacity of organics and pharmaceutical products. In order to find model parameters, a database was grouped comprising (104 different compounds and a set of more than 5,791 experimental values of solid state Cps obtained from literature. These collected data were used in multiple linear regression to find model parameters. It was found that the values of predicted heat capacities of compounds non-included in the database were good; they are quite close to the ones presented in the literature. Moreover, this method is simple to use, since only molecular structure of the component and its solid state heat capacity at 298.15 K should be known.

  10. Multisite functional connectivity MRI classification of autism: ABIDE results

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    2013-09-01

    Full Text Available Background: Systematic differences in functional connectivity MRI metrics have been consistently observed in autism, with predominantly decreased cortico-cortical connectivity. Previous attempts at single subject classification in high-functioning autism using whole brain point-to-point functional connectivity have yielded about 80% accurate classification of autism vs. control subjects across a wide age range. We attempted to replicate the method and results using the Autism Brain Imaging Data Exchange including resting state fMRI data obtained from 964 subjects and 16 separate international sites.Methods: For each of 964 subjects, we obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the gray matter (26.4 million "connections" after preprocessing that included motion and slice timing correction, coregistration to an anatomic image, normalization to standard space, and voxelwise removal by regression of motion parameters, soft tissue, CSF, and white matter signals. Connections were grouped into multiple bins, and a leave-one-out classifier was evaluated on connections comprising each set of bins. Age, age-squared, gender, handedness, and site were included as covariates for the classifier.Results: Classification accuracy significantly outperformed chance but was much lower for multisite prediction than for previous single site results. As high as 60% accuracy was obtained for whole brain classification, with the best accuracy from connections involving regions of the default mode network, parahippocampal and fusiform gyri, insula, Wernicke Area, and intraparietal sulcus. The classifier score was related to symptom severity, social function, daily living skills, and verbal IQ. Classification accuracy was significantly higher for sites with longer BOLD imaging times.Conclusions: Multisite functional connectivity classification of autism outperformed chance using a simple leave

  11. Using connectome-based predictive modeling to predict individual behavior from brain connectivity.

    Science.gov (United States)

    Shen, Xilin; Finn, Emily S; Scheinost, Dustin; Rosenberg, Monica D; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd

    2017-03-01

    Neuroimaging is a fast-developing research area in which anatomical and functional images of human brains are collected using techniques such as functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG). Technical advances and large-scale data sets have allowed for the development of models capable of predicting individual differences in traits and behavior using brain connectivity measures derived from neuroimaging data. Here, we present connectome-based predictive modeling (CPM), a data-driven protocol for developing predictive models of brain-behavior relationships from connectivity data using cross-validation. This protocol includes the following steps: (i) feature selection, (ii) feature summarization, (iii) model building, and (iv) assessment of prediction significance. We also include suggestions for visualizing the most predictive features (i.e., brain connections). The final result should be a generalizable model that takes brain connectivity data as input and generates predictions of behavioral measures in novel subjects, accounting for a considerable amount of the variance in these measures. It has been demonstrated that the CPM protocol performs as well as or better than many of the existing approaches in brain-behavior prediction. As CPM focuses on linear modeling and a purely data-driven approach, neuroscientists with limited or no experience in machine learning or optimization will find it easy to implement these protocols. Depending on the volume of data to be processed, the protocol can take 10-100 min for model building, 1-48 h for permutation testing, and 10-20 min for visualization of results.

  12. Structural Brain Connectivity Constrains within-a-Day Variability of Direct Functional Connectivity

    Directory of Open Access Journals (Sweden)

    Bumhee Park

    2017-08-01

    Full Text Available The idea that structural white matter connectivity constrains functional connectivity (interactions among brain regions has widely been explored in studies of brain networks; studies have mostly focused on the “average” strength of functional connectivity. The question of how structural connectivity constrains the “variability” of functional connectivity remains unresolved. In this study, we investigated the variability of resting state functional connectivity that was acquired every 3 h within a single day from 12 participants (eight time sessions within a 24-h period, 165 scans per session. Three different types of functional connectivity (functional connectivity based on Pearson correlation, direct functional connectivity based on partial correlation, and the pseudo functional connectivity produced by their difference were estimated from resting state functional magnetic resonance imaging data along with structural connectivity defined using fiber tractography of diffusion tensor imaging. Those types of functional connectivity were evaluated with regard to properties of structural connectivity (fiber streamline counts and lengths and types of structural connectivity such as intra-/inter-hemispheric edges and topological edge types in the rich club organization. We observed that the structural connectivity constrained the variability of direct functional connectivity more than pseudo-functional connectivity and that the constraints depended strongly on structural connectivity types. The structural constraints were greater for intra-hemispheric and heterologous inter-hemispheric edges than homologous inter-hemispheric edges, and feeder and local edges than rich club edges in the rich club architecture. While each edge was highly variable, the multivariate patterns of edge involvement, especially the direct functional connectivity patterns among the rich club brain regions, showed low variability over time. This study suggests that

  13. Neighborhood Integration and Connectivity Predict Cognitive Performance and Decline

    Directory of Open Access Journals (Sweden)

    Amber Watts PhD

    2015-08-01

    Full Text Available Objective: Neighborhood characteristics may be important for promoting walking, but little research has focused on older adults, especially those with cognitive impairment. We evaluated the role of neighborhood characteristics on cognitive function and decline over a 2-year period adjusting for measures of walking. Method: In a study of 64 older adults with and without mild Alzheimer’s disease (AD, we evaluated neighborhood integration and connectivity using geographical information systems data and space syntax analysis. In multiple regression analyses, we used these characteristics to predict 2-year declines in factor analytically derived cognitive scores (attention, verbal memory, mental status adjusting for age, sex, education, and self-reported walking. Results: Neighborhood integration and connectivity predicted cognitive performance at baseline, and changes in cognitive performance over 2 years. The relationships between neighborhood characteristics and cognitive performance were not fully explained by self-reported walking. Discussion: Clearer definitions of specific neighborhood characteristics associated with walkability are needed to better understand the mechanisms by which neighborhoods may impact cognitive outcomes. These results have implications for measuring neighborhood characteristics, design and maintenance of living spaces, and interventions to increase walking among older adults. We offer suggestions for future research measuring neighborhood characteristics and cognitive function.

  14. Neighborhood Integration and Connectivity Predict Cognitive Performance and Decline

    Directory of Open Access Journals (Sweden)

    Amber Watts PhD

    2015-08-01

    Full Text Available Objective: Neighborhood characteristics may be important for promoting walking, but little research has focused on older adults, especially those with cognitive impairment. We evaluated the role of neighborhood characteristics on cognitive function and decline over a 2-year period adjusting for measures of walking. Method: In a study of 64 older adults with and without mild Alzheimer’s disease (AD, we evaluated neighborhood integration and connectivity using geographical information systems data and space syntax analysis. In multiple regression analyses, we used these characteristics to predict 2-year declines in factor analytically derived cognitive scores (attention, verbal memory, mental status adjusting for age, sex, education, and self-reported walking. Results : Neighborhood integration and connectivity predicted cognitive performance at baseline, and changes in cognitive performance over 2 years. The relationships between neighborhood characteristics and cognitive performance were not fully explained by self-reported walking. Discussion : Clearer definitions of specific neighborhood characteristics associated with walkability are needed to better understand the mechanisms by which neighborhoods may impact cognitive outcomes. These results have implications for measuring neighborhood characteristics, design and maintenance of living spaces, and interventions to increase walking among older adults. We offer suggestions for future research measuring neighborhood characteristics and cognitive function.

  15. Altered Functional Connectivity in Essential Tremor

    Science.gov (United States)

    Benito-León, Julián; Louis, Elan D.; Romero, Juan Pablo; Hernández-Tamames, Juan Antonio; Manzanedo, Eva; Álvarez-Linera, Juan; Bermejo-Pareja, Félix; Posada, Ignacio; Rocon, Eduardo

    2015-01-01

    Abstract Essential tremor (ET) has been associated with a spectrum of clinical features, with both motor and nonmotor elements, including cognitive deficits. We employed resting-state functional magnetic resonance imaging (fMRI) to assess whether brain networks that might be involved in the pathogenesis of nonmotor manifestations associated with ET are altered, and the relationship between abnormal connectivity and ET severity and neuropsychological function. Resting-state fMRI data in 23 ET patients (12 women and 11 men) and 22 healthy controls (HC) (12 women and 10 men) were analyzed using independent component analysis, in combination with a “dual-regression” technique, to identify the group differences of resting-state networks (RSNs) (default mode network [DMN] and executive, frontoparietal, sensorimotor, cerebellar, auditory/language, and visual networks). All participants underwent a neuropsychological and neuroimaging session, where resting-state data were collected. Relative to HC, ET patients showed increased connectivity in RSNs involved in cognitive processes (DMN and frontoparietal networks) and decreased connectivity in the cerebellum and visual networks. Changes in network integrity were associated not only with ET severity (DMN) and ET duration (DMN and left frontoparietal network), but also with cognitive ability. Moreover, in at least 3 networks (DMN and frontoparietal networks), increased connectivity was associated with worse performance on different cognitive domains (attention, executive function, visuospatial ability, verbal memory, visual memory, and language) and depressive symptoms. Further, in the visual network, decreased connectivity was associated with worse performance on visuospatial ability. ET was associated with abnormal brain connectivity in major RSNs that might be involved in both motor and nonmotor symptoms. Our findings underscore the importance of examining RSNs in this population as a biomarker of disease. PMID:26656325

  16. Functional connectivity of emotional processing in depression.

    LENUS (Irish Health Repository)

    Carballedo, Angela

    2012-02-01

    OBJECTIVES: The aim of the study is to map a neural network of emotion processing and to identify differences in major depression compared to healthy controls. It is hypothesized that intentional perception of emotional faces activates connections between amygdala (Demir et al.), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and prefrontal cortex (PFC) and that frontal-amygdala connections are altered in major depressive disorder (MDD). METHODS: Fifteen medication-free patients with MDD and fifteen healthy controls were enrolled. All subjects were assessed using the same face-matching functional Magnetic Resonance Imaging (fMRI) task, known to involve those areas. Brain activations were obtained using Statistical Parametric Mapping version 5 (SPM5) for data analysis and MARSBAR for extracting of fMRI time series. Then data was analyzed using structural equation modeling (SEM). RESULTS: A valid model was established for the left and the right hemispheres showing a circuit involving ACC, OFC, PFC and AMY. The left hemisphere shows significant lower connectivity strengths in patients than controls, for the pathway that goes from AMY to the OF11, and a trend of higher connectivity in patients for the path that goes from the PF9 to the OF11. In the right hemisphere, patients show lower connectivity coefficients in the paths from the AMY to OF11, from the AMY to ACC, and from the ACC to PF9. By the contrary, controls show lower connectivity strengths for the path that goes from ACC to AMY. CONCLUSIONS: Functional disconnection between limbic and frontal brain regions could be demonstrated using structural equation modeling. The interpretation of these findings could be that there is an emotional processing bias with disconnection bilaterally between amygdala to orbitofrontal cortices and in addition a right disconnection between amygdala and ACC as well as between ACC and prefrontal cortex possibly in line with a more prominent role for the right hemisphere

  17. Pattern Genes Suggest Functional Connectivity of Organs

    Science.gov (United States)

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-01

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  18. Parcellation of left parietal tool representations by functional connectivity

    Science.gov (United States)

    Garcea, Frank E.; Z. Mahon, Bradford

    2014-01-01

    Manipulating a tool according to its function requires the integration of visual, conceptual, and motor information, a process subserved in part by left parietal cortex. How these different types of information are integrated and how their integration is reflected in neural responses in the parietal lobule remains an open question. Here, participants viewed images of tools and animals during functional magnetic resonance imaging (fMRI). K-means clustering over time series data was used to parcellate left parietal cortex into subregions based on functional connectivity to a whole brain network of regions involved in tool processing. One cluster, in the inferior parietal cortex, expressed privileged functional connectivity to the left ventral premotor cortex. A second cluster, in the vicinity of the anterior intraparietal sulcus, expressed privileged functional connectivity with the left medial fusiform gyrus. A third cluster in the superior parietal lobe expressed privileged functional connectivity with dorsal occipital cortex. Control analyses using Monte Carlo style permutation tests demonstrated that the clustering solutions were outside the range of what would be observed based on chance ‘lumpiness’ in random data, or mere anatomical proximity. Finally, hierarchical clustering analyses were used to formally relate the resulting parcellation scheme of left parietal tool representations to previous work that has parcellated the left parietal lobule on purely anatomical grounds. These findings demonstrate significant heterogeneity in the functional organization of manipulable object representations in left parietal cortex, and outline a framework that generates novel predictions about the causes of some forms of upper limb apraxia. PMID:24892224

  19. Maturing thalamocortical functional connectivity across development

    Directory of Open Access Journals (Sweden)

    Damien Fair

    2010-05-01

    Full Text Available Recent years have witnessed a surge of investigations examining functional brain organization using resting-state functional connectivity MRI (rs-fcMRI. To date, this method has been used to examine systems organization in typical and atypical developing populations. While the majority of these investigations have focused on cortical-cortical interactions, cortical-subcortical interactions also mature into adulthood. Innovative work by Zhang et al (Zhang et al., 2008 in adults have identified methods that utilize rs-fcMRI and known thalamo-cortical topographic segregation to identify functional boundaries in the thalamus that are remarkably similar to known thalamic nuclear grouping. However, despite thalamic nuclei being well formed early in development, the developmental trajectory of functional thalamo-cortical relations remains unexplored. Thalamic maps generated by rs-fcMRI are based on functional relationships, and should modify with the dynamic thalamo-cortical changes that occur throughout maturation. To examine this possibility, we employed a strategy as previously described by Zhang et al to a sample of healthy children, adolescents, and adults. We found strengthening functional connectivity of the frontal cortex with dorsal/anterior subdivisions of the thalamus across age groups. Temporal lobe connectivity with ventral/midline/posterior subdivisions of the thalamus weakened with age. Changes in sensory and motor thalamo-cortical interactions were limited. These findings are consistent with known anatomical and physiological cortical-subcortical changes over development. The methods and developmental context provided here will be important for relating how cortical-subcortical interactions relate to models of typically developing behavior and developmental neuropsychiatric disorders.

  20. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder

    Science.gov (United States)

    Tornador, Cristian; Falcón, Carles; López‐Solà, Marina; Hernández‐Ribas, Rosa; Pujol, Jesús; Menchón, José M.; Ritter, Petra; Cardoner, Narcis; Soriano‐Mas, Carles; Deco, Gustavo

    2016-01-01

    Abstract Resting‐state fMRI (RS‐fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS‐fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self‐referential thoughts and ruminations has made the use of the resting‐state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS‐fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918–2930, 2016. © 2016 Wiley Periodicals, Inc. PMID:27120982

  1. Connection formula for thermal density functional theory

    CERN Document Server

    Pribram-Jones, Aurora

    2015-01-01

    The adiabatic connection formula of ground-state density functional theory relates the correlation energy to a coupling-constant integral over a purely potential contribution, and is widely used to understand and improve approximations. The corresponding formula for thermal density functional theory is cast as an integral over temperatures instead, ranging upwards from the system's physical temperature to infinite temperatures. Several formulas yield one component of the thermal correlation free energy in terms of another, many of which can be expressed either in terms of temperature- or coupling-constant integration. We illustrate with the uniform electron gas.

  2. Social network models predict movement and connectivity in ecological landscapes

    Science.gov (United States)

    Fletcher, Robert J.; Acevedo, M.A.; Reichert, Brian E.; Pias, Kyle E.; Kitchens, Wiley M.

    2011-01-01

    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data.

  3. Functional connectivity metrics during stroke recovery

    DEFF Research Database (Denmark)

    Yourganov, Grigori; Schmah, Tanya; Small, Steven L.

    2010-01-01

    , but limited, results given the sample size, restricted behavioral measurements and older 1 5T BOLD data sets Nevertheless, they indicate one potentially fruitful direction for future data-driven fMRI studies of stroke recovery in larger, better-characterized longitudinal stroke data sets recorded at higher...... sensitivity maps for the linear and quadratic discriminants indicate brain regions involved in changes in functional connectivity These regions are highly variable across subjects, but include the cerebellum and the motor area contralateral to the lesion...

  4. DATA DELIVERY PREDICTABILITY IN INTERMITTENTLY CONNECTED MANETS

    Directory of Open Access Journals (Sweden)

    D.Jyothi Preshiya

    2014-01-01

    Full Text Available Network that functions without any infrastructure is said to be Mobile Ad Hoc networks (MANETs. Each node present in this network chooses any route and moves autonomously. At the same time rely on upon each other to send its messages to target nodes. Most of the routing protocols for MANETs tend to be designed with the presumption in which not less than one particular route is available between the source and destination. Furthermore it is assumed that, all nodes are involved in packet forwarding process. But this assumption does not hold good for all real time situations for the reason that of the high mobility and less density of the nodes present in the network and short coverage range of every node. Possibilities arise in the network so that a node could not forward the data to any of the nodes and so it necessitates packets to be stored up in the nodes buffer until it encounters an appropriate node. For deciding the apt receiver node, status of the network and contact statistics of the nodes are required in order to boost up the packet delivery ratio and to trim down the delivery delay and the total number of transmissions. We proposed E-B-M method which takes the best forwarding decision based on the past encounter history and the behavior of the nodes.

  5. Predicting protein structure classes from function predictions

    DEFF Research Database (Denmark)

    Sommer, I.; Rahnenfuhrer, J.; de Lichtenberg, Ulrik;

    2004-01-01

    We introduce a new approach to using the information contained in sequence-to-function prediction data in order to recognize protein template classes, a critical step in predicting protein structure. The data on which our method is based comprise probabilities of functional categories; for given...... query sequences these probabilities are obtained by a neural net that has previously been trained on a variety of functionally important features. On a training set of sequences we assess the relevance of individual functional categories for identifying a given structural family. Using a combination...... of the most relevant categories, the likelihood of a query sequence to belong to a specific family can be estimated. Results: The performance of the method is evaluated using cross-validation. For a fixed structural family and for every sequence, a score is calculated that measures the evidence for family...

  6. Functional connectivity metrics during stroke recovery

    DEFF Research Database (Denmark)

    Yourganov, Grigori; Schmah, Tanya; Small, Steven L.

    2010-01-01

    We explore functional connectivity in nine subjects measured with 1 5T fMRI-BOLD in a longitudinal study of recovery from unilateral stroke affecting the motor area (Small et al, 2002) We found that several measures of complexity of covariance matrices show strong correlations with behavioral...... for this longitudinal stroke recovery data set We used three complexity measures the sphericity index described by Abdi (2010), "unsupervised dimensionality", which is the number of PCs that minimizes unsupervised generalization error of a covariance matrix (Hansen et al, 1999), and "QD dimensionality", which......, but limited, results given the sample size, restricted behavioral measurements and older 1 5T BOLD data sets Nevertheless, they indicate one potentially fruitful direction for future data-driven fMRI studies of stroke recovery in larger, better-characterized longitudinal stroke data sets recorded at higher...

  7. Global connectivity of prefrontal cortex predicts cognitive control and intelligence

    Science.gov (United States)

    Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.

    2012-01-01

    Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498

  8. Differential Effects of Brain Disorders on Structural and Functional Connectivity

    Science.gov (United States)

    Vega-Pons, Sandro; Olivetti, Emanuele; Avesani, Paolo; Dodero, Luca; Gozzi, Alessandro; Bifone, Angelo

    2017-01-01

    Different measures of brain connectivity can be defined based on neuroimaging read-outs, including structural and functional connectivity. Neurological and psychiatric conditions are often associated with abnormal connectivity, but comparing the effects of the disease on different types of connectivity remains a challenge. In this paper, we address the problem of quantifying the relative effects of brain disease on structural and functional connectivity at a group level. Within the framework of a graph representation of connectivity, we introduce a kernel two-sample test as an effective method to assess the difference between the patients and control group. Moreover, we propose a common representation space for structural and functional connectivity networks, and a novel test statistics to quantitatively assess differential effects of the disease on different types of connectivity. We apply this approach to a dataset from BTBR mice, a murine model of Agenesis of the Corpus Callosum (ACC), a congenital disorder characterized by the absence of the main bundle of fibers connecting the two hemispheres. We used normo-callosal mice (B6) as a comparator. The application of the proposed methods to this data-set shows that the two types of connectivity can be successfully used to discriminate between BTBR and B6, meaning that both types of connectivity are affected by ACC. However, our novel test statistics shows that structural connectivity is significantly more affected than functional connectivity, consistent with the idea that functional connectivity has a robust topology that can tolerate substantial alterations in its structural connectivity substrate. PMID:28119556

  9. Resting-State Connectivity Predicts Levodopa-Induced Dyskinesias in Parkinson's Disease

    DEFF Research Database (Denmark)

    Herz, Damian M.; Haagensen, Brian N.; Nielsen, Silas H.;

    2016-01-01

    dyskinesias emerged. Levodopa-induced modulation of cortico-striatal resting-state connectivity was assessed between the putamen and the following 3 cortical regions of interest: supplementary motor area, primary sensorimotor cortex, and right inferior frontal gyrus. These functional connectivity measures......-state connectivity between the putamen and primary sensorimotor cortex in the most affected hemisphere predicted whether patients would develop dyskinesias with a specificity of 100% and a sensitivity of 91% (P putamen...... predicted interindividual differences in dyskinesia severity (R2 = 0.627, P = .004). Resting-state connectivity between the right inferior frontal gyrus and putamen neither predicted dyskinesia status nor dyskinesia severity. Conclusions: The results corroborate the notion that altered dopaminergic...

  10. Functioning of Circuits Connecting Thalamus and Cortex.

    Science.gov (United States)

    Sherman, S Murray

    2017-03-16

    Glutamatergic pathways in thalamus and cortex are divided into two distinct classes: driver, which carries the main information between cells, and modulator, which modifies how driver inputs function. Identifying driver inputs helps to reveal functional computational circuits, and one set of such circuits identified by this approach are cortico-thalamo-cortical (or transthalamic corticocortical) circuits. This, in turn, leads to the conclusion that there are two types of thalamic relay: first order nuclei (such as the lateral geniculate nucleus) that relay driver input from a subcortical source (i.e., retina), and higher order nuclei (such as the pulvinar) which are involved in these transthalamic pathways by relaying driver input from layer 5 of one cortical area to another. This thalamic division is also seen in other sensory pathways and beyond these so that most of thalamus by volume consists of higher-order relays. Many, and perhaps all, direct driver connections between cortical areas are paralleled by an indirect cortico-thalamo-cortical (transthalamic) driver route involving higher order thalamic relays. Such thalamic relays represent a heretofore unappreciated role in cortical functioning, and this assessment challenges and extends conventional views regarding both the role of thalamus and mechanisms of corticocortical communication. Finally, many and perhaps the vast majority of driver inputs relayed through thalamus arrive via branching axons, with extrathalamic targets often being subcortical motor centers. This raises the possibility that inputs relayed by thalamus to cortex also serve as efference copies, and this may represent an important feature of information relayed up the cortical hierarchy via transthalamic circuits. © 2017 American Physiological Society. Compr Physiol 7:713-739, 2017.

  11. Connecting Functions in Geometry and Algebra

    Science.gov (United States)

    Steketee, Scott; Scher, Daniel

    2016-01-01

    One goal of a mathematics education is that students make significant connections among different branches of mathematics. Connections--such as those between arithmetic and algebra, between two-dimensional and three-dimensional geometry, between compass-and-straight-edge constructions and transformations, and between calculus and analytic…

  12. An IoT Based Predictive Connected Car Maintenance Approach

    Directory of Open Access Journals (Sweden)

    Rohit Dhall

    2017-03-01

    Full Text Available Internet of Things (IoT is fast emerging and becoming an almost basic necessity in general life. The concepts of using technology in our daily life is not new, but with the advancements in technology, the impact of technology in daily activities of a person can be seen in almost all the aspects of life. Today, all aspects of our daily life, be it health of a person, his location, movement, etc. can be monitored and analyzed using information captured from various connected devices. This paper discusses one such use case, which can be implemented by the automobile industry, using technological advancements in the areas of IoT and Analytics. ‘Connected Car’ is a terminology, often associated with cars and other passenger vehicles, which are capable of internet connectivity and sharing of various kinds of data with backend applications. The data being shared can be about the location and speed of the car, status of various parts/lubricants of the car, and if the car needs urgent service or not. Once data are transmitted to the backend services, various workflows can be created to take necessary actions, e.g. scheduling a service with the car service provider, or if large numbers of care are in the same location, then the traffic management system can take necessary action. ’Connected cars’ can also communicate with each other, and can send alerts to each other in certain scenarios like possible crash etc. This paper talks about how the concept of ‘connected cars’ can be used to perform ‘predictive car maintenance’. It also discusses how certain technology components, i.e., Eclipse Mosquito and Eclipse Paho can be used to implement a predictive connected car use case.

  13. Resting state functional connectivity in perfusion imaging: correlation maps with BOLD connectivity and resting state perfusion.

    Directory of Open Access Journals (Sweden)

    Roberto Viviani

    Full Text Available Functional connectivity is a property of the resting state that may provide biomarkers of brain function and individual differences. Classically, connectivity is estimated as the temporal correlation of spontaneous fluctuations of BOLD signal. We investigated differences in connectivity estimated from the BOLD and CBF signal present in volumes acquired with arterial spin labeling technique in a large sample (N = 265 of healthy individuals. Positive connectivity was observable in both BOLD and CBF signal, and was present in the CBF signal also at frequencies lower than 0.009 Hz, here investigated for the first time. Negative connectivity was more variable. The validity of positive connectivity was confirmed by the existence of correlation across individuals in its intensity estimated from the BOLD and CBF signal. In contrast, there was little or no correlation across individuals between intensity of connectivity and mean perfusion levels, suggesting that these two biomarkers correspond to distinct sources of individual differences.

  14. Multiple sclerosis impairs regional functional connectivity in the cerebellum

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Andersen, Kasper Winther; Madsen, Kristoffer Hougaard

    2013-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) has been used to study changes in long-range functional brain connectivity in multiple sclerosis (MS). Yet little is known about how MS affects functional brain connectivity at the local level. Here we studied 42 patients with MS and 30...

  15. How do brain tumors alter functional connectivity? : A magnetoencephalography study

    NARCIS (Netherlands)

    Bartolomei, Fabrice; Bosma, Ingeborg; Klein, Martin; Baayen, Johannes C; Reijneveld, Jaap C; Postma, Tjeerd J; Heimans, Jan J; van Dijk, Bob W; de Munck, Jan C; de Jongh, Arent; Cover, Keith S; Stam, Cornelis J

    2006-01-01

    OBJECTIVE: This study was undertaken to test the hypothesis that brain tumors interfere with normal brain function by disrupting functional connectivity of brain networks. METHODS: Functional connectivity was assessed by computing the synchronization likelihood in a broad band (0.5-60Hz) or in the g

  16. Synthetic neuronal datasets for benchmarking directed functional connectivity metrics

    National Research Council Canada - National Science Library

    Rodrigues, João; Andrade, Alexandre

    2015-01-01

    Background. Datasets consisting of synthetic neural data generated with quantifiable and controlled parameters are a valuable asset in the process of testing and validating directed functional connectivity metrics...

  17. Connectivity network measures predict volumetric atrophy in mild cognitive impairment.

    Science.gov (United States)

    Nir, Talia M; Jahanshad, Neda; Toga, Arthur W; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M

    2015-01-01

    Alzheimer's disease (AD) is characterized by cortical atrophy and disrupted anatomic connectivity, and leads to abnormal interactions between neural systems. Diffusion-weighted imaging (DWI) and graph theory can be used to evaluate major brain networks and detect signs of a breakdown in network connectivity. In a longitudinal study using both DWI and standard magnetic resonance imaging (MRI), we assessed baseline white-matter connectivity patterns in 30 subjects with mild cognitive impairment (MCI, mean age 71.8 ± 7.5 years, 18 males and 12 females) from the Alzheimer's Disease Neuroimaging Initiative. Using both standard MRI-based cortical parcellations and whole-brain tractography, we computed baseline connectivity maps from which we calculated global "small-world" architecture measures, including mean clustering coefficient and characteristic path length. We evaluated whether these baseline network measures predicted future volumetric brain atrophy in MCI subjects, who are at risk for developing AD, as determined by 3-dimensional Jacobian "expansion factor maps" between baseline and 6-month follow-up anatomic scans. This study suggests that DWI-based network measures may be a novel predictor of AD progression.

  18. Prediction of Alzheimer's disease using individual structural connectivity networks

    Science.gov (United States)

    Shao, Junming; Myers, Nicholas; Yang, Qinli; Feng, Jing; Plant, Claudia; Böhm, Christian; Förstl, Hans; Kurz, Alexander; Zimmer, Claus; Meng, Chun; Riedl, Valentin; Wohlschläger, Afra; Sorg, Christian

    2012-01-01

    Alzheimer's disease (AD) progressively degrades the brain's gray and white matter. Changes in white matter reflect changes in the brain's structural connectivity pattern. Here, we established individual structural connectivity networks (ISCNs) to distinguish predementia and dementia AD from healthy aging in individual scans. Diffusion tractography was used to construct ISCNs with a fully automated procedure for 21 healthy control subjects (HC), 23 patients with mild cognitive impairment and conversion to AD dementia within 3 years (AD-MCI), and 17 patients with mild AD dementia. Three typical pattern classifiers were used for AD prediction. Patients with AD and AD-MCI were separated from HC with accuracies greater than 95% and 90%, respectively, irrespective of prediction approach and specific fiber properties. Most informative connections involved medial prefrontal, posterior parietal, and insular cortex. Patients with mild AD were separated from those with AD-MCI with an accuracy of approximately 85%. Our finding provides evidence that ISCNs are sensitive to the impact of earliest stages of AD. ISCNs may be useful as a white matter-based imaging biomarker to distinguish healthy aging from AD. PMID:22405045

  19. Multiphasic modification of intrinsic functional connectivity of the rat brain during increasing levels of propofol.

    Science.gov (United States)

    Liu, Xiping; Pillay, Siveshigan; Li, Rupeng; Vizuete, Jeannette A; Pechman, Kimberly R; Schmainda, Kathleen M; Hudetz, Anthony G

    2013-12-01

    The dose-dependent effects of anesthetics on brain functional connectivity are incompletely understood. Resting-state functional magnetic resonance imaging (rsfMRI) is widely used to assess the functional connectivity in humans and animals. Propofol is an anesthetic agent with desirable characteristics for functional neuroimaging in animals but its dose-dependent effects on rsfMRI functional connectivity have not been determined. Here we tested the hypothesis that brain functional connectivity undergoes specific changes in distinct neural networks at anesthetic depths associated with loss of consciousness. We acquired spontaneous blood oxygen level-dependent (BOLD) signals simultaneously with electroencephalographic (EEG) signals from rats under steady-state, intravenously administered propofol at increasing doses from light sedation to deep anesthesia (20, 40, 60, 80, and 100 mg/kg/h IV). Power spectra and burst suppression ratio were calculated from the EEG to verify anesthetic depth. Functional connectivity was determined from the whole brain correlation of BOLD data in regions of interest followed by a segmentation of the correlation maps into anatomically defined regional connectivity. We found that propofol produced multiphasic, dose dependent changes in functional connectivity of various cortical and subcortical networks. Cluster analysis predicted segregation of connectivity into two cortical and two subcortical clusters. In one cortical cluster (somatosensory and parietal), the early reduction in connectivity was followed by transient reversal; in the other cluster (sensory, motor and cingulate/retrosplenial), this rebound was absent. The connectivity of the subcortical cluster (brainstem, hippocampal and caudate) was strongly reduced, whereas that of another (hypothalamus, medial thalamus and n. basalis) did not. Subcortical connectivity increased again in deep anesthesia associated with EEG burst suppression. Regional correlation analysis confirmed the

  20. Using computational models to relate structural and functional brain connectivity.

    Science.gov (United States)

    Hlinka, Jaroslav; Coombes, Stephen

    2012-07-01

    Modern imaging methods allow a non-invasive assessment of both structural and functional brain connectivity. This has lead to the identification of disease-related alterations affecting functional connectivity. The mechanism of how such alterations in functional connectivity arise in a structured network of interacting neural populations is as yet poorly understood. Here we use a modeling approach to explore the way in which this can arise and to highlight the important role that local population dynamics can have in shaping emergent spatial functional connectivity patterns. The local dynamics for a neural population is taken to be of the Wilson-Cowan type, whilst the structural connectivity patterns used, describing long-range anatomical connections, cover both realistic scenarios (from the CoComac database) and idealized ones that allow for more detailed theoretical study. We have calculated graph-theoretic measures of functional network topology from numerical simulations of model networks. The effect of the form of local dynamics on the observed network state is quantified by examining the correlation between structural and functional connectivity. We document a profound and systematic dependence of the simulated functional connectivity patterns on the parameters controlling the dynamics. Importantly, we show that a weakly coupled oscillator theory explaining these correlations and their variation across parameter space can be developed. This theoretical development provides a novel way to characterize the mechanisms for the breakdown of functional connectivity in diseases through changes in local dynamics.

  1. Changes in brain functional network connectivity after stroke

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Yapeng Li; Wenzhen Zhu; Xi Chen

    2014-01-01

    Studies have shown that functional network connection models can be used to study brain net-work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their ifrst ever stroke. Using independent component analysis, six spatially independent components highly correlat-ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our ifndings suggest that functional network connectivity in stroke patients is more complex than that in hea-lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.

  2. The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex.

    Science.gov (United States)

    Wang, Zheng; Chen, Li Min; Négyessy, László; Friedman, Robert M; Mishra, Arabinda; Gore, John C; Roe, Anna W

    2013-06-19

    Studies of resting-state activity in the brain have provoked critical questions about the brain's functional organization, but the biological basis of this activity is not clear. Specifically, the relationships between interregional correlations in resting-state measures of activity, neuronal functional connectivity and anatomical connectivity are much debated. To investigate these relationships, we have examined both anatomical and steady-state functional connectivity within the hand representation of primary somatosensory cortex (areas 3b and 1) in anesthetized squirrel monkeys. The comparison of three data sets (fMRI, electrophysiological, and anatomical) indicate two primary axes of information flow within the SI: prominent interdigit interactions within area 3b and predominantly homotopic interactions between area 3b and area 1. These data support a strikingly close relationship between baseline functional connectivity and anatomical connections. This study extends findings derived from large-scale cortical networks to the realm of local millimeter-scale networks.

  3. Electrophysiological and functional connectivity of the human supplementary motor area.

    Science.gov (United States)

    Narayana, Shalini; Laird, Angela R; Tandon, Nitin; Franklin, Crystal; Lancaster, Jack L; Fox, Peter T

    2012-08-01

    Neuro-imaging methods for detecting functional and structural inter-regional connectivity are in a rapid phase of development. While reports of regional connectivity patterns based on individual methods are becoming common, studies comparing the results of two or more connectivity-mapping methods remain rare. In this study, we applied transcranial magnetic stimulation during PET imaging (TMS/PET), a stimulation-based method, and meta-analytic connectivity modeling (MACM), a task-based method to map the connectivity patterns of the supplementary motor area (SMA). Further, we drew upon the behavioral domain meta-data of the BrainMap® database to characterize the behavioral domain specificity of two maps. Both MACM and TMS/PET detected multi-synaptic connectivity patterns, with the MACM-detected connections being more extensive. Both MACM and TMS/PET detected connections belonging to multiple behavioral domains, including action, cognition and perception. Finally, we show that the two connectivity-mapping methods are complementary in that, the MACM informed on the functional nature of SMA connections, while TMS/PET identified brain areas electrophysiologically connected with the SMA. Thus, we demonstrate that integrating multimodal database and imaging techniques can derive comprehensive connectivity maps of brain areas.

  4. Detecting Functional Connectivity During Audiovisual Integration with MEG: A Comparison of Connectivity Metrics.

    Science.gov (United States)

    Ard, Tyler; Carver, Frederick W; Holroyd, Tom; Horwitz, Barry; Coppola, Richard

    2015-08-01

    In typical magnetoencephalography and/or electroencephalography functional connectivity analysis, researchers select one of several methods that measure a relationship between regions to determine connectivity, such as coherence, power correlations, and others. However, it is largely unknown if some are more suited than others for various types of investigations. In this study, the authors investigate seven connectivity metrics to evaluate which, if any, are sensitive to audiovisual integration by contrasting connectivity when tracking an audiovisual object versus connectivity when tracking a visual object uncorrelated with the auditory stimulus. The authors are able to assess the metrics' performances at detecting audiovisual integration by investigating connectivity between auditory and visual areas. Critically, the authors perform their investigation on a whole-cortex all-to-all mapping, avoiding confounds introduced in seed selection. The authors find that amplitude-based connectivity measures in the beta band detect strong connections between visual and auditory areas during audiovisual integration, specifically between V4/V5 and auditory cortices in the right hemisphere. Conversely, phase-based connectivity measures in the beta band as well as phase and power measures in alpha, gamma, and theta do not show connectivity between audiovisual areas. The authors postulate that while beta power correlations detect audiovisual integration in the current experimental context, it may not always be the best measure to detect connectivity. Instead, it is likely that the brain utilizes a variety of mechanisms in neuronal communication that may produce differential types of temporal relationships.

  5. Fostering Connections between Classes of Polynomial Functions.

    Science.gov (United States)

    Buck, Judy Curran

    The typical path of instruction in high school algebra courses for the study of polynomial functions has been from linear functions, to quadratic functions, to polynomial functions of degree greater than two. This paper reports results of clinical interviews with an Algebra II student. The interviews were used to probe into the student's…

  6. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  7. Upregulation of cortico-cerebellar functional connectivity after motor learning.

    Science.gov (United States)

    Mehrkanoon, Saeid; Boonstra, Tjeerd W; Breakspear, Michael; Hinder, Mark; Summers, Jeffery J

    2016-03-01

    Interactions between the cerebellum and primary motor cortex are crucial for the acquisition of new motor skills. Recent neuroimaging studies indicate that learning motor skills is associated with subsequent modulation of resting-state functional connectivity in the cerebellar and cerebral cortices. The neuronal processes underlying the motor-learning-induced plasticity are not well understood. Here, we investigate changes in functional connectivity in source-reconstructed electroencephalography (EEG) following the performance of a single session of a dynamic force task in twenty young adults. Source activity was reconstructed in 112 regions of interest (ROIs) and the functional connectivity between all ROIs was estimated using the imaginary part of coherence. Significant changes in resting-state connectivity were assessed using partial least squares (PLS). We found that subjects adapted their motor performance during the training session and showed improved accuracy but with slower movement times. A number of connections were significantly upregulated after motor training, principally involving connections within the cerebellum and between the cerebellum and motor cortex. Increased connectivity was confined to specific frequency ranges in the mu- and beta-bands. Post hoc analysis of the phase spectra of these cerebellar and cortico-cerebellar connections revealed an increased phase lag between motor cortical and cerebellar activity following motor practice. These findings show a reorganization of intrinsic cortico-cerebellar connectivity related to motor adaptation and demonstrate the potential of EEG connectivity analysis in source space to reveal the neuronal processes that underpin neural plasticity.

  8. Disturbed Interhemispheric Functional Connectivity Rather than Structural Connectivity in Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Rongfeng Qi

    2016-12-01

    Full Text Available Neuroimaging studies have demonstrated that irritable bowel syndrome (IBS—a relapsing functional bowel disorder—presents with disrupted brain connections. However, little is known about the alterations of interhemispheric functional connectivity and underlying structural connectivity in IBS. This study combined resting-state functional magnetic resonance imaging (MRI and diffusion tensor imaging (DTI to investigate changes in interhemispheric coordination in IBS patients. Resting-state functional and structural magnetic resonance images were acquired from 65 IBS patients and 67 healthy controls (matched for age, sex and educational level. Interhemispheric voxel-mirrored homotopic connectivity (VMHC was calculated and compared between groups. Homotopic regions showing abnormal VMHC in patients were targeted as regions of interest for analysis of DTI tractography. The fractional anisotropy, fiber number, and fiber length were compared between groups. Statistical analysis was also performed by including anxiety and depression as covariates to evaluate their effect. A Pearson correlation analysis between abnormal interhemispheric connectivity and clinical indices of IBS patients was performed. Compared to healthy controls, IBS patients had higher interhemispheric functional connectivity between bilateral thalami, cuneus, posterior cingulate cortices, lingual gyri and inferior occipital/cerebellum lobes, as well as lower interhemispheric functional connectivity between bilateral ventral anterior cingulate cortices (vACC and inferior parietal lobules (IPL. The inclusion of anxiety and depression as covariates abolished VMHC difference in vACC. Microstructural features of white matter tracts connecting functionally abnormal regions did not reveal any differences between the groups. VMHC values in vACC negatively correlated with the quality of life scores of patients. In conclusion, this study provides preliminary evidence of the disrupted

  9. Altered default mode network functional connectivity in schizotypal personality disorder.

    Science.gov (United States)

    Zhang, Qing; Shen, Jing; Wu, Jianlin; Yu, Xiao; Lou, Wutao; Fan, Hongyu; Shi, Lin; Wang, Defeng

    2014-12-01

    The default mode network (DMN) has been identified to play a critical role in many mental disorders, but such abnormalities have not yet been determined in patients with schizotypal personality disorder (SPD). The purpose of this study was to analyze the alteration of the DMN functional connectivity in subjects with (SPD) and compared it to healthy control subjects. Eighteen DSM-IV diagnosed SPD subjects (all male, average age: 19.7±0.9) from a pool of 3000 first year college students, and eighteen age and gender matched healthy control subjects were recruited (all male, average age: 20.3±0.9). Independent component analysis (ICA) was used to analyze the DMN functional connectivity alteration. Compared to the healthy control group, SPD subjects had significantly decreased functional connectivity in the frontal areas, including the superior and medial frontal gyrus, and greater functional connectivity in the bilateral superior temporal gyrus and sub-lobar regions, including the bilateral putamen and caudate. Compared to subjects with SPD, the healthy control group showed decreased functional connectivity in the bilateral posterior cingulate gyrus, but showed greater functional connectivity in the right transverse temporal gyrus and left middle temporal gyrus. The healthy control group also showed greater activation in the cerebellum compared to the SPD group. These findings suggest that DMN functional connectivity, particularly that involving cognitive or emotional regulation, is altered in SPD subjects, and thus may be helpful in studying schizophrenia.

  10. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    Science.gov (United States)

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses.

  11. Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity.

    Science.gov (United States)

    Nair, Aarti; Treiber, Jeffrey M; Shukla, Dinesh K; Shih, Patricia; Müller, Ralph-Axel

    2013-06-01

    The thalamus plays crucial roles in the development and mature functioning of numerous sensorimotor, cognitive and attentional circuits. Currently limited evidence suggests that autism spectrum disorder may be associated with thalamic abnormalities, potentially related to sociocommunicative and other impairments in this disorder. We used functional connectivity magnetic resonance imaging and diffusion tensor imaging probabilistic tractography to study the functional and anatomical integrity of thalamo-cortical connectivity in children and adolescents with autism spectrum disorder and matched typically developing children. For connectivity with five cortical seeds (prefontal, parieto-occipital, motor, somatosensory and temporal), we found evidence of both anatomical and functional underconnectivity. The only exception was functional connectivity with the temporal lobe, which was increased in the autism spectrum disorders group, especially in the right hemisphere. However, this effect was robust only in partial correlation analyses (partialling out time series from other cortical seeds), whereas findings from total correlation analyses suggest that temporo-thalamic overconnectivity in the autism group was only relative to the underconnectivity found for other cortical seeds. We also found evidence of microstructural compromise within the thalamic motor parcel, associated with compromise in tracts between thalamus and motor cortex, suggesting that the thalamus may play a role in motor abnormalities reported in previous autism studies. More generally, a number of correlations of diffusion tensor imaging and functional connectivity magnetic resonance imaging measures with diagnostic and neuropsychological scores indicate involvement of abnormal thalamocortical connectivity in sociocommunicative and cognitive impairments in autism spectrum disorder.

  12. Joint brain connectivity estimation from diffusion and functional MRI data

    Science.gov (United States)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  13. Altered salience network connectivity predicts macronutrient intake after sleep deprivation.

    Science.gov (United States)

    Fang, Zhuo; Spaeth, Andrea M; Ma, Ning; Zhu, Senhua; Hu, Siyuan; Goel, Namni; Detre, John A; Dinges, David F; Rao, Hengyi

    2015-02-03

    Although insufficient sleep is a well-recognized risk factor for overeating and weight gain, the neural mechanisms underlying increased caloric (particularly fat) intake after sleep deprivation remain unclear. Here we used resting-state functional magnetic resonance imaging and examined brain connectivity changes associated with macronutrient intake after one night of total sleep deprivation (TSD). Compared to the day following baseline sleep, healthy adults consumed a greater percentage of calories from fat and a lower percentage of calories from carbohydrates during the day following TSD. Subjects also exhibited increased brain connectivity in the salience network from the dorsal anterior cingulate cortex (dACC) to bilateral putamen and bilateral anterior insula (aINS) after TSD. Moreover, dACC-putamen and dACC-aINS connectivity correlated with increased fat and decreased carbohydrate intake during the day following TSD, but not during the day following baseline sleep. These findings provide a potential neural mechanism by which sleep loss leads to increased fat intake.

  14. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.

  15. Connectivity and functional profiling of abnormal brain structures in pedophilia

    Science.gov (United States)

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  16. Brain Connectivity and Functional Recovery in Patients With Ischemic Stroke.

    Science.gov (United States)

    Almeida, Sara Regina Meira; Vicentini, Jessica; Bonilha, Leonardo; De Campos, Brunno M; Casseb, Raphael F; Min, Li Li

    2017-01-01

    Brain mapping studies have demonstrated that functional poststroke brain reorganization is associated with recovery of motor function. Nonetheless, the specific mechanisms associated with functional reorganization leading to motor recovery are still partly unknown. In this study, we performed a cross-sectional evaluation of poststroke subjects with the following goals: (1) To assess intra- and interhemispheric functional brain activation patterns associated with motor function in poststroke patients with variable degrees of recovery; (2) to investigate the involvement of other nonmotor functional networks in relationship with recovery. We studied 59 individuals: 13 patients with function Rankin > 1 and Barthel function with Rankin 0-1 and Barthel = 100; and 27 healthy controls. All subjects underwent structural and functional magnetic resonance imaging (3T Philips Achieva, Holland) using the same protocol (TR = 2 seconds, TE = 30 ms, FOV = 240 × 240 × 117, slice = 39). Resting state functional connectivity was used by in-house software, based on SPM12. Among patients with and without preserved function, the functional connectivity between the primary motor region (M1) and the contralateral hemisphere was increased compared with controls. Nonetheless, only patients with decreased function exhibited decreased functional connectivity between executive control, sensorimotor and visuospatial networks. Functional recovery after stroke is associated with preserved functional connectivity of motor to nonmotor networks. Copyright © 2016 by the American Society of Neuroimaging.

  17. Disrupted Functional Connectivity with Dopaminergic Midbrain in Cocaine Abusers

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, D.; Tomasi, D.; Volkow, N.D.; Wang, R.; Carrillo, J.; Maloney, T.; Alia-Klein, N.; Woicik, P.A.; Telang, F.; Goldstein, R.Z.

    2010-06-01

    Chronic cocaine use is associated with disrupted dopaminergic neurotransmission but how this disruption affects overall brain function (other than reward/motivation) is yet to be fully investigated. Here we test the hypothesis that cocaine addicted subjects will have disrupted functional connectivity between the midbrain (where dopamine neurons are located) and cortical and subcortical brain regions during the performance of a sustained attention task. We measured brain activation and functional connectivity with fMRI in 20 cocaine abusers and 20 matched controls. When compared to controls, cocaine abusers had lower positive functional connectivity of midbrain with thalamus, cerebellum, and rostral cingulate, and this was associated with decreased activation in thalamus and cerebellum and enhanced deactivation in rostral cingulate. These findings suggest that decreased functional connectivity of the midbrain interferes with the activation and deactivation signals associated with sustained attention in cocaine addicts.

  18. Abnormal Basal Ganglia Functional Connectivity in Idiopathic Generalized Epilepsy

    Institute of Scientific and Technical Information of China (English)

    Cheng Luo; Yang Xia; Zhi-Wei Guo; Dong Zhou

    2011-01-01

    The basal ganglia have been implicated in a modulation role in idiopathic generalized epilepsy (IGE) by an invasive electrophysioigic means.This paper investigates the basal ganglia functional connectivity by using the region-wise functional connection analysis in resting-state functional magnetic resonance imaging (fMRi) in IGE.The increased functional connectivity within basal ganglia,and between the basal ganglia and the thalamus,and decreased functional connectivity between basal ganglia and motor cortex are found in IGE compared with the controls. These findings not only implicate dysfunctional integration in the motor loop in IGE and the enhanced interaction in the modulated loop,but also suggest that the basal ganglia modulate the generalized epileptic discharges with the influence over thalamus in the corticothalamus network.

  19. Altered functional connectivity of prefrontal cortex in chronic heroin abusers

    Institute of Scientific and Technical Information of China (English)

    Yinbao Qi; Xianming Fu; Ruobing Qian; Chaoshi Niu; Xiangpin Wei

    2011-01-01

    In this study, we investigated alterations in the resting-state functional connectivity of the pre-frontal cortex in chronic heroin abusers using functional magnetic resonance imaging. We found that, compared with normal controls, in heroin abusers the left prefrontal cortex showed decreased functional connectivity with the left hippocampus, right anterior cingulate, left middle frontal gyrus, right middle frontal gyrus and right precuneus. However, the right prefrontal cortex showed decreased functional connectivity with the left orbital frontal cortex and the left middle frontal gyrus in chronic heroin abusers. These alterations of resting-state functional connectivity in the prefrontal cortices of heroin abusers suggest that their frontal executive neural network may be impaired, and that this may contribute to their continued heroin abuse and relapse after withdrawal.

  20. Tensor-Based Link Prediction in Intermittently Connected Wireless Networks

    CERN Document Server

    Zayani, Mohamed-Haykel; Slama, Ines; Zeghlache, Djamal

    2011-01-01

    Through several studies, it has been highlighted that mobility patterns in mobile networks are driven by human behaviors. This effect has been particularly observed in intermittently connected networks like DTN (Delay Tolerant Networks). Given that common social intentions generate similar human behavior, it is relevant to exploit this knowledge in the network protocols design, e.g. to identify the closeness degree between two nodes. In this paper, we propose a temporal link prediction technique for DTN which quantifies the behavior similarity between each pair of nodes and makes use of it to predict future links. Our prediction method keeps track of the spatio-temporal aspects of nodes behaviors organized as a third-order tensor that aims to records the evolution of the network topology. After collapsing the tensor information, we compute the degree of similarity for each pair of nodes using the Katz measure. This metric gives us an indication on the link occurrence between two nodes relying on their closene...

  1. Statistical technique for analysing functional connectivity of multiple spike trains.

    Science.gov (United States)

    Masud, Mohammad Shahed; Borisyuk, Roman

    2011-03-15

    A new statistical technique, the Cox method, used for analysing functional connectivity of simultaneously recorded multiple spike trains is presented. This method is based on the theory of modulated renewal processes and it estimates a vector of influence strengths from multiple spike trains (called reference trains) to the selected (target) spike train. Selecting another target spike train and repeating the calculation of the influence strengths from the reference spike trains enables researchers to find all functional connections among multiple spike trains. In order to study functional connectivity an "influence function" is identified. This function recognises the specificity of neuronal interactions and reflects the dynamics of postsynaptic potential. In comparison to existing techniques, the Cox method has the following advantages: it does not use bins (binless method); it is applicable to cases where the sample size is small; it is sufficiently sensitive such that it estimates weak influences; it supports the simultaneous analysis of multiple influences; it is able to identify a correct connectivity scheme in difficult cases of "common source" or "indirect" connectivity. The Cox method has been thoroughly tested using multiple sets of data generated by the neural network model of the leaky integrate and fire neurons with a prescribed architecture of connections. The results suggest that this method is highly successful for analysing functional connectivity of simultaneously recorded multiple spike trains.

  2. Aberrant intra-salience network dynamic functional connectivity impairs large-scale network interactions in schizophrenia.

    Science.gov (United States)

    Wang, Xiangpeng; Zhang, Wenwen; Sun, Yujing; Hu, Min; Chen, Antao

    2016-12-01

    Aberrant functional interactions between several large-scale networks, especially the central executive network (CEN), the default mode network (DMN) and the salience network (SN), have been postulated as core pathophysiologic features of schizophrenia; however, the attributing factors of which remain unclear. The study employed resting-state fMRI with 77 participants (42 patients and 35 controls). We performed dynamic functional connectivity (DFC) and functional connectivity (FC) analyses to explore the connectivity patterns of these networks. Furthermore, we performed a structural equation model (SEM) analysis to explore the possible role of the SN in modulating network interactions. The results were as follows: (1) The inter-network connectivity showed decreased connectivity strength and increased time-varying instability in schizophrenia; (2) The SN manifested schizophrenic intra-network dysfunctions in both the FC and DFC patterns; (3) The connectivity properties of the SN were effective in discriminating controls from patients; (4) In patients, the dynamic intra-SN connectivity negatively predicted the inter-network FC, and this effect was mediated by intra-SN connectivity strength. These findings suggest that schizophrenia show systematic deficits in temporal stability of large-scale network connectivity. Furthermore, aberrant network interactions in schizophrenia could be attributed to instable intra-SN connectivity and the dysfunction of the SN may be an intrinsic biomarker of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Functional Connectivity Magnetic Resonance Imaging Classification of Autism

    Science.gov (United States)

    Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.

    2011-01-01

    Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear…

  4. Functional Connectivity Magnetic Resonance Imaging Classification of Autism

    Science.gov (United States)

    Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.

    2011-01-01

    Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear…

  5. Light Manipulation in Metallic Nanowire Networks with Functional Connectivity

    KAUST Repository

    Galinski, Henning

    2016-12-27

    Guided by ideas from complex systems, a new class of network metamaterials is introduced for light manipulation, which are based on the functional connectivity among heterogeneous subwavelength components arranged in complex networks. The model system is a nanonetwork formed by dealloying a metallic thin film. The connectivity of the network is deterministically controlled, enabling the formation of tunable absorbing states.

  6. Potential use and challenges of functional connectivity mapping in intractable epilepsy

    Directory of Open Access Journals (Sweden)

    Robert Todd Constable

    2013-05-01

    Full Text Available This review focuses on the use of resting-state functional magnetic resonance imaging data to assess functional connectivity in the human brain for surgical planning in intractable epilepsy. This approach has the potential to predict outcomes for a given surgical procedure based on the pre-surgical functional organization of the brain. Functional connectivity can also identify cortical regions that are organized differently in epilepsy patients either as a direct function of the disease or through indirect compensatory responses. Functional connectivity mapping can also potentially help identify epileptogenic tissue, whether this is a single focal location or a network of seizure-generating tissues and this information can assist in guiding the implantation of electrodes for invasive monitoring. This review covers the basics of connectivity analysis and discusses particular issues associated with analyzing such data. These issues include how to define nodes, as well as differences between connectivity analyses of individual nodes, groups of nodes, and whole-brain assessment at the voxel level. The need for arbitrary thresholds in some connectivity analyses is discussed and a solution to this problem is reviewed. Overall, functional connectivity analysis is becoming an important tool for assessing functional brain organization in surgical planning in epilepsy.

  7. Nucleus accumbens functional connectivity discriminates medication-overuse headache

    Directory of Open Access Journals (Sweden)

    D.M. Torta

    2016-01-01

    Full Text Available Medication-overuse headache (MOH is a secondary form of headache related to the overuse of triptans, analgesics and other acute headache medications. It is believed that MOH and substance addiction share some similar pathophysiological mechanisms. In this study we examined the whole brain resting state functional connectivity of the dorsal and ventral striatum in 30 patients (15 MOH and 15 non-MOH patients to investigate if classification algorithms can successfully discriminate between MOH and non-MOH patients on the basis of the spatial pattern of resting state functional connectivity of the dorsal and ventral striatal region of interest. Our results indicated that both nucleus accumbens and dorsal rostral putamen functional connectivity could discriminate between MOH and non-MOH patients, thereby providing possible support to two interpretations. First, that MOH patients show altered reward functionality in line with drug abusers (alterations in functional connectivity of the nucleus accumbens. Second, that MOH patients show inability to break habitual behavior (alterations in functional connectivity of the dorsal striatum. In conclusion, our data showed that MOH patients were characterized by an altered functional connectivity of motivational circuits at rest. These differences could permit the blind discrimination between the two conditions using classification algorithms. Considered overall, our findings might contribute to the development of novel diagnostic measures.

  8. Prenatal stress alters amygdala functional connectivity in preterm neonates

    Directory of Open Access Journals (Sweden)

    Dustin Scheinost

    2016-01-01

    Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  9. Assessing thalamocortical functional connectivity with Granger causality.

    Science.gov (United States)

    Chen, Cheng; Maybhate, Anil; Israel, David; Thakor, Nitish V; Jia, Xiaofeng

    2013-09-01

    Assessment of network connectivity across multiple brain regions is critical to understanding the mechanisms underlying various neurological disorders. Conventional methods for assessing dynamic interactions include cross-correlation and coherence analysis. However, these methods do not reveal the direction of information flow, which is important for studying the highly directional neurological system. Granger causality (GC) analysis can characterize the directional influences between two systems. We tested GC analysis for its capability to capture directional interactions within both simulated and in vivo neural networks. The simulated networks consisted of Hindmarsh-Rose neurons; GC analysis was used to estimate the causal influences between two model networks. Our analysis successfully detected asymmetrical interactions between these networks ( , t -test). Next, we characterized the relationship between the "electrical synaptic strength" in the model networks and interactions estimated by GC analysis. We demonstrated the novel application of GC to monitor interactions between thalamic and cortical neurons following ischemia induced brain injury in a rat model of cardiac arrest (CA). We observed that during the post-CA acute period the GC interactions from the thalamus to the cortex were consistently higher than those from the cortex to the thalamus ( 1.983±0.278 times higher, p = 0.021). In addition, the dynamics of GC interactions between the thalamus and the cortex were frequency dependent. Our study demonstrated the feasibility of GC to monitor the dynamics of thalamocortical interactions after a global nervous system injury such as CA-induced ischemia, and offers preferred alternative applications in characterizing other inter-regional interactions in an injured brain.

  10. ToolConnect: A Functional Connectivity Toolbox for In vitro Networks.

    Science.gov (United States)

    Pastore, Vito Paolo; Poli, Daniele; Godjoski, Aleksandar; Martinoia, Sergio; Massobrio, Paolo

    2016-01-01

    Nowadays, the use of in vitro reduced models of neuronal networks to investigate the interplay between structural-functional connectivity and the emerging collective dynamics is a widely accepted approach. In this respect, a relevant advance for this kind of studies has been given by the recent introduction of high-density large-scale Micro-Electrode Arrays (MEAs) which have favored the mapping of functional connections and the recordings of the neuronal electrical activity. Although, several toolboxes have been implemented to characterize network dynamics and derive functional links, no specifically dedicated software for the management of huge amount of data and direct estimation of functional connectivity maps has been developed. toolconnect offers the implementation of up to date algorithms and a user-friendly Graphical User Interface (GUI) to analyze recorded data from large scale networks. It has been specifically conceived as a computationally efficient open-source software tailored to infer functional connectivity by analyzing the spike trains acquired from in vitro networks coupled to MEAs. In the current version, toolconnect implements correlation- (cross-correlation, partial-correlation) and information theory (joint entropy, transfer entropy) based core algorithms, as well as useful and practical add-ons to visualize functional connectivity graphs and extract some topological features. In this work, we present the software, its main features and capabilities together with some demonstrative applications on hippocampal recordings.

  11. ToolConnect: a functional connectivity toolbox for in vitro networks

    Directory of Open Access Journals (Sweden)

    Vito Paolo Pastore

    2016-03-01

    Full Text Available Nowadays, the use of in vitro reduced models of neuronal networks to investigate the interplay between structural-functional connectivity and the emerging collective dynamics is a widely accepted approach. In this respect, a relevant advance for this kind of studies has been given by the recent introduction of high-density large-scale Micro-Electrode Arrays (MEAs which have favored the mapping of functional connections and the recordings of the neuronal electrical activity. Although several toolboxes have been implemented to characterize network dynamics and derive functional links, no specifically dedicated software for the management of huge amount of data and direct estimation of functional connectivity maps has been developed. TOOLCONNECT offers the implementation of up to date algorithms and a user-friendly Graphical User Interface (GUI to analyze recorded data from large scale networks. It has been specifically conceived as a computationally efficient open-source software tailored to infer functional connectivity by analyzing the spike trains acquired from in vitro networks coupled to MEAs. In the current version, TOOLCONNECT implements correlation- (cross-correlation, partial-correlation and information theory (joint entropy, transfer entropy based core algorithms, as well as useful and practical add-ons to visualize functional connectivity graphs and extract some topological features. In this work, we present the software, its main features and capabilities together with some demonstrative applications on hippocampal recordings.

  12. ToolConnect: A Functional Connectivity Toolbox for In vitro Networks

    Science.gov (United States)

    Pastore, Vito Paolo; Poli, Daniele; Godjoski, Aleksandar; Martinoia, Sergio; Massobrio, Paolo

    2016-01-01

    Nowadays, the use of in vitro reduced models of neuronal networks to investigate the interplay between structural-functional connectivity and the emerging collective dynamics is a widely accepted approach. In this respect, a relevant advance for this kind of studies has been given by the recent introduction of high-density large-scale Micro-Electrode Arrays (MEAs) which have favored the mapping of functional connections and the recordings of the neuronal electrical activity. Although, several toolboxes have been implemented to characterize network dynamics and derive functional links, no specifically dedicated software for the management of huge amount of data and direct estimation of functional connectivity maps has been developed. toolconnect offers the implementation of up to date algorithms and a user-friendly Graphical User Interface (GUI) to analyze recorded data from large scale networks. It has been specifically conceived as a computationally efficient open-source software tailored to infer functional connectivity by analyzing the spike trains acquired from in vitro networks coupled to MEAs. In the current version, toolconnect implements correlation- (cross-correlation, partial-correlation) and information theory (joint entropy, transfer entropy) based core algorithms, as well as useful and practical add-ons to visualize functional connectivity graphs and extract some topological features. In this work, we present the software, its main features and capabilities together with some demonstrative applications on hippocampal recordings. PMID:27065841

  13. Prestimulus functional connectivity determines pain perception in humans.

    Science.gov (United States)

    Ploner, Markus; Lee, Michael C; Wiech, Katja; Bingel, Ulrike; Tracey, Irene

    2010-01-05

    Pain is a highly subjective experience that can be substantially influenced by differences in individual susceptibility as well as personality. How susceptibility to pain and personality translate to brain activity is largely unknown. Here, we report that the functional connectivity of two key brain areas before a sensory event reflects the susceptibility to a subsequent noxious stimulus being perceived as painful. Specifically, the prestimulus connectivity among brain areas related to the subjective perception of the body and to the modulation of pain (anterior insular cortex and brainstem, respectively) determines whether a noxious event is perceived as painful. Further, these effects of prestimulus connectivity on pain perception covary with pain-relevant personality traits. More anxious and pain-attentive individuals display weaker descending connectivity to pain modulatory brain areas. We conclude that variations in functional connectivity underlie personality-related differences in individual susceptibility to pain.

  14. Sleep spindles and hippocampal functional connectivity in human NREM sleep.

    Science.gov (United States)

    Andrade, Kátia C; Spoormaker, Victor I; Dresler, Martin; Wehrle, Renate; Holsboer, Florian; Sämann, Philipp G; Czisch, Michael

    2011-07-13

    We investigated human hippocampal functional connectivity in wakefulness and throughout non-rapid eye movement sleep. Young healthy subjects underwent simultaneous EEG and functional magnetic resonance imaging (fMRI) measurements at 1.5 T under resting conditions in the descent to deep sleep. Continuous 5 min epochs representing a unique sleep stage (i.e., wakefulness, sleep stages 1 and 2, or slow-wave sleep) were extracted. fMRI time series of subregions of the hippocampal formation (HF) (cornu ammonis, dentate gyrus, and subiculum) were extracted based on cytoarchitectonical probability maps. We observed sleep stage-dependent changes in HF functional coupling. The HF was integrated to variable strength in the default mode network (DMN) in wakefulness and light sleep stages but not in slow-wave sleep. The strongest functional connectivity between the HF and neocortex was observed in sleep stage 2 (compared with both slow-wave sleep and wakefulness). We observed a strong interaction of sleep spindle occurrence and HF functional connectivity in sleep stage 2, with increased HF/neocortical connectivity during spindles. Moreover, the cornu ammonis exhibited strongest functional connectivity with the DMN during wakefulness, while the subiculum dominated hippocampal functional connectivity to frontal brain regions during sleep stage 2. Increased connectivity between HF and neocortical regions in sleep stage 2 suggests an increased capacity for possible global information transfer, while connectivity in slow-wave sleep is reflecting a functional system optimal for segregated information reprocessing. Our data may be relevant to differentiating sleep stage-specific contributions to neural plasticity as proposed in sleep-dependent memory consolidation.

  15. Corticostriatal connectivity fingerprints: Probability maps based on resting-state functional connectivity.

    Science.gov (United States)

    Jaspers, Ellen; Balsters, Joshua H; Kassraian Fard, Pegah; Mantini, Dante; Wenderoth, Nicole

    2017-03-01

    Over the last decade, structure-function relationships have begun to encompass networks of brain areas rather than individual structures. For example, corticostriatal circuits have been associated with sensorimotor, limbic, and cognitive information processing, and damage to these circuits has been shown to produce unique behavioral outcomes in Autism, Parkinson's Disease, Schizophrenia and healthy ageing. However, it remains an open question how abnormal or absent connectivity can be detected at the individual level. Here, we provide a method for clustering gross morphological structures into subregions with unique functional connectivity fingerprints, and generate network probability maps usable as a baseline to compare individual cases against. We used connectivity metrics derived from resting-state fMRI (N = 100), in conjunction with hierarchical clustering methods, to parcellate the striatum into functionally distinct clusters. We identified three highly reproducible striatal subregions, across both hemispheres and in an independent replication dataset (N = 100) (dice-similarity values 0.40-1.00). Each striatal seed region resulted in a highly reproducible distinct connectivity fingerprint: the putamen showed predominant connectivity with cortical and cerebellar sensorimotor and language processing areas; the ventromedial striatum cluster had a distinct limbic connectivity pattern; the caudate showed predominant connectivity with the thalamus, frontal and occipital areas, and the cerebellum. Our corticostriatal probability maps agree with existing connectivity data in humans and non-human primates, and showed a high degree of replication. We believe that these maps offer an efficient tool to further advance hypothesis driven research and provide important guidance when investigating deviant connectivity in neurological patient populations suffering from e.g., stroke or cerebral palsy. Hum Brain Mapp 38:1478-1491, 2017. © 2016 Wiley Periodicals, Inc.

  16. Task-related deactivation and functional connectivity of the subgenual cingulate cortex in major depressive disorder

    Directory of Open Access Journals (Sweden)

    Christopher G Davey

    2012-02-01

    Full Text Available Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected by depression.Methods: Eighteen patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterised task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task; MSIT. We used a psycho-physiological interactions (PPI approach to examine functional connectivity changes with subgenual ACC. Voxelwise statistical maps for each analysis were compared between the patient and control groups.Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive control regions in depressed patients.Conclusions: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes.

  17. Exercise Benefits Brain Function: The Monoamine Connection

    OpenAIRE

    Tzu-Wei Lin; Yu-Min Kuo

    2013-01-01

    The beneficial effects of exercise on brain function have been demonstrated in animal models and in a growing number of clinical studies on humans. There are multiple mechanisms that account for the brain-enhancing effects of exercise, including neuroinflammation, vascularization, antioxidation, energy adaptation, and regulations on neurotrophic factors and neurotransmitters. Dopamine (DA), noradrenaline (NE), and serotonin (5-HT) are the three major monoamine neurotransmitters that are known...

  18. Preschool anxiety disorders predict different patterns of amygdala-prefrontal connectivity at school-age.

    Directory of Open Access Journals (Sweden)

    Kimberly L H Carpenter

    Full Text Available In this prospective, longitudinal study of young children, we examined whether a history of preschool generalized anxiety, separation anxiety, and/or social phobia is associated with amygdala-prefrontal dysregulation at school-age. As an exploratory analysis, we investigated whether distinct anxiety disorders differ in the patterns of this amygdala-prefrontal dysregulation.Participants were children taking part in a 5-year study of early childhood brain development and anxiety disorders. Preschool symptoms of generalized anxiety, separation anxiety, and social phobia were assessed with the Preschool Age Psychiatric Assessment (PAPA in the first wave of the study when the children were between 2 and 5 years old. The PAPA was repeated at age 6. We conducted functional MRIs when the children were 5.5 to 9.5 year old to assess neural responses to viewing of angry and fearful faces.A history of preschool social phobia predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces. Preschool generalized anxiety predicted less functional connectivity between the amygdala and dorsal prefrontal cortices in response to fearful faces. Finally, a history of preschool separation anxiety predicted less school-age functional connectivity between the amygdala and the ventral prefrontal cortices to angry faces and greater school-age functional connectivity between the amygdala and dorsal prefrontal cortices to angry faces.Our results suggest that there are enduring neurobiological effects associated with a history of preschool anxiety, which occur over-and-above the effect of subsequent emotional symptoms. Our results also provide preliminary evidence for the neurobiological differentiation of specific preschool anxiety disorders.

  19. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Li Liu

    Full Text Available BACKGROUND: Numerous studies have demonstrated the higher-order functions of the cerebellum, including emotion regulation and cognitive processing, and have indicated that the cerebellum should therefore be included in the pathophysiological models of major depressive disorder. The aim of this study was to compare the resting-state functional connectivity of the cerebellum in adults with major depression and healthy controls. METHODS: Twenty adults with major depression and 20 gender-, age-, and education-matched controls were investigated using seed-based resting-state functional connectivity magnetic resonance imaging. RESULTS: Compared with the controls, depressed patients showed significantly increased functional connectivity between the cerebellum and the temporal poles. However, significantly reduced cerebellar functional connectivity was observed in the patient group in relation to both the default-mode network, mainly including the ventromedial prefrontal cortex and the posterior cingulate cortex/precuneus, and the executive control network, mainly including the superior frontal cortex and orbitofrontal cortex. Moreover, the Hamilton Depression Rating Scale score was negatively correlated with the functional connectivity between the bilateral Lobule VIIb and the right superior frontal gyrus in depressed patients. CONCLUSIONS: This study demonstrated increased cerebellar coupling with the temporal poles and reduced coupling with the regions in the default-mode and executive control networks in adults with major depression. These differences between patients and controls could be associated with the emotional disturbances and cognitive control function deficits that accompany major depression. Aberrant cerebellar connectivity during major depression may also imply a substantial role for the cerebellum in the pathophysiological models of depression.

  20. A selective involvement of putamen functional connectivity in youth with internet gaming disorder.

    Science.gov (United States)

    Hong, Soon-Beom; Harrison, Ben J; Dandash, Orwa; Choi, Eun-Jung; Kim, Seong-Chan; Kim, Ho-Hyun; Shim, Do-Hyun; Kim, Chang-Dai; Kim, Jae-Won; Yi, Soon-Hyung

    2015-03-30

    Brain cortico-striatal circuits have consistently been implicated in the pathology of addiction related disorders. We applied a reliable seed-based analysis of the resting-state brain activity to comprehensively delineate the subdivisions of striatal functional connectivity implicated in internet gaming disorder. Among twelve right-handed male adolescents with internet gaming disorder and 11 right-handed and gender-matched healthy controls, we examined group differences in the functional connectivity of dorsal and ventral subdivisions of the caudate nucleus and putamen, as well as the association of these connectivity indices with behavioral measures of internet use. Adolescents with internet gaming disorder showed significantly reduced dorsal putamen functional connectivity with the posterior insula-parietal operculum. More time spent playing online games predicted significantly greater functional connectivity between the dorsal putamen and bilateral primary somatosensory cortices in adolescents with internet gaming disorder, and significantly lower functional connectivity between the dorsal putamen and bilateral sensorimotor cortices in healthy controls. The dorsal putamen functional connectivity was significantly and specifically different in adolescents with internet gaming disorder. The findings suggest a possible biomarker of internet gaming disorder.

  1. Intrinsic Functional Connectivity in the Adult Brain and Success in Second-Language Learning.

    Science.gov (United States)

    Chai, Xiaoqian J; Berken, Jonathan A; Barbeau, Elise B; Soles, Jennika; Callahan, Megan; Chen, Jen-Kai; Klein, Denise

    2016-01-20

    There is considerable variability in an individual's ability to acquire a second language (L2) during adulthood. Using resting-state fMRI data acquired before training in English speakers who underwent a 12 week intensive French immersion training course, we investigated whether individual differences in intrinsic resting-state functional connectivity relate to a person's ability to acquire an L2. We focused on two key aspects of language processing--lexical retrieval in spontaneous speech and reading speed--and computed whole-brain functional connectivity from two regions of interest in the language network, namely the left anterior insula/frontal operculum (AI/FO) and the visual word form area (VWFA). Connectivity between the left AI/FO and left posterior superior temporal gyrus (STG) and between the left AI/FO and dorsal anterior cingulate cortex correlated positively with improvement in L2 lexical retrieval in spontaneous speech. Connectivity between the VWFA and left mid-STG correlated positively with improvement in L2 reading speed. These findings are consistent with the different language functions subserved by subcomponents of the language network and suggest that the human capacity to learn an L2 can be predicted by an individual's intrinsic functional connectivity within the language network. Significance statement: There is considerable variability in second-language learning abilities during adulthood. We investigated whether individual differences in intrinsic functional connectivity in the adult brain relate to success in second-language learning, using resting-state functional magnetic resonance imaging in English speakers who underwent a 12 week intensive French immersion training course. We found that pretraining functional connectivity within two different language subnetworks correlated strongly with learning outcome in two different language skills: lexical retrieval in spontaneous speech and reading speed. Our results suggest that the human

  2. Disulfide Connectivity Prediction Based on Modelled Protein 3D Structural Information and Random Forest Regression.

    Science.gov (United States)

    Yu, Dong-Jun; Li, Yang; Hu, Jun; Yang, Xibei; Yang, Jing-Yu; Shen, Hong-Bin

    2015-01-01

    Disulfide connectivity is an important protein structural characteristic. Accurately predicting disulfide connectivity solely from protein sequence helps to improve the intrinsic understanding of protein structure and function, especially in the post-genome era where large volume of sequenced proteins without being functional annotated is quickly accumulated. In this study, a new feature extracted from the predicted protein 3D structural information is proposed and integrated with traditional features to form discriminative features. Based on the extracted features, a random forest regression model is performed to predict protein disulfide connectivity. We compare the proposed method with popular existing predictors by performing both cross-validation and independent validation tests on benchmark datasets. The experimental results demonstrate the superiority of the proposed method over existing predictors. We believe the superiority of the proposed method benefits from both the good discriminative capability of the newly developed features and the powerful modelling capability of the random forest. The web server implementation, called TargetDisulfide, and the benchmark datasets are freely available at: http://csbio.njust.edu.cn/bioinf/TargetDisulfide for academic use.

  3. Functional connectivity of the dorsal striatum in female musicians

    Directory of Open Access Journals (Sweden)

    Shoji eTanaka

    2016-04-01

    Full Text Available The dorsal striatum (caudate/putamen is a node of the cortico-striato-pallido-thalamo-cortical (CSPTC motor circuit, which plays a central role in skilled motor learning, a critical feature of musical performance. The dorsal striatum receives input from a large part of the cerebral cortex, forming a hub in the cortical-subcortical network. This study sought to examine how the functional network of the dorsal striatum differs between musicians and nonmusicians.Resting state functional magnetic resonance imaging (fMRI data were acquired from female university students majoring in music and nonmusic disciplines. The data were subjected to graph theoretical analysis and functional connectivity analysis. The graph theoretical analysis of the entire brain revealed that the degree, which represents the number of connections, of the bilateral putamen was significantly lower in musicians than in nonmusicians. The functional connectivity analysis indicated that compared with nonmusicians, musicians had significantly decreased connectivity between the left putamen and bilateral frontal operculum and between the left caudate nucleus and cerebellum. In conclusion, compared with nonmusicians, female musicians have a smaller functional network of the dorsal striatum, with decreased connectivity. These data are consistent with previous anatomical studies reporting a reduced volume of the dorsal striatum in musicians and ballet dancers. To the best of our knowledge, this is the first study suggesting that long-term musical training results in a less extensive or selective functional network of the dorsal striatum.

  4. Identification of Sparse Neural Functional Connectivity using Penalized Likelihood Estimation and Basis Functions

    Science.gov (United States)

    Song, Dong; Wang, Haonan; Tu, Catherine Y.; Marmarelis, Vasilis Z.; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.

    2013-01-01

    One key problem in computational neuroscience and neural engineering is the identification and modeling of functional connectivity in the brain using spike train data. To reduce model complexity, alleviate overfitting, and thus facilitate model interpretation, sparse representation and estimation of functional connectivity is needed. Sparsities include global sparsity, which captures the sparse connectivities between neurons, and local sparsity, which reflects the active temporal ranges of the input-output dynamical interactions. In this paper, we formulate a generalized functional additive model (GFAM) and develop the associated penalized likelihood estimation methods for such a modeling problem. A GFAM consists of a set of basis functions convolving the input signals, and a link function generating the firing probability of the output neuron from the summation of the convolutions weighted by the sought model coefficients. Model sparsities are achieved by using various penalized likelihood estimations and basis functions. Specifically, we introduce two variations of the GFAM using a global basis (e.g., Laguerre basis) and group LASSO estimation, and a local basis (e.g., B-spline basis) and group bridge estimation, respectively. We further develop an optimization method based on quadratic approximation of the likelihood function for the estimation of these models. Simulation and experimental results show that both group-LASSO-Laguerre and group-bridge-B-spline can capture faithfully the global sparsities, while the latter can replicate accurately and simultaneously both global and local sparsities. The sparse models outperform the full models estimated with the standard maximum likelihood method in out-of-sample predictions. PMID:23674048

  5. Existential and psychological problems connected with Threat Predicting Process

    Directory of Open Access Journals (Sweden)

    Mamcarz Piotr

    2014-01-01

    Full Text Available The aim of the article is to present a very important phenomenon affecting human integrity and homeostasis that is Threat Prediction Process. This process can be defined as “experiencing apprehension concerning results of potential/ actual dangers,” (Mamcarz, 2015 oscillating in terminological area of anxiety, fear, stress, restlessness. Moreover, it highlights a cognitive process distinctive for listed phenomenon’s. The process accompanied with technological and organization changes increases number of health problems affecting many populations. Hard work conditions; changing life style; or many social and political threats have influence on people’s quality of life that are even greater and more dangerous than physical and psychological factors, which, in turn, have much more consequences for human normal functioning. The present article is based on chosen case studies of a qualitative analysis of threat prediction process

  6. Small-world topology of functional connectivity in randomly connected dynamical systems.

    Science.gov (United States)

    Hlinka, J; Hartman, D; Paluš, M

    2012-09-01

    Characterization of real-world complex systems increasingly involves the study of their topological structure using graph theory. Among global network properties, small-world property, consisting in existence of relatively short paths together with high clustering of the network, is one of the most discussed and studied. When dealing with coupled dynamical systems, links among units of the system are commonly quantified by a measure of pairwise statistical dependence of observed time series (functional connectivity). We argue that the functional connectivity approach leads to upwardly biased estimates of small-world characteristics (with respect to commonly used random graph models) due to partial transitivity of the accepted functional connectivity measures such as the correlation coefficient. In particular, this may lead to observation of small-world characteristics in connectivity graphs estimated from generic randomly connected dynamical systems. The ubiquity and robustness of the phenomenon are documented by an extensive parameter study of its manifestation in a multivariate linear autoregressive process, with discussion of the potential relevance for nonlinear processes and measures.

  7. Abnormal brain functional connectivity of the hypothalamus in cluster headaches.

    Directory of Open Access Journals (Sweden)

    Enchao Qiu

    Full Text Available The aim of this study was to detect the abnormality of the brain functional connectivity of the hypothalamus during acute spontaneous cluster headache (CH attacks ('in attack' and headache-free intervals ('out of attack' using resting-state functional magnetic resonance imaging (RS-fMRI technique. The RS-fMRI data from twelve male CH patients during 'in attack' and 'out of attack' periods and twelve age- and sex-matched normal controls were analyzed by the region-of-interest -based functional connectivity method using SPM5 software. Abnormal brain functional connectivity of the hypothalamus is present in CH, which is located mainly in the pain system during the spontaneous CH attacks. It extends beyond the pain system during CH attack intervals.

  8. Design of Connectivity Preserving Flocking Using Control Lyapunov Function

    Directory of Open Access Journals (Sweden)

    Bayu Erfianto

    2016-01-01

    Full Text Available This paper investigates cooperative flocking control design with connectivity preserving mechanism. During flocking, interagent distance is measured to determine communication topology of the flocks. Then, cooperative flocking motion is built based on cooperative artificial potential field with connectivity preserving mechanism to achieve the common flocking objective. The flocking control input is then obtained by deriving cooperative artificial potential field using control Lyapunov function. As a result, we prove that our flocking protocol establishes group stabilization and the communication topology of multiagent flocking is always connected.

  9. BOLD signal and functional connectivity associated with loving kindness meditation.

    Science.gov (United States)

    Garrison, Kathleen A; Scheinost, Dustin; Constable, R Todd; Brewer, Judson A

    2014-05-01

    Loving kindness is a form of meditation involving directed well-wishing, typically supported by the silent repetition of phrases such as "may all beings be happy," to foster a feeling of selfless love. Here we used functional magnetic resonance imaging to assess the neural substrate of loving kindness meditation in experienced meditators and novices. We first assessed group differences in blood oxygen level-dependent (BOLD) signal during loving kindness meditation. We next used a relatively novel approach, the intrinsic connectivity distribution of functional connectivity, to identify regions that differ in intrinsic connectivity between groups, and then used a data-driven approach to seed-based connectivity analysis to identify which connections differ between groups. Our findings suggest group differences in brain regions involved in self-related processing and mind wandering, emotional processing, inner speech, and memory. Meditators showed overall reduced BOLD signal and intrinsic connectivity during loving kindness as compared to novices, more specifically in the posterior cingulate cortex/precuneus (PCC/PCu), a finding that is consistent with our prior work and other recent neuroimaging studies of meditation. Furthermore, meditators showed greater functional connectivity during loving kindness between the PCC/PCu and the left inferior frontal gyrus, whereas novices showed greater functional connectivity during loving kindness between the PCC/PCu and other cortical midline regions of the default mode network, the bilateral posterior insula lobe, and the bilateral parahippocampus/hippocampus. These novel findings suggest that loving kindness meditation involves a present-centered, selfless focus for meditators as compared to novices.

  10. Sex and Age Effects of Functional Connectivity in Early Adulthood

    NARCIS (Netherlands)

    Zhang, C. (Chao); Cahill, N.D. (Nathan D.); Arbabshirani, M.R. (Mohammad R.); T.J.H. White (Tonya); Baum, S.A. (Stefi A.); Michael, A.M. (Andrew M.)

    2016-01-01

    textabstractFunctional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to find coactivating regions in the human brain. Despite its widespread use, the effects of sex and age on resting FC are not well characterized, especially during early adulthood

  11. Age-related changes in task related functional network connectivity.

    Directory of Open Access Journals (Sweden)

    Jason Steffener

    Full Text Available Aging has a multi-faceted impact on brain structure, brain function and cognitive task performance, but the interaction of these different age-related changes is largely unexplored. We hypothesize that age-related structural changes alter the functional connectivity within the brain, resulting in altered task performance during cognitive challenges. In this neuroimaging study, we used independent components analysis to identify spatial patterns of coordinated functional activity involved in the performance of a verbal delayed item recognition task from 75 healthy young and 37 healthy old adults. Strength of functional connectivity between spatial components was assessed for age group differences and related to speeded task performance. We then assessed whether age-related differences in global brain volume were associated with age-related differences in functional network connectivity. Both age groups used a series of spatial components during the verbal working memory task and the strength and distribution of functional network connectivity between these components differed across the age groups. Poorer task performance, i.e. slower speed with increasing memory load, in the old adults was associated with decreases in functional network connectivity between components comprised of the supplementary motor area and the middle cingulate and between the precuneus and the middle/superior frontal cortex. Advancing age also led to decreased brain volume; however, there was no evidence to support the hypothesis that age-related alterations in functional network connectivity were the result of global brain volume changes. These results suggest that age-related differences in the coordination of neural activity between brain regions partially underlie differences in cognitive performance.

  12. Functional Connectivity Hubs and Networks in the Awake Marmoset Brain

    Directory of Open Access Journals (Sweden)

    Annabelle Marie Belcher

    2016-03-01

    Full Text Available In combination with advances in analytical methods, resting-state fMRI is allowing unprecedented access to achieve a better understanding of the network organization of the brain. Increasing evidence suggests that this architecture may incorporate highly functionally connected nodes, or hubs, and we have recently proposed local functional connectivity density (lFCD mapping to identify highly-connected nodes in the human brain. Here we imaged awake nonhuman primates to test whether, like the human brain, the marmoset brain contains functional connectivity hubs. Ten adult common marmosets (Callithrix jacchus were acclimated to mild, comfortable restraint using individualized helmets. Following restraint training, resting BOLD data were acquired during eight consecutive 10 min scans for each subject. lFCD revealed prominent cortical and subcortical hubs of connectivity across the marmoset brain; specifically, in primary and secondary visual cortices (V1/V2, higher-order visual association areas (A19M/V6[DM], posterior parietal and posterior cingulate areas (PGM and A23b/A31, thalamus, dorsal and ventral striatal areas (caudate, putamen, lateral septal nucleus, and anterior cingulate cortex (A24a. lFCD hubs were highly connected to widespread areas of the brain, and further revealed significant network-network interactions. These data provide a baseline platform for future investigations in a nonhuman primate model of the brain’s network topology.

  13. Structural and Functional Connectivity from Unmanned-Aerial System Data

    Science.gov (United States)

    Masselink, Rens; Heckmann, Tobias; Casalí, Javier; Giménez, Rafael; Cerdá, Artemi; Keesstra, Saskia

    2017-04-01

    Over the past decade there has been an increase in both connectivity research and research involving Unmanned-Aerial systems (UASs). In some studies, UASs were successfully used for the assessment of connectivity, but not yet to their full potential. We present several ways to use data obtained from UASs to measure variables related to connectivity, and use these to assess both structural and functional connectivity. These assessments of connectivity can aid us in obtaining a better understanding of the dynamics of e.g. sediment and nutrient transport. We identify three sources of data obtained from a consumer camera mounted on a fixed-wing UAS, which can be used separately or combined: Visual and near-infrared imagery, point clouds, and digital elevation models (DEMs). Imagery (or: orthophotos) can be used for (automatic) mapping of connectivity features like rills, gullies and soil and water conservation measures using supervised or unsupervised classification methods with e.g. Object-Based Image Analysis. Furthermore, patterns of soil moisture in the top layers can be extracted from visual and near-infrared imagery. Point clouds can be analysed for vegetation height and density, and soil surface roughness. Lastly, DEMs can be used in combination with imagery for a number of tasks, including raster-based (e.g. DEM derivatives) and object-based (e.g., feature detection) analysis: Flow routing algorithms can be used to analyse potential pathways of surface runoff and sediment transport. This allows for the assessment of structural connectivity through indices that are based, for example, on morphometric and other properties of surfaces, contributing areas, and pathways. Third, erosion and deposition can be measured by calculating elevation changes from repeat surveys. From these "intermediate" variables like roughness, vegetation density and soil moisture, structural connectivity and functional connectivity can be assessed by combining them into a dynamic index of

  14. Global and regional functional connectivity maps of neural oscillations in focal epilepsy.

    Science.gov (United States)

    Englot, Dario J; Hinkley, Leighton B; Kort, Naomi S; Imber, Brandon S; Mizuiri, Danielle; Honma, Susanne M; Findlay, Anne M; Garrett, Coleman; Cheung, Paige L; Mantle, Mary; Tarapore, Phiroz E; Knowlton, Robert C; Chang, Edward F; Kirsch, Heidi E; Nagarajan, Srikantan S

    2015-08-01

    Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious long-term effects of recurrent seizures. Furthermore, enhanced regional functional connectivity at the area of resection may help predict seizure outcome and aid surgical planning.

  15. The relation between structural and functional connectivity depends on age and on task goals

    Directory of Open Access Journals (Sweden)

    Jaclyn Hennessey Ford

    2014-05-01

    Full Text Available The last decade has seen an increase in neuroimaging studies examining structural (i.e., structural integrity of white matter tracts and functional connectivity (e.g., correlations in neural activity throughout the brain. Although structural and functional connectivity changes have often been measured independently, examining the relation between these two measures is critical to understanding the specific function of neural networks and the ways they may differ across tasks and individuals. The current study addressed this question by examining the effect of age (treated as a continuous variable and emotional valence on the relation between functional and structural connectivity. As prior studies have suggested that prefrontal regions may guide and regulate emotional memory search via functional connections with the amygdala, the current analysis focused on functional connectivity between the left amygdala and the left prefrontal cortex, and structural integrity of the uncinate fasciculus, a white matter tract connecting prefrontal and temporal regions.Participants took part in a scanned retrieval task in which they recalled positive, negative, and neutral images associated with neutral titles. Aging was associated with a significant increase in the relation between measures of structural integrity (specifically, fractional anisotropy, or FA along the uncinate fasciculus and functional connectivity between the left ventral prefrontal cortex and amygdala during positive event retrieval, but not negative or neutral retrieval. Notably, during negative event retrieval, age was linked to stronger structure-function relations between the amygdala and the dorsal anterior cingulate cortex, such that increased structural integrity predicted strong negative functional connectivity in older adults only. These findings are consistent with theories that older adults may engage regulatory strategies if they have the structural pathways to allow them to do so.

  16. Enhanced interhemispheric functional connectivity compensates for anatomical connection damages in subcortical stroke.

    Science.gov (United States)

    Liu, Jingchun; Qin, Wen; Zhang, Jing; Zhang, Xuejun; Yu, Chunshui

    2015-04-01

    Motor recovery after stroke has been shown to be correlated with both the fractional anisotropy (FA) of the affected corticospinal tract (CST) and the interhemispheric resting-state functional connectivity (rsFC) of the primary motor cortex (M1). However, the role of the restoration or enhancement of the M1-M1 rsFC in motor recovery remains largely unknown. We aimed to clarify this issue by investigating the correlations between the M1-M1 rsFC and the integrity of the M1-M1 anatomic connection and the affected CST in chronic subcortical stroke patients with good motor outcomes. Twenty patients and 16 healthy controls underwent multimodal magnetic resonance imaging examinations. Diffusion tensor imaging was used to reconstruct the M1-M1 anatomic connection and bilateral CSTs. White matter integrity of these tracts was assessed using FA. Resting-state functional magnetic resonance imaging was used to calculate M1-M1 rsFC. Group differences in these measures were compared. Correlations between M1-M1 rsFC and FA of the M1-M1 anatomic connection and the affected CST were analyzed in patients with stroke. Compared with healthy controls, patients with stroke exhibited significantly reduced FA in the affected CST and the M1-M1 anatomic connection and a significantly increased M1-M1 rsFC. The FA values of the affected CST were positively correlated with the M1-M1 anatomic connection, and these FA values were negatively correlated with the M1-M1 rsFC in these patients. Our findings suggest that the M1-M1 anatomic connection impairment is secondary to CST damage, and the M1-M1 rsFC enhancement may reflect compensatory or reactive neural plasticity in stroke patients with CST impairment. © 2015 American Heart Association, Inc.

  17. Connectivity-based predictions of hand motor outcome for patients at the subacute stage after stroke

    Directory of Open Access Journals (Sweden)

    Julia eLindow

    2016-03-01

    Full Text Available Background. Connectivity-based predictions of hand motor outcome have been proposed to be useful in stroke patients. We intended to assess the prognostic value of different imaging methods on short-term (3 months and long-term (6 months motor outcome after stroke. Methods. We measured resting state functional connectivity (rsFC, diffusion weighted imaging (DWI and grip strength in 19 stroke patients within the first days (5-9 days after stroke. Outcome measurements for short-term (3 months and long-term (6 months motor function was assessed by the Motricity Index (MI of the upper limb and the Box and Block test (BB. Patients were predominantly mildly affected since signed consent was necessary at inclusion. We performed a multiple stepwise regression analysis to compare the predictive value of rsFC, DWI and clinical measurements. Results. Patients showed relevant improvement in both motor outcome tests. As expected grip strength at inclusion was a predictor for short- and long-term motor outcome as assessed by MI. Diffusion-based tract volume (DTV of the tracts between ipsilesional primary motor cortex and contralesional anterior cerebellar hemisphere showed a strong trend (p=0.05 for a predictive power for long-term motor outcome as measured by MI. DTV of the interhemispheric tracts between both primary motor cortices was predictive for both short - and long-term motor outcome in BB. rsFC was not associated with motor outcome. Conclusions. Grip strength is a good predictor of hand motor outcome concerning strength-related measurements (MI for mildly affected subacute patients. Therefore additional connectivity measurements seem to be redundant in this group. Using more complex movement recruiting bilateral motor areas as an outcome parameter, DTV and in particular interhemispheric pathways might enhance predictive value of hand motor outcome.

  18. Functional connectivity changes in second language vocabulary learning.

    Science.gov (United States)

    Ghazi Saidi, Ladan; Perlbarg, Vincent; Marrelec, Guillaume; Pélégrini-Issac, Mélani; Benali, Habib; Ansaldo, Ana-Inés

    2013-01-01

    Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec, Bellec et al., 2008) were gathered, in the shallow and consolidation phases of L2 vocabulary learning. Functional connectivity remained unchanged across learning phases for L1, whereas total, between- and within-network integration levels decreased as proficiency for L2 increased. The results of this study provide the first functional connectivity evidence regarding the dynamic role of the language processing and cognitive control networks in L2 learning (Abutalebi, Cappa, & Perani, 2005; Altarriba & Heredia, 2008; Leonard et al., 2011; Parker-Jones et al., 2011). Thus, increased proficiency results in a higher degree of automaticity and lower cognitive effort (Segalowitz & Hulstijn, 2005).

  19. Cocaine dependence and thalamic functional connectivity: a multivariate pattern analysis

    Directory of Open Access Journals (Sweden)

    Sheng Zhang

    2016-01-01

    Full Text Available Cocaine dependence is associated with deficits in cognitive control. Previous studies demonstrated that chronic cocaine use affects the activity and functional connectivity of the thalamus, a subcortical structure critical for cognitive functioning. However, the thalamus contains nuclei heterogeneous in functions, and it is not known how thalamic subregions contribute to cognitive dysfunctions in cocaine dependence. To address this issue, we used multivariate pattern analysis (MVPA to examine how functional connectivity of the thalamus distinguishes 100 cocaine-dependent participants (CD from 100 demographically matched healthy control individuals (HC. We characterized six task-related networks with independent component analysis of fMRI data of a stop signal task and employed MVPA to distinguish CD from HC on the basis of voxel-wise thalamic connectivity to the six independent components. In an unbiased model of distinct training and testing data, the analysis correctly classified 72% of subjects with leave-one-out cross-validation (p < 0.001, superior to comparison brain regions with similar voxel counts (p < 0.004, two-sample t test. Thalamic voxels that form the basis of classification aggregate in distinct subclusters, suggesting that connectivities of thalamic subnuclei distinguish CD from HC. Further, linear regressions provided suggestive evidence for a correlation of the thalamic connectivities with clinical variables and performance measures on the stop signal task. Together, these findings support thalamic circuit dysfunction in cognitive control as an important neural marker of cocaine dependence.

  20. A neuromarker of sustained attention from whole-brain functional connectivity.

    Science.gov (United States)

    Rosenberg, Monica D; Finn, Emily S; Scheinost, Dustin; Papademetris, Xenophon; Shen, Xilin; Constable, R Todd; Chun, Marvin M

    2016-01-01

    Although attention plays a ubiquitous role in perception and cognition, researchers lack a simple way to measure a person's overall attentional abilities. Because behavioral measures are diverse and difficult to standardize, we pursued a neuromarker of an important aspect of attention, sustained attention, using functional magnetic resonance imaging. To this end, we identified functional brain networks whose strength during a sustained attention task predicted individual differences in performance. Models based on these networks generalized to previously unseen individuals, even predicting performance from resting-state connectivity alone. Furthermore, these same models predicted a clinical measure of attention--symptoms of attention deficit hyperactivity disorder--from resting-state connectivity in an independent sample of children and adolescents. These results demonstrate that whole-brain functional network strength provides a broadly applicable neuromarker of sustained attention.

  1. Latent and Abnormal Functional Connectivity Circuits in Autism Spectrum Disorder

    Science.gov (United States)

    Chen, Shuo; Xing, Yishi; Kang, Jian

    2017-01-01

    Autism spectrum disorder (ASD) is associated with disrupted brain networks. Neuroimaging techniques provide noninvasive methods of investigating abnormal connectivity patterns in ASD. In the present study, we compare functional connectivity networks in people with ASD with those in typical controls, using neuroimaging data from the Autism Brain Imaging Data Exchange (ABIDE) project. Specifically, we focus on the characteristics of intrinsic functional connectivity based on data collected by resting-state functional magnetic resonance imaging (rs-fMRI). Our aim was to identify disrupted brain connectivity patterns across all networks, instead of in individual edges, by using advanced statistical methods. Unlike many brain connectome studies, in which networks are prespecified before the edge connectivity in each network is compared between clinical groups, we detected the latent differentially expressed networks automatically. Our network-level analysis identified abnormal connectome networks that (i) included a high proportion of edges that were differentially expressed between people with ASD and typical controls; and (ii) showed highly-organized graph topology. These findings provide new insight into the study of the underlying neuropsychiatric mechanism of ASD.

  2. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p cortex (p subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  3. A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.

    Science.gov (United States)

    Schmidt, Christoph; Pester, Britta; Schmid-Hertel, Nicole; Witte, Herbert; Wismüller, Axel; Leistritz, Lutz

    2016-01-01

    Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

  4. A Multivariate Granger Causality Concept towards Full Brain Functional Connectivity.

    Directory of Open Access Journals (Sweden)

    Christoph Schmidt

    Full Text Available Detecting changes of spatially high-resolution functional connectivity patterns in the brain is crucial for improving the fundamental understanding of brain function in both health and disease, yet still poses one of the biggest challenges in computational neuroscience. Currently, classical multivariate Granger Causality analyses of directed interactions between single process components in coupled systems are commonly restricted to spatially low- dimensional data, which requires a pre-selection or aggregation of time series as a preprocessing step. In this paper we propose a new fully multivariate Granger Causality approach with embedded dimension reduction that makes it possible to obtain a representation of functional connectivity for spatially high-dimensional data. The resulting functional connectivity networks may consist of several thousand vertices and thus contain more detailed information compared to connectivity networks obtained from approaches based on particular regions of interest. Our large scale Granger Causality approach is applied to synthetic and resting state fMRI data with a focus on how well network community structure, which represents a functional segmentation of the network, is preserved. It is demonstrated that a number of different community detection algorithms, which utilize a variety of algorithmic strategies and exploit topological features differently, reveal meaningful information on the underlying network module structure.

  5. On development of functional brain connectivity in the young brain

    Directory of Open Access Journals (Sweden)

    G.E. Anna-Jasmijn eHoff

    2013-10-01

    Full Text Available Our brain is a complex network of structurally and functionally interconnected regions, shaped to efficiently process and integrate information. The development from a brain equipped with basic functionalities to an efficient network facilitating complex behavior starts during gestation and continues into adulthood. Resting-state functional MRI (rs-fMRI enables the examination of developmental aspects of functional connectivity and functional brain networks. This review will discuss changes observed in the developing brain on the level of network functional connectivity (FC from a gestational age of 20 weeks onwards. We discuss findings of resting-state fMRI studies showing that functional network development starts during gestation, creating a foundation for each of the resting-state networks to be established. Visual and sensorimotor areas are reported to develop first, with other networks, at different rates, increasing both in network connectivity and size over time. Reaching childhood, marked fine-tuning and specialization takes place in the regions necessary for higher-order cognitive functions.

  6. Functional and structural amygdala - anterior cingulate connectivity correlates with attentional bias to masked fearful faces.

    Science.gov (United States)

    Carlson, Joshua M; Cha, Jiook; Mujica-Parodi, Lilianne R

    2013-10-01

    An attentional bias to threat has been causally related to anxiety. Recent research has linked nonconscious attentional bias to threat with variability in the integrity of the amygdala - anterior cingulate pathway, which sheds light on the neuroanatomical basis for a behavioral precursor to anxiety. However, the extent to which structural variability in amygdala - anterior cingulate integrity relates to the functional connectivity within this pathway and how such functional connectivity may relate to attention bias behavior, remain critical missing pieces of the puzzle. In 15 individuals we measured the structural integrity of the amygdala - prefrontal pathway with diffusion tensor-weighted MRI (magnetic resonance imaging), amygdala-seeded intrinsic functional connectivity to the anterior cingulate, and attentional bias toward backward masked fearful faces with a dot-probe task. We found that greater biases in attention to threat predicted greater levels of uncinate fasciculus integrity, greater positive amygdala - anterior cingulate functional connectivity, and greater amygdala coupling with a broader social perception network including the superior temporal sulcus, tempoparietal junction (TPJ), and somatosensory cortex. Additionally, greater levels of uncinate fasciculus integrity correlated with greater levels of amygdala - anterior cingulate intrinsic functional connectivity. Thus, high bias individuals displayed a heightened degree of amygdala - anterior cingulate connectivity during basal conditions, which we believe predisposes these individuals to focus their attention on signals of threat within their environment.

  7. Functional connectivity mapping using the ferromagnetic Potts spin model.

    Science.gov (United States)

    Stanberry, Larissa; Murua, Alejandro; Cordes, Dietmar

    2008-04-01

    An unsupervised stochastic clustering method based on the ferromagnetic Potts spin model is introduced as a powerful tool to determine functionally connected regions. The method provides an intuitively simple approach to clustering and makes no assumptions of the number of clusters in the data or their underlying distribution. The performance of the method and its dependence on the intrinsic parameters (size of the neighborhood, form of the interaction term, etc.) is investigated on the simulated data and real fMRI data acquired during a conventional periodic finger tapping task. The merits of incorporating Euclidean information into the connectivity analysis are discussed. The ability of the Potts model clustering to uncover the hidden structure in the complex data is demonstrated through its application to the resting-state data to determine functional connectivity networks of the anterior and posterior cingulate cortices for the group of nine healthy male subjects. (c) 2007 Wiley-Liss, Inc.

  8. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    Science.gov (United States)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  9. Brain functional connectivity network breakdown and restoration in blindness.

    Science.gov (United States)

    Bola, Michał; Gall, Carolin; Moewes, Christian; Fedorov, Anton; Hinrichs, Hermann; Sabel, Bernhard A

    2014-08-05

    To characterize brain functional connectivity in subjects with prechiasmatic visual system damage and relate functional connectivity features to extent of vision loss. In this case-control study, resting-state, eyes-closed EEG activity was recorded in patients with partial optic nerve damage (n = 15) and uninjured controls (n = 13). We analyzed power density and functional connectivity (coherence, Granger causality), the latter as (1) between-areal coupling strength and (2) individually thresholded binary graphs. Functional connectivity was then modulated by noninvasive repetitive transorbital alternating current stimulation (rtACS; 10 days, 40 minutes daily; n = 7; sham, n = 8) to study how this would affect connectivity networks and perception. Patients exhibited lower spectral power (p = 0.005), decreased short- (p = 0.015) and long-range (p = 0.033) coherence, and less densely clustered coherence networks (p = 0.025) in the high-alpha frequency band (11-13 Hz). rtACS strengthened short- (p = 0.003) and long-range (p = 0.032) alpha coherence and this was correlated with improved detection abilities (r = 0.57, p = 0.035) and processing speed (r = 0.56, p = 0.049), respectively. Vision loss in the blind is caused not only by primary tissue damage but also by a breakdown of synchronization in brain networks. Because visual field improvements are associated with resynchronization of alpha band coherence, brain connectivity is a key component in partial blindness and in restoration of vision. © 2014 American Academy of Neurology.

  10. Functional connectivity based parcellation of the human medial temporal lobe.

    Science.gov (United States)

    Wang, Shao-Fang; Ritchey, Maureen; Libby, Laura A; Ranganath, Charan

    2016-10-01

    Regional differences in large-scale connectivity have been proposed to underlie functional specialization along the anterior-posterior axis of the medial temporal lobe (MTL), including the hippocampus (HC) and the parahippocampal gyrus (PHG). However, it is unknown whether functional connectivity (FC) can be used reliably to parcellate the human MTL. The current study aimed to differentiate subregions of the HC and the PHG based on patterns of whole-brain intrinsic FC. FC maps were calculated for each slice along the longitudinal axis of the PHG and the HC. A hierarchical clustering algorithm was then applied to these data in order to group slices according to the similarity of their connectivity patterns. Surprisingly, three discrete clusters were identified in the PHG. Two clusters corresponded to the parahippocampal cortex (PHC) and the perirhinal cortex (PRC), and these regions showed preferential connectivity with previously described posterior-medial and anterior-temporal networks, respectively. The third cluster corresponded to an anterior PRC region previously described as area 36d, and this region exhibited preferential connectivity with auditory cortical areas and with a network involved in visceral processing. The three PHG clusters showed different profiles of activation during a memory-encoding task, demonstrating that the FC-based parcellation identified functionally dissociable sub-regions of the PHG. In the hippocampus, no sub-regions were identified via the parcellation procedure. These results indicate that connectivity-based methods can be used to parcellate functional regions within the MTL, and they suggest that studies of memory and high-level cognition need to differentiate between PHC, posterior PRC, and anterior PRC.

  11. Adult Age Differences in Functional Connectivity during Executive Control

    Science.gov (United States)

    Madden, David J.; Costello, Matthew C.; Dennis, Nancy A.; Davis, Simon W.; Shepler, Anne M.; Spaniol, Julia; Bucur, Barbara; Cabeza, Roberto

    2010-01-01

    Task switching requires executive control processes that undergo age-related decline. Previous neuroimaging studies have identified age-related differences in brain activation associated with global switching effects (dual-task blocks vs. single-task blocks), but age-related differences in activation during local switching effects (switch trials vs. repeat trials, within blocks) have not been investigated. This experiment used functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI), to examine adult age differences in task switching across adjacent trials (i.e., local task switching). During fMRI scanning, participants performed a cued, word categorization task. From interspersed cue-only trials, switch-related processing associated with the cue was estimated separately from the target. Activation associated with task switching, within a distributed frontoparietal network, differed for cue- and target-related processing. The magnitude of event-related activation for task switching was similar for younger adults (n = 20; 18-27 years) and older adults (n = 20; 60-85 years), although activation sustained throughout the on-tasks periods exhibited some age-related decline. Critically, the functional connectivity of switch-related regions, during cue processing, was higher for younger adults than for older adults, whereas functional connectivity during target processing was comparable across the age groups. Further, individual differences in cue-related functional connectivity shared a substantial portion of the age-related variability in the efficiency of target categorization response (drift rate). This age-related difference in functional connectivity, however, was independent of white matter integrity within task-relevant regions. These findings highlight the functional connectivity of frontoparietal activation as a potential source of age-related decline in executive control. PMID:20434565

  12. Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.

    Directory of Open Access Journals (Sweden)

    Lubin Wang

    Full Text Available The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI. In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

  13. Imaging of functional connectivity in the mouse brain.

    Science.gov (United States)

    White, Brian R; Bauer, Adam Q; Snyder, Abraham Z; Schlaggar, Bradley L; Lee, Jin-Moo; Culver, Joseph P

    2011-01-20

    Functional neuroimaging (e.g., with fMRI) has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic signal imaging (fcOIS). We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp (the skull remains intact) making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience with the power of molecular/genetic manipulations in mouse models.

  14. Imaging of functional connectivity in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Brian R White

    Full Text Available Functional neuroimaging (e.g., with fMRI has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic signal imaging (fcOIS. We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp (the skull remains intact making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience with the power of molecular/genetic manipulations in mouse models.

  15. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia

    NARCIS (Netherlands)

    E.G.P. Dopper (Elise); S.A.R.B. Rombouts (Serge); L.C. Jiskoot (Lize); T. den Heijer (Tom); J.R.A. de Graaf (J. Roos); I. de Koning (Inge); M.R. Hammerschlag; H. Seelaar (Harro); W. Seeley (William); I.M. Veer (Ilya); M.A. van Buchem (Mark); P. Rizzu (Patrizia); J.C. van Swieten (John)

    2013-01-01

    textabstractObjective: We aimed to investigate whether cognitive deficits and structural and functional connectivity changes can be detected before symptom onset in a large cohort of carriers of microtubuleassociated protein tau and progranulin mutations. Methods: In this case-control study, 75

  16. Structural and functional brain connectivity in presymptomatic familial frontotemporal dementia

    NARCIS (Netherlands)

    E.G.P. Dopper (Elise); S.A.R.B. Rombouts (Serge); L.C. Jiskoot (Lize); T. den Heijer (Tom); J. de Graaf (Joke); I. de Koning (Inge); M.R. Hammerschlag; H. Seelaar (Harro); W. Seeley (William); I.M. Veer (Ilya); M.A. van Buchem (Mark); P. Rizzu (Patrizia); J.C. van Swieten (John)

    2014-01-01

    textabstractObjective: We aimed to investigate whether cognitive deficits and structural and functional connectivity changes can be detected before symptom onset in a large cohort of carriers of MAPT (microtubule-associated protein tau) or GRN (progranulin) mutations. Methods: In this case-control

  17. Real-time estimation of dynamic functional connectivity networks.

    Science.gov (United States)

    Monti, Ricardo Pio; Lorenz, Romy; Braga, Rodrigo M; Anagnostopoulos, Christoforos; Leech, Robert; Montana, Giovanni

    2017-01-01

    Two novel and exciting avenues of neuroscientific research involve the study of task-driven dynamic reconfigurations of functional connectivity networks and the study of functional connectivity in real-time. While the former is a well-established field within neuroscience and has received considerable attention in recent years, the latter remains in its infancy. To date, the vast majority of real-time fMRI studies have focused on a single brain region at a time. This is due in part to the many challenges faced when estimating dynamic functional connectivity networks in real-time. In this work, we propose a novel methodology with which to accurately track changes in time-varying functional connectivity networks in real-time. The proposed method is shown to perform competitively when compared to state-of-the-art offline algorithms using both synthetic as well as real-time fMRI data. The proposed method is applied to motor task data from the Human Connectome Project as well as to data obtained from a visuospatial attention task. We demonstrate that the algorithm is able to accurately estimate task-related changes in network structure in real-time. Hum Brain Mapp 38:202-220, 2017. © 2016 Wiley Periodicals, Inc.

  18. Task modulates functional connectivity networks in free viewing behavior.

    Science.gov (United States)

    Seidkhani, Hossein; Nikolaev, Andrey R; Meghanathan, Radha Nila; Pezeshk, Hamid; Masoudi-Nejad, Ali; van Leeuwen, Cees

    2017-08-03

    In free visual exploration, eye-movement is immediately followed by dynamic reconfiguration of brain functional connectivity. We studied the task-dependency of this process in a combined visual search-change detection experiment. Participants viewed two (nearly) same displays in succession. First time they had to find and remember multiple targets among distractors, so the ongoing task involved memory encoding. Second time they had to determine if a target had changed in orientation, so the ongoing task involved memory retrieval. From multichannel EEG recorded during 200 ms intervals time-locked to fixation onsets, we estimated the functional connectivity using a weighted phase lag index at the frequencies of theta, alpha, and beta bands, and derived global and local measures of the functional connectivity graphs. We found differences between both memory task conditions for several network measures, such as mean path length, radius, diameter, closeness and eccentricity, mainly in the alpha band. Both the local and the global measures indicated that encoding involved a more segregated mode of operation than retrieval. These differences arose immediately after fixation onset and persisted for the entire duration of the lambda complex, an evoked potential commonly associated with early visual perception. We concluded that encoding and retrieval differentially shape network configurations involved in early visual perception, affecting the way the visual input is processed at each fixation. These findings demonstrate that task requirements dynamically control the functional connectivity networks involved in early visual perception. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Brain Activity and Functional Connectivity Associated with Hypnosis.

    Science.gov (United States)

    Jiang, Heidi; White, Matthew P; Greicius, Michael D; Waelde, Lynn C; Spiegel, David

    2017-08-01

    Hypnosis has proven clinical utility, yet changes in brain activity underlying the hypnotic state have not yet been fully identified. Previous research suggests that hypnosis is associated with decreased default mode network (DMN) activity and that high hypnotizability is associated with greater functional connectivity between the executive control network (ECN) and the salience network (SN). We used functional magnetic resonance imaging to investigate activity and functional connectivity among these three networks in hypnosis. We selected 57 of 545 healthy subjects with very high or low hypnotizability using two hypnotizability scales. All subjects underwent four conditions in the scanner: rest, memory retrieval, and two different hypnosis experiences guided by standard pre-recorded instructions in counterbalanced order. Seeds for the ECN, SN, and DMN were left and right dorsolateral prefrontal cortex, dorsal anterior cingulate cortex (dACC), and posterior cingulate cortex (PCC), respectively. During hypnosis there was reduced activity in the dACC, increased functional connectivity between the dorsolateral prefrontal cortex (DLPFC;ECN) and the insula in the SN, and reduced connectivity between the ECN (DLPFC) and the DMN (PCC). These changes in neural activity underlie the focused attention, enhanced somatic and emotional control, and lack of self-consciousness that characterizes hypnosis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Fluid Flow Prediction with Development System Interwell Connectivity Influence

    Science.gov (United States)

    Bolshakov, M.; Deeva, T.; Pustovskikh, A.

    2016-03-01

    In this paper interwell connectivity has been studied. First of all, literature review of existing methods was made which is divided into three groups: Statistically-Based Methods, Material (fluid) Propagation-Based Methods and Potential (pressure) Change Propagation-Based Method. The disadvantages of the first and second groups are as follows: methods do not involve fluid flow through porous media, ignore any changes of well conditions (BHP, skin factor, etc.). The last group considers changes of well conditions and fluid flow through porous media. In this work Capacitance method (CM) has been chosen for research. This method is based on material balance and uses weight coefficients lambdas to assess well influence. In the next step synthetic model was created for examining CM. This model consists of an injection well and a production well. CM gave good results, it means that flow rates which were calculated by analytical method (CM) show matching with flow rate in model. Further new synthetic model was created which includes six production and one injection wells. This model represents seven-spot pattern. To obtain lambdas weight coefficients, the delta function was entered using by minimization algorithm. Also synthetic model which has three injectors and thirteen producer wells was created. This model simulates seven-spot pattern production system. Finally Capacitance method (CM) has been adjusted on real data of oil Field Ω. In this case CM does not give enough satisfying results in terms of field data liquid rate. In conclusion, recommendations to simplify CM calculations were given. Field Ω is assumed to have one injection and one production wells. In this case, satisfying results for production rates and cumulative production were obtained.

  1. Amygdala functional connectivity as a longitudinal biomarker of symptom changes in generalized anxiety

    Science.gov (United States)

    Makovac, Elena; Watson, David R.; Meeten, Frances; Garfinkel, Sarah N.; Cercignani, Mara; Critchley, Hugo D.

    2016-01-01

    Generalized anxiety disorder (GAD) is characterized by excessive worry, autonomic dysregulation and functional amygdala dysconnectivity, yet these illness markers have rarely been considered together, nor their interrelationship tested longitudinally. We hypothesized that an individual’s capacity for emotion regulation predicts longer-term changes in amygdala functional connectivity, supporting the modification of GAD core symptoms. Sixteen patients with GAD (14 women) and individually matched controls were studied at two time points separated by 1 year. Resting-state fMRI data and concurrent measurement of vagally mediated heart rate variability were obtained before and after the induction of perseverative cognition. A greater rise in levels of worry following the induction predicted a stronger reduction in connectivity between right amygdala and ventromedial prefrontal cortex, and enhanced coupling between left amygdala and ventral tegmental area at follow-up. Similarly, amplified physiological responses to the induction predicted increased connectivity between right amygdala and thalamus. Longitudinal shifts in a distinct set of functional connectivity scores were associated with concomitant changes in GAD symptomatology over the course of the year. Results highlight the prognostic value of indices of emotional dysregulation and emphasize the integral role of the amygdala as a critical hub in functional neural circuitry underlying the progression of GAD symptomatology. PMID:27369066

  2. An information theory framework for dynamic functional domain connectivity.

    Science.gov (United States)

    Vergara, Victor M; Miller, Robyn; Calhoun, Vince

    2017-06-01

    Dynamic functional network connectivity (dFNC) analyzes time evolution of coherent activity in the brain. In this technique dynamic changes are considered for the whole brain. This paper proposes an information theory framework to measure information flowing among subsets of functional networks call functional domains. Our method aims at estimating bits of information contained and shared among domains. The succession of dynamic functional states is estimated at the domain level. Information quantity is based on the probabilities of observing each dynamic state. Mutual information measurement is then obtained from probabilities across domains. Thus, we named this value the cross domain mutual information (CDMI). Strong CDMIs were observed in relation to the subcortical domain. Domains related to sensorial input, motor control and cerebellum form another CDMI cluster. Information flow among other domains was seldom found. Other methods of dynamic connectivity focus on whole brain dFNC matrices. In the current framework, information theory is applied to states estimated from pairs of multi-network functional domains. In this context, we apply information theory to measure information flow across functional domains. Identified CDMI clusters point to known information pathways in the basal ganglia and also among areas of sensorial input, patterns found in static functional connectivity. In contrast, CDMI across brain areas of higher level cognitive processing follow a different pattern that indicates scarce information sharing. These findings show that employing information theory to formally measured information flow through brain domains reveals additional features of functional connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Functional connectivity between the cerebrum and cerebellum in social cognition: A multi-study analysis.

    Science.gov (United States)

    Van Overwalle, Frank; Mariën, Peter

    2016-01-01

    This multi-study connectivity analysis explores the functional connectivity of the cerebellum with the cerebrum in social mentalizing, that is, understanding the mind of another person. The analysis covers 5 studies (n=92) involving abstract and complex forms of social mentalizing such as (a) person and group impression formation based on behavioral descriptions and (b) constructing personal counterfactual events (i.e., how the past could have turned out better). The results suggest that cerebellar activity during these social processes reflects a domain-specific mentalizing functionality that is strongly connected with a corresponding mentalizing network in the cerebrum. A significant pattern of connectivity was found linking the dorsal medial prefrontal cortex (mPFC) and the right temporo-parietal junction (TPJ) with the right posterior cerebellum, and linking the latter with the left TPJ. In addition, in the cerebrum, further connectivity was found through links of the bilateral TPJ with the dorsal mPFC, orbitofrontal cortex and between right and left TPJ. The discussion centers on the role of these cerebro-cerebellar connections in matching external information from the cerebrum with internal predictions generated by the cerebellum. These internal predictions might involve the sequencing of the person's behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Landscape Connectivity as a Function of Scale and Organism Vagility in a Real Forested Landscape

    Directory of Open Access Journals (Sweden)

    Robert G. D'Eon

    2002-12-01

    Full Text Available Landscape connectivity is considered a vital element of landscape structure because of its importance to population survival. The difficulty surrounding the notion of landscape connectivity is that it must be assessed at the scale of the interaction between an organism and the landscape. We present a unique method for measuring connectivity between patches as a function of organism vagility. We used this approach to assess connectivity between harvest, old-growth, and recent wildfire patches in a real forested landscape in southeast British Columbia. By varying a distance criterion, habitat patches were considered connected and formed habitat clusters if they fell within this critical distance. The amount of area and distance to edge within clusters at each critical distance formed the basis of connectivity between patches. We then assessed landscape connectivity relative to old-growth associates within our study area based on species' dispersal abilities. Connectivity was greatest between harvest patches, followed by old-growth, and then wildfire patches. In old-growth patches, we found significant trends between increased connectivity and increased total habitat amount, and between decreased connectivity and increased old-growth harvesting. Highly vagile old-growth associates, such as carnivorous birds, perceive this landscape as connected and are able to access all patches. Smaller, less vagile species, such as woodpeckers, chickadees, and nuthatches, may be affected by a lack of landscape connectivity at the scale of their interaction with old-growth patches. Of particular concern is the northern flying squirrel (Glaucomys sabrinus, which we predict is limited in this landscape due to relatively weak dispersal abilities.

  5. Resting-state functional connectivity of the human hypothalamus.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Linder, Katarzyna; Zipfel, Stephan; Häring, Hans-Ulrich; Veit, Ralf; Fritsche, Andreas; Preissl, Hubert

    2014-12-01

    The hypothalamus is of enormous importance for multiple bodily functions such as energy homeostasis. Especially, rodent studies have greatly contributed to our understanding how specific hypothalamic subregions integrate peripheral and central signals into the brain to control food intake. In humans, however, the neural circuitry of the hypothalamus, with its different subregions, has not been delineated. Hence, the aim of this study was to map the hypothalamus network using resting-state functional connectivity (FC) analyses from the medial hypothalamus (MH) and lateral hypothalamus (LH) in healthy normal-weight adults (n = 49). Furthermore, in a separate sample, we examined differences within the LH and MH networks between healthy normal-weight (n = 25) versus overweight/obese adults (n = 23). FC patterns from the LH and MH revealed significant connections to the striatum, thalamus, brainstem, orbitofrontal cortex, middle and posterior cingulum and temporal brain regions. However, our analysis revealed subtler distinctions within hypothalamic subregions. The LH was functionally stronger connected to the dorsal striatum, anterior cingulum, and frontal operculum, while the MH showed stronger functional connections to the nucleus accumbens and medial orbitofrontal cortex. Furthermore, overweight/obese participants revealed heightened FC in the orbitofrontal cortex and nucleus accumbens within the MH network. Our results indicate that the MH and LH network are tapped into different parts of the dopaminergic circuitry of the brain, potentially modulating food reward based on the functional connections to the ventral and dorsal striatum, respectively. In obese adults, FC changes were observed in the MH network. © 2014 Wiley Periodicals, Inc.

  6. Atypical modulation of distant functional connectivity by cognitive state in children with Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Xiaozhen eYou

    2013-08-01

    Full Text Available We examined whether modulation of functional connectivity by cognitive state differed between pre-adolescent children with Autism Spectrum Disorders (ASD and age and IQ-matched control children. Children underwent functional magnetic resonance imaging (fMRI during two states, a resting state followed by a sustained attention task. A voxel-wise method was used to characterize functional connectivity at two levels, local (within a voxel’s 14 mm neighborhood and distant (outside of the voxel’s 14 mm neighborhood to the rest of the brain and regions exhibiting Group X State interaction were identified for both types of connectivity maps. Distant functional connectivity of regions in the left frontal lobe (dorsolateral [BA 11, 10]; supplementary motor area extending into dorsal anterior cingulate [BA 32/8]; and premotor [BA 6, 8, 9], right parietal lobe (paracentral lobule [BA 6 ]; angular gyrus [BA 39/40], and left posterior middle temporal cortex (BA 19/39 showed a Group X State interaction such that relative to the resting state, connectivity reduced (i.e., became focal in control children but increased (i.e., became diffuse in ASD children during the task state. Higher state-related increase in distant connectivity of left frontal and right angular gyrus predicted worse inattention in ASD children. Two graph theory measures (global efficiency and modularity were also sensitive to Group X State differences, with the magnitude of state-related change predicting inattention in the ASD children. Our results indicate that as ASD children transition from an unconstrained to a sustained attentional state, functional connectivity of frontal and parietal regions with the rest of the brain becomes more widespread in a manner that may be maladaptive as it was associated with attention problems in everyday life.

  7. Relative Importance of Nesting Habitat and Measures of Connectivity in Predicting the Occurrence of a Forest Songbird in Fragmented Landscapes

    Directory of Open Access Journals (Sweden)

    Stephanie Melles

    2012-12-01

    Full Text Available Theoretical and empirical studies suggest that well-connected networks of forest habitat facilitate animal movement and contribute to species' persistence and thereby the maintenance of biodiversity. Many structural and functional connectivity metrics have been proposed, e.g., distance to nearest neighboring patch or graph-based measures, but the relative importance of these measures in contrast to nesting habitat at fine spatial scales is not well established. With graph-based measures of connectivity, Euclidean distances between forest patches can be directly related to the preferred gap crossing distances of a bird (functional connectivity. We determined the relative predictive power of nesting habitat, forest cover, and structural or functional connectivity measures in describing the breeding distribution of Hooded Warblers (Setophaga citrina over two successive breeding seasons in a region highly fragmented by agriculture in southern Ontario. Logistic regression models of nesting occurrence patterns were compared using Akaike's information criterion and relative effect sizes were compared using odds ratios. Our results provide support for the expectation that nest-site characteristics are indeed related to the breeding distribution of S. citrina. However, models based on nesting habitat alone were 4.7 times less likely than a model including functional connectivity as a predictor for the breeding distribution of S. citrina. Models of nest occurrence in relation to surrounding forest cover had lower model likelihoods than models that included graph-based functional connectivity, but these measures were highly confounded. Graph-based measures of connectivity explained more variation in nest occurrence than structural measures of forest connectivity, in both 2004 and 2005. These results suggest that S. citrina selected nesting areas that were functionally connected at their preferred gap crossing distances, but nesting habitat was a critically

  8. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B

    2016-03-01

    Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging.

  9. Genes2FANs: connecting genes through functional association networks

    Directory of Open Access Journals (Sweden)

    Dannenfelser Ruth

    2012-07-01

    Full Text Available Abstract Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs, researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our

  10. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  11. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.

    Science.gov (United States)

    Castillo, Jessica A; Epps, Clinton W; Jeffress, Mackenzie R; Ray, Chris; Rodhouse, Thomas J; Schwalm, Donelle

    2016-09-01

    Landscape connectivity is essential for maintaining viable populations, particularly for species restricted to fragmented habitats or naturally arrayed in metapopulations and facing rapid climate change. The importance of assessing both structural connectivity (physical distribution of favorable habitat patches) and functional connectivity (how species move among habitat patches) for managing such species is well understood. However, the degree to which functional connectivity for a species varies among landscapes, and the resulting implications for conservation, have rarely been assessed. We used a landscape genetics approach to evaluate resistance to gene flow and, thus, to determine how landscape and climate-related variables influence gene flow for American pikas (Ochotona princeps) in eight federally managed sites in the western United States. We used empirically derived, individual-based landscape resistance models in conjunction with predictive occupancy models to generate patch-based network models describing functional landscape connectivity. Metareplication across landscapes enabled identification of limiting factors for dispersal that would not otherwise have been apparent. Despite the cool microclimates characteristic of pika habitat, south-facing aspects consistently represented higher resistance to movement, supporting the previous hypothesis that exposure to relatively high temperatures may limit dispersal in American pikas. We found that other barriers to dispersal included areas with a high degree of topographic relief, such as cliffs and ravines, as well as streams and distances greater than 1-4 km depending on the site. Using the empirically derived network models of habitat patch connectivity, we identified habitat patches that were likely disproportionately important for maintaining functional connectivity, areas in which habitat appeared fragmented, and locations that could be targeted for management actions to improve functional connectivity

  12. Neuropsychiatric symptoms and functional connectivity in mild cognitive impairment

    Science.gov (United States)

    Munro, Catherine E.; Donovan, Nancy J.; Guercio, Brendan J.; Wigman, Sarah E.; Schultz, Aaron P.; Amariglio, Rebecca E.; Rentz, Dorene M.; Johnson, Keith A.; Sperling, Reisa A.; Marshall, Gad A.

    2015-01-01

    Background Neuropsychiatric symptoms (NPS), such as apathy and depression, commonly accompany cognitive and functional decline in early Alzheimer’s disease (AD). Prior studies have shown associations between affective NPS symptoms and neurodegeneration of medial frontal and inferior temporal regions in mild cognitive impairment (MCI) and AD dementia. Objective To investigate the association between functional connectivity in four brain networks and NPS in elderly with MCI. Methods NPS were assessed using the Neuropsychiatric Inventory in 42 subjects with MCI. Resting-state functional connectivity in four networks (default mode network, fronto-parietal control network (FPCN), dorsal attention network, and ventral attention network) was assessed using seed-based magnetic resonance imaging. Factor analysis was used to identify two factors of NPS: Affective and Hyperactivity. Linear regression models were utilized with the neuropsychiatric factors as the dependent variable and the four networks as the predictors of interest. Covariates included age, sex, premorbid intelligence, processing speed, memory, head movement, and signal-to-noise ratio. These analyses were repeated with the individual items of the Affective factor, using the same predictors. Results There was a significant association between greater Affective factor symptoms and reduced FPCN connectivity (p=0.03). There was no association between the Hyperactivity factor and any of the networks. Secondary analyses revealed an association between greater apathy and reduced FPCN connectivity (p=0.005), but none in other networks. Conclusions Decreased connectivity in the FPCN may be associated with greater affective symptoms, particularly apathy, early in AD. These findings extend prior studies, using different functional imaging modalities in individuals with greater disease severity. PMID:25854929

  13. Default mode, executive function, and language functional connectivity networks are compromised in mild Alzheimer's disease.

    Science.gov (United States)

    Weiler, Marina; Fukuda, Aya; Massabki, Lilian H P; Lopes, Tatila M; Franco, Alexandre R; Damasceno, Benito P; Cendes, Fernando; Balthazar, Marcio L F

    2014-03-01

    Alzheimer's disease (AD) is characterized by mental and cognitive problems, particularly with memory, language, visuospatial skills (VS), and executive functions (EF). Advances in the neuroimaging of AD have highlighted dysfunctions in functional connectivity networks (FCNs), especially in the memory related default mode network (DMN). However, little is known about the integrity and clinical significance of FNCs that process other cognitive functions than memory. We evaluated 22 patients with mild AD and 26 healthy controls through a resting state functional MRI scan. We aimed to identify different FCNs: the DMN, language, EF, and VS. Seed-based functional connectivity was calculated by placing a seed in the DMN (posterior cingulate cortex), language (Broca's and Wernicke's areas), EF (right and left dorsolateral prefrontal cortex), and VS networks (right and left associative visual cortex). We also performed regression analyses between individual connectivity maps for the different FCNs and the scores on cognitive tests. We found areas with significant decreases in functional connectivity in patients with mild AD in the DMN and Wernicke's area compared with controls. Increased connectivity in patients was observed in the EF network. Regarding multiple linear regression analyses, a significant correlation was only observed between the connectivity of the DMN and episodic memory (delayed recall) scores. In conclusion, functional connectivity alterations in mild AD are not restricted to the DMN. Other FCNs related to language and EF may be altered. However, we only found significant correlations between cognition and functional connectivity in the DMN and episodic memory performance.

  14. Functional connectivity correlates of response inhibition impairment in anorexia nervosa.

    Science.gov (United States)

    Collantoni, Enrico; Michelon, Silvia; Tenconi, Elena; Degortes, Daniela; Titton, Francesca; Manara, Renzo; Clementi, Maurizio; Pinato, Claudia; Forzan, Monica; Cassina, Matteo; Santonastaso, Paolo; Favaro, Angela

    2016-01-30

    Anorexia nervosa (AN) is a disorder characterized by high levels of cognitive control and behavioral perseveration. The present study aims at exploring inhibitory control abilities and their functional connectivity correlates in patients with AN. Inhibitory control - an executive function that allows the realization of adaptive behavior according to environmental contingencies - has been assessed by means of the Stop-Signal paradigm. The study involved 155 patients with lifetime AN and 102 healthy women. A subsample underwent resting-state functional magnetic resonance imaging and was genotyped for COMT and 5-HTTLPR polymorphisms. AN patients showed an impaired response inhibition and a disruption of the functional connectivity of the ventral attention circuit, a neural network implicated in behavioral response when a stimulus occurs unexpected. The 5-HTTLPR genotype appears to significantly interact with the functional connectivity of ventral attention network in explaining task performance in both patients and controls, suggesting a role of the serotoninergic system in mechanisms of response selection. The disruption of the ventral attention network in patients with AN suggests lower efficiency of bottom-up signal filtering, which might be involved in difficulties to adapt behavioral responses to environmental needs. Our findings deserve further research to confirm their scientific and therapeutic implications.

  15. A posteriori model validation for the temporal order of directed functional connectivity maps

    Directory of Open Access Journals (Sweden)

    Adriene M. Beltz

    2015-08-01

    Full Text Available A posteriori model validation for the temporal order of neural directed functional connectivity maps is rare. This is striking because models that require sequential independence among residuals are regularly implemented. The aim of the current study was (a to apply to directed functional connectivity maps of functional magnetic resonance imaging data an a posteriori model validation procedure (i.e., white noise tests of one-step-ahead prediction errors combined with decision criteria for revising the maps based upon Lagrange Multiplier tests, and (b to demonstrate how the procedure applies to single-subject simulated, single-subject task-related, and multi-subject resting state data. Directed functional connectivity was determined by the unified structural equation model family of approaches in order to map contemporaneous and first order lagged connections among brain regions at the group- and individual-levels while incorporating external input, then white noise tests were run. Findings revealed that the validation procedure successfully detected unmodeled sequential dependencies among residuals and recovered higher order (greater than one simulated connections, and that the procedure can accommodate task-related input. Findings also revealed that lags greater than one were present in resting state data: With a group-level network that contained only contemporaneous and first order connections, 44% of subjects required second order, individual-level connections in order to obtain maps with white noise residuals. Results have broad methodological relevance (e.g., temporal validation is necessary after directed functional connectivity analyses because the presence of unmodeled higher order sequential dependencies may bias parameter estimates and substantive implications (e.g., higher order lags may be common in resting state data.

  16. Functional relations for the density-functional exchange and correlation functionals connecting functionals at three densities

    Science.gov (United States)

    Joubert, Daniel P.

    2012-03-01

    It is shown that the density-functional-theory exchange and correlation functionals satisfy 0=γEhx[ρN]+2Ecγ[ρN]-γEhx[ρN-1γ]-2Ecγ[ρN-1γ]+2∫d3r'[ρN-10(r)-ρN-1γ(r)]v0([ρN];r)+∫d3r'[ρN-10(r)-ρN-1γ(r)]r·∇v0([ρN];r)+∫d3r'ρN(r)r·∇vcγ([ρN];r)-∫d3r'ρN-1γ(r)r·∇vcγ([ρN-1γ];r)-∫d3r'fγ(r)r·∇vhxcγ([ρN];r)-2∫d3r'fγ(r)vhxcγ([ρN];r). In the derivation of this equation the adiabatic connection formulation is used, where the ground-state density of an N-electron system ρN is kept constant independent of the electron-electron coupling strength γ. Here Ehx[ρ] is the Hartree plus exchange energy, Ecγ[ρ] is the correlation energy, vhxcγ[ρ] is the Hartree plus exchange-correlation potential, vc[ρ] is the correlation potential, and v0[ρ]is the Kohn-Sham potential. The charge densities ρN and ρN-1γ are the N- and (N-1)-electron ground-state densities of the same Hamiltonian at electron-electron coupling strength γ. fγ(r)=ρN(r)-ρN-1γ(r) is the Fukui function. This equation can be useful in testing the internal self-consistency of approximations to the exchange and correlation functionals. As an example the identity is tested on the analytical Hooke's atom charge density for some frequently used approximate functionals.

  17. Interhemispheric functional connectivity in anorexia and bulimia nervosa.

    Science.gov (United States)

    Canna, Antonietta; Prinster, Anna; Monteleone, Alessio Maria; Cantone, Elena; Monteleone, Palmiero; Volpe, Umberto; Maj, Mario; Di Salle, Francesco; Esposito, Fabrizio

    2017-05-01

    The functional interplay between hemispheres is fundamental for behavioral, cognitive, and emotional control. Anorexia nervosa (AN) and bulimia nervosa (BN) have been largely studied with brain magnetic resonance imaging (MRI) in relation to the functional mechanisms of high-level processing, but not in terms of possible inter-hemispheric functional connectivity anomalies. Using resting-state functional MRI (fMRI), voxel-mirrored homotopic connectivity (VMHC) and regional inter-hemispheric spectral coherence (IHSC) were studied in 15 AN and 13 BN patients and 16 healthy controls (HC). Using T1-weighted and diffusion tensor imaging MRI scans, regional VMHC values were correlated with the left-right asymmetry of corresponding homotopic gray matter volumes and with the white matter callosal fractional anisotropy (FA). Compared to HC, AN patients exhibited reduced VMHC in cerebellum, insula, and precuneus, while BN patients showed reduced VMHC in dorso-lateral prefrontal and orbito-frontal cortices. The regional IHSC analysis highlighted that the inter-hemispheric functional connectivity was higher in the 'Slow-5' band in all regions except the insula. No group differences in left-right structural asymmetries and in VMHC vs. callosal FA correlations were significant in the comparisons between cohorts. These anomalies, not explained by structural changes, indicate that AN and BN, at least in their acute phase, are associated with a loss of inter-hemispheric connectivity in regions implicated in self-referential, cognitive control and reward processing. These findings may thus gather novel functional markers to explore aberrant features of these eating disorders. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Linked Sex Differences in Cognition and Functional Connectivity in Youth.

    Science.gov (United States)

    Satterthwaite, Theodore D; Wolf, Daniel H; Roalf, David R; Ruparel, Kosha; Erus, Guray; Vandekar, Simon; Gennatas, Efstathios D; Elliott, Mark A; Smith, Alex; Hakonarson, Hakon; Verma, Ragini; Davatzikos, Christos; Gur, Raquel E; Gur, Ruben C

    2015-09-01

    Sex differences in human cognition are marked, but little is known regarding their neural origins. Here, in a sample of 674 human participants ages 9-22, we demonstrate that sex differences in cognitive profiles are related to multivariate patterns of resting-state functional connectivity MRI (rsfc-MRI). Males outperformed females on motor and spatial cognitive tasks; females were faster in tasks of emotion identification and nonverbal reasoning. Sex differences were also prominent in the rsfc-MRI data at multiple scales of analysis, with males displaying more between-module connectivity, while females demonstrated more within-module connectivity. Multivariate pattern analysis using support vector machines classified subject sex on the basis of their cognitive profile with 63% accuracy (P cognitive profile was "male" or "female" was significantly related to the masculinity or femininity of their pattern of brain connectivity (P = 2.3 × 10(-7)). This relationship was present even when considering males and female separately. Taken together, these results demonstrate for the first time that sex differences in patterns of cognition are in part represented on a neural level through divergent patterns of brain connectivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.

    Directory of Open Access Journals (Sweden)

    Julien Becker

    Full Text Available Disulfide bridges strongly constrain the native structure of many proteins and predicting their formation is therefore a key sub-problem of protein structure and function inference. Most recently proposed approaches for this prediction problem adopt the following pipeline: first they enrich the primary sequence with structural annotations, second they apply a binary classifier to each candidate pair of cysteines to predict disulfide bonding probabilities and finally, they use a maximum weight graph matching algorithm to derive the predicted disulfide connectivity pattern of a protein. In this paper, we adopt this three step pipeline and propose an extensive study of the relevance of various structural annotations and feature encodings. In particular, we consider five kinds of structural annotations, among which three are novel in the context of disulfide bridge prediction. So as to be usable by machine learning algorithms, these annotations must be encoded into features. For this purpose, we propose four different feature encodings based on local windows and on different kinds of histograms. The combination of structural annotations with these possible encodings leads to a large number of possible feature functions. In order to identify a minimal subset of relevant feature functions among those, we propose an efficient and interpretable feature function selection scheme, designed so as to avoid any form of overfitting. We apply this scheme on top of three supervised learning algorithms: k-nearest neighbors, support vector machines and extremely randomized trees. Our results indicate that the use of only the PSSM (position-specific scoring matrix together with the CSP (cysteine separation profile are sufficient to construct a high performance disulfide pattern predictor and that extremely randomized trees reach a disulfide pattern prediction accuracy of [Formula: see text] on the benchmark dataset SPX[Formula: see text], which corresponds to

  20. Perfusion deficits and functional connectivity alterations in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Baojuan; Zhang, Xi; Zhang, Linchuan; Li, Liang; Lu, Hongbing

    2016-03-01

    To explore the alteration in cerebral blood flow (CBF) and functional connectivity between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, survived from the same coal mine flood disaster. In this study, a processing pipeline using arterial spin labeling (ASL) sequence was proposed. Considering low spatial resolution of ASL sequence, a linear regression method was firstly used to correct the partial volume (PV) effect for better CBF estimation. Then the alterations of CBF between two groups were analyzed using both uncorrected and PV-corrected CBF maps. Based on altered CBF regions detected from the CBF analysis as seed regions, the functional connectivity abnormities in PTSD patients was investigated. The CBF analysis using PV-corrected maps indicates CBF deficits in the bilateral frontal lobe, right superior frontal gyrus and right corpus callosum of PTSD patients, while only right corpus callosum was identified in uncorrected CBF analysis. Furthermore, the regional CBF of the right superior frontal gyrus exhibits significantly negative correlation with the symptom severity in PTSD patients. The resting-state functional connectivity indicates increased connectivity between left frontal lobe and right parietal lobe. These results indicate that PV-corrected CBF exhibits more subtle perfusion changes and may benefit further perfusion and connectivity analysis. The symptom-specific perfusion deficits and aberrant connectivity in above memory-related regions may be putative biomarkers for recent onset PTSD induced by a single prolonged trauma exposure and help predict the severity of PTSD.

  1. Functional connectivity disruption in neonates with prenatal marijuana exposure

    Directory of Open Access Journals (Sweden)

    Karen eGrewen

    2015-11-01

    Full Text Available Prenatal marijuana exposure (PME is linked to neurobehavioral and cognitive impairments, however findings in childhood and adolescence are inconsistent. Type-1 cannabinoid receptors (CB1R modulate fetal neurodevelopment, mediating PME effects on growth of functional circuitry sub-serving behaviors critical for academic and social success. The purpose of this study was to investigate the effects of prenatal marijuana on development of early brain functional circuitry prior to prolonged postnatal environmental influences. We measured resting state functional connectivity during unsedated sleep in infants at 2-6 weeks (+MJ: 20 with PME in combination with nicotine, alcohol, opiates, and/or SSRI; -MJ: 23 exposed to the same other drugs without marijuana, CTR: 20 drug free controls. Connectivity of subcortical seed regions with high fetal CB1R expression was examined. Marijuana-specific differences were observed in insula and three striatal connections: anterior insula – cerebellum, right caudate – cerebellum, right caudate – right fusiform gyrus/inferior occipital, left caudate – cerebellum. +MJ neonates had hypoconnectivity in all clusters compared with -MJ and CTR groups. Altered striatal connectivity to areas involved in visual spatial and motor learning, attention, and in fine-tuning of motor outputs involved in movement and language production may contribute to neurobehavioral deficits reported in this at-risk group. Disrupted anterior insula connectivity may contribute to altered integration of interoceptive signals with salience estimates, motivation, decision-making, and later drug use. Compared with CTRs, both +MJ and -MJ groups demonstrated hyperconnectivity of left amygdala seed with orbital frontal cortex and hypoconnectivity of posterior thalamus seed with hippocampus, suggesting vulnerability to multiple drugs in these circuits.

  2. Metabolic and functional connectivity changes in mal de debarquement syndrome.

    Directory of Open Access Journals (Sweden)

    Yoon-Hee Cha

    Full Text Available BACKGROUND: Individuals with mal de debarquement syndrome (MdDS experience a chronic illusion of self-motion triggered by prolonged exposure to passive motion, such as from sea or air travel. The experience is one of rocking dizziness similar to when the individual was originally on the motion trigger such as a boat or airplane. MdDS represents a prolonged version of a normal phenomenon familiar to most individuals but which persists for months or years in others. It represents a natural example of the neuroplasticity of motion adaptation. However, the localization of where that motion adaptation occurs is unknown. Our goal was to localize metabolic and functional connectivity changes associated with persistent MdDS. METHODS: Twenty subjects with MdDS lasting a median duration of 17.5 months were compared to 20 normal controls with (18F FDG PET and resting state fMRI. Resting state metabolism and functional connectivity were calculated using age, grey matter volume, and mood and anxiety scores as nuisance covariates. RESULTS: MdDS subjects showed increased metabolism in the left entorhinal cortex and amygdala (z>3.3. Areas of relative hypometabolism included the left superior medial gyrus, left middle frontal gyrus, right amygdala, right insula, and clusters in the left superior, middle, and inferior temporal gyri. MdDS subjects showed increased connectivity between the entorhinal cortex/amygdala cluster and posterior visual and vestibular processing areas including middle temporal gyrus, motion sensitive area MT/V5, superior parietal lobule, and primary visual cortex, while showing decreased connectivity to multiple prefrontal areas. CONCLUSION: These data show an association between resting state metabolic activity and functional connectivity between the entorhinal cortex and amygdala in a human disorder of abnormal motion perception. We propose a model for how these biological substrates can allow a limited period of motion exposure to lead

  3. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    Science.gov (United States)

    Schindler, Andreas; Bartels, Andreas

    2016-05-24

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding.

  4. Functional Connectivity in MRI Is Driven by Spontaneous BOLD Events.

    Directory of Open Access Journals (Sweden)

    Thomas W Allan

    Full Text Available Functional brain signals are frequently decomposed into a relatively small set of large scale, distributed cortical networks that are associated with different cognitive functions. It is generally assumed that the connectivity of these networks is static in time and constant over the whole network, although there is increasing evidence that this view is too simplistic. This work proposes novel techniques to investigate the contribution of spontaneous BOLD events to the temporal dynamics of functional connectivity as assessed by ultra-high field functional magnetic resonance imaging (fMRI. The results show that: 1 spontaneous events in recognised brain networks contribute significantly to network connectivity estimates; 2 these spontaneous events do not necessarily involve whole networks or nodes, but clusters of voxels which act in concert, forming transiently synchronising sub-networks and 3 a task can significantly alter the number of localised spontaneous events that are detected within a single network. These findings support the notion that spontaneous events are the main driver of the large scale networks that are commonly detected by seed-based correlation and ICA. Furthermore, we found that large scale networks are manifestations of smaller, transiently synchronising sub-networks acting dynamically in concert, corresponding to spontaneous events, and which do not necessarily involve all voxels within the network nodes oscillating in unison.

  5. Multiple sclerosis impairs regional functional connectivity in the cerebellum

    Directory of Open Access Journals (Sweden)

    Anne-Marie Dogonowski

    2014-01-01

    Full Text Available Resting-state functional magnetic resonance imaging (rs-fMRI has been used to study changes in long-range functional brain connectivity in multiple sclerosis (MS. Yet little is known about how MS affects functional brain connectivity at the local level. Here we studied 42 patients with MS and 30 matched healthy controls with whole-brain rs-fMRI at 3 T to examine local functional connectivity. Using the Kendall's Coefficient of Concordance, regional homogeneity of blood-oxygen-level-dependent (BOLD-signal fluctuations was calculated for each voxel and used as a measure of local connectivity. Patients with MS showed a decrease in regional homogeneity in the upper left cerebellar hemisphere in lobules V and VI relative to healthy controls. Similar trend changes in regional homogeneity were present in the right cerebellar hemisphere. The results indicate a disintegration of regional processing in the cerebellum in MS. This might be caused by a functional disruption of cortico-ponto-cerebellar and spino-cerebellar inputs, since patients with higher lesion load in the left cerebellar peduncles showed a stronger reduction in cerebellar homogeneity. In patients, two clusters in the left posterior cerebellum expressed a reduction in regional homogeneity with increasing global disability as reflected by the Expanded Disability Status Scale (EDSS score or higher ataxia scores. The two clusters were mainly located in Crus I and extended into Crus II and the dentate nucleus but with little spatial overlap. These findings suggest a link between impaired regional integration in the cerebellum and general disability and ataxia.

  6. An iterative approach of protein function prediction

    Directory of Open Access Journals (Sweden)

    Chi Xiaoxiao

    2011-11-01

    Full Text Available Abstract Background Current approaches of predicting protein functions from a protein-protein interaction (PPI dataset are based on an assumption that the available functions of the proteins (a.k.a. annotated proteins will determine the functions of the proteins whose functions are unknown yet at the moment (a.k.a. un-annotated proteins. Therefore, the protein function prediction is a mono-directed and one-off procedure, i.e. from annotated proteins to un-annotated proteins. However, the interactions between proteins are mutual rather than static and mono-directed, although functions of some proteins are unknown for some reasons at present. That means when we use the similarity-based approach to predict functions of un-annotated proteins, the un-annotated proteins, once their functions are predicted, will affect the similarities between proteins, which in turn will affect the prediction results. In other words, the function prediction is a dynamic and mutual procedure. This dynamic feature of protein interactions, however, was not considered in the existing prediction algorithms. Results In this paper, we propose a new prediction approach that predicts protein functions iteratively. This iterative approach incorporates the dynamic and mutual features of PPI interactions, as well as the local and global semantic influence of protein functions, into the prediction. To guarantee predicting functions iteratively, we propose a new protein similarity from protein functions. We adapt new evaluation metrics to evaluate the prediction quality of our algorithm and other similar algorithms. Experiments on real PPI datasets were conducted to evaluate the effectiveness of the proposed approach in predicting unknown protein functions. Conclusions The iterative approach is more likely to reflect the real biological nature between proteins when predicting functions. A proper definition of protein similarity from protein functions is the key to predicting

  7. Global and regional functional connectivity maps of neural oscillations in focal epilepsy

    Science.gov (United States)

    Englot, Dario J.; Hinkley, Leighton B.; Kort, Naomi S.; Imber, Brandon S.; Mizuiri, Danielle; Honma, Susanne M.; Findlay, Anne M.; Garrett, Coleman; Cheung, Paige L.; Mantle, Mary; Tarapore, Phiroz E.; Knowlton, Robert C.; Chang, Edward F.; Nagarajan, Srikantan S.

    2015-01-01

    Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P epilepsy and higher frequency of consciousness-impairing seizures (P seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P epilepsy, and may reflect deleterious long-term effects of recurrent seizures. Furthermore, enhanced regional functional connectivity at the area of resection may help predict seizure outcome and aid surgical planning. PMID:25981965

  8. Reorganization of the Connectivity between Elementary Functions – A Model Relating Conscious States to Neural Connections

    Directory of Open Access Journals (Sweden)

    Jesper Mogensen

    2017-04-01

    Full Text Available In the present paper it is argued that the “neural correlate of consciousness” (NCC does not appear to be a separate “module” – but an aspect of information processing within the neural substrate of various cognitive processes. Consequently, NCC can only be addressed adequately within frameworks that model the general relationship between neural processes and mental states – and take into account the dynamic connectivity of the brain. We presently offer the REFGEN (general reorganization of elementary functions model as such a framework. This model builds upon and expands the REF (reorganization of elementary functions and REFCON (of elementary functions and consciousness models. All three models integrate the relationship between the neural and mental layers of description via the construction of an intermediate level dealing with computational states. The importance of experience based organization of neural and cognitive processes is stressed. The models assume that the mechanisms of consciousness are in principle the same as the basic mechanisms of all aspects of cognition – when information is processed to a sufficiently “high level” it becomes available to conscious experience. The NCC is within the REFGEN model seen as aspects of the dynamic and experience driven reorganizations of the synaptic connectivity between the neurocognitive “building blocks” of the model – the elementary functions.

  9. Striatum-medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning.

    Science.gov (United States)

    van den Bos, Wouter; Cohen, Michael X; Kahnt, Thorsten; Crone, Eveline A

    2012-06-01

    During development, children improve in learning from feedback to adapt their behavior. However, it is still unclear which neural mechanisms might underlie these developmental changes. In the current study, we used a reinforcement learning model to investigate neurodevelopmental changes in the representation and processing of learning signals. Sixty-seven healthy volunteers between ages 8 and 22 (children: 8-11 years, adolescents: 13-16 years, and adults: 18-22 years) performed a probabilistic learning task while in a magnetic resonance imaging scanner. The behavioral data demonstrated age differences in learning parameters with a stronger impact of negative feedback on expected value in children. Imaging data revealed that the neural representation of prediction errors was similar across age groups, but functional connectivity between the ventral striatum and the medial prefrontal cortex changed as a function of age. Furthermore, the connectivity strength predicted the tendency to alter expectations after receiving negative feedback. These findings suggest that the underlying mechanisms of developmental changes in learning are not related to differences in the neural representation of learning signals per se but rather in how learning signals are used to guide behavior and expectations.

  10. Structured Connectivity Shapes Microcircuit Function in the Prefrontal Cortex.

    Directory of Open Access Journals (Sweden)

    Stefanos Stefanou - Stamatiadis

    2014-03-01

    Full Text Available The application of new experimental techniques in vivo has shed light on the wiring diagram of cortical networks, revealing the highly non-random connectivity of pyramidal neurons. This structured connectivity is characterized by distance-dependent formation of neuronal clusters and over-represented structural ‘motifs’ (Perin 2011, Ko 2013. In the prefrontal cortex (PFC in particular, pyramidal neurons were shown to form hyper-clusters, compared to other sensory regions. Yet, very little is known about the functional properties of these microcircuits and their role in Persistent Activity (PA, a well known function of the PFC. PA is the spiking activity that persists beyond the stimulus presentation and is considered to be the cellular correlate of working memory. Although, PA was traditionally assumed to emerge in large scale networks, recent in vivo data in the PFC suggest that small microcircuits mediate its functional output (Durstwitz, 2010. Motivated by the above findings this work probes the role of realistic connectivity constraints in shaping the functional output of PFC, through simulations of biophysically and morphologically detailed PFC circuits. Towards this goal, we used a compartmental modeling approach, whereby layer 5 PFC pyramidal neurons are modeled with detailed morphological and biophysical properties. Three different types of interneurons were also implemented; the Fast-spiking (FS, Regular-spiking (RS, and Irregular-spiking (IS. These were biophysically detailed, yet morphologically simplified. Microcircuits consisted of 75 pyramidal neurons, 13 FS, 6 RS and 6 IS. Properties (location /number /amplitude /kinetics of both excitatory and inhibitory synapses were extensively validated against experimental data. The network model was used to investigate the effect of connectivity on the emergence of persistent activity. Two different connectivity profiles of pyramidal cells were implemented: one highly non

  11. Continuous theta burst transcranial magnetic stimulation affects brain functional connectivity.

    Science.gov (United States)

    Dan Cao; Yingjie Li; Ling Wei; Yingying Tang

    2016-08-01

    Prefrontal cortex (PFC) plays an important role in the emotional processing as well as in the functional brain network. Hyperactivity in the right dorsolateral prefrontal cortex (DLPFC) would be found in anxious participants. However, it is still unclear what the role of PFC played in a resting functional network. Continuous theta burst transcranial magnetic stimulation (cTBS) is an effective tool to create virtual lesions on brain regions. In this paper, we applied cTBS over right prefrontal area, and investigated the effects of cTBS on the brain activity for functional connectivity by the method of graph theory. We recorded 64-channels EEG on thirteen healthy participants in the resting condition and emotional tasks before and after 40 s of cTBS. This work focused on the effect of cTBS on cortical activities in the resting condition by calculating the coherence between EEG channels and building functional networks before and after cTBS in the delta, theta, alpha and beta bands. Results revealed that 1) The functional connectivity after cTBS was significantly increased compared with that before cTBS in delta, theta, alpha and beta bands in the resting condition; 2) The efficiency-cost reached the maximum before and after cTBS both with the cost about 0.3 in the bands above, which meant that the information transmission of functional brain network with this cost was highly efficient; 3) the clustering coefficient and path length after cTBS was significantly increased in delta, theta and beta bands. In conclusion, cTBS over PFC indeed enhanced the functional connectivity in the resting condition. In addition, the information transmission in the resting brain network was highly efficient with the cost about 0.3.

  12. Increased functional connectivity within mesocortical networks in open people.

    Science.gov (United States)

    Passamonti, L; Terracciano, A; Riccelli, R; Donzuso, G; Cerasa, A; Vaccaro, Mg; Novellino, F; Fera, F; Quattrone, A

    2015-01-01

    Openness is a personality trait reflecting absorption in sensory experience, preference for novelty, and creativity, and is thus considered a driving force of human evolution. At the brain level, a relation between openness and dopaminergic circuits has been proposed, although evidence to support this hypothesis is lacking. Recent behavioral research has also found that people with mania, a psychopathological condition linked to dopaminergic dysfunctions, may display high levels of openness. However, whether openness is related to dopaminergic circuits has not been determined thus far. We addressed this issue via three functional magnetic resonance imaging (fMRI) experiments in n=46 healthy volunteers. In the first experiment participants lied at rest in the scanner while in the other two experiments they performed active tasks that included the presentation of pleasant odors and pictures of food. Individual differences in openness and other personality traits were assessed via the NEO-PI-R questionnaire (NEO-Personality Inventory-Revised), a widely employed measure of the five-factor model personality traits. Correlation between fMRI and personality data was analyzed via state-of-art methods assessing resting-state and task-related functional connectivity within specific brain networks. Openness was positively associated with the functional connectivity between the right substantia nigra/ventral tegmental area, the major source of dopaminergic inputs in the brain, and the ipsilateral dorsolateral prefrontal cortex (DLPFC), a key region in encoding, maintaining, and updating information that is relevant for adaptive behaviors. Of note, the same connectivity pattern was consistently found across all of the three fMRI experiments. Given the critical role of dopaminergic signal in gating information in DLPFC, the increased functional connectivity within mesocortical networks in open people may explain why these individuals display a wide "mental permeability" to

  13. ON CONNECTING WEYL-ORBIT FUNCTIONS TO JACOBI POLYNOMIALS AND MULTIVARIATE (ANTISYMMETRIC TRIGONOMETRIC FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Jiri Hrivnak

    2016-08-01

    Full Text Available The aim of this paper is to make an explicit link between the Weyl-orbit functions and the corresponding polynomials, on the one hand, and to several other families of special functions and orthogonal polynomials on the other. The cornerstone is the connection that is made between the one-variable orbit functions of A1 and the four kinds of Chebyshev polynomials. It is shown that there exists a similar connection for the two-variable orbit functions of A2 and a specific version of two variable Jacobi polynomials. The connection with recently studied G2-polynomials is established. Formulas for connection between the four types of orbit functions of Bn or Cn and the (antisymmetric multivariate cosine and sine functions are explicitly derived.

  14. Convergent and divergent functional connectivity patterns in schizophrenia and depression.

    Directory of Open Access Journals (Sweden)

    Yang Yu

    Full Text Available Major depression and schizophrenia are two of the most serious psychiatric disorders and share similar behavioral symptoms. Whether these similar behavioral symptoms underlie any convergent psychiatric pathological mechanisms is not yet clear. To address this issue, this study sought to investigate the whole-brain resting-state functional magnetic resonance imaging (MRI of major depression and schizophrenia by using multivariate pattern analysis. Thirty-two schizophrenic patients, 19 major depressive disorder patients and 38 healthy controls underwent resting-state functional MRI scanning. A support vector machine in conjunction with intrinsic discriminant analysis was used to solve the multi-classification problem, resulting in a correct classification rate of 80.9% via leave-one-out cross-validation. The depression and schizophrenia groups both showed altered functional connections associated with the medial prefrontal cortex, anterior cingulate cortex, thalamus, hippocampus, and cerebellum. However, the prefrontal cortex, amygdala, and temporal poles were found to be affected differently by major depression and schizophrenia. Our preliminary study suggests that altered connections within or across the default mode network and the cerebellum may account for the common behavioral symptoms between major depression and schizophrenia. In addition, connections associated with the prefrontal cortex and the affective network showed promise as biomarkers for discriminating between the two disorders.

  15. Functional brain connectivity phenotypes for schizophrenia drug discovery.

    Science.gov (United States)

    Dawson, Neil; Morris, Brian J; Pratt, Judith A

    2015-02-01

    While our knowledge of the pathophysiology of schizophrenia has increased dramatically, this has not translated into the development of new and improved drugs to treat this disorder. Human brain imaging and electrophysiological studies have provided dramatic new insight into the mechanisms of brain dysfunction in the disease, with a swathe of recent studies highlighting the differences in functional brain network and neural system connectivity present in the disorder. Only recently has the value of applying these approaches in preclinical rodent models relevant to the disorder started to be recognised. Here we highlight recent findings of altered functional brain connectivity in preclinical rodent models and consider their relevance to those alterations seen in the brains of schizophrenia patients. Furthermore, we highlight the potential translational value of using the paradigm of functional brain connectivity phenotypes in the context of preclinical schizophrenia drug discovery, as a means both to understand the mechanisms of brain dysfunction in the disorder and to reduce the current high attrition rate in schizophrenia drug discovery.

  16. The association between resting functional connectivity and dispositional optimism.

    Science.gov (United States)

    Ran, Qian; Yang, Junyi; Yang, Wenjing; Wei, Dongtao; Qiu, Jiang; Zhang, Dong

    2017-01-01

    Dispositional optimism is an individual characteristic that plays an important role in human experience. Optimists are people who tend to hold positive expectations for their future. Previous studies have focused on the neural basis of optimism, such as task response neural activity and brain structure volume. However, the functional connectivity between brain regions of the dispositional optimists are poorly understood. Previous study suggested that the ventromedial prefrontal cortex (vmPFC) are associated with individual differences in dispositional optimism, but it is unclear whether there are other brain regions that combine with the vmPFC to contribute to dispositional optimism. Thus, the present study used the resting-state functional connectivity (RSFC) approach and set the vmPFC as the seed region to examine if differences in functional brain connectivity between the vmPFC and other brain regions would be associated with individual differences in dispositional optimism. The results found that dispositional optimism was significantly positively correlated with the strength of the RSFC between vmPFC and middle temporal gyrus (mTG) and negativly correlated with RSFC between vmPFC and inferior frontal gyrus (IFG). These findings may be suggested that mTG and IFG which associated with emotion processes and emotion regulation also play an important role in the dispositional optimism.

  17. Ventral Striatum Functional Connectivity as a Predictor of Adolescent Depressive Disorder in a Longitudinal Community-Based Sample.

    Science.gov (United States)

    Pan, Pedro Mario; Sato, João R; Salum, Giovanni A; Rohde, Luis A; Gadelha, Ary; Zugman, Andre; Mari, Jair; Jackowski, Andrea; Picon, Felipe; Miguel, Eurípedes C; Pine, Daniel S; Leibenluft, Ellen; Bressan, Rodrigo A; Stringaris, Argyris

    2017-09-26

    Previous studies have implicated aberrant reward processing in the pathogenesis of adolescent depression. However, no study has used functional connectivity within a distributed reward network, assessed using resting-state functional MRI (fMRI), to predict the onset of depression in adolescents. This study used reward network-based functional connectivity at baseline to predict depressive disorder at follow-up in a community sample of adolescents. A total of 637 children 6-12 years old underwent resting-state fMRI. Discovery and replication analyses tested intrinsic functional connectivity (iFC) among nodes of a putative reward network. Logistic regression tested whether striatal node strength, a measure of reward-related iFC, predicted onset of a depressive disorder at 3-year follow-up. Further analyses investigated the specificity of this prediction. Increased left ventral striatum node strength predicted increased risk for future depressive disorder (odds ratio=1.54, 95% CI=1.09-2.18), even after excluding participants who had depressive disorders at baseline (odds ratio=1.52, 95% CI=1.05-2.20). Among 11 reward-network nodes, only the left ventral striatum significantly predicted depression. Striatal node strength did not predict other common adolescent psychopathology, such as anxiety, attention deficit hyperactivity disorder, and substance use. Aberrant ventral striatum functional connectivity specifically predicts future risk for depressive disorder. This finding further emphasizes the need to understand how brain reward networks contribute to youth depression.

  18. Interpreting the effects of altered brain anatomical connectivity on fMRI functional connectivity: a role for computational neural modeling.

    Science.gov (United States)

    Horwitz, Barry; Hwang, Chuhern; Alstott, Jeff

    2013-01-01

    Recently, there have been a large number of studies using resting state fMRI to characterize abnormal brain connectivity in patients with a variety of neurological, psychiatric, and developmental disorders. However, interpreting what the differences in resting state fMRI functional connectivity (rsfMRI-FC) actually reflect in terms of the underlying neural pathology has proved to be elusive because of the complexity of brain anatomical connectivity. The same is the case for task-based fMRI studies. In the last few years, several groups have used large-scale neural modeling to help provide some insight into the relationship between brain anatomical connectivity and the corresponding patterns of fMRI-FC. In this paper we review several efforts at using large-scale neural modeling to investigate the relationship between structural connectivity and functional/effective connectivity to determine how alterations in structural connectivity are manifested in altered patterns of functional/effective connectivity. Because the alterations made in the anatomical connectivity between specific brain regions in the model are known in detail, one can use the results of these simulations to determine the corresponding alterations in rsfMRI-FC. Many of these simulation studies found that structural connectivity changes do not necessarily result in matching changes in functional/effective connectivity in the areas of structural modification. Often, it was observed that increases in functional/effective connectivity in the altered brain did not necessarily correspond to increases in the strength of the anatomical connection weights. Note that increases in rsfMRI-FC in patients have been interpreted in some cases as resulting from neural plasticity. These results suggest that this interpretation can be mistaken. The relevance of these simulation findings to the use of functional/effective fMRI connectivity as biomarkers for brain disorders is also discussed.

  19. Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI

    Directory of Open Access Journals (Sweden)

    Alexander eSchaefer

    2014-05-01

    Full Text Available Network studies of large-scale brain connectivity have demonstrated that highly connected areas, or ‘hubs’, are a key feature of human functional and structural brain organization. We use resting-state functional MRI data and connectivity clustering to identify multi network hubs and show that while hubs can belong to multiple networks their degree of integration into these different networks varies dynamically over time. In addition, we found that these network dynamics were inversely related to positive self-generated thoughts reported by individuals and were further decreased with older age. Moreover, the left caudate varied its degree of participation between a default mode subnetwork and a limbic network. This variation was predictive of individual differences in the reports of past-related thoughts. These results support an association between ongoing thought processes and network dynamics and offer a new approach to investigate the brain dynamics underlying mental experience.

  20. The Prediction of Biological Activity Using Molecular Connectivity Indices.

    Science.gov (United States)

    1986-04-23

    correlations of their toxicity to a variety or organisms, including rats and guppies , with connectivity indices. The best result was from the correlation...of the LC5 0 concentration of chlorophenols using guppies : log LC5 0 3.257 - 0.6719 lxv L S&. (r 0.982, n = 10). The general conclusion reached was...toxicity toward axenic cultures of the freshwater ciliate Tetrahymena pyriformis. A better correlation with xv * - - -. . -. - -, .*’,-.’ . S. -17- was

  1. Breaking functional connectivity into components: a novel approach using an individual-based model, and first outcomes.

    Directory of Open Access Journals (Sweden)

    Guy Pe'er

    Full Text Available Landscape connectivity is a key factor determining the viability of populations in fragmented landscapes. Predicting 'functional connectivity', namely whether a patch or a landscape functions as connected from the perspective of a focal species, poses various challenges. First, empirical data on the movement behaviour of species is often scarce. Second, animal-landscape interactions are bound to yield complex patterns. Lastly, functional connectivity involves various components that are rarely assessed separately. We introduce the spatially explicit, individual-based model FunCon as means to distinguish between components of functional connectivity and to assess how each of them affects the sensitivity of species and communities to landscape structures. We then present the results of exploratory simulations over six landscapes of different fragmentation levels and across a range of hypothetical bird species that differ in their response to habitat edges. i Our results demonstrate that estimations of functional connectivity depend not only on the response of species to edges (avoidance versus penetration into the matrix, the movement mode investigated (home range movements versus dispersal, and the way in which the matrix is being crossed (random walk versus gap crossing, but also on the choice of connectivity measure (in this case, the model output examined. ii We further show a strong effect of the mortality scenario applied, indicating that movement decisions that do not fully match the mortality risks are likely to reduce connectivity and enhance sensitivity to fragmentation. iii Despite these complexities, some consistent patterns emerged. For instance, the ranking order of landscapes in terms of functional connectivity was mostly consistent across the entire range of hypothetical species, indicating that simple landscape indices can potentially serve as valuable surrogates for functional connectivity. Yet such simplifications must be

  2. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke.

    Science.gov (United States)

    Siegel, Joshua Sarfaty; Ramsey, Lenny E; Snyder, Abraham Z; Metcalf, Nicholas V; Chacko, Ravi V; Weinberger, Kilian; Baldassarre, Antonello; Hacker, Carl D; Shulman, Gordon L; Corbetta, Maurizio

    2016-07-26

    Deficits following stroke are classically attributed to focal damage, but recent evidence suggests a key role of distributed brain network disruption. We measured resting functional connectivity (FC), lesion topography, and behavior in multiple domains (attention, visual memory, verbal memory, language, motor, and visual) in a cohort of 132 stroke patients, and used machine-learning models to predict neurological impairment in individual subjects. We found that visual memory and verbal memory were better predicted by FC, whereas visual and motor impairments were better predicted by lesion topography. Attention and language deficits were well predicted by both. Next, we identified a general pattern of physiological network dysfunction consisting of decrease of interhemispheric integration and intrahemispheric segregation, which strongly related to behavioral impairment in multiple domains. Network-specific patterns of dysfunction predicted specific behavioral deficits, and loss of interhemispheric communication across a set of regions was associated with impairment across multiple behavioral domains. These results link key organizational features of brain networks to brain-behavior relationships in stroke.

  3. Predicting cortical ROIs via joint modeling of anatomical and connectional profiles.

    Science.gov (United States)

    Zhang, Tuo; Zhu, Dajiang; Jiang, Xi; Ge, Bao; Hu, Xintao; Han, Junwei; Guo, Lei; Liu, Tianming

    2013-08-01

    Localization of cortical regions of interests (ROIs) in structural neuroimaging data such as diffusion tensor imaging (DTI) and T1-weighted MRI images has significant importance in basic and clinical neurosciences. However, this problem is considerably challenging due to the lack of quantitative mapping between brain structure and function, which relies on the availability of multimodal training data including benchmark task-based functional MRI (fMRI) images and effective machine learning algorithms. This paper presents a novel joint modeling approach that learns predictive models of ROIs from concurrent task-based fMRI, DTI, and T1-weighted MRI datasets. In particular, the effective generalized multiple kernel learning (GMKL) algorithm and ROI coordinate principal component analysis (PCA) model are employed to infer the intrinsic relationships between anatomical T1-weighted MRI/connectional DTI features and task-based fMRI-derived functional ROIs. Then, these predictive models of cortical ROIs are evaluated by cross-validation studies, independent datasets, and reproducibility studies. Experimental results are promising. We envision that these predictive models can be potentially applied in many scenarios that have only DTI and/or T1-weighted MRI data, but without task-based fMRI data. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Mindfulness and dynamic functional neural connectivity in children and adolescents.

    Science.gov (United States)

    Marusak, Hilary A; Elrahal, Farrah; Peters, Craig A; Kundu, Prantik; Lombardo, Michael V; Calhoun, Vince D; Goldberg, Elimelech K; Cohen, Cindy; Taub, Jeffrey W; Rabinak, Christine A

    2017-09-05

    Interventions that promote mindfulness consistently show salutary effects on cognition and emotional wellbeing in adults, and more recently, in children and adolescents. However, we lack understanding of the neurobiological mechanisms underlying mindfulness in youth that should allow for more judicious application of these interventions in clinical and educational settings. Using multi-echo multi-band fMRI, we examined dynamic (i.e., time-varying) and conventional static resting-state connectivity between core neurocognitive networks (i.e., salience/emotion, default mode, central executive) in 42 children and adolescents (ages 6-17). We found that trait mindfulness in youth relates to dynamic but not static resting-state connectivity. Specifically, more mindful youth transitioned more between brain states over the course of the scan, spent overall less time in a certain connectivity state, and showed a state-specific reduction in connectivity between salience/emotion and central executive networks. The number of state transitions mediated the link between higher mindfulness and lower anxiety, providing new insights into potential neural mechanisms underlying benefits of mindfulness on psychological health in youth. Our results provide new evidence that mindfulness in youth relates to functional neural dynamics and interactions between neurocognitive networks, over time. Copyright © 2017. Published by Elsevier B.V.

  5. Connecting Jacobi elliptic functions with different modulus parameters

    Indian Academy of Sciences (India)

    Avinash Khare; Uday Sukhatme

    2004-11-01

    The simplest formulas connecting Jacobi elliptic functions with different modulus parameters were first obtained over two hundred years ago by John Landen. His approach was to change integration variables in elliptic integrals. We show that Landen’s formulas and their subsequent generalizations can also be obtained from a different approach, using which we also obtain several new Landen transformations. Our new method is based on recently obtained periodic solutions of physically interesting non-linear differential equations and remarkable new cyclic identities involving Jacobi elliptic functions.

  6. Functional connectivity of parietal cortex during temporal selective attention.

    Science.gov (United States)

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients.

  7. Hippocampal functional connectivity and episodic memory in early childhood

    Directory of Open Access Journals (Sweden)

    Tracy Riggins

    2016-06-01

    Full Text Available Episodic memory relies on a distributed network of brain regions, with the hippocampus playing a critical and irreplaceable role. Few studies have examined how changes in this network contribute to episodic memory development early in life. The present addressed this gap by examining relations between hippocampal functional connectivity and episodic memory in 4- and 6-year-old children (n = 40. Results revealed similar hippocampal functional connectivity between age groups, which included lateral temporal regions, precuneus, and multiple parietal and prefrontal regions, and functional specialization along the longitudinal axis. Despite these similarities, developmental differences were also observed. Specifically, 3 (of 4 regions within the hippocampal memory network were positively associated with episodic memory in 6-year-old children, but negatively associated with episodic memory in 4-year-old children. In contrast, all 3 regions outside the hippocampal memory network were negatively associated with episodic memory in older children, but positively associated with episodic memory in younger children. These interactions are interpreted within an interactive specialization framework and suggest the hippocampus becomes functionally integrated with cortical regions that are part of the hippocampal memory network in adults and functionally segregated from regions unrelated to memory in adults, both of which are associated with age-related improvements in episodic memory ability.

  8. Impact of language on functional connectivity for audiovisual speech integration.

    Science.gov (United States)

    Shinozaki, Jun; Hiroe, Nobuo; Sato, Masa-Aki; Nagamine, Takashi; Sekiyama, Kaoru

    2016-08-11

    Visual information about lip and facial movements plays a role in audiovisual (AV) speech perception. Although this has been widely confirmed, previous behavioural studies have shown interlanguage differences, that is, native Japanese speakers do not integrate auditory and visual speech as closely as native English speakers. To elucidate the neural basis of such interlanguage differences, 22 native English speakers and 24 native Japanese speakers were examined in behavioural or functional Magnetic Resonance Imaging (fMRI) experiments while mono-syllabic speech was presented under AV, auditory-only, or visual-only conditions for speech identification. Behavioural results indicated that the English speakers identified visual speech more quickly than the Japanese speakers, and that the temporal facilitation effect of congruent visual speech was significant in the English speakers but not in the Japanese speakers. Using fMRI data, we examined the functional connectivity among brain regions important for auditory-visual interplay. The results indicated that the English speakers had significantly stronger connectivity between the visual motion area MT and the Heschl's gyrus compared with the Japanese speakers, which may subserve lower-level visual influences on speech perception in English speakers in a multisensory environment. These results suggested that linguistic experience strongly affects neural connectivity involved in AV speech integration.

  9. Impact of language on functional connectivity for audiovisual speech integration

    Science.gov (United States)

    Shinozaki, Jun; Hiroe, Nobuo; Sato, Masa-aki; Nagamine, Takashi; Sekiyama, Kaoru

    2016-01-01

    Visual information about lip and facial movements plays a role in audiovisual (AV) speech perception. Although this has been widely confirmed, previous behavioural studies have shown interlanguage differences, that is, native Japanese speakers do not integrate auditory and visual speech as closely as native English speakers. To elucidate the neural basis of such interlanguage differences, 22 native English speakers and 24 native Japanese speakers were examined in behavioural or functional Magnetic Resonance Imaging (fMRI) experiments while mono-syllabic speech was presented under AV, auditory-only, or visual-only conditions for speech identification. Behavioural results indicated that the English speakers identified visual speech more quickly than the Japanese speakers, and that the temporal facilitation effect of congruent visual speech was significant in the English speakers but not in the Japanese speakers. Using fMRI data, we examined the functional connectivity among brain regions important for auditory-visual interplay. The results indicated that the English speakers had significantly stronger connectivity between the visual motion area MT and the Heschl’s gyrus compared with the Japanese speakers, which may subserve lower-level visual influences on speech perception in English speakers in a multisensory environment. These results suggested that linguistic experience strongly affects neural connectivity involved in AV speech integration. PMID:27510407

  10. Predicting functional brain ROIs via fiber shape models.

    Science.gov (United States)

    Zhang, Tuo; Guo, Lei; Li, Kaiming; Zhu, Dajing; Cui, Guangbin; Liu, Tianming

    2011-01-01

    Study of structural and functional connectivities of the human brain has received significant interest and effort recently. A fundamental question arises when attempting to measure the structural and/or functional connectivities of specific brain networks: how to best identify possible Regions of Interests (ROIs)? In this paper, we present a novel ROI prediction framework that localizes ROIs in individual brains based on learned fiber shape models from multimodal task-based fMRI and diffusion tensor imaging (DTI) data. In the training stage, ROIs are identified as activation peaks in task-based fMRI data. Then, shape models of white matter fibers emanating from these functional ROIs are learned. In addition, ROIs' location distribution model is learned to be used as an anatomical constraint. In the prediction stage, functional ROIs are predicted in individual brains based on DTI data. The ROI prediction is formulated and solved as an energy minimization problem, in which the two learned models are used as energy terms. Our experiment results show that the average ROI prediction error is 3.45 mm, in comparison with the benchmark data provided by working memory task-based fMRI. Promising results were also obtained on the ADNI-2 longitudinal DTI dataset.

  11. Cognition and Resting-State Functional Connectivity in Schizophrenia

    Science.gov (United States)

    Sheffield, Julia M; Barch, Deanna M

    2015-01-01

    Individuals with schizophrenia consistently display deficits in a multitude of cognitive domains, but the neurobiological source of these cognitive impairments remains unclear. By analyzing the functional connectivity of resting-state functional magnetic resonance imaging (rs-fcMRI) data in clinical populations like schizophrenia, research groups have begun elucidating abnormalities in the intrinsic communication between specific brain regions, and assessing relationships between these abnormalities and cognitive performance in schizophrenia. Here we review studies that have reported analysis of these brain-behavior relationships. Through this systematic review we found that patients with schizophrenia display abnormalities within and between regions comprising 1) the cortico-cerebellar-striatal-thalamic loop and 2) task-positive and task-negative cortical networks. Importantly, we did not observe unique relationships between specific functional connectivity abnormalities and distinct cognitive domains, suggesting that the observed functional systems may underlie mechanisms that are shared across cognitive abilities, the disturbance of which could contribute to the “generalized” cognitive deficit found in schizophrenia. We also note several areas of methodological change that we believe will strengthen this literature. PMID:26698018

  12. A critical flaw size approach for predicting the strength of bolted glass connections

    DEFF Research Database (Denmark)

    Watson, James; Nielsen, Jens Henrik; Overend, Mauro

    2013-01-01

    The use of bolted connections in glass installations is common place in contemporary architecture. However, it is difficult to predict the load bearing capacity of these connections accurately due to the several factors that influence the strength of glass in the region of the bolt hole, namely: ...

  13. Point-to-point connectivity prediction in porous media using percolation theory

    Science.gov (United States)

    Tavagh-Mohammadi, Behnam; Masihi, Mohsen; Ganjeh-Ghazvini, Mostafa

    2016-10-01

    The connectivity between two points in porous media is important for evaluating hydrocarbon recovery in underground reservoirs or toxic migration in waste disposal. For example, the connectivity between a producer and an injector in a hydrocarbon reservoir impact the fluid dispersion throughout the system. The conventional approach, flow simulation, is computationally very expensive and time consuming. Alternative method employs percolation theory. Classical percolation approach investigates the connectivity between two lines (representing the wells) in 2D cross sectional models whereas we look for the connectivity between two points (representing the wells) in 2D aerial models. In this study, site percolation is used to determine the fraction of permeable regions connected between two cells at various occupancy probabilities and system sizes. The master curves of mean connectivity and its uncertainty are then generated by finite size scaling. The results help to predict well-to-well connectivity without need to any further simulation.

  14. Cerebellar damage impairs internal predictions for sensory and motor function

    OpenAIRE

    Therrien, Amanda S.; Bastian, Amy J.

    2015-01-01

    The cerebellum is connected to cerebral areas that subserve a range of sensory and motor functions. In this review, we summarize new literature demonstrating deficits in visual perception, proprioception, motor control, and motor learning performance following cerebellar damage. In particular, we highlight novel results that together suggest a general role of the cerebellum in estimating and predicting movement dynamics of the body and environmental stimuli. These findings agree with the hypo...

  15. Evaluation and calibration of functional network modeling methods based on known anatomical connections.

    Science.gov (United States)

    Dawson, Debra Ann; Cha, Kuwook; Lewis, Lindsay B; Mendola, Janine D; Shmuel, Amir

    2013-02-15

    Recent studies have identified large scale brain networks based on the spatio-temporal structure of spontaneous fluctuations in resting-state fMRI data. It is expected that functional connectivity based on resting-state data is reflective of - but not identical to - the underlying anatomical connectivity. However, which functional connectivity analysis methods reliably predict the network structure remains unclear. Here we tested and compared network connectivity analysis methods by applying them to fMRI resting-state time-series obtained from the human visual cortex. The methods evaluated here are those previously tested against simulated data in Smith et al. (Neuroimage, 2011). To this end, we defined regions within retinotopic visual areas V1, V2, and V3 according to their eccentricity in the visual field, delineating central, intermediate, and peripheral eccentricity regions of interest (ROIs). These ROIs served as nodes in the models we study. We based our evaluation on the "ground-truth", thoroughly studied retinotopically-organized anatomical connectivity in the monkey visual cortex. For each evaluated method, we computed the fractional rate of detecting connections known to exist ("c-sensitivity"), while using a threshold of the 95th percentile of the distribution of interaction magnitudes of those connections not expected to exist. Under optimal conditions - including session duration of 68min, a relatively small network consisting of 9 nodes and artifact-free regression of the global effect - each of the top methods predicted the expected connections with 67-85% c-sensitivity. Correlation methods, including Correlation (Corr; 85%), Regularized Inverse Covariance (ICOV; 84%) and Partial Correlation (PCorr; 81%) performed best, followed by Patel's Kappa (80%), Bayesian Network method PC (BayesNet; 77%), General Synchronization measures (67-77%), and Coherence (CohB; 74%). With decreased session duration, these top methods saw decreases in c

  16. Prenatal drug exposure affects neonatal brain functional connectivity.

    Science.gov (United States)

    Salzwedel, Andrew P; Grewen, Karen M; Vachet, Clement; Gerig, Guido; Lin, Weili; Gao, Wei

    2015-04-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala-frontal, insula-frontal, and insula-sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala-frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention.

  17. Defining Integrals Over Connections in the Discretized Gravitational Functional Integrals

    Science.gov (United States)

    Khatsymovsky, V. M.

    Integration over connection type variables in the path integral for the discrete form of the first-order formulation of general relativity theory is studied. The result (a generalized function of the rest of variables of the type of tetrad or elementary areas) can be defined through its moments, i.e. integrals of it with the area tensor monomials. In our previous paper these moments have been defined by deforming integration contours in the complex plane as if we had passed to a Euclidean-like region. In this paper we define and evaluate the moments in the genuine Minkowski region. The distribution of interest resulting from these moments in this non-positively defined region contains the divergences. We prove that the latter contribute only to the singular (δ-function like) part of this distribution with support in the non-physical region of the complex plane of area tensors while in the physical region this distribution (usual function) confirms that defined in our previous paper which decays exponentially at large areas. Besides that, we evaluate the basic integrals over which the integral over connections in the general path integral can be expanded.

  18. Contention aware mobility prediction routing for intermittently connected mobile networks

    KAUST Repository

    Elwhishi, Ahmed

    2013-04-26

    This paper introduces a novel multi-copy routing protocol, called predict and forward (PF), for delay tolerant networks, which aims to explore the possibility of using mobile nodes as message carriers for end-to-end delivery of the messages. With PF, the message forwarding decision is made by manipulating the probability distribution of future inter-contact and contact durations based on the network status, including wireless link condition and nodal buffer availability. In particular, PF is based on the observations that the node mobility behavior is semi-deterministic and could be predicted once there is sufficient mobility history information. We implemented the proposed protocol and compared it with a number of existing encounter-based routing approaches in terms of delivery delay, delivery ratio, and the number of transmissions required for message delivery. The simulation results show that PF outperforms all the counterpart multi-copy encounter-based routing protocols considered in the study.

  19. Applications of random field theory to functional connectivity.

    Science.gov (United States)

    Worsley, K J; Cao, J; Paus, T; Petrides, M; Evans, A C

    1998-01-01

    Functional connectivity between two voxels or regions of voxels can be measured by the correlation between voxel measurements from either PET CBF or BOLD fMRI images in 3D. We propose to look at the entire 6D matrix of correlations between all voxels and search for 6D local maxima. The main result is a new theoretical formula based on random field theory for the p-value of these local maxima, which distinguishes true correlations from background noise. This can be applied to crosscorrelations between two different sets of images--such as activations under two different tasks, as well as autocorrelations within the same set of images.

  20. Graph theoretical analysis of resting magnetoencephalographic functional connectivity networks

    Directory of Open Access Journals (Sweden)

    Lindsay eRutter

    2013-07-01

    Full Text Available Complex networks have been observed to comprise small-world properties, believed to represent an optimal organization of local specialization and global integration of information processing at reduced wiring cost. Here, we applied magnitude squared coherence to resting magnetoencephalographic time series in reconstructed source space, acquired from controls and patients with schizophrenia, and generated frequency-dependent adjacency matrices modeling functional connectivity between virtual channels. After configuring undirected binary and weighted graphs, we found that all human networks demonstrated highly localized clustering and short characteristic path lengths. The most conservatively thresholded networks showed efficient wiring, with topographical distance between connected vertices amounting to one-third as observed in surrogate randomized topologies. Nodal degrees of the human networks conformed to a heavy-tailed exponentially truncated power-law, compatible with the existence of hubs, which included theta and alpha bilateral cerebellar tonsil, beta and gamma bilateral posterior cingulate, and bilateral thalamus across all frequencies. We conclude that all networks showed small-worldness, minimal physical connection distance, and skewed degree distributions characteristic of physically-embedded networks, and that these calculations derived from graph theoretical mathematics did not quantifiably distinguish between subject populations, independent of bandwidth. However, post-hoc measurements of edge computations at the scale of the individual vertex revealed trends of reduced gamma connectivity across the posterior medial parietal cortex in patients, an observation consistent with our prior resting activation study that found significant reduction of synthetic aperture magnetometry gamma power across similar regions. The basis of these small differences remains unclear.

  1. Functional connectivity in task-negative network of the Deaf: effects of sign language experience.

    Science.gov (United States)

    Malaia, Evie; Talavage, Thomas M; Wilbur, Ronnie B

    2014-01-01

    Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain's anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia). We report the first investigation of the task-negative network in Deaf signers and its functional connectivity-the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG), but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.

  2. Relationship between gyrification and functional connectivity of the prefrontal cortex in subjects at high genetic risk of schizophrenia.

    Science.gov (United States)

    Dauvermann, Maria R; Mukherjee, Prerona; Moorhead, William T; Stanfield, Andrew C; Fusar-Poli, Paolo; Lawrie, Stephen M; Whalley, Heather C

    2012-01-01

    Measures of cortical folding ('gyrification') and connectivity are both reported to be disrupted in schizophrenia. There are also reports that increases in prefrontal gyrification may be predictive of subsequent illness in individuals at familial risk of the disorder. Such measures therefore have important potential clinical relevance. The nature of the relationship between cortical morphology and underlying connectivity is however unclear. In the current study we sought to explore the relationship between measures of gyrification and functional connectivity in a cohort of individuals at high genetic risk for the disorder. The theoretical background is based on the hypothesis that increased gyrification index (GI) in the prefrontal cortex may reflect increased short range regional connectivity. The cohort comprised 68 young unaffected relatives of schizophrenia patients and 21 healthy controls. Cortical folding was assessed using an automated Gyrification Index method (A-GI). Participants performed the Hayling sentence completion paradigm in the scanner and measures of functional connectivity were assessed using a correlation based approach. In the high risk subjects significant positive associations were found between prefrontal GI and prefrontal lateral-medial connectivity, while a negative correlation was found between prefrontal GI and prefrontal-thalamic connectivity. These associations indicate that measures describing morphological features of the brain surface relate to measures of underlying functional connectivity in the high risk subjects. Correlations in high risk people were more pronounced than in control subjects. We suggest our previous finding of increased prefrontal gyrification may therefore relate to increased local short range prefrontal connectivity and reduced long range connectivity.

  3. Attentional load modulates large-scale functional brain connectivity beyond the core attention networks.

    Science.gov (United States)

    Alnæs, Dag; Kaufmann, Tobias; Richard, Geneviève; Duff, Eugene P; Sneve, Markus H; Endestad, Tor; Nordvik, Jan Egil; Andreassen, Ole A; Smith, Stephen M; Westlye, Lars T

    2015-04-01

    In line with the notion of a continuously active and dynamic brain, functional networks identified during rest correspond with those revealed by task-fMRI. Characterizing the dynamic cross-talk between these network nodes is key to understanding the successful implementation of effortful cognitive processing in healthy individuals and its breakdown in a variety of conditions involving aberrant brain biology and cognitive dysfunction. We employed advanced network modeling on fMRI data collected during a task involving sustained attentive tracking of objects at two load levels and during rest. Using multivariate techniques, we demonstrate that attentional load levels can be significantly discriminated, and from a resting-state condition, the accuracy approaches 100%, by means of estimates of between-node functional connectivity. Several network edges were modulated during task engagement: The dorsal attention network increased connectivity with a visual node, while decreasing connectivity with motor and sensory nodes. Also, we observed a decoupling between left and right hemisphere dorsal visual streams. These results support the notion of dynamic network reconfigurations based on attentional effort. No simple correspondence between node signal amplitude change and node connectivity modulations was found, thus network modeling provides novel information beyond what is revealed by conventional task-fMRI analysis. The current decoding of attentional states confirms that edge connectivity contains highly predictive information about the mental state of the individual, and the approach shows promise for the utilization in clinical contexts.

  4. Integration Over Connections in the Discretized Gravitational Functional Integrals

    Science.gov (United States)

    Khatsymovsky, V. M.

    The result of performing integrations over connection type variables in the path integral for the discrete field theory may be poorly defined in the case of non-compact gauge group with the Haar measure exponentially growing in some directions. This point is studied in the case of the discrete form of the first-order formulation of the Einstein gravity theory. Here the result of interest can be defined as generalized function (of the rest of variables of the type of tetrad or elementary areas), i.e. a functional on a set of probe functions. To define this functional, we calculate its values on the products of components of the area tensors, the so-called moments. The resulting distribution (in fact, probability distribution) has singular (δ-function-like) part with support in the nonphysical region of the complex plane of area tensors and regular part (usual function) which decays exponentially at large areas. As we discuss, this also provides suppression of large edge lengths which is important for internal consistency, if one asks whether gravity on short distances can be discrete. Some other features of the obtained probability distribution including occurrence of the local maxima at a number of the approximately equidistant values of area are also considered.

  5. Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways.

    Science.gov (United States)

    Lu, Jie; Liu, Hesheng; Zhang, Miao; Wang, Danhong; Cao, Yanxiang; Ma, Qingfeng; Rong, Dongdong; Wang, Xiaoyi; Buckner, Randy L; Li, Kuncheng

    2011-10-19

    Intrinsic functional connectivity detected by functional MRI (fMRI) provides a useful but indirect approach to study the organization of human brain systems. An unresolved question is whether functional connectivity measured by resting-state fMRI reflects anatomical connections. In this study, we used the well-characterized anatomy of cerebrocerebellar circuits to directly test whether intrinsic functional connectivity is associated with an anatomic pathway. Eleven first-episode stroke patients were scanned five times during a period of 6 months, and 11 healthy control subjects were scanned three times within 1 month. In patients with right pontine strokes, the functional connectivity between the right motor cortex and the left cerebellum was selectively reduced. This connectivity pattern was reversed in patients with left pontine strokes. Although factors beyond anatomical connectivity contribute to fMRI measures of functional correlation, these results provide direct evidence that functional connectivity depends on intact connections within a specific polysynaptic pathway.

  6. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis.

    Science.gov (United States)

    Harris, N G; Verley, D R; Gutman, B A; Thompson, P M; Yeh, H J; Brown, J A

    2016-03-01

    predicted by the structural deficits, not only within the primary sensorimotor injury site and pericontused regions, but the normally connected homotopic cortex, as well as subcortical regions, all of which persisted chronically. Especially novel in this study is the unanticipated finding of widespread increases in connection strength that dwarf both the degree and extent of the functional disconnections, and which persist chronically in some sensorimotor and subcortically connected regions. Exploratory global network analysis showed changes in network parameters indicative of possible acutely increased random connectivity and temporary reductions in modularity that were matched by local increases in connectedness and increased efficiency among more weakly connected regions. The global network parameters: shortest path-length, clustering coefficient and modularity that were most affected by trauma also scaled with the severity of injury, so that the corresponding regional measures were correlated to the injury severity most notably at 7 and 14 days and especially within, but not limited to, the contralateral cortex. These changes in functional network parameters are discussed in relation to the known time-course of physiologic and anatomic data that underlie structural and functional reorganization in this experiment model of TBI.

  7. Resting-State Cortico-Thalamic-Striatal Connectivity Predicts Response to Dorsomedial Prefrontal rTMS in Major Depressive Disorder

    Science.gov (United States)

    Salomons, Tim V; Dunlop, Katharine; Kennedy, Sidney H; Flint, Alastair; Geraci, Joseph; Giacobbe, Peter; Downar, Jonathan

    2014-01-01

    Despite its high toll on society, there has been little recent improvement in treatment efficacy for major depressive disorder (MDD). The identification of biological markers of successful treatment response may allow for more personalized and effective treatment. Here we investigate whether resting-state functional connectivity predicted response to treatment with repetitive transcranial magnetic stimulation (rTMS) to dorsomedial prefrontal cortex (dmPFC). Twenty-five individuals with treatment-refractory MDD underwent a 4-week course of dmPFC-rTMS. Before and after treatment, subjects received resting-state functional MRI scans and assessments of depressive symptoms using the Hamilton Depresssion Rating Scale (HAMD17). We found that higher baseline cortico-cortical connectivity (dmPFC-subgenual cingulate and subgenual cingulate to dorsolateral PFC) and lower cortico-thalamic, cortico-striatal, and cortico-limbic connectivity were associated with better treatment outcomes. We also investigated how changes in connectivity over the course of treatment related to improvements in HAMD17 scores. We found that successful treatment was associated with increased dmPFC-thalamic connectivity and decreased subgenual cingulate cortex-caudate connectivity, Our findings provide insight into which individuals might respond to rTMS treatment and the mechanisms through which these treatments work. PMID:24150516

  8. Early math achievement and functional connectivity in the fronto-parietal network.

    Science.gov (United States)

    Emerson, Robert W; Cantlon, Jessica F

    2012-02-15

    In this study we test the hypothesis that the functional connectivity of the frontal and parietal regions that children recruit during a basic numerical task (matching Arabic numerals to arrays of dots) is predictive of their math test scores (TEMA-3; Ginsburg, 2003). Specifically, we tested 4-11-year-old children on a matching task during fMRI to localize a fronto-parietal network that responds more strongly during numerical matching than matching faces, words, or shapes. We then tested the functional connectivity between those regions during an independent task: natural viewing of an educational video that included math topics. Using this novel natural viewing method, we found that the connectivity between frontal and parietal regions during task-independent free-viewing of educational material is correlated with children's basic number matching ability, as well as their scores on the standardized test of mathematical ability (the TEMA). The correlation between children's mathematics scores and fronto-parietal connectivity is math-specific in the sense that it is independent of children's verbal IQ scores. Moreover, a control network, selective for faces, showed no correlation with mathematics performance. Finally, brain regions that correlate with subjects' overall response times in the matching task do not account for our number- and math-related effects. We suggest that the functional intersection of number-related frontal and parietal regions is math-specific. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Privileged Functional Connectivity between the Visual Word Form Area and the Language System.

    Science.gov (United States)

    Stevens, W Dale; Kravitz, Dwight J; Peng, Cynthia S; Tessler, Michael Henry; Martin, Alex

    2017-05-24

    The visual word form area (VWFA) is a region in the left occipitotemporal sulcus of literate individuals that is purportedly specialized for visual word recognition. However, there is considerable controversy about its functional specificity and connectivity, with some arguing that it serves as a domain-general, rather than word-specific, visual processor. The VWFA is a critical region for testing hypotheses about the nature of cortical organization, because it is known to develop only through experience (i.e., reading acquisition), and widespread literacy is too recent to have influenced genetic determinants of brain organization. Using a combination of advanced fMRI analysis techniques, including individual functional localization, multivoxel pattern analysis, and high-resolution resting-state functional connectivity (RSFC) analyses, with data from 33 healthy adult human participants, we demonstrate that (1) the VWFA can discriminate words from nonword letter strings (pseudowords); (2) the VWFA has preferential RSFC with Wernicke's area and other core regions of the language system; and (3) the strength of the RSFC between the VWFA and Wernicke's area predicts performance on a semantic classification task with words but not other categories of visual stimuli. Our results are consistent with the hypothesis that the VWFA is specialized for lexical processing of real words because of its functional connectivity with Wernicke's area.SIGNIFICANCE STATEMENT The visual word form area (VWFA) is critical for determining the nature of category-related organization of the ventral visual system. However, its functional specificity and connectivity are fiercely debated. Recent work concluded that the VWFA is a domain-general, rather than word-specific, visual processor with no preferential functional connectivity with the language system. Using more advanced techniques, our results stand in stark contrast to these earlier findings. We demonstrate that the VWFA is highly

  10. Chemical Function Predictions for Tox21 Chemicals

    Data.gov (United States)

    U.S. Environmental Protection Agency — Random forest chemical function predictions for Tox21 chemicals in personal care products uses and "other" uses. This dataset is associated with the following...

  11. Treatment-related changes in functional connectivity in brain tumor patients : a magnetoencephalography study

    NARCIS (Netherlands)

    Douw, Linda; Baayen, Hans; Bosma, Ingeborg; Klein, Martin; Vandertop, Peter; Heimans, Jan; Stam, Kees; de Munck, Jan; Reijneveld, Jaap

    2008-01-01

    Widespread disturbances in resting state functional connectivity between remote brain areas have been demonstrated in patients with brain tumors. Functional connectivity has been associated with neurocognitive deficits in these patients. Thus far, it is unknown how (surgical) treatment affects funct

  12. Quetiapine modulates functional connectivity in brain aggression networks.

    Science.gov (United States)

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine.

  13. Functional Connectivity Anomalies in Adolescents with Psychotic Symptoms

    Science.gov (United States)

    O’Hanlon, Erik; Kraft, Dominik; Oertel-Knöchel, Viola; Clarke, Mary; Kelleher, Ian; Higgins, Niamh; Coughlan, Helen; Creegan, Daniel; Heneghan, Mark; Power, Emmet; Power, Lucy; Ryan, Jessica; Frodl, Thomas; Cannon, Mary

    2017-01-01

    Background Previous magnetic resonance imaging (MRI) research suggests that, prior to the onset of psychosis, high risk youths already exhibit brain abnormalities similar to those present in patients with schizophrenia. Objectives The goal of the present study was to describe the functional organization of endogenous activation in young adolescents who report auditory verbal hallucinations (AVH) in view of the “distributed network” hypothesis of psychosis. We recruited 20 young people aged 13–16 years who reported AVHs and 20 healthy controls matched for age, gender and handedness from local schools. Methods Each participant underwent a semi-structured clinical interview and a resting state (RS) neuroimaging protocol. We explored functional connectivity (FC) involving three different networks: 1) default mode network (DMN) 2) salience network (SN) and 3) central executive network (CEN). In line with previous findings on the role of the auditory cortex in AVHs as reported by young adolescents, we also investigated FC anomalies involving both the primary and secondary auditory cortices (A1 and A2, respectively). Further, we explored between-group inter-hemispheric FC differences (laterality) for both A1 and A2. Compared to the healthy control group, the AVH group exhibited FC differences in all three networks investigated. Moreover, FC anomalies were found in a neural network including both A1 and A2. The laterality analysis revealed no between-group, inter-hemispheric differences. Conclusions The present study suggests that young adolescents with subclinical psychotic symptoms exhibit functional connectivity anomalies directly and indirectly involving the DMN, SN, CEN and also a neural network including both primary and secondary auditory cortical regions. PMID:28125578

  14. Thalamo-Sensorimotor Functional Connectivity Correlates with World Ranking of Olympic, Elite, and High Performance Athletes

    Directory of Open Access Journals (Sweden)

    Zirui Huang

    2017-01-01

    Full Text Available Brain plasticity studies have shown functional reorganization in participants with outstanding motor expertise. Little is known about neural plasticity associated with exceptionally long motor training or of its predictive value for motor performance excellence. The present study utilised resting-state functional magnetic resonance imaging (rs-fMRI in a unique sample of world-class athletes: Olympic, elite, and internationally ranked swimmers (n=30. Their world ranking ranged from 1st to 250th: each had prepared for participation in the Olympic Games. Combining rs-fMRI graph-theoretical and seed-based functional connectivity analyses, it was discovered that the thalamus has its strongest connections with the sensorimotor network in elite swimmers with the highest world rankings (career best rank: 1–35. Strikingly, thalamo-sensorimotor functional connections were highly correlated with the swimmers’ motor performance excellence, that is, accounting for 41% of the individual variance in best world ranking. Our findings shed light on neural correlates of long-term athletic performance involving thalamo-sensorimotor functional circuits.

  15. CONNECTION OF FUNCTIONAL ABILITIES WITH JUMPING AND THROWING ATHLETIC DISCIPLINES

    Directory of Open Access Journals (Sweden)

    Igor Stanojević

    2014-06-01

    Full Text Available The aim of this study was to determine the connection between functional abilities with results of jumping and throwing athletic disciplines with athletes. The sample was taken from a population of elementary school students from Prokuplje region, 13 and 14 old, included in regular physical education classes. The sample consisted of 200 male athletes involved in the training process in sports clubs at least three times a week in addition to physical education classes. For assessment of functional abilities six functional tests were used: resting heart rate, Cooper test, heart rate in the first minute after Cooper test, heart rate in the second minute after Cooper test, systolic arterial blood pressure, diastolic arterial blood pressure. For assessment of jumping and throwing athletic disciplines four tests were used: long jump, high jump, shot put and javelin. Data analysis was performed with canonical correlation and regression analysis. The results showed a statistically significant correlation between functional abilities with all of tests in jumping and throwing athletic disciplines.

  16. Cortico-cerebellar functional connectivity and sequencing of movements in schizophrenia

    Directory of Open Access Journals (Sweden)

    Kasparek Tomas

    2012-03-01

    Full Text Available Abstract Background Abnormal execution of several movements in a sequence is a frequent finding in schizophrenia. Successful performance of such motor acts requires correct integration of cortico-subcortical processes, particularly those related to cerebellar functions. Abnormal connectivity between cortical and cerebellar regions with resulting cognitive dysmetria has been proposed as the core dysfunction behind many signs and symptoms of schizophrenia. The aim of the present study was to assess if these proposed abnormalities in connectivity are a unifying feature of schizophrenia, or, rather, reflect a specific symptom domain of a heterogeneous disease. We predicted that abnormal functional connectivity between the motor cortex and cerebellum would be linked with abnormal performance of movement sequencing. Methods We examined 24 schizophrenia patients (SCH and 24 age-, sex-, and handedness-matched healthy controls (HC using fMRI during a modified finger-tapping task. The ability to perform movement sequencing was tested using the Neurological Evaluation Scale (NES. The subjects were categorized into two groups, with (SQ+ and without (SQ- movement sequencing abnormalities, according to the NES-SQ score. The effects of diagnosis and movement sequencing abnormalities on the functional connectivity parameters between the motor cortex and cerebellum (MC-CRBL and the supplementary motor cortex and cerebellum (SMA-CRBL activated during the motor task were analyzed. Results We found no effect of diagnosis on the functional connectivity measures. There was, however, a significant effect on the SQ group: SQ + patients showed a lower level of MC-CRBL connectivity than SQ- patients and healthy controls. Moreover, the level of MC-CRBL and SMA-CRBL negatively correlated with the magnitude of NES-SQ abnormalities, but with no other NES domain. Conclusions Abnormal cortico-cerebellar functional connectivity during the execution of a motor task is linked

  17. Estimating Fast Neural Input Using Anatomical and Functional Connectivity.

    Science.gov (United States)

    Eriksson, David

    2016-01-01

    In the last 20 years there has been an increased interest in estimating signals that are sent between neurons and brain areas. During this time many new methods have appeared for measuring those signals. Here we review a wide range of methods for which connected neurons can be identified anatomically, by tracing axons that run between the cells, or functionally, by detecting if the activity of two neurons are correlated with a short lag. The signals that are sent between the neurons are represented by the activity in the neurons that are connected to the target population or by the activity at the corresponding synapses. The different methods not only differ in the accuracy of the signal measurement but they also differ in the type of signal being measured. For example, unselective recording of all neurons in the source population encompasses more indirect pathways to the target population than if one selectively record from the neurons that project to the target population. Infact, this degree of selectivity is similar to that of optogenetic perturbations; one can perturb selectively or unselectively. Thus it becomes possible to match a given signal measurement method with a signal perturbation method, something that allows for an exact input control to any neuronal population.

  18. Brain Oscillations and Functional Connectivity during Overt Language Production.

    Science.gov (United States)

    Ewald, Arne; Aristei, Sabrina; Nolte, Guido; Abdel Rahman, Rasha

    2012-01-01

    In the present study we investigate the communication of different large scale brain sites during an overt language production task with state of the art methods for the estimation of EEG functional connectivity. Participants performed a semantic blocking task in which objects were named in semantically homogeneous blocks of trials consisting of members of a semantic category (e.g., all objects are tools) or in heterogeneous blocks, consisting of unrelated objects. The classic pattern of slower naming times in the homogeneous relative to heterogeneous blocks is assumed to reflect the duration of lexical selection. For the collected data in the homogeneous and heterogeneous conditions the imaginary part of coherency (ImC) was evaluated at different frequencies. The ImC is a measure for detecting the coupling of different brain sites acting on sensor level. Most importantly, the ImC is robust to the artifact of volume conduction. We analyzed the ImC at all pairs of 56 EEG channels across all frequencies. Contrasting the two experimental conditions we found pronounced differences in the theta band at 7 Hz and estimated the most dominant underlying brain sources via a minimum norm inverse solution based on the ImC. As a result of the source localization, we observed connectivity between occipito-temporal and frontal areas, which are well-known to play a major role in lexical-semantic language processes. Our findings demonstrate the feasibility of investigating interactive brain activity during overt language production.

  19. Motivational salience modulates hippocampal repetition suppression and functional connectivity in humans

    Directory of Open Access Journals (Sweden)

    Sarah eZweynert

    2011-11-01

    Full Text Available Repetition suppression (RS is a rapid decrease of stimulus-related neuronal responses upon repeated presentation of a stimulus. Previous studies have demonstrated that negative emotional salience of stimuli enhances RS. It is, however, unclear how motivational salience of stimuli, such as reward-predicting value, influences RS for complex visual stimuli, and which brain regions might show differences in RS for reward-predicting and neutral stimuli. Here we investigated the influence of motivational salience on RS of complex scenes using event-related fMRI. Thirty young healthy volunteers performed a monetary incentive delay (MID task with complex scenes (indoor vs. outdoor serving as neutral or reward-predicting cue pictures. Each cue picture was presented three times. In line with previous findings, reward anticipation was associated with activations in the ventral striatum, midbrain, and orbitofrontal cortex (OFC. Stimulus repetition was associated with pronounced repetition suppression in ventral visual stream areas like the parahippocampal place area (PPA. An interaction of reward anticipation and repetition suppression was specifically observed in the anterior hippocampus, where a response decrease across repetitions was observed for the reward-predicting scenes only. Functional connectivity analysis further revealed specific activity-dependent connectivity increases of the hippocampus and the PPA and OFC. Our results suggest that hippocampal repetition suppression is sensitive to reward-predicting properties of stimuli and might therefore reflect a rapid, adaptive neural response mechanism for motivationally salient information.

  20. Holographic predictions for cosmological 3-point functions

    NARCIS (Netherlands)

    Bzowski, A.; McFadden, P.; Skenderis, K.

    2012-01-01

    We present the holographic predictions for cosmological 3-point correlators, involving both scalar and tensor modes, for a universe which started in a non-geometric holographic phase. Holographic formulae relate the cosmological 3-point functions to stress tensor correlation functions of a holograph

  1. Measuring functional connectivity in stroke: Approaches and considerations.

    Science.gov (United States)

    Siegel, Joshua S; Shulman, Gordon L; Corbetta, Maurizio

    2017-08-01

    Recent research has demonstrated the importance of global changes to the functional organization of brain network following stroke. Resting functional magnetic resonance imaging (R-fMRI) is a non-invasive tool that enables the measurement of functional connectivity (FC) across the entire brain while placing minimal demands on the subject. For these reasons, it is a uniquely appealing tool for studying the distant effects of stroke. However, R-fMRI studies rely on a number of premises that cannot be assumed without careful validation in the context of stroke. Here, we describe strategies to identify and mitigate confounds specific to R-fMRI research in cerebrovascular disease. Five main topics are discussed: (a) achieving adequate co-registration of lesioned brains, (b) identifying and removing hemodynamic lags in resting BOLD, (c) identifying other vascular disruptions that affect the resting BOLD signal, (d) selecting an appropriate control cohort, and (e) acquiring sufficient fMRI data to reliably identify FC changes. For each topic, we provide guidelines for steps to improve the interpretability and reproducibility of FC-stroke research. We include a table of confounds and approaches to identify and mitigate each. Our recommendations extend to any research using R-fMRI to study diseases that might alter cerebrovascular flow and dynamics or brain anatomy.

  2. Graph theoretical analysis of EEG functional connectivity during music perception.

    Science.gov (United States)

    Wu, Junjie; Zhang, Junsong; Liu, Chu; Liu, Dongwei; Ding, Xiaojun; Zhou, Changle

    2012-11-05

    The present study evaluated the effect of music on large-scale structure of functional brain networks using graph theoretical concepts. While most studies on music perception used Western music as an acoustic stimulus, Guqin music, representative of Eastern music, was selected for this experiment to increase our knowledge of music perception. Electroencephalography (EEG) was recorded from non-musician volunteers in three conditions: Guqin music, noise and silence backgrounds. Phase coherence was calculated in the alpha band and between all pairs of EEG channels to construct correlation matrices. Each resulting matrix was converted into a weighted graph using a threshold, and two network measures: the clustering coefficient and characteristic path length were calculated. Music perception was found to display a higher level mean phase coherence. Over the whole range of thresholds, the clustering coefficient was larger while listening to music, whereas the path length was smaller. Networks in music background still had a shorter characteristic path length even after the correction for differences in mean synchronization level among background conditions. This topological change indicated a more optimal structure under music perception. Thus, prominent small-world properties are confirmed in functional brain networks. Furthermore, music perception shows an increase of functional connectivity and an enhancement of small-world network organizations.

  3. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain

    Directory of Open Access Journals (Sweden)

    Becky Wong

    2016-01-01

    Full Text Available Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1 whether the language neural network is different for first (dominant versus second (nondominant language processing; (2 the effects of bilinguals’ executive functioning on the structure and function of the “universal” language neural network; (3 the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4 the effects of age of acquisition and proficiency of the user’s second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  4. Neurolinguistics: Structure, Function, and Connectivity in the Bilingual Brain.

    Science.gov (United States)

    Wong, Becky; Yin, Bin; O'Brien, Beth

    2016-01-01

    Advances in neuroimaging techniques and analytic methods have led to a proliferation of studies investigating the impact of bilingualism on the cognitive and brain systems in humans. Lately, these findings have attracted much interest and debate in the field, leading to a number of recent commentaries and reviews. Here, we contribute to the ongoing discussion by compiling and interpreting the plethora of findings that relate to the structural, functional, and connective changes in the brain that ensue from bilingualism. In doing so, we integrate theoretical models and empirical findings from linguistics, cognitive/developmental psychology, and neuroscience to examine the following issues: (1) whether the language neural network is different for first (dominant) versus second (nondominant) language processing; (2) the effects of bilinguals' executive functioning on the structure and function of the "universal" language neural network; (3) the differential effects of bilingualism on phonological, lexical-semantic, and syntactic aspects of language processing on the brain; and (4) the effects of age of acquisition and proficiency of the user's second language in the bilingual brain, and how these have implications for future research in neurolinguistics.

  5. Contributions of local speech encoding and functional connectivity to audio-visual speech perception

    Science.gov (United States)

    Giordano, Bruno L; Ince, Robin A A; Gross, Joachim; Schyns, Philippe G; Panzeri, Stefano; Kayser, Christoph

    2017-01-01

    Seeing a speaker’s face enhances speech intelligibility in adverse environments. We investigated the underlying network mechanisms by quantifying local speech representations and directed connectivity in MEG data obtained while human participants listened to speech of varying acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR strong entrainment emerged in premotor and superior frontal cortex. These changes in local encoding were accompanied by changes in directed connectivity along the ventral stream and the auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face was not predicted by changes in local encoding but rather by enhanced functional connectivity between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal interactions in visual speech representations and suggest that functional connectivity along the ventral pathway facilitates speech comprehension in multisensory environments. DOI: http://dx.doi.org/10.7554/eLife.24763.001 PMID:28590903

  6. A depression network of functionally connected regions discovered via multi-attribute canonical correlation graphs.

    Science.gov (United States)

    Kang, Jian; Bowman, F DuBois; Mayberg, Helen; Liu, Han

    2016-11-01

    To establish brain network properties associated with major depressive disorder (MDD) using resting-state functional magnetic resonance imaging (Rs-fMRI) data, we develop a multi-attribute graph model to construct a region-level functional connectivity network that uses all voxel level information. For each region pair, we define the strength of the connectivity as the kernel canonical correlation coefficient between voxels in the two regions; and we develop a permutation test to assess the statistical significance. We also construct a network based classifier for making predictions on the risk of MDD. We apply our method to Rs-fMRI data from 20 MDD patients and 20 healthy control subjects in the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study. Using this method, MDD patients can be distinguished from healthy control subjects based on significant differences in the strength of regional connectivity. We also demonstrate the performance of the proposed method using simulationstudies.

  7. Functional connectivity in task-negative network of the Deaf: effects of sign language experience

    Directory of Open Access Journals (Sweden)

    Evie Malaia

    2014-06-01

    Full Text Available Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia. We report the first investigation of the task-negative network in Deaf signers and its functional connectivity—the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG, but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal.

  8. Functional Connectivity Studies Of Patients With Auditory Verbal Hallucinations

    Directory of Open Access Journals (Sweden)

    Ralph E Hoffman

    2012-01-01

    Full Text Available Functional connectivity (FC studies of brain mechanisms leading to auditory verbal hallucinations (AVHs utilizing functional magnetic resonance imaging (fMRI data are reviewed. Initial FC studies utilized fMRI data collected during performance of various tasks, which suggested frontotemporal disconnection and/or source-monitoring.disturbances. Later FC studies have utilized resting (no-task fMRI data. These studies have produced a mixed picture of disconnection and hyperconnectivity involving different pathways associated with AVHs. Results of our most recent FC study of AVHs are reviewed in detail. This study suggests that the core mechanism producing AVHs involves not a single pathway, but a more complex functional loop. Components of this loop include Wernicke’s area and its right homologue, the left inferior frontal cortex, and the putamen. It is noteworthy that the putamen appears to play a critical role in the generation of spontaneous language, and in determining whether auditory stimuli are registered consciously as percepts. Excessive functional coordination linking this region with the Wernicke’s seed region in patients with schizophrenia could therefore generate an overabundance of potentially conscious language representations. In our model, intact FC in the other two legs of corticostriatal loop (Wernicke’s with left IFG, and left IFG with putamen appeared to allow this disturbance (common to schizophrenia overall to be expressed as a conscious hallucination of speech. Recommendations for future studies are discussed, including inclusion of multiple methodologies applied to the same subjects in order to compare and contrast different mechanistic hypotheses, utilizing EEG to better parse time-course of neural synchronization leading to AVHs, and ascertaining experiential subtypes of AVHs that may reflect distinct mechanisms.

  9. The Association between Resting Functional Connectivity and Visual Creativity.

    Science.gov (United States)

    Li, Wenfu; Yang, Junyi; Zhang, Qinglin; Li, Gongying; Qiu, Jiang

    2016-05-03

    Resting-state functional connectivity (RSFC), the temporal correlation of intrinsic activation between different brain regions, has become one of the most fascinating field in the functional imaging studies. To better understand the association between RSFC and individual creativity, we used RSFC and the figure Torrance Tests of Creative Thinking (TTCT-F) to investigate the relationship between creativity measured by TTCT and RSFC within two different brain networks, default mode network and the cognitive control network, in a large healthy sample (304). We took the medial prefrontal cortex (MPFC) and the bilateral dorsolateral prefrontal cortices (DLPFC) to be the seed regions and investigated the association across subjects between the score of TTCT-F and the strength of RSFC between these seed regions and other voxels in the whole brain. Results revealed that the strength of RSFC with the MPFC was significantly and negatively correlated with the score of TTCT-F in the precuneus. Meanwhile, we also found that the strength of RSFC with the left DLPFC was significantly and positively correlated with the score of TTCT-F in the right DLPFC. It suggests that the decreased RSFC within DMN and the increased RSFC within CCN presents a potential interaction mechanism between different region for higher creativity.

  10. The association between resting functional connectivity and creativity.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta

    2012-12-01

    The analysis of functional connectivity at rest (rFC) enables us to know how brain regions within and between networks interact. In this study, we used resting-state functional magnetic resonance imaging and a creativity test of divergent thinking (DT) to investigate the relationship between creativity measured by DT and rFC. We took the medial prefrontal cortex (mPFC) to be the seed region and investigated correlations across subjects between the score of the DT test and the strength of rFC between the mPFC and other brain regions. Our results showed that the strength of rFC with the mPFC significantly and positively correlated with creativity as measured by the DT test in the posterior cingulate cortex (PCC). These results showed that higher creativity measured by DT is associated with rFC between the mPFC and the PCC, the key nodes of the default mode network (DMN). Increased rFC between these regions is completely opposite from that is generally expected from the association between higher creativity and reduced deactivation in DMN during an externally directed attention-demanding task shown in our previous study but is similar to the pattern seen in relatives of schizophrenia. These findings are comparable to the previously reported psychological associations between schizotypy and creativity.

  11. Year 2 Report: Protein Function Prediction Platform

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C E

    2012-04-27

    Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fully automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.

  12. Aberrant resting-state corticostriatal functional connectivity in cirrhotic patients with hyperintense globus pallidus on T1-weighted MR imaging.

    Directory of Open Access Journals (Sweden)

    Xi-Qi Zhu

    Full Text Available Neurobiological and neuroimaging studies have emphasized the structural and functional alterations in the striatum of cirrhotic patients, but alterations in the functional connections between the striatum and other brain regions have not yet been explored. Of note, manganese accumulation in the nervous system, frequently reflected by hyperintensity at the bilateral globus pallidus (GP on T1-weighted imaging, has been considered a factor affecting the striatal and cortical functions in hepatic decompensation. We employed resting-state functional magnetic resonance imaging to analyze the temporal correlation between the striatum and the remaining brain regions using seed-based correlation analyses. The two-sample t-test was conducted to detect the differences in corticostriatal connectivity between 44 cirrhotic patients with hyperintensity at the bilateral GP and 20 healthy controls. Decreased connectivity of the caudate was detected in the anterior/middle cingulate gyrus, and increased connectivity of the caudate was found in the left motor cortex. A reduction in functional connectivity was found between the putamen and several regions, including the anterior cingulate gyrus, right insular lobe, inferior frontal gyrus, left parahippocampal gyrus, and anterior lobe of the right cerebellum; increased connectivity was detected between the putamen and right middle temporal gyrus. There were significant correlations between the corticostriatal connectivity and neuropsychological performances in the patient group, but not between the striatal connectivity and GP signal intensity. These alterations in the corticostriatal functional connectivity suggested the abnormalities in the intrinsic brain functional organiztion among the cirrhotic patients with manganese deposition, and may be associated with development of metabolic encephalopathy. The manganese deposition in nervous system, however, can not be an independent factor predicting the resting

  13. Individual Variability in Sensorimotor Network Functional Connectivity Correlates With the Rate of Early Visuomotor Adaptation

    Science.gov (United States)

    Cassady, K.; Ruitenberg, M.; Koppelmans, V.; DeDios, Y.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Riascos, R.; Kofman, I.; Bloomberg, J.; Mulavara, A.; Seidler, R.

    2016-01-01

    Sensorimotor adaptation is a type of procedural motor learning that enables individuals to preserve accurate movements in the presence of external or internal perturbations. Adaptation learning can be divided into an early, more cognitively demanding stage, and a later, more automatic stage. In recent years, several investigations have identified significant associations between sensorimotor adaptation and brain structure and function. However, the question of whether individual variability in functional connectivity strength is predictive of sensorimotor adaptation performance has been largely unaddressed. In the present study, we investigate whether such variability in early sensorimotor adaptation is associated with individual differences in resting-state functional connectivity. We used resting state functional magnetic resonance imaging (rs-fMRI) to estimate functional connectivity strength using hypothesis-driven (seed-to-voxel) and hypothesis-free (voxel-to-voxel) approaches. For the hypothesis-driven analysis, we selected several regions of interest (ROIs) from sensorimotor and default mode networks of the brain. We then correlated these connectivity measures with the rate of early learning during a visuomotor adaptation task in 16 healthy participants. For this task, participants lay supine in the MRI scanner and moved an MRI-compatible dual axis joystick with their right hand to hit targets presented on a screen. Each movement was initiated from the central position on the display screen. Participants were instructed to move the cursor to the target as quickly as possible by moving the joystick, and to hold the cursor within the target until it disappeared. They were then instructed to release the joystick handle after target disappearance, allowing the cursor to re-center for the next trial. Performance was assessed by measuring direction error (DE), defined as the angle between the line from the start to the target position, and the line from the start

  14. Response predictions using the observed autocorrelation function

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; H. Brodtkorb, Astrid; Jensen, Jørgen Juncher

    2017-01-01

    This article studies a procedure that facilitates short-time, deterministic predictions of the wave-induced motion of a marine vessel, where it is understood that the future motion of the vessel is calculated ahead of time. Such predictions are valuable to assist in the execution of many marine......-induced response in study. Thus, predicted (future) values ahead of time for a given time history recording are computed through a mathematical combination of the sample autocorrelation function and previous measurements recorded just prior to the moment of action. Importantly, the procedure does not need input...

  15. Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines

    Science.gov (United States)

    Zhang, Yimeng; Li, Xiong; Samonds, Jason M.

    2015-01-01

    Bayesian theory has provided a compelling conceptualization for perceptual inference in the brain. Central to Bayesian inference is the notion of statistical priors. To understand the neural mechanisms of Bayesian inference, we need to understand the neural representation of statistical regularities in the natural environment. In this paper, we investigated empirically how statistical regularities in natural 3D scenes are represented in the functional connectivity of disparity-tuned neurons in the primary visual cortex of primates. We applied a Boltzmann machine model to learn from 3D natural scenes, and found that the units in the model exhibited cooperative and competitive interactions, forming a “disparity association field”, analogous to the contour association field. The cooperative and competitive interactions in the disparity association field are consistent with constraints of computational models for stereo matching. In addition, we simulated neurophysiological experiments on the model, and found the results to be consistent with neurophysiological data in terms of the functional connectivity measurements between disparity-tuned neurons in the macaque primary visual cortex. These findings demonstrate that there is a relationship between the functional connectivity observed in the visual cortex and the statistics of natural scenes. They also suggest that the Boltzmann machine can be a viable model for conceptualizing computations in the visual cortex and, as such, can be used to predict neural circuits in the visual cortex from natural scene statistics. PMID:26712581

  16. Automatic processing of unattended object features by functional connectivity

    Directory of Open Access Journals (Sweden)

    Katja Martina Mayer

    2013-05-01

    Full Text Available Observers can selectively attend to object features that are relevant for a task. However, unattended task-irrelevant features may still be processed and possibly integrated with the attended features. This study investigated the neural mechanisms for processing both task-relevant (attended and task-irrelevant (unattended object features. The Garner paradigm was adapted for functional magnetic resonance imaging (fMRI to test whether specific brain areas process the conjunction of features or whether multiple interacting areas are involved in this form of feature integration. Observers attended to shape, colour, or non-rigid motion of novel objects while unattended features changed from trial to trial (change blocks or remained constant (no-change blocks during a given block. This block manipulation allowed us to measure the extent to which unattended features affected neural responses which would reflect the extent to which multiple object features are automatically processed. We did not find Garner interference at the behavioural level. However, we designed the experiment to equate performance across block types so that any fMRI results could not be due solely to differences in task difficulty between change and no-change blocks. Attention to specific features localised several areas known to be involved in object processing. No area showed larger responses on change blocks compared to no-change blocks. However, psychophysiological interaction analyses revealed that several functionally-localised areas showed significant positive interactions with areas in occipito-temporal and frontal areas that depended on block type. Overall, these findings suggest that both regional responses and functional connectivity are crucial for processing multi-featured objects.

  17. Sivers function: SIDIS data, fits and predictions

    CERN Document Server

    Anselmino, M; D'Alesio, U; Kotzinian, A; Murgia, F; Prokudin, A

    2005-01-01

    The most recent data on the weighted transverse single spin asymmetry A_{UT}^{\\sin(\\phi_h-\\phi_S)} from HERMES and COMPASS collaborations are analysed within LO parton model; all transverse motions are taken into account. Extraction of the Sivers function for u and d quarks is performed. Based on the extracted Sivers functions, predictions for A_{UT}^{\\sin(\\phi_h-\\phi_S)} asymmetries at JLab are given; suggestions for further measurements at COMPASS, with a transversely polarized hydrogen target and selecting favourable kinematical ranges, are discussed. Predictions are also presented for Single Spin Asymmetries (SSA) in Drell-Yan processes at RHIC and GSI.

  18. 3D atlas of brain connections and functional circuits

    Science.gov (United States)

    Pan, Jinghong; Nowinski, Wieslaw L.; Fock, Loe K.; Dow, Douglas E.; Chuan, Teh H.

    1997-05-01

    This work aims at the construction of an extendable brain atlas system which contains: (i) 3D models of cortical and subcortical structures along with their connections; (ii) visualization and exploration tools; and (iii) structures and connections editors. A 3D version of the Talairach- Tournoux brain atlas along with 3D Brodmann's areas are developed, co-registered, and placed in the Talairach stereotactic space. The initial built-in connections are thalamocortical ones. The structures and connections editors are provided to allow the user to add and modify cerebral structures and connections. Visualization and explorations tools are developed with four ways of exploring the brain connections model: composition, interrogation, navigation and diagnostic queries. The atlas is designed as an open system which can be extended independently in other centers according to their needs and discoveries.

  19. Posterior cingulated cortex functional connectivity in deficit schizophrenia: a resting state functional magnetic resonance imaging study

    Institute of Scientific and Technical Information of China (English)

    唐小伟

    2014-01-01

    Objective To explore the discrepancies of the network of resting brain functional connectivity related to posterior cingulated cortex(PCC)between deficit schizophrenia patients and normal control.Methods Thirty male patients of deficit schizophrenia,nondeficit schizophrenia and 30 healthy controls were enrolled,and the age,education level and sex were matched between three

  20. A network of amygdala connections predict individual differences in trait anxiety.

    Science.gov (United States)

    Greening, Steven G; Mitchell, Derek G V

    2015-12-01

    In this study we demonstrate that the pattern of an amygdala-centric network contributes to individual differences in trait anxiety. Individual differences in trait anxiety were predicted using maximum likelihood estimates of amygdala structural connectivity to multiple brain targets derived from diffusion-tensor imaging (DTI) and probabilistic tractography on 72 participants. The prediction was performed using a stratified sixfold cross validation procedure using a regularized least square regression model. The analysis revealed a reliable network of regions predicting individual differences in trait anxiety. Higher trait anxiety was associated with stronger connections between the amygdala and dorsal anterior cingulate cortex, an area implicated in the generation of emotional reactions, and inferior temporal gyrus and paracentral lobule, areas associated with perceptual and sensory processing. In contrast, higher trait anxiety was associated with weaker connections between amygdala and regions implicated in extinction learning such as medial orbitofrontal cortex, and memory encoding and environmental context recognition, including posterior cingulate cortex and parahippocampal gyrus. Thus, trait anxiety is not only associated with reduced amygdala connectivity with prefrontal areas associated with emotion modulation, but also enhanced connectivity with sensory areas. This work provides novel anatomical insight into potential mechanisms behind information processing biases observed in disorders of emotion.

  1. PREDICTION OF YIELD FUNCTIONS ON BCC POLYCRYSTALS

    Institute of Scientific and Technical Information of China (English)

    Huang Mojia; Fu Mingfu; Zheng Chaomei

    2006-01-01

    By the nonlinear optimization theory, we predict the yield function of single BCC crystals in Hill's criterion form. Then we give a formula on the macroscopic yield function of a BCC polycrystal Ω under Sachs' model, where the volume average of the yield functions of all BCC crystallites in Ω is taken as the macroscopic yield function of the BCC polycrystal. In constructing the formula, we try to find the relationship among the macroscopic yield function, the orientation distribution function (ODF), and the single BCC crystal's plasticity. An expression for the yield stress of a uniaxial tensile problem is derived under Taylor's model in order to compare the expression with that of the macroscopic yield function.

  2. Resting state functional MRI in Parkinson's disease: the impact of deep brain stimulation on 'effective' connectivity.

    Science.gov (United States)

    Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom

    2014-04-01

    Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.

  3. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  4. A Quantitative Structure Property Relationship for Prediction of Flash Point of Alkanes Using Molecular Connectivity Indices

    Institute of Scientific and Technical Information of China (English)

    Morteza Atabati; Reza Emamalizadeh

    2013-01-01

    Many structure-property/activity studies use graph theoretical indices,which are based on the topological properties of a molecule viewed as a graph.Since topological indices can be derived directly from the molecular structure without any experimental effort,they provide a simple and straightforward method for property prediction.In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (x),modified molecular connectivity indices (mx(1)h) and valance molecular connectivity indices (mxv),with mxv calculated using the hydrogen perturbation.A stepwise Multiple Linear Regression (MLR) method was used to select the best indices.The predicted flash points are in good agreement with the experimental data,with the average absolute deviation 4.3 K.

  5. Brain oscillations and functional connectivity during overt language production

    Directory of Open Access Journals (Sweden)

    Arne eEwald

    2012-06-01

    Full Text Available In the present study we investigate the communication of different large scale brain sites during an overt language production task with state of the art methods for the estimation of EEG functional connectivity. Participants performed a semantic blocking task in which objects were named in semantically homogeneous blocks of trials consisting of members of a semantic category (e.g., all objects are tools or in heterogeneous blocks, consisting of unrelated objects. The classic pattern of slower naming times in the homogeneous relative to heterogeneous blocks is assumed to reflect the duration of lexical selection. For the collected data in the homogeneous and heterogeneous conditions the imaginary part of coherency (ImC was evaluated at different frequencies. The ImC is a measure for detecting the coupling of different brain sites acting on sensor level. Most importantly, a non-vanishing ImC cannot be explained by mixtures of independent sources and must therefore reflect true interactions. After performing a grand average over 24 subjects we analyzed the ImC at all pairs of 56 EEG channels across all frequencies. Contrasting the two experimental conditions we found differences in interaction between left temporal and frontal areas and frontal and occipital areas in the theta band at 7Hz, and also smaller differences in the delta and beta band. These areas are well-known to play a major role in lexical-semantic language processes. Our findings demonstrate the feasibility of investigating interactive brain activity during overt language production.

  6. Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment.

    Science.gov (United States)

    Pineda-Pardo, José Angel; Bruña, Ricardo; Woolrich, Mark; Marcos, Alberto; Nobre, Anna C; Maestú, Fernando; Vidaurre, Diego

    2014-11-01

    Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corresponding functional connections. We applied beamformer source reconstruction to the resting state MEG recordings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was obtained for each subject, and time series were assigned to each of the regions. The fiber densities between the regions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introducing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups.

  7. Dorsal Striatal-Midbrain Connectivity in Humans Predicts How Reinforcements Are Used to Guide Decisions

    Science.gov (United States)

    Kahnt, Thorsten; Park, Soyoung Q.; Cohen, Michael X.; Beck, Anne; Heinz, Andreas; Wrase, Jana

    2009-01-01

    It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to…

  8. Impaired default network functional connectivity in autosomal dominant Alzheimer disease

    Science.gov (United States)

    Chhatwal, Jasmeer P.; Schultz, Aaron P.; Johnson, Keith; Benzinger, Tammie L.S.; Jack, Clifford; Ances, Beau M.; Sullivan, Caroline A.; Salloway, Stephen P.; Ringman, John M.; Koeppe, Robert A.; Marcus, Daniel S.; Thompson, Paul; Saykin, Andrew J.; Correia, Stephen; Schofield, Peter R.; Rowe, Christopher C.; Fox, Nick C.; Brickman, Adam M.; Mayeux, Richard; McDade, Eric; Bateman, Randall; Fagan, Anne M.; Goate, Allison M.; Xiong, Chengjie; Buckles, Virginia D.; Morris, John C.

    2013-01-01

    Objective: To investigate default mode network (DMN) functional connectivity MRI (fcMRI) in a large cross-sectional cohort of subjects from families harboring pathogenic presenilin-1 (PSEN1), presenilin-2 (PSEN2), and amyloid precursor protein (APP) mutations participating in the Dominantly Inherited Alzheimer Network. Methods: Eighty-three mutation carriers and 37 asymptomatic noncarriers from the same families underwent fMRI during resting state at 8 centers in the United States, United Kingdom, and Australia. Using group-independent component analysis, fcMRI was compared using mutation status and Clinical Dementia Rating to stratify groups, and related to each participant's estimated years from expected symptom onset (eYO). Results: We observed significantly decreased DMN fcMRI in mutation carriers with increasing Clinical Dementia Rating, most evident in the precuneus/posterior cingulate and parietal cortices (p < 0.001). Comparison of asymptomatic mutation carriers with noncarriers demonstrated decreased fcMRI in the precuneus/posterior cingulate (p = 0.014) and right parietal cortex (p = 0.0016). We observed a significant interaction between mutation carrier status and eYO, with decreases in DMN fcMRI observed as mutation carriers approached and surpassed their eYO. Conclusion: Functional disruption of the DMN occurs early in the course of autosomal dominant Alzheimer disease, beginning before clinically evident symptoms, and worsening with increased impairment. These findings suggest that DMN fcMRI may prove useful as a biomarker across a wide spectrum of disease, and support the feasibility of DMN fcMRI as a secondary endpoint in upcoming multicenter clinical trials in Alzheimer disease. PMID:23884042

  9. Sex and Age Effects of Functional Connectivity in Early Adulthood.

    Science.gov (United States)

    Zhang, Chao; Cahill, Nathan D; Arbabshirani, Mohammad R; White, Tonya; Baum, Stefi A; Michael, Andrew M

    2016-11-01

    Functional connectivity (FC) in resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to find coactivating regions in the human brain. Despite its widespread use, the effects of sex and age on resting FC are not well characterized, especially during early adulthood. Here we apply regression and graph theoretical analyses to explore the effects of sex and age on FC between the 116 AAL atlas parcellations (a total of 6670 FC measures). rs-fMRI data of 494 healthy subjects (203 males and 291 females; age range: 22-36 years) from the Human Connectome Project were analyzed. We report the following findings. (1) Males exhibited greater FC than females in 1352 FC measures (1025 survived Bonferroni correction; [Formula: see text]). In 641 FC measures, females exhibited greater FC than males but none survived Bonferroni correction. Significant FC differences were mainly present in frontal, parietal, and temporal lobes. Although the average FC values for males and females were significantly different, FC values of males and females exhibited large overlap. (2) Age effects were present only in 29 FC measures and all significant age effects showed higher FC in younger subjects. Age and sex differences of FC remained significant after controlling for cognitive measures. (3) Although sex [Formula: see text] age interaction did not survive multiple comparison correction, FC in females exhibited a faster cross-sectional decline with age. (4) Male brains were more locally clustered in all lobes but the cerebellum; female brains had a higher clustering coefficient at the whole-brain level. Our results indicate that although both male and female brains show small-world network characteristics, male brains were more segregated and female brains were more integrated. Findings of this study further our understanding of FC in early adulthood and provide evidence to support that age and sex should be controlled for in FC studies of young adults.

  10. Model-free functional MRI analysis for detecting low-frequency functional connectivity in the human brain

    Science.gov (United States)

    Wismueller, Axel; Lange, Oliver; Auer, Dorothee; Leinsinger, Gerda

    2010-03-01

    Slowly varying temporally correlated activity fluctuations between functionally related brain areas have been identified by functional magnetic resonance imaging (fMRI) research in recent years. These low-frequency oscillations of less than 0.08 Hz appear to play a major role in various dynamic functional brain networks, such as the so-called 'default mode' network. They also have been observed as a property of symmetric cortices, and they are known to be present in the motor cortex among others. These low-frequency data are difficult to detect and quantify in fMRI. Traditionally, user-based regions of interests (ROI) or 'seed clusters' have been the primary analysis method. In this paper, we propose unsupervised clustering algorithms based on various distance measures to detect functional connectivity in resting state fMRI. The achieved results are evaluated quantitatively for different distance measures. The Euclidian metric implemented by standard unsupervised clustering approaches is compared with a non-metric topographic mapping of proximities based on the the mutual prediction error between pixel-specific signal dynamics time-series. It is shown that functional connectivity in the motor cortex of the human brain can be detected based on such model-free analysis methods for resting state fMRI.

  11. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia.

    Science.gov (United States)

    Mandelli, Maria Luisa; Vilaplana, Eduard; Brown, Jesse A; Hubbard, H Isabel; Binney, Richard J; Attygalle, Suneth; Santos-Santos, Miguel A; Miller, Zachary A; Pakvasa, Mikhail; Henry, Maya L; Rosen, Howard J; Henry, Roland G; Rabinovici, Gil D; Miller, Bruce L; Seeley, William W; Gorno-Tempini, Maria Luisa

    2016-10-01

    Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with

  12. Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI

    Science.gov (United States)

    Schaefer, Alexander; Margulies, Daniel S.; Lohmann, Gabriele; Gorgolewski, Krzysztof J.; Smallwood, Jonathan; Kiebel, Stefan J.; Villringer, Arno

    2014-01-01

    Network studies of large-scale brain connectivity have demonstrated that highly connected areas, or “hubs,” are a key feature of human functional and structural brain organization. We use resting-state functional MRI data and connectivity clustering to identify multi-network hubs and show that while hubs can belong to multiple networks their degree of integration into these different networks varies dynamically over time. The extent of the network variation was related to the connectedness of the hub. In addition, we found that these network dynamics were inversely related to positive self-generated thoughts reported by individuals and were further decreased with older age. Moreover, the left caudate varied its degree of participation between a default mode subnetwork and a limbic network. This variation was predictive of individual differences in the reports of past-related thoughts. These results support an association between ongoing thought processes and network dynamics and offer a new approach to investigate the brain dynamics underlying mental experience. PMID:24860458

  13. Dynamic modulation of rTMS on functional connectivity and functional network connectivity to children with cerebral palsy: a case report.

    Science.gov (United States)

    Guo, Zhiwei; Xing, Guoqiang; He, Bin; Chen, Huaping; Ou, Jun; McClure, Morgan A; Liu, Hua; Wang, Yunfeng; Mu, Qiwen

    2016-03-02

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive treatment tool for the recovery of cerebral palsy (CP). This report describes the modulation effect of rTMS to functional connectivity, functional network connectivity, motor, and cognitive ability following treatment in a child with mild ataxia CP. After receiving 8 months of 0.5 Hz rTMS treatment over the right dorsolateral prefrontal cortex, the child showed a gradual improvement in motor and cognitive-related functional connectivity and functional network connectivity following treatment as well as improved motor, cognitive functions. These pilot results provide the first evidence of the efficiency of 0.5 Hz of rTMS on a child with CP. Further large sample studies are needed to verify and expand the present findings.

  14. Impairments of thalamic resting-state functional connectivity in patients with chronic tinnitus

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Chen, Yu-Chen [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Feng, Xu [Department of Otolaryngology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Yang, Ming; Liu, Bin; Qian, Cheng [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China); Wang, Jian [Department of Physiology, Southeast University, Nanjing (China); School of Human Communication Disorders, Dalhousie University, Halifax, NS (Canada); Salvi, Richard [Center for Hearing and Deafness, University at Buffalo, State University of New York, Buffalo, NY (United States); Teng, Gao-Jun, E-mail: gjteng@vip.sina.com [Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing (China)

    2015-07-15

    Highlights: • Tinnitus patients have aberrant thalamic connectivity to many brain regions. • Decreased thalamic connectivity is linked with tinnitus characteristics. • Thalamocortical connectivity disturbances can reflect tinnitus-related networks. - Abstract: Purpose: The phantom sound of tinnitus is believed to arise from abnormal functional coupling between the thalamus and cerebral cortex. To explore this hypothesis, we used resting-state functional magnetic resonance imaging (fMRI) to compare the degree of thalamocortical functional connectivity in chronic tinnitus patients and controls. Materials and methods: Resting-state fMRI scans were obtained from 31 chronic tinnitus patients and 33 well-matched healthy controls. Thalamocortical functional connectivity was characterized using a seed-based whole-brain correlation method. The resulting thalamic functional connectivity measures were correlated with other clinical data. Results: We found decreased functional connectivity between the seed region in left thalamus and right middle temporal gyrus (MTG), right middle orbitofrontal cortex, left middle frontal gyrus, right precentral gyrus, and bilateral calcarine cortex. Decreased functional connectivity was detected between the seed in the right thalamus and the left superior temporal gyrus (STG), left amygdala, right superior frontal gyrus, left precentral gyrus, and left middle occipital gyrus. Tinnitus distress correlated negatively with thalamic functional connectivity in right MTG; tinnitus duration correlated negatively with thalamic functional connectivity in left STG. Increased functional connectivity between the bilateral thalamus and a set of regions were also observed. Conclusions: Chronic tinnitus patients have disrupted thalamocortical functional connectivity to selected brain regions which is associated with specific tinnitus characteristics. Resting-state thalamic functional connectivity disturbances may play an important role in

  15. The effects of hippocampal lesions on MRI measures of structural and functional connectivity.

    Science.gov (United States)

    Henson, Richard N; Greve, Andrea; Cooper, Elisa; Gregori, Mariella; Simons, Jon S; Geerligs, Linda; Erzinçlioğlu, Sharon; Kapur, Narinder; Browne, Georgina

    2016-11-01

    Focal lesions can affect connectivity between distal brain regions (connectional diaschisis) and impact the graph-theoretic properties of major brain networks (connectomic diaschisis). Given its unique anatomy and diverse range of functions, the hippocampus has been claimed to be a critical "hub" in brain networks. We investigated the effects of hippocampal lesions on structural and functional connectivity in six patients with amnesia, using a range of magnetic resonance imaging (MRI) analyses. Neuropsychological assessment revealed marked episodic memory impairment and generally intact performance across other cognitive domains. The hippocampus was the only brain structure exhibiting reduced grey-matter volume that was consistent across patients, and the fornix was the only major white-matter tract to show altered structural connectivity according to both diffusion metrics. Nonetheless, functional MRI revealed both increases and decreases in functional connectivity. Analysis at the level of regions within the default-mode network revealed reduced functional connectivity, including between nonhippocampal regions (connectional diaschisis). Analysis at the level of functional networks revealed reduced connectivity between thalamic and precuneus networks, but increased connectivity between the default-mode network and frontal executive network. The overall functional connectome showed evidence of increased functional segregation in patients (connectomic diaschisis). Together, these results point to dynamic reorganization following hippocampal lesions, with both decreased and increased functional connectivity involving limbic-diencephalic structures and larger-scale networks. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  16. Functional connectivity of child and adolescent attention deficit hyperactivity disorder patients: correlation with IQ

    Directory of Open Access Journals (Sweden)

    Bo-yong Park

    2016-11-01

    Full Text Available Attention deficit hyperactivity disorder (ADHD is a pervasive neuropsychological disorder that affects both children and adolescents. Child and adolescent ADHD patients exhibit different behavioral symptoms such as hyperactivity and impulsivity, but not much connectivity research exists to help explain these differences. We analyzed openly accessible resting-state functional magnetic resonance imaging (rs-fMRI data on 112 patients (28 child ADHD, 28 adolescent ADHD, 28 child normal control, and 28 adolescent normal control. We used group independent component analysis (ICA and weighted degree values to identify interaction effects of age (child and adolescent and symptom (ADHD and NC in brain networks. The frontoparietal network showed significant interaction effects (p = 0.0068. The frontoparietal network is known to be related to hyperactive and impulsive behaviors. Intelligence quotient (IQ is an important factor in ADHD, and we predicted IQ scores using the results of our connectivity analysis. IQ was predicted using degree centrality values of networks with significant interaction effects of age and symptom. Actual and predicted IQ scores demonstrated significant correlation values, with an error of about 10%. Our study might provide imaging biomarkers for future ADHD and intelligence studies.

  17. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; Bloomberg, J.; Mulavara, A; Seidler, R.

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural

  18. Self-reported sleep correlates with prefrontal-amygdala functional connectivity and emotional functioning.

    Science.gov (United States)

    Killgore, William D S

    2013-11-01

    Prior research suggests that sleep deprivation is associated with declines in some aspects of emotional intelligence and increased severity on indices of psychological disturbance. Sleep deprivation is also associated with reduced prefrontal-amygdala functional connectivity, potentially reflecting impaired top-down modulation of emotion. It remains unknown whether this modified connectivity may be observed in relation to more typical levels of sleep curtailment. We examined whether self-reported sleep duration the night before an assessment would be associated with these effects. Participants documented their hours of sleep from the previous night, completed the Bar-On Emotional Quotient Inventory (EQ-i), Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), and Personality Assessment Inventory (PAI), and underwent resting-state functional magnetic resonance imaging (fMRI). Outpatient neuroimaging center at a private psychiatric hospital. Sixty-five healthy adults (33 men, 32 women), ranging in age from 18-45 y. N/A. Greater self-reported sleep the preceding night was associated with higher scores on all scales of the EQ-i but not the MSCEIT, and with lower symptom severity scores on half of the psychopathology scales of the PAI. Longer sleep was also associated with stronger negative functional connectivity between the right ventromedial prefrontal cortex and amygdala. Moreover, greater negative connectivity between these regions was associated with higher EQ-i and lower symptom severity on the PAI. Self-reported sleep duration from the preceding night was negatively correlated with prefrontal-amygdala connectivity and the severity of subjective psychological distress, while positively correlated with higher perceived emotional intelligence. More sleep was associated with higher emotional and psychological strength.

  19. Functional connectivity in the neuromuscular system underlying bimanual coordination.

    Science.gov (United States)

    de Vries, Ingmar E J; Daffertshofer, Andreas; Stegeman, Dick F; Boonstra, Tjeerd W

    2016-12-01

    Neural synchrony has been suggested as a mechanism for integrating distributed sensorimotor systems involved in coordinated movement. To test the role of corticomuscular and intermuscular coherence in bimanual coordination, we experimentally manipulated the degree of coordination between hand muscles by varying the sensitivity of the visual feedback to differences in bilateral force. In 16 healthy participants, cortical activity was measured using EEG and muscle activity of the flexor pollicis brevis of both hands using high-density electromyography (HDsEMG). Using the uncontrolled manifold framework, coordination between bilateral forces was quantified by the synergy index RV in the time and frequency domain. Functional connectivity was assessed using corticomuscular coherence between muscle activity and cortical source activity and intermuscular coherence between bilateral EMG activity. The synergy index increased in the high coordination condition. RV was higher in the high coordination condition in frequencies between 0 and 0.5 Hz; for the 0.5- to 2-Hz frequency band, this pattern was inverted. Corticomuscular coherence in the beta band (16-30 Hz) was maximal in the contralateral motor cortex and was reduced in the high coordination condition. In contrast, intermuscular coherence was observed at 5-12 Hz and increased with bimanual coordination. Within-subject comparisons revealed a negative correlation between RV and corticomuscular coherence and a positive correlation between RV and intermuscular coherence. Our findings suggest two distinct neural pathways: 1) corticomuscular coherence reflects direct corticospinal projections involved in controlling individual muscles; and 2) intermuscular coherence reflects diverging pathways involved in the coordination of multiple muscles. Copyright © 2016 the American Physiological Society.

  20. Emotional susceptibility trait modulates insula responses and functional connectivity in flavor processing

    Directory of Open Access Journals (Sweden)

    Sjoerd JH Ebisch

    2015-11-01

    Full Text Available The present study aimed at investigating the relationship between Emotional Susceptibility (ES, an aspect of the personality trait Neuroticism, and individual differences in the neural responses in anterior insula to primary sensory stimuli colored by affective valence, i.e. distasting or pleasantly tasting oral stimuli. In addition, it was studied whether intrinsic functional connectivity patterns of brain regions characterized by such differential responses could be related to ES. To this purpose 25 female participants underwent functional magnetic resonance imaging scanning, while being involved in a flavor experiment. During the experiment, flavor stimuli were administered consisting of small amounts of liquid with a different affective valence: neutral, pleasant, unpleasant. The results showed that individual differences in ES trait predicted distinct neural activity patterns to the different stimulus conditions in a region of left anterior insula that a previous meta-analysis revealed to be linked with olfacto-gustatory processing. Specifically, low ES was associated with enhanced neural responses to both pleasant and unpleasant stimuli, compared to neutral stimuli. By contrast, high ES participants showed equally strong neural responses to all types of stimuli without differentiating between the neutral and affective stimuli. Finally, during a task-free state, high ES trait appeared also to be related to decreased intrinsic functional connectivity between left anterior insula and left cerebellum. Our findings show that individual differences in ES are associated with differential anterior insula responses to primary sensory (flavor stimuli as well as to intrinsic functional cortico-cerebellar connectivity, the latter suggesting a basis in the brain intrinsic functional architecture of the regulation of emotional experiences.

  1. Frequency-specific alterations in functional connectivity in treatment-resistant and -sensitive major depressive disorder.

    Science.gov (United States)

    He, Zongling; Cui, Qian; Zheng, Junjie; Duan, Xujun; Pang, Yajing; Gao, Qing; Han, Shaoqiang; Long, Zhiliang; Wang, Yifeng; Li, Jiao; Wang, Xiao; Zhao, Jingping; Chen, Huafu

    2016-11-01

    Major depressive disorder (MDD) may involve alterations in brain functional connectivity in multiple neural circuits and present large-scale network dysfunction. Patients with treatment-resistant depression (TRD) and treatment-sensitive depression (TSD) show different responses to antidepressants and aberrant brain functions. This study aims to investigate functional connectivity patterns of TRD and TSD at the whole brain resting state. Seventeen patients with TRD, 17 patients with TSD, and 17 healthy controls matched with age, gender, and years of education were recruited in this study. The brain was divided using an automated anatomical labeling atlas into 90 regions of interest, which were used to construct the entire brain functional networks. An analysis method called network-based statistic was used to explore the dysconnected subnetworks of TRD and TSD at different frequency bands. At resting state, TSD and TRD present characteristic patterns of network dysfunction at special frequency bands. The dysconnected subnetwork of TSD mainly lies in the fronto-parietal top-down control network. Moreover, the abnormal neural circuits of TRD are extensive and complex. These circuits not only depend on the abnormal affective network but also involve other networks, including salience network, auditory network, visual network, and language processing cortex. Our findings reflect that the pathological mechanism of TSD may refer to impairment in cognitive control, whereas TRD mainly triggers the dysfunction of emotion processing and affective cognition. This study reveals that differences in brain functional connectivity at resting state reflect distinct pathophysiological mechanisms in TSD and TRD. These findings may be helpful in differentiating two types of MDD and predicting treatment responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A flexible approach for assessing functional landscape connectivity, with application to greater sage-grouse (Centrocercus urophasianus.

    Directory of Open Access Journals (Sweden)

    Seth M Harju

    Full Text Available Connectivity of animal populations is an increasingly prominent concern in fragmented landscapes, yet existing methodological and conceptual approaches implicitly assume the presence of, or need for, discrete corridors. We tested this assumption by developing a flexible conceptual approach that does not assume, but allows for, the presence of discrete movement corridors. We quantified functional connectivity habitat for greater sage-grouse (Centrocercus urophasianus across a large landscape in central western North America. We assigned sample locations to a movement state (encamped, traveling and relocating, and used Global Positioning System (GPS location data and conditional logistic regression to estimate state-specific resource selection functions. Patterns of resource selection during different movement states reflected selection for sagebrush and general avoidance of rough topography and anthropogenic features. Distinct connectivity corridors were not common in the 5,625 km(2 study area. Rather, broad areas functioned as generally high or low quality connectivity habitat. A comprehensive map predicting the quality of connectivity habitat across the study area validated well based on a set of GPS locations from independent greater sage-grouse. The functional relationship between greater sage-grouse and the landscape did not always conform to the idea of a discrete corridor. A more flexible consideration of landscape connectivity may improve the efficacy of management actions by aligning those actions with the spatial patterns by which animals interact with the landscape.

  3. Functional Connectivity Changes in Resting-State EEG as Potential Biomarker for Amyotrophic Lateral Sclerosis.

    Directory of Open Access Journals (Sweden)

    Parameswaran Mahadeva Iyer

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS.18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity.Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005. Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02. Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05.There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS.

  4. Functional Connectivity Changes in Resting-State EEG as Potential Biomarker for Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Iyer, Parameswaran Mahadeva; Egan, Catriona; Pinto-Grau, Marta; Burke, Tom; Elamin, Marwa; Nasseroleslami, Bahman; Pender, Niall; Lalor, Edmund C.; Hardiman, Orla

    2015-01-01

    Background Amyotrophic Lateral Sclerosis (ALS) is heterogeneous and overlaps with frontotemporal dementia. Spectral EEG can predict damage in structural and functional networks in frontotemporal dementia but has never been applied to ALS. Methods 18 incident ALS patients with normal cognition and 17 age matched controls underwent 128 channel EEG and neuropsychology assessment. The EEG data was analyzed using FieldTrip software in MATLAB to calculate simple connectivity measures and scalp network measures. sLORETA was used in nodal analysis for source localization and same methods were applied as above to calculate nodal network measures. Graph theory measures were used to assess network integrity. Results Cross spectral density in alpha band was higher in patients. In ALS patients, increased degree values of the network nodes was noted in the central and frontal regions in the theta band across seven of the different connectivity maps (p<0.0005). Among patients, clustering coefficient in alpha and gamma bands was increased in all regions of the scalp and connectivity were significantly increased (p=0.02). Nodal network showed increased assortativity in alpha band in the patients group. The Clustering Coefficient in Partial Directed Connectivity (PDC) showed significantly higher values for patients in alpha, beta, gamma, theta and delta frequencies (p=0.05). Discussion There is increased connectivity in the fronto-central regions of the scalp and areas corresponding to Salience and Default Mode network in ALS, suggesting a pathologic disruption of neuronal networking in early disease states. Spectral EEG has potential utility as a biomarker in ALS. PMID:26091258

  5. Altered functional and structural connectivity networks in psychogenic non-epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Ju-Rong Ding

    Full Text Available Psychogenic non-epileptic seizures (PNES are paroxysmal behaviors that resemble epileptic seizures but lack abnormal electrical activity. Recent studies suggest aberrant functional connectivity involving specific brain regions in PNES. Little is known, however, about alterations of topological organization of whole-brain functional and structural connectivity networks in PNES. We constructed functional connectivity networks from resting-state functional MRI signal correlations and structural connectivity networks from diffusion tensor imaging tractography in 17 PNES patients and 20 healthy controls. Graph theoretical analysis was employed to compute network properties. Moreover, we investigated the relationship between functional and structural connectivity networks. We found that PNES patients exhibited altered small-worldness in both functional and structural networks and shifted towards a more regular (lattice-like organization, which could serve as a potential imaging biomarker for PNES. In addition, many regional characteristics were altered in structural connectivity network, involving attention, sensorimotor, subcortical and default-mode networks. These regions with altered nodal characteristics likely reflect disease-specific pathophysiology in PNES. Importantly, the coupling strength of functional-structural connectivity was decreased and exhibited high sensitivity and specificity to differentiate PNES patients from healthy controls, suggesting that the decoupling strength of functional-structural connectivity might be an important characteristic reflecting the mechanisms of PNES. This is the first study to explore the altered topological organization in PNES combining functional and structural connectivity networks, providing a new way to understand the pathophysiological mechanisms of PNES.

  6. Contribution of corticospinal tract and functional connectivity in hand motor impairment after stroke.

    Directory of Open Access Journals (Sweden)

    Charlotte Rosso

    Full Text Available BACKGROUND: Motor outcome after stroke is associated with reorganisation of cortical networks and corticospinal tract (CST integrity. However, the relationships between motor severity, CST damage, and functional brain connectivity are not well understood. Here, the main objective was to study the effect of CST damage on the relationship between functional motor network connectivity and hand motor function in two groups of stroke patients: the severely (n=8 and the mildly impaired (n=14. METHODS: Twenty-two carotid stroke patients with motor deficits were studied with magnetic resonance imaging (MRI at 3 weeks, at 3 and 6 months. Healthy subjects (n=28 were scanned once. The CST injury was assessed by fractional anisotropy values. Functional connectivity was studied from a whole-hand grip task fMRI in a cortical and cerebellar motor network. Functional connectivity indexes were computed between these regions at each time point. The relationship between hand motor strength, ipsilesional CST damage and functional connectivity from the primary motor cortex (M1 was investigated using global and partial correlations. FINDINGS: In mildly impaired patients, cortico-cortical connectivity was disturbed at three weeks but returned to a normal pattern after 3 months. Cortico-cerebellar connectivity was still decreased at 6 months. In severely impaired patients, the cortico-cortical connectivity tended to return to a normal pattern, but the cortico-cerebellar connectivity was totally abolished during the follow-up. In the entire group of patients, the hand motor strength was correlated to the ipsilesional functional connectivity from M1. Partial correlations revealed that these associations were not anymore significant when the impact of CST damage was removed, except for the ipsilesional M1-contralateral cerebellum connectivity. CONCLUSION: Functional brain connectivity changes can be observed, even in severely impaired patients with no recovery. Upper limb

  7. Prediction Error During Functional and Non-Functional Action Sequences

    DEFF Research Database (Denmark)

    Nielbo, Kristoffer Laigaard; Sørensen, Jesper

    2013-01-01

    error. Non-functionality in this proximal sense is a feature of many socio-cultural practices, such as those found in religious rituals private and social, as well as pathological practices, such as ritualized behavior found among people suffering from Obsessive Compulsory Disorder (OCD). A recent...... behavioral study has shown that human subjects segment non-functional behavior in a more fine-grained way than functional behavior. This increase in segmentation rate implies that non-functionality elicits a stronger error signal. To further explore the implications, two computer simulations using simple......By means of the computational approach the present study investigates the difference between observation of functional behavior (i.e. actions involving necessary integration of subparts) and non-functional behavior (i.e. actions lacking necessary integration of subparts) in terms of prediction...

  8. Intrinsic default mode network connectivity predicts spontaneous verbal descriptions of autobiographical memories during social processing

    Directory of Open Access Journals (Sweden)

    Xiao-Fei eYang

    2013-01-01

    Full Text Available Neural systems activated in a coordinated way during rest, known as the default mode network (DMN, also support autobiographical memory (AM retrieval and social processing/mentalizing. However, little is known about how individual variability in reliance on personal memories during social processing relates to individual differences in DMN functioning during rest (intrinsic functional connectivity. Here we examined 18 participants’ spontaneous descriptions of autobiographical memories during a two-hour, private, open-ended interview in which they reacted to a series of true stories about real people’s social situations and responded to the prompt, how does this person’s story make you feel? We classified these descriptions as either containing factual information (semantic AMs or more elaborate descriptions of emotionally meaningful events (episodic AMs. We also collected resting state fMRI scans from the participants and related individual differences in frequency of described AMs to participants’ intrinsic functional connectivity within regions of the DMN. We found that producing more descriptions of either memory type correlated with stronger intrinsic connectivity in the parahippocampal and middle temporal gyri. Additionally, episodic AM descriptions correlated with connectivity in the bilateral hippocampi and medial prefrontal cortex, and semantic memory descriptions correlated with connectivity in right inferior lateral parietal cortex. These findings suggest that in individuals who naturally invoke more memories during social processing, brain regions involved in memory retrieval and self/social processing are more strongly coupled to the DMN during rest.

  9. Is payoff necessarily weighted by probability when making a risky choice? Evidence from functional connectivity analysis.

    Directory of Open Access Journals (Sweden)

    Li-Lin Rao

    Full Text Available How people make decisions under risk remains an as-yet-unresolved but fundamental question. Mainstream theories about risky decision making assume that the core processes involved in reaching a risky decision include weighting each payoff or reward magnitude by its probability and then summing the outcomes. However, recently developed theories question whether payoffs are necessarily weighted by probability when making a risky choice. Using functional connectivity analysis, we aimed to provide neural evidence to answer whether this key assumption of computing expectations holds when making a risky choice. We contrasted a trade-off instruction choice that required participants to integrate probability and payoff information with a preferential choice that did not. Based on the functional connectivity patterns between regions in which activity was detected during both of the decision-making tasks, we classified the regions into two networks. One network includes primarily the left and right lateral prefrontal cortices and posterior parietal cortices, which were found to be related to probability in previous reports, and the other network is composed of the bilateral basal ganglia, which have been implicated in payoff. We also found that connectivity between the payoff network and some regions in the probability network (including the left lateral prefrontal cortices and bilateral inferior parietal lobes were stronger during the trade-off instruction choice task than during the preferential choice task. This indicates that the functional integration between the probability and payoff networks during preferential choice was not as strong as the integration during trade-off instruction choice. Our results provide neural evidence that the weighting process uniformly predicted by the mainstream theory is unnecessary during preferential choice. Thus, our functional integration findings can provide a new direction for the investigation of the principles

  10. Improving protein function prediction methods with integrated literature data

    Directory of Open Access Journals (Sweden)

    Gabow Aaron P

    2008-04-01

    Full Text Available Abstract Background Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity. Results We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder

  11. Atypical functional connectivity in autism spectrum disorder is associated with disrupted white matter microstructural organisation

    Directory of Open Access Journals (Sweden)

    Jane eMcGrath

    2013-09-01

    Full Text Available Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were 1. to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM in ASD and 2. to examine the relationships between aberrant neural connectivity and behaviour in ASD. 22 individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19 and five paired regions: left caudate head, left caudate body, left uncus, left thalamus and left cuneus. Measures of WM microstructural organisation were extracted from these tracts. Fractional anisotropy reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant white matter microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute 1. to abnormal functional connectivity and 2. to atypical visuospatial processing in ASD.

  12. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.

    Science.gov (United States)

    Sojoudi, Alireza; Goodyear, Bradley G

    2016-12-01

    Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Changes in extra-striatal functional connectivity in patients with schizophrenia in a psychotic episode.

    Science.gov (United States)

    Peters, Henning; Riedl, Valentin; Manoliu, Andrei; Scherr, Martin; Schwerthöffer, Dirk; Zimmer, Claus; Förstl, Hans; Bäuml, Josef; Sorg, Christian; Koch, Kathrin

    2017-01-01

    In patients with schizophrenia in a psychotic episode, intra-striatal intrinsic connectivity is increased in the putamen but not ventral striatum. Furthermore, multimodal changes have been observed in the anterior insula that interact extensively with the putamen. We hypothesised that during psychosis, putamen extra-striatal functional connectivity is altered with both the anterior insula and areas normally connected with the ventral striatum (i.e. altered functional connectivity distinctiveness of putamen and ventral striatum). We acquired resting-state functional magnetic resonance images from 21 patients with schizophrenia in a psychotic episode and 42 controls. Patients had decreased functional connectivity: the putamen with right anterior insula and dorsal prefrontal cortex, the ventral striatum with left anterior insula. Decreased functional connectivity between putamen and right anterior insula was specifically associated with patients' hallucinations. Functional connectivity distinctiveness was impaired only for the putamen. Results indicate aberrant extra-striatal connectivity during psychosis and a relationship between reduced putamen-right anterior insula connectivity and hallucinations. Data suggest that altered intrinsic connectivity links striatal and insular pathophysiology in psychosis. © The Royal College of Psychiatrists 2017.

  14. The relationship between default mode network connectivity and social functioning in individuals at familial high-risk for schizophrenia.

    Science.gov (United States)

    Dodell-Feder, David; Delisi, Lynn E; Hooker, Christine I

    2014-06-01

    Unaffected first-degree relatives of individuals with schizophrenia (i.e., those at familial high-risk [FHR]), demonstrate social dysfunction qualitatively similar though less severe than that of their affected relatives. These social difficulties may be the consequence of genetically conferred disruption to aspects of the default mode network (DMN), such as the dMPFC subsystem, which overlaps with the network of brain regions recruited during social cognitive processes. In the present study, we investigate this possibility, testing DMN connectivity and its relationship to social functioning in FHR using resting-state fMRI. Twenty FHR individuals and 17 controls underwent fMRI during a resting-state scan. Hypothesis-driven functional connectivity analyses examined ROI-to-ROI correlations between the DMN's hubs, and regions of the dMPFC subsystem and MTL subsystem. Connectivity values were examined in relationship to a measure of social functioning and empathy/perspective-taking. Results demonstrate that FHR exhibit reduced connectivity specifically within the dMPFC subsystem of the DMN. Certain ROI-to-ROI correlations predicted aspects of social functioning and empathy/perspective-taking across all participants. Together, the data indicate that disruption to the dMPFC subsystem of the DMN may be associated with familial risk for schizophrenia, and that these intrinsic connections may carry measurable consequences for social functioning.

  15. Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Yu Sun

    Full Text Available Although anomalies in the topological architecture of whole-brain connectivity have been found to be associated with Alzheimer's disease (AD, our understanding about the progression of AD in a functional connectivity (FC perspective is still rudimentary and few study has explored the function-structure relations in brain networks of AD patients. By using resting-state functional MRI (fMRI, this study firstly investigated organizational alternations in FC networks in 12 AD patients, 15 amnestic mild cognitive impairment (aMCI patients, and 14 age-matched healthy aging subjects and found that all three groups exhibit economical small-world network properties. Nonetheless, we found a decline of the optimal architecture in the progression of AD, represented by a more localized modular organization with less efficient local information transfer. Our results also show that aMCI forms a boundary between normal aging and AD and represents a functional continuum between healthy aging and the earliest signs of dementia. Moreover, we revealed a dissociated relationship between the overall FC and structural connectivity (SC in AD patients. In this study, diffusion tensor imaging tractography was used to map the structural network of the same individuals. The decreased FC-SC coupling may be indicative of more stringent and less dynamic brain function in AD patients. Our findings provided insightful implications for understanding the pathophysiological mechanisms of brain dysfunctions in aMCI and AD patients and demonstrated that functional disorders can be characterized by multimodal neuroimaging-based metrics.

  16. Functional topography of the right inferior parietal lobule structured by anatomical connectivity profiles.

    Science.gov (United States)

    Wang, Jiaojian; Zhang, Jinfeng; Rong, Menglin; Wei, Xuehu; Zheng, Dingchen; Fox, Peter T; Eickhoff, Simon B; Jiang, Tianzi

    2016-12-01

    The nature of the relationship between structure and function is a fundamental question in neuroscience, especially at the macroscopic neuroimaging level. Although mounting studies have revealed that functional connectivity reflects structural connectivity, whether similar structural and functional connectivity patterns can reveal corresponding similarities in the structural and functional topography remains an open problem. In our current study, we used the right inferior parietal lobule (RIPL), which has been demonstrated to have similar anatomical and functional connectivity patterns at the subregional level, to directly test the hypothesis that similar structural and functional connectivity patterns can inform the corresponding topography of this area. In addition, since the association between the RIPL regions and particular functions and networks is still largely unknown, post-hoc functional characterizations and connectivity analyses were performed to identify the main functions and cortical networks in which each subregion participated. Anatomical and functional connectivity-based parcellations of the RIPL have consistently identified five subregions. Our functional characterization using meta-analysis-based behavioral and connectivity analyses revealed that the two anterior subregions (Cl1 and Cl2) primarily participate in interoception and execution, respectively; whereas the posterior subregion (Cl3) in the SMG primarily participates in attention and action inhibition. The two posterior subregions (Cl4, Cl5) in the AG were primarily involved in social cognition and spatial cognition, respectively. These results indicated that similar anatomical and functional connectivity patterns of the RIPL are reflected in corresponding structural and functional topographies. The identified cortical connectivity and functional characterization of each subregion may facilitate RIPL-related clinical research. Hum Brain Mapp 37:4316-4332, 2016. © 2016 Wiley Periodicals

  17. Individual differences in crossmodal brain activity predict arcuate fasciculus connectivity in developing readers.

    Science.gov (United States)

    Gullick, Margaret M; Booth, James R

    2014-07-01

    Crossmodal integration of auditory and visual information, such as phonemes and graphemes, is a critical skill for fluent reading. Previous work has demonstrated that white matter connectivity along the arcuate fasciculus (AF) is predicted by reading skill and that crossmodal processing particularly activates the posterior STS (pSTS). However, the relationship between this crossmodal activation and white matter integrity has not been previously reported. We investigated the interrelationship of crossmodal integration, both in terms of behavioral performance and pSTS activity, with AF tract coherence using a rhyme judgment task in a group of 47 children with a range of reading abilities. We demonstrate that both response accuracy and pSTS activity for crossmodal (auditory-visual) rhyme judgments was predictive of fractional anisotropy along the left AF. Unimodal (auditory-only or visual-only) pSTS activity was not significantly related to AF connectivity. Furthermore, activity in other reading-related ROIs did not show the same AV-only AF coherence relationship, and AV pSTS activity was not related to connectivity along other language-related tracts. This study is the first to directly show that crossmodal brain activity is specifically related to connectivity in the AF, supporting its role in phoneme-grapheme integration ability. More generally, this study helps to define an interdependent neural network for reading-related integration.

  18. Scoring function to predict solubility mutagenesis

    Directory of Open Access Journals (Sweden)

    Deutsch Christopher

    2010-10-01

    Full Text Available Abstract Background Mutagenesis is commonly used to engineer proteins with desirable properties not present in the wild type (WT protein, such as increased or decreased stability, reactivity, or solubility. Experimentalists often have to choose a small subset of mutations from a large number of candidates to obtain the desired change, and computational techniques are invaluable to make the choices. While several such methods have been proposed to predict stability and reactivity mutagenesis, solubility has not received much attention. Results We use concepts from computational geometry to define a three body scoring function that predicts the change in protein solubility due to mutations. The scoring function captures both sequence and structure information. By exploring the literature, we have assembled a substantial database of 137 single- and multiple-point solubility mutations. Our database is the largest such collection with structural information known so far. We optimize the scoring function using linear programming (LP methods to derive its weights based on training. Starting with default values of 1, we find weights in the range [0,2] so that predictions of increase or decrease in solubility are optimized. We compare the LP method to the standard machine learning techniques of support vector machines (SVM and the Lasso. Using statistics for leave-one-out (LOO, 10-fold, and 3-fold cross validations (CV for training and prediction, we demonstrate that the LP method performs the best overall. For the LOOCV, the LP method has an overall accuracy of 81%. Availability Executables of programs, tables of weights, and datasets of mutants are available from the following web page: http://www.wsu.edu/~kbala/OptSolMut.html.

  19. Predicting depression based on dynamic regional connectivity: a windowed Granger causality analysis of MEG recordings.

    Science.gov (United States)

    Lu, Qing; Bi, Kun; Liu, Chu; Luo, Guoping; Tang, Hao; Yao, Zhijian

    2013-10-16

    Abnormal inter-regional causalities can be mapped for the objective diagnosis of various diseases. These inter-regional connectivities are usually calculated over an entire scan and used to characterize the stationary strength of the connections. However, the connectivity within networks may undergo substantial changes during a scan. In this study, we developed an objective depression recognition approach using the dynamic regional interactions that occur in response to sad facial stimuli. The whole time-period magnetoencephalography (MEG) signals from the visual cortex, amygdala, anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG) were separated into sequential time intervals. The Granger causality mapping method was used to identify the pairwise interaction pattern within each time interval. Feature selection was then undertaken within a minimum redundancy-maximum relevance (mRMR) framework. Typical classifiers were utilized to predict those patients who had depression. The overall performances of these classifiers were similar, and the highest classification accuracy rate was 87.5%. The best discriminative performance was obtained when the number of features was within a robust range. The discriminative network pattern obtained through support vector machine (SVM) analyses displayed abnormal causal connectivities that involved the amygdala during the early and late stages. These early and late connections in the amygdala appear to reveal a negative bias to coarse expression information processing and abnormal negative modulation in patients with depression, which may critically affect depression discrimination.

  20. Altered functional connectivity and small-world in mesial temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Wei Liao

    Full Text Available BACKGROUND: The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low-frequency coherent neuronal fluctuations that can be observed in a resting state condition. Little is known, so far, about the changes in functional connectivity and in the topological properties of functional networks, associated with different brain diseases. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated alterations related to mesial temporal lobe epilepsy (mTLE, using resting state functional magnetic resonance imaging on 18 mTLE patients and 27 healthy controls. Functional connectivity among 90 cortical and subcortical regions was measured by temporal correlation. The related values were analyzed to construct a set of undirected graphs. Compared to controls, mTLE patients showed significantly increased connectivity within the medial temporal lobes, but also significantly decreased connectivity within the frontal and parietal lobes, and between frontal and parietal lobes. Our findings demonstrated that a large number of areas in the default-mode network of mTLE patients showed a significantly decreased number of connections to other regions. Furthermore, we observed altered small-world properties in patients, along with smaller degree of connectivity, increased n-to-1 connectivity, smaller absolute clustering coefficients and shorter absolute path length. CONCLUSIONS/SIGNIFICANCE: We suggest that the mTLE alterations observed in functional connectivity and topological properties may be used to define tentative disease markers.

  1. Exploring the brain network: a review on resting-state fMRI functional connectivity.

    Science.gov (United States)

    van den Heuvel, Martijn P; Hulshoff Pol, Hilleke E

    2010-08-01

    Our brain is a network. It consists of spatially distributed, but functionally linked regions that continuously share information with each other. Interestingly, recent advances in the acquisition and analysis of functional neuroimaging data have catalyzed the exploration of functional connectivity in the human brain. Functional connectivity is defined as the temporal dependency of neuronal activation patterns of anatomically separated brain regions and in the past years an increasing body of neuroimaging studies has started to explore functional connectivity by measuring the level of co-activation of resting-state fMRI time-series between brain regions. These studies have revealed interesting new findings about the functional connections of specific brain regions and local networks, as well as important new insights in the overall organization of functional communication in the brain network. Here we present an overview of these new methods and discuss how they have led to new insights in core aspects of the human brain, providing an overview of these novel imaging techniques and their implication to neuroscience. We discuss the use of spontaneous resting-state fMRI in determining functional connectivity, discuss suggested origins of these signals, how functional connections tend to be related to structural connections in the brain network and how functional brain communication may form a key role in cognitive performance. Furthermore, we will discuss the upcoming field of examining functional connectivity patterns using graph theory, focusing on the overall organization of the functional brain network. Specifically, we will discuss the value of these new functional connectivity tools in examining believed connectivity diseases, like Alzheimer's disease, dementia, schizophrenia and multiple sclerosis. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Altered resting-state functional connectivity in cortical networks in psychopathy.

    Science.gov (United States)

    Philippi, Carissa L; Pujara, Maia S; Motzkin, Julian C; Newman, Joseph; Kiehl, Kent A; Koenigs, Michael

    2015-04-15

    Psychopathy is a personality disorder characterized by callous antisocial behavior and criminal recidivism. Here we examine whether psychopathy is associated with alterations in functional connectivity in three large-scale cortical networks. Using fMRI in 142 adult male prison inmates, we computed resting-state functional connectivity using seeds from the default mode network, frontoparietal network, and cingulo-opercular network. To determine the specificity of our findings to these cortical networks, we also calculated functional connectivity using seeds from two comparison primary sensory networks: visual and auditory networks. Regression analyses related network connectivity to overall psychopathy scores and to subscores for the "factors" and "facets" of psychopathy: Factor 1, interpersonal/affective traits; Factor 2, lifestyle/antisocial traits; Facet 1, interpersonal; Facet 2, affective; Facet 3, lifestyle; Facet 4, antisocial. Overall psychopathy severity was associated with reduced functional connectivity between lateral parietal cortex and dorsal anterior cingulate cortex. The two factor scores exhibited contrasting relationships with functional connectivity: Factor 1 scores were associated with reduced functional connectivity in the three cortical networks, whereas Factor 2 scores were associated with heightened connectivity in the same networks. This dissociation was evident particularly in the functional connectivity between anterior insula and dorsal anterior cingulate cortex. The facet scores also demonstrated distinct patterns of connectivity. We found no associations between psychopathy scores and functional connectivity within visual or auditory networks. These findings provide novel evidence on the neural correlates of psychopathy and suggest that connectivity between cortical association hubs, such as the dorsal anterior cingulate cortex, may be a neurobiological marker of the disorder.

  3. Disrupted thalamic resting-state functional connectivity in patients with minimal hepatic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Rongfeng [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhang, Long Jiang, E-mail: kevinzhanglongjiang@yahoo.com.cn [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang, Zhiqiang; Ni, Ling; Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210002 (China)

    2013-05-15

    Background and purpose: Little is known about the role of thalamus in the pathophysiology of minimal hepatic encephalopathy (MHE). The purpose of this study was to investigate whether the thalamic functional connectivity was disrupted in cirrhotic patients with MHE by using resting-state functional magnetic resonance imaging (rs-fMRI). Materials and Methods: Twenty seven MHE patients and twenty seven age- and gender- matched healthy controls participated in the rs-fMRI scans. The functional connectivity of 11 thalamic nuclei were characterized by using a standard seed-based whole-brain correlation method and compared between MHE patients and healthy controls. Pearson correlation analysis was performed between the thalamic functional connectivity and venous blood ammonia levels/neuropsychological tests scores of patients. Results: The ventral anterior nucleus (VAN) and the ventral posterior medial nucleus (VPMN) in each side of thalamus showed abnormal functional connectivities in MHE. Compared with healthy controls, MHE patients demonstrated significant decreased functional connectivity between the right/left VAN and the bilateral putamen/pallidum, inferior frontal gyri, insula, supplementary motor area, right middle frontal gyrus, medial frontal gyrus. In addition, MHE patients showed significantly decreased functional connectivity with the right/left VPMN in the bilateral middle temporal gyri (MTG), temporal lobe, and right superior temporal gyrus. The venous blood ammonia levels of MHE patients negatively correlated with the functional connectivity between the VAN and the insula. Number connecting test scores showed negative correlation with the functional connectivity between the VAN and the insula, and between the VPMN and the MTG. Conclusion: MHE patients had disrupted thalamic functional connectivity, which mainly located in the bilateral ventral anterior nuclei and ventral posterior medial nuclei. The decreased connectivity between thalamus and many

  4. Network topology and functional connectivity disturbances precede the onset of Huntington's disease.

    Science.gov (United States)

    Harrington, Deborah L; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D; Paulsen, Jane S; Rao, Stephen M

    2015-08-01

    Cognitive, motor and psychiatric changes in prodromal Huntington's disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington's disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington's disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved as disease

  5. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia

    Directory of Open Access Journals (Sweden)

    E. Damaraju

    2014-01-01

    Full Text Available Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length, and a dynamic sense, computed using sliding windows (44 s in length and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual, as well as reduced connectivity (hypoconnectivity between sensory networks from all modalities. Dynamic analysis suggests that (1, on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2, that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical–subcortical antagonism (anti-correlations and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity

  6. Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Stavros I. Dimitriadis

    2015-01-01

    Full Text Available Mild traumatic brain injury (mTBI may affect normal cognition and behavior by disrupting the functional connectivity networks that mediate efficient communication among brain regions. In this study, we analyzed brain connectivity profiles from resting state Magnetoencephalographic (MEG recordings obtained from 31 mTBI patients and 55 normal controls. We used phase-locking value estimates to compute functional connectivity graphs to quantify frequency-specific couplings between sensors at various frequency bands. Overall, normal controls showed a dense network of strong local connections and a limited number of long-range connections that accounted for approximately 20% of all connections, whereas mTBI patients showed networks characterized by weak local connections and strong long-range connections that accounted for more than 60% of all connections. Comparison of the two distinct general patterns at different frequencies using a tensor representation for the connectivity graphs and tensor subspace analysis for optimal feature extraction showed that mTBI patients could be separated from normal controls with 100% classification accuracy in the alpha band. These encouraging findings support the hypothesis that MEG-based functional connectivity patterns may be used as biomarkers that can provide more accurate diagnoses, help guide treatment, and monitor effectiveness of intervention in mTBI.

  7. Functional connectivity changes detected with magnetoencephalography after mild traumatic brain injury.

    Science.gov (United States)

    Dimitriadis, Stavros I; Zouridakis, George; Rezaie, Roozbeh; Babajani-Feremi, Abbas; Papanicolaou, Andrew C

    2015-01-01

    Mild traumatic brain injury (mTBI) may affect normal cognition and behavior by disrupting the functional connectivity networks that mediate efficient communication among brain regions. In this study, we analyzed brain connectivity profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 31 mTBI patients and 55 normal controls. We used phase-locking value estimates to compute functional connectivity graphs to quantify frequency-specific couplings between sensors at various frequency bands. Overall, normal controls showed a dense network of strong local connections and a limited number of long-range connections that accounted for approximately 20% of all connections, whereas mTBI patients showed networks characterized by weak local connections and strong long-range connections that accounted for more than 60% of all connections. Comparison of the two distinct general patterns at different frequencies using a tensor representation for the connectivity graphs and tensor subspace analysis for optimal feature extraction showed that mTBI patients could be separated from normal controls with 100% classification accuracy in the alpha band. These encouraging findings support the hypothesis that MEG-based functional connectivity patterns may be used as biomarkers that can provide more accurate diagnoses, help guide treatment, and monitor effectiveness of intervention in mTBI.

  8. Predicting Contextual Sequences via Submodular Function Maximization

    CERN Document Server

    Dey, Debadeepta; Hebert, Martial; Bagnell, J Andrew

    2012-01-01

    Sequence optimization, where the items in a list are ordered to maximize some reward has many applications such as web advertisement placement, search, and control libraries in robotics. Previous work in sequence optimization produces a static ordering that does not take any features of the item or context of the problem into account. In this work, we propose a general approach to order the items within the sequence based on the context (e.g., perceptual information, environment description, and goals). We take a simple, efficient, reduction-based approach where the choice and order of the items is established by repeatedly learning simple classifiers or regressors for each "slot" in the sequence. Our approach leverages recent work on submodular function maximization to provide a formal regret reduction from submodular sequence optimization to simple cost-sensitive prediction. We apply our contextual sequence prediction algorithm to optimize control libraries and demonstrate results on two robotics problems: ...

  9. Closely connected unitary realizations of the solutions to the basic interpolation problem for generalized Schur functions

    NARCIS (Netherlands)

    Wanjala, G; Kaashoek, MA; Seatzu, S; VanDerMee, C

    2005-01-01

    A generalized Schur function which is holomorphic at z = 0 can be written as the characteristic function of a closely connected unitary colligation with a Pontryagin state space. We describe the closely connected unitary colligation of a solution s(z) of the basic interpolation problem for generaliz

  10. Decreased thalamocortical functional connectivity after 36 hours of total sleep deprivation: evidence from resting state FMRI.

    Directory of Open Access Journals (Sweden)

    Yongcong Shao

    Full Text Available OBJECTIVES: The thalamus and cerebral cortex are connected via topographically organized, reciprocal connections, which hold a key function in segregating internally and externally directed awareness information. Previous task-related studies have revealed altered activities of the thalamus after total sleep deprivation (TSD. However, it is still unclear how TSD impacts on the communication between the thalamus and cerebral cortex. In this study, we examined changes of thalamocortical functional connectivity after 36 hours of total sleep deprivation by using resting state function MRI (fMRI. MATERIALS AND METHODS: Fourteen healthy volunteers were recruited and performed fMRI scans before and after 36 hours of TSD. Seed-based functional connectivity analysis was employed and differences of thalamocortical functional connectivity were tested between the rested wakefulness (RW and TSD conditions. RESULTS: We found that the right thalamus showed decreased functional connectivity with the right parahippocampal gyrus, right middle temporal gyrus and right superior frontal gyrus in the resting brain after TSD when compared with that after normal sleep. As to the left thalamus, decreased connectivity was found with the right medial frontal gyrus, bilateral middle temporal gyri and left superior frontal gyrus. CONCLUSION: These findings suggest disruptive changes of the thalamocortical functional connectivity after TSD, which may lead to the decline of the arousal level and information integration, and subsequently, influence the human cognitive functions.

  11. Disrupted resting-state insular subregions functional connectivity in post-traumatic stress disorder.

    Science.gov (United States)

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Guo, Xiaonan; Chen, Huafu

    2016-07-01

    Post-traumatic stress disorder (PTSD) is suggested to be a structural and functional abnormality in the insula. The insula, which consists of distinct subregions with various patterns of connectivity, displays complex and diverse functions. However, whether these insular subregions have different patterns of connectivity in PTSD remains unclear. Investigating the abnormal functional connectivity of the insular subregions is crucial to reveal its potential effect on diseases specifically PTSD. This study uses a seed-based method to investigate the altered resting-state functional connectivity of insular subregions in PTSD. We found that patients with PTSD showed reduced functional connectivity compared with healthy controls (HCs) between the left ventral anterior insula and the anterior cingulate cortex. The patients with PTSD also exhibited decreased functional connectivity between the right posterior insula and left inferior parietal lobe, and the postcentral gyrus relative to HCs. These results suggest the involvement of altered functional connectivity of insular subregions in the abnormal regulation of emotion and processing of somatosensory information in patients with PTSD. Such impairments in functional connectivity patterns of the insular subregions may advance our understanding of the pathophysiological basis underlying PTSD.

  12. Specialization and integration of functional thalamocortical connectivity in the human infant

    NARCIS (Netherlands)

    Toulmin, H.; Beckmann, C.F.; O'Muircheartaigh, J.; Ball, G.; Nongena, P.; Makropoulis, A.; Ederies, A.; Counsell, S.J.; Kennea, N.; Arichi, T.; Tusor, N.; Rutherford, M.A.; Azzopardi, D.; Gonzalez-Cinca, N.; Hajnal, J.V.; Edwards, A.D.

    2015-01-01

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure

  13. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    Science.gov (United States)

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  14. Linear Prediction Using Refined Autocorrelation Function

    Directory of Open Access Journals (Sweden)

    M. Shahidur Rahman

    2007-07-01

    Full Text Available This paper proposes a new technique for improving the performance of linear prediction analysis by utilizing a refined version of the autocorrelation function. Problems in analyzing voiced speech using linear prediction occur often due to the harmonic structure of the excitation source, which causes the autocorrelation function to be an aliased version of that of the vocal tract impulse response. To estimate the vocal tract characteristics accurately, however, the effect of aliasing must be eliminated. In this paper, we employ homomorphic deconvolution technique in the autocorrelation domain to eliminate the aliasing effect occurred due to periodicity. The resulted autocorrelation function of the vocal tract impulse response is found to produce significant improvement in estimating formant frequencies. The accuracy of formant estimation is verified on synthetic vowels for a wide range of pitch frequencies typical for male and female speakers. The validity of the proposed method is also illustrated by inspecting the spectral envelopes of natural speech spoken by high-pitched female speaker. The synthesis filter obtained by the current method is guaranteed to be stable, which makes the method superior to many of its alternatives.

  15. Changes of functional connectivity in the left frontoparietal network following aphasic stroke

    Directory of Open Access Journals (Sweden)

    Dan eZhu

    2014-05-01

    Full Text Available Language is an essential higher cognitive function supported by large-scale brain networks. In this study, we investigated functional connectivity changes in the left frontoparietal network (LFPN, a language-cognition related brain network in aphasic patients. We enrolled thirteen aphasic patients who had undergone a stroke in the left hemisphere and age-, gender-, educational level-matched controls and analyzed the data by integrating independent component analysis (ICA with a network connectivity analysis method. Resting state functional magnetic resonance imaging (fMRI and clinical evaluation of language function were assessed at two stages: one and two months after stroke onset. We found reduced functional connectivity between the LFPN and the right middle frontal cortex, medial frontal cortex and right inferior frontal cortex in aphasic patients as compared to controls. Correlation analysis showed that stronger functional connectivity between the LFPN and the right middle frontal cortex and medial frontal cortex coincided with more preserved language comprehension ability after stroke. Network connectivity analysis showed reduced LFPN connectivity as indicated by the mean network connectivity index of key regions in the LFPN of aphasic patients. The decreased LFPN connectivity in stroke patients was significantly associated with the impairment of language function in their comprehension ability. We also found significant association between recovery of comprehension ability and the mean changes in intrinsic LFPN connectivity. Our findings suggest that brain lesions may influence language comprehension by altering functional connectivity between regions and that the patterns of abnormal functional connectivity may contribute to the recovery of language deficits.

  16. Altered resting-state functional and white matter tract connectivity in stroke patients with dysphagia.

    Science.gov (United States)

    Li, Shasha; Ma, Zhenxing; Tu, Shipeng; Zhou, Muke; Chen, Sihan; Guo, Zhiwei; Gong, Qiyong; He, Li; Huang, Xiaoqi; Yao, Dezhong; Lui, Su; Yu, Bo; Wang, Xiaotong; Zhou, Dong; He, Chengqi

    2014-01-01

    Swallowing dysfunction is intractable after acute stroke. Our understanding of the alterations in neural networks of patients with neurogenic dysphagia is still developing. The aim was to investigate cerebral cortical functional connectivity and subcortical structural connectivity related to swallowing in unilateral hemispheric stroke patients with dysphagia. We combined a resting-state functional connectivity with a white matter tract connectivity approach, recording 12 hemispheric stroke patients with dysphagia, 12 hemispheric stroke patients without dysphagia, and 12 healthy controls. Comparisons of the patterns in swallowing-related functional connectivity maps between patient groups and control subjects included (a) seed-based functional connectivity maps calculated from the primary motor cortex (M1) and the supplementary motor area (SMA) to the entire brain, (b) a swallowing-related functional connectivity network calculated among 20 specific regions of interest (ROIs), and (c) structural connectivity described by the mean fractional anisotropy of fibers bound through the SMA and M1. Stroke patients with dysphagia exhibited dysfunctional connectivity mainly in the sensorimotor-insula-putamen circuits based on seed-based analysis of the left and right M1 and SMA and decreased connectivity in the bilateral swallowing-related ROIs functional connectivity network. Additionally, white matter tract connectivity analysis revealed that the mean fractional anisotropy of the white matter tract was significantly reduced, especially in the left-to-right SMA and in the corticospinal tract. Our results indicate that dysphagia secondary to stroke is associated with disruptive functional and structural integrity in the large-scale brain networks involved in motor control, thus providing new insights into the neural remodeling associated with this disorder.

  17. Ecological strategies predict associations between aquatic and genetic connectivity for dryland amphibians.

    Science.gov (United States)

    Mims, Meryl C; Phillipsen, Ivan C; Lytle, David A; Kirk, Emily E Hartfield; Olden, Julian D

    2015-05-01

    The study of how population genetic structure is shaped by attributes of the environment is a central scientific pursuit in ecology and conservation. But limited resources may prohibit landscape genetics studies for many threatened species, particularly given the pace of current environmental change. Understanding the extent to which species' ecological strategies--their life histories, biology, and behavior-predict patterns and drivers of population connectivity is a critical step in evaluating the potential of multi-taxa inference in landscape genetics. We present results of a landscape genetic study of three dryland amphibians: the canyon treefrog (Hyla arenicolor), red-spotted toad (Anaxyrus punctatus), and Mexican spadefoot (Spea multiplicata). These species characterize a range of ecological strategies, driven primarily by different water dependencies, enabling amphibian survival in arid and semiarid environments. We examined a suite of hypothesized relationships between genetic connectivity and landscape connectivity across species. We found a positive relationship between population differentiation and water dependency, e.g., longer larval development periods and site fidelity for reliable water sources. We also found that aquatic connectivity is important for all species, particularly when considered with topography (slope). The effect of spatial scale varied by species, with canyon treefrogs and Mexican spadefoots characterized by relatively consistent results at different scales in contrast to the stark differences in results for red-spotted toads at different scales. Using ecological information to predict relationships between genetic and landscape connectivity is a promising approach for multi-taxa inference and may help inform conservation efforts where single-species genetic studies are not possible.

  18. Age-Related Increases in Long-Range Connectivity in Fetal Functional Neural Connectivity Networks In Utero

    Science.gov (United States)

    Thomason, Moriah E.; Grove, Lauren E.; Lozon, Tim A.; Vila, Angela M.; Ye, Yongquan; Nye, Matthew J.; Manning, Janessa H.; Pappas, Athina; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S.; Romero, Roberto

    2015-01-01

    Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI) have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC) before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development. PMID:25284273

  19. Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero

    Directory of Open Access Journals (Sweden)

    Moriah E. Thomason

    2015-02-01

    Full Text Available Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development.

  20. Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero.

    Science.gov (United States)

    Thomason, Moriah E; Grove, Lauren E; Lozon, Tim A; Vila, Angela M; Ye, Yongquan; Nye, Matthew J; Manning, Janessa H; Pappas, Athina; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S; Romero, Roberto

    2015-02-01

    Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI) have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC) before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Brain network analysis of EEG functional connectivity during imagery hand movements.

    Science.gov (United States)

    Demuru, Matteo; Fara, Francesca; Fraschini, Matteo

    2013-12-01

    The characterization of human neural activity during imaginary movement tasks represent an important challenge in order to develop effective applications that allow the control of a machine. Yet methods based on brain network analysis of functional connectivity have been scarcely investigated. As a result we use graph theoretic methods to investigate the functional connectivity and brain network measures in order to characterize imagery hand movements in a set of healthy subjects. The results of the present study show that functional connectivity analysis and minimum spanning tree (MST) parameters allow to successfully discriminate between imagery hand movements (both right and left) and resting state conditions. In conclusion, this paper shows that brain network analysis of EEG functional connectivity could represent an efficient alternative to more classical local activation based approaches. Furthermore, it also suggests the shift toward methods based on the characterization of a limited set of fundamental functional connections that disclose salient network topological features.

  2. Analyzing the association between functional connectivity of the brain and intellectual performance.

    Science.gov (United States)

    Pamplona, Gustavo S P; Santos Neto, Gérson S; Rosset, Sara R E; Rogers, Baxter P; Salmon, Carlos E G

    2015-01-01

    Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III) in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus, and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding.

  3. Monosynaptic functional connectivity in cerebral cortex during wakefulness and under graded levels of anesthesia

    Directory of Open Access Journals (Sweden)

    Jeannette A Vizuete

    2012-10-01

    Full Text Available The balance between excitation and inhibition is considered to be of significant importance for neural computation and cognitive function. Excitatory and inhibitory functional connectivity in intact cortical neuronal networks in wakefulness and graded levels of anesthesia has not been systematically investigated. We compared monosynaptic excitatory and inhibitory spike transmission probabilities using pairwise cross-correlogram analysis. Spikes were measured at 64 sites in the visual cortex of rats with chronically implanted microelectrode arrays during wakefulness and three levels of anesthesia produced by desflurane. Anesthesia decreased the number of active units, the number of functional connections, and the strength of excitatory connections. Connection probability (number of connections per number of active unit pairs was unaffected until the deepest anesthesia level, at which a significant increase in the excitatory to inhibitory ratio of connection probabilities was observed. The results suggest that the excitatory-inhibitory balance is altered at an anesthetic depth associated with unconsciousness.

  4. Structural and functional connectivity in healthy aging: Associations for cognition and motor behavior.

    Science.gov (United States)

    Hirsiger, Sarah; Koppelmans, Vincent; Mérillat, Susan; Liem, Franziskus; Erdeniz, Burak; Seidler, Rachael D; Jäncke, Lutz

    2016-03-01

    Age-related behavioral declines may be the result of deterioration of white matter tracts, affecting brain structural (SC) and functional connectivity (FC) during resting state. To date, it is not clear if the combination of SC and FC data could better predict cognitive/motor performance than each measure separately. We probed these relationships in the cingulum bundle, a major white matter pathway of the default mode network. We aimed to attain deeper knowledge about: (a) the relationship between age and the cingulum's SC and FC strength, (b) the association between SC and FC, and particularly (c) how the cingulum's SC and FC are related to cognitive/motor performance separately and combined. We examined these associations in a healthy and well-educated sample of 165 older participants (aged 64-85). SC and FC were acquired using probabilistic tractography to derive measures to capture white matter integrity within the cingulum bundle (fractional anisotropy, mean, axial and radial diffusivity) and a seed-based resting-state functional MRI correlation approach, respectively. Participants performed cognitive tests measuring processing speed, memory and executive functions, and motor tests measuring motor speed and grip force. Our data revealed that only SC but not resting state FC was significantly associated with age. Further, the cingulum's SC and FC showed no relation. Different relationships between cognitive/motor performance and SC/FC separately were found, but no additive effect of the combined analysis of cingulum's SC and FC for predicting cognitive/motor performance was apparent.

  5. Functional connectivity among spike trains in neural assemblies during rat working memory task.

    Science.gov (United States)

    Xie, Jiacun; Bai, Wenwen; Liu, Tiaotiao; Tian, Xin

    2014-11-01

    Working memory refers to a brain system that provides temporary storage to manipulate information for complex cognitive tasks. As the brain is a more complex, dynamic and interwoven network of connections and interactions, the questions raised here: how to investigate the mechanism of working memory from the view of functional connectivity in brain network? How to present most characteristic features of functional connectivity in a low-dimensional network? To address these questions, we recorded the spike trains in prefrontal cortex with multi-electrodes when rats performed a working memory task in Y-maze. The functional connectivity matrix among spike trains was calculated via maximum likelihood estimation (MLE). The average connectivity value Cc, mean of the matrix, was calculated and used to describe connectivity strength quantitatively. The spike network was constructed by the functional connectivity matrix. The information transfer efficiency Eglob was calculated and used to present the features of the network. In order to establish a low-dimensional spike network, the active neurons with higher firing rates than average rate were selected based on sparse coding. The results show that the connectivity Cc and the network transfer efficiency Eglob vaired with time during the task. The maximum values of Cc and Eglob were prior to the working memory behavior reference point. Comparing with the results in the original network, the feature network could present more characteristic features of functional connectivity.

  6. Functional Connectivity with the Default Mode Network Is Altered in Fibromyalgia Patients

    Science.gov (United States)

    Chiu, Yee; Nurmikko, Turo; Stancak, Andrej

    2016-01-01

    Fibromyalgia syndrome (FMS) patients show altered connectivity with the network maintaining ongoing resting brain activity, known as the default mode network (DMN). The connectivity patterns of DMN with the rest of the brain in FMS patients are poorly understood. This study employed seed-based functional connectivity analysis to investigate resting-state functional connectivity with DMN structures in FMS. Sixteen female FMS patients and 15 age-matched, healthy control subjects underwent T2-weighted resting-state MRI scanning and functional connectivity analyses using DMN network seed regions. FMS patients demonstrated alterations to connectivity between DMN structures and anterior midcingulate cortex, right parahippocampal gyrus, left superior parietal lobule and left inferior temporal gyrus. Correlation analysis showed that reduced functional connectivity between the DMN and the right parahippocampal gyrus was associated with longer duration of symptoms in FMS patients, whereas augmented connectivity between the anterior midcingulate and posterior cingulate cortices was associated with tenderness and depression scores. Our findings demonstrate alterations to functional connectivity between DMN regions and a variety of regions which are important for pain, cognitive and emotional processing in FMS patients, and which may contribute to the development or maintenance of chronic symptoms in FMS. PMID:27442504

  7. A winding road: Alzheimer’s disease increases circuitous functional connectivity pathways

    Directory of Open Access Journals (Sweden)

    John eSuckling

    2015-11-01

    Full Text Available Neuroimaging has been successful in characterising the pattern of cerebral atrophy that accompanies the progression of Alzheimer’s disease (AD. Examination of functional connectivity, the strength of signal synchronicity between brain regions, has gathered pace as another way of understanding changes to the brain that are associated with AD. It appears to have good sensitivity and detect effects that precede cognitive decline, and thus offers the possibility to understand the neurobiology of the disease in its earliest phases. However, functional connectivity analyses to date generally consider only the strongest connections, with weaker links ignored. This proof-of-concept study compared patients with mild-to-moderate AD (N=11 and matched control individuals (N=12 based on functional connectivities derived from blood-oxygenation level dependent (BOLD sensitive functional MRI acquired during resting wakefulness. All positive connectivities irrespective of their strength were included. Transitive closures of the resulting connectome were calculated that classified connections as either direct or indirect. Between-group differences in the proportion of indirect paths were observed. In AD, there was broadly increased indirect connectivity across greater spatial distances. Furthermore, the indirect pathways in AD had greater between-subject topological variance than controls.The prevailing characterisation of AD as being a disconnection syndrome is refined by the observation that direct links between regions that are impaired are perhaps replaced by an increase in indirect functional pathways that is only detectable through inclusion of connections across the entire range of connection strengths.

  8. Considerations for Resting State Functional MRI and Functional Connectivity Studies in Rodents

    Directory of Open Access Journals (Sweden)

    Wen-Ju ePan

    2015-08-01

    Full Text Available Resting state functional MRI (rs-fMRI and functional connectivity mapping have become widely used tools in the human neuroimaging community and their use is rapidly spreading into the realm of rodent research as well. One of the many attractive features of rs-fMRI is that it is readily translatable from humans to animals and back again. Changes in functional connectivity observed in human studies can be followed by more invasive animal experiments to determine the neurophysiological basis for the alterations, while exploratory work in animal models can identify possible biomarkers for further investigation in human studies. These types of interwoven human and animal experiments have a potentially large impact on neuroscience and clinical practice. However, impediments exist to the optimal application of rs-fMRI in small animals, some similar to those encountered in humans and some quite different. In this review we identify the most prominent of these barriers, discuss differences between rs-fMRI in rodents and in humans, highlight best practices for animal studies, and review selected applications of rs-fMRI in rodents. Our goal is to facilitate the integration of human and animal work to the benefit of both fields.

  9. The role of corpus callosum development in functional connectivity and cognitive processing.

    Directory of Open Access Journals (Sweden)

    Leighton B N Hinkley

    Full Text Available The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC and matched controls using magnetoencephalographic imaging (MEG-I of coherence in the alpha (8-12 Hz, beta (12-30 Hz and gamma (30-55 Hz bands. Global connectivity (GC was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC, posterior parietal (PPC and parieto-occipital cortices (PO. No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key

  10. Escitalopram Decreases Cross-Regional Functional Connectivity within the Default-Mode Network.

    Directory of Open Access Journals (Sweden)

    Vincent van de Ven

    Full Text Available The default-mode network (DMN, which comprises medial frontal, temporal and parietal regions, is part of the brain's intrinsic organization. The serotonergic (5-HT neurotransmitter system projects to DMN regions from midbrain efferents, and manipulation of this system could thus reveal insights into the neurobiological mechanisms of DMN functioning. Here, we investigate intrinsic functional connectivity of the DMN as a function of activity of the serotonergic system, through the administration of the selective serotonin reuptake inhibitor (SSRI escitalopram. We quantified DMN functional connectivity using an approach based on dual-regression. Specifically, we decomposed group data of a subset of the functional time series using spatial independent component analysis, and projected the group spatial modes to the same and an independent resting state time series of individual participants. We found no effects of escitalopram on global functional connectivity of the DMN at the map-level; that is, escitalopram did not alter the global functional architecture of the DMN. However, we found that escitalopram decreased DMN regional pairwise connectivity, which included anterior and posterior cingulate cortex, hippocampal complex and lateral parietal regions. Further, regional DMN connectivity covaried with alertness ratings across participants. Our findings show that escitalopram altered intrinsic regional DMN connectivity, which suggests that the serotonergic system plays an important role in DMN connectivity and its contribution to cognition. Pharmacological challenge designs may be a useful addition to resting-state functional MRI to investigate intrinsic brain functional organization.

  11. Increase of posterior connectivity in aging within the Ventral Attention Network: A functional connectivity analysis using independent component analysis.

    Science.gov (United States)

    Deslauriers, Johnathan; Ansado, Jennyfer; Marrelec, Guillaume; Provost, Jean-Sébastien; Joanette, Yves

    2017-02-15

    Multiple studies have found neurofunctional changes in normal aging in a context of selective attention. Furthermore, many articles report intrahemispheric alteration in functional networks. However, little is known about age-related changes within the Ventral Attention Network (VAN), which underlies selective attention. The aim of this study is to examine age-related changes within the VAN, focusing on connectivity between its regions. Here we report our findings on the analysis of 27 participants' (13 younger and 14 older healthy adults) BOLD signals as well as their performance on a letter-matching task. We identified the VAN independently for both groups using spatial independent component analysis. Three main findings emerged: First, younger adults were faster and more accurate on the task. Second, older adults had greater connectivity among posterior regions (right temporoparietal junction, right superior parietal lobule, right middle temporal gyrus and left cerebellum crus I) than younger adults but lower connectivity among anterior regions (right anterior insula, right medial superior frontal gyrus and right middle frontal gyrus). Older adults also had more connectivity between anterior and posterior regions than younger adults. Finally, correlations between connectivity and response time on the task showed a trend toward connectivity in posterior regions for the older group and in anterior regions for the younger group. Thus, this study shows that intrahemispheric neurofunctional changes in aging also affect the VAN. The results suggest that, in contexts of selective attention, posterior regions increased in importance for older adults, while anterior regions had reduced centrality. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Predicting the connectivity of primate cortical networks from topological and spatial node properties

    Directory of Open Access Journals (Sweden)

    Kaiser Marcus

    2007-03-01

    Full Text Available Abstract Background The organization of the connectivity between mammalian cortical areas has become a major subject of study, because of its important role in scaffolding the macroscopic aspects of animal behavior and intelligence. In this study we present a computational reconstruction approach to the problem of network organization, by considering the topological and spatial features of each area in the primate cerebral cortex as subsidy for the reconstruction of the global cortical network connectivity. Starting with all areas being disconnected, pairs of areas with similar sets of features are linked together, in an attempt to recover the original network structure. Results Inferring primate cortical connectivity from the properties of the nodes, remarkably good reconstructions of the global network organization could be obtained, with the topological features allowing slightly superior accuracy to the spatial ones. Analogous reconstruction attempts for the C. elegans neuronal network resulted in substantially poorer recovery, indicating that cortical area interconnections are relatively stronger related to the considered topological and spatial properties than neuronal projections in the nematode. Conclusion The close relationship between area-based features and global connectivity may hint on developmental rules and constraints for cortical networks. Particularly, differences between the predictions from topological and spatial properties, together with the poorer recovery resulting from spatial properties, indicate that the organization of cortical networks is not entirely determined by spatial constraints.

  13. Frontostriatal anatomical connections predict age- and difficulty-related differences in reinforcement learning.

    Science.gov (United States)

    van de Vijver, Irene; Ridderinkhof, K Richard; Harsay, Helga; Reneman, Liesbeth; Cavanagh, James F; Buitenweg, Jessika I V; Cohen, Michael X

    2016-10-01

    Reinforcement learning (RL) is supported by a network of striatal and frontal cortical structures that are connected through white-matter fiber bundles. With age, the integrity of these white-matter connections declines. The role of structural frontostriatal connectivity in individual and age-related differences in RL is unclear, although local white-matter density and diffusivity have been linked to individual differences in RL. Here we show that frontostriatal tract counts in young human adults (aged 18-28), as assessed noninvasively with diffusion-weighted magnetic resonance imaging and probabilistic tractography, positively predicted individual differences in RL when learning was difficult (70% valid feedback). In older adults (aged 63-87), in contrast, learning under both easy (90% valid feedback) and difficult conditions was predicted by tract counts in the same frontostriatal network. Furthermore, network-level analyses showed a double dissociation between the task-relevant networks in young and older adults, suggesting that older adults relied on different frontostriatal networks than young adults to obtain the same task performance. These results highlight the importance of successful information integration across striatal and frontal regions during RL, especially with variable outcomes.

  14. Enhanced functional connectivity between putamen and supplementary motor area in Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Rongjun Yu

    Full Text Available Parkinson's disease (PD is a surprisingly heterogeneous disorder with symptoms including resting tremor, bradykinesia and rigidity. PD has been associated with abnormal task related brain activation in sensory and motor regions as well as reward related network. Although corticostriatal skeletomotor circuit dysfunction is implicated in the neurobiology of Parkinson's disease, the functional connectivity within this circuit at the resting state is still unclear for PD. Here we utilized resting state functional magnetic resonance imaging to measure the functional connectivity of striatum and motor cortex in 19 patients with PD and 20 healthy controls. We found that the putamen, but not the caudate, exhibited enhanced connectivity with supplementary motor area (SMA, using either the putamen or the SMA as the "seed region". Enhanced SMA-amygdala functional connectivity was also found in the PD group, compared with normal controls. Our findings highlight the key role of hyper-connected putamen-SMC circuit in the pathophysiology of PD.

  15. Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available We employed a multi-scale clustering methodology known as "data cloud geometry" to extract functional connectivity patterns derived from functional magnetic resonance imaging (fMRI protocol. The method was applied to correlation matrices of 106 regions of interest (ROIs in 29 individuals with autism spectrum disorders (ASD, and 29 individuals with typical development (TD while they completed a cognitive control task. Connectivity clustering geometry was examined at both "fine" and "coarse" scales. At the coarse scale, the connectivity clustering geometry produced 10 valid clusters with a coherent relationship to neural anatomy. A supervised learning algorithm employed fine scale information about clustering motif configurations and prevalence, and coarse scale information about intra- and inter-regional connectivity; the algorithm correctly classified ASD and TD participants with sensitivity of 82.8% and specificity of 82.8%. Most of the predictive power of the logistic regression model resided at the level of the fine-scale clustering geometry, suggesting that cellular versus systems level disturbances are more prominent in individuals with ASD. This article provides validation for this multi-scale geometric approach to extracting brain functional connectivity pattern information and for its use in classification of ASD.

  16. Extracting multiscale pattern information of fMRI based functional brain connectivity with application on classification of autism spectrum disorders.

    Science.gov (United States)

    Wang, Hui; Chen, Chen; Fushing, Hsieh

    2012-01-01

    We employed a multi-scale clustering methodology known as "data cloud geometry" to extract functional connectivity patterns derived from functional magnetic resonance imaging (fMRI) protocol. The method was applied to correlation matrices of 106 regions of interest (ROIs) in 29 individuals with autism spectrum disorders (ASD), and 29 individuals with typical development (TD) while they completed a cognitive control task. Connectivity clustering geometry was examined at both "fine" and "coarse" scales. At the coarse scale, the connectivity clustering geometry produced 10 valid clusters with a coherent relationship to neural anatomy. A supervised learning algorithm employed fine scale information about clustering motif configurations and prevalence, and coarse scale information about intra- and inter-regional connectivity; the algorithm correctly classified ASD and TD participants with sensitivity of 82.8% and specificity of 82.8%. Most of the predictive power of the logistic regression model resided at the level of the fine-scale clustering geometry, suggesting that cellular versus systems level disturbances are more prominent in individuals with ASD. This article provides validation for this multi-scale geometric approach to extracting brain functional connectivity pattern information and for its use in classification of ASD.

  17. Decreased functional connectivity in an executive control network is related to impaired executive function in Internet gaming disorder

    Science.gov (United States)

    Dong, Guangheng; Lin, Xiao; Potenza, Marc N.

    2015-01-01

    Background Resting brain spontaneous neural activities across cortical regions have been correlated with specific functional properties in psychiatric groups. Individuals with Internet gaming disorder (IGD) demonstrate impaired executive control. Thus, it is important to examine executive control networks (ECNs) during resting states and their relationships to executive control during task performance. Methods Thirty-five IGD and 36 healthy control participants underwent a resting-state fMRI scan and performed a Stroop task inside and outside of the MRI scanner. Correlations between Stroop effect and functional connectivity among ECN regions of interest (ROIs) were calculated within and between groups. Results IGD subjects show lower functional connectivity in ECNs than do HC participants during resting state; functional-connectivity measures in ECNs were negatively correlated with Stroop effect and positively correlated with brain activations in executive-control regions across groups. Within groups, negative trends were found between Stroop effect and functional connectivity in ECNs in IGD and HC groups, separately; positive trends were found between functional connectivity in ECNs and brain activations in Stroop task in IGD and HC groups, separately. Conclusions Higher functional connectivity in ECNs may underlie better executive control and may provide resilience with respect to IGD. Lower functional connectivity in ECNs may represent an important feature in understanding and treating IGD. PMID:25445475

  18. White matter lesions relate to tract-specific reductions in functional connectivity.

    Science.gov (United States)

    Langen, Carolyn D; Zonneveld, Hazel I; White, Tonya; Huizinga, Wyke; Cremers, Lotte G M; de Groot, Marius; Ikram, Mohammad Arfan; Niessen, Wiro J; Vernooij, Meike W

    2017-03-01

    White matter lesions play a role in cognitive decline and dementia. One presumed pathway is through disconnection of functional networks. Little is known about location-specific effects of lesions on functional connectivity. This study examined location-specific effects within anatomically-defined white matter tracts in 1584 participants of the Rotterdam Study, aged 50-95. Tracts were delineated from diffusion magnetic resonance images using probabilistic tractography. Lesions were segmented on fluid-attenuated inversion recovery images. Functional connectivity was defined across each tract on resting-state functional magnetic resonance images by using gray matter parcellations corresponding to the tract ends and calculating the correlation of the mean functional activity between the gray matter regions. A significant relationship between both local and brain-wide lesion load and tract-specific functional connectivity was found in several tracts using linear regressions, also after Bonferroni correction. Indirect connectivity analyses revealed that tract-specific functional connectivity is affected by lesions in several tracts simultaneously. These results suggest that local white matter lesions can decrease tract-specific functional connectivity, both in direct and indirect connections. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Intranasal insulin enhances brain functional connectivity mediating the relationship between adiposity and subjective feeling of hunger.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2017-05-09

    Brain insulin sensitivity is an important link between metabolism and cognitive dysfunction. Intranasal insulin is a promising tool to investigate central insulin action in humans. We evaluated the acute effects of 160 U intranasal insulin on resting-state brain functional connectivity in healthy young adults. Twenty-five lean and twenty-two overweight and obese participants underwent functional magnetic resonance imaging, on two separate days, before and after intranasal insulin or placebo application. Insulin compared to placebo administration resulted in increased functional connectivity between the prefrontal regions of the default-mode network and the hippocampus as well as the hypothalamus. The change in hippocampal functional connectivity significantly correlated with visceral adipose tissue and the change in subjective feeling of hunger after intranasal insulin. Mediation analysis revealed that the intranasal insulin induced hippocampal functional connectivity increase served as a mediator, suppressing the relationship between visceral adipose tissue and hunger. The insulin-induced hypothalamic functional connectivity change showed a significant interaction with peripheral insulin sensitivity. Only participants with high peripheral insulin sensitivity showed a boost in hypothalamic functional connectivity. Hence, brain insulin action may regulate eating behavior and facilitate weight loss by modifying brain functional connectivity within and between cognitive and homeostatic brain regions.

  20. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling.

    Directory of Open Access Journals (Sweden)

    Saskia Koehler

    Full Text Available Pathological gambling (PG shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum. PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder.

  1. Brain functional connectivity in stimulant drug dependence and obsessive-compulsive disorder.

    Science.gov (United States)

    Meunier, David; Ersche, Karen D; Craig, Kevin J; Fornito, Alex; Merlo-Pich, Emilio; Fineberg, Naomi A; Shabbir, Shaila S; Robbins, Trevor W; Bullmore, Edward T

    2012-01-16

    There are reasons for thinking that obsessive-compulsive disorder (OCD) and drug dependence, although conventionally distinct diagnostic categories, might share important cognitive and neurobiological substrates. We tested this hypothesis directly by comparing brain functional connectivity measures between patients with OCD, stimulant dependent individuals (SDIs; many of whom were non-dependent users of other recreational drugs) and healthy volunteers. We measured functional connectivity between each possible pair of 506 brain regional functional MRI time series representing low frequency (0.03-0.06 Hz) spontaneous brain hemodynamics in healthy volunteers (N=18), patients with OCD (N=18) and SDIs (N=18). We used permutation tests to identify i) brain regions where strength of connectivity was significantly different in both patient groups compared to healthy volunteers; and ii) brain regions and connections which had significantly different functional connectivity between patient groups. We found that functional connectivity of right inferior and superior orbitofrontal cortex (OFC) was abnormally reduced in both disorders. Whether diagnosed as OCD or SDI, patients with higher scores on measures of compulsive symptom severity showed greater reductions of right orbitofrontal connectivity. Functional connections specifically between OFC and dorsal medial pre-motor and cingulate cortex were attenuated in both patient groups. However, patients with OCD demonstrated more severe and extensive reductions of functional connectivity compared to SDIs. OCD and stimulant dependence are not identical at the level of brain functional systems but they have some important abnormalities in common compared with healthy volunteers. Orbitofrontal connectivity may serve as a human brain systems biomarker for compulsivity across diagnostic categories.

  2. Age Differences in the Intrinsic Functional Connectivity of Default Network Subsystems

    Directory of Open Access Journals (Sweden)

    Karen eCampbell

    2013-11-01

    Full Text Available Recent work suggests that the default mode network (DMN includes two core regions, the ventromedial prefrontal cortex (vmPFC and posterior cingulate cortex (PCC, and several unique subsystems that are functionally distinct. These include a medial temporal lobe (MTL subsystem, active during remembering and future projection, and a dorsomedial PFC (dmPFC subsystem, active during self-reference. The PCC has been further subdivided into ventral (vPCC and dorsal (dPCC regions that are more strongly connected with the DMN and cognitive control networks, respectively. The goal of this study was to examine age differences in resting state functional connectivity within these subsystems. After applying a rigorous procedure to reduce the effects of head motion, we used a multivariate technique to identify both common and unique patterns of functional connectivity in the MTL vs. the dmPFC, and in vPCC vs. dPCC. All four areas had robust functional connectivity with other DMN regions, and each also showed distinct connectivity patterns in both age groups. Young and older adults had equivalent functional connectivity in the MTL subsystem. Older adults showed weaker connectivity in the vPCC and dmPFC subsystems, particularly with other DMN areas, but stronger connectivity than younger adults in the dPCC subsystem, which included areas involved in cognitive control. Our data provide evidence for distinct subsystems involving DMN nodes, which are maintained with age. Nevertheless, there are age differences in the strength of functional connectivity within these subsystems, supporting prior evidence that DMN connectivity is particularly vulnerable to age, whereas connectivity involving cognitive control regions is relatively maintained. These results suggest an age difference in the integrated activity among brain networks that can have implications for cognition in older adults.

  3. Structural integrity of frontostriatal connections predicts longitudinal changes in self-esteem.

    Science.gov (United States)

    Chavez, Robert S; Heatherton, Todd F

    2017-06-01

    Diverse neurological and psychiatric conditions are marked by a diminished sense of positive self-regard, and reductions in self-esteem are associated with risk for these disorders. Recent evidence has shown that the connectivity of frontostriatal circuitry reflects individual differences in self-esteem. However, it remains an open question as to whether the integrity of these connections can predict self-esteem changes over larger timescales. Using diffusion magnetic resonance imaging and probabilistic tractography, we demonstrate that the integrity of white matter pathways linking the medial prefrontal cortex to the ventral striatum predicts changes in self-esteem 8 months after initial scanning in a sample of 30 young adults. Individuals with greater integrity of this pathway during the scanning session at Time 1 showed increased levels of self-esteem at follow-up, whereas individuals with lower integrity showed stifled or decreased levels of self-esteem. These results provide evidence that frontostriatal white matter integrity predicts the trajectory of self-esteem development in early adulthood, which may contribute to blunted levels of positive self-regard seen in multiple psychiatric conditions, including depression and anxiety.

  4. Ventral medial prefrontal functional connectivity and emotion regulation in chronic schizophrenia: A pilot study

    Institute of Scientific and Technical Information of China (English)

    Feng-Mei Fan; Shu-Ping Tan; Fu-De Yang; Yun-Long Tan; Yan-Li Zhao; Nan Chen; Bin-Bin Li

    2013-01-01

    People with schizophrenia exhibit impaired social cognitive functions,particularly emotion regulation.Abnormal activations of the ventral medial prefrontal cortex (vMPFC) during emotional tasks have been demonstrated in schizophrenia,suggesting its important role in emotion processing in patients.We used the resting-state functional connectivity approach,setting a functionally relevant region,the vMPFC,as a seed region to examine the intrinsic functional interactions and communication between the vMPFC and other brain regions in schizophrenic patients.We found hypo-connectivity between the vMPFC and the medial frontal cortex,right middle temporal lobe (MTL),right hippocampus,parahippocampal cortex (PHC) and amygdala.Further,there was a decreased strength of the negative connectivity (or anticorrelation) between the vMPFC and the bilateral dorsal lateral prefrontal cortex (DLPFC) and pre-supplementary motor areas.Among these connectivity alterations,reduced vMPFCDLPFC connectivity was positively correlated with positive symptoms on the Positive and Negative Syndrome Scale,while vMPFC-right MTL/PHC/amygdala functional connectivity was positively correlated with the performance of emotional regulation in patients.These findings imply that communication and coordination throughout the brain networks are disrupted in schizophrenia.The emotional correlates of vMPFC connectivity suggest a role of the hypo-connectivity between these regions in the neuropathology of abnormal social cognition in chronic schizophrenia.

  5. Cerebro-cerebellar Resting-State Functional Connectivity in Children and Adolescents with Autism Spectrum Disorder.

    Science.gov (United States)

    Khan, Amanda J; Nair, Aarti; Keown, Christopher L; Datko, Michael C; Lincoln, Alan J; Müller, Ralph-Axel

    2015-11-01

    The cerebellum plays important roles in sensori-motor and supramodal cognitive functions. Cellular, volumetric, and functional abnormalities of the cerebellum have been found in autism spectrum disorders (ASD), but no comprehensive investigation of cerebro-cerebellar connectivity in ASD is available. We used resting-state functional connectivity magnetic resonance imaging in 56 children and adolescents (28 subjects with ASD, 28 typically developing subjects) 8-17 years old. Partial and total correlation analyses were performed for unilateral regions of interest (ROIs), distinguished in two broad domains as sensori-motor (premotor/primary motor, somatosensory, superior temporal, and occipital) and supramodal (prefrontal, posterior parietal, and inferior and middle temporal). There were three main findings: 1) Total correlation analyses showed predominant cerebro-cerebellar functional overconnectivity in the ASD group; 2) partial correlation analyses that emphasized domain specificity (sensori-motor vs. supramodal) indicated a pattern of robustly increased connectivity in the ASD group (compared with the typically developing group) for sensori-motor ROIs but predominantly reduced connectivity for supramodal ROIs; and 3) this atypical pattern of connectivity was supported by significantly increased noncanonical connections (between sensori-motor cerebral and supramodal cerebellar ROIs and vice versa) in the ASD group. Our findings indicate that sensori-motor intrinsic functional connectivity is atypically increased in ASD, at the expense of connectivity supporting cerebellar participation in supramodal cognition. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Individual differences in the dominance of interhemispheric connections predict cognitive ability beyond sex and brain size.

    Science.gov (United States)

    Martínez, Kenia; Janssen, Joost; Pineda-Pardo, José Ángel; Carmona, Susanna; Román, Francisco Javier; Alemán-Gómez, Yasser; Garcia-Garcia, David; Escorial, Sergio; Quiroga, María Ángeles; Santarnecchi, Emiliano; Navas-Sánchez, Francisco Javier; Desco, Manuel; Arango, Celso; Colom, Roberto

    2017-07-15

    Global structural brain connectivity has been reported to be sex-dependent with women having increased interhemispheric connectivity (InterHc) and men having greater intrahemispheric connectivity (IntraHc). However, (a) smaller brains show greater InterHc, (b) larger brains show greater IntraHc, and (c) women have, on average, smaller brains than men. Therefore, sex differences in brain size may modulate sex differences in global brain connectivity. At the behavioural level, sex-dependent differences in connectivity are thought to contribute to men-women differences in spatial and verbal abilities. But this has never been tested at the individual level. The current study assessed whether individual differences in global structural connectome measures (InterHc, IntraHc and the ratio of InterHc relative to IntraHc) predict spatial and verbal ability while accounting for the effect of sex and brain size. The sample included forty men and forty women, who did neither differ in age nor in verbal and spatial latent components defined by a broad battery of tests and tasks. High-resolution T1-weighted and diffusion-weighted images were obtained for computing brain size and reconstructing the structural connectome. Results showed that men had higher IntraHc than women, while women had an increased ratio InterHc/IntraHc. However, these sex differences were modulated by brain size. Increased InterHc relative to IntraHc predicted higher spatial and verbal ability irrespective of sex and brain size. The positive correlations between the ratio InterHc/IntraHc and the spatial and verbal abilities were confirmed in 1000 random samples generated by bootstrapping. Therefore, sex differences in global structural connectome connectivity were modulated by brain size and did not underlie sex differences in verbal and spatial abilities. Rather, the level of dominance of InterHc over IntraHc may be associated with individual differences in verbal and spatial abilities in both men and

  7. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    Science.gov (United States)

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  8. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    Directory of Open Access Journals (Sweden)

    Laia eFarràs-Permanyer

    2015-08-01

    Full Text Available In the last fifteen years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014.The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: fMRI, MCI and functional connectivity. Eighty-one papers were found, but 2 of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results.

  9. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art.

    Science.gov (United States)

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results.

  10. Increased functional connectivity with puberty in the mentalising network involved in social emotion processing

    OpenAIRE

    Klapwijk, Eduard T.; Goddings, Anne-Lise; Heyes, Stephanie Burnett; Bird, Geoffrey; Viner, Russell M; Blakemore, Sarah-Jayne

    2013-01-01

    There is increasing evidence that puberty plays an important role in the structural and functional brain development seen in adolescence, but little is known of the pubertal influence on changes in functional connectivity. We explored how pubertal indicators (salivary concentrations of testosterone, oestradiol and DHEA; pubertal stage; menarcheal status) relate to functional connectivity between components of a mentalising network identified to be engaged in social emotion processing by our p...

  11. Nonparametric modeling of dynamic functional connectivity in fmri data

    DEFF Research Database (Denmark)

    Nielsen, Søren Føns Vind; Madsen, Kristoffer H.; Røge, Rasmus

    2015-01-01

    in Bayesian statistical modeling we use the predictive likelihood to investigate if the model can discriminate between a motor task and rest both within and across subjects. We further investigate what drives dynamic states using the model on the entire data collated across subjects and task/rest. We find...

  12. Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning

    Science.gov (United States)

    Zhang, Rushao; Hui, Mingqi; Long, Zhiying; Zhao, Xiaojie; Yao, Li

    2012-01-01

    Background Neural substrates underlying motor learning have been widely investigated with neuroimaging technologies. Investigations have illustrated the critical regions of motor learning and further revealed parallel alterations of functional activation during imagination and execution after learning. However, little is known about the functional connectivity associated with motor learning, especially motor imagery learning, although benefits from functional connectivity analysis attract more attention to the related explorations. We explored whether motor imagery (MI) and motor execution (ME) shared parallel alterations of functional connectivity after MI learning. Methodology/Principal Findings Graph theory analysis, which is widely used in functional connectivity exploration, was performed on the functional magnetic resonance imaging (fMRI) data of MI and ME tasks before and after 14 days of consecutive MI learning. The control group had no learning. Two measures, connectivity degree and interregional connectivity, were calculated and further assessed at a statistical level. Two interesting results were obtained: (1) The connectivity degree of the right posterior parietal lobe decreased in both MI and ME tasks after MI learning in the experimental group; (2) The parallel alterations of interregional connectivity related to the right posterior parietal lobe occurred in the supplementary motor area for both tasks. Conclusions/Significance These computational results may provide the following insights: (1) The establishment of motor schema through MI learning may induce the significant decrease of connectivity degree in the posterior parietal lobe; (2) The decreased interregional connectivity between the supplementary motor area and the right posterior parietal lobe in post-test implicates the dissociation between motor learning and task performing. These findings and explanations further revealed the neural substrates underpinning MI learning and supported that

  13. Undifferentiated connective tissue disease-associated interstitial lung disease: changes in lung function.

    Science.gov (United States)

    Kinder, Brent W; Shariat, Cyrus; Collard, Harold R; Koth, Laura L; Wolters, Paul J; Golden, Jeffrey A; Panos, Ralph J; King, Talmadge E

    2010-04-01

    Undifferentiated connective tissue disease (UCTD) is a distinct clinical entity that may be accompanied by interstitial lung disease (ILD). The natural history of UCTD-ILD is unknown. We hypothesized that patients with UCTD-ILD would be more likely to have improvement in lung function than those with idiopathic pulmonary fibrosis (IPF) during longitudinal follow-up. We identified subjects enrolled in the UCSF ILD cohort study with a diagnosis of IPF or UCTD. The primary outcome compared the presence or absence of a > or = 5% increase in percent predicted forced vital capacity (FVC) in IPF and UCTD. Regression models were used to account for potential confounding variables. Ninety subjects were identified; 59 subjects (30 IPF, 29 UCTD) had longitudinal pulmonary function data for inclusion in the analysis. After accounting for baseline pulmonary function tests, treatment, and duration between studies, UCTD was associated with substantial improvement in FVC (odds ratio = 8.23, 95% confidence interval, 1.27-53.2; p = 0.03) during follow-up (median, 8 months) compared with IPF. Patients with UCTD-ILD are more likely to have improved pulmonary function during follow-up than those with IPF. These findings demonstrate the clinical importance of identifying UCTD in patients presenting with an "idiopathic" interstitial pneumonia.

  14. Altered Functional Connectivity of Cognitive-Related Cerebellar Subregions in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Weimin Zheng

    2017-05-01

    Full Text Available Alzheimer’s disease (AD is the most common cause of dementia. Previous studies have found disrupted resting state functional connectivities (rsFCs in various brain networks in the AD patients. However, few studies have focused on the rsFCs of the cerebellum and its sub-regions in the AD patients. In this study, we collected resting-state functional magnetic resonance imaging (rs-fMRI data including 32 AD patients and 38 healthy controls (HCs. We selected two cognitive-related subregions of the cerebellum as seed region and mapped the whole-brain rsFCs for each subregion. We identified several distinct rsFC patterns of the two cognitive-related cerebellar subregions: default-mode network (DMN, frontoparietal network (FPN, visual network (VN and sensorimotor network (SMN. Compared with the controls, the AD patients showed disrupted rsFCs in several different networks (DMN, VN and SMN, predicting the impairment of the functional integration in the cerebellum. Notably, these abnormal rsFCs of the two cerebellar subregions were closely associated with cognitive performance. Collectively, we demonstrated the distinct rsFCs patterns of cerebellar sub-regions with various functional networks, which were differentially impaired in the AD patients.

  15. Changes in anatomical and functional connectivity of Parkinson's disease patients according to cognitive status

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Boyu, E-mail: cbyzgyk@126.com; Fan, Guo Guang, E-mail: fanguog@sina.com; Liu, Hu, E-mail: liuhu1234567@126.com; Wang, Shanshan, E-mail: jelly_66@126.com

    2015-07-15

    Purpose: This study assesses the patterns of structural and functional connectivity damage in patients with Parkinson's disease dementia (PDD) compared with cognitively unimpaired Parkinson's disease patients (PD-Cu) and healthy controls (HC). Materials and methods: Resting state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor magnetic resonance imaging (DTI) scans were obtained from 30 PD and 21 sex- and age-matched HC. The between-group difference in posterior cingulate (PCC) functional connectivity (FC) was performed to assess FC dysfunction. Atlas-based spatial statistics of DTI was applied to compare White matter (WM) fibers impairment between groups. Results: (1) Functional connectivity: (1) PD-Cu compared with HC showed a decreased PCC functional connectivity of the right medial temporal lobe (MTL). In addition, PCC-right MTL connectivity strength of PD was significantly correlated with Montreal Cognitive Assessment (MoCA) score. (2) PDD group shows a decreased FC of PCC-right parahippocampa compared with PD-Cu group; while show a widespread decreased PCC FC compared with HC group. (2) Anatomical connectivity: (1) Relative to PD-Cu, significant lower FA values were found in the left hippocampus in PDD. (2) PDD showed higher MD values in a widespread WM regions compared with PD-Cu and HC. (3) Positive correlation was observed between MoCA score and FA value of left inferior longitudinal and hippocampus, and bilateral superior longitudinal fasciculus in PD. Conclusions: Cognitive decline in PD is associated with FC damage of PCC-right MTL and microstructural damage of left hippocampus. Nevertheless, combining fMRI and DTI method may provide markers able to contribute to the prediction of PDD.

  16. Functional connectivity changes in adults with developmental stuttering: a preliminary study using quantitative electro-encephalography

    Science.gov (United States)

    Joos, Kathleen; De Ridder, Dirk; Boey, Ronny A.; Vanneste, Sven

    2014-01-01

    Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity. Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on quality of life (QoL), we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R) and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES), respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA) analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES. Results: No significant results could be obtained when looking at neural activity, however significant alterations in resting state functional connectivity could be demonstrated between persons who stutter (PWS) and fluently speaking controls, predominantly interhemispheric, i.e., a decreased functional connectivity for high frequency oscillations (beta and gamma) between motor speech areas (BA44 and 45) and the contralateral premotor (BA6) and motor (BA4) areas. Moreover, a positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha) and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL. Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is

  17. Resting state functional connectivity changes in adults with developmental stuttering: an initial sLORETA study.

    Directory of Open Access Journals (Sweden)

    Kathleen eJoos

    2014-10-01

    Full Text Available Introduction: Stuttering is defined as speech characterized by verbal dysfluencies, but should not be seen as an isolated speech disorder, but as a generalized sensorimotor timing deficit due to impaired communication between speech related brain areas. Therefore we focused on resting state brain activity and functional connectivity.Method: We included 11 patients with developmental stuttering and 11 age matched controls. To objectify stuttering severity and the impact on the quality of life (QoL, we used the Dutch validated Test for Stuttering Severity-Readers (TSS-R and the Overall Assessment of the Speaker’s Experience of Stuttering (OASES, respectively. Furthermore, we used standardized low resolution brain electromagnetic tomography (sLORETA analyses to look at resting state activity and functional connectivity differences and their correlations with the TSS-R and OASES.Results: No resting state activity differences were identified in comparison to fluently speaking controls or in correlation with stuttering severity or QoL measures. Significant alterations in resting state functional connectivity were found, predominantly interhemispheric, i.e. a decreased functional connectivity for high frequency oscillations (beta and gamma between motor speech areas (BA44 and 45 and the contralateral premotor (BA 6 and motor (BA 4 areas. A positive correlation was found between functional connectivity at low frequency oscillations (theta and alpha and stuttering severity, while a mixed increased and decreased functional connectivity at low and high frequency oscillations correlated with QoL.Discussion: PWS are characterized by decreased high frequency interhemispheric functional connectivity between motor speech, premotor and motor areas in the resting state, while higher functional connectivity in the low frequency bands indicates more severe speech disturbances, suggesting that increased interhemispheric and right sided functional connectivity is

  18. Predictors and brain connectivity changes associated with arm motor function improvement from intensive practice in chronic stroke

    Science.gov (United States)

    Wittenberg, George F.; Richards, Lorie G.; Jones-Lush, Lauren M.; Roys, Steven R.; Gullapalli, Rao P.; Yang, Suzy; Guarino, Peter D.; Lo, Albert C.

    2017-01-01

    Background and Purpose: The brain changes that underlie therapy-induced improvement in motor function after stroke remain obscure. This study sought to demonstrate the feasibility and utility of measuring motor system physiology in a clinical trial of intensive upper extremity rehabilitation in chronic stroke-related hemiparesis. Methods: This was a substudy of two multi-center clinical trials of intensive robotic and intensive conventional therapy arm therapy in chronic, significantly hemiparetic, stroke patients. Transcranial magnetic stimulation was used to measure motor cortical output to the biceps and extensor digitorum communus muscles. Magnetic resonance imaging (MRI) was used to determine the cortical anatomy, as well as to measure fractional anisotropy, and blood oxygenation (BOLD) during an eyes-closed rest state. Region-of-interest time-series correlation analysis was performed on the BOLD signal to determine interregional connectivity. Functional status was measured with the upper extremity Fugl-Meyer and Wolf Motor Function Test. Results: Motor evoked potential (MEP) presence was associated with better functional outcomes, but the effect was not significant when considering baseline impairment. Affected side internal capsule fractional anisotropy was associated with better function at baseline. Affected side primary motor cortex (M1) activity became more correlated with other frontal motor regions after treatment. Resting state connectivity between affected hemisphere M1 and dorsal premotor area (PMAd) predicted recovery. Conclusions: Presence of motor evoked potentials in the affected motor cortex and its functional connectivity with PMAd may be useful in predicting recovery. Functional connectivity in the motor network shows a trends towards increasing after intensive robotic or non-robotic arm therapy. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00372411 \\& NCT00333983. PMID:28357039

  19. Scoring protein relationships in functional interaction networks predicted from sequence data.

    Directory of Open Access Journals (Sweden)

    Gaston K Mazandu

    Full Text Available UNLABELLED: The abundance of diverse biological data from various sources constitutes a rich source of knowledge, which has the power to advance our understanding of organisms. This requires computational methods in order to integrate and exploit these data effectively and elucidate local and genome wide functional connections between protein pairs, thus enabling functional inferences for uncharacterized proteins. These biological data are primarily in the form of sequences, which determine functions, although functional properties of a protein can often be predicted from just the domains it contains. Thus, protein sequences and domains can be used to predict protein pair-wise functional relationships, and thus contribute to the function prediction process of uncharacterized proteins in order to ensure that knowledge is gained from sequencing efforts. In this work, we introduce information-theoretic based approaches to score protein-protein functional interaction pairs predicted from protein sequence similarity and conserved protein signature matches. The proposed schemes are effective for data-driven scoring of connections between protein pairs. We applied these schemes to the Mycobacterium tuberculosis proteome to produce a homology-based functional network of the organism with a high confidence and coverage. We use the network for predicting functions of uncharacterised proteins. AVAILABILITY: Protein pair-wise functional relationship scores for Mycobacterium tuberculosis strain CDC1551 sequence data and python scripts to compute these scores are available at http://web.cbio.uct.ac.za/~gmazandu/scoringschemes.

  20. Integrating structural and functional connectivity to characterize sediment dynamics in a small Alpine catchment

    Science.gov (United States)

    Cavalli, Marco; Crema, Stefano; Blok, Michiel; Lucía, Ana; Comiti, Francesco; Marchi, Lorenzo; Keesstra, Saskia

    2016-04-01

    Sediment connectivity can be regarded as a descriptor of the internal linkages between different landscape components within a catchment. The recent focus of the scientific community on connectivity related topics, both concerning hydrological and sediment connectivity, stresses the importance of understanding the main active pathways for a better estimation of energy and matter transfer at catchment scale. This task can be addressed using topography-based indices that analyse the linkages between landscape units. This approach to characterize connectivity is known as structural connectivity. The main limitation of structural connectivity is that it does not account for the processes driving sediment and energy fluxes (i.e., functional connectivity). In this work the integration between structural and functional approaches is proposed for characterizing sediment connectivity in mountain catchments. The structural approach, based on a topography-based sediment connectivity index, was used for assessing hillslope-to-channel connectivity. Since field data on processes driving sediment transport along the channel network are available, a functional approach has been devised to estimate within-channel connectivity. An index of unit stream power computed from the hydraulic properties of the channel (i.e., discharge, slope and channel width) has been compared with the critical unit stream power computed from incipient motion thresholds derived from field data to identify the cells of the Digital Terrain Model (DTM) in which sediment can be mobilized under near-bankfull conditions. The index expressing the within-channel connectivity is given by the length of the reaches consisting of contiguous cells that exceed the critical unit stream power. During high-magnitude floods, when unit stream power values exceed the threshold for incipient motion, channels experience an increase in both hydrological and sediment connectivity. The proposed index characterizes those sections

  1. Predictive model for the heat capacity of ionic liquids using the mass connectivity index

    Energy Technology Data Exchange (ETDEWEB)

    Valderrama, Jose O., E-mail: jvalderr@userena.cl [Univ. of La Serena, Fac. of Engineering, Dept. of Mech. Eng., Casilla 554, La Serena (Chile); Center for Technological Information (CIT), Casilla 724, La Serena (Chile); Martinez, Gwendolyn [Center for Technological Information (CIT), Casilla 724, La Serena (Chile); Univ. Nacional Pedro Ruiz Gallo, Fac. of Chemical Engineering, Lambayeque (Peru); Rojas, Roberto E. [Univ. of La Serena, Fac. of Sciences, Dept. of Chemistry, Casilla 554, La Serena (Chile)

    2011-01-20

    A simple and accurate model to predict the heat capacity of ionic liquids is presented. The proposed model considers variables readily available for ionic liquids and that have important effect on heat capacity, according to the literature information. Additionally a recently defined structural parameter known as mass connectivity index is incorporated into the model. A set of 602 heat capacity data for 146 ionic liquids have been used in the study. The results were compared with experimental data and with values reported by other available estimation methods. Results show that the new simple correlation gives low deviations and can be used with confidence in thermodynamic and engineering calculations.

  2. Model Predictive Current Control for High-Power Grid-Connected Converters with Output LCL Filter

    DEFF Research Database (Denmark)

    Delpino, Hernan Anres Miranda; Teodorescu, Remus; Rodriguez, Pedro

    2009-01-01

    A model predictive control strategy for a highpower, grid connected 3-level neutral clamped point converter is presented. Power losses constraints set a limit on commutation losses so reduced switching frequency is required, thus producing low frequency current harmonics. To reduce these harmonics...... an LCL filter is used. The proposed control strategy allows control of the active and reactive power fed into the grid, reduce the switching frequency within acceptable operational margins and keep balance of the DC-link capacitor voltages while avoiding excitation of the filter resonance frequencies....

  3. Predicting functional recovery after acute ankle sprain.

    Directory of Open Access Journals (Sweden)

    Sean R O'Connor

    Full Text Available INTRODUCTION: Ankle sprains are among the most common acute musculoskeletal conditions presenting to primary care. Their clinical course is variable but there are limited recommendations on prognostic factors. Our primary aim was to identify clinical predictors of short and medium term functional recovery after ankle sprain. METHODS: A secondary analysis of data from adult participants (N = 85 with an acute ankle sprain, enrolled in a randomized controlled trial was undertaken. The predictive value of variables (age, BMI, gender, injury mechanism, previous injury, weight-bearing status, medial joint line pain, pain during weight-bearing dorsiflexion and lateral hop test recorded at baseline and at 4 weeks post injury were investigated for their prognostic ability. Recovery was determined from measures of subjective ankle function at short (4 weeks and medium term (4 months follow ups. Multivariate stepwise linear regression analyses were undertaken to evaluate the association between the aforementioned variables and functional recovery. RESULTS: Greater age, greater injury grade and weight-bearing status at baseline were associated with lower function at 4 weeks post injury (p<0.01; adjusted R square=0.34. Greater age, weight-bearing status at baseline and non-inversion injury mechanisms were associated with lower function at 4 months (p<0.01; adjusted R square=0.20. Pain on medial palpation and pain on dorsiflexion at 4 weeks were the most valuable prognostic indicators of function at 4 months (p< 0.01; adjusted R square=0.49. CONCLUSION: The results of the present study provide further evidence that ankle sprains have a variable clinical course. Age, injury grade, mechanism and weight-bearing status at baseline provide some prognostic information for short and medium term recovery. Clinical assessment variables at 4 weeks were the strongest predictors of recovery, explaining 50% of the variance in ankle function at 4 months. Further

  4. Optical imaging of disrupted functional connectivity following ischemic stroke in mice.

    Science.gov (United States)

    Bauer, Adam Q; Kraft, Andrew W; Wright, Patrick W; Snyder, Abraham Z; Lee, Jin-Moo; Culver, Joseph P

    2014-10-01

    Recent human neuroimaging studies indicate that spontaneous fluctuations in neural activity, as measured by functional connectivity magnetic resonance imaging (fcMRI), are significantly affected following stroke. Disrupted functional connectivity is associated with behavioral deficits and has been linked to long-term recovery potential. FcMRI studies of stroke in rats have generally produced similar findings, although subacute cortical reorganization following focal ischemia appears to be more rapid than in humans. Similar studies in mice have not been published, most likely because fMRI in the small mouse brain is technically challenging. Extending functional connectivity methods to mouse models of stroke could provide a valuable tool for understanding the link between molecular mechanisms of stroke repair and human fcMRI findings at the system level. We applied functional connectivity optical intrinsic signal imaging (fcOIS) to mice before and 72 h after transient middle cerebral artery occlusion (tMCAO) to examine how graded ischemic injury affects the relationship between functional connectivity and infarct volume, stimulus-induced response, and behavior. Regional changes in functional connectivity within the MCA territory were largely proportional to infarct volume. However, subcortical damage affected functional connectivity in the somatosensory cortex as much as larger infarcts of cortex and subcortex. The extent of injury correlated with cortical activations following electrical stimulation of the affected forelimb and with functional connectivity in the somatosensory cortex. Regional homotopic functional connectivity in motor cortex correlated with behavioral deficits measured using an adhesive patch removal test. Spontaneous hemodynamic activity within the infarct exhibited altered temporal and spectral features in comparison to intact tissue; failing to account for these regional differences significantly affected apparent post-stroke functional

  5. [fMRI functional connectivity analysis of anxiety disease patients based on spatiotemporal Lyapunov exponent method].

    Science.gov (United States)

    Wang, Zhikang; Lou, Haifang; Sun, Jianzhong

    2011-07-01

    Attempting to use nonlinear spatiotemporal Lyapunov exponent to characterize fMRI brain functional connectivity of anxiety disease patients, we adopted the methods of nonlinear spatiotemporal Lyapunov exponent and linear correlation coefficients to analyses fMRI datum of 11 anxiety disease patients and 11 healthy volunteers, respectively. The results show that there are significant normalized variance exponent (NVE) differences in Inferior Frontal Gyrus (rIFG) and Medial Frontal Gyrus (MFG) between the two groups (PLyapunov exponent method had higher sensitivity than the correlation coefficient method in the characterization of functional connectivity; Anxiety disease patients have abnormal functional connectivity in rIFG and MFG during our experiment.

  6. Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks

    Science.gov (United States)

    Vértes, Petra E.; Rittman, Timothy; Whitaker, Kirstie J.; Romero-Garcia, Rafael; Váša, František; Wagstyl, Konrad; Fonagy, Peter; Dolan, Raymond J.; Jones, Peter B.; Goodyer, Ian M.

    2016-01-01

    Human functional magnetic resonance imaging (fMRI) brain networks have a complex topology comprising integrative components, e.g. long-distance inter-modular edges, that are theoretically associated with higher biological cost. Here, we estimated intra-modular degree, inter-modular degree and connection distance for each of 285 cortical nodes in multi-echo fMRI data from 38 healthy adults. We used the multivariate technique of partial least squares (PLS) to reduce the dimensionality of the relationships between these three nodal network parameters and prior microarray data on regional expression of 20 737 genes. The first PLS component defined a transcriptional profile associated with high intra-modular degree and short connection distance, whereas the second PLS component was associated with high inter-modular degree and long connection distance. Nodes in superior and lateral cortex with high inter-modular degree and long connection distance had local transcriptional profiles enriched for oxidative metabolism and mitochondria, and for genes specific to supragranular layers of human cortex. In contrast, primary and secondary sensory cortical nodes in posterior cortex with high intra-modular degree and short connection distance had transcriptional profiles enriched for RNA translation and nuclear components. We conclude that, as predicted, topologically integrative hubs, mediating long-distance connections between modules, are more costly in terms of mitochondrial glucose metabolism. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574314

  7. Functional connectivity in the brain estimated by analysis of gamma events.

    Directory of Open Access Journals (Sweden)

    Anatol Bragin

    Full Text Available It is known that gamma activity is generated by local networks. In this paper we introduced a new approach for estimation of functional connectivity between neuronal networks by measuring temporal relations between peaks of gamma event amplitudes. We have shown in freely moving rats that gamma events recorded between electrodes 1.5 mm apart in the majority of cases, are generated by different neuronal modules interfering with each other. The map of functional connectivity between brain areas during the resting state, created based on gamma event temporal relationships is in agreement with anatomical connections and with maps described by fMRI methods during the resting state. The transition from the resting state to exploratory activity is accompanied by decreased functional connectivity between most brain areas. Our data suggest that functional connectivity between interhemispheric areas depends on GABAergic transmission, while intrahemispheric functional connectivity is kainate receptor dependent. This approach presents opportunities for merging electrographic and fMRI data on brain functional connectivity in normal and pathological conditions.

  8. Effective amygdala-prefrontal connectivity predicts individual differences in successful emotion regulation.

    Science.gov (United States)

    Morawetz, Carmen; Bode, Stefan; Baudewig, Juergen; Heekeren, Hauke R

    2016-12-20

    The ability to voluntarily regulate our emotional response to threatening and highly arousing stimuli by using cognitive reappraisal strategies is essential for our mental and physical well-being. This might be achieved by prefrontal brain regions (e.g., inferior frontal gyrus, IFG) down-regulating activity in the amygdala. It is unknown, to which degree effective connectivity within the emotion-regulation network is linked to individual differences in reappraisal skills. Using psychophysiological interaction (PPI) analyses of functional magnetic resonance imaging data, we examined changes in inter-regional connectivity between the amygdala and IFG with other brain regions during reappraisal of emotional responses and used emotion regulation success as an explicit regressor. During down-regulation of emotion, reappraisal success correlated with effective connectivity between IFG with dorsolateral, dorsomedial and ventromedial prefrontal cortex (PFC). During up-regulation of emotion, effective coupling between IFG with anterior cingulate cortex, dorsomedial and ventromedial PFC as well as the amygdala correlated with reappraisal success. Activity in the amygdala covaried with activity in lateral and medial prefrontal regions during the up-regulation of emotion and correlated with reappraisal success. These results suggest that successful reappraisal is linked to changes in effective connectivity between two systems, prefrontal cognitive control regions and regions crucially involved in emotional evaluation.

  9. The Psychoactive Designer Drug and Bath Salt Constituent MDPV Causes Widespread Disruption of Brain Functional Connectivity.

    Science.gov (United States)

    Colon-Perez, Luis M; Tran, Kelvin; Thompson, Khalil; Pace, Michael C; Blum, Kenneth; Goldberger, Bruce A; Gold, Mark S; Bruijnzeel, Adriaan W; Setlow, Barry; Febo, Marcelo

    2016-08-01

    The abuse of 'bath salts' has raised concerns because of their adverse effects, which include delirium, violent behavior, and suicide ideation in severe cases. The bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) has been closely linked to these and other adverse effects. The abnormal behavioral pattern produced by acute high-dose MDPV intake suggests possible disruptions of neural communication between brain regions. Therefore, we determined if MDPV exerts disruptive effects on brain functional connectivity, particularly in areas of the prefrontal cortex. Male rats were imaged following administration of a single dose of MDPV (0.3, 1.0, or 3.0 mg/kg) or saline. Resting state brain blood oxygenation level-dependent (BOLD) images were acquired at 4.7 T. To determine the role of dopamine transmission in MDPV-induced changes in functional connectivity, a group of rats received the dopamine D1/D2 receptor antagonist cis-flupenthixol (0.5 mg/kg) 30 min before MDPV. MDPV dose-dependently reduced functional connectivity. Detailed analysis of its effects revealed that connectivity between frontal cortical and striatal areas was reduced. This included connectivity between the prelimbic prefrontal cortex and other areas of the frontal cortex and the insular cortex with hypothalamic, ventral, and dorsal striatal areas. Although the reduced connectivity appeared widespread, connectivity between these regions and somatosensory cortex was not as severely affected. Dopamine receptor blockade did not prevent the MDPV-induced decrease in functional connectivity. The results provide a novel signature of MDPV's in vivo mechanism of action. Reduced brain functional connectivity has been reported in patients suffering from psychosis and has been linked to cognitive dysfunction, audiovisual hallucinations, and negative affective states akin to those reported for MDPV-induced intoxication. The present results suggest that disruption of functional connectivity networks

  10. Aberrant default-mode functional and structural connectivity in heroin-dependent individuals.

    Directory of Open Access Journals (Sweden)

    Xiaofen Ma

    Full Text Available Little is known about connectivity within the default mode network (DMN in heroin-dependent individuals (HDIs. In the current study, diffusion-tensor imaging (DTI and resting-state functional MRI (rs-fMRI were combined to investigate both structural and functional connectivity within the DMN in HDIs.Fourteen HDIs and 14 controls participated in the study. Structural (path length, tracts count, (fractional anisotropy FA and (mean diffusivity MD derived from DTI tractographyand functional (temporal correlation coefficient derived from rs-fMRI DMN connectivity changes were examined in HDIs. Pearson correlation analysis was performed to compare the structural/functional indices and duration of heroin use/Iowa gambling task(IGT performance in HDIs.HDIs had lower FA and higher MD in the tract connecting the posterior cingulate cortex/precuneus (PCC/PCUN to right parahippocampal gyrus (PHG, compared to the controls. HDIs also had decreased FA and track count in the tract connecting the PCC/PCUN and medial prefrontal cortex (MPFC, as well as decreased functional connectivity between the PCC/PCUN and bilateral PHG and MPFC, compared to controls. FA values for the tract connecting PCC/PCUN to the right PHG and connecting PCC/PCUN to the MPFC were negatively correlated to the duration of heroin use. The temporal correlation coefficients between the PCC/PCUN and the MPFC, and the FA values for the tract connecting the PCC/PCUN to the MPFC were positively correlated to IGT performance in HDIs.Structural and functional connectivity within the DMN are both disturbed in HDIs. This disturbance progresses as duration of heroin use increases and is related to deficits in decision making in HDIs.

  11. Improving Synchronization and Functional Connectivity in Autism Spectrum Disorders Through Plasticity-Induced Rehabilitation

    Science.gov (United States)

    2013-08-01

    Cohen MX, Geurts HM. Brain connectivity and high functioning autism : A promising path of research that needs refined models , methodological...Initiated Movement Videos Social Play Hand Final Report !"!#$%&’()##*+,-(&#.#$/0122234567859.70.7.0332:# ! ! ! &$! Treatment...connectivity of two key social brain networks in autism spectrum disorder Inna Fishman1, Christopher L. Keown1, Alan J. Lincoln2, Jaime A

  12. Dual compartment neurofluidic system for electrophysiological measurements in physically segregated and functionally connected neuronal cell culture

    Directory of Open Access Journals (Sweden)

    Thirukumaran T eKanagasabapathi

    2011-10-01

    Full Text Available We developed a dual compartment neurofluidic system with inter-connecting microchannels to connect neurons from their respective compartments, placed on a planar microelectrode array (MEA.The design and development of the compartmented microfluidic device for neuronal cell culture, protocol for sustaining long-term cultures and neurite growth through microchannels in such a closed compartment device are presented. Using electrophysiological measurements of spontaneous network activity in the compartments and selective pharmacological manipulation of cells in one compartment, the biological origin of network activity and the fluidic isolation between the compartments are demonstrated. The connectivity between neuronal populations via the microchannels and the crossing-over of neurites are verified using transfection experiments and immunofluorescence staining. In addition to the neurite cross-over to the adjacent compartment, functional connectivity between cells in both the compartments is verified using cross-correlation based techniques. Bidirectional signal propagation between the compartments is demonstrated using functional connectivity maps. Cross-correlation analysis and connectivity maps demonstrate that the two neuronal populations are not only functionally connected within each compartment but also with each other and a well connected functional network was formed between the compartments despite the physical barrier introduced by the microchannels.

  13. Decoupling of structural and functional brain connectivity in older adults with white matter hyperintensities

    NARCIS (Netherlands)

    Reijmer, Y. D.; Schultz, A. P.; Leemans, A.; O'Sullivan, M. J.; Gurol, M. E.; Sperling, R.; Greenberg, S. M.; Viswanathan, A.; Hedden, T.

    2015-01-01

    Age-related impairments in the default network (DN) have been related to disruptions in connecting white matter tracts. We hypothesized that the local correlation between DN structural and functional connectivity is negatively affected in the presence of global white matter injury. In 125 clinically

  14. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas.

    Science.gov (United States)

    Pinho, Ana Luísa; de Manzano, Örjan; Fransson, Peter; Eriksson, Helene; Ullén, Fredrik

    2014-04-30

    Musicians have been used extensively to study neural correlates of long-term practice, but no studies have investigated the specific effects of training musical creativity. Here, we used human functional MRI to measure brain activity during improvisation in a sample of 39 professional pianists with varying backgrounds in classical and jazz piano playing. We found total hours of improvisation experience to be negatively associated with activity in frontoparietal executive cortical areas. In contrast, improvisation training was positively associated with functional connectivity of the bilateral dorsolateral prefrontal cortices, dorsal premotor cortices, and presupplementary areas. The effects were significant when controlling for hours of classical piano practice and age. These results indicate that even neural mechanisms involved in creative behaviors, which require a flexible online generation of novel and meaningful output, can be automated by training. Second, improvisational musical training can influence functional brain properties at a network level. We show that the greater functional connectivity seen in experienced improvisers may reflect a more efficient exchange of information within associative networks of importance for musical creativity.

  15. Characterization of Differences in Functional Connectivity Associated with Close-Range Blast Exposure.

    Science.gov (United States)

    Robinson, Meghan E; Clark, Dustin C; Milberg, William P; McGlinchey, Regina E; Salat, David H

    2017-09-01

    Despite the prevalence of blast injuries in recent overseas conflicts, knowledge of their impact on neural health is lacking. We have recently published work demonstrating differences in functional magnetic resonance imaging (fMRI) connectivity that were specific to close-range blast exposure (CBE), as opposed to other prevalent military-related factors. Here, we replicate this finding in an independent sample of 135 veterans, again finding that CBE, regardless of concussion, is predictive of persistent changes in brain physiology. Although there was weak overlap anatomically, in both samples, the group differences could be described as spreading of anticorrelation. Using the combined sample, we now seek to identify likely mechanisms that could bring about this effect. We compared participants with (n = 116) and without (n = 153) CBE by analyzing two networks through group difference maps and correlation distributions to assess spatially homogenous and heterogeneous effects. As boundaries between positive and negative correlations in fcMRI are determined by noise covariates, we compared analyses with and without global signal regression. We found evidence of widespread altered connectivity that was spatially heterogeneous across participants, and that the role of global signal regression was network dependent. These findings are not consistent with expected results from damaged white matter or impaired neural function. Rather, potential biological interpretations include disrupted cerebral blood flow or impaired neurovascular coupling, which have each been observed in animal models of blast exposure. Further targeted work will be necessary to distinguish the contribution of each of these mechanisms to producing changes in brain function associated with CBE.

  16. Brain Functional Connectivity in MS: An EEG-NIRS Study

    Science.gov (United States)

    2015-10-01

    oxygen- based ( near -infrared spectroscopy (NIRS), functional MRI (fMRI)) signals, and to use the results to help optimize BOLD fMRI analyses of brain...2. Keywords BOLD – blood oxygen level dependent EEG – electroencephalography NIRS – near -infrared spectroscopy fMRI – functional MRI MS...INTRODUCTION TO ELECTROENCEPHALOGRAPHY AND NEAR -INFRARED SPECTROSCOPY NEUROIMAGING MEASUREMENT AND ANALYSIS P.40LO GlACO~lETTT 1. COURSE O VERVIEW T he

  17. Functional connection of didactical elements in teaching geography

    Directory of Open Access Journals (Sweden)

    Živković Ljiljana

    2010-01-01

    Full Text Available The aim of this work is to present complex relations within didactical triangle as well as review of the practical usage of relations of didactical polygon. Importance of subject of this work is, certainly, its constant actualization and irrepressible change which is happening within elements and in their mutual interaction. This kind of relation brings innovations and suffers changes from modern times. Starting from immediate ways of communication to closer and further perceive of their development, the subject gets dimension of expected and somewhat exciting. The theme ensued because of the need for logical separation of didactical elements and also to connect them through complex system of communication. Their imbues are coming to express daily while interaction is developing not only in historical period but in instantaneous stages. The media, today, gives grade to development of society and represent degree of progress. As such an important factor, the role of the media must be taken into consideration. Geographical achievement is represented by teaching methods of geography and in that way it represents significant media. Complicatedness of this theme also reflects in universality; geography has advanced as science and there is great expectation for methodical science to catch up with geography and to present new manners, ways of transferring knowledge. .

  18. Functional and structural connectivity of the visual system in infants with perinatal brain injury.

    Science.gov (United States)

    Merhar, Stephanie L; Gozdas, Elveda; Tkach, Jean A; Harpster, Karen L; Schwartz, Terry L; Yuan, Weihong; Kline-Fath, Beth M; Leach, James L; Altaye, Mekibib; Holland, Scott K

    2016-07-01

    Infants with perinatal brain injury are at risk of later visual problems. Advanced neuroimaging techniques show promise to detect functional and structural alterations of the visual system. We hypothesized that infants with perinatal brain injury would have less brain activation during a visual functional magnetic resonance imaging (fMRI) task and reduced task-based functional connectivity and structural connectivity as compared with healthy controls. Ten infants with perinatal brain injury and 20 control infants underwent visual fMRI and diffusion tensor imaging (DTI) during natural sleep with no sedation. Activation maps, functional connectivity maps, and structural connectivity were analyzed and compared between the two groups. Most infants in both groups had negative activation in the visual cortex during the fMRI task. Infants with brain injury showed reduced activation in the occipital cortex, weaker connectivity between visual areas and other areas of the brain during the visual task, and reduced fractional anisotropy in white matter tracts projecting to visual regions, as compared with control infants. Infants with brain injury sustained in the perinatal period showed evidence of decreased brain activity and functional connectivity during a visual task and altered structural connectivity as compared with healthy term neonates.

  19. Altered functional connectivity of the language network in ASD: Role of classical language areas and cerebellum

    Directory of Open Access Journals (Sweden)

    Marjolein Verly

    2014-01-01

    Full Text Available The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD. Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19 and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI.

  20. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

    Science.gov (United States)

    Koenig, Katherine A; Lowe, Mark J; Harrington, Deborah L; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S; Rao, Stephen M

    2014-09-01

    Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

  1. Dissociated functional connectivity profiles for motor and attention deficits in acute right-hemisphere stroke.

    Science.gov (United States)

    Baldassarre, Antonello; Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S; Metcalf, Nicholas V; Strube, Michael J; Snyder, Abraham Z; Corbetta, Maurizio; Shulman, Gordon L

    2016-07-01

    Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1-2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please

  2. Experimental manipulation of infant temperament affects amygdala functional connectivity

    DEFF Research Database (Denmark)

    Riem, Madelon M E; van Ijzendoorn, Marinus H; Parsons, Christine E

    2017-01-01

    In this functional magnetic resonance imaging (fMRI) study we examined neural processing of infant faces associated with a happy or a sad temperament in nulliparous women. We experimentally manipulated adult perception of infant temperament in a probabilistic learning task. In this task, particip......In this functional magnetic resonance imaging (fMRI) study we examined neural processing of infant faces associated with a happy or a sad temperament in nulliparous women. We experimentally manipulated adult perception of infant temperament in a probabilistic learning task. In this task...

  3. Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome.

    Science.gov (United States)

    Pujol, Jesus; del Hoyo, Laura; Blanco-Hinojo, Laura; de Sola, Susana; Macià, Dídac; Martínez-Vilavella, Gerard; Amor, Marta; Deus, Joan; Rodríguez, Joan; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

    2015-03-01

    Research in Down syndrome has substantially progressed in the understanding of the effect of gene overexpression at the molecular level, but there is a paucity of information on the ultimate consequences on overall brain functional organization. We have assessed the brain functional status in Down syndrome using functional connectivity MRI. Resting-state whole-brain connectivity degree maps were generated in 20 Down syndrome individuals and 20 control subjects to identify sites showing anomalous synchrony with other areas. A subsequent region-of-interest mapping served to detail the anomalies and to assess their potential contribution to poor adaptive behavior. Down syndrome individuals showed higher regional connectivity in a ventral brain system involving the amygdala/anterior temporal region and the ventral aspect of both the anterior cingulate and frontal cortices. By contrast, lower functional connectivity was identified in dorsal executive networks involving dorsal prefrontal and anterior cingulate cortices and posterior insula. Both functional connectivity increases and decreases contributed to account for patient scoring on adaptive behavior related to communication skills. The data overall suggest a distinctive functional organization with system-specific anomalies associated with reduced adaptive efficiency. Opposite effects were identified on distinct frontal and anterior temporal structures and relative sparing of posterior brain areas, which is generally consistent with Down syndrome cognitive profile. Relevantly, measurable connectivity changes, as a marker of the brain functional anomaly, could have a role in the development of therapeutic strategies addressed to improve the quality of life in Down syndrome individuals.

  4. Functional connectivity among spikes in low dimensional space during working memory task in rat.

    Directory of Open Access Journals (Sweden)

    Mei Ouyang

    Full Text Available Working memory (WM is critically important in cognitive tasks. The functional connectivity has been a powerful tool for understanding the mechanism underlying the information processing during WM tasks. The aim of this study is to investigate how to effectively characterize the dynamic variations of the functional connectivity in low dimensional space among the principal components (PCs which were extracted from the instantaneous firing rate series. Spikes were obtained from medial prefrontal cortex (mPFC of rats with implanted microelectrode array and then transformed into continuous series via instantaneous firing rate method. Granger causality method is proposed to study the functional connectivity. Then three scalar metrics were applied to identify the changes of the reduced dimensionality functional network during working memory tasks: functional connectivity (GC, global efficiency (E and casual density (CD. As a comparison, GC, E and CD were also calculated to describe the functional connectivity in the original space. The results showed that these network characteristics dynamically changed during the correct WM tasks. The measure values increased to maximum, and then decreased both in the original and in the reduced dimensionality. Besides, the feature values of the reduced dimensionality were significantly higher during the WM tasks than they were in the original space. These findings suggested that functional connectivity among the spikes varied dynamically during the WM tasks and could be described effectively in the low dimensional space.

  5. Functional connectivity among spikes in low dimensional space during working memory task in rat.

    Science.gov (United States)

    Ouyang, Mei; Li, Shuangyan; Tian, Xin

    2014-01-01

    Working memory (WM) is critically important in cognitive tasks. The functional connectivity has been a powerful tool for understanding the mechanism underlying the information processing during WM tasks. The aim of this study is to investigate how to effectively characterize the dynamic variations of the functional connectivity in low dimensional space among the principal components (PCs) which were extracted from the instantaneous firing rate series. Spikes were obtained from medial prefrontal cortex (mPFC) of rats with implanted microelectrode array and then transformed into continuous series via instantaneous firing rate method. Granger causality method is proposed to study the functional connectivity. Then three scalar metrics were applied to identify the changes of the reduced dimensionality functional network during working memory tasks: functional connectivity (GC), global efficiency (E) and casual density (CD). As a comparison, GC, E and CD were also calculated to describe the functional connectivity in the original space. The results showed that these network characteristics dynamically changed during the correct WM tasks. The measure values increased to maximum, and then decreased both in the original and in the reduced dimensionality. Besides, the feature values of the reduced dimensionality were significantly higher during the WM tasks than they were in the original space. These findings suggested that functional connectivity among the spikes varied dynamically during the WM tasks and could be described effectively in the low dimensional space.

  6. Reduction of Interhemispheric Functional Connectivity in Sensorimotor and Visual Information Processing Pathways in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Xu Lang

    2016-01-01

    Conclusions: Interhemispheric functional connectivity in the sensorimotor and visual processing pathways was reduced in patients with schizophrenia, but this reduction was unrelated to the disease state; thus, this reduction may serve as a trait marker of schizophrenia.

  7. Functional connectivity and network analysis during hypoactive delirium and recovery from anesthesia

    NARCIS (Netherlands)

    Numan, Tianne; Slooter, Arjen J C; van der Kooi, Arendina W; Hoekman, Marco F. M.; Suyker, Willem J L; Stam, Cornelis J; van Dellen, Edwin

    2017-01-01

    OBJECTIVE: To gain insight in the underlying mechanism of reduced levels of consciousness due to hypoactive delirium versus recovery from anesthesia, we studied functional connectivity and network topology using electroencephalography (EEG). METHODS: EEG recordings were performed in age and

  8. Attention modulates hemispheric differences in functional connectivity: Evidence from MEG recordings

    NARCIS (Netherlands)

    L. Gootjes (Liselotte); A. Bouma (Anke); J.W. van Strien (Jan); P. Scheltens (Philip); C.J. Stam

    2008-01-01

    textabstractThe present study examined intrahemispheric functional connectivity during rest and dichotic listening in 8 male and 9 female healthy young adults measured with magnetoencephalography (MEG). Generalized synchronization within the separate hemispheres was estimated by means of the synchro

  9. Effects of acute electromagnetic fields exposure on the interhemispheric homotopic functional connectivity during resting state.

    Science.gov (United States)

    Lv, Bin; Shao, Qing; Chen, Zhiye; Ma, Lin; Wu, Tongning

    2015-08-01

    In this paper, we aimed to investigate the possible effects of acute radiofrequency electromagnetic fields (EMF) on the interhemispheric homotopic functional connectivity with resting state functional magnetic resonance imaging (fMRI) technique. We designed a controllable LTE-related EMF exposure environment at 2.573 GHz and performed the 30 min real/sham exposure experiments on human brain under the safety limits. The resting state fMRI signals were collected before and after EMF exposure. Then voxel-mirrored homotopic connectivity method was utilized to evaluate the acute effects of LTE EMF exposure on the homotopic functional connectivity between two human hemispheres. Based on our previous research, we further demonstrated that the 30 min short-term LTE EMF exposure would modulate the interhemispheric homotopic functional connectivity in resting state around the medial frontal gyrus and the paracentral lobule during the real exposure.

  10. Auditory Hallucinations in Schizophrenia Are Associated with Reduced Functional Connectivity of the Temporo-Parietal Area

    NARCIS (Netherlands)

    Vercammen, Ans; Knegtering, Henderikus; den Boer, Johann A.; Liemburg, Edith J.; Aleman, Andre

    2010-01-01

    Background: Schizophrenia has been conceptualized as a disorder of integration of neural activity across distributed networks. However, the relationship between specific symptom dimensions and patterns of functional connectivity remains unclear. The current study aimed to investigate the relationshi

  11. Weak functional connectivity in the human fetal brain prior to preterm birth

    Science.gov (United States)

    Thomason, Moriah E.; Scheinost, Dustin; Manning, Janessa H.; Grove, Lauren E.; Hect, Jasmine; Marshall, Narcis; Hernandez-Andrade, Edgar; Berman, Susan; Pappas, Athina; Yeo, Lami; Hassan, Sonia S.; Constable, R. Todd; Ment, Laura R.; Romero, Roberto

    2017-01-01

    It has been suggested that neurological problems more frequent in those born preterm are expressed prior to birth, but owing to technical limitations, this has been difficult to test in humans. We applied novel fetal resting-state functional MRI to measure brain function in 32 human fetuses in utero and found that systems-level neural functional connectivity was diminished in fetuses that would subsequently be born preterm. Neural connectivity was reduced in a left-hemisphere pre-language region, and the degree to which connectivity of this left language region extended to right-hemisphere homologs was positively associated with the time elapsed between fMRI assessment and delivery. These results provide the first evidence that altered functional connectivity in the preterm brain is identifiable before birth. They suggest that neurodevelopmental disorders associated with preterm birth may result from neurological insults that begin in utero. PMID:28067865

  12. Weak functional connectivity in the human fetal brain prior to preterm birth.

    Science.gov (United States)

    Thomason, Moriah E; Scheinost, Dustin; Manning, Janessa H; Grove, Lauren E; Hect, Jasmine; Marshall, Narcis; Hernandez-Andrade, Edgar; Berman, Susan; Pappas, Athina; Yeo, Lami; Hassan, Sonia S; Constable, R Todd; Ment, Laura R; Romero, Roberto

    2017-01-09

    It has been suggested that neurological problems more frequent in those born preterm are expressed prior to birth, but owing to technical limitations, this has been difficult to test in humans. We applied novel fetal resting-state functional MRI to measure brain function in 32 human fetuses in utero and found that systems-level neural functional connectivity was diminished in fetuses that would subsequently be born preterm. Neural connectivity was reduced in a left-hemisphere pre-language region, and the degree to which connectivity of this left language region extended to right-hemisphere homologs was positively associated with the time elapsed between fMRI assessment and delivery. These results provide the first evidence that altered functional connectivity in the preterm brain is identifiable before birth. They suggest that neurodevelopmental disorders associated with preterm birth may result from neurological insults that begin in utero.

  13. Spatial working memory in neurofibromatosis 1: Altered neural activity and functional connectivity

    Directory of Open Access Journals (Sweden)

    Amira F.A. Ibrahim

    2017-01-01

    Conclusions: Dysfunctional engagement of WM circuitry, and aberrant functional connectivity of ‘task-negative’ regions in NF1 patients may underlie spatial WM difficulties characteristic of the disorder.

  14. A review on functional and structural brain connectivity in numerical cognition

    Directory of Open Access Journals (Sweden)

    Korbinian eMoeller

    2015-05-01

    Full Text Available Only recently has the complex anatomo-functional system underlying numerical cognition become accessible to evaluation in the living brain. We identified 26 studies investigating brain connectivity in numerical cognition. Despite considerable heterogeneity regarding methodological approaches, populations investigated, and assessment procedures implemented, the results provided largely converging evidence regarding the underlying brain connectivity involved in numerical cognition. Analyses of both functional/effective as well as structural connectivity have consistently corroborated the assumption that numerical cognition is subserved by a fronto-parietal network including (intraparietal as well as (prefrontal cortex sites. Evaluation of structural connectivity has indicated the involvement of fronto-parietal association fibers encompassing the superior longitudinal fasciculus dorsally and the external capsule/extreme capsule system ventrally. Additionally, commissural fibers seem to connect the bilateral intraparietal sulci when number magnitude information is processed. Finally, the identification of projection fibers such as the superior corona radiata indicates connections between cortex and basal ganglia as well as the thalamus in numerical cognition. Studies on functional/effective connectivity further indicated a specific role of the hippocampus. These specifications of brain connectivity augment the triple-code model of number processing and calculation with respect to how grey matter areas associated with specific number-related representations may work together.

  15. A reciprocal connection factor for assessing knee-joint function.

    Science.gov (United States)

    Kim, Wangdo; Kohles, Sean S

    2012-01-01

    In the knee joint, interactions between instantaneous kinetics and kinematics associated with ligamentous and articular tissues are not fully understood. These structures may be represented by the instantaneous screw axis ($) (ISA) and static force vectors ($'). Geometric changes to the joint structure affecting motion have not been fully explained, especially after surgical reconstruction and replacement procedures. The ISA offers a joint-characterisation approach, which is dependent on the combined forces of ligaments, articular contacts and muscles. The standard four-bar linkage model in the sagittal plane demonstrates that the normal contact force and the lines of action of the cruciate ligaments always intersect at the centre of rotation of the joint. A kinematic knee model in which the articular surfaces in the lateral and medial compartments as well as the isometric fascicles in the engaged ligaments may be represented as five constraints in a one-degree-of-freedom parallel spatial mechanism. This study provides a theoretical foundation to elucidate the role of each of these elements in the control of the ISA. A recourse to the principle of virtual work explained through d'Alembert's principle for reducing a dynamics problem to an instantaneous static scenario allows screws to be applied to the biomechanics of human motion. The principle of reciprocity links these approaches together to explain the transmitting load between the tibia and the femur as well as the relative motion within the knee joint. A principal clinical implication of this study is the introduction of the reciprocal connection factor to evaluate knee kinematics and kinetics in one simple term, allowing the quantitative assessment of the outcome of knee-joint treatment and rehabilitation methods.

  16. Preschoolers’ free play - connections with emotional and social functioning

    Directory of Open Access Journals (Sweden)

    Guida Veiga

    2016-04-01

    Full Text Available Play has an important role in various aspects of children’s development. However, time for free play has declined substantially over the last decades. To date, few studies have focused on the relationship between opportunities for free play and children’s social functioning. The aims of this study are to examine whether children´s free play is related to their social functioning and whether this relationship is mediated by children´s emotional functioning. Seventy-eight children (age, 55- 77 months were tested on their theory of mind and emotion understanding. Parents reported on their children’s time for free play, empathic abilities, social competence and externalizing behaviors. The main findings showed that free play and children’s theory of mind are negatively related to externalizing behaviors. Empathy was strongly related to children’s social competence, but free play and social competence were not associated. Less time for free play is related to more disruptive behaviors in preschool children, however certain emotional functioning skills influence these behaviors independently of the time children have for free play. These outcomes suggest that free play might help to prevent the development of disruptive behaviors, but future studies should further examine the causality of this relationship.

  17. Preschoolers' Free Play--Connections with Emotional and Social Functioning

    Science.gov (United States)

    Veiga, Guida; Neto, Carlos; Rieffe, Carolien

    2016-01-01

    Play has an important role in various aspects of children's development. However, time for free play has declined substantially over the last decades. To date, few studies have focused on the relationship between opportunities for free play and children's social functioning. The aims of this study are to examine whether children´s free play is…

  18. Functional connectivity of the entorhinal - Hippocampal space circuit

    NARCIS (Netherlands)

    S.-J. Zhang (Sheng-Jia); J. Ye (Jian); J.J. Couey (Jonathan J); M.P. Witter (Menno); E.I. Moser (Edvard); M.-B. Moser (May-Britt)

    2014-01-01

    textabstractThe mammalian space circuit is known to contain several functionally specialized cell types, such as place cells in the hippocampus and grid cells, head-direction cells and border cells in the medial entorhinal cortex (MEC). The interaction between the entorhinal and hippocampal spatial

  19. Resting-state functional connectivity of ventral parietal regions associated with attention reorienting and episodic recollection

    Directory of Open Access Journals (Sweden)

    Sander M Daselaar

    2013-02-01

    Full Text Available In functional neuroimaging studies, ventral parietal cortex (VPC is recruited by very different cognitive tasks. Explaining the contributions VPC to these tasks has become a topic of intense study and lively debate. Perception studies frequently find VPC activations during tasks involving attention-reorienting, and memory studies frequently find them during tasks involving episodic recollection. According to the Attention to Memory (AtoM model, both phenomena can be explained by the same VPC function: bottom-up attention. Yet, a recent functional MRI (fMRI meta-analysis suggested that attention-reorienting activations are more frequent in anterior VPC, whereas recollection activations are more frequent in posterior VPC. Also, there is evidence that anterior and posterior VPC regions have different functional connectivity patterns. To investigate these issues, we conducted a resting-state functional connectivity analysis using as seeds the center-of-mass of attention-reorienting and recollection activations in the meta-analysis, which were located in the supramarginal gyrus (SMG, around the temporo-parietal junction—TPJ and in the angular gyrus (AG, respectively. The SMG seed showed stronger connectivity with ventrolateral prefrontal cortex (VLPFC and occipito-temporal cortex, whereas the AG seed showed stronger connectivity with the hippocampus and default network regions. To investigate whether these connectivity differences were graded or sharp, VLPFC and hippocampal connectivity was measured in VPC regions traversing through the SMG and AG seeds. The results showed a graded pattern: VLPFC connectivity gradually decreases from SMG to AG, whereas hippocampal connectivity gradually increases from SMG to AG. Importantly, both gradients showed an abrupt break when extended beyond VPC borders. This finding suggests that functional differences between SMG and AG are more subtle than previously thought. These connectivity differences can be

  20. Age of Childhood Onset in Type 1 Diabetes and Functional Brain Connectivity in Midlife.

    Science.gov (United States)

    Ryan, John P; Aizenstein, Howard J; Orchard, Trevor J; Ryan, Christopher M; Saxton, Judith A; Fine, David F; Nunley, Karen A; Rosano, Caterina

    2015-01-01

    The development of Type 1 diabetes mellitus (T1DM) within the first 7 years of life has been linked to poorer cognitive performance. Adults with T1DM have altered functional brain connectivity, but no studies have examined whether earlier age of T1DM onset is associated with functional connectivity later in life. Accordingly, we tested the relationship between age of onset and resting state functional connectivity in a cohort of middle-aged adults with childhood-onset T1DM. Participants were from a subsample of the Pittsburgh Epidemiology of Diabetes Complications cohort and included 66 adults (mean age = 47.54 years, 32 men). Resting state blood oxygen level-dependent activity was used to calculate mean connectivity for eight functional brain networks. A multivariate analysis of variance examined associations between age of onset and network connectivity. Diffusion tensor and fluid-attenuated inversion recovery images were analyzed to identify microstructural alterations and white-matter hyperintensity volumes. Later childhood onset of T1DM was associated with lower connectivity (F(8,57) = 2.40, p = .026). A significant interaction was present for current age such that an inverse association with age of onset for functional connectivity was present in older individuals (F(8,55) = 2.88, p = .035). Lower connectivity was associated with older age, increased white-matter hyperintensity volume, and lower microstructural integrity. Diagnosis of T1DM later in childhood may be associated with lower brain functional connectivity, particularly in those surviving into older ages. These alterations may be an early marker for subsequent cognitive decrements. Future studies are warranted to understand the pathways underlying these associations.

  1. Exploration of Functional Connectivity During Preferred Music Stimulation in Patients with Disorders of Consciousness

    OpenAIRE

    Lizette eHeine; Maïté eCastro; Charlotte eMartial; Barbara eTillmann; Steven eLaureys; Fabien ePerrin

    2015-01-01

    Preferred music is a highly emotional and salient stimulus, which has previously been shown to increase the probability of auditory cognitive event-related responses in patients with disorders of consciousness (DOC). To further investigate whether and how music modifies the functional connectivity of the brain in DOC, five patients were assessed with both a classical functional connectivity scan (control condition), and a scan while they were exposed to their preferred music (music condition)...

  2. Machine-learning to characterise neonatal functional connectivity in the preterm brain.

    Science.gov (United States)

    Ball, G; Aljabar, P; Arichi, T; Tusor, N; Cox, D; Merchant, N; Nongena, P; Hajnal, J V; Edwards, A D; Counsell, S J

    2016-01-01

    Brain development is adversely affected by preterm birth. Magnetic resonance image analysis has revealed a complex fusion of structural alterations across all tissue compartments that are apparent by term-equivalent age, persistent into adolescence and adulthood, and associated with wide-ranging neurodevelopment disorders. Although functional MRI has revealed the relatively advanced organisational state of the neonatal brain, the full extent and nature of functional disruptions following preterm birth remain unclear. In this study, we apply machine-learning methods to compare whole-brain functional connectivity in preterm infants at term-equivalent age and healthy term-born neonates in order to test the hypothesis that preterm birth results in specific alterations to functional connectivity by term-equivalent age. Functional connectivity networks were estimated in 105 preterm infants and 26 term controls using group-independent component analysis and a graphical lasso model. A random forest-based feature selection method was used to identify discriminative edges within each network and a nonlinear support vector machine was used to classify subjects based on functional connectivity alone. We achieved 80% cross-validated classification accuracy informed by a small set of discriminative edges. These edges connected a number of functional nodes in subcortical and cortical grey matter, and most were stronger in term neonates compared to those born preterm. Half of the discriminative edges connected one or more nodes within the basal ganglia. These results demonstrate that functional connectivity in the preterm brain is significantly altered by term-equivalent age, confirming previous reports of altered connectivity between subcortical structures and higher-level association cortex following preterm birth.

  3. Disordered cortical connectivity underlies the executive function deficits in children with autism spectrum disorders.

    Science.gov (United States)

    Han, Yvonne M Y; Chan, Agnes S

    2017-02-01

    The present study examined the executive function and cortical connectivity of children with autism spectrum disorders (ASD) and investigated whether the executive function deficits exhibited by these children were differentially affected and associated with the cortical connectivity. The present study compared high-functioning (HFA) and low-functioning (LFA) children with typically developing children (TDC) on their executive functions as measured by the Hong Kong List Learning Test, D2 Test of Concentration, Five Point Test, Children's Color Trail Test, Tower of California Test, and Go/No-Go task and neural connectivity as measured by theta coherence in the distributed fronto-parietal network. Thirty-eight children with ASD (19 HFA and 19 LFA) and 28 TDC children, aged 8-17 years, participated voluntarily in the study. The results on executive function showed that the LFA group demonstrated the poorest performance as exhibited by their Executive Composite and individual executive function scores, while the TDC group exhibited the highest. These results have extended the findings of previous studies in demonstrating that HFA and LFA children have significant differences in their degree of executive function deficits. The results on neural connectivity also showed that children with ASD demonstrated a different pattern of electroencephalography (EEG) coherence from TDC children, as demonstrated by the significantly elevated theta coherence in the fronto-parietal network, and that the severity of executive dysfunction between high- and low-functioning children with ASD was found to be associated with the disordered neural connectivity in these children.

  4. Patterns in Cortical Connectivity for Determining Outcomes in Hand Function after Subcortical Stroke

    Science.gov (United States)

    Yin, Dazhi; Song, Fan; Xu, Dongrong; Peterson, Bradley S.; Sun, Limin; Men, Weiwei; Yan, Xu; Fan, Mingxia

    2012-01-01

    Background and Purpose Previous studies have noted changes in resting-state functional connectivity during motor recovery following stroke. However, these studies always uncover various patterns of motor recovery. Moreover, subgroups of stroke patients with different outcomes in hand function have rarely been studied. Materials and Methods We selected 24 patients who had a subcortical stroke in the left motor pathway and displayed only motor deficits. The patients were divided into two subgroups: completely paralyzed hands (CPH) (12 patients) and partially paralyzed hands (PPH) (12 patients). Twenty-four healthy controls (HC) were also recruited. We performed functional connectivity analysis in both the ipsilesional and contralesional primary motor cortex (M1) to explore the differences in the patterns between each pair of the three diagnostic groups. Results Compared with the HC, the PPH group displays reduced connectivity of both the ipsilesional and contralesional M1 with bilateral prefrontal gyrus and contralesional cerebellum posterior lobe. The connectivity of both the ipsilesional and contralesional M1 with contralateral primary sensorimotor cortex was reduced in the CPH group. Additionally, the connectivity of the ipsilesional M1 with contralesional postcentral gyrus, superior parietal lobule and ipsilesional inferior parietal lobule was reduced in the CPH group compared with the PPH group. Moreover, the connectivity of these regions was positively correlated with the Fugl-Meyer Assessment scores (hand+wrist) across all stroke patients. Conclusions Patterns in cortical connectivity may serve as a potential biomarker for the neural substratum associated with outcomes in hand function after subcortical stroke. PMID:23285171

  5. Functional connectivity for face processing in individuals with body dysmorphic disorder and anorexia nervosa.

    Science.gov (United States)

    Moody, T D; Sasaki, M A; Bohon, C; Strober, M A; Bookheimer, S Y; Sheen, C L; Feusner, J D

    2015-12-01

    Body dysmorphic disorder (BDD) and anorexia nervosa (AN) are both characterized by distorted perception of appearance. Previous studies in BDD suggest abnormalities in visual processing of own and others' faces, but no study has examined visual processing of faces in AN, nor directly compared the two disorders in this respect. We collected functional magnetic resonance imaging data on 60 individuals of equivalent age and gender in each of three groups--20 BDD, 20 weight-restored AN, and 20 healthy controls (HC)--while they viewed images of others' faces that contained only high or low spatial frequency information (HSF or LSF). We tested hypotheses about functional connectivity within specialized sub-networks for HSF and LSF visual processing, using psychophysiological interaction analyses. The BDD group demonstrated increased functional connectivity compared to HC between left anterior occipital face area and right fusiform face area (FFA) for LSF faces, which was associated with symptom severity. Both BDD and AN groups had increased connectivity compared to HC between FFA and precuneous/posterior cingulate gyrus for LSF faces, and decreased connectivity between FFA and insula. In addition, we found that LSF connectivity between FFA and posterior cingulate gyrus was significantly associated with thoughts about own appearance in AN. Results suggest similar abnormal functional connectivity within higher-order systems for face processing in BDD and AN, but distinct abnormal connectivity patterns within occipito-temporal visual networks. Findings may have implications for understanding relationships between these disorders, and the pathophysiology underlying perceptual distortions.

  6. Patterns in cortical connectivity for determining outcomes in hand function after subcortical stroke.

    Directory of Open Access Journals (Sweden)

    Dazhi Yin

    Full Text Available BACKGROUND AND PURPOSE: Previous studies have noted changes in resting-state functional connectivity during motor recovery following stroke. However, these studies always uncover various patterns of motor recovery. Moreover, subgroups of stroke patients with different outcomes in hand function have rarely been studied. MATERIALS AND METHODS: We selected 24 patients who had a subcortical stroke in the left motor pathway and displayed only motor deficits. The patients were divided into two subgroups: completely paralyzed hands (CPH (12 patients and partially paralyzed hands (PPH (12 patients. Twenty-four healthy controls (HC were also recruited. We performed functional connectivity analysis in both the ipsilesional and contralesional primary motor cortex (M1 to explore the differences in the patterns between each pair of the three diagnostic groups. RESULTS: Compared with the HC, the PPH group displays reduced connectivity of both the ipsilesional and contralesional M1 with bilateral prefrontal gyrus and contralesional cerebellum posterior lobe. The connectivity of both the ipsilesional and contralesional M1 with contralateral primary sensorimotor cortex was reduced in the CPH group. Additionally, the connectivity of the ipsilesional M1 with contralesional postcentral gyrus, superior parietal lobule and ipsilesional inferior parietal lobule was reduced in the CPH group compared with the PPH group. Moreover, the connectivity of these regions was positively correlated with the Fugl-Meyer Assessment scores (hand+wrist across all stroke patients. CONCLUSIONS: Patterns in cortical connectivity may serve as a potential biomarker for the neural substratum associated with outcomes in hand function after subcortical stroke.

  7. The effects of deefferentation without deafferentation on functional connectivity in patients with facial palsy

    Directory of Open Access Journals (Sweden)

    Carsten M. Klingner

    2014-01-01

    Full Text Available Cerebral plasticity includes the adaptation of anatomical and functional connections between parts of the involved brain network. However, little is known about the network dynamics of these connectivity changes. This study investigates the impact of a pure deefferentation, without deafferentation or brain damage, on the functional connectivity of the brain. To investigate this issue, functional MRI was performed on 31 patients in the acute state of Bell's palsy (idiopathic peripheral facial nerve palsy. All of the patients performed a motor paradigm to identify seed regions involved in motor control. The functional connectivity of the resting state within this network of brain regions was compared to a healthy control group. We found decreased connectivity in patients, mainly in areas responsible for sensorimotor integration and supervision (SII, insula, thalamus and cerebellum. However, we did not find decreased connectivity in areas of the primary or secondary motor cortex. The decreased connectivity for the SII and the insula significantly correlated to the severity of the facial palsy. Our results indicate that a pure deefferentation leads the brain to adapt to the current compromised state during rest. The motor system did not make a major attempt to solve the sensorimotor discrepancy by modulating the motor program.

  8. Association between heart rate variability and fluctuations in resting-state functional connectivity

    Science.gov (United States)

    Chang, Catie; Metzger, Coraline D.; Glover, Gary H.; Duyn, Jeff H.; Heinze, Hans-Jochen; Walter, Martin

    2012-01-01

    Functional connectivity has been observed to fluctuate across the course of a resting state scan, though the origins and functional relevance of this phenomenon remain to be shown. The present study explores the link between endogenous dynamics of functional connectivity and autonomic state in an eyes-closed resting condition. Using a sliding window analysis on resting state fMRI data from 35 young, healthy male subjects, we examined how heart rate variability (HRV) covaries with temporal changes in whole-brain functional connectivity with seed regions previously described to mediate effects of vigilance and arousal (amygdala and dorsal anterior cingulate cortex; dACC). We identified a set of regions, including brainstem, thalamus, putamen, and dorsolateral prefrontal cortex, that became more strongly coupled with the dACC and amygdala seeds during states of elevated HRV. Effects differed between high and low frequency components of HRV, suggesting specific contributions of parasympathetic and sympathetic tone on individual connections. Furthermore, dynamics of functional connectivity could be separated from those primarily related to BOLD signal fluctuations. The present results contribute novel information about the neural basis of transient changes of autonomic nervous system states, and suggest physiological and psychological components of the recently observed non-stationarity in resting state functional connectivity. PMID:23246859

  9. The functional connectivity of semantic task changes in the recovery from stroke aphasia

    Science.gov (United States)

    Lu, Jie; Wu, Xia; Yao, Li; Li, Kun-Cheng; Shu, Hua; Dong, Qi

    2007-03-01

    Little is known about the difference of functional connectivity of semantic task between the recovery aphasic patients and normal subject. In this paper, an fMRI experiment was performed in a patient with aphasia following a left-sided ischemic lesion and normal subject. Picture naming was used as semantic activation task in this study. We compared the preliminary functional connectivity results of the recovery aphasic patient with the normal subject. The fMRI data were separated by independent component analysis (ICA) into 90 components. According to our experience and other papers, we chose a region of interest (ROI) of semantic (x=-57, y=15, z=8, r=11mm). From the 90 components, we chose one component as the functional connectivity of the semantic ROI according to one criterion. The criterion is the mean value of the voxels in the ROI. So the component of the highest mean value of the ROI is the functional connectivity of the ROI. The voxel with its value higher than 2.4 was thought as activated (pstroke aphasic patient and normal subjects are different. The activated areas of the left inferior frontal gyrus and inferior/middle temporal gyrus are larger than the ones of normal. The activated area of the right inferior frontal gyrus is smaller than the ones of normal. The functional connectivity of stroke aphasic patient under semantic condition is different with the normal one. The focus of the stroke aphasic patient can affect the functional connectivity.

  10. Adaptation of Sediment Connectivity Index for Swedish catchments and application for flood prediction of roads

    Science.gov (United States)

    Cantone, Carolina; Kalantari, Zahra; Cavalli, Marco; Crema, Stefano

    2016-04-01

    Climate changes are predicted to increase precipitation intensities and occurrence of extreme rainfall events in the near future. Scandinavia has been identified as one of the most sensitive regions in Europe to such changes; therefore, an increase in the risk for flooding, landslides and soil erosion is to be expected also in Sweden. An increase in the occurrence of extreme weather events will impose greater strain on the built environment and major transport infrastructures such as roads and railways. This research aimed to identify the risk of flooding at the road-stream intersections, crucial locations where water and debris can accumulate and cause failures of the existing drainage facilities. Two regions in southwest of Sweden affected by an extreme rainfall event in August 2014, were used for calibrating and testing a statistical flood prediction model. A set of Physical Catchment Descriptors (PCDs) including road and catchment characteristics was identified for the modelling. Moreover, a GIS-based topographic Index of Sediment Connectivity (IC) was used as PCD. The novelty of this study relies on the adaptation of IC for describing sediment connectivity in lowland areas taking into account contribution of soil type, land use and different patterns of precipitation during the event. A weighting factor for IC was calculated by estimating runoff calculated with SCS Curve Number method, assuming a constant value of precipitation for a given time period, corresponding to the critical event. The Digital Elevation Model of the study site was reconditioned at the drainage facilities locations to consider the real flow path in the analysis. These modifications led to highlight the role of rainfall patterns and surface runoff for modelling sediment delivery in lowland areas. Moreover, it was observed that integrating IC into the statistic prediction model increased its accuracy and performance. After the calibration procedure in one of the study areas, the model was

  11. Aberrant development of functional connectivity among resting state-related functional networks in medication-naive ADHD children.

    Directory of Open Access Journals (Sweden)

    Jeewook Choi

    Full Text Available OBJECTIVE: The aim of this study was to investigate the compromised developmental trajectory of the functional connectivity among resting-state-related functional networks (RSFNs in medication-naïve children with attention-deficit/hyperactivity disorder (ADHD. SUBJECTS AND METHODS: Using both independent component analysis and dual regression, subject-specific time courses of 12 RSFNs were extracted from both 20 medication-naïve children with ADHD, and 20 age and gender-matched control children showing typical development (TDC. Both partial correlation coefficients among the 12 RSFNs and a resting-state resource allocation index (rsRAI of the salience network (SN were entered into multiple linear regression analysis to investigate the compromised, age-related change in medication-naïve ADHD children. Finally, correlation analyses were performed between the compromised RSFN connections showing significant group-by-age interaction and rsRAI of SN or clinical variables. RESULTS: Medication-naïve ADHD subjects failed to show age-related increment of functional connectivity in both rsRAI of SN and two RSFN connections, SN-Sensory/motor and posterior default mode/precuneus network (pDMN/prec--anterior DMN. Lower SN-Sensory/motor connectivity was related with higher scores on the ADHD Rating Scale, and with poor scores on the continuous performance test. The pDMN/prec-aDMN connectivity was positively related with rsRAI of SN. CONCLUSIONS: Our results suggest that medication-naïve ADHD subjects may have delayed maturation of the two functional connections, SN-Sensory/Motor and aDMN-pDMN/prec. Interventions that enhance the functional connectivity of these two connections may merit attention as potential therapeutic or preventive options in both ADHD and TDC.

  12. Differences in resting state functional connectivity between young adult endurance athletes and healthy controls

    Directory of Open Access Journals (Sweden)

    David A Raichlen

    2016-11-01

    Full Text Available Expertise and training in fine motor skills has been associated with changes in brain structure, function, and connectivity. Fewer studies have explored the neural effects of athletic activities that do not seem to rely on precise fine motor control (e.g., distance running. Here, we compared resting-state functional connectivity in a sample of adult male collegiate distance runners (n=11; age=21.3±2.5 and a group of healthy age-matched non-athlete male controls (n=11; age=20.6±1.1, to test the hypothesis that expertise in sustained aerobic motor behaviors affects resting state functional connectivity in young adults. Although generally considered an automated repetitive task, locomotion, especially at an elite level, likely engages multiple cognitive actions including planning, inhibition, monitoring, attentional switching and multi-tasking, and motor control. Here, we examined connectivity in three resting-state networks that link such executive functions with motor control: the Default Mode Network (DMN, the Fronto-Parietal Network (FPN, and the Motor Network (MN. We found two key patterns of significant between-group differences in connectivity that are consistent with the hypothesized cognitive demands of elite endurance running. First, enhanced connectivity between the FPN and brain regions often associated with aspects of working memory and other executive functions (frontal cortex, suggest endurance running may stress executive cognitive functions in ways that increase connectivity in associated networks. Second, we found significant anti-correlations between the DMN and regions associated with motor control (paracentral area, somatosensory functions (postcentral region, and visual association abilities (occipital cortex. DMN deactivation with task-positive regions has been shown to be generally beneficial for cognitive performance, suggesting anti-correlated regions observed here are engaged during running. For all between

  13. Differences in Resting State Functional Connectivity between Young Adult Endurance Athletes and Healthy Controls

    Science.gov (United States)

    Raichlen, David A.; Bharadwaj, Pradyumna K.; Fitzhugh, Megan C.; Haws, Kari A.; Torre, Gabrielle-Ann; Trouard, Theodore P.; Alexander, Gene E.

    2016-01-01

    Expertise and training in fine motor skills has been associated with changes in brain structure, function, and connectivity. Fewer studies have explored the neural effects of athletic activities that do not seem to rely on precise fine motor control (e.g., distance running). Here, we compared resting-state functional connectivity in a sample of adult male collegiate distance runners (n = 11; age = 21.3 ± 2.5) and a group of healthy age-matched non-athlete male controls (n = 11; age = 20.6 ± 1.1), to test the hypothesis that expertise in sustained aerobic motor behaviors affects resting state functional connectivity in young adults. Although generally considered an automated repetitive task, locomotion, especially at an elite level, likely engages multiple cognitive actions including planning, inhibition, monitoring, attentional switching and multi-tasking, and motor control. Here, we examined connectivity in three resting-state networks that link such executive functions with motor control: the default mode network (DMN), the frontoparietal network (FPN), and the motor network (MN). We found two key patterns of significant between-group differences in connectivity that are consistent with the hypothesized cognitive demands of elite endurance running. First, enhanced connectivity between the FPN and brain regions often associated with aspects of working memory and other executive functions (frontal cortex), suggest endurance running may stress executive cognitive functions in ways that increase connectivity in associated networks. Second, we found significant anti-correlations between the DMN and regions associated with motor control (paracentral area), somatosensory functions (post-central region), and visual association abilities (occipital cortex). DMN deactivation with task-positive regions has been shown to be generally beneficial for cognitive performance, suggesting anti-correlated regions observed here are engaged during running. For all between

  14. Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation.

    Science.gov (United States)

    Fan, Yang-Teng; Wu, Ching-Yi; Liu, Ho-Ling; Lin, Keh-Chung; Wai, Yau-Yau; Chen, Yao-Liang

    2015-01-01

    Most neuroimaging research in stroke rehabilitation mainly focuses on the neural mechanisms underlying the natural history of post-stroke recovery. However, connectivity mapping from resting-state fMRI is well suited for different neurological conditions and provides a promising method to explore plastic changes for treatment-induced recovery from stroke. We examined the changes in resting-state functional connectivity (RS-FC) of the ipsilesional primary motor cortex (M1) in 10 post-acute stroke patients before and immediately after 4 weeks of robot-assisted bilateral arm therapy (RBAT). Motor performance, functional use of the affected arm, and daily function improved in all participants. Reduced interhemispheric RS-FC between the ipsilesional and contralesional M1 (M1-M1) and the contralesional-lateralized connections were noted before treatment. In contrast, greater M1-M1 functional connectivity and disturbed resting-state networks were observed after RBAT relative to pre-treatment. Increased changes in M1-M1 RS-FC after RBAT were coupled with better motor and functional improvements. Mediation analysis showed the pre-to-post difference in M1-M1 RS-FC was a significant mediator for the relationship between motor and functional recovery. These results show neuroplastic changes and functional recoveries induced by RBAT in post-acute stroke survivors and suggest that interhemispheric functional connectivity in the motor cortex may be a neurobiological marker for recovery after stroke rehabilitation.

  15. Group-ICA model order highlights patterns of functional brain connectivity

    Directory of Open Access Journals (Sweden)

    Ahmed eAbou Elseoud

    2011-06-01

    Full Text Available Resting-state networks (RSNs can be reliably and reproducibly detected using independent component analysis (ICA at both individual subject and group levels. Altering ICA dimensionality (model order estimation can have a significant impact on the spatial characteristics of the RSNs as well as their parcellation into sub-networks. Recent evidence from several neuroimaging studies suggests that the human brain has a modular hierarchical organization which resembles the hierarchy depicted by different ICA model orders. We hypothesized that functional connectivity between-group differences measured with ICA might be affected by model order selection. We investigated differences in functional connectivity using so-called dual-regression as a function of ICA model order in a group of unmedicated seasonal affective disorder (SAD patients compared to normal healthy controls. The results showed that the detected disease-related differences in functional connectivity alter as a function of ICA model order. The volume of between-group differences altered significantly as a function of ICA model order reaching maximum at model order 70 (which seems to be an optimal point that conveys the largest between-group difference then stabilized afterwards. Our results show that fine-grained RSNs enable better detection of detailed disease-related functional connectivity changes. However, high model orders show an increased risk of false positives that needs to be overcome. Our findings suggest that multilevel ICA exploration of functional connectivity enables optimization of sensitivity to brain disorders.

  16. Tool-use practice induces changes in intrinsic functional connectivity of parietal areas

    Directory of Open Access Journals (Sweden)

    Kwangsun eYoo

    2013-02-01

    Full Text Available Intrinsic functional connectivity from resting state functional magnetic resonance imaging (rsfMRI has increasingly received attention as a possible predictor of cognitive function and performance. In this study, we investigated the influence of practicing skillful tool manipulation on intrinsic functional <