WorldWideScience

Sample records for functional catechol-o-methyltransferase variant

  1. Catechol-O-methyltransferase gene variants may associate with negative symptom response and plasma concentrations of prolactin in schizophrenia after amisulpride treatment.

    Chen, Chun-Yen; Yeh, Yi-Wei; Kuo, Shin-Chang; Ho, Pei-Shen; Liang, Chih-Sung; Yen, Che-Hung; Lu, Ru-Band; Huang, San-Yuan

    2016-03-01

    Catechol-O-methyltransferase (COMT) enzyme is involved in the pathogenesis of psychotic symptoms and may be associated with a therapeutic response to antipsychotic drugs. The aim of this study was to examine the relationship between COMT variants, plasma prolactin level, and the therapeutic effectiveness of amisulpride treatment in patients with schizophrenia. A 12-week naturalistic study of amisulpride treatment was carried out in 185 Han Chinese patients with schizophrenia. The patients were screened for 14 single-nucleotide polymorphisms of the COMT gene. The Positive and Negative Syndrome Scale (PANSS) was used to assess the improvement of psychopathological symptoms from the baseline to the end point in each subject. For better presentation of time-course changes in response status, a mixed model for repeated-measures (MMRM) analysis of symptom improvement during the 12-week treatment period was conducted. The change in plasma prolactin level after amisulpride treatment was also examined (n=51). No significant differences in the genotype frequencies of the COMT variants investigated were observed between responders and non-responders. Moreover, an MMRM analysis of psychopathological symptom improvement during the 12-week treatment course showed that it depended significantly on COMT variants (rs4680, rs4633, and rs6267), particularly regarding changes in negative symptoms. The increase in plasma prolactin levels observed was influenced by the COMT rs4680 variant and was positively correlated with a reduction in PANSS negative scores. Our results suggest that variation of the COMT gene is associated with treatment response regarding negative symptoms and prolactin changes after amisulpride treatment in patients with schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Age-Dependent Effects of Catechol-O-Methyltransferase (COMT) Gene Val158Met Polymorphism on Language Function in Developing Children.

    Sugiura, Lisa; Toyota, Tomoko; Matsuba-Kurita, Hiroko; Iwayama, Yoshimi; Mazuka, Reiko; Yoshikawa, Takeo; Hagiwara, Hiroko

    2017-01-01

    The genetic basis controlling language development remains elusive. Previous studies of the catechol-O-methyltransferase (COMT) Val158Met genotype and cognition have focused on prefrontally guided executive functions involving dopamine. However, COMT may further influence posterior cortical regions implicated in language perception. We investigated whether COMT influences language ability and cortical language processing involving the posterior language regions in 246 children aged 6-10 years. We assessed language ability using a language test and cortical responses recorded during language processing using a word repetition task and functional near-infrared spectroscopy. The COMT genotype had significant effects on language performance and processing. Importantly, Met carriers outperformed Val homozygotes in language ability during the early elementary school years (6-8 years), whereas Val homozygotes exhibited significant language development during the later elementary school years. Both genotype groups exhibited equal language performance at approximately 10 years of age. Val homozygotes exhibited significantly less cortical activation compared with Met carriers during word processing, particularly at older ages. These findings regarding dopamine transmission efficacy may be explained by a hypothetical inverted U-shaped curve. Our findings indicate that the effects of the COMT genotype on language ability and cortical language processing may change in a narrow age window of 6-10 years. © The Author 2016. Published by Oxford University Press.

  3. The divergent impact of catechol-O-methyltransferase (COMT) Val158Met genetic polymorphisms on executive function in adolescents with discrete patterns of childhood adversity.

    Zhang, Huihui; Li, Jie; Yang, Bei; Ji, Tao; Long, Zhouting; Xing, Qiquan; Shao, Di; Bai, Huayu; Sun, Jiwei; Cao, Fenglin

    2018-02-01

    Catechol-O-methyltransferase (COMT) Val 158 Met functional polymorphisms play a crucial role in the development of executive function (EF), but their effect may be moderated by environmental factors such as childhood adversity. The present study aimed at testing the divergent impact of the COMT Val 158 Met genotype on EF in non-clinical adolescents with discrete patterns of childhood adversity. A total of 341 participants completed the Childhood Trauma Questionnaire, the self-reported version of the Behavior Rating Inventory of Executive Function, and self-administered questionnaires on familial function. The participants' COMT Val 158 Met genotype was determined. Associations among the variables were explored using latent class analysis and general linear models. We found that Val/Val homozygotes showed significantly worse performance on behavioral shift, relative to Met allele carriers (F=5.921, p=0.015, Partial η 2 =0.018). Moreover, three typical patterns of childhood adversity, namely, low childhood adversity (23.5%), childhood neglect (59.8%), and high childhood adversity (16.7%), were found. Both childhood neglect and high childhood adversity had a negative impact on each aspect of EF and on global EF performance. Importantly, these results provided evidence for significant interaction effects, as adolescents with the Val/Val genotype showed inferior behavioral shift performance than Met carriers (F=6.647, p=0.010, Partial η 2 =0.020) in the presence of high childhood adversity. Furthermore, there were no differences between the genotypes for childhood neglect and low childhood adversity. Overall, this is the first study to show that an interaction between the COMT genotype and childhood adversity affects EF in non-clinical adolescents. These results suggest that the COMT genotype may operate as a susceptibility gene vulnerable to an adverse environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Catechol-O-Methyltransferase Genotypes and Parenting Influence on Long-Term Executive Functioning After Moderate to Severe Early Childhood Traumatic Brain Injury: An Exploratory Study.

    Kurowski, Brad G; Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L

    To examine catechol-O-methyltransferase (COMT) rs4680 genotypes as moderators of the effects of parenting style on postinjury changes in parent behavior ratings of executive dysfunction following moderate to severe early childhood traumatic brain injury. Research was conducted in an outpatient setting. Participants included children admitted to hospital with moderate to severe traumatic brain injury (n = 55) or orthopedic injuries (n = 70) between ages 3 and 7 years. Prospective cohort followed over 7 years postinjury. Parenting Practices Questionnaire and the Behavior Rating Inventory of Executive Functioning obtained at baseline, 6, 12, and 18 months, and 3.5 and 6.8 years postinjury. DNA was collected from saliva samples, purified using the Oragene (DNA Genotek, Ottawa, Ontario, Canada) OG-500 self-collection tubes, and analyzed using TaqMan (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts) assay protocols to identify the COMT rs4680 polymorphism. Linear mixed models revealed a significant genotype × parenting style × time interaction (F = 5.72, P = .02), which suggested that the adverse effects of authoritarian parenting on postinjury development of executive functioning were buffered by the presence of the COMT AA genotype (lower enzyme activity, higher dopamine levels). There were no significant associations of executive functioning with the interaction between genotype and authoritative or permissive parenting ratings. The lower activity COMT rs4680 genotype may buffer the negative effect of authoritarian parenting on long-term executive functioning following injury in early childhood. The findings provide preliminary evidence for associations of parenting style with executive dysfunction in children and for a complex interplay of genetic and environmental factors as contributors to decreases in these problems after traumatic injuries in children. Further investigation is warranted to understand the interplay among genetic and

  5. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia.

    Durstewitz, Daniel; Seamans, Jeremy K

    2008-11-01

    There is now general consensus that at least some of the cognitive deficits in schizophrenia are related to dysfunctions in the prefrontal cortex (PFC) dopamine (DA) system. At the cellular and synaptic level, the effects of DA in PFC via D1- and D2-class receptors are highly complex, often apparently opposing, and hence difficult to understand with regard to their functional implications. Biophysically realistic computational models have provided valuable insights into how the effects of DA on PFC neurons and synaptic currents as measured in vitro link up to the neural network and cognitive levels. They suggest the existence of two discrete dynamical regimes, a D1-dominated state characterized by a high energy barrier among different network patterns that favors robust online maintenance of information and a D2-dominated state characterized by a low energy barrier that is beneficial for flexible and fast switching among representational states. These predictions are consistent with a variety of electrophysiological, neuroimaging, and behavioral results in humans and nonhuman species. Moreover, these biophysically based models predict that imbalanced D1:D2 receptor activation causing extremely low or extremely high energy barriers among activity states could lead to the emergence of cognitive, positive, and negative symptoms observed in schizophrenia. Thus, combined experimental and computational approaches hold the promise of allowing a detailed mechanistic understanding of how DA alters information processing in normal and pathological conditions, thereby potentially providing new routes for the development of pharmacological treatments for schizophrenia.

  6. Catechol-O-methyltransferase Val(158)Met association with parahippocampal physiology during memory encoding in schizophrenia.

    Di Giorgio, A; Caforio, G; Blasi, G; Taurisano, P; Fazio, L; Romano, R; Ursini, G; Gelao, B; Bianco, L Lo; Papazacharias, A; Sinibaldi, L; Popolizio, T; Bellomo, A; Bertolino, A

    2011-08-01

    Catechol-O-methyltransferase (COMT) Val158Met has been associated with activity of the mesial temporal lobe during episodic memory and it may weakly increase risk for schizophrenia. However, how this variant affects parahippocampal and hippocampal physiology when dopamine transmission is perturbed is unclear. The aim of the present study was to compare the effects of the COMT Val158Met genotype on parahippocampal and hippocampal physiology during encoding of recognition memory in patients with schizophrenia and in healthy subjects. Using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), we studied 28 patients with schizophrenia and 33 healthy subjects matched for a series of sociodemographic and genetic variables while they performed a recognition memory task. We found that healthy subjects had greater parahippocampal and hippocampal activity during memory encoding compared to patients with schizophrenia. We also found different activity of the parahippocampal region between healthy subjects and patients with schizophrenia as a function of the COMT genotype, in that the predicted COMT Met allele dose effect had an opposite direction in controls and patients. Our results demonstrate a COMT Val158Met genotype by diagnosis interaction in parahippocampal activity during memory encoding and may suggest that modulation of dopamine signaling interacts with other disease-related processes in determining the phenotype of parahippocampal physiology in schizophrenia. © Cambridge University Press 2010

  7. Catechol-O-methyltransferase Val158Met genotype in healthy and personality disorder individuals: Preliminary results from an examination of cognitive tests hypothetically differentially sensitive to dopamine functions

    Winnie W Leung

    2007-01-01

    Full Text Available Winnie W Leung1, Margaret M McClure1, Larry J Siever1,2, Deanna M Barch3, Philip D Harvey1,21Department of Veterans Affairs, VISN 3 Mental Illness Research, Education, and Clinical Center (MIRECC, Bronx, NY, USA; 2Department of Psychiatry, Mt. Sinai School of Medicine, New York, NY, USA; 3Departments of Psychology and Psychiatry, Washington University, St. Louis, MO, USAAbstract: A functional polymorphism of the gene coding for Catechol-O-methyltrasferase (COMT, an enzyme responsible for the degradation of the catecholamine dopamine (DA, epinephrine, and norepinephrine, is associated with cognitive deficits. However, previous studies have not examined the effects of COMT on context processing, as measured by the AX-CPT, a task hypothesized to be maximally relevant to DA function. 32 individuals who were either healthy, with schizotypal personality disorder, or non-cluster A, personality disorder (OPD were genotyped at the COMT Val158Met locus. Met/Met (n = 6, Val/Met (n = 10, Val/Val (n = 16 individuals were administered a neuropsychological battery, including the AX-CPT and the N-back working memory test. For the AX-CPT, Met/Met demonstrated more AY errors (reflecting good maintenance of context than the other genotypes, who showed equivalent error rates. Val/Val demonstrated disproportionately greater deterioration with increased task difficulty from 0-back to 1-back working memory demands as compared to Met/Met, while Val/Met did not differ from either genotypes. No differences were found on processing speed or verbal working memory. Both context processing and working memory appear related to COMT genotype and the AX-CPT and N-back may be most sensitive to the effects of COMT variation.Keywords: COMT, dopamine, context processing, working memory, schizotypal personality disorder

  8. Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome.

    Kathryn T Hall

    Full Text Available Identifying patients who are potential placebo responders has major implications for clinical practice and trial design. Catechol-O-methyltransferase (COMT, an important enzyme in dopamine catabolism plays a key role in processes associated with the placebo effect such as reward, pain, memory and learning. We hypothesized that the COMT functional val158met polymorphism, was a predictor of placebo effects and tested our hypothesis in a subset of 104 patients from a previously reported randomized controlled trial in irritable bowel syndrome (IBS. The three treatment arms from this study were: no-treatment ("waitlist", placebo treatment alone ("limited" and, placebo treatment "augmented" with a supportive patient-health care provider interaction. The primary outcome measure was change from baseline in IBS-Symptom Severity Scale (IBS-SSS after three weeks of treatment. In a regression model, the number of methionine alleles in COMT val158met was linearly related to placebo response as measured by changes in IBS-SSS (p = .035. The strongest placebo response occurred in met/met homozygotes treated in the augmented placebo arm. A smaller met/met associated effect was observed with limited placebo treatment and there was no effect in the waitlist control. These data support our hypothesis that the COMT val158met polymorphism is a potential biomarker of placebo response.

  9. Catechol-O-methyltransferase gene methylation and substance use in adolescents : the TRAILS study

    van der Knaap, L. J.; Schaefer, J. M.; Franken, I. H. A.; Verhulst, F. C.; van Oort, F. V. A.; Riese, H.

    Substance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol-O-methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val(108/158)Met polymorphism modulates COMT activity

  10. Catechol-O-methyltransferase gene methylation and substance use in adolescents: The TRAILS study

    L.J. van der Knaap (Lisette); J.M. Schäfer (Johanna); I.H.A. Franken (Ingmar); F.C. Verhulst (Frank); F.V.A. van Oort (Floor); H. Riese (Harriëtte)

    2014-01-01

    textabstractSubstance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol-O-methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val108/158Met polymorphism

  11. Catechol-O-methyltransferase Val 108/158 Met polymorphism and breast cancer risk: a case control study in Syria.

    Lajin, Bassam; Hamzeh, Abdul Rezzak; Ghabreau, Lina; Mohamed, Ali; Al Moustafa, Ala-Eddin; Alachkar, Amal

    2013-01-01

    Catechol-O-methyltransferase (COMT) inactivates catechol estrogens by methylation and thus may play a protective role against mutations induced by estrogen metabolites. In this study we investigated the relationship between the Vall58Met polymorphism in the COMT gene and breast cancer risk in a population-based case control study in Syria. We examined 135 breast cancer patients and 107 healthy controls in North Syria to determine the association between the functional genetic Val158Met polymorphism in the COMT gene and female breast cancer risk. There was no significant overall association between the COMT genotype and individual susceptibility to breast cancer. Our data suggest that there may be no overall association between the COMT genotype and breast cancer.

  12. Catechol-O-methyltransferase (COMT) genotype affects cognitive control during total sleep deprivation.

    Satterfield, Brieann C; Hinson, John M; Whitney, Paul; Schmidt, Michelle A; Wisor, Jonathan P; Van Dongen, Hans P A

    2018-02-01

    Adaptive decision making is profoundly impaired by total sleep deprivation (TSD). This suggests that TSD impacts fronto-striatal pathways involved in cognitive control, where dopamine is a key neuromodulator. In the prefrontal cortex (PFC), dopamine is catabolized by the enzyme catechol-O-methyltransferase (COMT). A functional polymorphism (Val158Met) influences COMT's enzymatic activity, resulting in markedly different levels of prefrontal dopamine. We investigated the effect of this polymorphism on adaptive decision making during TSD. Sixty-six healthy young adults participated in one of two in-laboratory studies. After a baseline day, subjects were randomized to either a TSD group (n = 32) with 38 h or 62 h of extended wakefulness or a well-rested control group (n = 34) with 10 h nighttime sleep opportunities. Subjects performed a go/no-go reversal learning (GNGr) task at well-rested baseline and again during TSD or equivalent control. During the task, subjects were required to learn stimulus-response relationships from accuracy feedback. The stimulus-response relationships were reversed halfway through the task, which required subjects to learn the new stimulus-response relationships from accuracy feedback. Performance on the GNGr task was quantified by discriminability (d') between go and no-go stimuli before and after the stimulus-response reversal. GNGr performance did not differ between COMT genotypes when subjects were well-rested. However, TSD exposed a significant vulnerability to adaptive decision making impairment in subjects with the Val allele. Our results indicate that sleep deprivation degrades cognitive control through a fronto-striatal, dopaminergic mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Role of Catechol-O-Methyltransferase (COMT Gene in the Etiopathogenesis of Schizophrenia

    Ceren Acar

    2014-09-01

    Full Text Available Genetic factors in the risk of developing schizophrenia is of great importance. With the help of the advances in the field of genetics in recent years by using linkage analysis several genes have been identified that may be a risk factor in schizophrenia. Several association studies have been performed in many different populations on the candidate susceptibility genes that were defined in previous studies. However, these studies give controversial results in different countries with different populations, and there are problems in obtaining replicable results. In this review we aimed to focus on the genetic basis of schizophrenia and the relationship between schizophrenia and catechol-O-methyltransferase (COMT gene. COMT encodes an enzyme molecule which has an important function in dopamine pathways. It has great importance in catecholamine metabolism and pharmacology and genetic mechanism of catechol metabolism variations and their clinical consequences. COMT transfers the methyl group from S-adenosyl-methionine to the hydroxyl group of catechol nucleus (such as dopamine, norepinephrine or catechol estrogen. Genetic variations found in COMT gene are associated with a broad spectrum of clinical phenotype including psychiatric disorders or estrogen related cancers. Several groups have performed studies on the relationship between schizophrenia and COMT. The most commonly studied polymorphism in COMT gene is rs4680 and it causes a valine methionine conversion at codon 158. The association studies on this polymorphism in different populations gave both positive and negative results. Schizoprenia is a complex disease caused by the interaction of environmental and genetic factors, while interpreting the genetic data, this fact and the possibility of the presence of different gene products should be taken into account. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(3.000: 217-226

  14. Crystal structures of human 108V and 108M catechol O-methyltransferase

    Rutherford, K.; Le Trong, I.; Stenkamp, R.E.; Parson, W.W. (UWASH)

    2008-08-01

    Catechol O-methyltransferase (COMT) plays important roles in the metabolism of catecholamine neurotransmitters and catechol estrogens. The development of COMT inhibitors for use in the treatment of Parkinson's disease has been aided by crystallographic structures of the rat enzyme. However, the human and rat proteins have significantly different substrate specificities. Additionally, human COMT contains a common valine-methionine polymorphism at position 108. The methionine protein is less stable than the valine polymorph, resulting in decreased enzyme activity and protein levels in vivo. Here we describe the crystal structures of the 108V and 108M variants of the soluble form of human COMT bound with S-adenosylmethionine (SAM) and a substrate analog, 3,5-dinitrocatechol. The polymorphic residue 108 is located in the {alpha}5-{beta}3 loop, buried in a hydrophobic pocket {approx}16 {angstrom} from the SAM-binding site. The 108V and 108M structures are very similar overall [RMSD of C{sup {alpha}} atoms between two structures (C{sup {alpha}} RMSD) = 0.2 {angstrom}], and the active-site residues are superposable, in accord with the observation that SAM stabilizes 108M COMT. However, the methionine side chain is packed more tightly within the polymorphic site and, consequently, interacts more closely with residues A22 ({alpha}2) and R78 ({alpha}4) than does valine. These interactions of the larger methionine result in a 0.7-{angstrom} displacement in the backbone structure near residue 108, which propagates along {alpha}1 and {alpha}5 toward the SAM-binding site. Although the overall secondary structures of the human and rat proteins are very similar (C{sup {alpha}} RMSD = 0.4 {angstrom}), several nonconserved residues are present in the SAM-(I89M, I91M, C95Y) and catechol- (C173V, R201M, E202K) binding sites. The human protein also contains three additional solvent-exposed cysteine residues (C95, C173, C188) that may contribute to intermolecular disulfide bond

  15. No association between catechol-O-methyltransferase (COMT) genotype and attention deficit hyperactivity disorder (ADHD) in Japanese children.

    Yatsuga, Chiho; Toyohisa, Daiki; Fujisawa, Takashi X; Nishitani, Shota; Shinohara, Kazuyuki; Matsuura, Naomi; Ikeda, Shinobu; Muramatsu, Masaaki; Hamada, Akinobu; Tomoda, Akemi

    2014-08-01

    This study ascertained the association between attention deficit/hyperactivity disorder (ADHD) in Japanese children and a polymorphism of catechol-O-methyltransferase (COMT), a dopamine-control gene. The secondary aim of the study was the evaluation of a putative association between methylphenidate (MPH) effect/adverse effects and the COMT genotype. To ascertain the distribution of the Val158Met variant of COMT, 50 children meeting ADHD inclusion criteria were compared with 32 healthy children. Clinical improvement and the occurrence of adverse effects were measured before and 3 months after MPH administration in children with ADHD, and analyzed for genotype association. Wechsler Intelligence Scale for Children-Third Edition (WISC-III), age, MPH dose were included as co-variables. The occurrence of the COMT Val/Val genotype was significantly higher in children with ADHD (χ(2)(1)=7.13, pADHD rating scale scores, after correcting for the interaction between disorder and COMT genotype. Furthermore, no significant difference in MPH effect/adverse effects was observed in association with the COMT genotype in the ADHD group. These results showed a lack of association between the COMT Val/Val genotype and ADHD in Japan. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. Human catechol-O-methyltransferase: Cloning and expression of the membrane-associated form

    Bertocci, B.; Miggiano, V.; Da Prada, M.; Dembic, Z.; Lahm, H.W.; Malherbe, P.

    1991-01-01

    A cDNA clone for human catechol-O-methyltransferase was isolated from a human hepatoma cell line (Hep G2) cDNA library by hybridization screening with a porcine cDNA probe. The cDNA clone was sequenced and found to have an insert of 1226 nucleotides. The deduced primary structure of hCOMT is composed of 271 amino acid residues with the predicted molecular mass of 30 kDa. At its N terminus it has a hydrophobic segment of 21 amino acid residues that may be responsible for insertion of hCOMT into the endoplasmic reticulum membrane. The primary structure of hCOMT exhibits high homology to the porcine partial cDNA sequence (93%). The deduced amino acid sequence contains two tryptic peptide sequences (T-22, T-33) found in porcine liver catechol-O-methyltransferase (CEMT). The coding region of hCOMT cDNA was placed under the control of the cytomegalovirus promoter to transfect human kidney 293 cells. The recombinant hCOMT was shown by immunoblot analysis to be mainly associated with the membrane fraction. RNA blot analysis revealed one COMT mRNA transcript of 1.4 kilobases in Hep G2 poly(A) + RNA

  17. The Role of the Catechol-o-methyltransferase (COMT) Gene Val158Met in Aggressive Behavior, A Review of Genetic Studies

    Qayyum, Arqam; Zai, Clement C.; Hirata, Yuko; Tiwari, Arun K.; Cheema, Sheraz; Nowrouzi, Behdin; Beitchman, Joseph H.; Kennedy, James L.

    2015-01-01

    Aggressive behaviors have become a major public health problem, and early-onset aggression can lead to outcomes such as substance abuse, antisocial personality disorder among other issues. In recent years, there has been an increase in research in the molecular and genetic underpinnings of aggressive behavior, and one of the candidate genes codes for the catechol-O-methyltransferase (COMT). COMT is involved in catabolizing catecholamines such as dopamine. These neurotransmitters appear to be involved in regulating mood which can contribute to aggression. The most common gene variant studied in the COMT gene is the Valine (Val) to Methionine (Met) substitution at codon 158. We will be reviewing the current literature on this gene variant in aggressive behavior. PMID:26630958

  18. Association between the catechol-o-methyltransferase val158met polymorphism with susceptibility and severity of carpal tunnel syndrome

    Erkol İnal E

    2015-12-01

    Full Text Available Carpal tunnel syndrome (CTS is the most common entrapment neuropathy of the upper extremity. In this study, we aimed to clarify the relationships between the catechol-O-methyltransferase (COMT gene Val158Met (rs4680 polymorphism and development, functional and clinical status of CTS. Ninety-five women with electro diagnostically confirmed CTS and 95 healthy controls were enrolled in the study. The functional and clinical status of the patients was measured by the Turkish version of the Boston Questionnaire and intensity of pain related to the past 2 weeks was evaluated on a visual analog scale (VAS. The Val158Met polymorphism was determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP, method. We divided patients according to the genotypes of the Val158Met polymorphism as Val/Val, Val/Met and Met/Met. There were not any significant differences in terms of Val158Met polymorphisms between patients and healthy controls (p >0.05. We also did not find any relationships between the Val158Met polymorphism and CTS (p >0.05. In conclusion, although we did not find any relationships between CTS and the Val158Met polymorphism, we could not generalize this result to the general population. Future studies are warranted to conclude precise associations.

  19. Catechol-O-methyltransferase (COMT) genotype biases neural correlates of empathy and perceived personal distress in schizophrenia.

    Poletti, Sara; Radaelli, Daniele; Cavallaro, Roberto; Bosia, Marta; Lorenzi, Cristina; Pirovano, Adele; Smeraldi, Enrico; Benedetti, Francesco

    2013-02-01

    The catechol-O-methyltransferase (COMT) Val(108/158)Met polymorphism (rs4680) influences enzyme activity with valine (Val) allele associated with higher enzymatic activity. Several studies suggest that factors influencing dopaminergic transmission could control response to stressful situations. Empathy is an essential element of human behavior, requires the ability to adopt another person's perspective, and has been found to be dysfunctional in schizophrenia. Twenty-eight schizophrenic patients underwent functional magnetic resonance imaging performing an empathy task. Perceived empathy has been evaluated with the Interpersonal Reactivity Index. An effect of COMT on perceived distress subscale has been shown, with methionine (Met)/Met subjects reporting lower rates of stress compared with Val/Val. Moreover, imaging results showed an effect of genotype on empathy processing in the anterior cingulate with Val/Val subjects showing the lowest activation. This is the first study of the effect of rs4680 on interpersonal distress and neural correlates of empathy in schizophrenia. We found a decrease in neural responses in areas that ensure a cognitive control of emotion that is paralleled by perceived distress in interpersonal situation; this functional pattern seems to be influenced by rs4680 COMT polymorphism. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Stress-related methylation of the catechol-O-methyltransferase Val 158 allele predicts human prefrontal cognition and activity.

    Ursini, Gianluca; Bollati, Valentina; Fazio, Leonardo; Porcelli, Annamaria; Iacovelli, Luisa; Catalani, Assia; Sinibaldi, Lorenzo; Gelao, Barbara; Romano, Raffaella; Rampino, Antonio; Taurisano, Paolo; Mancini, Marina; Di Giorgio, Annabella; Popolizio, Teresa; Baccarelli, Andrea; De Blasi, Antonio; Blasi, Giuseppe; Bertolino, Alessandro

    2011-05-04

    DNA methylation at CpG dinucleotides is associated with gene silencing, stress, and memory. The catechol-O-methyltransferase (COMT) Val(158) allele in rs4680 is associated with differential enzyme activity, stress responsivity, and prefrontal activity during working memory (WM), and it creates a CpG dinucleotide. We report that methylation of the Val(158) allele measured from peripheral blood mononuclear cells (PBMCs) of Val/Val humans is associated negatively with lifetime stress and positively with WM performance; it interacts with stress to modulate prefrontal activity during WM, such that greater stress and lower methylation are related to reduced cortical efficiency; and it is inversely related to mRNA expression and protein levels, potentially explaining the in vivo effects. Finally, methylation of COMT in prefrontal cortex and that in PBMCs of rats are correlated. The relationship of methylation of the COMT Val(158) allele with stress, gene expression, WM performance, and related brain activity suggests that stress-related methylation is associated with silencing of the gene, which partially compensates the physiological role of the high-activity Val allele in prefrontal cognition and activity. Moreover, these results demonstrate how stress-related DNA methylation of specific functional alleles impacts directly on human brain physiology beyond sequence variation.

  1. Catechol-o-methyltransferase gene polymorphism modifies the effect of coffee intake on incidence of acute coronary events.

    Pertti Happonen

    Full Text Available BACKGROUND: The role of coffee intake as a risk factor for coronary heart disease (CHD has been debated for decades. We examined whether the relationship between coffee intake and incidence of CHD events is dependent on the metabolism of circulating catecholamines, as determined by functional polymorphism of the catechol-O-methyltransferase (COMT gene. METHODOLOGY/PRINCIPAL FINDINGS: In a cohort of 773 men who were 42 to 60 years old and free of symptomatic CHD at baseline in 1984-89, 78 participants experienced an acute coronary event during an average follow-up of 13 years. In logistic regression adjusting for age, smoking, family history of CHD, vitamin C deficiency, blood pressure, plasma cholesterol concentration, and diabetes, the odds ratio (90% confidence interval comparing heavy coffee drinkers with the low activity COMT genotype with those with the high activity or heterozygotic genotypes was 3.2 (1.2-8.4. Urinary adrenaline excretion increased with increasing coffee intake, being over two-fold in heavy drinkers compared with nondrinkers (p = 0.008 for trend. CONCLUSIONS/SIGNIFICANCE: Heavy coffee consumption increases the incidence of acute coronary events in men with low but not high COMT activity. Further studies are required to determine to which extent circulating catecholamines mediate the relationship between coffee intake and CHD.

  2. COMT Val(158)Met genotype determines the direction of cognitive effects produced by catechol-O-methyltransferase inhibition.

    Farrell, Sarah M; Tunbridge, Elizabeth M; Braeutigam, Sven; Harrison, Paul J

    2012-03-15

    Catechol-O-methyltransferase (COMT) metabolizes dopamine. The COMT Val(158)Met polymorphism influences its activity, and multiple neural correlates of this genotype on dopaminergic phenotypes, especially working memory, have been reported. COMT activity can also be regulated pharmacologically by COMT inhibitors. The inverted-U relationship between cortical dopamine signaling and working memory predicts that the effects of COMT inhibition will differ according to COMT genotype. Thirty-four COMT Met(158)Met (Met-COMT) and 33 COMT Val(158)Val (Val-COMT) men were given a single 200-mg dose of the brain-penetrant COMT inhibitor tolcapone or placebo in a randomized, double-blind, between-subjects design. They completed the N-back task of working memory and a gambling task. In the placebo group, Met-COMT subjects outperformed Val-COMT subjects on the 2- back, and they were more risk averse. Tolcapone had opposite effects in the two genotype groups: it worsened N-back performance in Met-COMT subjects but enhanced it in Val-COMT subjects. Tolcapone made Met-COMT subjects less risk averse but Val-COMT subjects more so. In both tasks, tolcapone reversed the baseline genotype differences. Depending on genotype, COMT inhibition can enhance or impair working memory and increase or decrease risky decision making. To our knowledge, the data are the clearest demonstration to date that the direction of effect of a drug can be influenced by a polymorphism in its target gene. The results support the inverted-U model of dopamine function. The findings are of translational relevance, because COMT inhibitors are used in the adjunctive treatment of Parkinson's disease and are under evaluation in schizophrenia and other disorders. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    Jiang, Weili; Shang, Siyuan; Su, Yanjie

    2015-01-01

    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  4. Catechol-O-methyltransferase genotype modulates cancer treatment-related cognitive deficits in breast cancer survivors.

    Small, Brent J; Rawson, Kerri Sharp; Walsh, Erin; Jim, Heather S L; Hughes, Tiffany F; Iser, Lindsay; Andrykowski, Michael A; Jacobsen, Paul B

    2011-04-01

    Recent attention has focused on the negative effects of chemotherapy on the cognitive performance of cancer survivors. The current study examined modification of this risk by catechol-O-methyltransferase (COMT) genotype based on evidence in adult populations that the presence of a Val allele is associated with poorer cognitive performance. Breast cancer survivors treated with radiotherapy (n = 58), and/or chemotherapy (n = 72), and 204 healthy controls (HCs) completed tests of cognitive performance and provided saliva for COMT genotyping. COMT genotype was divided into Val carriers (Val+; Val/Val, Val/Met) or COMT-Met homozygote carriers (Met; Met/Met). COMT-Val+ carriers performed more poorly on tests of attention, verbal fluency, and motor speed relative to COMT-Met homozygotes. Moreover, COMT-Val+ carriers treated with chemotherapy performed more poorly on tests of attention relative to HC group members who were also Val+ carriers. The results suggest that persons treated with chemotherapy for breast cancer who also possess the COMT-Val gene are susceptible to negative effects on their cognitive health. This research is important because it strives to understand the factors that predispose some cancer survivors to more negative quality-of-life outcomes. Copyright © 2010 American Cancer Society.

  5. Analysis of Oxidative Stress Status, Catalase and Catechol-O-Methyltransferase Polymorphisms in Egyptian Vitiligo Patients

    Mehaney, Dina A.; Darwish, Hebatallah A.; Hegazy, Rehab A.; Nooh, Mohammed M.; Tawdy, Amira M.; Gawdat, Heba I.; El-Sawalhi, Maha M.

    2014-01-01

    Vitiligo is the most common depigmentation disorder of the skin. Oxidative stress is implicated as one of the probable events involved in vitiligo pathogenesis possibly contributing to melanocyte destruction. Evidence indicates that certain genes including those involved in oxidative stress and melanin synthesis are crucial for development of vitiligo. This study evaluates the oxidative stress status, the role of catalase (CAT) and catechol-O-Methyltransferase (COMT) gene polymorphisms in the etiology of generalized vitiligo in Egyptians. Total antioxidant capacity (TAC) and malondialdehyde (MDA) levels as well as CAT exon 9 T/C and COMT 158 G/A polymorphisms were determined in 89 patients and 90 age and sex-matched controls. Our results showed significantly lower TAC along with higher MDA levels in vitiligo patients compared with controls. Meanwhile, genotype and allele distributions of CAT and COMT polymorphisms in cases were not significantly different from those of controls. Moreover, we found no association between both polymorphisms and vitiligo susceptibility. In conclusion, the enhanced oxidative stress with the lack of association between CAT and COMT polymorphisms and susceptibility to vitiligo in our patients suggest that mutations in other genes related to the oxidative pathway might contribute to the etiology of generalized vitiligo in Egyptian population. PMID:24915010

  6. Analysis of oxidative stress status, catalase and catechol-O-methyltransferase polymorphisms in Egyptian vitiligo patients.

    Dina A Mehaney

    Full Text Available Vitiligo is the most common depigmentation disorder of the skin. Oxidative stress is implicated as one of the probable events involved in vitiligo pathogenesis possibly contributing to melanocyte destruction. Evidence indicates that certain genes including those involved in oxidative stress and melanin synthesis are crucial for development of vitiligo. This study evaluates the oxidative stress status, the role of catalase (CAT and catechol-O-Methyltransferase (COMT gene polymorphisms in the etiology of generalized vitiligo in Egyptians. Total antioxidant capacity (TAC and malondialdehyde (MDA levels as well as CAT exon 9 T/C and COMT 158 G/A polymorphisms were determined in 89 patients and 90 age and sex-matched controls. Our results showed significantly lower TAC along with higher MDA levels in vitiligo patients compared with controls. Meanwhile, genotype and allele distributions of CAT and COMT polymorphisms in cases were not significantly different from those of controls. Moreover, we found no association between both polymorphisms and vitiligo susceptibility. In conclusion, the enhanced oxidative stress with the lack of association between CAT and COMT polymorphisms and susceptibility to vitiligo in our patients suggest that mutations in other genes related to the oxidative pathway might contribute to the etiology of generalized vitiligo in Egyptian population.

  7. The enzymatic activities of brain catechol-O-methyltransferase (COMT) and methionine sulphoxide reductase are correlated in a COMT Val/Met allele-dependent fashion.

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Hairston, Jenaqua; Bortolato, Marco

    2015-12-01

    The enzyme catechol-O-methyltransferase (COMT) plays a primary role in the metabolism of catecholamine neurotransmitters and is implicated in the modulation of cognitive and emotional responses. The best characterized single nucleotide polymorphism (SNP) of the COMT gene consists of a valine (Val)-to-methionine (Met) substitution at codon 108/158. The Met-containing variant confers a marked reduction in COMT catalytic activity. We recently showed that the activity of recombinant COMT is positively regulated by the enzyme Met sulphoxide reductase (MSR), which counters the oxidation of Met residues of proteins. The current study was designed to assess whether brain COMT activity may be correlated to MSR in an allele-dependent fashion. COMT and MSR activities were measured from post-mortem samples of prefrontal cortices, striata and cerebella of 32 subjects by using catechol and dabsyl-Met sulphoxide as substrates, respectively. Allelic discrimination of COMT Val(108/185) Met SNP was performed using the Taqman 5'nuclease assay. Our studies revealed that, in homozygous carriers of Met, but not Val alleles, the activity of COMT and MSR was significantly correlated throughout all tested brain regions. These results suggest that the reduced enzymatic activity of Met-containing COMT may be secondary to Met sulphoxidation and point to MSR as a key molecular determinant for the modulation of COMT activity. © 2015 British Neuropathological Society.

  8. The impact of the Catechol-O-methyltransferase Val158Met polymorphism on survival in the general population – the HUNT study

    Skorpen Frank

    2007-06-01

    Full Text Available Abstract Background The catechol-O-methyltransferase (COMT gene contains a functional polymorphism, Val158Met which has been related to common diseases like cancer, psychiatric illness and myocardial infarction. Whether the Val158Met polymorphism is associated with survival has not been evaluated in the general population. The aim of this prospective study was to evaluate the impact of codon 158 COMT gene polymorphism on survival in a population-based cohort. Methods The sample comprised 2979 non-diabetic individuals who participated in the Nord-Trøndelag Health Study (HUNT in the period 1995–97. The subjects were followed up with respect to mortality throughout year 2004. Results 212 men and 183 women died during the follow up. No association between codon 158 COMT gene polymorphism and survival was found. The unadjusted relative risk of death by non-ischemic heart diseases with Met/Met or Met/Val genotypes was 3.27 (95% confidence interval, 1.19–9.00 compared to Val/Val genotype. When we adjusted for age, gender, smoking, coffee intake and body mass index the relative risk decreased to 2.89 (95% confidence interval, 1.04–8.00. Conclusion During 10 year of follow-up, the Val158Met polymorphism had no impact on survival in a general population. Difference in mortality rates from non-ischemic heart diseases may be incidental and should be evaluated in other studies.

  9. Determination of catechol O-methyltransferase activity in relation to melanin metabolism using high-performance liquid chromatography with fluorimetric detection

    Smit, N. P.; Pavel, S.; Kammeyer, A.; Westerhof, W.

    1990-01-01

    A new sensitive method for the determination of catechol O-methyltransferase activity has been developed. The method is based on the O-methylation of the indolic intermediates of melanin metabolism. The substrate, 5,6-dihydroxyindole-2-carboxylic acid, is converted by the enzyme to two O-methylated

  10. Properties of the Membrane Binding Component of Catechol-O-methyltransferase Revealed by Atomistic Molecular Dynamics Simulations

    Orlowski, A.; St-Pierre, J. F.; Magarkar, A.

    2011-01-01

    We used atomistic simulations to study the membrane-bound form of catechol-O-methyltransferase (MB-COMT). In particular we investigated the 26-residue transmembrane a-helical segment of MB-COMT together with the 24-residue fragment that links the transmembrane component to the main protein unit...... that was not included in our model. In numerous independent simulations we observed the formation of a salt bridge between ARC 27 and GLU40. The salt bridge closed the flexible loop that formed in the linker and kept it in the vicinity of the membrane-water interface. All simulations supported this conclusion...... that the linker has a clear affinity for the interface and preferentially arranges its residues to reside next to the membrane, without a tendency to relocate into the water phase. Furthermore, an extensive analysis of databases for sequences of membrane proteins that have a single transmembrane helical segment...

  11. Interaction between catechol-O-methyltransferase (COMT) Val158Met genotype and genetic vulnerability to schizophrenia during explicit processing of aversive facial stimuli.

    Lo Bianco, L; Blasi, G; Taurisano, P; Di Giorgio, A; Ferrante, F; Ursini, G; Fazio, L; Gelao, B; Romano, R; Papazacharias, A; Caforio, G; Sinibaldi, L; Popolizio, T; Bellantuono, C; Bertolino, A

    2013-02-01

    Emotion dysregulation is a key feature of schizophrenia, a brain disorder strongly associated with genetic risk and aberrant dopamine signalling. Dopamine is inactivated by catechol-O-methyltransferase (COMT), whose gene contains a functional polymorphism (COMT Val158Met) associated with differential activity of the enzyme and with brain physiology of emotion processing. The aim of the present study was to investigate whether genetic risk for schizophrenia and COMT Val158Met genotype interact on brain activity during implicit and explicit emotion processing. A total of 25 patients with schizophrenia, 23 healthy siblings of patients and 24 comparison subjects genotyped for COMT Val158Met underwent functional magnetic resonance imaging during implicit and explicit processing of facial stimuli with negative emotional valence. We found a main effect of diagnosis in the right amygdala, with decreased activity in patients and siblings compared with control subjects. Furthermore, a genotype × diagnosis interaction was found in the left middle frontal gyrus, such that the effect of genetic risk for schizophrenia was evident in the context of the Val/Val genotype only, i.e. the phenotype of reduced activity was present especially in Val/Val patients and siblings. Finally, a complete inversion of the COMT effect between patients and healthy subjects was found in the left striatum during explicit processing. Overall, these results suggest complex interactions between genetically determined dopamine signalling and risk for schizophrenia on brain activity in the prefrontal cortex during emotion processing. On the other hand, the effects in the striatum may represent state-related epiphenomena of the disorder itself.

  12. Associations of Cigarette Smoking and Polymorphisms in Brain-Derived Neurotrophic Factor and Catechol-O-Methyltransferase with Neurocognition in Alcohol Dependent Individuals during Early Abstinence

    Timothy eDurazzo

    2012-10-01

    Full Text Available Chronic cigarette smoking and polymorphisms in brain-derived neurotrophic factor (BDNF and catechol-o-methyltransferase (COMT are associated with neurocognition in normal controls and those with various neuropsychiatric conditions. The influence of these polymorphisms on neurocognition in alcohol dependence is unclear. The goal of this report was to investigate the associations of single nucleotide polymorphisms (SNP in BDNF Val66Met and COMT Val158Met with neurocognition in a treatment-seeking alcohol dependent cohort and determine if neurocognitive differences between non-smokers and smokers previously observed in this cohort persist when controlled for these functional SNPs. Genotyping was conducted on 70 primarily male treatment-seeking alcohol dependent participants (ALC who completed a comprehensive neuropsychological battery after 33 ± 9 days of monitored abstinence. Smoking ALC performed significantly worse than non-smoking ALC on the domains of auditory-verbal and visuospatial learning and memory, cognitive efficiency, general intelligence, processing speed and global neurocognition. In smoking ALC, greater number of years of smoking over lifetime was related to poorer performance on multiple domains. COMT Met homozygotes were superior to Val homozygotes on measures of executive skills and showed trends for higher general intelligence and visuospatial skills, while COMT Val/Met heterozygotes showed significantly better general intelligence than Val homozygotes. COMT Val homozygotes performed better than heterozygotes on auditory-verbal memory. BDNF genotype was not related to any neurocognitive domain. The findings are consistent with studies in normal controls and neuropsychiatric cohorts that observed COMT Met carriers showed better performance on measures of executive skills and general intelligence. Overall, the findings support to the expanding clinical movement to make smoking cessation programs available at the inception of

  13. Genotype distribution of estrogen receptor-alpha, catechol-O-methyltransferase, and cytochrome P450 17 gene polymorphisms in Caucasian women with uterine leiomyomas.

    Denschlag, Dominik; Bentz, Eva-Katrin; Hefler, Lukas; Pietrowski, Detlef; Zeillinger, Robert; Tempfer, Clemens; Tong, Dan

    2006-02-01

    To evaluate the association between the presence of uterine leiomyomas and three functional single nucleotide polymorphisms (SNPs) of the estrogen receptor alpha (ESR1), catechol-O-methyltransferase (COMT), and cytochrom P450 17 (CYP17A) genes, which have been described to modify the estrogen metabolism. Prospective case control study. Academic research institution. One hundred thirty women with clinically and surgically diagnosed uterine leiomyomas and 139 population controls. Peripheral venous puncture. Polymerase chain reaction and pyrosequencing were performed to genotype women with respect to the ESR1 IVS1-397 T/C (PvuII), COMT G158A, and the CYP17A 34T-->C SNPs. Comparing women with uterine leiomyomas and controls, no statistically significant differences with respect to allele frequency and genotype distribution were ascertained for ESR1 IVS 1-397 T/C (PvuII) (P=0.9 and P=0.6, respectively), COMT G158A (P=0.3 and P=0.6, respectively), and CYP17A 34T-->C (P=0.1 and P=0.5, respectively). When all two-way interactions of investigated SNPs were ascertained, no significant interactions were observed. In a multivariate model, no SNP was significantly associated with leiomyomas. Carriage of the ESR1 IVS1-397 T/C (PvuII), COMT G158A, and the CYP17A 34T-->C SNPs is not associated with the susceptibility to uterine leiomyoma in a Caucasian population.

  14. Protective Role of Maternal P.VAL158MET Catechol-O-methyltransferase Polymorphism against Early-Onset Preeclampsia and its Complications

    Krnjeta Tijana

    2016-09-01

    Full Text Available Background: Up until now there have been contradictory data about the association between p.Val158Met catechol-O-methyltransferase (COMT polymorphism and risk of preeclampsia (PE. The goal of this study was to assess the potential correlation between p.Val158Met COMT polymorphism and risk of early-onset PE, risk of a severe form of early-onset PE, as well as risk of small-for-gestationalage (SGA complicating PE.

  15. Catechol-O-methyltransferase (COMT Genotype Affects Age-Related Changes in Plasticity in Working Memory: A Pilot Study

    Stephan Heinzel

    2014-01-01

    Full Text Available Objectives. Recent work suggests that a genetic variation associated with increased dopamine metabolism in the prefrontal cortex (catechol-O-methyltransferase Val158Met; COMT amplifies age-related changes in working memory performance. Research on younger adults indicates that the influence of dopamine-related genetic polymorphisms on working memory performance increases when testing the cognitive limits through training. To date, this has not been studied in older adults. Method. Here we investigate the effect of COMT genotype on plasticity in working memory in a sample of 14 younger (aged 24–30 years and 25 older (aged 60–75 years healthy adults. Participants underwent adaptive training in the n-back working memory task over 12 sessions under increasing difficulty conditions. Results. Both younger and older adults exhibited sizeable behavioral plasticity through training (P<.001, which was larger in younger as compared to older adults (P<.001. Age-related differences were qualified by an interaction with COMT genotype (P<.001, and this interaction was due to decreased behavioral plasticity in older adults carrying the Val/Val genotype, while there was no effect of genotype in younger adults. Discussion. Our findings indicate that age-related changes in plasticity in working memory are critically affected by genetic variation in prefrontal dopamine metabolism.

  16. Genetic contribution of catechol-O-methyltransferase polymorphism (Val158Met) in children with chronic tension-type headache.

    Fernández-de-las-Peñas, César; Ambite-Quesada, Silvia; Rivas-Martínez, Inés; Ortega-Santiago, Ricardo; de-la-Llave-Rincón, Ana Isabel; Fernández-Mayoralas, Daniel M; Pareja, Juan A

    2011-10-01

    Our aim was to investigate the relationship between Val158Met polymorphisms, headache, and pressure hypersensitivity in children with chronic tension-type headache (CTTH). A case-control study with blinded assessor was conducted. Seventy children with CTTH associated with pericranial tenderness and 70 healthy children participated. After amplifying Val158Met polymorphism by polymerase chain reactions, we assessed genotype frequencies and allele distributions. We classified children according to their Val158Met polymorphism: Val/Val, Val/Met, Met/Met. Pressure pain thresholds (PPT) were bilaterally assessed over the temporalis, upper trapezius, second metacarpal, and tibialis anterior muscles. The distribution of Val158Met genotypes was not significantly different (p = 0.335), between children with CTTH and healthy children, and between boys and girls (p = 0.872). Children with CTTH with the Met/Met genotype showed a longer headache history compared with those with Met/Val (p = 0.001) or Val/Val (p = 0.002) genotype. Children with CTTH with Met/Met genotype showed lower PPT over upper trapezius and temporalis muscles than children with CTTH with Met/Val or Val/Val genotype (p < 0.01). The Val158Met catechol-O-methyltransferase (COMT) polymorphism does not appear to be involved in predisposition to suffer from CTTH in children; nevertheless, this genetic factor may be involved in the phenotypic expression, as pressure hypersensitivity was greater in those CTTH children with the Met/Met genotype.

  17. Race moderates the association of Catechol-O-methyltransferase genotype and posttraumatic stress disorder in preschool children.

    Humphreys, Kathryn L; Scheeringa, Michael S; Drury, Stacy S

    2014-10-01

    The present study sought to replicate previous findings of an association between the Catechol-O-methyltransferase (COMT) val158met polymorphism with posttraumatic stress disorder (PTSD) and symptomatology in a novel age group, preschool children. COMT genotype was determined in a sample of 171 3-6-year-old trauma-exposed children. PTSD was assessed with a semistructured interview. Accounting for sex, trauma type, and age, genotype was examined in relation to categorical and continuous measures of PTSD both controlling for race and within the two largest racial categories (African American [AA] and European American [EA]). Race significantly moderated the association between genotype and PTSD. Specifically, the genotype associated with increased PTSD symptoms in one racial group had the opposite association in the other racial group. For AA children the met/met genotype was associated with more PTSD symptoms. However, for EA children, val allele carriers had more PTSD symptoms. Whereas every AA child with the met/met genotype met criteria for PTSD, none of the EA children with the met/met genotype did. This genetic association with COMT genotype, in both races but in opposite directions, was most associated with increased arousal symptoms. These findings replicate previous findings in participants of African descent, highlight the moderating effect of race on the association between COMT genotype and PTSD, and provide direct evidence that consideration of population stratification within gene-by-environment studies is valuable to prevent false negative findings.

  18. Catechol-O-Methyltransferase (COMT) Gene (Val158Met) and Brain-Derived Neurotropic Factor (BDNF) (Val66Met) Genes Polymorphism in Schizophrenia: A Case-Control Study.

    Saravani, Ramin; Galavi, Hamid Reza; Lotfian Sargazi, Marzieh

    2017-10-01

    Objective: Several studies have shown that some polymorphisms of genes encoding catechol-O-methyltransferase (COMT), the key enzyme in degrading dopamine, and norepinephrine and the human brain-derived neurotropic factor (BDNF), a nerve growth factor, are strong candidates for risk of schizophrenia (SCZ). In the present study, we aimed at examining the effects of COMT Val158Met (G>A) and BDNF Val66Met (G>A) polymorphisms on SCZ risk in a sample of Iranian population. Method: This case- control study included 92 SCZ patients and 92 healthy controls (HCs). Genotyping of both variants (COMT Val158Met (G>A) and BDNF Val66Met (G>A)) were conducted using Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR). Results: The findings revealed that the COMT Val158Met (G>A) polymorphism was not associated with the risk/protective of SCZ in all models (OR=0.630, 95%CI=0.299-1.326, P=0.224, GA vs. GG, OR=1.416, 95%CI=0.719-2.793, P=0.314, AA vs. GG, OR=1.00, 95%CI=0.56-1.79, P=1.00 GA+AA vs. GG, OR=1.667, 95%CI=0.885-3.125, P=0.11, AA vs. GG+GA, OR=1.247, 95%CI=0.825-1.885, P=0.343, A vs. G,). However, BDNF Val66Met (G>A) variant increased the risk of SCZ (OR = 2.008 95%CI = 1.008-4.00, P = 0.047, GA vs. GG, OR = 3.876 95%CI = 1.001-14.925, P = 0.049. AA vs. GG, OR = 2.272. 95%CI = 1.204-4.347, P = 0.011, GA+AA vs. GG, OR = 2.22 95%CI = 1.29-3.82. P = 0.005, A vs. G). Conclusion: The results did not support an association between COMT Val158Met (G>A) variant and risk/protective of SCZ. Moreover, it was found that BDNF Val66Met (G>A) polymorphism may increase the risk of SCZ development. Further studies and different ethnicities are recommended to confirm the findings.

  19. Association of Catechol-O-methyltransferase polymorphism Val158Met and mammographic density: A meta-analysis.

    Kallionpää, Roope A; Uusitalo, Elina; Peltonen, Juha

    2017-08-15

    The Val158Met polymorphism in catechol-O-methyltransferase (COMT) enzyme reduces the methylation of catechol estrogens, which may affect mammographic density. High mammographic density is a known risk factor of breast cancer. Our aim was to perform meta-analysis of the effect of COMT Val158Met polymorphism on mammographic density. Original studies reporting data on mammographic density, stratified by the presence of COMT Val158Met polymorphism, were identified and combined using genetic models Met/Val vs. Val/Val, Met/Met vs. Val/Val, Val/Met+Met/Met vs. Val/Val (dominant model) and Met/Met vs. Val/Met+Val/Val (recessive model). Subgroup analyses by breast cancer status, menopausal status and use of hormone replacement therapy (HRT) were also performed. Eight studies were included in the meta-analysis. The overall effect in percent mammographic density was -1.41 (CI -2.86 to 0.05; P=0.06) in the recessive model. Exclusion of breast cancer patients increased the effect size to -1.93 (CI -3.49 to -0.37; P=0.02). The results suggested opposite effect of COMT Val158Met for postmenopausal users of HRT versus premenopausal women or postmenopausal non-users of HRT. COMT Val158Met polymorphism may be associated with mammographic density at least in healthy women. Menopausal status and HRT should be taken into account in future studies to avoid masking of the underlying effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-01-01

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation

  1. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.

  2. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells.

    Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. © 2013.

  3. Catechol-O-Methyltransferase (COMT) Gene (Val158Met) and Brain-Derived Neurotropic Factor (BDNF) (Val66Met) Genes Polymorphism in Schizophrenia: A Case-Control Study

    Saravani, Ramin; Galavi, Hamid Reza; Lotfian Sargazi, Marzieh

    2017-01-01

    Objective: Several studies have shown that some polymorphisms of genes encoding catechol-O-methyltransferase (COMT), the key enzyme in degrading dopamine, and norepinephrine and the human brain-derived neurotropic factor (BDNF), a nerve growth factor, are strong candidates for risk of schizophrenia (SCZ). In the present study, we aimed at examining the effects of COMT Val158Met (G>A) and BDNF Val66Met (G>A) polymorphisms on SCZ risk in a sample of Iranian population. Method: This case- contro...

  4. Determination of free and conjugated catecholamines and L-3,4-dihydroxyphenylalanine in plasma and urine: evidence for a catechol-O-methyltransferase inhibitor in uraemia

    Demassieux, S.; Corneille, L.; Lachance, S.; Carriere, S.

    1981-01-01

    A sensitive, accurate and reproducible method has been developed for the determination of free and conjugated catecholamines and L-3,4-dihydroxyphenylalanine in plasma and urine. The assay involves the enzymatic conversion of these compounds to their radio-labelled O-methylated derivatives using catechol-O-methyltransferase and S-adenosyl-L-[methyl- 3 H]methionine. Recoveries of 75 +- 5% for dopamine, 70 +- 5% for adrenaline and 65 +- 5% for noradrenaline were obtained. The sensitivities were 0.5 pg for adrenaline and noradrenaline and 5-7 pg for dopamine and dihydroxyphenylalanine. Measurements of conjugated catecholamines were performed after mild acid hydrolysis for 20 min at 95 0 C. During this procedure no degradation of the catecholamines was observed. This assay led to the discovery of a dialyzable factor in the plasma of chronic uraemic patients which inhibits catechol-O-methyltransferase activity in vitro. The mean 22% inhibition observed for unhydrolyzed plasma increased to 42% after hydrolysis. The identity of this inhibitor which exists as an inactive conjugated form, probably a sulphate ester, and its implication in physiopathological disorders remain to be established. (Auth.)

  5. Genetic moderation of the effects of cannabis: catechol-O-methyltransferase (COMT) affects the impact of Δ9-tetrahydrocannabinol (THC) on working memory performance but not on the occurrence of psychotic experiences.

    Tunbridge, Elizabeth M; Dunn, Graham; Murray, Robin M; Evans, Nicole; Lister, Rachel; Stumpenhorst, Katharina; Harrison, Paul J; Morrison, Paul D; Freeman, Daniel

    2015-11-01

    Cannabis use can induce cognitive impairments and psychotic experiences. A functional polymorphism in the catechol-O-methyltransferase (COMT) gene (Val(158)Met) appears to influence the immediate cognitive and psychotic effects of cannabis, or ∆(9)-tetrahydrocannabinol (THC), its primary psychoactive ingredient. This study investigated the moderation of the impact of experimentally administered THC by COMT. Cognitive performance and psychotic experiences were studied in participants without a psychiatric diagnosis, using a between-subjects design (THC vs. placebo). The effect of COMT Val(158)Met genotype on the cognitive and psychotic effects of THC, administered intravenously in a double-blind, placebo-controlled manner to 78 participants who were vulnerable to paranoia, was examined. The results showed interactive effects of genotype and drug group (THC or placebo) on working memory, assayed using the Digit Span Backwards task. Specifically, THC impaired performance in COMT Val/Val, but not Met, carriers. In contrast, the effect of THC on psychotic experiences, measured using the Community Assessment of Psychic Experiences (CAPE) positive dimension, was unaffected by COMT genotype. This study is the largest to date examining the impact of COMT genotype on response to experimentally administered THC, and the first using a purely non-clinical cohort. The data suggest that COMT genotype moderates the cognitive, but not the psychotic, effects of acutely administered THC. © The Author(s) 2015.

  6. [Effect of Electroacupuncture on Expression of Catechol-O-methyltransferase in the Inferior Colliculus and Auditory Cortex in Age-related Hearing Loss Guinea Pigs].

    Liu, Shu-Yun; Deng, Li-Qiang; Yang, Ye; Yin, Ze-Deng

    2017-04-25

    To observe the expression of catechol-O-methyltransferase (COMT) in inferior colliculus and auditory cortex of guinea pigs with age-related hearing loss(AHL) induced by D-galactose, so as to explore the possible mechanism of electroacupuncture(EA) underlying preventing AHL. Thirty 3-month-old guinea pigs were randomly divided into control group, model group and EA group( n =10 in each group), and ten 18-month-old guinea pigs were allocated as elderly group. The AHL model was established by subcutaneous injection of D-galactose. EA was applied to bilateral "Yifeng"(SJ 17) and "Tinggong"(SI 19) for 15 min in the EA group while modeling, once daily for 6 weeks. After treatment, the latency of auditory brainstem response(ABR) Ⅲ wave was measured by a brain-stem evoked potentiometer. The expressions of COMT in the inferior colliculus and auditory cortex were detected by Western blot. Compared with the control group, the latencies of ABR Ⅲ wave were significantly prolonged and the expressions of COMT in the inferior colliculus and auditory cortex were significantly decreased in the model group and the elderly group( P guinea pigs, which may contribute to its effect in up-regulating the expression of COMT in the inferior colliculus and auditory cortex.

  7. Investigating the genetic basis of theory of mind (ToM): the role of catechol-O-methyltransferase (COMT) gene polymorphisms.

    Xia, Haiwei; Wu, Nan; Su, Yanjie

    2012-01-01

    The ability to deduce other persons' mental states and emotions which has been termed 'theory of mind (ToM)' is highly heritable. First molecular genetic studies focused on some dopamine-related genes, while the genetic basis underlying different components of ToM (affective ToM and cognitive ToM) remain unknown. The current study tested 7 candidate polymorphisms (rs4680, rs4633, rs2020917, rs2239393, rs737865, rs174699 and rs59938883) on the catechol-O-methyltransferase (COMT) gene. We investigated how these polymorphisms relate to different components of ToM. 101 adults participated in our study; all were genetically unrelated, non-clinical and healthy Chinese subjects. Different ToM tasks were applied to detect their theory of mind ability. The results showed that the COMT gene rs2020917 and rs737865 SNPs were associated with cognitive ToM performance, while the COMT gene rs5993883 SNP was related to affective ToM, in which a significant gender-genotype interaction was found (p = 0.039). Our results highlighted the contribution of DA-related COMT gene on ToM performance. Moreover, we found out that the different SNP at the same gene relates to the discriminative aspect of ToM. Our research provides some preliminary evidence to the genetic basis of theory of mind which still awaits further studies.

  8. Structure related effects of flavonoid aglycones on cell cycle progression of HepG2 cells: Metabolic activation of fisetin and quercetin by catechol-O-methyltransferase (COMT).

    Poór, Miklós; Zrínyi, Zita; Kőszegi, Tamás

    2016-10-01

    Dietary flavonoids are abundant in the Plant Kingdom and they are extensively studied because of their manifold pharmacological activities. Recent studies highlighted that cell cycle arrest plays a key role in their antiproliferative effect in different tumor cells. However, structure-activity relationship of flavonoids is poorly characterized. In our study the influence of 18 flavonoid aglycones (as well as two metabolites) on cell cycle distribution was investigated. Since flavonoids are extensively metabolized by liver cells, HepG2 tumor cell line was applied, considering the potential metabolic activation/inactivation of flavonoids. Our major observations are the followings: (1) Among the tested compounds diosmetin, fisetin, apigenin, lutelin, and quercetin provoked spectacular extent of G2/M phase cell cycle arrest. (2) Inhibition of catechol-O-methyltransferase enzyme by entacapone decreased the antiproliferative effects of fisetin and quercetin. (3) Geraldol and isorhamnetin (3'-O-methylated metabolites of fisetin and quercetin, respectively) demonstrated significantly higher antiproliferative effect on HepG2 cells compared to the parent compounds. Based on these results, O-methylated flavonoid metabolites or their chemically modified derivatives may be suitable candidates of tumor therapy in the future. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome

    Lachman, H.M.; Papolos, D.F.; Veit, S. [Albert Einstein College of Medicine, Bronx, NY (United States)] [and others

    1996-09-20

    Velo-cardio-facial-syndrome (VCFS) is a common congenital disorder associated with typical facial appearance, cleft palate, cardiac defects, and learning disabilities. The majority of patients have an interstitial deletion on chromosome 22q11. In addition to physical abnormalities, a variety of psychiatric illnesses have been reported in patients with VCFS, including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. The psychiatric manifestations of VCFS could be due to haploinsufficiency of a gene(s) within 22q11. One candidate that has been mapped to this region is catechol-O-methyltransferase (COMT). We recently identified a polymorphism in the COMT gene that leads to a valine{r_arrow}methionine substitution at amino acid 158 of the membrane-bound form of the enzyme. Homozygosity for COMT158{sup met} leads to a 3- to 4-fold reduction in enzymatic activity, compared with homozygotes for COMT158{sup met}. We now report that in a population of patients with VCFS, there is an apparent association between the low-activity allele, COMT158{sup met}, and the development of bipolar spectrum disorder, and in particular, a rapid-cycling form. 33 refs., 3 tabs.

  10. Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat.

    Kline, R H; Exposto, F G; O'Buckley, S C; Westlund, K N; Nackley, A G

    2015-04-02

    Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by β-adrenergic receptors (βARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10-45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective βAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of βARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Effects of acute dopamine precusor depletion on immediate reward selection bias and working memory depend on catechol-O-methyltransferase genotype.

    Kelm, Mary Katherine; Boettiger, Charlotte A

    2013-12-01

    Little agreement exists as to acute dopamine (DA) manipulation effects on intertemporal choice in humans. We previously found that catechol-O-methyltransferase (COMT) Val158Met genotype predicts individual differences in immediate reward selection bias among adults. Moreover, we and others have shown that the relationship between COMT genotype and immediate reward bias is inverted in adolescents. No previous pharmacology studies testing DA manipulation effects on intertemporal choice have accounted for COMT genotype, and many have included participants in the adolescent age range (18-21 years) as adults. Moreover, many studies have included female participants without strict cycle phase control, although recent evidence demonstrates that cyclic estradiol elevations interact with COMT genotype to affect DA-dependent cognition. These factors may have interacted with DA manipulations in past studies, potentially occluding detection of effects. Therefore, we predicted that, among healthy male adults (ages 22-40 years), frontal DA tone, as indexed by COMT genotype, would interact with acute changes in DA signaling to affect intertemporal choice. In a double-blind, placebo-controlled design, we decreased central DA via administration of an amino acid beverage deficient in the DA precursors, phenylalanine and tyrosine, and tested effects on immediate reward bias in a delay-discounting (DD) task and working memory (WM) in an n-back task. We found no main effect of beverage on DD or WM performance but did find significant beverage*genotype effects. These results suggest that the effect of DA manipulations on DD depends on individual differences in frontal DA tone, which may have impeded some past efforts to characterize DA's role in immediate reward bias in humans.

  12. Assessment of cellular estrogenic activity based on estrogen receptor-mediated reduction of soluble-form catechol-O-methyltransferase (COMT expression in an ELISA-based system.

    Philip Wing-Lok Ho

    Full Text Available Xenoestrogens are either natural or synthetic compounds that mimic the effects of endogenous estrogen. These compounds, such as bisphenol-A (BPA, and phthalates, are commonly found in plastic wares. Exposure to these compounds poses major risk to human health because of the potential to cause endocrine disruption. There is huge demand for a wide range of chemicals to be assessed for such potential for the sake of public health. Classical in vivo assays for endocrine disruption are comprehensive but time-consuming and require sacrifice of experimental animals. Simple preliminary in vitro screening assays can reduce the time and expense involved. We previously demonstrated that catechol-O-methyltransferase (COMT is transcriptionally regulated by estrogen via estrogen receptor (ER. Therefore, detecting corresponding changes of COMT expression in estrogen-responsive cells may be a useful method to estimate estrogenic effects of various compounds. We developed a novel cell-based ELISA to evaluate cellular response to estrogenicity by reduction of soluble-COMT expression in ER-positive MCF-7 cells exposed to estrogenic compounds. In contrast to various existing methods that only detect bioactivity, this method elucidates direct physiological effect in a living cell in response to a compound. We validated our assay using three well-characterized estrogenic plasticizers - BPA, benzyl butyl phthalate (BBP, and di-n-butyl phthalate (DBP. Cells were exposed to either these plasticizers or 17β-estradiol (E2 in estrogen-depleted medium with or without an ER-antagonist, ICI 182,780, and COMT expression assayed. Exposure to each of these plasticizers (10(-9-10(-7M dose-dependently reduced COMT expression (p<0.05, which was blocked by ICI 182,780. Reduction of COMT expression was readily detectable in cells exposed to picomolar level of E2, comparable to other in vitro assays of similar sensitivity. To satisfy the demand for in vitro assays targeting different

  13. Associations between genetic risk, functional brain network organization and neuroticism

    Servaas, Michelle N.; Geerligs, Linda; Bastiaansen, Jojanneke A.; Renken, Remco J.; Marsman, Jan-Bernard C.; Nolte, Ilja M.; Ormel, Johan; Aleman, Andre; Riese, Harriette

    2017-01-01

    Neuroticism and genetic variation in the serotonin-transporter (SLC6A4) and catechol-O-methyltransferase (COMT) gene are risk factors for psychopathology. Alterations in the functional integration and segregation of neural circuits have recently been found in individuals scoring higher on

  14. The catechol-O-methyltransferase (COMT) Val158Met genotype modulates working memory-related dorsolateral prefrontal response and performance in bipolar disorder

    Miskowiak, K. W.; Kjærstad, H. L.; Støttrup, M. M.

    2017-01-01

    prefrontal cortex (dlPFC) (P=.016). Exploratory whole-brain analysis revealed a bilateral decrease in working memory-related dlPFC activity in the ValVal group vs the ValMet group which was not associated with differences in working memory performance during fMRI. Outside the MRI scanner, Val carriers...... performed worse in the CANTAB Spatial Working Memory task than Met homozygotes (P≤.006), with deficits being most pronounced in Val homozygotes. CONCLUSIONS: The association between Val allelic load, dlPFC activity and WM impairment points to a putative role of aberrant PFC dopamine tonus in the cognitive......-O-methyltransferase (COMT) gene is associated with reduced prefrontal cortex dopamine and exaggerated working memory-related prefrontal activity. This functional magnetic resonance imaging (fMRI) study investigated for the first time whether the COMT Val158Met genotype modulates prefrontal activity during spatial working...

  15. Time-resolved influences of functional DAT1 and COMT variants on visual perception and post-processing.

    Stephan Bender

    Full Text Available BACKGROUND: Dopamine plays an important role in orienting and the regulation of selective attention to relevant stimulus characteristics. Thus, we examined the influences of functional variants related to dopamine inactivation in the dopamine transporter (DAT1 and catechol-O-methyltransferase genes (COMT on the time-course of visual processing in a contingent negative variation (CNV task. METHODS: 64-channel EEG recordings were obtained from 195 healthy adolescents of a community-based sample during a continuous performance task (A-X version. Early and late CNV as well as preceding visual evoked potential components were assessed. RESULTS: Significant additive main effects of DAT1 and COMT on the occipito-temporal early CNV were observed. In addition, there was a trend towards an interaction between the two polymorphisms. Source analysis showed early CNV generators in the ventral visual stream and in frontal regions. There was a strong negative correlation between occipito-temporal visual post-processing and the frontal early CNV component. The early CNV time interval 500-1000 ms after the visual cue was specifically affected while the preceding visual perception stages were not influenced. CONCLUSIONS: Late visual potentials allow the genomic imaging of dopamine inactivation effects on visual post-processing. The same specific time-interval has been found to be affected by DAT1 and COMT during motor post-processing but not motor preparation. We propose the hypothesis that similar dopaminergic mechanisms modulate working memory encoding in both the visual and motor and perhaps other systems.

  16. Polimorfismos dos genes do receptor de serotonina (5-HT2A e da catecol-O-metiltransferase (COMT: fatores desencadeantes da fibromialgia? Serotonin receptor (5-HT 2A and catechol-O-methyltransferase (COMT gene polymorphisms: Triggers of fibromyalgia?

    Josie Budag Matsuda

    2010-04-01

    fatigue, sleep disorders, anxiety, depression, memory loss, and dizziness. Although the physiological mechanisms that control fibromyalgia have not been precisely established, neuroendocrine, genetic or molecular factors may be involved in fibromyalgia. OBJECTIVE: The aim of the present study was to characterize serotonin receptor (5-HT2A and catecholO-methyltransferase (COMT gene polymorphisms in Brazilian patients with fibromyalgia and to evaluate the participation of these polymorphisms in the etiology of the disease. MATERIAL AND METHODS: Genomic DNA extracted from 102 blood samples (51 patients, 51 controls was used for molecular characterization of the 5-HT2A and COMT gene polymorphisms by PCR-RFLP. RESULTS: Analysis of the 5-HT2A polymorphism revealed a frequency of 25.49% C/C, 49.02% T/C and 25.49% T/T in patients, and of 17.65% C/C, 62.74% T/C and 19.61% T/T in the control group, with no differences between the two groups.Analysis of the COMT polymorphism in patients showed a frequency of 17.65% and 45.10% for genotypes H/H and L/H, respectively. In the control group the frequency was 29.42% for H/H and 60.78% for L/H, also with no differences between the two groups. However, there was a significant difference in the frequency of the L/L genotype between patients (37.25% and controls (9.8%, which permitted differentiation between the two groups. CONCLUSION: The L/L genotype was more frequent among fibromyalgia patients. Though considering a polygenic situation and environmental factors, the molecular study of the rs4680 SNP of the COMT gene may be helpful to the identification of susceptible individuals.

  17. Dopaminergic influences on executive function and impulsive behaviour in impulse control disorders in Parkinson's disease.

    Leroi, Iracema; Barraclough, Michelle; McKie, Shane; Hinvest, Neal; Evans, Jonathan; Elliott, Rebecca; McDonald, Kathryn

    2013-09-01

    The development of impulse control disorders (ICDs) in Parkinson's disease (PD) may arise from an interaction among cognitive impairment, impulsive responding and dopaminergic state. Dopaminergic state may be influenced by pharmacologic or genotypic (catechol-O-methyltransferase; COMT) factors. We sought to investigate this interaction further by comparing those with (n = 35) and without (n = 55) ICDs on delay-discounting in different pharmacologic conditions (ON or OFF dopaminergic medication) and on response inhibition as well as aspects of executive functioning in the ON state. We then undertook an exploratory sub-group analysis of these same tasks when the overall PD group was divided into different allelic variants of COMT (val/val vs. met/met). A healthy control group (HC; n = 20) was also included. We found that in those with PD and ICDs, 'cognitive flexibility' (set shifting, verbal fluency, and attention) in the ON medication state was not impaired compared with those without ICDs. In contrast, our working memory, or 'cognitive focus', task was impaired in both PD groups compared with the HC group when ON. During the delay-discounting task, the PD with ICDs group expressed greater impulsive choice compared with the PD group without ICDs, when in the ON, but not the OFF, medication state. However, no group difference on the response inhibition task was seen when ON. Finally, the met homozygous group performed differently on tests of executive function compared with the val homozygous group. We concluded that the disparity in levels of impairment among different domains of executive function and impulsive decision-making distinguishes those with ICD in PD from those without ICD, and may in part be affected by dopaminergic status. Both pharmacologic and genotypic influences on dopaminergic state may be important in ICD. © 2013 The British Psychological Society.

  18. The effect of COMT Val158Met and DRD2 C957T polymorphisms on executive function and the impact of early life stress.

    Klaus, Kristel; Butler, Kevin; Durrant, Simon J; Ali, Manir; Inglehearn, Chris F; Hodgson, Timothy L; Gutierrez, Humberto; Pennington, Kyla

    2017-05-01

    Previous research has indicated that variation in genes encoding catechol-O-methyltransferase ( COMT ) and dopamine receptor D2 ( DRD2 ) may influence cognitive function and that this may confer vulnerability to the development of mental health disorders such as schizophrenia. However, increasing evidence suggests environmental factors such as early life stress may interact with genetic variants in affecting these cognitive outcomes. This study investigated the effect of COMT Val158Met and DRD2 C957T polymorphisms on executive function and the impact of early life stress in healthy adults. One hundred and twenty-two healthy adult males (mean age 35.2 years, range 21-63) were enrolled in the study. Cognitive function was assessed using Cambridge Neuropsychological Test Automated Battery and early life stress was assessed using the Childhood Traumatic Events Scale (Pennebaker & Susman, 1988). DRD2 C957T was significantly associated with executive function, with CC homozygotes having significantly reduced performance in spatial working memory and spatial planning. A significant genotype-trauma interaction was found in Rapid Visual Information Processing test, a measure of sustained attention, with CC carriers who had experienced early life stress exhibiting impaired performance compared to the CC carriers without early life stressful experiences. There were no significant findings for COMT Val158Met . This study supports previous findings that DRD2 C957T significantly affects performance on executive function related tasks in healthy individuals and shows for the first time that some of these effects may be mediated through the impact of childhood traumatic events. Future work should aim to clarify further the effect of stress on neuronal systems that are known to be vulnerable in mental health disorders and more specifically what the impact of this might be on cognitive function.

  19. Age-related decline in brain resources modulates genetic effects on cognitive functioning

    Ulman Lindenberger

    2008-12-01

    Full Text Available Individual differences in cognitive performance increase from early to late adulthood, likely reflecting influences of a multitude of factors. We hypothesize that losses in neurochemical and anatomical brain resources in normal aging modulate the effects of common genetic variations on cognitive functioning. Our hypothesis is based on the assumption that the function relating brain resources to cognition is nonlinear, so that genetic differences exert increasingly large effects on cognition as resources recede from high to medium levels in the course of aging.Direct empirical support for this hypothesis comes from a study by Nagel et al. (2008, who reported that the effects of the Catechol-O-Methyltransferase (COMT gene on cognitive performance are magnified in old age and interacted with the Brain-Derived Neurotrophic Factor (BDNF gene. We conclude that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. Extensions of the hypothesis to other polymorphisms are discussed.

  20. Synthesis of two 14C-labeled catechol-o-methyltransferase inhibitors

    Karlsson, Carita; Honkanen, Erkki

    1991-01-01

    14 C-labelled 3-(3,4-dihydroxy-5-nitrophenylmethylidene)-2,4-pentanedione and 14 C-labelled E-N,N-diethyl-2-cyano-3-(3,4-dihydroxy-5-nitrophenyl)acrylamide have been synthesized from [carbonyl- 14 C]vanillin. (author)

  1. Genetic variants associated with lung function

    Thyagarajan, Bharat; Wojczynski, Mary; Minster, Ryan L

    2014-01-01

    with exceptional longevity have not been identified. METHOD: We conducted a genome wide association study (GWAS) to identify novel genetic variants associated with lung function in the Long Life Family Study (LLFS) (n = 3,899). Replication was performed using data from the CHARGE/SpiroMeta consortia...

  2. CYP2D6 and catechol-O-methyltransferase gene polymorphisms in Parkinson patients with levodopa-induced dyskinesias

    Ivanova, S.A.; Alifirova, V.M.; Pozhidaev, I.V.; Fedorenko, O.Y.; Osmanova, D.Z.; Tiguntsev, V.V.; Bokhan, N.A.; Zhukova, I.A.; Wilffert, B.; Loonen, A.J.M.

    2016-01-01

    Parkinson's disease (PD), a common neurodegenerative disorder caused by the loss of the dopaminergic input to the basal ganglia, is commonly treated with levodopa (L-DOPA). Use of this drug, however, is severely limited by the development of side effect. Levodopa-induced dyskinesias (LID) are

  3. Imaging oxytocin x dopamine interactions: An epistasis effect of CD38 and COMT gene variants influences the impact of oxytocin on amygdala activation to social stimuli

    Carina eSauer

    2013-04-01

    Full Text Available Although oxytocin (OT has become a major target for the investigation of positive social processes, it can be assumed that it exerts its effects in concert with other neurotransmitters. One candidate for such an interaction is dopamine (DA. For both systems, genetic variants have been identified that influence the availability of the particular substance. A variant of the gene coding for the transmembrane protein CD38 (rs3796863, which is engaged in OT secretion, has been associated with OT plasma level. The common catechol-O-methyltransferase (COMT val158met polymorphism is known to influence COMT activity and therefore the degradation of DA. The present study aimed to investigate OTxDA interactions in the context of an OT challenge study. Hence, we tested the influence of the above mentioned genetic variants and their interaction on the activation of different brain regions (amygdala, VTA, ventral striatum and fusiform gyrus during the presentation of social stimuli. In a pharmacological cross-over design 55 participants were investigated under OT and placebo (PLA by means of fMRI.Brain imaging results revealed no significant effects for VTA or ventral striatum. Regarding the fusiform gyrus, we could not find any effects apart from those already described in (Sauer et al., 2012. Analyses of amygdala activation resulted in no gene main effect, no gene x substance interaction but a significant gene x gene x substance interaction. While under PLA the effect of CD38 on bilateral amygdala activation to social stimuli was modulated by the COMT genotype, no such epistasis effect was found under OT. Our results provide evidence for an OTxDA interaction during responses to social stimuli. We postulate that the effect of central OT secretion on amygdala response is modulated by the availability of DA. Therefore, for an understanding of the effect of social hormones on social behavior, interactions of OT with other transmitter systems have to be taken

  4. Population structure analysis using rare and common functional variants

    Ding Lili

    2011-11-01

    Full Text Available Abstract Next-generation sequencing technologies now make it possible to genotype and measure hundreds of thousands of rare genetic variations in individuals across the genome. Characterization of high-density genetic variation facilitates control of population genetic structure on a finer scale before large-scale genotyping in disease genetics studies. Population structure is a well-known, prevalent, and important factor in common variant genetic studies, but its relevance in rare variants is unclear. We perform an extensive population structure analysis using common and rare functional variants from the Genetic Analysis Workshop 17 mini-exome sequence. The analysis based on common functional variants required 388 principal components to account for 90% of the variation in population structure. However, an analysis based on rare variants required 532 significant principal components to account for similar levels of variation. Using rare variants, we detected fine-scale substructure beyond the population structure identified using common functional variants. Our results show that the level of population structure embedded in rare variant data is different from the level embedded in common variant data and that correcting for population structure is only as good as the level one wishes to correct.

  5. Genetic predictor of working memory and prefrontal function in women with HIV.

    Sundermann, Erin E; Bishop, Jeffrey R; Rubin, Leah H; Little, Deborah M; Meyer, Vanessa J; Martin, Eileen; Weber, Kathleen; Cohen, Mardge; Maki, Pauline M

    2015-02-01

    The Val158Met (rs4680) single-nucleotide polymorphism (SNP) of the catechol-O-methyltransferase gene (COMT) influences executive function and prefrontal function through its effect on dopamine (DA) metabolism. Both HIV and the Val allele of the Val158Met SNP are associated with compromised executive function and inefficient prefrontal function. The present study used behavioral and neuroimaging techniques to determine independent and interactive associations between HIV serostatus and COMT genotype on working memory and prefrontal function in women. For the behavioral study, 54 HIV-infected and 33 HIV-uninfected women completed the 0-, 1-, and 2-back conditions of the verbal N-back, a working memory test. For the imaging study, 36 women (23 HIV-infected, 13 HIV-uninfected) underwent functional magnetic resonance imaging (fMRI) assessments while completing the N-back task. HIV-infected women demonstrated significantly worse N-back performance compared with HIV-uninfected women (p women performed significantly worse than HIV-uninfected controls across N-back conditions (p working memory deficits and altered prefrontal function in HIV-infected individuals.

  6. Assessment of Functional Effects of Unclassified Genetic Variants

    Couch, Fergus J.; Rasmussen, Lene Juel; Hofstra, Robert; Monteiro, Alvaro N. A.; Greenblatt, Marc S.; de Wind, Niels

    2008-01-01

    Inherited predisposition to disease is often linked to reduced activity of a disease associated gene product. Thus, quantitation of the influence of inherited variants on gene function can potentially be used to predict the disease relevance of these variants. While many disease genes have been

  7. Assessment of Functional Effects of Unclassified Genetic Variants

    Couch, Fergus J.; Rasmussen, Lene Juel; Hofstra, Robert; Monteiro, Alvaro N. A.; Greenblatt, Marc S.; de Wind, Niels

    Inherited predisposition to disease is often linked to reduced activity of a disease associated gene product. Thus, quantitation of the influence of inherited variants on gene function can potentially be used to predict the disease relevance of these variants. While many disease genes have been

  8. Gain-of-function HCN2 variants in genetic epilepsy.

    Li, Melody; Maljevic, Snezana; Phillips, A Marie; Petrovski, Slave; Hildebrand, Michael S; Burgess, Rosemary; Mount, Therese; Zara, Federico; Striano, Pasquale; Schubert, Julian; Thiele, Holger; Nürnberg, Peter; Wong, Michael; Weisenberg, Judith L; Thio, Liu Lin; Lerche, Holger; Scheffer, Ingrid E; Berkovic, Samuel F; Petrou, Steven; Reid, Christopher A

    2018-02-01

    Genetic generalized epilepsy (GGE) is a common epilepsy syndrome that encompasses seizure disorders characterized by spike-and-wave discharges (SWDs). Pacemaker hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are considered integral to SWD genesis, making them an ideal gene candidate for GGE. We identified HCN2 missense variants from a large cohort of 585 GGE patients, recruited by the Epilepsy Phenome-Genome Project (EPGP), and performed functional analysis using two-electrode voltage clamp recordings from Xenopus oocytes. The p.S632W variant was identified in a patient with idiopathic photosensitive occipital epilepsy and segregated in the family. This variant was also independently identified in an unrelated patient with childhood absence seizures from a European cohort of 238 familial GGE cases. The p.V246M variant was identified in a patient with photo-sensitive GGE and his father diagnosed with juvenile myoclonic epilepsy. Functional studies revealed that both p.S632W and p.V246M had an identical functional impact including a depolarizing shift in the voltage dependence of activation that is consistent with a gain-of-function. In contrast, no biophysical changes resulted from the introduction of common population variants, p.E280K and p.A705T, and the p.R756C variant from EPGP that did not segregate with disease. Our data suggest that HCN2 variants can confer susceptibility to GGE via a gain-of-function mechanism. © 2017 Wiley Periodicals, Inc.

  9. COMT Val(108/158)Met polymorphism effects on emotional brain function and negativity bias.

    Williams, Leanne M; Gatt, Justine M; Grieve, Stuart M; Dobson-Stone, Carol; Paul, Robert H; Gordon, Evian; Schofield, Peter R

    2010-11-15

    Biases toward processing negative versus positive information vary as a function of level of awareness, and are modulated by monoamines. Excessive biases are associated with individual differences in mood and emotional stability, and emotional disorder. Here, we examined the impact of the catechol-O-methyltransferase (COMT) Val(108/158)Met polymorphism, involved in dopamine and norepinephrine catabolism, on both emotional brain function and self-reported negativity bias. COMT genotyping and self-reported level of negativity bias were completed for 46 healthy participants taking part in the Brain Resource International Database. Functional MRI was undertaken during perception of facial expressions of fear and happiness presented under unmasked (consciously identified) and masked (to prevent conscious detection) conditions. Structural MR images were also acquired. A greater number of COMT Met alleles predicted increased activation in brainstem, amygdala, basal ganglia and medial prefrontal regions for conscious fear, but decreased activation for conscious happiness. This pattern was also apparent for brainstem activation for the masked condition. Effects were most apparent for females. These differences could not be explained by gray matter variations. The Met-related profile of activation, particularly prefrontally, predicted greater negativity bias associated with risk for emotional disorder. The findings suggest that the COMT Met allele modulates neural substrates of negative versus positive emotion processing. This effect may contribute to negativity biases, which confer susceptibility for emotional disorders. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants.

    Mengmeng Du

    Full Text Available Genome-wide association studies (GWAS have identified many common single nucleotide polymorphisms (SNPs associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs. We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33. We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s.

  11. Genetic contributions to age-related decline in executive function: a 10-year longitudinal study of COMT and BDNF polymorphisms

    Kirk I Erickson

    2008-09-01

    Full Text Available Genetic variability in the dopaminergic and neurotrophic systems could contribute to age-related impairments in executive control and memory function. In this study we examined whether genetic polymorphisms for catechol-O-methyltransferase (COMT and brain-derived neurotrophic factor (BDNF were related to the trajectory of cognitive decline occurring over a 10-year period in older adults. A single-nucleotide polymorphism (SNP in the COMT (Val158/108Met gene affects the concentration of dopamine in the prefrontal cortex. In addition, a Val/Met substitution in the pro-domain for BDNF (Val66Met affects the regulated secretion and trafficking of BDNF with Met carriers showing reduced secretion and poorer cognitive function. We found that impairments over the 10-year span on a task-switching paradigm did not vary as a function of the COMT polymorphism. However, for the BDNF polymorphism the Met carriers performed worse than Val homozygotes at the first testing session but only the Val homozygotes demonstrated a significant reduction in performance over the 10-year span. Our results argue that the COMT polymorphism does not affect the trajectory of age-related executive control decline, whereas the Val/Val polymorphism for BDNF may promote faster rates of cognitive decay in old age. These results are discussed in relation to the role of BDNF in senescence and the transforming impact of the Met allele on cognitive function in old age.

  12. Functionally significant, rare transcription factor variants in tetralogy of Fallot.

    Ana Töpf

    Full Text Available Rare variants in certain transcription factors involved in cardiac development cause Mendelian forms of congenital heart disease. The purpose of this study was to systematically assess the frequency of rare transcription factor variants in sporadic patients with the cardiac outflow tract malformation tetralogy of Fallot (TOF.We sequenced the coding, 5'UTR, and 3'UTR regions of twelve transcription factor genes implicated in cardiac outflow tract development (NKX2.5, GATA4, ISL1, TBX20, MEF2C, BOP/SMYD1, HAND2, FOXC1, FOXC2, FOXH, FOXA2 and TBX1 in 93 non-syndromic, non-Mendelian TOF cases. We also analysed Illumina Human 660W-Quad SNP Array data for copy number variants in these genes; none were detected. Four of the rare variants detected have previously been shown to affect transactivation in in vitro reporter assays: FOXC1 p.P297S, FOXC2 p.Q444R, FOXH1 p.S113T and TBX1 p.P43_G61del PPPPRYDPCAAAAPGAPGP. Two further rare variants, HAND2 p.A25_A26insAA and FOXC1 p.G378_G380delGGG, A488_491delAAAA, affected transactivation in in vitro reporter assays. Each of these six functionally significant variants was present in a single patient in the heterozygous state; each of the four for which parental samples were available were maternally inherited. Thus in the 93 TOF cases we identified six functionally significant mutations in the secondary heart field transcriptional network.This study indicates that rare genetic variants in the secondary heart field transcriptional network with functional effects on protein function occur in 3-13% of patients with TOF. This is the first report of a functionally significant HAND2 mutation in a patient with congenital heart disease.

  13. Functional significance of SPINK1 promoter variants in chronic pancreatitis.

    Derikx, Monique H M; Geisz, Andrea; Kereszturi, Éva; Sahin-Tóth, Miklós

    2015-05-01

    Chronic pancreatitis is a progressive inflammatory disorder of the pancreas, which often develops as a result of genetic predisposition. Some of the most frequently identified risk factors affect the serine protease inhibitor Kazal type 1 (SPINK1) gene, which encodes a trypsin inhibitor responsible for protecting the pancreas from premature trypsinogen activation. Recent genetic and functional studies indicated that promoter variants in the SPINK1 gene might contribute to disease risk in carriers. Here, we investigated the functional effects of 17 SPINK1 promoter variants using luciferase reporter gene expression assay in four different cell lines, including three pancreatic acinar cell lines (rat AR42J with or without dexamethasone-induced differentiation and mouse 266-6) and human embryonic kidney 293T cells. We found that most variants caused relatively small changes in promoter activity. Surprisingly, however, we observed significant variations in the effects of the promoter variants in the different cell lines. Only four variants exhibited consistently reduced promoter activity in all acinar cell lines, confirming previous reports that variants c.-108G>T, c.-142T>C, and c.-147A>G are risk factors for chronic pancreatitis and identifying c.-52G>T as a novel risk variant. In contrast, variant c.-215G>A, which is linked with the disease-associated splice-site mutation c.194 + 2T>C, caused increased promoter activity, which may mitigate the overall effect of the pathogenic haplotype. Our study lends further support to the notion that sequence evaluation of the SPINK1 promoter region in patients with chronic pancreatitis is justified as part of the etiological investigation. Copyright © 2015 the American Physiological Society.

  14. Diverse Functional Properties of Wilson Disease ATP7B Variants

    Huster, Dominik; Kühne, Angelika; Bhattacharjee, Ashima; Raines, Lily; Jantsch, Vanessa; Noe, Johannes; Schirrmeister, Wiebke; Sommerer, Ines; Sabri, Osama; Berr, Frieder; Mössner, Joachim; Stieger, Bruno; Caca, Karel; Lutsenko, Svetlana

    2012-01-01

    BACKGROUND & AIMS Wilson disease is a severe disorder of copper metabolism caused by mutations in ATP7B, which encodes a copper-transporting adenosine triphosphatase. The disease presents with a variable phenotype that complicates the diagnostic process and treatment. Little is known about the mechanisms that contribute to the different phenotypes of the disease. METHODS We analyzed 28 variants of ATP7B from patients with Wilson disease that affected different functional domains; the gene products were expressed using the baculovirus expression system in Sf9 cells. Protein function was analyzed by measuring catalytic activity and copper (64Cu) transport into vesicles. We studied intracellular localization of variants of ATP7B that had measurable transport activities and were tagged with green fluorescent protein in mammalian cells using confocal laser scanning microscopy. RESULTS Properties of ATP7B variants with pathogenic amino-acid substitution varied greatly even if substitutions were in the same functional domain. Some variants had complete loss of catalytic and transport activity, whereas others lost transport activity but retained phosphor-intermediate formation or had partial losses of activity. In mammalian cells, transport-competent variants differed in stability and subcellular localization. CONCLUSIONS Variants in ATP7B associated with Wilson disease disrupt the protein’s transport activity, result in its mislocalization, and reduce its stability. Single assays are insufficient to accurately predict the effects of ATP7B variants the function of its product and development of Wilson disease. These findings will contribute to our understanding of genotype–phenotype correlation and mechanisms of disease pathogenesis. PMID:22240481

  15. Multiple Functional Variants in cis Modulate PDYN Expression.

    Babbitt, Courtney C; Silverman, Jesse S; Haygood, Ralph; Reininga, Jennifer M; Rockman, Matthew V; Wray, Gregory A

    2010-02-01

    Understanding genetic variation and its functional consequences within cis-regulatory regions remains an important challenge in human genetics and evolution. Here, we present a fine-scale functional analysis of segregating variation within the cis-regulatory region of prodynorphin, a gene that encodes an endogenous opioid precursor with roles in cognition and disease. In order to characterize the functional consequences of segregating variation in cis in a region under balancing selection in different human populations, we examined associations between specific polymorphisms and gene expression in vivo and in vitro. We identified five polymorphisms within the 5' flanking region that affect transcript abundance: a 68-bp repeat recognized in prior studies, as well as two microsatellites and two single nucleotide polymorphisms not previously implicated as functional variants. The impact of these variants on transcription differs by brain region, sex, and cell type, implying interactions between cis genotype and the differentiated state of cells. The effects of individual variants on expression level are not additive in some combinations, implying epistatic interactions between nearby variants. These data reveal an unexpectedly complex relationship between segregating genetic variation and its expression-trait consequences and highlights the importance of close functional scrutiny of natural genetic variation within even relatively well-studied cis-regulatory regions.

  16. Functional significance of rare neuroligin 1 variants found in autism.

    Moe Nakanishi

    2017-08-01

    Full Text Available Genetic mutations contribute to the etiology of autism spectrum disorder (ASD, a common, heterogeneous neurodevelopmental disorder characterized by impairments in social interaction, communication, and repetitive and restricted patterns of behavior. Since neuroligin3 (NLGN3, a cell adhesion molecule at the neuronal synapse, was first identified as a risk gene for ASD, several additional variants in NLGN3 and NLGN4 were found in ASD patients. Moreover, synaptopathies are now known to cause several neuropsychiatric disorders including ASD. In humans, NLGNs consist of five family members, and neuroligin1 (NLGN1 is a major component forming a complex on excitatory glutamatergic synapses. However, the significance of NLGN1 in neuropsychiatric disorders remains unknown. Here, we systematically examine five missense variants of NLGN1 that were detected in ASD patients, and show molecular and cellular alterations caused by these variants. We show that a novel NLGN1 Pro89Leu (P89L missense variant found in two ASD siblings leads to changes in cellular localization, protein degradation, and to the impairment of spine formation. Furthermore, we generated the knock-in P89L mice, and we show that the P89L heterozygote mice display abnormal social behavior, a core feature of ASD. These results, for the first time, implicate rare variants in NLGN1 as functionally significant and support that the NLGN synaptic pathway is of importance in the etiology of neuropsychiatric disorders.

  17. Relations of mitochondrial genetic variants to measures of vascular function.

    Fetterman, Jessica L; Liu, Chunyu; Mitchell, Gary F; Vasan, Ramachandran S; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M; Levy, Daniel

    2018-05-01

    Mitochondrial genetic variation with resultant alterations in oxidative phosphorylation may influence vascular function and contribute to cardiovascular disease susceptibility. We assessed relations of peptide-encoding variants in the mitochondrial genome with measures of vascular function in Framingham Heart Study participants. Of 258 variants assessed, 40 were predicted to have functional consequences by bioinformatics programs. A maternal pattern of heritability was estimated to contribute to the variability of aortic stiffness. A putative association with a microvascular function measure was identified that requires replication. The methods we have developed can be applied to assess the relations of mitochondrial genetic variation to other phenotypes. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  18. Childhood Abuse Experiences and the COMT and MTHFR Genetic Variants Associated With Male Sexual Orientation in the Han Chinese Populations: A Case-Control Study.

    Qin, Jia-Bi; Zhao, Guang-Lu; Wang, Feng; Cai, Yu-Mao; Lan, Li-Na; Yang, Lin; Feng, Tie-Jian

    2018-01-01

    Although it is widely acknowledged that genetic and environmental factors are involved in the development of male homosexuality, the causes are not fully understood. To explore the association and interaction of childhood abuse experiences and genetic variants of the catechol-O-methyltransferase (COMT) and methylenetetrahydrofolate reductase (MTHFR) genes with the development of male homosexuality. A case-control study of 537 exclusively homosexual men and 583 exclusively heterosexual men was conducted, with data collected from March 2013 to August 2015. Data were analyzed using χ 2 tests and logistic regression models. Sociodemographic characteristics, childhood abuse experiences, and polymorphisms of COMT at rs4680, rs4818, and rs6267 and MTHFR at rs1801133. More frequent occurrence of physical (adjusted odds ratio [aOR] = 1.78), emotional (aOR = 2.07), and sexual (aOR = 2.53) abuse during childhood was significantly associated with the development of male homosexuality. The polymorphisms of MTHFR at rs1801133 and COMT at rs4818 also were significantly associated with the development of male homosexuality in the homozygote comparisons (T/T vs C/C at rs1801133, aOR = 1.68; G/G vs C/C at rs4818, aOR = 1.75). In addition, significant interaction effects between childhood abuse experiences and the COMT and MTHFR genetic variants on the development of male homosexuality were found. This is the first time that an association of childhood abuse, COMT and MTHFR genetic variants, and their interactions with development of male homosexuality was exhaustively explored, which could help provide new insight into the etiology of male homosexuality. Because homosexual men are a relatively obscure population, it was impossible to select the study participants by random sampling, which could lead to selection bias. In addition, because this was a case-control study, recall bias was inevitable, and we could not verify causality. Childhood abuse and the COMT and MTHFR genetic

  19. [The polymorphism of catechol-O-methyltransferase (COMT) and hemochromatosis (HFE) genes in the radiocontaminated regions residents with different chromosome aberration frequency].

    Ivanova, T I; Kondrashova, T V; Krikunova, L I; Smirnova, I A; Shentereva, N I; Sychenkova, N I; Rykova, E V; Zharikova, I A; Khorokhorina, V A; Riabchenko, N I; Zamulaeva, I A

    2010-01-01

    The association between polymorphisms in genes COMT, HFE that takes part in oxidative stress regulation, and chromosome aberration frequency in lymphocytes was assessed in 278 female residents of radiation polluted regions of Central Russia: Bryansk (322 kBk/m2) and Tula Districts (137Cs - 171 kBk/m2). The C187G, G845A genotyping of HFE and G1947A (H/L) of COMT was done by means of polymerase chain reaction-restriction fragment length polymorphism. Studied population was divided into 3 subgroups by level of chromosome aberrations per cell (0-2, 3-4, >5). There was shown statistically significant difference in distribution of COMTand HFE genotypes between the groups. The high frequency of chromosome aberrations (> or = 5%) was associated with homozygotes of the high activity COMT G/G and HFE CC. Heterozygotes for G1947A COMT and C187G HFE reveal negative association with the high frequency of chromosome aberrations and correspond to "resistance factors".

  20. Radioenzymatic assay of plasma adrenaline and noradrenaline: evidence for a catechol-O-methyltransferase (COMT) inhibiting factor associated with essential hypertension

    Hoffmann, J.J.M.L.; Willemsen, J.J.; Thien, Th.; Benraad, Th.J.

    1982-01-01

    During the evaluation of a modified radioenzymatic determination of plasma adrenaline and noradrenaline, it has been found that there exists a highly significant (p 0 C, but only in plasma from patients with essential hypertension. Plasma from normotensive persons exhibits a complete lack of correlation between these factors. The consequences of the hypertension-associated COMT-inhibiting factor for the assays' specifications are discussed and data are presented for comparison with a recently-described uremia-associated COMT-inhibitor (Demassieux et al, Clin Chim Acta 115, 377-391; 1981). (Auth.)

  1. Nonlinear modulation of interacting between COMT and depression on brain function.

    Gong, L; He, C; Yin, Y; Ye, Q; Bai, F; Yuan, Y; Zhang, H; Lv, L; Zhang, H; Zhang, Z; Xie, C

    2017-09-01

    The catechol-O-methyltransferase (COMT) gene is related to dopamine degradation and has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). However, how this gene affects brain function properties in MDD is still unclear. Fifty patients with MDD and 35 cognitively normal participants underwent a resting-state functional magnetic resonance imaging scan. A voxelwise and data-drive global functional connectivity density (gFCD) analysis was used to investigate the main effects and the interactions of disease states and COMT rs4680 gene polymorphism on brain function. We found significant group differences of the gFCD in bilateral fusiform area (FFA), post-central and pre-central cortex, left superior temporal gyrus (STG), rectal and superior temporal gyrus and right ventrolateral prefrontal cortex (vlPFC); abnormal gFCDs in left STG were positively correlated with severity of depression in MDD group. Significant disease×COMT interaction effects were found in the bilateral calcarine gyrus, right vlPFC, hippocampus and thalamus, and left SFG and FFA. Further post-hoc tests showed a nonlinear modulation effect of COMT on gFCD in the development of MDD. Interestingly, an inverted U-shaped modulation was found in the prefrontal cortex (control system) but U-shaped modulations were found in the hippocampus, thalamus and occipital cortex (processing system). Our study demonstrated nonlinear modulation of the interaction between COMT and depression on brain function. These findings expand our understanding of the COMT effect underlying the pathophysiology of MDD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Polymorphisms in Dopamine System Genes Are Associated with Individual Differences in Attention in Infancy

    Holmboe, Karla; Nemoda, Zsofia; Fearon, R. M. Pasco; Csibra, Gergely; Sasvari-Szekely, Maria; Johnson, Mark H.

    2010-01-01

    Knowledge about the functional status of the frontal cortex in infancy is limited. This study investigated the effects of polymorphisms in four dopamine system genes on performance in a task developed to assess such functioning, the Freeze-Frame task, at 9 months of age. Polymorphisms in the catechol-O-methyltransferase ("COMT") and the…

  3. Persistent pain after mastectomy with reconstruction.

    Hickey, Oonagh T

    2011-09-01

    To determine the prevalence of persistent postsurgical pain (PPSP) and its influence on functional status, and to examine associations between PPSP and single nucleotide polymorphisms of the catechol-O-methyltransferase (COMT) gene and the guanosine triphosphate cyclohydrolase 1 (GCH1) gene following mastectomy and reconstruction.

  4. Genetic variation in COMT and PRODH is associated with brain anatomy in patients with schizophrenia

    Zinkstok, J.; Schmitz, N.; van Amelsvoort, T.; Moeton, M.; Baas, F.; Linszen, D.

    2008-01-01

    Haploinsufficiency of 22q11 genes including catechol-O-methyltransferase (COMT) and proline dehydrogenase (PRODH) may result in structural and functional brain abnormalities and increased vulnerability to schizophrenia as observed in patients with microdeletions of 22q11. Thus, COMT and PRODH could

  5. The COMT val158met polymorphism and brain morphometry in healthy young adults

    Zinkstok, Janneke; Schmitz, Nicole; van Amelsvoort, Therese; de Win, Maartje; van den Brink, Wim; Baas, Frank; Linszen, Don

    2006-01-01

    Catechol-O-methyltransferase (COMT) is the most important mechanism for dopamine degradation in the prefrontal cortex and contains a functional polymorphism (val(158)met) influencing enzyme activity. The low-activity met allele has been associated with better performance on cognitive tasks relying

  6. The effect of acute moderate psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans

    Shaozheng eQin

    2012-05-01

    Full Text Available Acute stress has an important impact on higher-order cognitive functions supported by the prefrontal cortex (PFC such as working memory (WM. In rodents, such effects are mediated by stress-induced alterations in catecholaminergic signaling, but human data in support of this notion is lacking. A common variation in the gene encoding Catechol-O-methyltransferase (COMT is known to affect basal catecholaminergic availability and PFC functions. Here, we investigated whether this genetic variation (Val158Met modulates effects of stress on WM-related prefrontal activity in humans. In a counterbalanced crossover design, 41 healthy young men underwent functional Magnetic Resonance Imaging (fMRI while performing a numerical N-back WM task embedded in a stressful or neutral context. Moderate psychological stress was induced by a well-controlled procedure involving viewing strongly aversive (versus emotionally neutral movie material in combination with a self-referencing instruction. Acute stress resulted in genotype-dependent effects on WM performance and WM-related activation in the dorsolateral PFC, with a relatively negative impact of stress in COMT Met-homozygotes as opposed to a relatively positive effect in Val-carriers. A parallel interaction was found for WM-related deactivation in the anterior medial temporal lobe. Our findings suggest that individuals with higher baseline catecholaminergic availability (COMT Met-homozygotes appear to reach a supraoptimal state under moderate levels of stress. In contrast, individuals with lower baselines (Val-carriers may reach an optimal state. Thus, our data show that effects of acute stress on higher-order cognitive functions vary depending on catecholaminergic availability at baseline, and thereby corroborate animal models of catecholaminergic signaling that propose a non-linear relationship between catecholaminergic activity and prefrontal functions.

  7. COMT Val158Met polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury.

    Winkler, Ethan A; Yue, John K; Ferguson, Adam R; Temkin, Nancy R; Stein, Murray B; Barber, Jason; Yuh, Esther L; Sharma, Sourabh; Satris, Gabriela G; McAllister, Thomas W; Rosand, Jonathan; Sorani, Marco D; Lingsma, Hester F; Tarapore, Phiroz E; Burchard, Esteban G; Hu, Donglei; Eng, Celeste; Wang, Kevin K W; Mukherjee, Pratik; Okonkwo, David O; Diaz-Arrastia, Ramon; Manley, Geoffrey T

    2017-01-01

    Mild traumatic brain injury (mTBI) results in variable clinical trajectories and outcomes. The source of variability remains unclear, but may involve genetic variations, such as single nucleotide polymorphisms (SNPs). A SNP in catechol-o-methyltransferase (COMT) is suggested to influence development of post-traumatic stress disorder (PTSD), but its role in TBI remains unclear. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val 158 Met polymorphism is associated with PTSD and global functional outcome as measured by the PTSD Checklist - Civilian Version and Glasgow Outcome Scale Extended (GOSE), respectively. Results in 93 predominately Caucasian subjects with mTBI show that the COMT Met 158 allele is associated with lower incidence of PTSD (univariate odds ratio (OR) of 0.25, 95% CI [0.09-0.69]) and higher GOSE scores (univariate OR 2.87, 95% CI [1.20-6.86]) 6-months following injury. The COMT Val 158 Met genotype and PTSD association persists after controlling for race (multivariable OR of 0.29, 95% CI [0.10-0.83]) and pre-existing psychiatric disorders/substance abuse (multivariable OR of 0.32, 95% CI [0.11-0.97]). PTSD emerged as a strong predictor of poorer outcome on GOSE (multivariable OR 0.09, 95% CI [0.03-0.26]), which persists after controlling for age, GCS, and race. When accounting for PTSD in multivariable analysis, the association of COMT genotype and GOSE did not remain significant (multivariable OR 1.73, 95% CI [0.69-4.35]). Whether COMT genotype indirectly influences global functional outcome through PTSD remains to be determined and larger studies in more diverse populations are needed to confirm these findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Identification and characterization of two functional variants in the human longevity gene FOXO3

    Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana

    2017-01-01

    FOXO3 is consistently annotated as a human longevity gene. However, functional variants and underlying mechanisms for the association remain unknown. Here, we perform resequencing of the FOXO3 locus and single-nucleotide variant (SNV) genotyping in three European populations. We find two FOXO3 SN...

  9. Integrating functional data to prioritize causal variants in statistical fine-mapping studies.

    Gleb Kichaev

    2014-10-01

    Full Text Available Standard statistical approaches for prioritization of variants for functional testing in fine-mapping studies either use marginal association statistics or estimate posterior probabilities for variants to be causal under simplifying assumptions. Here, we present a probabilistic framework that integrates association strength with functional genomic annotation data to improve accuracy in selecting plausible causal variants for functional validation. A key feature of our approach is that it empirically estimates the contribution of each functional annotation to the trait of interest directly from summary association statistics while allowing for multiple causal variants at any risk locus. We devise efficient algorithms that estimate the parameters of our model across all risk loci to further increase performance. Using simulations starting from the 1000 Genomes data, we find that our framework consistently outperforms the current state-of-the-art fine-mapping methods, reducing the number of variants that need to be selected to capture 90% of the causal variants from an average of 13.3 to 10.4 SNPs per locus (as compared to the next-best performing strategy. Furthermore, we introduce a cost-to-benefit optimization framework for determining the number of variants to be followed up in functional assays and assess its performance using real and simulation data. We validate our findings using a large scale meta-analysis of four blood lipids traits and find that the relative probability for causality is increased for variants in exons and transcription start sites and decreased in repressed genomic regions at the risk loci of these traits. Using these highly predictive, trait-specific functional annotations, we estimate causality probabilities across all traits and variants, reducing the size of the 90% confidence set from an average of 17.5 to 13.5 variants per locus in this data.

  10. A guide for functional analysis of BRCA1 variants of uncertain significance

    Millot, Gaël A; Carvalho, Marcelo A; Caputo, Sandrine M

    2012-01-01

    of these variants, the effect on protein function is unknown making it difficult to infer the consequences on risks of breast and ovarian cancers. Thus, many individuals undergoing genetic testing for BRCA1 mutations receive test results reporting a variant of uncertain clinical significance (VUS), leading...... to issues in risk assessment, counseling, and preventive care. Here, we describe functional assays for BRCA1 to directly or indirectly assess the impact of a variant on protein conformation or function and how these results can be used to complement genetic data to classify a VUS as to its clinical...

  11. COMT Val(158)Met and 5HTTLPR functional loci interact to predict persistence of anxiety across adolescence: results from the Victorian Adolescent Health Cohort Study.

    Olsson, C A; Byrnes, G B; Anney, R J L; Collins, V; Hemphill, S A; Williamson, R; Patton, G C

    2007-10-01

    We investigated whether a composite genetic factor, based on the combined actions of catechol-O-methyltransferase (COMT) (Val(158)Met) and serotonin transporter (5HTTLPR) (Long-Short) functional loci, has a greater capacity to predict persistence of anxiety across adolescence than either locus in isolation. Analyses were performed on DNA collected from 962 young Australians participating in an eight-wave longitudinal study of mental health and well-being (Victorian Adolescent Health Cohort Study). When the effects of each locus were examined separately, small dose-response reductions in the odds of reporting persisting generalized (free-floating) anxiety across adolescence were observed for the COMT Met(158) [odds ratio (OR) = 0.85, 95% confidence interval (CI) = 0.76-0.95, P = 0.004] and 5HTTLPR Short alleles (OR = 0.88, CI = 0.79-0.99, P = 0.033). There was no evidence for a dose-response interaction effect between loci. However, there was a double-recessive interaction effect in which the odds of reporting persisting generalized anxiety were more than twofold reduced (OR = 0.45, CI = 0.29-0.70, P anxiety. Exploratory stratified analyses suggested that genetic protection may be more pronounced under conditions of high stress (insecure attachments and sexual abuse), although strata differences did not reach statistical significance. By describing the interaction between genetic loci, it may be possible to describe composite genetic factors that have a more substantial impact on psychosocial development than individual loci alone, and in doing so, enhance understanding of the contribution of constitutional processes in mental health outcomes.

  12. m6ASNP: a tool for annotating genetic variants by m6A function.

    Jiang, Shuai; Xie, Yubin; He, Zhihao; Zhang, Ya; Zhao, Yuli; Chen, Li; Zheng, Yueyuan; Miao, Yanyan; Zuo, Zhixiang; Ren, Jian

    2018-04-02

    Large-scale genome sequencing projects have identified many genetic variants for diverse diseases. A major goal of these projects is to characterize these genetic variants to provide insight into their function and roles in diseases. N6-methyladenosine (m6A) is one of the most abundant RNA modifications in eukaryotes. Recent studies have revealed that aberrant m6A modifications are involved in many diseases. In this study, we present a user-friendly web server called "m6ASNP" that is dedicated to the identification of genetic variants targeting m6A modification sites. A random forest model was implemented in m6ASNP to predict whether the methylation status of a m6A site is altered by the variants surrounding the site. In m6ASNP, genetic variants in a standard VCF format are accepted as the input data, and the output includes an interactive table containing the genetic variants annotated by m6A function. In addition, statistical diagrams and a genome browser are provided to visualize the characteristics and annotate the genetic variants. We believe that m6ASNP is a highly convenient tool that can be used to boost further functional studies investigating genetic variants. The web server "m6ASNP" is implemented in JAVA and PHP and is freely available at http://m6asnp.renlab.org.

  13. Functional genetic variants in the vesicular monoamine transporter 1 (VMAT1) modulate emotion processing

    Lohoff, Falk W.; Hodge, Rachel; Narasimhan, Sneha; Nall, Aleksandra; Ferraro, Thomas N.; Mickey, Brian J.; Heitzeg, Mary M.; Langenecker, Scott A.; Zubieta, Jon-Kar; Bogdan, Ryan; Nikolova, Yuliya S.; Drabant, Emily; Hariri, Ahmad R.; Bevilacqua, Laura; Goldman, David; Doyle, Glenn A.

    2012-01-01

    SUMMARY Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits, and risk for psychopathology. PMID:23337945

  14. Computational approaches to identify functional genetic variants in cancer genomes

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris

    2013-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result of discu......The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor but only a minority of these drive tumor progression. We present the result...... of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype....

  15. Distribution and medical impact of loss-of-function variants in the Finnish founder population.

    Elaine T Lim

    2014-07-01

    Full Text Available Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5-5% variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10⁻⁸ including splice variants in LPA that lowered plasma lipoprotein(a levels (P = 1.5×10⁻¹¹⁷. Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10⁻⁴, demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health

  16. Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation.

    Li, Chen; Zheng, Lanlan; Zhang, Jingxuan; Lv, Yanxia; Liu, Jianping; Wang, Xuanbin; Palfalvi, Gergo; Wang, Guodong; Zhang, Yonghong

    2017-07-01

    Arabidopsis thaliana LONG HYPOCOTYL5 (HY5) is a positive regulator of the light signaling pathway. The hy5 mutant has an elongated hypocotyl in all light conditions, whereas the hy5 homolog (hyh) mutant has a very weak phenotype, but only in blue light. However, overexpression of HYH rescues the elongated hypocotyl phenotype in the hy5 null mutant. Here, we report the identification of four HYH splicing variants in Arabidopsis. Alternative splicing in the 5' region of the HYH gene occurred such that the proteins encoded by all four HYH variants retained their bZIP domain. In hypocotyl tissue, transcript levels of HYH.2, HYH.3, and HYH.4 were higher than those of HYH.1. Like HY5, all HYH variants were induced by light. Functional analysis of the four HYH variants, based on their abilities to complement the hy5 mutant, indicated that they have similar roles in hypocotyl development, and may function redundantly with HY5. Our results indicate that the bZIP domain in HYH is critical for the function of four variants in the compensation of hy5 mutant in hypocotyl development. Additionally, while HY5/HYH is found in plant species ranging from green algae to flowering plants, the potential alternative splicing events are distinct in different species, with certain HYH variants found with greater frequency in some species than others. Copyright © 2017. Published by Elsevier B.V.

  17. Stability and function of interdomain linker variants of glucoamylase 1 from Aspergillus niger.

    Sauer, J; Christensen, T; Frandsen, T P; Mirgorodskaya, E; McGuire, K A; Driguez, H; Roepstorff, P; Sigurskjold, B W; Svensson, B

    2001-08-07

    Several variants of glucoamylase 1 (GA1) from Aspergillus niger were created in which the highly O-glycosylated peptide (aa 468--508) connecting the (alpha/alpha)(6)-barrel catalytic domain and the starch binding domain was substituted at the gene level by equivalent segments of glucoamylases from Hormoconis resinae, Humicola grisea, and Rhizopus oryzae encoding 5, 19, and 36 amino acid residues. Variants were constructed in which the H. resinae linker was elongated by proline-rich sequences as this linker itself apparently was too short to allow formation of the corresponding protein variant. Size and isoelectric point of GA1 variants reflected differences in linker length, posttranslational modification, and net charge. While calculated polypeptide chain molecular masses for wild-type GA1, a nonnatural proline-rich linker variant, H. grisea, and R. oryzae linker variants were 65,784, 63,777, 63,912, and 65,614 Da, respectively, MALDI-TOF-MS gave values of 82,042, 73,800, 73,413, and 90,793 Da, respectively, where the latter value could partly be explained by an N-glycosylation site introduced near the linker C-terminus. The k(cat) and K(m) for hydrolysis of maltooligodextrins and soluble starch, and the rate of hydrolysis of barley starch granules were essentially the same for the variants as for wild-type GA1. beta-Cyclodextrin, acarbose, and two heterobidentate inhibitors were found by isothermal titration calorimetry to bind to the catalytic and starch binding domains of the linker variants, indicating that the function of the active site and the starch binding site was maintained. The stability of GA1 linker variants toward GdnHCl and heat, however, was reduced compared to wild-type.

  18. Runs of homozygosity and distribution of functional variants in cattle genome

    Zhang, Qianqian; Guldbrandtsen, Bernt; Bosse, Mirte

    Runs of homozygosity (ROH) are identified in four dairy cattle breeds using NGS data. Cattle populations have been exposed to strong artificial selection for some generations. Genomic regions under selection will show increased levels of ROH. By investigating the relationship between ROH and dist......Runs of homozygosity (ROH) are identified in four dairy cattle breeds using NGS data. Cattle populations have been exposed to strong artificial selection for some generations. Genomic regions under selection will show increased levels of ROH. By investigating the relationship between ROH...... and distribution of predicted deleterious and tolerated variants, we can gain insight into how selection shapes the distribution of functional variants in inbred regions. We observe that predicted deleterious variants are more enriched in ROHs than predicted tolerated variants. Moreover, increase of enrichment...

  19. Differential compartmentalization and distinct functions of GABAB receptor variants

    Vigot, Réjan; Barbieri, Samuel; Bräuner-Osborne, Hans

    2006-01-01

    , while predominantly GABAB1b mediates postsynaptic inhibition. Electron microscopy reveals a synaptic distribution of GABAB1 isoforms that agrees with the observed functional differences. Transfected CA3 neurons selectively express GABAB1a in distal axons, suggesting that the sushi repeats, a conserved...... protein interaction motif, specify heteroreceptor localization. The constitutive absence of GABAB1a but not GABAB1b results in impaired synaptic plasticity and hippocampus-dependent memory, emphasizing molecular differences in synaptic GABAB functions....

  20. Multiple lupus-associated ITGAM variants alter Mac-1 functions on neutrophils.

    Zhou, Yebin; Wu, Jianming; Kucik, Dennis F; White, Nathan B; Redden, David T; Szalai, Alexander J; Bullard, Daniel C; Edberg, Jeffrey C

    2013-11-01

    Multiple studies have demonstrated that single-nucleotide polymorphisms (SNPs) in the ITGAM locus (including the nonsynonymous SNPs rs1143679, rs1143678, and rs1143683) are associated with systemic lupus erythematosus (SLE). ITGAM encodes the protein CD11b, a subunit of the β2 integrin Mac-1. The purpose of this study was to determine the effects of ITGAM genetic variation on the biologic functions of neutrophil Mac-1. Neutrophils from ITGAM-genotyped and -sequenced healthy donors were isolated for functional studies. The phagocytic capacity of neutrophil ITGAM variants was probed with complement-coated erythrocytes, serum-treated zymosan, heat-treated zymosan, and IgG-coated erythrocytes. The adhesion capacity of ITGAM variants, in adhering to either purified intercellular adhesion molecule 1 or tumor necrosis factor α-stimulated endothelial cells, was assessed in a flow chamber. Expression levels of total CD11b and activation of CD11b were assessed by flow cytometry. Mac-1-mediated neutrophil phagocytosis, determined in cultures with 2 different complement-coated particles, was significantly reduced in individuals with nonsynonymous variant alleles of ITGAM. This reduction in phagocytosis was related to variation at either rs1143679 (in the β-propeller region) or rs1143678/rs1143683 (highly linked SNPs in the cytoplasmic/calf-1 regions). Phagocytosis mediated by Fcγ receptors was also significantly reduced in donors with variant ITGAM alleles. Similarly, firm adhesion of neutrophils was significantly reduced in individuals with variant ITGAM alleles. These functional alterations were not attributable to differences in total receptor expression or activation. The nonsynonymous ITGAM variants rs1143679 and rs1143678/rs113683 contribute to altered Mac-1 function on neutrophils. These results underscore the need to consider multiple nonsynonymous SNPs when assessing the functional consequences of ITGAM variation on immune cell processes and the risk of SLE

  1. Influence Function and Robust Variant of Kernel Canonical Correlation Analysis

    Alam, Md. Ashad; Fukumizu, Kenji; Wang, Yu-Ping

    2017-01-01

    Many unsupervised kernel methods rely on the estimation of the kernel covariance operator (kernel CO) or kernel cross-covariance operator (kernel CCO). Both kernel CO and kernel CCO are sensitive to contaminated data, even when bounded positive definite kernels are used. To the best of our knowledge, there are few well-founded robust kernel methods for statistical unsupervised learning. In addition, while the influence function (IF) of an estimator can characterize its robustness, asymptotic ...

  2. GRIN2B encephalopathy : Novel findings on phenotype, variant clustering, functional consequences and treatment aspects

    Platzer, Konrad; Yuan, Hongjie; Schütz, Hannah; Winschel, Alexander; Chen, Wenjuan; Hu, Chun; Kusumoto, Hirofumi; Heyne, Henrike O; Helbig, Katherine L; Tang, Sha; Willing, Marcia C; Tinkle, Brad T; Adams, Darius J; Depienne, Christel; Keren, Boris; Mignot, Cyril; Frengen, Eirik; Strømme, Petter; Biskup, Saskia; Döcker, Dennis; Strom, Tim M.; Mefford, Heather C.; Myers, Candace T.; Muir, Alison M; LaCroix, Amy; Sadleir, Lynette G.; Scheffer, Ingrid E.; Brilstra, Eva; van Haelst, Mieke M.; van der Smagt, Jasper J.; Bok, Levinus A; Møller, Rikke S.; Jensen, Uffe Birk; Millichap, John J; Berg, Anne T; Goldberg, Ethan M; De Bie, Isabelle; Fox, Stephanie; Major, Philippe; Jones, Julie R; Zackai, Elaine H.; Abou Jamra, Rami; Rolfs, Arndt; Leventer, Richard J; Lawson, John A; Roscioli, Tony; Jansen, Floor E.; Ranza, Emmanuelle; Korff, Christian M; Lehesjoki, Anna-Elina; Courage, Carolina; Linnankivi, Tarja; Smith, Douglas R; Stanley, Christine; Mintz, Mark; McKnight, Dianalee; Decker, Amy; Tan, Wen-Hann; Tarnopolsky, Mark A; Brady, Lauren I; Wolff, Markus; Dondit, Lutz; Pedro, Helio F; Parisotto, Sarah E; Jones, Kelly L; Patel, Anup D; Franz, David N; Vanzo, Rena; Marco, Elysa; Ranells, Judith D; Di Donato, Nataliya; Dobyns, William B.; Laube, Bodo; Traynelis, Stephen F; Lemke, Johannes R.

    2017-01-01

    Background: We aimed for a comprehensive delineation of genetic, functional and phenotypic aspects of GRIN2B encephalopathy and explored potential prospects of personalised medicine. Methods: Data of 48 individuals with de novo GRIN2B variants were collected from several diagnostic and research

  3. Establishment of Sf9 transformants constitutively expressing PBAN receptor variants: application to functional evaluation

    To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR) functionality and regulation, we generated cultured insect cell lines stably expressing a number of fluorescent Bombyx mori PBANR (BommoPBANR) and Pseudaletia separata PBANR (PsesePBANR) variants incl...

  4. Functional analysis of four naturally occurring variants of human constitutive androstane receptor.

    Ikeda, Shinobu; Kurose, Kouichi; Jinno, Hideto; Sai, Kimie; Ozawa, Shogo; Hasegawa, Ryuichi; Komamura, Kazuo; Kotake, Takeshi; Morishita, Hideki; Kamakura, Shiro; Kitakaze, Masafumi; Tomoike, Hitonobu; Tamura, Tomohide; Yamamoto, Noboru; Kunitoh, Hideo; Yamada, Yasuhide; Ohe, Yuichiro; Shimada, Yasuhiro; Shirao, Kuniaki; Kubota, Kaoru; Minami, Hironobu; Ohtsu, Atsushi; Yoshida, Teruhiko; Saijo, Nagahiro; Saito, Yoshiro; Sawada, Jun-ichi

    2005-01-01

    The human constitutive androstane receptor (CAR, NR1I3) is a member of the orphan nuclear receptor superfamily that plays an important role in the control of drug metabolism and disposition. In this study, we sequenced all the coding exons of the NR1I3 gene for 334 Japanese subjects. We identified three novel single nucleotide polymorphisms (SNPs) that induce non-synonymous alterations of amino acids (His246Arg, Leu308Pro, and Asn323Ser) residing in the ligand-binding domain of CAR, in addition to the Val133Gly variant, which was another CAR variant identified in our previous study. We performed functional analysis of these four naturally occurring CAR variants in COS-7 cells using a CYP3A4 promoter/enhancer reporter gene that includes the CAR responsive elements. The His246Arg variant caused marked reductions in both transactivation of the reporter gene and in the response to 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO), which is a human CAR-specific agonist. The transactivation ability of the Leu308Pro variant was also significantly decreased, but its responsiveness to CITCO was not abrogated. The transactivation ability and CITCO response of the Val133Gly and Asn323Ser variants did not change as compared to the wild-type CAR. These data suggest that the His246Arg and Leu308Pro variants, especially His246Arg, may influence the expression of drug-metabolizing enzymes and transporters that are transactivated by CAR.

  5. Genetic Variants in KLOTHO Associate With Cognitive Function in the Oldest Old Group

    Mengel-From, Jonas; Sørensen, Mette; Nygaard, Marianne

    2016-01-01

    , for example, growth factor signaling. In the present study, 19 tagging gene variants in KL were studied in relation to 2 measures of cognitive function, a 5-item cognitive composite score and the Mini Mental State Examination, in 1,480 Danes 92-100 years of age. We found that heterozygotes for the previously......Decline in cognitive abilities is a major concern in aging individuals. A potential important factor for functioning of the central nervous system in late-life stages is the KLOTHO (KL) gene. KL is expressed in various organs including the brain and is involved in multiple biological processes...... reported KL-VS had poorer cognitive function than noncarriers. Two other variants positioned in the 5' end of the gene, rs398655 and rs562020, were associated with better cognitive function independently of KL-VS, and the common haplotype AG was associated with poorer cognition, consistently across two...

  6. Sequence-function-stability relationships in proteins from datasets of functionally annotated variants: The case of TEM beta-lactamases

    Abriata, L.A.; Salverda, M.L.M.; Tomatis, P.E.

    2012-01-01

    A dataset of TEM lactamase variants with different substrate and inhibition profiles was compiled and analyzed. Trends show that loops are the main evolvable regions in these enzymes, gradually accumulating mutations to generate increasingly complex functions. Notably, many mutations present in

  7. Suspected Lynch syndrome associated MSH6 variants: A functional assay to determine their pathogenicity.

    Hellen Houlleberghs

    2017-05-01

    Full Text Available Lynch syndrome (LS is a hereditary cancer predisposition caused by inactivating mutations in DNA mismatch repair (MMR genes. Mutations in the MSH6 DNA MMR gene account for approximately 18% of LS cases. Many LS-associated sequence variants are nonsense and frameshift mutations that clearly abrogate MMR activity. However, missense mutations whose functional implications are unclear are also frequently seen in suspected-LS patients. To conclusively diagnose LS and enroll patients in appropriate surveillance programs to reduce morbidity as well as mortality, the functional consequences of these variants of uncertain clinical significance (VUS must be defined. We present an oligonucleotide-directed mutagenesis screen for the identification of pathogenic MSH6 VUS. In the screen, the MSH6 variant of interest is introduced into mouse embryonic stem cells by site-directed mutagenesis. Subsequent selection for MMR-deficient cells using the DNA damaging agent 6-thioguanine (6TG allows the identification of MMR abrogating VUS because solely MMR-deficient cells survive 6TG exposure. We demonstrate the efficacy of the genetic screen, investigate the phenotype of 26 MSH6 VUS and compare our screening results to clinical data from suspected-LS patients carrying these variant alleles.

  8. Functional study of DAND5 variant in patients with Congenital Heart Disease and laterality defects.

    Cristo, Fernando; Inácio, José M; de Almeida, Salomé; Mendes, Patrícia; Martins, Duarte Saraiva; Maio, José; Anjos, Rui; Belo, José A

    2017-07-24

    Perturbations on the Left-Right axis establishment lead to laterality defects, with frequently associated Congenital Heart Diseases (CHDs). Indeed, in the last decade, it has been reported that the etiology of isolated cases of CHDs or cases of laterality defects with associated CHDs is linked with variants of genes involved in the Nodal signaling pathway. With this in mind, we analyzed a cohort of 38 unrelated patients with Congenital Heart Defects that can arise from initial perturbations in the formation of the Left-Right axis and 40 unrelated ethnically matched healthy individuals as a control population. Genomic DNA was extracted from buccal epithelial cells, and variants screening was performed by PCR and direct sequencing. A Nodal-dependent luciferase assay was conducted in order to determine the functional effect of the variant found. In this work, we report two patients with a DAND5 heterozygous non-synonymous variant (c.455G > A) in the functional domain of the DAND5 protein (p.R152H), a master regulator of Nodal signaling. Patient 1 presents left isomerism, ventricular septal defect with overriding aorta and pulmonary atresia, while patient 2 presents ventricular septal defect with overriding aorta, right ventricular hypertrophy and pulmonary atresia (a case of extreme tetralogy of Fallot phenotype). The functional analysis assay showed a significant decrease in the activity of this variant protein when compared to its wild-type counterpart. Altogether, our results provide new insight into the molecular mechanism of the laterality defects and related CHDs, priming for the first time DAND5 as one of multiple candidate determinants for CHDs in humans.

  9. Functional variants of the dopamine receptor D2 gene modulate prefronto-striatal phenotypes in schizophrenia.

    Bertolino, Alessandro; Fazio, Leonardo; Caforio, Grazia; Blasi, Giuseppe; Rampino, Antonio; Romano, Raffaella; Di Giorgio, Annabella; Taurisano, Paolo; Papp, Audrey; Pinsonneault, Julia; Wang, Danxin; Nardini, Marcello; Popolizio, Teresa; Sadee, Wolfgang

    2009-02-01

    Dopamine D2 receptor signalling is strongly implicated in the aetiology of schizophrenia. We have recently characterized the function of three DRD2 SNPs: rs12364283 in the promoter affecting total D2 mRNA expression; rs2283265 and rs1076560, respectively in introns 5 and 6, shifting mRNA splicing to two functionally distinct isoforms, the short form of D2 (D2S) and the long form (D2L). These two isoforms differentially contribute to dopamine signalling in prefrontal cortex and in striatum. We performed a case-control study to determine association of these variants and of their main haplotypes with several schizophrenia-related phenotypes. We demonstrate that the minor allele in the intronic variants is associated with reduced expression of %D2S of total mRNA in post-mortem prefrontal cortex, and with impaired working memory behavioural performance, both in patients and controls. However, the fMRI results show opposite effects in patients compared with controls: enhanced engagement of prefronto-striatal pathways in controls and reduced activity in patients. Moreover, the promoter variant is also associated with working memory activity in prefrontal cortex and striatum of patients, and less robustly with negative symptoms scores. Main haplotypes formed by the three DRD2 variants showed significant associations with these phenotypes consistent with those of the individual SNPs. Our results indicate that the three functional DRD2 variants modulate schizophrenia phenotypes possibly by modifying D2S/D2L ratios in the context of different total D2 density.

  10. Self-calibrated correlation imaging with k-space variant correlation functions.

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. The role of functionally defective rare germline variants of sialic acid acetylesterase in autoimmune Addison's disease

    Gan, Earn H; MacArthur, Katie; Mitchell, Anna L; Pearce, Simon H S

    2012-01-01

    Background Autoimmune Addison's disease (AAD) is a rare condition with a complex genetic basis. A panel of rare and functionally defective genetic variants in the sialic acid acetylesterase (SIAE) gene has recently been implicated in several common autoimmune conditions. We performed a case–control study to determine whether these rare variants are associated with a rarer condition, AAD. Method We analysed nine SIAE gene variants (W48X, M89V, C196F, C226G, R230W, T312M, Y349C, F404S and R479C) in a United Kingdom cohort of 378 AAD subjects and 387 healthy controls. All samples were genotyped using Sequenom iPlex chemistry to characterise primer extension products. Results A heterozygous rare allele at codon 312 (312*M) was found in one AAD patient (0.13%) but was not detected in the healthy controls. The commoner, functionally recessive variant at codon 89 (89*V) was found to be homozygous in two AAD patients but was only found in the heterozygous state in controls. Taking into account all nine alleles examined, 4/378 (1.06%) AAD patients and 1/387 (0.25%) healthy controls carried the defective SIAE alleles, with a calculated odds ratio of 4.13 (95% CI 0.44–97.45, two-tailed P value 0.212, NS). Conclusion We demonstrated the presence of 89*V homozygotes and the 312*M rare allele in the AAD cohort, but overall, our analysis does not support a role for rare variants in SIAE in the pathogenesis of AAD. However, the relatively small collection of AAD patients limits the power to exclude a small effect. PMID:23011869

  12. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits.

    Smith, Andrew J P; Deloukas, Panos; Munroe, Patricia B

    2018-04-13

    Over the last decade, genome-wide association studies (GWAS) have propelled the discovery of thousands of loci associated with complex diseases. The focus is now turning towards the function of these association signals, determining the causal variant(s) amongst those in strong linkage disequilibrium, and identifying their underlying mechanisms, such as long-range gene regulation. Genome-editing techniques utilising zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs) and clustered regularly-interspaced short palindromic repeats with Cas9 nuclease (CRISPR-Cas9), are becoming the tools of choice to establish functionality for these variants, due to the ability to assess effects of single variants in vivo. This review will discuss examples of how these technologies have begun to aid functional analysis of GWAS loci for complex traits such as cardiovascular disease, type 2 diabetes, cancer, obesity and autoimmune disease. We focus on analysis of variants occurring within non-coding genomic regions, as these comprise the majority of GWAS variants, providing the greatest challenges to determining functionality, and compare editing strategies that provide different levels of evidence for variant functionality. The review describes molecular insights into some of these potentially causal variants, and how these may relate to the pathology of the trait, and look towards future directions for these technologies in post-GWAS analysis, such as base-editing.

  13. Functional and clinical relevance of novel and known PCSK1 variants for childhood obesity and glucose metabolism

    Dennis Löffler

    2017-03-01

    Full Text Available Objective: Variants in Proprotein Convertase Subtilisin/Kexin Type 1 (PCSK1 may be causative for obesity as suggested by monogenic cases and association studies. Here we assessed the functional relevance in experimental studies and the clinical relevance through detailed metabolic phenotyping of newly identified and known PCSK1 variants in children. Results: In 52 obese children selected for elevated proinsulin levels and/or impaired glucose tolerance, we found eight known variants and two novel heterozygous variants (c.1095 + 1G > A and p.S24C by sequencing the PCSK1 gene. Patients with the new variants presented with extreme obesity, impaired glucose tolerance, and PCOS. Functionally, c.1095 + 1G > A caused skipping of exon8 translation and a complete loss of enzymatic activity. The protein was retained within the endoplasmic reticulum (ER causing ER stress. The p.S24C variant had no functional effect on protein size, cell trafficking, or enzymatic activity. The known variants rs6230, rs35753085, and rs725522 in the 5′ end did not affect PCSK1 promoter activity.In clinical association studies in 1673 lean and obese children, we confirmed associations of rs6232 and rs6234 with BMI-SDS and of rs725522 with glucose stimulated insulin secretion and Matsuda index. We did not find the new variants in any other subjects. Conclusions: We identified and functionally characterized two rare novel PCSK1 variants of which c.1095 + 1G > A caused complete loss of protein function. In addition to confirming rs6232 and rs6234 in PCSK1 as polygenic risk variants for childhood obesity, we describe an association of rs725522 with insulin metabolism. Our results support the contribution of PCSK1 variants to obesity predisposition in children. Keywords: PCSK1, PC1/3, Obesity, Children, Prohormone convertase 1/3

  14. Functional variant in the autophagy-related 5 gene promotor is associated with childhood asthma.

    Lisa J Martin

    Full Text Available Autophagy is a cellular process directed at eliminating or recycling cellular proteins. Recently, the autophagy pathway has been implicated in immune dysfunction, the pathogenesis of inflammatory disorders, and response to viral infection. Associations between two genes in the autophagy pathway, ATG5 and ATG7, with childhood asthma were investigated.Using genetic and experimental approaches, we examined the association of 13 HapMap-derived tagging SNPs in ATG5 and ATG7 with childhood asthma in 312 asthmatic and 246 non-allergic control children. We confirmed our findings by using independent cohorts and imputation analysis. Finally, we evaluated the functional relevance of a disease associated SNP.We demonstrated that ATG5 single nucleotide polymorphisms rs12201458 and rs510432 were associated with asthma (p = 0.00085 and 0.0025, respectively. In three independent cohorts, additional variants in ATG5 in the same LD block were associated with asthma (p<0.05. We found that rs510432 was functionally relevant and conferred significantly increased promotor activity. Furthermore, Atg5 expression was increased in nasal epithelium of acute asthmatics compared to stable asthmatics and non-asthmatic controls.Genetic variants in ATG5, including a functional promotor variant, are associated with childhood asthma. These results provide novel evidence for a role for ATG5 in childhood asthma.

  15. Reliable and rapid characterization of functional FCN2 gene variants reveals diverse geographical patterns

    Ojurongbe Olusola

    2012-05-01

    Full Text Available Abstract Background Ficolin-2 coded by FCN2 gene is a soluble serum protein and an innate immune recognition element of the complement system. FCN2 gene polymorphisms reveal distinct geographical patterns and are documented to alter serum ficolin levels and modulate disease susceptibility. Methods We employed a real-time PCR based on Fluorescence Resonance Energy Transfer (FRET method to genotype four functional SNPs including -986 G > A (#rs3124952, -602 G > A (#rs3124953, -4A > G (#rs17514136 and +6424 G > T (#rs7851696 in the ficolin-2 (FCN2 gene. We characterized the FCN2 variants in individuals representing Brazilian (n = 176, Nigerian (n = 180, Vietnamese (n = 172 and European Caucasian ethnicity (n = 165. Results We observed that the genotype distribution of three functional SNP variants (−986 G > A, -602 G > A and -4A > G differ significantly between the populations investigated (p p  Conclusions The observed distribution of the FCN2 functional SNP variants may likely contribute to altered serum ficolin levels and this may depend on the different disease settings in world populations. To conclude, the use of FRET based real-time PCR especially for FCN2 gene will benefit a larger scientific community who extensively depend on rapid, reliable method for FCN2 genotyping.

  16. Functional paraoxonase 1 variants modify the risk of Parkinson's disease due to organophosphate exposure.

    Lee, Pei-Chen; Rhodes, Shannon L; Sinsheimer, Janet S; Bronstein, Jeff; Ritz, Beate

    2013-06-01

    We previously demonstrated that carriers of the "slower metabolizer" MM genotype of paraoxonase (PON1) who were also exposed to ambient organophosphate (OP) pesticides at their residences were at increased risk of developing Parkinson's disease (PD). Here, with a larger sample size, we extend our previous investigation to consider additional sources of ambient exposure and examined two additional functional PON1 variants. From 2001 to 2011, we enrolled incident cases of idiopathic PD and population controls living in central California. We genotyped three well-known functional PON1 SNPs: two exonic polymorphisms (PON1L55M and PON1Q192R) and the promoter region variant (PON1C-108T). Ambient exposures to diazinon, chlorpyrifos, and parathion at residential and workplace addresses were assessed using a validated geographic information system-based model incorporating records of agricultural pesticide applications in California. The odds ratio (OR) for Caucasians exposed to OPs at either residential or workplace addresses varied by PON1 genotype; for exposed carriers of the "faster" metabolizer genotypes, ML or LL, we estimated lower odds ratios (range, 1.20-1.39) than for exposed carriers of the "slower" metabolizer genotype MM (range, 1.78-2.45) relative to unexposed carriers of the faster genotypes. We observed similarly increased ORs for exposure across PON1Q192R genotypes, but no differences across PON1C-108T genotypes. The largest ORs were estimated for exposed carriers of both PON1192QQ and PON155MM (OR range, 2.84-3.57). Several functional PON1 variants may act together to modify PD risk for ambient OP exposures. While either PON1L55M or PON1Q192R may be sufficient to identify increased susceptibility, carriers of both slow metabolizer variants seem most susceptible to OP exposures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Novel and rare functional genomic variants in multiple autoimmune syndrome and Sjögren's syndrome.

    Johar, Angad S; Mastronardi, Claudio; Rojas-Villarraga, Adriana; Patel, Hardip R; Chuah, Aaron; Peng, Kaiman; Higgins, Angela; Milburn, Peter; Palmer, Stephanie; Silva-Lara, Maria Fernanda; Velez, Jorge I; Andrews, Dan; Field, Matthew; Huttley, Gavin; Goodnow, Chris; Anaya, Juan-Manuel; Arcos-Burgos, Mauricio

    2015-06-02

    Multiple autoimmune syndrome (MAS), an extreme phenotype of autoimmune disorders, is a very well suited trait to tackle genomic variants of these conditions. Whole exome sequencing (WES) is a widely used strategy for detection of protein coding and splicing variants associated with inherited diseases. The DNA of eight patients affected by MAS [all of whom presenting with Sjögren's syndrome (SS)], four patients affected by SS alone and 38 unaffected individuals, were subject to WES. Filters to identify novel and rare functional (pathogenic-deleterious) homozygous and/or compound heterozygous variants in these patients and controls were applied. Bioinformatics tools such as the Human gene connectome as well as pathway and network analysis were applied to test overrepresentation of genes harbouring these variants in critical pathways and networks involved in autoimmunity. Eleven novel and rare functional variants were identified in cases but not in controls, harboured in: MACF1, KIAA0754, DUSP12, ICA1, CELA1, LRP1/STAT6, GRIN3B, ANKLE1, TMEM161A, and FKRP. These were subsequently subject to network analysis and their functional relatedness to genes already associated with autoimmunity was evaluated. Notably, the LRP1/STAT6 novel mutation was homozygous in one MAS affected patient and heterozygous in another. LRP1/STAT6 disclosed the strongest plausibility for autoimmunity. LRP1/STAT6 are involved in extracellular and intracellular anti-inflammatory pathways that play key roles in maintaining the homeostasis of the immune system. Further; networks, pathways, and interaction analyses showed that LRP1 is functionally related to the HLA-B and IL10 genes and it has a substantial impact within immunological pathways and/or reaction to bacterial and other foreign proteins (phagocytosis, regulation of phospholipase A2 activity, negative regulation of apoptosis and response to lipopolysaccharides). Further, ICA1 and STAT6 were also closely related to AIRE and IRF5, two very

  18. Nonketotic hyperglycinemia: Functional assessment of missense variants in GLDC to understand phenotypes of the disease.

    Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar

    2017-06-01

    The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.

  19. Common variants in Mendelian kidney disease genes and their association with renal function.

    Parsa, Afshin; Fuchsberger, Christian; Köttgen, Anna; O'Seaghdha, Conall M; Pattaro, Cristian; de Andrade, Mariza; Chasman, Daniel I; Teumer, Alexander; Endlich, Karlhans; Olden, Matthias; Chen, Ming-Huei; Tin, Adrienne; Kim, Young J; Taliun, Daniel; Li, Man; Feitosa, Mary; Gorski, Mathias; Yang, Qiong; Hundertmark, Claudia; Foster, Meredith C; Glazer, Nicole; Isaacs, Aaron; Rao, Madhumathi; Smith, Albert V; O'Connell, Jeffrey R; Struchalin, Maksim; Tanaka, Toshiko; Li, Guo; Hwang, Shih-Jen; Atkinson, Elizabeth J; Lohman, Kurt; Cornelis, Marilyn C; Johansson, Asa; Tönjes, Anke; Dehghan, Abbas; Couraki, Vincent; Holliday, Elizabeth G; Sorice, Rossella; Kutalik, Zoltan; Lehtimäki, Terho; Esko, Tõnu; Deshmukh, Harshal; Ulivi, Sheila; Chu, Audrey Y; Murgia, Federico; Trompet, Stella; Imboden, Medea; Kollerits, Barbara; Pistis, Giorgio; Harris, Tamara B; Launer, Lenore J; Aspelund, Thor; Eiriksdottir, Gudny; Mitchell, Braxton D; Boerwinkle, Eric; Schmidt, Helena; Hofer, Edith; Hu, Frank; Demirkan, Ayse; Oostra, Ben A; Turner, Stephen T; Ding, Jingzhong; Andrews, Jeanette S; Freedman, Barry I; Giulianini, Franco; Koenig, Wolfgang; Illig, Thomas; Döring, Angela; Wichmann, H-Erich; Zgaga, Lina; Zemunik, Tatijana; Boban, Mladen; Minelli, Cosetta; Wheeler, Heather E; Igl, Wilmar; Zaboli, Ghazal; Wild, Sarah H; Wright, Alan F; Campbell, Harry; Ellinghaus, David; Nöthlings, Ute; Jacobs, Gunnar; Biffar, Reiner; Ernst, Florian; Homuth, Georg; Kroemer, Heyo K; Nauck, Matthias; Stracke, Sylvia; Völker, Uwe; Völzke, Henry; Kovacs, Peter; Stumvoll, Michael; Mägi, Reedik; Hofman, Albert; Uitterlinden, Andre G; Rivadeneira, Fernando; Aulchenko, Yurii S; Polasek, Ozren; Hastie, Nick; Vitart, Veronique; Helmer, Catherine; Wang, Jie Jin; Stengel, Bénédicte; Ruggiero, Daniela; Bergmann, Sven; Kähönen, Mika; Viikari, Jorma; Nikopensius, Tiit; Province, Michael; Colhoun, Helen; Doney, Alex; Robino, Antonietta; Krämer, Bernhard K; Portas, Laura; Ford, Ian; Buckley, Brendan M; Adam, Martin; Thun, Gian-Andri; Paulweber, Bernhard; Haun, Margot; Sala, Cinzia; Mitchell, Paul; Ciullo, Marina; Vollenweider, Peter; Raitakari, Olli; Metspalu, Andres; Palmer, Colin; Gasparini, Paolo; Pirastu, Mario; Jukema, J Wouter; Probst-Hensch, Nicole M; Kronenberg, Florian; Toniolo, Daniela; Gudnason, Vilmundur; Shuldiner, Alan R; Coresh, Josef; Schmidt, Reinhold; Ferrucci, Luigi; van Duijn, Cornelia M; Borecki, Ingrid; Kardia, Sharon L R; Liu, Yongmei; Curhan, Gary C; Rudan, Igor; Gyllensten, Ulf; Wilson, James F; Franke, Andre; Pramstaller, Peter P; Rettig, Rainer; Prokopenko, Inga; Witteman, Jacqueline; Hayward, Caroline; Ridker, Paul M; Bochud, Murielle; Heid, Iris M; Siscovick, David S; Fox, Caroline S; Kao, W Linda; Böger, Carsten A

    2013-12-01

    Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.

  20. Systematic Functional Interrogation of Rare Cancer Variants Identifies Oncogenic Alleles | Office of Cancer Genomics

    Cancer genome characterization efforts now provide an initial view of the somatic alterations in primary tumors. However, most point mutations occur at low frequency, and the function of these alleles remains undefined. We have developed a scalable systematic approach to interrogate the function of cancer-associated gene variants. We subjected 474 mutant alleles curated from 5,338 tumors to pooled in vivo tumor formation assays and gene expression profiling. We identified 12 transforming alleles, including two in genes (PIK3CB, POT1) that have not been shown to be tumorigenic.

  1. Association Between Variants of PRDM1 and NDP52 and Crohn's Disease, Based on Exome Sequencing and Functional Studies

    Ellinghaus, David; Zhang, Hu; Zeissig, Sebastian

    2013-01-01

    BACKGROUND & AIMS: Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through...... detailed sequencing, genetic association, expression, and functional studies. METHODS: We sequenced whole exomes of 42 unrelated subjects with CD and 5 healthy subjects (controls) and then filtered single nucleotide variants by incorporating association results from meta-analyses of CD GWAS and in silico...... mutation effect prediction algorithms. We then genotyped 9348 subjects with CD, 2868 subjects with ulcerative colitis, and 14,567 control subjects and associated variants analyzed in functional studies using materials from subjects and controls and in vitro model systems. RESULTS: We identified rare...

  2. Functional non-synonymous variants of ABCG2 and gout risk.

    Stiburkova, Blanka; Pavelcova, Katerina; Zavada, Jakub; Petru, Lenka; Simek, Pavel; Cepek, Pavel; Pavlikova, Marketa; Matsuo, Hirotaka; Merriman, Tony R; Pavelka, Karel

    2017-11-01

    Common dysfunctional variants of ATP binding cassette subfamily G member 2 (Junior blood group) (ABCG2), a high-capacity urate transporter gene, that result in decreased urate excretion are major causes of hyperuricemia and gout. In the present study, our objective was to determine the frequency and effect on gout of common and rare non-synonymous and other functional allelic variants in the ABCG2 gene. The main cohort recruited from the Czech Republic consisted of 145 gout patients; 115 normouricaemic controls were used for comparison. We amplified, directly sequenced and analysed 15 ABCG2 exons. The associations between genetic variants and clinical phenotype were analysed using the t-test, Fisher's exact test and a logistic and linear regression approach. Data from a New Zealand Polynesian sample set and the UK Biobank were included for the p.V12M analysis. In the ABCG2 gene, 18 intronic (one dysfunctional splicing) and 11 exonic variants were detected: 9 were non-synonymous (2 common, 7 rare including 1 novel), namely p.V12M, p.Q141K, p.R147W, p.T153M, p.F373C, p.T434M, p.S476P, p.D620N and p.K360del. The p.Q141K (rs2231142) variant had a significantly higher minor allele frequency (0.23) in the gout patients compared with the European-origin population (0.09) and was significantly more common among gout patients than among normouricaemic controls (odds ratio = 3.26, P gout (42 vs 48 years, P = 0.0143) and a greater likelihood of a familial history of gout (41% vs 27%, odds ratio = 1.96, P = 0.053). In a meta-analysis p.V12M exerted a protective effect from gout (P gout. Non-synonymous allelic variants of ABCG2 had a significant effect on earlier onset of gout and the presence of a familial gout history. ABCG2 should thus be considered a common and significant risk factor for gout. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  4. Investigation and functional characterization of rare genetic variants in the adipose triglyceride lipase in a large healthy working population.

    Stefan Coassin

    2010-12-01

    Full Text Available Recent studies demonstrated a strong influence of rare genetic variants on several lipid-related traits. However, their impact on free fatty acid (FFA plasma concentrations, as well as the role of rare variants in a general population, has not yet been thoroughly addressed. The adipose triglyceride lipase (ATGL is encoded by the PNPLA2 gene and catalyzes the rate-limiting step of lipolysis. It represents a prominent candidate gene affecting FFA concentrations. We therefore screened the full genomic region of ATGL for mutations in 1,473 randomly selected individuals from the SAPHIR (Salzburg Atherosclerosis Prevention program in subjects at High Individual Risk Study using a combined Ecotilling and sequencing approach and functionally investigated all detected protein variants by in-vitro studies. We observed 55 novel mostly rare genetic variants in this general population sample. Biochemical evaluation of all non-synonymous variants demonstrated the presence of several mutated but mostly still functional ATGL alleles with largely varying residual lipolytic activity. About one-quarter (3 out of 13 of the investigated variants presented a marked decrease or total loss of catalytic function. Genetic association studies using both continuous and dichotomous approaches showed a shift towards lower plasma FFA concentrations for rare variant carriers and an accumulation of variants in the lower 10%-quantile of the FFA distribution. However, the generally rather small effects suggest either only a secondary role of rare ATGL variants on the FFA levels in the SAPHIR population or a recessive action of ATGL variants. In contrast to these rather small effects, we describe here also the first patient with "neutral lipid storage disease with myopathy" (NLSDM with a point mutation in the catalytic dyad, but otherwise intact protein.

  5. Functional Investigations of HNF1A Identify Rare Variants as Risk Factors for Type 2 Diabetes in the General Population

    Najmi, Laeya Abdoli; Aukrust, Ingvild; Flannick, Jason; Molnes, Janne; Burtt, Noel; Molven, Anders; Groop, Leif; Altshuler, David; Johansson, Stefan; Njølstad, Pål Rasmus

    2017-01-01

    Variants in HNF1A encoding hepatocyte nuclear factor 1α (HNF-1A) are associated with maturity-onset diabetes of the young form 3 (MODY 3) and type 2 diabetes. We investigated whether functional classification of HNF1A rare coding variants can inform models of diabetes risk prediction in the general population by analyzing the effect of 27 HNF1A variants identified in well-phenotyped populations (n = 4,115). Bioinformatics tools classified 11 variants as likely pathogenic and showed no association with diabetes risk (combined minor allele frequency [MAF] 0.22%; odds ratio [OR] 2.02; 95% CI 0.73–5.60; P = 0.18). However, a different set of 11 variants that reduced HNF-1A transcriptional activity to diabetes in the general population (combined MAF 0.22%; OR 5.04; 95% CI 1.99–12.80; P = 0.0007). Our functional investigations indicate that 0.44% of the population carry HNF1A variants that result in a substantially increased risk for developing diabetes. These results suggest that functional characterization of variants within MODY genes may overcome the limitations of bioinformatics tools for the purposes of presymptomatic diabetes risk prediction in the general population. PMID:27899486

  6. Functional characterization of MLH1 missense variants identified in Lynch Syndrome patients

    Andersen, Sofie Dabros; Liberti, Sascha Emilie; Lützen, Anne

    2012-01-01

    Germline mutations in the human DNA mismatch repair (MMR) genes MSH2 and MLH1 are associated with the inherited cancer disorder Lynch Syndrome (LS), also known as Hereditary Nonpolyposis Colorectal Cancer or HNPCC. A proportion of MSH2 and MLH1 mutations found in suspected LS patients give rise...... localization and protein-protein interaction with the dimer partner PMS2 and the MMR-associated exonuclease 1. We show that a significant proportion of examined variant proteins have functional defects in either subcellular localization or protein-protein interactions, which is suspected to lead to the cancer...

  7. Gauge-fixing parameter dependence of two-point gauge-variant correlation functions

    Zhai, C.

    1996-01-01

    The gauge-fixing parameter ξ dependence of two-point gauge-variant correlation functions is studied for QED and QCD. We show that, in three Euclidean dimensions, or for four-dimensional thermal gauge theories, the usual procedure of getting a general covariant gauge-fixing term by averaging over a class of covariant gauge-fixing conditions leads to a nontrivial gauge-fixing parameter dependence in gauge-variant two-point correlation functions (e.g., fermion propagators). This nontrivial gauge-fixing parameter dependence modifies the large-distance behavior of the two-point correlation functions by introducing additional exponentially decaying factors. These factors are the origin of the gauge dependence encountered in some perturbative evaluations of the damping rates and the static chromoelectric screening length in a general covariant gauge. To avoid this modification of the long-distance behavior introduced by performing the average over a class of covariant gauge-fixing conditions, one can either choose a vanishing gauge-fixing parameter or apply an unphysical infrared cutoff. copyright 1996 The American Physical Society

  8. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis

    Palmer, Colin N A; Irvine, Alan D; Terron-Kwiatkowski, Ana

    2006-01-01

    most genetic studies have focused on immunological mechanisms, a primary epithelial barrier defect has been anticipated. Filaggrin is a key protein that facilitates terminal differentiation of the epidermis and formation of the skin barrier. Here we show that two independent loss-of-function genetic...... variants (R510X and 2282del4) in the gene encoding filaggrin (FLG) are very strong predisposing factors for atopic dermatitis. These variants are carried by approximately 9% of people of European origin. These variants also show highly significant association with asthma occurring in the context of atopic...

  9. Fitting the pieces together: current research on the genetic basis of attention-deficit/hyperactivity disorder (ADHD

    Evangelia Stergiakouli

    2010-08-01

    Full Text Available Evangelia Stergiakouli, Anita ThaparDepartment of Psychological Medicine and Neurology, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, United KingdomAbstract: Attention-deficit/hyperactivity disorder (ADHD is a highly disruptive childhood-onset disorder that often persists into adolescence and adulthood. Comorbidity with other problems, such as autism, dyslexia and conduct disorder (CD is very common. Although little is known about the pathophysiology of ADHD, family, twin and adoption studies have shown that it is highly heritable. Whole genome linkage studies suggest there are no common susceptibility genes of moderate effect size. Most published research has been based on functional candidate gene studies. The most consistent evidence for association with ADHD relates to a dopamine D4 receptor (DRD4 gene variable number tandem repeat (VNTR, a dopamine D5 receptor (DRD5 gene microsatellite and a dopamine transporter (DAT1 gene VNTR. In addition, the catechol-O-methyltransferase (COMT val158/108 met variant has been shown to increase risk for associated antisocial behavior. The first genome-wide association studies (GWAS of ADHD have been completed and although larger studies are still required to detect common risk variants, novel risk pathways are being suggested for ADHD. Further research on the contribution of rare variants, larger genome-wide association and sequencing studies and ADHD phenotype refinement is now needed.Keywords: attention-deficit/hyperactivity disorder (ADHD, genetics, molecular genetics, genome-wide association study (GWAS, gene-environment interplay

  10. Integrative analysis of functional genomic annotations and sequencing data to identify rare causal variants via hierarchical modeling

    Marinela eCapanu

    2015-05-01

    Full Text Available Identifying the small number of rare causal variants contributing to disease has beena major focus of investigation in recent years, but represents a formidable statisticalchallenge due to the rare frequencies with which these variants are observed. In thiscommentary we draw attention to a formal statistical framework, namely hierarchicalmodeling, to combine functional genomic annotations with sequencing data with theobjective of enhancing our ability to identify rare causal variants. Using simulations weshow that in all configurations studied, the hierarchical modeling approach has superiordiscriminatory ability compared to a recently proposed aggregate measure of deleteriousness,the Combined Annotation-Dependent Depletion (CADD score, supportingour premise that aggregate functional genomic measures can more accurately identifycausal variants when used in conjunction with sequencing data through a hierarchicalmodeling approach

  11. Optimization of Membership Functions for the Fuzzy Controllers of the Water Tank and Inverted Pendulum with Differents PSO Variants

    Patricia Melin

    2013-11-01

    Full Text Available In this paper the Particle Swarm Optimization metaheuristic and two of its variants (inertia weight and constriction coefficient are used as an optimization strategy for the design of optimal membership functions of fuzzy control systems for the water tank and inverted pendulum benchmark problems. Each variant has its own advantages in the algorithm, allowing the exploration and exploitation in different ways and this allows finding the optimal solution in a better way.

  12. Genetic variants affecting cross-sectional lung function in adults show little or no effect on longitudinal lung function decline

    John, Catherine; Soler Artigas, María; Hui, Jennie

    2017-01-01

    BACKGROUND: Genome-wide association studies have identified numerous genetic regions that influence cross-sectional lung function. Longitudinal decline in lung function also includes a heritable component but the genetic determinants have yet to be defined. OBJECTIVES: We aimed to determine whether...... regions associated with cross-sectional lung function were also associated with longitudinal decline and to seek novel variants which influence decline. METHODS: We analysed genome-wide data from 4167 individuals from the Busselton Health Study cohort, who had undergone spirometry (12 695 observations...... across eight time points). A mixed model was fitted and weighted risk scores were calculated for the joint effect of 26 known regions on baseline and longitudinal changes in FEV1 and FEV1/FVC. Potential additional regions of interest were identified and followed up in two independent cohorts. RESULTS...

  13. Remote memories are enhanced by COMT activity through dysregulation of the endocannabinoid system in the prefrontal cortex.

    Scheggia, D; Zamberletti, E; Realini, N; Mereu, M; Contarini, G; Ferretti, V; Managò, F; Margiani, G; Brunoro, R; Rubino, T; De Luca, M A; Piomelli, D; Parolaro, D; Papaleo, F

    2018-04-01

    The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories (executive functions) as well as for the stable organization of remote memories. Dopamine in the PFC is implicated in both these processes and genetic variants affecting its neurotransmission might control the unique balance between cognitive stability and flexibility present in each individual. Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a different catabolism of dopamine in the PFC. However, despite the established role played by COMT genetic variation in executive functions, its impact on remote memory formation and recall is still poorly explored. Here we report that transgenic mice overexpressing the human COMT-Val gene (COMT-Val-tg) present exaggerated remote memories (>50 days) while having unaltered recent memories (remote memories as silencing COMT Val overexpression starting from 30 days after the initial aversive conditioning normalized remote memories. COMT genetic overactivity produced a selective overdrive of the endocannabinoid system within the PFC, but not in the striatum and hippocampus, which was associated with enhanced remote memories. Indeed, acute pharmacological blockade of CB1 receptors was sufficient to rescue the altered remote memory recall in COMT-Val-tg mice and increased PFC dopamine levels. These results demonstrate that COMT genetic variations modulate the retrieval of remote memories through the dysregulation of the endocannabinoid system in the PFC.

  14. Brain function in carriers of a genome-wide supported bipolar disorder variant.

    Erk, Susanne; Meyer-Lindenberg, Andreas; Schnell, Knut; Opitz von Boberfeld, Carola; Esslinger, Christine; Kirsch, Peter; Grimm, Oliver; Arnold, Claudia; Haddad, Leila; Witt, Stephanie H; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Walter, Henrik

    2010-08-01

    The neural abnormalities underlying genetic risk for bipolar disorder, a severe, common, and highly heritable psychiatric condition, are largely unknown. An opportunity to define these mechanisms is provided by the recent discovery, through genome-wide association, of a single-nucleotide polymorphism (rs1006737) strongly associated with bipolar disorder within the CACNA1C gene, encoding the alpha subunit of the L-type voltage-dependent calcium channel Ca(v)1.2. To determine whether the genetic risk associated with rs1006737 is mediated through hippocampal function. Functional magnetic resonance imaging study. University hospital. A total of 110 healthy volunteers of both sexes and of German descent in the Hardy-Weinberg equilibrium for rs1006737. Blood oxygen level-dependent signal during an episodic memory task and behavioral and psychopathological measures. Using an intermediate phenotype approach, we show that healthy carriers of the CACNA1C risk variant exhibit a pronounced reduction of bilateral hippocampal activation during episodic memory recall and diminished functional coupling between left and right hippocampal regions. Furthermore, risk allele carriers exhibit activation deficits of the subgenual anterior cingulate cortex, a region repeatedly associated with affective disorders and the mediation of adaptive stress-related responses. The relevance of these findings for affective disorders is supported by significantly higher psychopathology scores for depression, anxiety, obsessive-compulsive thoughts, interpersonal sensitivity, and neuroticism in risk allele carriers, correlating negatively with the observed regional brain activation. Our data demonstrate that rs1006737 or genetic variants in linkage disequilibrium with it are functional in the human brain and provide a neurogenetic risk mechanism for bipolar disorder backed by genome-wide evidence.

  15. Biallelic loss-of-function variants in DOCK3 cause muscle hypotonia, ataxia, and intellectual disability.

    Helbig, K L; Mroske, C; Moorthy, D; Sajan, S A; Velinov, M

    2017-10-01

    DOCK3 encodes the dedicator of cytokinesis 3 protein, a member of the DOCK180 family of proteins that are characterized by guanine-nucleotide exchange factor activity. DOCK3 is expressed exclusively in the central nervous system and plays an important role in axonal outgrowth and cytoskeleton reorganization. Dock3 knockout mice exhibit motor deficiencies with abnormal ataxic gait and impaired learning. We report 2 siblings with biallelic loss-of-function variants in DOCK3. Diagnostic whole-exome sequencing (WES) and chromosomal microarray were performed on a proband with severe developmental disability, hypotonia, and ataxic gait. Testing was also performed on the proband's similarly affected brother. A paternally inherited 458 kb deletion in chromosomal region 3p21.2 disrupting the DOCK3 gene was identified in both affected siblings. WES identified a nonsense variant c.382C>G (p.Gln128*) in the DOCK3 gene (NM_004947) on the maternal allele in both siblings. Common features in both affected individuals include severe developmental disability, ataxic gait, and severe hypotonia, which recapitulates the Dock3 knockout mouse phenotype. We show that complete DOCK3 deficiency in humans leads to developmental disability with significant hypotonia and gait ataxia, probably due to abnormal axonal development. © 2017 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  17. Association study of functional genetic variants of innate immunity related genes in celiac disease

    Martín J

    2005-08-01

    Full Text Available Abstract Background Recent evidence suggest that the innate immune system is implicated in the early events of celiac disease (CD pathogenesis. In this work for the first time we have assessed the relevance of different proinflammatory mediators typically related to innate immunity in CD predisposition. Methods We performed a familial study in which 105 celiac families characterized by the presence of an affected child with CD were genotyped for functional polymorphisms located at regulatory regions of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes. Familial data was analysed with a transmission disequilibrium test (TDT that revealed no statistically significant differences in the transmission pattern of the different genetic markers considered. Results The TDT analysis for IL-1α, IL-1β, IL-1RN, IL-18, and MCP-1 genes genetic variants did not reveal biased transmission to the affected offspring. Only a borderline association of RANTES promoter genetic variants with CD predisposition was observed. Conclusion Our results suggest that the analysed polymorphisms of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes do not seem to play a major role in CD genetic predisposition in our population.

  18. Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer's Disease.

    Johanna Jakobsdottir

    2016-10-01

    Full Text Available We performed an exome-wide association analysis in 1393 late-onset Alzheimer's disease (LOAD cases and 8141 controls from the CHARGE consortium. We found that a rare variant (P155L in TM2D3 was enriched in Icelanders (~0.5% versus <0.05% in other European populations. In 433 LOAD cases and 3903 controls from the Icelandic AGES sub-study, P155L was associated with increased risk and earlier onset of LOAD [odds ratio (95% CI = 7.5 (3.5-15.9, p = 6.6x10-9]. Mutation in the Drosophila TM2D3 homolog, almondex, causes a phenotype similar to loss of Notch/Presenilin signaling. Human TM2D3 is capable of rescuing these phenotypes, but this activity is abolished by P155L, establishing it as a functionally damaging allele. Our results establish a rare TM2D3 variant in association with LOAD susceptibility, and together with prior work suggests possible links to the β-amyloid cascade.

  19. VAT: a computational framework to functionally annotate variants in personal genomes within a cloud-computing environment.

    Habegger, Lukas; Balasubramanian, Suganthi; Chen, David Z; Khurana, Ekta; Sboner, Andrea; Harmanci, Arif; Rozowsky, Joel; Clarke, Declan; Snyder, Michael; Gerstein, Mark

    2012-09-01

    The functional annotation of variants obtained through sequencing projects is generally assumed to be a simple intersection of genomic coordinates with genomic features. However, complexities arise for several reasons, including the differential effects of a variant on alternatively spliced transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large structural variants. Taking these factors into consideration, we developed the Variant Annotation Tool (VAT) to functionally annotate variants from multiple personal genomes at the transcript level as well as obtain summary statistics across genes and individuals. VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data from the underlying individuals and facilitates comparative analysis between different groups of individuals. VAT can either be run through a command-line interface or as a web application. Finally, in order to enable on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-computing environment. VAT is implemented in C and PHP. The VAT web service, Amazon Machine Image, source code and detailed documentation are available at vat.gersteinlab.org.

  20. Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer’s disease

    Anne eHafkemeijer

    2015-09-01

    Full Text Available Alzheimer’s disease (AD and behavioral variant frontotemporal dementia (bvFTD are the most common types of early-onset dementia. Here, we apply resting state functional magnetic resonance imaging (fMRI to study functional brain connectivity differences between AD and bvFTD.We used resting state fMRI data of 31 AD patients, 25 bvFTD patients, and 29 controls. We studied functional connectivity throughout the entire brain, applying two different analysis techniques, studying network-to-region and region-to-region connectivity. A general linear model approach was used to study group differences, while controlling for physiological noise, age, gender, study center, and regional gray matter volume. Given gray matter differences, we observed decreased network-to-region connectivity in bvFTD between a lateral visual cortical network and lateral occipital and cuneal cortex, and b auditory system network and angular gyrus. In AD, we found decreased network-to-region connectivity between the dorsal visual stream network and lateral occipital and parietal opercular cortex. Region-to-region connectivity was decreased in bvFTD between superior temporal gyrus and cuneal, supracalcarine, intracalcarine cortex, and lingual gyrus. We showed that the pathophysiology of functional brain connectivity is different between AD and bvFTD. However, the group differences in functional connectivity are less abundant than has been shown in previous studies.

  1. Association of ABCB1 genetic variants with renal function in Africans and in Caucasians

    Elston Robert C

    2008-06-01

    Full Text Available Abstract Background The P-glycoprotein, encoded by the ABCB1 gene, is expressed in human endothelial and mesangial cells, which contribute to control renal plasma flow and glomerular filtration rate. We investigated the association of ABCB1 variants with renal function in African and Caucasian subjects. Methods In Africans (290 subjects from 62 pedigrees, we genotyped the 2677G>T and 3435 C>T ABCB1 polymorphisms. Glomerular filtration rate (GFR was measured using inulin clearance and effective renal plasma flow (ERPF using para-aminohippurate clearance. In Caucasians (5382 unrelated subjects, we analyzed 30 SNPs located within and around ABCB1, using data from the Affymetrix 500 K chip. GFR was estimated using the simplified Modification of the Diet in Renal Disease (MDRD and Cockcroft-Gault equations. Results In Africans, compared to the reference genotype (GG or CC, each copy of the 2677T and 3435T allele was associated, respectively, with: GFR higher by 10.6 ± 2.9 (P P = 0.06 mL/min; ERPF higher by 47.5 ± 11.6 (P P = 0.007 mL/min; and renal resistances lower by 0.016 ± 0.004 (P P = 0.004 mm Hg/mL/min. In Caucasians, we identified 3 polymorphisms in the ABCB1 gene that were strongly associated with all estimates of GFR (smallest P value = 0.0006, overall P = 0.014 after multiple testing correction. Conclusion Variants of the ABCB1 gene were associated with renal function in both Africans and Caucasians and may therefore confer susceptibility to nephropathy in humans. If confirmed in other studies, these results point toward a new candidate gene for nephropathy in humans.

  2. Targeted resequencing of regulatory regions at schizophrenia risk loci: Role of rare functional variants at chromatin repressive states.

    González-Peñas, Javier; Amigo, Jorge; Santomé, Luis; Sobrino, Beatriz; Brenlla, Julio; Agra, Santiago; Paz, Eduardo; Páramo, Mario; Carracedo, Ángel; Arrojo, Manuel; Costas, Javier

    2016-07-01

    There is mounting evidence that regulatory variation plays an important role in genetic risk for schizophrenia. Here, we specifically search for regulatory variants at risk by sequencing promoter regions of twenty-three genes implied in schizophrenia by copy number variant or genome-wide association studies. After strict quality control, a total of 55,206bp per sample were analyzed in 526 schizophrenia cases and 516 controls from Galicia, NW Spain, using the Applied Biosystems SOLiD System. Variants were filtered based on frequency from public databases, chromatin states from the RoadMap Epigenomics Consortium at tissues relevant for schizophrenia, such as fetal brain, mid-frontal lobe, and angular gyrus, and prediction of functionality from RegulomeDB. The proportion of rare variants at polycomb repressive chromatin state at relevant tissues was higher in cases than in controls. The proportion of rare variants with predicted regulatory role was significantly higher in cases than in controls (P=0.0028, OR=1.93, 95% C.I.=1.23-3.04). Combination of information from both sources led to the identification of an excess of carriers of rare variants with predicted regulatory role located at polycomb repressive chromatin state at relevant tissues in cases versus controls (P=0.0016, OR=19.34, 95% C.I.=2.45-2495.26). The variants are located at two genes affected by the 17q12 copy number variant, LHX1 and HNF1B. These data strongly suggest that a specific epigenetic mechanism, chromatin remodeling by histone modification during early development, may be impaired in a subset of schizophrenia patients, in agreement with previous data. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia.

    Shaorong Zhao

    Full Text Available The molecular defects which lead to multistep incidences of human T-cell leukemia have yet to be identified. The DNA-binding protein Helios (known as IKZF2, a member of the Ikaros family of Krüppel-like zinc-finger proteins, functions pivotally in T-cell differentiation and activation. In this study, we identify three novel short Helios splice variants which are T-cell leukemic specific, and demonstrate their dominant-negative function. We then test the cellular localization of distinct Helios isoforms, as well as their capability to form heterodimer with Ikaros, and the association with complexes comprising histone deacetylase (HDAC. In addition, the ectopic expression of T-cell leukemic Helios isoforms interferes with T-cell proliferation and apoptosis. The gene expression profiling and pathway analysis indicated the enrichment of signaling pathways essential for gene expression, translation, cell cycle checkpoint, and response to DNA damage stimulus. These data indicate the molecular function of Helios to be involved in the leukemogenesis and phenotype of T-cell leukemia, and also reveal Helios deregulation as a novel marker for T-cell leukemia.

  4. Identification of functional DNA variants in the constitutive promoter region of MDM2

    Lalonde Marie-Eve

    2012-09-01

    Full Text Available Abstract Although mutations in the oncoprotein murine double minute 2 (MDM2 are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2, which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1, which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (−1494 G > A; indel 40 bp; and −182 C > G. Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309. Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40 bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.

  5. Executive control in schizophrenia: a preliminary study on the moderating role of COMT Val158Met for comorbid alcohol and substance use disorders.

    Carrà, Giuseppe; Nicolini, Gabriella; Crocamo, Cristina; Lax, Annamaria; Amidani, Francesca; Bartoli, Francesco; Castellano, Filippo; Chiorazzi, Alessia; Gamba, Giulia; Papagno, Costanza; Clerici, Massimo

    2017-07-01

    A functional polymorphism in the catechol-O-methyltransferase (COMT) gene (Val158Met) appears to influence cognition in people with alcohol/substance use disorders (AUD/SUD) and in those with psychosis. To explore the potential moderating effect of these factors, a cross-sectional study was conducted, randomly recruiting subjects with DSM-IV diagnosis of schizophrenia. AUD/SUD was rigorously assessed, as well as COMT Val158Met polymorphism. Executive control functioning was measured using the Intra-Extra Dimensional Set Shift (IED). The effect of a possible interaction between comorbid AUD/SUD and COMT Val158Met polymorphism on IED scores was explored. Subjects with schizophrenia, comorbid AUD/SUD, and MetMet carriers for SNP rs4680 of the COMT gene showed worse performance on IED completed stages scores, as compared with individuals with ValVal genotype. However, among subjects without AUD/SUD, those with the MetMet variant performed better than people carrying ValVal genotype. This study is the first to date examining the impact of COMT on cognition in a highly representative sample of people with schizophrenia and comorbid AUD/SUD. Differential moderating effects of COMT Val/Met genotype variations may similarly influence executive functions in people with schizophrenia and comorbid AUD/SUD.

  6. Potential Moderators of Physical Activity on Brain Health

    Regina L. Leckie

    2012-01-01

    Full Text Available Age-related cognitive decline is linked to numerous molecular, structural, and functional changes in the brain. However, physical activity is a promising method of reducing unfavorable age-related changes. Physical activity exerts its effects on the brain through many molecular pathways, some of which are regulated by genetic variants in humans. In this paper, we highlight genes including apolipoprotein E (APOE, brain derived neurotrophic factor (BDNF, and catechol-O-methyltransferase (COMT along with dietary omega-3 fatty acid, docosahexaenoic acid (DHA, as potential moderators of the effect of physical activity on brain health. There are a growing number of studies indicating that physical activity might mitigate the genetic risks for disease and brain dysfunction and that the combination of greater amounts of DHA intake with physical activity might promote better brain function than either treatment alone. Understanding whether genes or other lifestyles moderate the effects of physical activity on neurocognitive health is necessary for delineating the pathways by which brain health can be enhanced and for grasping the individual variation in the effectiveness of physical activity interventions on the brain and cognition. There is a need for future research to continue to assess the factors that moderate the effects of physical activity on neurocognitive function.

  7. Clinical polyomavirus BK variants with agnogene deletion are non-functional but rescued by trans-complementation

    Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer; Hirsch, Hans H.; Rinaldo, Christine Hanssen

    2010-01-01

    High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectious progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.

  8. Distribution and medical impact of loss-of-function variants in the Finnish founder population

    Lim, Elaine T.; Würtz, Peter; Havulinna, Aki S.; Palta, Priit; Tukiainen, Taru; Rehnström, Karola; Esko, Tõnu; Mägi, Reedik; Inouye, Michael; Lappalainen, Tuuli; Chan, Yingleong; Salem, Rany M.; Lek, Monkol; Flannick, Jason; Sim, Xueling; Manning, Alisa; Ladenvall, Claes; Bumpstead, Suzannah; Hämäläinen, Eija; Aalto, Kristiina; Maksimow, Mikael; Salmi, Marko; Blankenberg, Stefan; Ardissino, Diego; Shah, Svati; Horne, Benjamin; McPherson, Ruth; Hovingh, Gerald K.; Reilly, Muredach P.; Watkins, Hugh; Goel, Anuj; Farrall, Martin; Girelli, Domenico; Reiner, Alex P.; Stitziel, Nathan O.; Kathiresan, Sekar; Gabriel, Stacey; Barrett, Jeffrey C.; Lehtimäki, Terho; Laakso, Markku; Groop, Leif; Kaprio, Jaakko; Perola, Markus; McCarthy, Mark I.; Boehnke, Michael; Altshuler, David M.; Lindgren, Cecilia M.; Hirschhorn, Joel N.; Metspalu, Andres; Freimer, Nelson B.; Zeller, Tanja; Jalkanen, Sirpa; Koskinen, Seppo; Raitakari, Olli; Durbin, Richard; MacArthur, Daniel G.; Salomaa, Veikko; Ripatti, Samuli; Daly, Mark J.; Palotie, Aarno

    2014-01-01

    Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent

  9. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes

    Grarup, Niels; Moltke, Ida; Andersen, Mette K

    2018-01-01

    We have identified a variant in ADCY3 (encoding adenylate cyclase 3) associated with markedly increased risk of obesity and type 2 diabetes in the Greenlandic population. The variant disrupts a splice acceptor site, and carriers have decreased ADCY3 RNA expression. Additionally, we observe...

  10. Structural and Functional Characterization of a New Double Variant Haemoglobin (HbG-Philadelphia/Duarte α(2)β(2)).

    Fais, Antonella; Casu, Mariano; Ruggerone, Paolo; Ceccarelli, Matteo; Porcu, Simona; Era, Benedetta; Anedda, Roberto; Sollaino, Maria Carla; Galanello, Renzo; Corda, Marcella

    2011-01-01

    WE REPORT THE FIRST CASE OF COSEGREGATION OF TWO HAEMOGLOBINS (HBS): HbG-Philadelphia [α68(E17)Asn → Lys] and HbDuarte [β62(E6)Ala → Pro]. The proband is a young patient heterozygous also for β°-thalassaemia. We detected exclusively two haemoglobin variants: HbDuarte and HbG-Philadelphia/Duarte. Functional study of the new double variant HbG-Philadelphia/Duarte exhibited an increase in oxygen affinity, with a slight decrease of cooperativity and Bohr effect. This functional behaviour is attributed to β62Ala → Pro instead of α68Asn → Lys substitution. Indeed, HbG-Philadelphia isolated in our laboratory from blood cells donor carrier for this variant is not affected by any functional modification, whereas purified Hb Duarte showed functional properties very similar to the double variant. NMR and MD simulation studies confirmed that the presence of Pro instead of Ala at the β62 position produces displacement of the E helix and modifications of the tertiary structure. The substitution α68(E17)Asn → Lys does not cause significant structural and dynamical modifications of the protein. A possible structure-based rational of substitution effects is suggested.

  11. Multiplicative interaction of functional inflammasome genetic variants in determining the risk of gout.

    McKinney, Cushla; Stamp, Lisa K; Dalbeth, Nicola; Topless, Ruth K; Day, Richard O; Kannangara, Diluk Rw; Williams, Kenneth M; Janssen, Matthijs; Jansen, Timothy L; Joosten, Leo A; Radstake, Timothy R; Riches, Philip L; Tausche, Anne-Kathrin; Lioté, Frederic; So, Alexander; Merriman, Tony R

    2015-10-13

    The acute gout flare results from a localised self-limiting innate immune response to monosodium urate (MSU) crystals deposited in joints in hyperuricaemic individuals. Activation of the caspase recruitment domain-containing protein 8 (CARD8) NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome by MSU crystals and production of mature interleukin-1β (IL-1β) is central to acute gouty arthritis. However very little is known about genetic control of the innate immune response involved in acute gouty arthritis. Therefore our aim was to test functional single nucleotide polymorphism (SNP) variants in the toll-like receptor (TLR)-inflammasome-IL-1β axis for association with gout. 1,494 gout cases of European and 863 gout cases of New Zealand (NZ) Polynesian (Māori and Pacific Island) ancestry were included. Gout was diagnosed by the 1977 ARA gout classification criteria. There were 1,030 Polynesian controls and 10,942 European controls including from the publicly-available Atherosclerosis Risk in Communities (ARIC) and Framingham Heart (FHS) studies. The ten SNPs were either genotyped by Sequenom MassArray or by Affymetrix SNP array or imputed in the ARIC and FHS datasets. Allelic association was done by logistic regression adjusting by age and sex with European and Polynesian data combined by meta-analysis. Sample sets were pooled for multiplicative interaction analysis, which was also adjusted by sample set. Eleven SNPs were tested in the TLR2, CD14, IL1B, CARD8, NLRP3, MYD88, P2RX7, DAPK1 and TNXIP genes. Nominally significant (P gout were detected at CARD8 rs2043211 (OR = 1.12, P = 0.007), IL1B rs1143623 (OR = 1.10, P = 0.020) and CD14 rs2569190 (OR = 1.08; P = 0.036). There was significant multiplicative interaction between CARD8 and IL1B (P = 0.005), with the IL1B risk genotype amplifying the risk effect of CARD8. There is evidence for association of gout with functional variants in CARD8, IL1B and CD14. The gout-associated allele of IL1B increases

  12. Genetic variants in the choline acetyltransferase (ChAT) gene are modestly associated with normal cognitive function in the elderly

    Mengel-From, J; Christensen, K; Thinggaard, M

    2011-01-01

    Genetic variants in the choline acetyltransferase (ChAT) gene have been suggested as risk factors for neurodegenerative Alzheimer's disease (AD). Here we tested the importance of genetic variants in the ChAT gene in normal cognitive function of elderly in a study sample of Danish twins...... and singletons (N = 2070). The ChAT rs3810950 A allele, which has been associated with increased risk for AD, was found to be associated with a decrease cognitive status evaluated by a five-component cognitive composite score [P = 0.03, regression coefficient -0.30, 95% confidence interval (CI) -0.57 to -0...

  13. [Comparative analysis of conventional pulmonary function test results in children with asthma or cough variant asthma].

    Yuan, Jie; An, Shu-Hua; Gao, Wen-Jie; Du, Wen-Jin; Sun, Jun-Feng; Zhang, Man; Yao, Cong-Zhuo

    2013-03-01

    To compare the conventional pulmonary function test results of children with asthma or cough variant asthma (CVA). A total of 140 children, who were diagnosed with asthma or CVA from May 2010 to May 2011, were divided into acute asthma attack (n=50), asthma remission (n=50) and CVA groups (n=40); 30 healthy children were included as a control group. The forced vital capacity (FVC), forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), forced expiratory flow after 25% of vital capacity has been expelled (FEF25), forced expiratory flow after 50% of vital capacity has been expelled (FEF50), forced expiratory flow after 75% of vital capacity has been expelled (FEF75) and maximal midexpiratory flow (MMEF75/25) were measured. The mean percent predicted values of all the above indices were lower than 80% in the acute asthma attack group, with FEF50, FEF75 and MMEF75/25 declining markedly; the mean percent predicted values of FEF75 and MMEF75/25 were lower than 80% in the CVA group. All the pulmonary function indices in the acute asthma attack group were lower than those in the control group. The mean percent predicted values of FVC, FEV1, FEF25 and MMEF75/25 in the asthma remission and CVA groups were lower than in the control group. All the pulmonary function indices in the acute asthma attack group were lower than in the asthma remission and CVA groups, but there were no significant differences between the asthma remission and CVA groups. There is small and large airway dysfunction, particularly small airway dysfunction, in children with acute asthma attack. Children with CVA present mainly with mild small airway dysfunction, as do those with asthma in remission.

  14. A Longitudinal Study on Resting State Functional Connectivity in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease.

    Hafkemeijer, Anne; Möller, Christiane; Dopper, Elise G P; Jiskoot, Lize C; van den Berg-Huysmans, Annette A; van Swieten, John C; van der Flier, Wiesje M; Vrenken, Hugo; Pijnenburg, Yolande A L; Barkhof, Frederik; Scheltens, Philip; van der Grond, Jeroen; Rombouts, Serge A R B

    2017-01-01

    Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. We applied longitudinal resting state functional magnetic resonance imaging (fMRI) to delineate functional brain connections relevant for disease progression and diagnostic accuracy. We used two-center resting state fMRI data of 20 AD patients (65.1±8.0 years), 12 bvFTD patients (64.7±5.4 years), and 22 control subjects (63.8±5.0 years) at baseline and 1.8-year follow-up. We used whole-network and voxel-based network-to-region analyses to study group differences in functional connectivity at baseline and follow-up, and longitudinal changes in connectivity within and between groups. At baseline, connectivity between paracingulate gyrus and executive control network, between cuneal cortex and medial visual network, and between paracingulate gyrus and salience network was higher in AD compared with controls. These differences were also present after 1.8 years. At follow-up, connectivity between angular gyrus and right frontoparietal network, and between paracingulate gyrus and default mode network was lower in bvFTD compared with controls, and lower compared with AD between anterior cingulate gyrus and executive control network, and between lateral occipital cortex and medial visual network. Over time, connectivity decreased in AD between precuneus and right frontoparietal network and in bvFTD between inferior frontal gyrus and left frontoparietal network. Longitudinal changes in connectivity between supramarginal gyrus and right frontoparietal network differ between both patient groups and controls. We found disease-specific brain regions with longitudinal connectivity changes. This suggests the potential of longitudinal resting state fMRI to delineate regions relevant for disease progression and for diagnostic accuracy, although no group differences in longitudinal changes in the direct comparison of AD and bvFTD were found.

  15. A role for coding functional variants in HNF4A in type 2 diabetes susceptibility

    Jafar-Mohammadi, B; Groves, C J; Gjesing, A P

    2011-01-01

    Rare mutations in the gene HNF4A, encoding the transcription factor hepatocyte nuclear factor 4α (HNF-4A), account for ~5% of cases of MODY and more frequent variants in this gene may be involved in multifactorial forms of diabetes. Two low-frequency, non-synonymous variants in HNF4A (V255M, minor...... allele frequency [MAF] ~0.1%; T130I, MAF ~3.0%)-known to influence downstream HNF-4A target gene expression-are of interest, but previous type 2 diabetes association reports were inconclusive. We aimed to evaluate the contribution of these variants to type 2 diabetes susceptibility through large...

  16. m6AVar: a database of functional variants involved in m6A modification

    Zheng, Yueyuan; Nie, Peng; Peng, Di; He, Zhihao; Liu, Mengni; Xie, Yubin; Miao, Yanyan; Zuo, Zhixiang; Ren, Jian

    2017-01-01

    Abstract Identifying disease-causing variants among a large number of single nucleotide variants (SNVs) is still a major challenge. Recently, N 6-methyladenosine (m6A) has become a research hotspot because of its critical roles in many fundamental biological processes and a variety of diseases. Therefore, it is important to evaluate the effect of variants on m6A modification, in order to gain a better understanding of them. Here, we report m6AVar (http://m6avar.renlab.org), a comprehensive da...

  17. Functional assays for analysis of variants of uncertain significance in BRCA2

    Guidugli, Lucia; Carreira, Aura; Caputo, Sandrine M

    2014-01-01

    Missense variants in the BRCA2 gene are routinely detected during clinical screening for pathogenic mutations in patients with a family history of breast and ovarian cancer. These subtle changes frequently remain of unknown clinical significance because of the lack of genetic information that may...... of uncertain significance analyzed, and describe a validation set of (genetically) proven pathogenic and neutral missense variants to serve as a golden standard for the validation of each assay. Guidelines are proposed to enable implementation of laboratory-based methods to assess the impact of the variant...

  18. The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants.

    Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D

    2014-11-04

    Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.

  19. Cumulative role of rare and common putative functional genetic variants at NPAS3 in schizophrenia susceptibility.

    González-Peñas, Javier; Arrojo, Manuel; Paz, Eduardo; Brenlla, Julio; Páramo, Mario; Costas, Javier

    2015-10-01

    Schizophrenia may be considered a human-specific disorder arisen as a maladaptive by-product of human-specific brain evolution. Therefore, genetic variants involved in susceptibility to schizophrenia may be identified among those genes related to acquisition of human-specific traits. NPAS3, a transcription factor involved in central nervous system development and neurogenesis, seems to be implicated in the evolution of human brain, as it is the human gene with most human-specific accelerated elements (HAEs), i.e., .mammalian conserved regulatory sequences with accelerated evolution in the lineage leading to humans after human-chimpanzee split. We hypothesize that any nucleotide variant at the NPAS3 HAEs may lead to altered susceptibility to schizophrenia. Twenty-one variants at these HAEs detected by the 1000 genomes Project, as well as five additional variants taken from psychiatric genome-wide association studies, were genotyped in 538 schizophrenic patients and 539 controls from Galicia. Analyses at the haplotype level or based on the cumulative role of the variants assuming different susceptibility models did not find any significant association in spite of enough power under several plausible scenarios regarding direction of effect and the specific role of rare and common variants. These results suggest that, contrary to our hypothesis, the special evolution of the NPAS3 HAEs in Homo relaxed the strong constraint on sequence that characterized these regions during mammalian evolution, allowing some sequence changes without any effect on schizophrenia risk. © 2015 Wiley Periodicals, Inc.

  20. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis.

    LaRusch, Jessica; Jung, Jinsei; General, Ignacio J; Lewis, Michele D; Park, Hyun Woo; Brand, Randall E; Gelrud, Andres; Anderson, Michelle A; Banks, Peter A; Conwell, Darwin; Lawrence, Christopher; Romagnuolo, Joseph; Baillie, John; Alkaade, Samer; Cote, Gregory; Gardner, Timothy B; Amann, Stephen T; Slivka, Adam; Sandhu, Bimaljit; Aloe, Amy; Kienholz, Michelle L; Yadav, Dhiraj; Barmada, M Michael; Bahar, Ivet; Lee, Min Goo; Whitcomb, David C

    2014-07-01

    CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<0.0001). WNK1-SPAK pathway-activated increases in CFTR

  1. Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis.

    Jessica LaRusch

    2014-07-01

    Full Text Available CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev cause complete loss of CFTR function and result in cystic fibrosis (CF, a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002. Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005 and male infertility (OR 395, p<<0.0001. WNK1-SPAK pathway-activated increases in

  2. The importance of functional tests to assess the effect of a new CFTR variant when genotype-phenotype correlation is not possible.

    Hinzpeter, Alexandre; Reboul, Marie-Pierre; Callebaut, Isabelle; Zordan, Cécile; Costes, Bruno; Guichoux, Julie; Iron, Albert; Lacombe, Didier; Martin, Natacha; Arveiler, Benoit; Fanen, Pascale; Fergelot, Patricia; Girodon, Emmanuelle

    2017-05-01

    In vitro functional tests aimed to investigate CFTR dysfunction appear critical to help elucidate the functional impact of new variants of uncertain clinical significance and solve inconclusive cases, especially in early deceased newborns.

  3. Discovery and functional annotation of SIX6 variants in primary open-angle glaucoma.

    Megan Ulmer Carnes

    Full Text Available Glaucoma is a leading cause of blindness worldwide. Primary open-angle glaucoma (POAG is the most common subtype and is a complex trait with multigenic inheritance. Genome-wide association studies have previously identified a significant association between POAG and the SIX6 locus (rs10483727, odds ratio (OR = 1.32, p = 3.87×10(-11. SIX6 plays a role in ocular development and has been associated with the morphology of the optic nerve. We sequenced the SIX6 coding and regulatory regions in 262 POAG cases and 256 controls and identified six nonsynonymous coding variants, including five rare and one common variant, Asn141His (rs33912345, which was associated significantly with POAG (OR = 1.27, p = 4.2×10(-10 in the NEIGHBOR/GLAUGEN datasets. These variants were tested in an in vivo Danio rerio (zebrafish complementation assay to evaluate ocular metrics such as eye size and optic nerve structure. Five variants, found primarily in POAG cases, were hypomorphic or null, while the sixth variant, found only in controls, was benign. One variant in the SIX6 enhancer increased expression of SIX6 and disrupted its regulation. Finally, to our knowledge for the first time, we have identified a clinical feature in POAG patients that appears to be dependent upon SIX6 genotype: patients who are homozygous for the SIX6 risk allele (His141 have a statistically thinner retinal nerve fiber layer than patients homozygous for the SIX6 non-risk allele (Asn141. Our results, in combination with previous SIX6 work, lead us to hypothesize that SIX6 risk variants disrupt the development of the neural retina, leading to a reduced number of retinal ganglion cells, thereby increasing the risk of glaucoma-associated vision loss.

  4. Functional Analysis of Cancer-Associated DNA Polymerase ε Variants in Saccharomyces cerevisiae

    Stephanie R. Barbari

    2018-03-01

    Full Text Available DNA replication fidelity relies on base selectivity of the replicative DNA polymerases, exonucleolytic proofreading, and postreplicative DNA mismatch repair (MMR. Ultramutated human cancers without MMR defects carry alterations in the exonuclease domain of DNA polymerase ε (Polε. They have been hypothesized to result from defective proofreading. However, modeling of the most common variant, Polε-P286R, in yeast produced an unexpectedly strong mutator effect that exceeded the effect of proofreading deficiency by two orders of magnitude and indicated the involvement of other infidelity factors. The in vivo consequences of many additional Polε mutations reported in cancers remain poorly understood. Here, we genetically characterized 13 cancer-associated Polε variants in the yeast system. Only variants directly altering the DNA binding cleft in the exonuclease domain elevated the mutation rate. Among these, frequently recurring variants were stronger mutators than rare variants, in agreement with the idea that mutator phenotype has a causative role in tumorigenesis. In nearly all cases, the mutator effects exceeded those of an exonuclease-null allele, suggesting that mechanisms distinct from loss of proofreading may drive the genome instability in most ultramutated tumors. All mutator alleles were semidominant, supporting the view that heterozygosity for the polymerase mutations is sufficient for tumor development. In contrast to the DNA binding cleft alterations, peripherally located variants, including a highly recurrent V411L, did not significantly elevate mutagenesis. Finally, the analysis of Polε variants found in MMR-deficient tumors suggested that the majority cause no mutator phenotype alone but some can synergize with MMR deficiency to increase the mutation rate.

  5. Functional evaluation of genetic variants associated with endometriosis near GREB1.

    Fung, Jenny N; Holdsworth-Carson, Sarah J; Sapkota, Yadav; Zhao, Zhen Zhen; Jones, Lincoln; Girling, Jane E; Paiva, Premila; Healey, Martin; Nyholt, Dale R; Rogers, Peter A W; Montgomery, Grant W

    2015-05-01

    Do DNA variants in the growth regulation by estrogen in breast cancer 1 (GREB1) region regulate endometrial GREB1 expression and increase the risk of developing endometriosis in women? We identified new single nucleotide polymorphisms (SNPs) with strong association with endometriosis at the GREB1 locus although we did not detect altered GREB1 expression in endometriosis patients with defined genotypes. Genome-wide association studies have identified the GREB1 region on chromosome 2p25.1 for increasing endometriosis risk. The differential expression of GREB1 has also been reported by others in association with endometriosis disease phenotype. Fine mapping studies comprehensively evaluated SNPs within the GREB1 region in a large-scale data set (>2500 cases and >4000 controls). Publicly available bioinformatics tools were employed to functionally annotate SNPs showing the strongest association signal with endometriosis risk. Endometrial GREB1 mRNA and protein expression was studied with respect to phases of the menstrual cycle (n = 2-45 per cycle stage) and expression quantitative trait loci (eQTL) analysis for significant SNPs were undertaken for GREB1 [mRNA (n = 94) and protein (n = 44) in endometrium]. Participants in this study are females who provided blood and/or endometrial tissue samples in a hospital setting. The key SNPs were genotyped using Sequenom MassARRAY. The functional roles and regulatory annotations for identified SNPs are predicted by various publicly available bioinformatics tools. Endometrial GREB1 expression work employed qRT-PCR, western blotting and immunohistochemistry studies. Fine mapping results identified a number of SNPs showing stronger association (0.004 factor motifs. The haplotype (a combination of alleles) formed by the risk alleles from two common SNPs showed significant association (P = 0.026) with endometriosis and epistasis analysis showed no evidence for interaction between the two SNPs, suggesting an additive effect of SNPs on

  6. Functional analysis of TMLH variants and definition of domains required for catalytic activity and mitochondrial targeting.

    Monfregola, Jlenia; Cevenini, Armando; Terracciano, Antonio; van Vlies, Naomi; Arbucci, Salvatore; Wanders, Ronald J A; D'Urso, Michele; Vaz, Frédéric M; Ursini, Matilde Valeria

    2005-09-01

    epsilon-N-Trimethyllysine hydroxylase (TMLH) (EC 1.14.11.8) is a non-heme-ferrous iron hydroxylase, Fe(++) and 2-oxoglutarate (2OG) dependent, catalyzing the first of four enzymatic reactions of the highly conserved carnitine biosynthetic pathway. Otherwise from all the other enzymes of carnitine biosynthesis, TMLH was found to be associated to the mitochondrial fraction. We here report molecular cloning of two alternative spliced forms of TMLH, which appear ubiquitously expressed in human adult and fetal tissues. The deduced proteins are designated TMLH-a and TMLH-b, and contain 421 and 399 amino acids, respectively. They share the first N-terminal 332 amino acids, including a mitochondrial targeting signal, but diverge at the C-terminal end. TMLH-a and TMLH-b exogenous expression in COS-1 cells shows that the first 15 amino acids are necessary and sufficient for mitochondrial import. Furthermore, comparative evolutionary analysis of the C-terminal portion of TMLH-a identifies a conserved domain characterized by a key triad of residues, His242-Glu244-His389 predicted to bind 2OG end. This sequence is conserved in the TMLH enzyme from all species but is partially substituted by a unique sequence in the TMLH-b variant. Indeed, TMLH-b is not functional by itself as well as a TMLH-H389L mutant produced by site directed mutagenesis. As great interest, we found that TMLH-b and TMLH-H389L, individually co-expressed with TMLH-a in COS-1 cells, negatively affect TMLH activity. Therefore, our studies on the TMLH alternative form provide relevant novel information, first that the C-terminal region of TMLH contains the main determinants for its enzymatic activity including a key H389 residue, and second that TMLH-b could act as a crucial physiological negative regulator of TMLH. Copyright 2005 Wiley-Liss, Inc.

  7. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first time, to our knowledge, the characterization of KLF11 as a glucose-inducible regulator of the insulin gene. A combination of random oligonucleotide binding, EMSA, luciferase reporter, and chromatin immunoprecipitation assays shows that KLF11 binds to the insulin promoter and regulates its activity in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting a role in free radical clearance that may render beta cells more sensitive to oxidative stress. Thus, both functional and genetic analyses reveal that KLF11 plays a role in the regulation of pancreatic beta cell physiology, and its variants may contribute to the development of diabetes. PMID:15774581

  8. Structural analysis of an HLA-B27 functional variant, B27d detected in American blacks

    Rojo, S.; Aparicio, P.; Hansen, J.A.; Choo, S.Y.; Lopez de Castro, J.A.

    1987-01-01

    The structure of a new functional variant B27d has been established by comparative peptide mapping and radiochemical sequencing. This analysis complete the structural characterization of the six know histocompatibility leukocyte antigen (HLA)-B27 subtypes. The only detected amino acid change between the main HLA-B27.1 subtype and B27d is that of Try 59 to His 59 . Position 59 has not been previously found to vary among class I HLA or H-2 antigens. Such substitution accounts for the reported isoelectric focusing pattern of this variant. HLA-B27d is the only B27 variant found to differ from other subtypes by a single amino acid replacement. The nature of the change is compatible with its origin by a point mutation from HLB-B27.1. Because B27d was found only American blacks and in no other ethnic groups, it is suggested that this variant originated as a result of a mutation of the B27.1 gene that occurred within the black population. Structural analysis of B27d was done by comparative mapping. Radiochemical sequencing was carried out with 14 C-labeled and 3 H-labeled amino acids

  9. Genetic and molecular functional characterization of variants within TNFSF13B, a positional candidate preeclampsia susceptibility gene on 13q.

    Mona H Fenstad

    Full Text Available BACKGROUND: Preeclampsia is a serious pregnancy complication, demonstrating a complex pattern of inheritance. The elucidation of genetic liability to preeclampsia remains a major challenge in obstetric medicine. We have adopted a positional cloning approach to identify maternal genetic components, with linkages previously demonstrated to chromosomes 2q, 5q and 13q in an Australian/New Zealand familial cohort. The current study aimed to identify potential functional and structural variants in the positional candidate gene TNFSF13B under the 13q linkage peak and assess their association status with maternal preeclampsia genetic susceptibility. METHODOLOGY/PRINCIPAL FINDINGS: The proximal promoter and coding regions of the positional candidate gene TNFSF13B residing within the 13q linkage region was sequenced using 48 proband or founder individuals from Australian/New Zealand families. Ten sequence variants (nine SNPs and one single base insertion were identified and seven SNPs were successfully genotyped in the total Australian/New Zealand family cohort (74 families/480 individuals. Borderline association to preeclampsia (p = 0.0153 was observed for three rare SNPs (rs16972194, rs16972197 and rs56124946 in strong linkage disequilibrium with each other. Functional evaluation by electrophoretic mobility shift assays showed differential nuclear factor binding to the minor allele of the rs16972194 SNP, residing upstream of the translation start site, making this a putative functional variant. The observed genetic associations were not replicated in a Norwegian case/control cohort (The Nord-Trøndelag Health Study (HUNT2, 851 preeclamptic and 1,440 non-preeclamptic women. CONCLUSION/SIGNIFICANCE: TNFSF13B has previously been suggested to contribute to the normal immunological adaption crucial for a successful pregnancy. Our observations support TNFSF13B as a potential novel preeclampsia susceptibility gene. We discuss a possible role for TNFSF13B in

  10. Evidence that multiple genetic variants of MC4R play a functional role in the regulation of energy expenditure and appetite in Hispanic children

    Melanocortin-4-receptor (MC4R) haploinsufficiency is the most common form of monogenic obesity; however, the frequency of MC4R variants and their functional effects in general populations remain uncertain. The aim of this study was to identify and characterize the effects of MC4R variants in Hispani...

  11. Gain-of-function Prolactin Receptor Variants Are Not Associated With Breast Cancer and Multiple Fibroadenoma Risk.

    Chakhtoura, Zeina; Laki, Fatima; Bernadet, Marie; Cherifi, Ibtissem; Chiche, Aurélie; Pigat, Natascha; Bernichtein, Sophie; Courtillot, Carine; Boutillon, Florence; Bièche, Ivan; Vacher, Sophie; Tanguy, Marie-Laure; Bissery, Anne; Grouthier, Virginie; Camparo, Philippe; Foretz, Marc; Do Cruzeiro, Marcio; Pierre, Rémi; Rakotozafy, Fabienne; Tichet, Jean; Tejedor, Isabelle; Guidotti, Jacques-Emmanuel; Sigal-Zafrani, Brigitte; Goffin, Vincent; Touraine, Philippe

    2016-11-01

    In a cohort of 95 women with multiple breast fibroadenomas (MFAs), we recently identified patients harboring germline heterozygous variants of the prolactin receptor (PRLR) exhibiting constitutive activity (PRLR I146L and PRLR I176V ). This study sought to better delineate the potential role of PRLR gain-of-function variants in benign and malignant mammary tumorigenesis. This was an observational study and transgenic mouse model analysis. The study took place at the Department of Endocrinology, Reproductive Disorders and Rare Gynecologic Diseases, Pitié Salpêtrière, Paris, and Inserm Unit 1151, Paris. We generated a second MFA cohort (n = 71) as well as a group of control subjects (n = 496) and a cohort of women with breast cancer (n = 119). We also generated two transgenic mouse models carrying the coding sequences of human PRLR I146L or PRLR WT . We aimed to determine the prevalence of PRLR variants in these three populations and to uncover any association of the latter with specific tumor pattern, especially in patients with breast cancer. This study did not highlight a higher prevalence of PRLR variants in the MFA group and in the breast cancer group compared with control subjects. Transgenic mice expressing PRLR I146L exhibited very mild histological mammary phenotype but tumors were never observed. PRLR I146L and PRLR I176V variants are not associated with breast cancer or MFA risk. However, one cannot exclude that low but sustained PRLR signaling may facilitate or contribute to pathological development driven by oncogenic pathways. Long-term patient follow-up should help to address this issue.

  12. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking.

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B; Mundell, Stuart J; Mumford, Andrew D

    2016-05-01

    Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms. We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cysteine substitution (Y157C) was predicted computationally to have the greatest effect on PAR4 structure. Y157C platelets from 3 cases showed reduced responses to PAR4-activating peptide and to α-thrombin compared with controls, but no reduction in responses to PAR1-activating peptide. Pretreatment with the PAR1 antagonist vorapaxar caused lower residual α-thrombin responses in Y157C platelets than in controls, indicating greater platelet inhibition. HEK293 cells transfected with a PAR4 Y157C expression construct had reduced PAR4 functional responses, unchanged total PAR4 expression but reduced surface expression. PAR4 Y157C was partially retained in the endoplasmic reticulum and displayed an expression pattern consistent with defective N-glycosylation. Mutagenesis of Y322, which is the putative hydrogen bond partner of Y157, also reduced PAR4 surface expression in HEK293 cells. Reduced PAR4 responses associated with Y157C result from aberrant anterograde surface receptor trafficking, in part, because of disrupted intramolecular hydrogen bonding. Characterization of PAR4 Y157C establishes that rare F2RL3 variants have the potential to markedly alter platelet PAR4 reactivity particularly after exposure to therapeutic PAR1 antagonists. © 2016 American Heart Association, Inc.

  13. Functional Characterization of Rare RAB12 Variants and Their Role in Musician’s and Other Dystonias

    Eva Hebert

    2017-10-01

    Full Text Available Mutations in RAB (member of the Ras superfamily genes are increasingly recognized as cause of a variety of disorders including neurological conditions. While musician’s dystonia (MD and writer’s dystonia (WD are task-specific movement disorders, other dystonias persistently affect postures as in cervical dystonia. Little is known about the underlying etiology. Next-generation sequencing revealed a rare missense variant (c.586A>G; p.Ile196Val in RAB12 in two of three MD/WD families. Next, we tested 916 additional dystonia patients; 512 Parkinson’s disease patients; and 461 healthy controls for RAB12 variants and identified 10 additional carriers of rare missense changes among dystonia patients (1.1% but only one carrier in non-dystonic individuals (0.1%; p = 0.005. The detected variants among index patients comprised p.Ile196Val (n = 6; p.Ala174Thr (n = 3; p.Gly13Asp; p.Ala148Thr; and p.Arg181Gln in patients with MD; cervical dystonia; or WD. Two relatives of MD patients with WD also carried p.Ile196Val. The two variants identified in MD patients (p.Ile196Val; p.Gly13Asp were characterized on endogenous levels in patient-derived fibroblasts and in two RAB12-overexpressing cell models. The ability to hydrolyze guanosine triphosphate (GTP, so called GTPase activity, was increased in mutants compared to wildtype. Furthermore, subcellular distribution of RAB12 in mutants was altered in fibroblasts. Soluble Transferrin receptor 1 levels were reduced in the blood of all three tested p.Ile196Val carriers. In conclusion, we demonstrate an enrichment of missense changes among dystonia patients. Functional characterization revealed altered enzyme activity and lysosomal distribution in mutants suggesting a contribution of RAB12 variants to MD and other dystonias.

  14. Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants

    Andrea Gaedigk

    2010-10-01

    Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.

  15. Genetic variant for behavioral regulation factor of executive function and its possible brain mechanism in attention deficit hyperactivity disorder.

    Sun, Xiao; Wu, Zhaomin; Cao, Qingjiu; Qian, Ying; Liu, Yong; Yang, Binrang; Chang, Suhua; Yang, Li; Wang, Yufeng

    2018-05-16

    As a childhood-onset psychiatric disorder, attention deficit hyperactivity disorder (ADHD) is complicated by phenotypic and genetic heterogeneity. Lifelong executive function deficits in ADHD are described in many literatures and have been proposed as endophenotypes of ADHD. However, its genetic basis is still elusive. In this study, we performed a genome-wide association study of executive function, rated with Behavioral Rating Inventory of Executive Function (BRIEF), in ADHD children. We identified one significant variant (rs852004, P = 2.51e-08) for the overall score of BRIEF. The association analyses for each component of executive function found this locus was more associated with inhibit and monitor components. Further principle component analysis and confirmatory factor analysis provided an ADHD-specific executive function pattern including inhibit and monitor factors. SNP rs852004 was mainly associated with the Behavioral Regulation factor. Meanwhile, we found the significant locus was associated with ADHD symptom. The Behavioral Regulation factor mediated its effect on ADHD symptom. Functional magnetic resonance imaging (fMRI) analyses further showed evidence that this variant affected the activity of inhibition control related brain regions. It provided new insights for the genetic basis of executive function in ADHD.

  16. A functional brain-derived neurotrophic factor (BDNF) gene variant increases the risk of moderate-to-severe allergic rhinitis.

    Jin, Peng; Andiappan, Anand Kumar; Quek, Jia Min; Lee, Bernett; Au, Bijin; Sio, Yang Yie; Irwanto, Astrid; Schurmann, Claudia; Grabe, Hans Jörgen; Suri, Bani Kaur; Matta, Sri Anusha; Westra, Harm-Jan; Franke, Lude; Esko, Tonu; Sun, Liangdan; Zhang, Xuejun; Liu, Hong; Zhang, Furen; Larbi, Anis; Xu, Xin; Poidinger, Michael; Liu, Jianjun; Chew, Fook Tim; Rotzschke, Olaf; Shi, Li; Wang, De Yun

    2015-06-01

    Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. We sought to identify disease associations and the functional effect of BDNF genetic variants in patients with moderate-to-severe AR. Tagging single nucleotide polymorphisms (SNPs) spanning the BDNF gene were selected from the human HapMap Han Chinese from Beijing (CHB) data set, and associations with moderate-to-severe AR were assessed in 2 independent cohorts of Chinese patients (2216 from Shandong province and 1239 living in Singapore). The functional effects of the BDNF genetic variants were determined by using both in vitro and ex vivo assays. The tagging SNP rs10767664 was significantly associated with the risk of moderate-to-severe AR in both Singapore Chinese (P = .0017; odds ratio, 1.324) and Shandong Chinese populations (P = .039; odds ratio, 1.180). The coding nonsynonymous SNP rs6265 was in perfect linkage with rs10767664 and conferred increased BDNF protein secretion by a human cell line in vitro. Subjects bearing the AA genotype of rs10767664 exhibited increased risk of moderate-to-severe AR and displayed increased BDNF protein and total IgE levels in plasma. Using a large-scale expression quantitative trait locus study, we demonstrated that BDNF SNPs are significantly associated with altered BDNF concentrations in peripheral blood. A common genetic variant of the BDNF gene is associated with increased risk of moderate-to-severe AR, and the AA genotype is associated with increased BDNF mRNA levels in peripheral blood. Together, these data indicate that functional BDNF gene variants increase the risk of moderate-to-severe AR. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Identification and validation of loss of function variants in clinical contexts

    Lescai, Francesco; Marasco, Elena; Bacchelli, Chiara

    2014-01-01

    The choice of an appropriate variant calling pipeline for exome sequencing data is becoming increasingly more important in translational medicine projects and clinical contexts. Within GOSgene, which facilitates genetic analysis as part of a joint effort of the University College London and the G...

  18. Common variants in mendelian kidney disease genes and their association with renal function

    A. Parsa (Afshin); C. Fuchsberger (Christian); A. Köttgen (Anna); C.M. O'Seaghdha (Conall); C. Pattaro (Cristian); M. de Andrade (Mariza); D.I. Chasman (Daniel); A. Teumer (Alexander); K. Endlich (Karlhans); M. Olden (Matthias); M-H. Chen (Ming-Huei); A. Tin (Adrienne); Y-J. Kim (Yong-Jin); D. Taliun (Daniel); M. Li (Man); M.F. Feitosa (Mary Furlan); M. Gorski (Mathias); Q. Yang (Qiong); C. Hundertmark (Claudia); M.C. Foster (Michael); N. Glazer (Nicole); A.J. Isaacs (Aaron); M. Rao (Madhumathi); G.D. Smith; J.R. O´Connell; M.V. Struchalin (Maksim); T. Tanaka (Toshiko); G. Li (Guo); S.J. Hwang; E.J. Atkinson (Elizabeth); K. Lohman (Kurt); M. Cornelis (Marilyn); A. Johansson (Åsa); A. Tönjes (Anke); A. Dehghan (Abbas); V. Couraki (Vincent); E.G. Holliday (Elizabeth); R. Sorice; Z. Kutalik (Zoltán); T. Lehtimäki (Terho); T. Esko (Tõnu); H. Deshmukh (Harshal); S. Ulivi (Shelia); A.Y. Chu (Audrey); D. Murgia (Daniela); S. Trompet (Stella); M. Imboden (Medea); B. Kollerits (Barbara); G. Pistis (Giorgio); T.B. Harris (Tamara); L.J. Launer (Lenore); T. Aspelund (Thor); G. Eiriksdottir (Gudny); B.D. Mitchell (Braxton); E.A. Boerwinkle (Eric); H. Schmidt (Helena); E. Hofer (Edith); F.B. Hu (Frank); A. Demirkan (Ayşe); B.A. Oostra (Ben); S.T. Turner (Stephen); J. Ding (Jingzhong); J.S. Andrews (Jeanette); B.I. Freedman (Barry); F. Giulianini (Franco); W. Koenig (Wolfgang); T. Illig (Thomas); A. Döring (Angela); H.E. Wichmann (Heinz Erich); L. Zgaga (Lina); T. Zemunik (Tatijana); M. Boban (Mladen); C. Minelli (Cosetta); H.E. Wheeler (Heather); W. Igl (Wilmar); G. Zaboli (Ghazal); S.H. Wild (Sarah); A.F. Wright (Alan); H. Campbell (Harry); D. Ellinghaus (David); U. Nöthlings (Ute); G. Jacobs (Gunnar); R. Biffar (Reiner); F.D.J. Ernst (Florian); G. Homuth (Georg); H.K. Kroemer (Heyo); M. Nauck (Matthias); S. Stracke (Sylvia); U. Vol̈ker (Uwe); H. Völzke (Henry); P. Kovacs (Peter); M. Stumvoll (Michael); R. Mägi (Reedik); A. Hofman (Albert); A.G. Uitterlinden (André); F. Rivadeneira Ramirez (Fernando); Y.S. Aulchenko (Yurii); O. Polasek (Ozren); N. Hastie (Nick); V. Vitart (Veronique); C. Helmer (Catherine); J.J. Wang (Jie Jin); B. Stengel (Bernd); D. Ruggiero; S.M. Bergmann (Sven); M. Kähönen (Mika); J. Viikari (Jorma); T. Nikopensius (Tiit); M.A. Province (Mike); H.M. Colhoun (H.); A.S.F. Doney (Alex); A. Robino (Antonietta); B.K. Krämer (Bernhard); L. Portas (Laura); I. Ford (Ian); B.M. Buckley (Brendan M.); M. Adam (Martin); G.-A. Thun (Gian-Andri); B. Paulweber (Bernhard); M. Haun (Margot); C. Sala (Cinzia); P. Mitchell (Paul); M. Ciullo; P. Vollenweider (Peter); O. Raitakari (Olli); A. Metspalu (Andres); C.N.A. Palmer (Colin); P. Gasparini (Paolo); M. Pirastu (Mario); J.W. Jukema (Jan Wouter); N.M. Probst-Hensch (Nicole M.); F. Kronenberg (Florian); D. Toniolo (Daniela); V. Gudnason (Vilmundur); A.R. Shuldiner (Alan); J. Coresh (Josef); R. Schmidt (Reinhold); L. Ferrucci (Luigi); C.M. van Duijn (Cornelia); I.B. Borecki (Ingrid); S.L.R. Kardia (Sharon); Y. Liu (YongMei); G.C. Curhan (Gary); I. Rudan (Igor); U. Gyllensten (Ulf); J.F. Wilson (James); A. Franke (Andre); P.P. Pramstaller (Peter Paul); R. Rettig (Rainer); I. Prokopenko (Inga); J.C.M. Witteman (Jacqueline); C. Hayward (Caroline); P.M. Ridker (Paul); M. Bochud (Murielle); I.M. Heid (Iris); D.S. Siscovick (David); C.S. Fox (Caroline); W.H.L. Kao (Wen); C.A. Böger (Carsten)

    2013-01-01

    textabstractMany common genetic variants identified by genome-wide association studies for complex traitsmap to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with

  19. Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer's disease

    A. Hafkemeijer (Anne); C. Möller (Christiane); E.G.P. Dopper (Elise); L.C. Jiskoot (Lize); T.M. Schouten (Tijn M.); J.C. van Swieten (John); W.M. van der Flier (Wiesje); H. Vrenken (Hugo); Y. Pijnenburg (Yolande); F. Barkhof (Frederik); P. Scheltens (Philip); J. van der Grond (Jeroen); S.A.R.B. Rombouts (Serge)

    2015-01-01

    textabstractIntroduction: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. Early differentiation between both types of dementia may be challenging due to heterogeneity and overlap of symptoms. Here, we apply resting

  20. Functional analysis of rare variants in mismatch repair proteins augments results from computation-based predictive methods

    Arora, Sanjeevani; Huwe, Peter J.; Sikder, Rahmat; Shah, Manali; Browne, Amanda J.; Lesh, Randy; Nicolas, Emmanuelle; Deshpande, Sanat; Hall, Michael J.; Dunbrack, Roland L.; Golemis, Erica A.

    2017-01-01

    ABSTRACT The cancer-predisposing Lynch Syndrome (LS) arises from germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1, MSH2, MSH6, and PMS2. A major challenge for clinical diagnosis of LS is the frequent identification of variants of uncertain significance (VUS) in these genes, as it is often difficult to determine variant pathogenicity, particularly for missense variants. Generic programs such as SIFT and PolyPhen-2, and MMR gene-specific programs such as PON-MMR and MAPP-MMR, are often used to predict deleterious or neutral effects of VUS in MMR genes. We evaluated the performance of multiple predictive programs in the context of functional biologic data for 15 VUS in MLH1, MSH2, and PMS2. Using cell line models, we characterized VUS predicted to range from neutral to pathogenic on mRNA and protein expression, basal cellular viability, viability following treatment with a panel of DNA-damaging agents, and functionality in DNA damage response (DDR) signaling, benchmarking to wild-type MMR proteins. Our results suggest that the MMR gene-specific classifiers do not always align with the experimental phenotypes related to DDR. Our study highlights the importance of complementary experimental and computational assessment to develop future predictors for the assessment of VUS. PMID:28494185

  1. FunSAV: predicting the functional effect of single amino acid variants using a two-stage random forest model.

    Mingjun Wang

    Full Text Available Single amino acid variants (SAVs are the most abundant form of known genetic variations associated with human disease. Successful prediction of the functional impact of SAVs from sequences can thus lead to an improved understanding of the underlying mechanisms of why a SAV may be associated with certain disease. In this work, we constructed a high-quality structural dataset that contained 679 high-quality protein structures with 2,048 SAVs by collecting the human genetic variant data from multiple resources and dividing them into two categories, i.e., disease-associated and neutral variants. We built a two-stage random forest (RF model, termed as FunSAV, to predict the functional effect of SAVs by combining sequence, structure and residue-contact network features with other additional features that were not explored in previous studies. Importantly, a two-step feature selection procedure was proposed to select the most important and informative features that contribute to the prediction of disease association of SAVs. In cross-validation experiments on the benchmark dataset, FunSAV achieved a good prediction performance with the area under the curve (AUC of 0.882, which is competitive with and in some cases better than other existing tools including SIFT, SNAP, Polyphen2, PANTHER, nsSNPAnalyzer and PhD-SNP. The sourcecodes of FunSAV and the datasets can be downloaded at http://sunflower.kuicr.kyoto-u.ac.jp/sjn/FunSAV.

  2. [Effects of a smoking cessation education on smoking cessation, endothelial function, and serum carboxyhemoglobin in male patients with variant angina].

    Cho, Sook Hee

    2012-04-01

    The aim of this study was to evaluate the effects of a smoking cessation education on endothelial function and carboxyhemoglobin levels in smokers with variant angina. A nonequivalent control group pretest-posttest design was used. Participants were 60 male smokers with variant angina admitted to one hospital: the control group (30) between September and December, 2009, and the experimental group (30) between February and May, 2010. Endothelial function, as defined by flow-mediated vasodilation (FMD) of the brachial artery, and serum carboxyhemoglobin (COHb) were determined at baseline and at 3 months after the initiation of education in both groups. Three months after the program, smoking cessation was successful in 22 of the 30 smokers in the experimental group, but only in 4 of 30 smokers in the control group (p<.001). After the education, the experimental group showed a significant increase in FMD, and a significant decreased in serum COHb compared with the control group. The findings indicate that this smoking cessation education program is effective for hospitalized smokers with variant angina.

  3. Two functional variants of IRF5 influence the development of macular edema in patients with non-anterior uveitis.

    Ana Márquez

    Full Text Available OBJECTIVE: Interferon (IFN signaling plays a crucial role in autoimmunity. Genetic variation in interferon regulatory factor 5 (IRF5, a major regulator of the type I interferon induction, has been associated with risk of developing several autoimmune diseases. In the current study we aimed to evaluate whether three sets of correlated IRF5 genetic variants, independently associated with SLE and with different functional roles, are involved in uveitis susceptibility and its clinical subphenotypes. METHODS: Three IRF5 polymorphisms, rs2004640, rs2070197 and rs10954213, representative of each group, were genotyped using TaqMan® allelic discrimination assays in a total of 263 non-anterior uveitis patients and 724 healthy controls of Spanish origin. RESULTS: A clear association between two of the three analyzed genetic variants, rs2004640 and rs10954213, and the absence of macular edema was observed in the case/control analysis (P FDR =5.07E-03, OR=1.48, CI 95%=1.14-1.92 and P FDR =3.37E-03, OR=1.54, CI 95%=1.19-2.01, respectively. Consistently, the subphenotype analysis accordingly with the presence/absence of this clinical condition also reached statistical significance (rs2004640: P=0.037, OR=0.69, CI 95%=0.48-0.98; rs10954213: P=0.030, OR=0.67, CI 95%=0.47-0.96, thus suggesting that both IRF5 genetic variants are specifically associated with the lack of macular edema in uveitis patients. CONCLUSION: Our results clearly showed for the first time that two functional genetic variants of IRF5 may play a role in the development of macular edema in non-anterior uveitis patients. Identifying genetic markers for macular edema could lead to the possibility of developing novel treatments or preventive therapies.

  4. Two Functional Variants of IRF5 Influence the Development of Macular Edema in Patients with Non-Anterior Uveitis

    Cordero-Coma, Miguel; Ortego-Centeno, Norberto; Adán, Alfredo; Fonollosa, Alejandro; Díaz Valle, David; Pato, Esperanza; Blanco, Ricardo; Cañal, Joaquín; Díaz-Llopis, Manuel; de Ramón, Enrique; del Rio, María José; García Serrano, José Luis; Artaraz, Joseba; Martín-Villa, José Manuel; Llorenç, Víctor; Gorroño-Echebarría, Marina Begoña; Martín, Javier

    2013-01-01

    Objective Interferon (IFN) signaling plays a crucial role in autoimmunity. Genetic variation in interferon regulatory factor 5 (IRF5), a major regulator of the type I interferon induction, has been associated with risk of developing several autoimmune diseases. In the current study we aimed to evaluate whether three sets of correlated IRF5 genetic variants, independently associated with SLE and with different functional roles, are involved in uveitis susceptibility and its clinical subphenotypes. Methods Three IRF5 polymorphisms, rs2004640, rs2070197 and rs10954213, representative of each group, were genotyped using TaqMan® allelic discrimination assays in a total of 263 non-anterior uveitis patients and 724 healthy controls of Spanish origin. Results A clear association between two of the three analyzed genetic variants, rs2004640 and rs10954213, and the absence of macular edema was observed in the case/control analysis (P FDR=5.07E-03, OR=1.48, CI 95%=1.14-1.92 and P FDR=3.37E-03, OR=1.54, CI 95%=1.19-2.01, respectively). Consistently, the subphenotype analysis accordingly with the presence/absence of this clinical condition also reached statistical significance (rs2004640: P=0.037, OR=0.69, CI 95%=0.48-0.98; rs10954213: P=0.030, OR=0.67, CI 95%=0.47-0.96), thus suggesting that both IRF5 genetic variants are specifically associated with the lack of macular edema in uveitis patients. Conclusion Our results clearly showed for the first time that two functional genetic variants of IRF5 may play a role in the development of macular edema in non-anterior uveitis patients. Identifying genetic markers for macular edema could lead to the possibility of developing novel treatments or preventive therapies. PMID:24116155

  5. Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers

    Propping Peter

    2004-03-01

    Full Text Available Abstract Background Concentrations of monoamine metabolites in human cerebrospinal fluid (CSF have been used extensively as indirect estimates of monoamine turnover in the brain. CSF monoamine metabolite concentrations are partly determined by genetic influences. Methods We investigated possible relationships between DNA polymorphisms in the serotonin 2C receptor (HTR2C, the serotonin 3A receptor (HTR3A, the dopamine D4 receptor (DRD4, and the dopamine β-hydroxylase (DBH genes and CSF concentrations of 5-hydroxyindolacetic acid (5-HIAA, homovanillic acid (HVA, and 3-methoxy-4-hydroxyphenylglycol (MHPG in healthy volunteers (n = 90. Results The HTR3A 178 C/T variant was associated with 5-HIAA levels (p = 0.02. The DBH-1021 heterozygote genotype was associated with 5-HIAA (p = 0.0005 and HVA (p = 0.009 concentrations. Neither the HTR2C Cys23Ser variant, nor the DRD4 -521 C/T variant were significantly associated with any of the monoamine metabolites. Conclusions The present results suggest that the HTR3A and DBH genes may participate in the regulation of dopamine and serotonin turnover rates in the central nervous system.

  6. Kinetic and sequence-structure-function analysis of known LinA variants with different hexachlorocyclohexane isomers.

    Pooja Sharma

    Full Text Available BACKGROUND: Here we report specific activities of all seven naturally occurring LinA variants towards three different isomers, α, γ and δ, of a priority persistent pollutant, hexachlorocyclohexane (HCH. Sequence-structure-function differences contributing to the differences in their stereospecificity for α-, γ-, and δ-HCH and enantiospecificity for (+- and (--α -HCH are also discussed. METHODOLOGY/PRINCIPAL FINDINGS: Enzyme kinetic studies were performed with purified LinA variants. Models of LinA2(B90A A110T, A111C, A110T/A111C and LinA1(B90A were constructed using the FoldX computer algorithm. Turnover rates (min(-1 showed that the LinAs exhibited differential substrate affinity amongst the four HCH isomers tested. α-HCH was found to be the most preferred substrate by all LinA's, followed by the γ and then δ isomer. CONCLUSIONS/SIGNIFICANCE: The kinetic observations suggest that LinA-γ1-7 is the best variant for developing an enzyme-based bioremediation technology for HCH. The majority of the sequence variation in the various linA genes that have been isolated is not neutral, but alters the enantio- and stereoselectivity of the encoded proteins.

  7. Studies of the associations between functional beta2-adrenergic receptor variants and obesity, hypertension and type 2 diabetes in 7,808 white subjects

    Gjesing, A P; Andersen, G; Burgdorf, K S

    2007-01-01

    Functional and common Arg16Gly and Gln27Glu polymorphisms have been identified in ADRB2, the gene encoding the beta2-adrenergic receptor. These variants have previously been examined for association with obesity, hypertension and diabetes with inconclusive results.......Functional and common Arg16Gly and Gln27Glu polymorphisms have been identified in ADRB2, the gene encoding the beta2-adrenergic receptor. These variants have previously been examined for association with obesity, hypertension and diabetes with inconclusive results....

  8. Effect of Common Genetic Variants Associated with Type 2 Diabetes and Glycemic Traits on a- and ß-cell Function and Insulin Action in Man

    Jonsson, Anna; Ladenvall, Claes; Ahluwalia, Tarun Veer Singh

    2013-01-01

    Although meta-analyses of genome-wide association studies have identified more than 60 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes and/or glycemic traits, there is little information whether these variants also affect a-cell function. The aim of the present study...... was to evaluate the effects of glycemia-associated genetic loci on islet function in vivo and in vitro. We studied 43 SNPs in 4,654 normoglycemic participants from the Finnish population-based PPP-Botnia study. Islet function was assessed, in vivo, by measuring insulin and glucagon concentrations during OGTT, and....... Variants in BCL11A, TSPAN8, and NOTCH2 affected glucagon secretion both in vivo and in vitro. The MTNR1B variant was a clear outlier in the relationship analysis between insulin secretion and action, as well as between insulin, glucose and glucagon. Many of the genetic variants shown to be associated...

  9. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus

    Kozyrev, Sergey V; Abelson, Anna-Karin; Wojcik, Jerome

    2008-01-01

    Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by production of autoantibodies and complex genetic inheritance. In a genome-wide scan using 85,042 SNPs, we identified an association between SLE and a nonsynonymous substitution (rs10516487, R61H) in the B...... without a putative IP3R-binding domain. The transcripts were differentially expressed depending on a branch point-site SNP, rs17266594, in strong linkage disequilibrium (LD) with rs10516487. A third associated variant was found in the ankyrin domain (rs3733197, A383T). Our findings implicate BANK1...

  10. A Multilevel Functional Study of a SNAP25 At-Risk Variant for Bipolar Disorder and Schizophrenia.

    Houenou, Josselin; Boisgontier, Jennifer; Henrion, Annabelle; d'Albis, Marc-Antoine; Dumaine, Anne; Linke, Julia; Wessa, Michèle; Daban, Claire; Hamdani, Nora; Delavest, Marine; Llorca, Pierre-Michel; Lançon, Christophe; Schürhoff, Franck; Szöke, Andrei; Le Corvoisier, Philippe; Barau, Caroline; Poupon, Cyril; Etain, Bruno; Leboyer, Marion; Jamain, Stéphane

    2017-10-25

    The synaptosomal-associated protein SNAP25 is a key player in synaptic vesicle docking and fusion and has been associated with multiple psychiatric conditions, including schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder. We recently identified a promoter variant in SNAP25 , rs6039769 , that is associated with early-onset bipolar disorder and a higher gene expression level in human prefrontal cortex. In the current study, we showed that this variant was associated both in males and females with schizophrenia in two independent cohorts. We then combined in vitro and in vivo approaches in humans to understand the functional impact of the at-risk allele. Thus, we showed in vitro that the rs6039769 C allele was sufficient to increase the SNAP25 transcription level. In a postmortem expression analysis of 33 individuals affected with schizophrenia and 30 unaffected control subjects, we showed that the SNAP25b / SNAP25a ratio was increased in schizophrenic patients carrying the rs6039769 at-risk allele. Last, using genetics imaging in a cohort of 71 subjects, we showed that male risk carriers had an increased amygdala-ventromedial prefrontal cortex functional connectivity and a larger amygdala than non-risk carriers. The latter association has been replicated in an independent cohort of 121 independent subjects. Altogether, results from these multilevel functional studies are bringing strong evidence for the functional consequences of this allelic variation of SNAP25 on modulating the development and plasticity of the prefrontal-limbic network, which therefore may increase the vulnerability to both early-onset bipolar disorder and schizophrenia. SIGNIFICANCE STATEMENT Functional characterization of disease-associated variants is a key challenge in understanding neuropsychiatric disorders and will open an avenue in the development of personalized treatments. Recent studies have accumulated evidence that the SNARE complex, and more specifically

  11. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Ganesh Ambigapathy

    Full Text Available Brain-derived neurotrophic factor (BDNF has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  12. Identification of a functionally distinct truncated BDNF mRNA splice variant and protein in Trachemys scripta elegans.

    Ambigapathy, Ganesh; Zheng, Zhaoqing; Li, Wei; Keifer, Joyce

    2013-01-01

    Brain-derived neurotrophic factor (BDNF) has a diverse functional role and complex pattern of gene expression. Alternative splicing of mRNA transcripts leads to further diversity of mRNAs and protein isoforms. Here, we describe the regulation of BDNF mRNA transcripts in an in vitro model of eyeblink classical conditioning and a unique transcript that forms a functionally distinct truncated BDNF protein isoform. Nine different mRNA transcripts from the BDNF gene of the pond turtle Trachemys scripta elegans (tBDNF) are selectively regulated during classical conditioning: exon I mRNA transcripts show no change, exon II transcripts are downregulated, while exon III transcripts are upregulated. One unique transcript that codes from exon II, tBDNF2a, contains a 40 base pair deletion in the protein coding exon that generates a truncated tBDNF protein. The truncated transcript and protein are expressed in the naïve untrained state and are fully repressed during conditioning when full-length mature tBDNF is expressed, thereby having an alternate pattern of expression in conditioning. Truncated BDNF is not restricted to turtles as a truncated mRNA splice variant has been described for the human BDNF gene. Further studies are required to determine the ubiquity of truncated BDNF alternative splice variants across species and the mechanisms of regulation and function of this newly recognized BDNF protein.

  13. Developmental profile of speech-language and communicative functions in an individual with the preserved speech variant of Rett syndrome.

    Marschik, Peter B; Vollmann, Ralf; Bartl-Pokorny, Katrin D; Green, Vanessa A; van der Meer, Larah; Wolin, Thomas; Einspieler, Christa

    2014-08-01

    We assessed various aspects of speech-language and communicative functions of an individual with the preserved speech variant of Rett syndrome (RTT) to describe her developmental profile over a period of 11 years. For this study, we incorporated the following data resources and methods to assess speech-language and communicative functions during pre-, peri- and post-regressional development: retrospective video analyses, medical history data, parental checklists and diaries, standardized tests on vocabulary and grammar, spontaneous speech samples and picture stories to elicit narrative competences. Despite achieving speech-language milestones, atypical behaviours were present at all times. We observed a unique developmental speech-language trajectory (including the RTT typical regression) affecting all linguistic and socio-communicative sub-domains in the receptive as well as the expressive modality. Future research should take into consideration a potentially considerable discordance between formal and functional language use by interpreting communicative acts on a more cautionary note.

  14. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  15. A targeted genotyping approach enhances identification of variants in taste receptor and appetite/reward genes of potential functional importance for obesity-related porcine traits.

    Cirera, S; Clop, A; Jacobsen, M J; Guerin, M; Lesnik, P; Jørgensen, C B; Fredholm, M; Karlskov-Mortensen, P

    2018-04-01

    Taste receptors (TASRs) and appetite and reward (AR) mechanisms influence eating behaviour, which in turn affects food intake and risk of obesity. In a previous study, we used next generation sequencing to identify potentially functional mutations in TASR and AR genes and found indications for genetic associations between identified variants and growth and fat deposition in a subgroup of animals (n = 38) from the UNIK resource pig population. This population was created for studying obesity and obesity-related diseases. In the present study we validated results from our previous study by investigating genetic associations between 24 selected single nucleotide variants in TASR and AR gene variants and 35 phenotypes describing obesity and metabolism in the entire UNIK population (n = 564). Fifteen variants showed significant association with specific obesity-related phenotypes after Bonferroni correction. Six of the 15 genes, namely SIM1, FOS, TAS2R4, TAS2R9, MCHR2 and LEPR, showed good correlation between known biological function and associated phenotype. We verified a genetic association between potentially functional variants in TASR/AR genes and growth/obesity and conclude that the combination of identification of potentially functional variants by next generation sequencing followed by targeted genotyping and association studies is a powerful and cost-effective approach for increasing the power of genetic association studies. © 2018 Stichting International Foundation for Animal Genetics.

  16. The human pregnane X receptor: genomic structure and identification and functional characterization of natural allelic variants.

    Zhang, J; Kuehl, P; Green, E D; Touchman, J W; Watkins, P B; Daly, A; Hall, S D; Maurel, P; Relling, M; Brimer, C; Yasuda, K; Wrighton, S A; Hancock, M; Kim, R B; Strom, S; Thummel, K; Russell, C G; Hudson, J R; Schuetz, E G; Boguski, M S

    2001-10-01

    The pregnane X receptor (PXR)/steroid and xenobiotic receptor (SXR) transcriptionally activates cytochrome P4503A4 (CYP3A4) when ligand activated by endobiotics and xenobiotics. We cloned the human PXR gene and analysed the sequence in DNAs of individuals whose CYP3A phenotype was known. The PXR gene spans 35 kb, contains nine exons, and mapped to chromosome 13q11-13. Thirty-eight single nucleotide polymorphisms (SNPs) were identified including six SNPs in the coding region. Three of the coding SNPs are non-synonymous creating new PXR alleles [PXR*2, P27S (79C to T); PXR*3, G36R (106G to A); and PXR*4, R122Q (4321G to A)]. The frequency of PXR*2 was 0.20 in African Americans and was never found in Caucasians. Hepatic expression of CYP3A4 protein was not significantly different between African Americans homozygous for PXR*1 compared to those with one PXR*2 allele. PXR*4 was a rare variant found in only one Caucasian person. Homology modelling suggested that R122Q, (PXR*4) is a direct DNA contact site variation in the third alpha-helix in the DNA binding domain. Compared with PXR*1, and variants PXR*2 and PXR*3, only the variant PXR*4 protein had significantly decreased affinity for the PXR binding sequence in electromobility shift assays and attenuated ligand activation of the CYP3A4 reporter plasmids in transient transfection assays. However, the person heterozygous for PXR*4 is normal for CYP3A4 metabolism phenotype. The relevance of each of the 38 PXR SNPs identified in DNA of individuals whose CYP3A basal and rifampin-inducible CYP3A4 expression was determined in vivo and/or in vitro was demonstrated by univariate statistical analysis. Because ligand activation of PXR and upregulation of a system of drug detoxification genes are major determinants of drug interactions, it will now be useful to extend this work to determine the association of these common PXR SNPs to human variation in induction of other drug detoxification gene targets.

  17. In Silico Systems Biology Analysis of Variants of Uncertain Significance in Lynch Syndrome Supports the Prioritization of Functional Molecular Validation.

    Borras, Ester; Chang, Kyle; Pande, Mala; Cuddy, Amanda; Bosch, Jennifer L; Bannon, Sarah A; Mork, Maureen E; Rodriguez-Bigas, Miguel A; Taggart, Melissa W; Lynch, Patrick M; You, Y Nancy; Vilar, Eduardo

    2017-10-01

    Lynch syndrome (LS) is a genetic condition secondary to germline alterations in the DNA mismatch repair (MMR) genes with 30% of changes being variants of uncertain significance (VUS). Our aim was to perform an in silico reclassification of VUS from a large single institutional cohort that will help prioritizing functional validation. A total of 54 VUS were detected with 33 (61%) novel variants. We integrated family history, pathology, and genetic information along with supporting evidence from eight different in silico tools at the RNA and protein level. Our assessment allowed us to reclassify 54% (29/54) of the VUS as probably damaging, 13% (7/54) as possibly damaging, and 28% (15/54) as probably neutral. There are more than 1,000 VUS reported in MMR genes and our approach facilitates the prioritization of further functional efforts to assess the pathogenicity to those classified as probably damaging. Cancer Prev Res; 10(10); 580-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Analyses of germline variants associated with ovarian cancer survival identify functional candidates at the 1q22 and 19p12 outcome loci

    Glubb, Dylan M; Johnatty, Sharon E; Quinn, Michael C J

    2017-01-01

    We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D...... and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity...... and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates...

  19. Characterisation of the novel deleterious RAD51C p.Arg312Trp variant and prioritisation criteria for functional analysis of RAD51C missense changes.

    Gayarre, Javier; Martín-Gimeno, Paloma; Osorio, Ana; Paumard, Beatriz; Barroso, Alicia; Fernández, Victoria; de la Hoya, Miguel; Rojo, Alejandro; Caldés, Trinidad; Palacios, José; Urioste, Miguel; Benítez, Javier; García, María J

    2017-09-26

    Despite a high prevalence of deleterious missense variants, most studies of RAD51C ovarian cancer susceptibility gene only provide in silico pathogenicity predictions of missense changes. We identified a novel deleterious RAD51C missense variant (p.Arg312Trp) in a high-risk family, and propose a criteria to prioritise RAD51C missense changes qualifying for functional analysis. To evaluate pathogenicity of p.Arg312Trp variant we used sequence homology, loss of heterozygosity (LOH) and segregation analysis, and a comprehensive functional characterisation. To define a functional-analysis prioritisation criteria, we used outputs for the known functionally confirmed deleterious and benign RAD51C missense changes from nine pathogenicity prediction algorithms. The p.Arg312Trp variant failed to correct mitomycin and olaparib hypersensitivity and to complement abnormal RAD51C foci formation according to functional assays, which altogether with LOH and segregation data demonstrated deleteriousness. Prioritisation criteria were based on the number of predictors providing a deleterious output, with a minimum of 5 to qualify for testing and a PredictProtein score greater than 33 to assign high-priority indication. Our study points to a non-negligible number of RAD51C missense variants likely to impair protein function, provides a guideline to prioritise and encourage their selection for functional analysis and anticipates that reference laboratories should have available resources to conduct such assays.

  20. Functional variant disrupts insulin induction of USF1: mechanism for USF1-associated dyslipidemias

    Naukkarinen, J.; Nilsson, E.; Koistinen, H.A.

    2009-01-01

    BACKGROUND: The upstream transcription factor 1 (USF1) gene is associated with familial combined hyperlipidemia, the most common genetic dyslipidemia in humans, as well as with various dyslipidemic changes in numerous other studies. Typical of complex disease-associated genes, neither the explicit...... in USF1 is involved in the development of dyslipidemia. The effects of the risk variant on gene expression were studied in 2 relevant human tissues, fat and muscle. Global transcript profiles of 47 fat biopsies ascertained for carriership of the risk allele were tested for differential expression......, a defective response of USF1 to insulin results in the suboptimal response of relevant target genes that contributes to the enhanced risk of developing dyslipidemia and coronary heart disease Udgivelsesdato: 2009/10...

  1. Large-scale studies of the functional K variant of the butyrylcholinesterase gene in relation to Type 2 diabetes and insulin secretion

    Johansen, A; Nielsen, E-M D; Andersen, G

    2004-01-01

    Polymorphisms of the butyrylcholinesterase gene (BCHE) are reported to associate with Alzheimer's disease and a recent study found a significant association of the BCHE K variant (G1615A/Ala539Thr) with Type 2 diabetes. The objectives of our study were to examine whether the BCHE K variant is ass...... is associated with Type 2 diabetes or estimates of pancreatic beta cell function in large-scale populations of glucose-tolerant Caucasians....

  2. Comprehensive evaluation of disease- and trait-specific enrichment for eight functional elements among GWAS-identified variants.

    Markunas, Christina A; Johnson, Eric O; Hancock, Dana B

    2017-07-01

    Genome-wide association study (GWAS)-identified variants are enriched for functional elements. However, we have limited knowledge of how functional enrichment may differ by disease/trait and tissue type. We tested a broad set of eight functional elements for enrichment among GWAS-identified SNPs (p Enrichment analyses were conducted using logistic regression, with Bonferroni correction. Overall, a significant enrichment was observed for all functional elements, except sequence motifs. Missense SNPs showed the strongest magnitude of enrichment. eQTLs were the only functional element significantly enriched across all diseases/traits. Magnitudes of enrichment were generally similar across diseases/traits, where enrichment was statistically significant. Blood vs. brain tissue effects on enrichment were dependent on disease/trait and functional element (e.g., cardiovascular disease: eQTLs P TissueDifference  = 1.28 × 10 -6 vs. enhancers P TissueDifference  = 0.94). Identifying disease/trait-relevant functional elements and tissue types could provide new insight into the underlying biology, by guiding a priori GWAS analyses (e.g., brain enhancer elements for psychiatric disease) or facilitating post hoc interpretation.

  3. Allelic variation of the COMT gene in a despotic primate society: A haplotype is related to cortisol excretion in Macaca fuscata.

    Pflüger, Lena S; Gutleb, Daria R; Hofer, Martin; Fieder, Martin; Wallner, Bernard; Steinborn, Ralf

    2016-02-01

    Sequence variations in genes of the monoamine neurotransmitter system and their common function in human and non-human primate species are an ongoing issue of investigation. However, the COMT gene, coding for the catechol-O-methyltransferase, has not yet attracted much scientific attention regarding its functional role in non-human primates. Considering that a polymorphism of the human COMT gene affects the enzyme activity and cortisol level in response to a social stressor, this study investigated the impact of COMT on endocrine stress and behavioural parameters in Japanese macaques (Macaca fuscata). The species exemplifies a despotic hierarchy in which males' social rank positions require an adaptation of behaviour strategies. During the mating period steroid secretion and the frequency of aggressive encounters between males increase. We addressed i) whether this species exhibits potential functional COMT variants, ii) whether these variants are associated with faecal cortisol excretion of males, iii) how they are distributed among different social rank positions and iv) whether they are associated with behavioural strategies during times of mate competition. By genotyping 26 males we identified three COMT haplotypes (HT), including a putative splice mutant (HT3). This variant was associated with increased cortisol excretion. Given the observed inverse correlation between cortisol and physical aggression, we assume that different COMT haplotypes may predispose individuals to pursue more or less aggressive strategies. How these gene-stress effects might favour a specific social role is discussed. Our study of non-invasive genotyping in combination with behavioural and endocrine parameters represents an important step towards the understanding of gene-stress effects in a hierarchically organised primate society. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with juvenile-onset obesity

    Larsen, Lesli H; Echwald, Søren Morgenthaler; Sørensen, Thorkild I A

    2005-01-01

    )) for mutations in MC4R. A total of 14 different mutations were identified of which two, Ala219Val and Leu325Phe, were novel variants. The variant receptor, Leu325Phe, was unable to bind [Nle4,d-Phe7]-alphaMSH, whereas the Ala219Val variant showed a significantly impaired melanotan II induction of cAMP, compared...

  5. An abundance of rare functional variants in 202 drug target genes sequenced in 14.002 people

    Nelson, Matthew R.; Wegmann, Daniel; Ehm, Margaret G.

    2012-01-01

    Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (1 every 17 bases)...

  6. Association Between Variants of PRDM1 and NDP52 and Crohn's Disease, Based on Exome Sequencing and Functional Studies

    Ellinghaus, David; Zhang, Hu; Zeissig, Sebastian; Lipinski, Simone; Till, Andreas; Jiang, Tao; Stade, Bjoern; Bromberg, Yana; Ellinghaus, Eva; Keller, Andreas; Rivas, Manuel A.; Skieceviciene, Jurgita; Doncheva, Nadezhda T.; Liu, Xiao; Liu, Qing; Jiang, Fuman; Forster, Michael; Mayr, Gabriele; Albrecht, Mario; Haesler, Robert; Boehm, Bernhard O.; Goodall, Jane; Berzuini, Carlo R.; Lee, James; Andersen, Vibeke; Vogel, Ulla; Kupcinskas, Limas; Kayser, Manfred; Krawczak, Michael; Nikolaus, Susanna; Weersma, Rinse K.; Ponsioen, Cyriel Y.; Sans, Miquel; Wijmenga, Cisca; Strachan, David P.; McAardle, Wendy L.; Vermeire, Severine; Rutgeerts, Paul; Sanderson, Jeremy D.; Mathew, Christopher G.; Vatn, Morten H.; Wang, Jun; Noethen, Markus M.; Duerr, Richard H.; Buening, Carsten; Brand, Stephan; Glas, Juergen; Winkelmann, Juliane; Illig, Thomas; Latiano, Anna; Annese, Vito; Halfvarson, Jonas; D'Amato, Mauro; Daly, Mark J.; Nothnagel, Michael; Karlsen, Tom H.; Subramani, Suresh; Rosenstiel, Philip; Schreiber, Stefan; Parkes, Miles; Franke, Andre

    BACKGROUND & AIMS: Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through

  7. Association Between Variants of PRDM1 and NDP52 and Crohn's Disease, Based on Exome Sequencing and Functional Studies

    Ellinghaus, David; Zhang, Hu; Zeissig, Sebastian; Lipinski, Simone; Till, Andreas; Jiang, Tao; Stade, Björn; Bromberg, Yana; Ellinghaus, Eva; Keller, Andreas; Rivas, Manuel A.; Skieceviciene, Jurgita; Doncheva, Nadezhda T.; Liu, Xiao; Liu, Qing; Jiang, Fuman; Forster, Michael; Mayr, Gabriele; Albrecht, Mario; Häsler, Robert; Boehm, Bernhard O.; Goodall, Jane; Berzuini, Carlo R.; Lee, James; Andersen, Vibeke; Vogel, Ulla; Kupcinskas, Limas; Kayser, Manfred; Krawczak, Michael; Nikolaus, Susanna; Weersma, Rinse K.; Ponsioen, Cyriel Y.; Sans, Miquel; Wijmenga, Cisca; Strachan, David P.; McArdle, Wendy L.; Vermeire, Séverine; Rutgeerts, Paul; Sanderson, Jeremy D.; Mathew, Christopher G.; Vatn, Morten H.; Wang, Jun; Nöthen, Markus M.; Duerr, Richard H.; Büning, Carsten; Brand, Stephan; Glas, Jürgen; Winkelmann, Juliane; Illig, Thomas; Latiano, Anna; Annese, Vito; Halfvarson, Jonas; D'Amato, Mauro; Daly, Mark J.; Nothnagel, Michael; Karlsen, Tom H.; Subramani, Suresh; Rosenstiel, Philip; Schreiber, Stefan; Parkes, Miles; Franke, Andre

    2013-01-01

    Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through detailed

  8. Use of density functional theory orbitals in the GVVPT2 variant of second-order multistate multireference perturbation theory.

    Hoffmann, Mark R; Helgaker, Trygve

    2015-03-05

    A new variation of the second-order generalized van Vleck perturbation theory (GVVPT2) for molecular electronic structure is suggested. In contrast to the established procedure, in which CASSCF or MCSCF orbitals are first obtained and subsequently used to define a many-electron model (or reference) space, the use of an orbital space obtained from the local density approximation (LDA) variant of density functional theory is considered. Through a final, noniterative diagonalization of an average Fock matrix within orbital subspaces, quasicanonical orbitals that are otherwise indistinguishable from quasicanonical orbitals obtained from a CASSCF or MCSCF calculation are obtained. Consequently, all advantages of the GVVPT2 method are retained, including use of macroconfigurations to define incomplete active spaces and rigorous avoidance of intruder states. The suggested variant is vetted on three well-known model problems: the symmetric stretching of the O-H bonds in water, the dissociation of N2, and the stretching of ground and excited states C2 to more than twice the equilibrium bond length of the ground state. It is observed that the LDA-based GVVPT2 calculations yield good results, of comparable quality to conventional CASSCF-based calculations. This is true even for the C2 model problem, in which the orbital space for each state was defined by the LDA orbitals. These results suggest that GVVPT2 can be applied to much larger problems than previously accessible.

  9. Polymorphic variants of neurotransmitter receptor genes may affect sexual function in aging males: data from the HALS study.

    Jóźków, Paweł; Słowińska-Lisowska, Małgorzata; Łaczmański, Łukasz; Mędraś, Marek

    2013-01-01

    Human behavior is influenced by a number of brain neurotransmitters. Central dopamine, serotonin and melanocortin systems have special importance for male sexual function. We searched for associations between male aging symptoms and polymorphic sites of serotonin (5-HTR1B), melanocortin (MC4R) and dopamine (DRD2, DRD4) receptors. In a population-based sample, genotyping of 5-HTR1B (polymorphism: G861C), MC4R (polymorphisms: C-2745T, Val103Ile), DRD2 (polymorphism: C313T) and DRD4 (polymorphism: 48-bp VNTR) was performed in 387 healthy men. The Aging Males' Symptoms (AMS) scale was used to evaluate specific ailments of aging men. We analyzed answers to questions from the AMS scale. Five points of the questionnaire addressed sexual symptoms of the aging male: feeling of passing one's peak, decrease in beard growth, decrease in ability/frequency to perform sexually, decrease in the number of morning erections, and decrease in sexual desire/libido (lacking pleasure in sex, lacking desire for sexual intercourse). Relations between reported symptoms and variants of the polymorphic sites of the studied genes were assessed. After adjusting for confounding factors (education, arterial hypertension, physical activity, weight, waist circumference) an association between the sexual dimension of AMS and genetic variants of 5-HTR1B G861C (p = 0.04) was observed. Variability of neurotransmitter receptor genes may be associated with sexual symptoms of aging in men. Copyright © 2013 S. Karger AG, Basel.

  10. CDKL5 variants

    Kalscheuer, Vera M.; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A.; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E.S.; Cobb, Stuart R.

    2017-01-01

    Objective: To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. Methods: We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. Results: The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. Conclusions: These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain. PMID:29264392

  11. A targeted genotyping approach enhances identification of variants in taste receptor and appetite/reward genes of potential functional importance for obesity-related porcine traits

    Cirera, S.; Clop, A.; Jacobsen, M. J.

    2018-01-01

    Taste receptors (TASRs) and appetite and reward (AR) mechanisms influence eating behaviour, which in turn affects food intake and risk of obesity. In a previous study, we used next generation sequencing to identify potentially functional mutations in TASR and AR genes and found indications...... for genetic associations between identified variants and growth and fat deposition in a subgroup of animals (n = 38) from the UNIK resource pig population. This population was created for studying obesity and obesity-related diseases. In the present study we validated results from our previous study...... by investigating genetic associations between 24 selected single nucleotide variants in TASR and AR gene variants and 35 phenotypes describing obesity and metabolism in the entire UNIK population (n = 564). Fifteen variants showed significant association with specific obesity-related phenotypes after Bonferroni...

  12. Uncovering the Rare Variants of DLC1 Isoform 1 and Their Functional Effects in a Chinese Sporadic Congenital Heart Disease Cohort

    Wang, Zhen; Tan, Huilian; Kong, Xianghua; Shu, Yang; Zhang, Yuchao; Huang, Yun; Zhu, Yufei; Xu, Heng; Wang, Zhiqiang; Wang, Ping; Ning, Guang; Kong, Xiangyin; Hu, Guohong; Hu, Landian

    2014-01-01

    Congenital heart disease (CHD) is the most common birth defect affecting the structure and function of fetal hearts. Despite decades of extensive studies, the genetic mechanism of sporadic CHD remains obscure. Deleted in liver cancer 1 (DLC1) gene, encoding a GTPase-activating protein, is highly expressed in heart and essential for heart development according to the knowledge of Dlc1-deficient mice. To determine whether DLC1 is a susceptibility gene for sporadic CHD, we sequenced the coding region of DLC1 isoform 1 in 151 sporadic CHD patients and identified 13 non-synonymous rare variants (including 6 private variants) in the case cohort. Importantly, these rare variants (8/13) were enriched in the N-terminal region of the DLC1 isoform 1 protein. Seven of eight amino acids at the N-terminal variant positions were conserved among the primates. Among the 9 rare variants that were predicted as “damaging”, five were located at the N-terminal region. Ensuing in vitro functional assays showed that three private variants (Met360Lys, Glu418Lys and Asp554Val) impaired the ability of DLC1 to inhibit cell migration or altered the subcellular location of the protein compared to wild-type DLC1 isoform 1. These data suggest that DLC1 might act as a CHD-associated gene in addition to its role as a tumor suppressor in cancer. PMID:24587289

  13. Functional assessment of allelic variants in the SLC26A4 gene involved in Pendred syndrome and nonsyndromic EVA

    Pera, Alejandra; Dossena, Silvia; Rodighiero, Simona; Gandía, Marta; Bottà, Guido; Meyer, Giuliano; Moreno, Felipe; Nofziger, Charity; Hernández-Chico, Concepción; Paulmichl, Markus

    2008-01-01

    Pendred syndrome is an autosomal recessive disorder characterized by sensorineural hearing loss, with malformations of the inner ear, ranging from enlarged vestibular aqueduct (EVA) to Mondini malformation, and deficient iodide organification in the thyroid gland. Nonsyndromic EVA (ns-EVA) is a separate type of sensorineural hearing loss showing normal thyroid function. Both Pendred syndrome and ns-EVA seem to be linked to the malfunction of pendrin (SLC26A4), a membrane transporter able to exchange anions between the cytosol and extracellular fluid. In the past, the pathogenicity of SLC26A4 missense mutations were assumed if the mutations fulfilled two criteria: low incidence of the mutation in the control population and substitution of evolutionary conserved amino acids. Here we show that these criteria are insufficient to make meaningful predictions about the effect of these SLC26A4 variants on the pendrin-induced ion transport. Furthermore, we functionally characterized 10 missense mutations within the SLC26A4 ORF, and consistently found that on the protein level, an addition or omission of a proline or a charged amino acid in the SLC26A4 sequence is detrimental to its function. These types of changes may be adequate for predicting SLC26A4 functionality in the absence of direct functional tests. PMID:19017801

  14. The NOS1 variant rs6490121 is associated with variation in prefrontal function and grey matter density in healthy individuals.

    Rose, Emma J

    2012-03-01

    A common polymorphism within the nitric oxide sythanse-1 (NOS1) gene (rs6490121), initially identified as risk variant for schizophrenia, has been associated with variation in working memory and IQ. Here we investigated how this variation might be mediated at the level of brain structure and function. In healthy individuals (N=157), voxel based morphometry was used to compare grey matter (GM) volume between homozygous and heterozygous carriers of the \\'G\\' allele (i.e. the allele associated with impaired cognition and schizophrenia risk) and homozygous carriers of the non-risk \\'A\\' allele. Functional brain imaging data were also acquired from 48 participants during performance of a spatial working memory (SWM) task, and analysed to determine any effect of NOS1 risk status. An a priori region-of-interest analysis identified a significant reduction in ventromedial prefrontal GM volume in \\'G\\' allele carriers. Risk carriers also exhibited altered patterns of activation in the prefrontal cortex, caudate, and superior parietal lobe, which were characteristic of abnormal increases in activation in frontoparietal working memory networks and a failure to disengage regions of the default mode network. These functional changes suggest a NOS1-mediated processing inefficiency, which may contribute to cognitive dysfunction in schizophrenia. While the mechanisms by which NOS1 may influence brain structure and\\/or function have not yet been well delineated, these data provide further evidence for a role of NOS1 in risk for schizophrenia via an impact upon cognitive function.

  15. Functional analysis of variant lysosomal acid glycosidases of Anderson-Fabry and Pompe disease in a human embryonic kidney epithelial cell line (HEK 293 T).

    Ebrahim, Hatim Y; Baker, Robert J; Mehta, Atul B; Hughes, Derralynn A

    2012-03-01

    The functional significance of missense mutations in genes encoding acid glycosidases of lysosomal storage disorders (LSDs) is not always clear. Here we describe a method of investigating functional properties of variant enzymes in vitro using a human embryonic kidney epithelial cell line. Site-directed mutagenesis was performed on the parental plasmids containing cDNA encoding for alpha-galactosidase A (α-Gal A) and acid maltase (α-Glu) to prepare plasmids encoding relevant point mutations. Mutant plasmids were transfected into HEK 293 T cells, and transient over-expression of variant enzymes was measured after 3 days. We have illustrated the method by examining enzymatic activities of four unknown α-Gal A and one α-Glu variants identified in our patients with Anderson-Fabry disease and Pompe diseases respectively. Comparison with control variants known to be either pathogenic or non-pathogenic together with over-expression of wild-type enzyme allowed determination of the pathogenicity of the mutation. One leader sequence novel variant of α-Gal A (p.A15T) was shown not to significantly reduce enzyme activity, whereas three other novel α-Gal A variants (p.D93Y, p.L372P and p.T410I) were shown to be pathogenic as they resulted in significant reduction of enzyme activity. A novel α-Glu variant (p.L72R) was shown to be pathogenic as this significantly reduced enzyme activity. Certain acid glycosidase variants that have been described in association with late-onset LSDs and which are known to have variable residual plasma and leukocyte enzyme activity in patients appear to show intermediate to low enzyme activity (p.N215S and p.Q279E α-Gal A respectively) in the over-expression system.

  16. A functional genetic variant in fragile-site gene FATS modulates the risk of breast cancer in triparous women

    Song, Fangfang; Zhang, Jun; Qiu, Li; Zhao, Yawen; Xing, Pan; Lu, Jiachun; Chen, Kexin; Li, Zheng

    2015-01-01

    The fragile-site associated tumor suppressor (FATS, formerly known as C10orf90), a regulator of p53-p21 pathway has been involved in the onset of breast cancer. Recent data support the idea that the crosstalk between FATS and p53 may be of physiological importance for reproduction during evolution. The aim of the current study was to test the hypothesis that FATS genetic polymorphism can influence the risk of breast cancer. We conducted population-based studies in two independent cohorts comprising 1 532 cases and 1 573 controls in Tianjin of North China, and 804 cases and 835 controls in Guangzhou of South China, coupled with functional validation methods, to investigate the role of FATS genetic variant in breast cancer risk. We identified a functional variant rs11245007 (905C > T, 262D/N) in fragile-site gene FATS that modulates p53 activation. FATS-262 N exhibited stronger E3 activity to polyubiquitinate p53 than did FATS-262D, leading to the stronger transcriptional activity of p53 and more pronounced stabilization of p53 protein and its activation in response to DNA damage. Case–control studies found that CT or TT genotype was significantly associated with a protective effect on breast cancer risk in women with parity ≥ 3, which was not affected by family history. Our findings suggest the role of FATS-p53 signaling cascade in suppressing pregnancy-related carcinogenesis and potential application of FATS genotyping in breast cancer prevention. The online version of this article (doi:10.1186/s12885-015-1570-9) contains supplementary material, which is available to authorized users

  17. Evidence that multiple genetic variants of MC4R play a functional role in the regulation of energy expenditure and appetite in Hispanic children1234

    Cole, Shelley A; Voruganti, V Saroja; Cai, Guowen; Haack, Karin; Kent, Jack W; Blangero, John; Comuzzie, Anthony G; McPherson, John D; Gibbs, Richard A

    2010-01-01

    Background: Melanocortin-4-receptor (MC4R) haploinsufficiency is the most common form of monogenic obesity; however, the frequency of MC4R variants and their functional effects in general populations remain uncertain. Objective: The aim was to identify and characterize the effects of MC4R variants in Hispanic children. Design: MC4R was resequenced in 376 parents, and the identified single nucleotide polymorphisms (SNPs) were genotyped in 613 parents and 1016 children from the Viva la Familia cohort. Measured genotype analysis (MGA) tested associations between SNPs and phenotypes. Bayesian quantitative trait nucleotide (BQTN) analysis was used to infer the most likely functional polymorphisms influencing obesity-related traits. Results: Seven rare SNPs in coding and 18 SNPs in flanking regions of MC4R were identified. MGA showed suggestive associations between MC4R variants and body size, adiposity, glucose, insulin, leptin, ghrelin, energy expenditure, physical activity, and food intake. BQTN analysis identified SNP 1704 in a predicted micro-RNA target sequence in the downstream flanking region of MC4R as a strong, probable functional variant influencing total, sedentary, and moderate activities with posterior probabilities of 1.0. SNP 2132 was identified as a variant with a high probability (1.0) of exerting a functional effect on total energy expenditure and sleeping metabolic rate. SNP rs34114122 was selected as having likely functional effects on the appetite hormone ghrelin, with a posterior probability of 0.81. Conclusion: This comprehensive investigation provides strong evidence that MC4R genetic variants are likely to play a functional role in the regulation of weight, not only through energy intake but through energy expenditure. PMID:19889825

  18. Harnessing Omics Big Data in Nine Vertebrate Species by Genome-Wide Prioritization of Sequence Variants with the Highest Predicted Deleterious Effect on Protein Function.

    Rozman, Vita; Kunej, Tanja

    2018-05-10

    Harnessing the genomics big data requires innovation in how we extract and interpret biologically relevant variants. Currently, there is no established catalog of prioritized missense variants associated with deleterious protein function phenotypes. We report in this study, to the best of our knowledge, the first genome-wide prioritization of sequence variants with the most deleterious effect on protein function (potentially deleterious variants [pDelVars]) in nine vertebrate species: human, cattle, horse, sheep, pig, dog, rat, mouse, and zebrafish. The analysis was conducted using the Ensembl/BioMart tool. Genes comprising pDelVars in the highest number of examined species were identified using a Python script. Multiple genomic alignments of the selected genes were built to identify interspecies orthologous potentially deleterious variants, which we defined as the "ortho-pDelVars." Genome-wide prioritization revealed that in humans, 0.12% of the known variants are predicted to be deleterious. In seven out of nine examined vertebrate species, the genes encoding the multiple PDZ domain crumbs cell polarity complex component (MPDZ) and the transforming acidic coiled-coil containing protein 2 (TACC2) comprise pDelVars. Five interspecies ortho-pDelVars were identified in three genes. These findings offer new ways to harness genomics big data by facilitating the identification of functional polymorphisms in humans and animal models and thus provide a future basis for optimization of protocols for whole genome prioritization of pDelVars and screening of orthologous sequence variants. The approach presented here can inform various postgenomic applications such as personalized medicine and multiomics study of health interventions (iatromics).

  19. Estimated carrier frequency of creatine transporter deficiency in females in the general population using functional characterization of novel missense variants in the SLC6A8 gene.

    DesRoches, Caro-Lyne; Patel, Jaina; Wang, Peixiang; Minassian, Berge; Salomons, Gajja S; Marshall, Christian R; Mercimek-Mahmutoglu, Saadet

    2015-07-10

    Creatine transporter deficiency (CRTR-D) is an X-linked inherited disorder of creatine transport. All males and about 50% of females have intellectual disability or cognitive dysfunction. Creatine deficiency on brain proton magnetic resonance spectroscopy and elevated urinary creatine to creatinine ratio are important biomarkers. Mutations in the SLC6A8 gene occur de novo in 30% of males. Despite reports of high prevalence of CRTR-D in males with intellectual disability, there are no true prevalence studies in the general population. To determine carrier frequency of CRTR-D in the general population we studied the variants in the SLC6A8 gene reported in the Exome Variant Server database and performed functional characterization of missense variants. We also analyzed synonymous and intronic variants for their predicted pathogenicity using in silico analysis tools. Nine missense variants were functionally analyzed using transient transfection by site-directed mutagenesis with In-Fusion HD Cloning in HeLa cells. Creatine uptake was measured by liquid chromatography tandem mass spectrometry for creatine measurement. The c.1654G>T (p.Val552Leu) variant showed low residual creatine uptake activity of 35% of wild type transfected HeLa cells and was classified as pathogenic. Three variants (c.808G>A; p.Val270Met, c.942C>G; p.Phe314Leu and c.952G>A; p.Ala318Thr) were predicted to be pathogenic based on in silico analysis, but proved to be non-pathogenic by our functional analysis. The estimated carrier frequency of CRTR-D was 0.024% in females in the general population. We recommend functional studies for all novel missense variants by transient transfection followed by creatine uptake measurement by liquid chromatography tandem mass spectrometry as fast and cost effective method for the functional analysis of missense variants in the SLC6A8 gene. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  20. Functional relevance for associations between genetic variants and systemic lupus erythematosus.

    Fei-Yan Deng

    Full Text Available Systemic lupus erythematosus (SLE is a serious prototype autoimmune disease characterized by chronic inflammation, auto-antibody production and multi-organ damage. Recent association studies have identified a long list of loci that were associated with SLE with relatively high statistical power. However, most of them only established the statistical associations of genetic markers and SLE at the DNA level without supporting evidence of functional relevance. Here, using publically available datasets, we performed integrative analyses (gene relationship across implicated loci analysis, differential gene expression analysis and functional annotation clustering analysis and combined with expression quantitative trait loci (eQTLs results to dissect functional mechanisms underlying the associations for SLE. We found that 14 SNPs, which were significantly associated with SLE in previous studies, have cis-regulation effects on four eQTL genes (HLA-DQA1, HLA-DQB1, HLA-DQB2, and IRF5 that were also differentially expressed in SLE-related cell groups. The functional evidence, taken together, suggested the functional mechanisms underlying the associations of 14 SNPs and SLE. The study may serve as an example of mining publically available datasets and results in validation of significant disease-association results. Utilization of public data resources for integrative analyses may provide novel insights into the molecular genetic mechanisms underlying human diseases.

  1. SLC6A3 coding variant Ala559Val found in two autism probands alters dopamine transporter function and trafficking.

    Bowton, E; Saunders, C; Reddy, I A; Campbell, N G; Hamilton, P J; Henry, L K; Coon, H; Sakrikar, D; Veenstra-VanderWeele, J M; Blakely, R D; Sutcliffe, J; Matthies, H J G; Erreger, K; Galli, A

    2014-10-14

    Emerging evidence associates dysfunction in the dopamine (DA) transporter (DAT) with the pathophysiology of autism spectrum disorder (ASD). The human DAT (hDAT; SLC6A3) rare variant with an Ala to Val substitution at amino acid 559 (hDAT A559V) was previously reported in individuals with bipolar disorder or attention-deficit hyperactivity disorder (ADHD). We have demonstrated that this variant is hyper-phosphorylated at the amino (N)-terminal serine (Ser) residues and promotes an anomalous DA efflux phenotype. Here, we report the novel identification of hDAT A559V in two unrelated ASD subjects and provide the first mechanistic description of its impaired trafficking phenotype. DAT surface expression is dynamically regulated by DAT substrates including the psychostimulant amphetamine (AMPH), which causes hDAT trafficking away from the plasma membrane. The integrity of DAT trafficking directly impacts DA transport capacity and therefore dopaminergic neurotransmission. Here, we show that hDAT A559V is resistant to AMPH-induced cell surface redistribution. This unique trafficking phenotype is conferred by altered protein kinase C β (PKCβ) activity. Cells expressing hDAT A559V exhibit constitutively elevated PKCβ activity, inhibition of which restores the AMPH-induced hDAT A559V membrane redistribution. Mechanistically, we link the inability of hDAT A559V to traffic in response to AMPH to the phosphorylation of the five most distal DAT N-terminal Ser. Mutation of these N-terminal Ser to Ala restores AMPH-induced trafficking. Furthermore, hDAT A559V has a diminished ability to transport AMPH, and therefore lacks AMPH-induced DA efflux. Pharmacological inhibition of PKCβ or Ser to Ala substitution in the hDAT A559V background restores AMPH-induced DA efflux while promoting intracellular AMPH accumulation. Although hDAT A559V is a rare variant, it has been found in multiple probands with neuropsychiatric disorders associated with imbalances in DA neurotransmission

  2. Xenobiotic Metabolizing Gene Variants and Renal Cell Cancer: A Multicenter Study

    Heck, Julia E. [International Agency for Research on Cancer, Lyon (France); Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, CA (United States); Moore, Lee E. [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Lee, Yuan-Chin A. [International Agency for Research on Cancer, Lyon (France); Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, CA (United States); McKay, James D. [International Agency for Research on Cancer, Lyon (France); Hung, Rayjean J. [Samuel Lunenfeld Research Institute of Mount Sinai Hospital, Toronto, ON (Canada); Karami, Sara [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Gaborieau, Valérie [International Agency for Research on Cancer, Lyon (France); Szeszenia-Dabrowska, Neonila [Department of Epidemiology, Institute of Occupational Medicine, Lodz (Poland); Zaridze, David G. [Cancer Research Centre, Institute of Carcinogenesis, Moscow (Russian Federation); Mukeriya, Anush [Cancer Research Centre, Department of Epidemiology, Moscow (Russian Federation); Mates, Dana [Institute of Public Health, Bucharest (Romania); Foretova, Lenka [Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno (Czech Republic); Janout, Vladimir; Kollárová, Helena [Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc (Czech Republic); Bencko, Vladimir [First Faculty of Medicine, Institute of Hygiene and Epidemiology, Charles University in Prague, Prague, Czech Republic (Czech Republic); Rothman, Nathaniel [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Brennan, Paul [International Agency for Research on Cancer, Lyon (France); Chow, Wong-Ho [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Boffetta, Paolo, E-mail: paolo.boffetta@mssm.edu [International Prevention Research Institute, Lyon (France); Tisch Cancer Institute, Mt. Sinai School of Medicine, New York, NY (United States)

    2012-02-20

    Background: The countries of Central and Eastern Europe have among the highest worldwide rates of renal cell cancer (RCC). Few studies have examined whether genetic variation in xenobiotic metabolic pathway genes may modify risk for this cancer. Methods: The Central and Eastern Europe Renal Cell Cancer study was a hospital-based case–control study conducted between 1998 and 2003 across seven centers in Central and Eastern Europe. Detailed data were collected from 874 cases and 2053 controls on demographics, work history, and occupational exposure to chemical agents. Genes [cytochrome P-450 family, N-acetyltransferases, NAD(P)H:quinone oxidoreductase I (NQO1), microsomal epoxide hydrolase (mEH), catechol-O-methyltransferase (COMT), uridine diphosphate-glucuronosyltransferase (UGT)] were selected for the present analysis based on their putative role in xenobiotic metabolism. Haplotypes were calculated using fastPhase. Odds ratios and 95% confidence intervals were estimated by unconditional logistic regression adjusted for country of residence, age, sex, smoking, alcohol intake, obesity, and hypertension. Results: We observed an increased risk of RCC with one SNP. After adjustment for multiple comparisons it did not remain significant. Neither NAT1 nor NAT2 slow acetylation was associated with disease. Conclusion: We observed no association between this pathway and renal cell cancer.

  3. Xenobiotic Metabolizing Gene Variants and Renal Cell Cancer: A Multicenter Study

    Heck, Julia E.; Moore, Lee E.; Lee, Yuan-Chin A.; McKay, James D.; Hung, Rayjean J.; Karami, Sara; Gaborieau, Valérie; Szeszenia-Dabrowska, Neonila; Zaridze, David G.; Mukeriya, Anush; Mates, Dana; Foretova, Lenka; Janout, Vladimir; Kollárová, Helena; Bencko, Vladimir; Rothman, Nathaniel; Brennan, Paul; Chow, Wong-Ho; Boffetta, Paolo

    2012-01-01

    Background: The countries of Central and Eastern Europe have among the highest worldwide rates of renal cell cancer (RCC). Few studies have examined whether genetic variation in xenobiotic metabolic pathway genes may modify risk for this cancer. Methods: The Central and Eastern Europe Renal Cell Cancer study was a hospital-based case–control study conducted between 1998 and 2003 across seven centers in Central and Eastern Europe. Detailed data were collected from 874 cases and 2053 controls on demographics, work history, and occupational exposure to chemical agents. Genes [cytochrome P-450 family, N-acetyltransferases, NAD(P)H:quinone oxidoreductase I (NQO1), microsomal epoxide hydrolase (mEH), catechol-O-methyltransferase (COMT), uridine diphosphate-glucuronosyltransferase (UGT)] were selected for the present analysis based on their putative role in xenobiotic metabolism. Haplotypes were calculated using fastPhase. Odds ratios and 95% confidence intervals were estimated by unconditional logistic regression adjusted for country of residence, age, sex, smoking, alcohol intake, obesity, and hypertension. Results: We observed an increased risk of RCC with one SNP. After adjustment for multiple comparisons it did not remain significant. Neither NAT1 nor NAT2 slow acetylation was associated with disease. Conclusion: We observed no association between this pathway and renal cell cancer.

  4. CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants

    Spisák, Sándor; Lawrenson, Kate; Fu, Yanfang

    2015-01-01

    a general pipeline in which candidate functional SNPs are first evaluated by fine mapping, epigenomic profiling, and epigenome editing, and then interrogated for causal function by using genome editing to create isogenic cell lines followed by phenotypic characterization. To validate this approach, we......me2 histone mark at the rs339331 region compared to lines homozygous for the 'C' protective allele. The cell lines also differed in cellular morphology and adhesion, and pathway analysis of differentially expressed genes suggested an influence of androgens. In summary, we have developed and validated...

  5. Sex-specific association between functional neuropeptide S receptor gene (NPSR1) variants and cortisol and central stress responses.

    Streit, Fabian; Akdeniz, Ceren; Haddad, Leila; Kumsta, Robert; Entringer, Sonja; Frank, Josef; Yim, Ilona S; Zänkert, Sandra; Witt, Stephanie H; Kirsch, Peter; Rietschel, Marcella; Wüst, Stefan

    2017-02-01

    The brain neuropeptide S (NPS) system has recently generated substantial interest and may be of major relevance for central stress regulation. The NPS receptor (NPSR1) is highly expressed in the limbic system, exogenous NPS exerts pronounced anxiolytic and fear-attenuating effects in rodents and extensive close crosstalk between the NPS system and the hypothalamic-pituitary-adrenal (HPA) axis has been demonstrated. In humans, associations between NPSR1 variants and anxiety and panic disorder, as well as amygdala responsiveness to fear- relevant faces and prefrontal cortex activity in a fear conditioning paradigm have been reported. Moreover, a NPSR1 sequence variant was found to be associated with cortisol stress responses in males. Here, we performed a haplotype-based analysis covering three functional NPSR1 single nucleotide polymorphisms in the promoter (rs2530547), in exon 3 (rs324981) and exon 6 (rs727162) in 277 healthy subjects who were exposed to the Trier Social Stress Test (TSST). A significant sex-specific association with salivary cortisol responses to acute psychosocial stress was detected for the common TTC haplotype 2 (frequency of about 20%). In an additional study using an imaging genetics approach, 65 healthy subjects were exposed to a stress paradigm for scanner environments (“ScanSTRESS”). We found a significant and, again, sex-specific interaction between rs324981 (whose minor T-allele is harbored by haplotype 2) and the neural stress response in a cluster close to the parahippocampal gyrus (whole brain corrected). Moreover, as in the TSST sample, NPSR1 variation was associated with salivary cortisol responses (on a trend level) in a sex-specific way. In summary, our preliminary findings in two independent cohorts exposed to different stress paradigms suggest that the NPS system significantly influences acute stress responses and that sequence variation in NPSR1 may contribute to sex differences in stress regulation. Copyright © 2016

  6. In Silico survey of functional coding variants in human AEG-1 gene ...

    Background and aims: Non-synonymous (ns)SNPs represent typical genetic variations that may potentially affect the structure or function of expressed proteins and therefore could have an impact on complex disorders. A computational-based (In Silico) analysis has been done to evaluate the phenotypic effect of nsSNPs in ...

  7. The Gain-of-Function Integrin β3 Pro33 Variant Alters the Serotonin System in the Mouse Brain.

    Dohn, Michael R; Kooker, Christopher G; Bastarache, Lisa; Jessen, Tammy; Rinaldi, Capria; Varney, Seth; Mazalouskas, Matthew D; Pan, Hope; Oliver, Kendra H; Velez Edwards, Digna R; Sutcliffe, James S; Denny, Joshua C; Carneiro, Ana M D

    2017-11-15

    Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin β3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, Pl A2 ) produces hyperactive αvβ3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvβ3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvβ3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvβ3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders. SIGNIFICANCE STATEMENT The integrin β3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin β3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine

  8. Analysis of PGC-1α variants Gly482Ser and Thr612Met concerning their PPARγ2-coactivation function

    Nitz, Inke; Ewert, Agnes; Klapper, Maja; Doering, Frank

    2007-01-01

    Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a cofactor involved in adaptive thermogenesis, fatty acid oxidation, and gluconeogenesis. Dysfunctions of this protein are likely to contribute to the development of obesity and the metabolic syndrome. This is in part but not definitely confirmed by results of population studies. The aim of this study was to investigate if common genetic variants rs8192678 (Gly482Ser) and rs3736265 (Thr612Met) in the PGC-1α gene lead to a functional consequence in cofactor activity using peroxisome proliferator-activated receptor-γ 2 (PPARγ2) as interacting transcription factor. Reporter gene assays in HepG2 cells with wildtype and mutant proteins of both PGC1α and PPARγ2 (Pro12Ala, rs1801282) using the acyl-CoA-binding protein (ACBP) promoter showed no difference in coactivator activity. This is First study implicating that the Gly482Ser and Thr612Met polymorphisms in PGC-1α and Pro12Ala polymorphism in PPARγ2 do not affect the functional integrity of these proteins

  9. Conformational and functional variants of CD44-targeted protein nanoparticles bio-produced in bacteria

    Pesarrodona, Mireia; Conchillo-Solé, Oscar; Unzueta, Ugutz; Xu, Zhikun; Ferrer-Miralles, Neus; Daura, Xavier; Vázquez, Esther; Villaverde, Antonio; Fernández, Yolanda; Foradada, Laia; Schwartz, Simó Jr; Abasolo, Ibane; Sánchez-Chardi, Alejandro; Roldán, Mónica; Villegas, Sandra; Rinas, Ursula

    2016-01-01

    Biofabrication is attracting interest as a means to produce nanostructured functional materials because of its operational versatility and full scalability. Materials based on proteins are especially appealing, as the structure and functionality of proteins can be adapted by genetic engineering. Furthermore, strategies and tools for protein production have been developed and refined steadily for more than 30 years. However, protein conformation and therefore activity might be sensitive to production conditions. Here, we have explored whether the downstream strategy influences the structure and biological activities, in vitro and in vivo, of a self-assembling, CD44-targeted protein-only nanoparticle produced in Escherichia coli. This has been performed through the comparative analysis of particles built from soluble protein species or protein versions obtained by in vitro protein extraction from inclusion bodies, through mild, non-denaturing procedures. These methods have been developed recently as a convenient alternative to the use of toxic chaotropic agents for protein resolubilization from protein aggregates. The results indicate that the resulting material shows substantial differences in its physicochemical properties and its biological performance at the systems level, and that its building blocks are sensitive to the particular protein source. (paper)

  10. The Secret Agent Society Social Skills Program for Children with High-Functioning Autism Spectrum Disorders: A Comparison of Two School Variants

    Beaumont, Renae; Rotolone, Cassie; Sofronoff, Kate

    2015-01-01

    School is often considered an ideal setting for child social skills training due to the opportunities it provides for skills teaching, modeling, and practice. The current study evaluated the effectiveness of two variants of the Secret Agent Society social skills program for children with high-functioning autism spectrum disorders (HFASD) in a…

  11. Functional characterization of a constitutively active kinase variant of Arabidopsis phototropin 1.

    Petersen, Jan; Inoue, Shin-Ichiro; Kelly, Sharon M; Sullivan, Stuart; Kinoshita, Toshinori; Christie, John M

    2017-08-18

    Phototropins (phots) are plasma membrane-associated serine/threonine kinases that coordinate a range of processes linked to optimizing photosynthetic efficiency in plants. These photoreceptors contain two light-, oxygen-, or voltage-sensing (LOV) domains within their N terminus, with each binding one molecule of flavin mononucleotide as a UV/blue light-absorbing chromophore. Although phots contain two LOV domains, light-induced activation of the C-terminal kinase domain and subsequent receptor autophosphorylation is controlled primarily by the A'α-LOV2-Jα photosensory module. Mutations that disrupt interactions between the LOV2 core and its flanking helical segments can uncouple this mode of light regulation. However, the impact of these mutations on phot function in Arabidopsis has not been explored. Here we report that histidine substitution of Arg-472 located within the A'α-helix of Arabidopsis phot1 constitutively activates phot1 kinase activity in vitro without affecting LOV2 photochemistry. Expression analysis of phot1 R472H in the phot-deficient mutant confirmed that it is autophosphorylated in darkness in vivo but unable to initiate phot1 signaling in the absence of light. Instead, we found that phot1 R472H is poorly functional under low-light conditions but can restore phototropism, chloroplast accumulation, stomatal opening, and leaf positioning and expansion at higher light intensities. Our findings suggest that Arabidopsis can adapt to the elevated phosphorylation status of the phot1 R472H mutant in part by reducing its stability, whereas the activity of the mutant under high-light conditions can be attributed to additional increases in LOV2-mediated photoreceptor autophosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Cellulase variants

    Blazej, Robert; Toriello, Nicholas; Emrich, Charles; Cohen, Richard N.; Koppel, Nitzan

    2015-07-14

    This invention provides novel variant cellulolytic enzymes having improved activity and/or stability. In certain embodiments the variant cellulotyic enzymes comprise a glycoside hydrolase with or comprising a substitution at one or more positions corresponding to one or more of residues F64, A226, and/or E246 in Thermobifida fusca Cel9A enzyme. In certain embodiments the glycoside hydrolase is a variant of a family 9 glycoside hydrolase. In certain embodiments the glycoside hydrolase is a variant of a theme B family 9 glycoside hydrolase.

  13. Neonatal nonepileptic myoclonus is a prominent clinical feature of KCNQ2 gain-of-function variants R201C and R201H

    Mulkey, Sarah B; Ben-Zeev, Bruria; Nicolai, Joost

    2017-01-01

    OBJECTIVE: To analyze whether KCNQ2 R201C and R201H variants, which show atypical gain-of-function electrophysiologic properties in vitro, have a distinct clinical presentation and outcome. METHODS: Ten children with heterozygous, de novo KCNQ2 R201C or R201H variants were identified worldwide...... patients had encephalopathy from birth and presented with prominent startle-like myoclonus, which could be triggered by sound or touch. In seven patients, electroencephalography (EEG) was performed in the neonatal period and showed a burst-suppression pattern. However, myoclonus did not have an EEG...... respiratory failure and/or chronic hypoventilation), hypomyelination, reduced brain volume, and profound developmental delay. One patient had a later onset, and sequencing indicated that a low abundance (~20%) R201C variant had arisen by postzygotic mosaicism. SIGNIFICANCE: Heterozygous KCNQ2 R201C and R201H...

  14. A functional NPSR1 gene variant and environment shape personality and impulsive action: a longitudinal study.

    Laas, Kariina; Reif, Andreas; Kiive, Evelyn; Domschke, Katharina; Lesch, Klaus-Peter; Veidebaum, Toomas; Harro, Jaanus

    2014-03-01

    Neuropeptide S and its receptor NPSR1 are involved in the regulation of arousal, attention and anxiety. We examined whether the NPSR1 gene functional polymorphism Asn¹⁰⁷Ile (rs324981, A>T) influences personality, impulsivity, and attention-deficit/hyperactivity disorder (ADHD)-related symptoms in a population-representative sample, and whether any eventual associations depend on age, sex, family relations and stressful life events (SLE). We used self-reports or teachers' ratings for both the younger (n=593) and older (n=583) cohort of the longitudinal Estonian Children Personality, Behaviour and Health Study. Males with the TT genotype displayed more ADHD-related symptoms. Adaptive impulsivity and Extraversion increased the most from age 18 to 25. While highest increases were observed in AA men, TT women exhibited the largest decreases. For participants with the AA genotype, Warmth in family was inversely associated with Neuroticism, and positively associated with Extraversion and Adaptive impulsivity. High exposure to SLE increased impulsivity and ADHD scores in TT genotype subjects. We conclude that the NPSR1 A/T polymorphism is associated with impulsivity, ADHD symptoms and personality, mirroring the activity- and anxiety-mediating role of NPSR1. Heterozygous individuals were the least sensitive to environmental factors, whereas subjects with the AA genotype and TT genotype reacted to different types of environmental adversities.

  15. Functional Characterization of MC1R-TUBB3 Intergenic Splice Variants of the Human Melanocortin 1 Receptor.

    Cecilia Herraiz

    Full Text Available The melanocortin 1 receptor gene (MC1R expressed in melanocytes is a major determinant of skin pigmentation. It encodes a Gs protein-coupled receptor activated by α-melanocyte stimulating hormone (αMSH. Human MC1R has an inefficient poly(A site allowing intergenic splicing with its downstream neighbour Tubulin-β-III (TUBB3. Intergenic splicing produces two MC1R isoforms, designated Iso1 and Iso2, bearing the complete seven transmembrane helices from MC1R fused to TUBB3-derived C-terminal extensions, in-frame for Iso1 and out-of-frame for Iso2. It has been reported that exposure to ultraviolet radiation (UVR might promote an isoform switch from canonical MC1R (MC1R-001 to the MC1R-TUBB3 chimeras, which might lead to novel phenotypes required for tanning. We expressed the Flag epitope-tagged intergenic isoforms in heterologous HEK293T cells and human melanoma cells, for functional characterization. Iso1 was expressed with the expected size. Iso2 yielded a doublet of Mr significantly lower than predicted, and impaired intracellular stability. Although Iso1- and Iso2 bound radiolabelled agonist with the same affinity as MC1R-001, their plasma membrane expression was strongly reduced. Decreased surface expression mostly resulted from aberrant forward trafficking, rather than high rates of endocytosis. Functional coupling of both isoforms to cAMP was lower than wild-type, but ERK activation upon binding of αMSH was unimpaired, suggesting imbalanced signaling from the splice variants. Heterodimerization of differentially labelled MC1R-001 with the splicing isoforms analyzed by co-immunoprecipitation was efficient and caused decreased surface expression of binding sites. Thus, UVR-induced MC1R isoforms might contribute to fine-tune the tanning response by modulating MC1R-001 availability and functional parameters.

  16. A Modified Reading the Mind in the Eyes Test Predicts Behavioral Variant Frontotemporal Dementia Better Than Executive Function Tests

    Matthias L. Schroeter

    2018-01-01

    Full Text Available Behavioral variant frontotemporal dementia (bvFTD is characterized by deep alterations in behavior and personality. Although revised diagnostic criteria agree for executive dysfunction as most characteristic, impairments in social cognition are also suggested. The study aimed at identifying those neuropsychological and behavioral parameters best discriminating between bvFTD and healthy controls. Eighty six patients were diagnosed with possible or probable bvFTD according to Rascovsky et al. (2011 and compared with 43 healthy age-matched controls. Neuropsychological performance was assessed with a modified Reading the Mind in the Eyes Test (RMET, Stroop task, Trail Making Test (TMT, Hamasch-Five-Point Test (H5PT, and semantic and phonemic verbal fluency tasks. Behavior was assessed with the Apathy Evaluation Scale, Frontal Systems Behavioral Scale, and Bayer Activities of Daily Living Scale. Each test’s discriminatory power was investigated by Receiver Operating Characteristic curves calculating the area under the curve (AUC. bvFTD patients performed significantly worse than healthy controls in all neuropsychological tests. Discriminatory power (AUC was highest in behavioral questionnaires, high in verbal fluency tasks and the RMET, and lower in executive function tests such as the Stroop task, TMT and H5PT. As fluency tasks depend on several cognitive functions, not only executive functions, results suggest that the RMET discriminated better between bvFTD and control subjects than other executive tests. Social cognition should be incorporated into diagnostic criteria for bvFTD in the future, such as in the International Classification of Diseases (ICD-11, as already suggested in the Diagnostic and Statistical Manual for Mental Disorders (DSM-5.

  17. Functional Study of the P32T ITPA Variant Associated with Drug Sensitivity in Humans

    Stepchenkova, Elena I.; Tarakhovskaya, Elena R.; Spitler, Kathryn; Frahm, Christin; Menezes, Miriam R.; Simone, Peter D.; Kolar, Carol; Marky, Luis A.; Borgstahl, Gloria E. O.; Pavlov, Youri I.

    2009-01-01

    Sanitization of the cellular nucleotide pools from mutagenic base analogs is necessary for the accuracy of transcription and replication of genetic material and plays a substantial role in cancer prevention. The undesirable mutagenic, recombinogenic and toxic incorporation of purine base analogs (i.e. ITP, dITP, XTP, dXTP or 6-hydroxyaminopurine (HAP) deoxynucleoside triphosphate) into nucleic acids is prevented by inosine triphosphate pyrophosphatase (ITPA). The ITPA gene is a highly conserved, moderately expressed gene. Defects in ITPA orthologs in model organisms cause severe sensitivity to HAP and chromosome fragmentation. A human polymorphic allele 94C->A encodes for the enzyme with a P32T amino acid change and leads to accumulation of non-hydrolyzed ITP. ITPase activity is not detected in erythrocytes of these patients. The P32T polymorphism has also been associated with adverse sensitivity to purine base analog drugs. We have found that the ITPA-P32T mutant is a dimer in solution, as is wild-type ITPA, and has normal ITPA activity in vitro, but the melting point of ITPA-P32T is 5 degrees C lower than that of wild-type. ITPA-P32T is also fully functional in vivo in model organisms as determined by a HAP mutagenesis assay and its complementation of a bacterial ITPA defect. The amount of ITPA protein detected by western blot is severely diminished in a human fibroblast cell line with the 94C->A change. We propose that the P32T mutation exerts its effect in certain human tissues by cumulative effects of destabilization of transcripts, protein stability and availability. PMID:19631656

  18. Analysis of ancestral and functionally relevant CD5 variants in systemic lupus erythematosus patients.

    Maria Carmen Cenit

    Full Text Available CD5 plays a crucial role in autoimmunity and is a well-established genetic risk factor of developing RA. Recently, evidence of positive selection has been provided for the CD5 Pro224-Val471 haplotype in East Asian populations. The aim of the present work was to further analyze the functional relevance of non-synonymous CD5 polymorphisms conforming the ancestral and the newly derived haplotypes (Pro224-Ala471 and Pro224-Val471, respectively as well as to investigate the potential role of CD5 on the development of SLE and/or SLE nephritis.The CD5 SNPs rs2241002 (C/T; Pro224Leu and rs2229177 (C/T; Ala471Val were genotyped using TaqMan allelic discrimination assays in a total of 1,324 controls and 681 SLE patients of Spanish origin. In vitro analysis of CD3-mediated T cell proliferative and cytokine response profiles of healthy volunteers homozygous for the above mentioned CD5 haplotypes were also analyzed.T-cell proliferation and cytokine release were significantly increased showing a bias towards to a Th2 profile after CD3 cross-linking of peripheral mononuclear cells from healthy individuals homozygous for the ancestral Pro224-Ala471 (CC haplotype, compared to the more recently derived Pro224-Val471 (CT. The same allelic combination was statistically associated with Lupus nephritis.The ancestral Ala471 CD5 allele confers lymphocyte hyper-responsiveness to TCR/CD3 cross-linking and is associated with nephritis in SLE patients.

  19. SUN1 splice variants, SUN1_888, SUN1_785, and predominant SUN1_916, variably function in directional cell migration

    Nishioka, Yu; Imaizumi, Hiromasa; Imada, Junko; Katahira, Jun; Matsuura, Nariaki; Hieda, Miki

    2016-01-01

    The LINC complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, such as nuclear migration, mechanotransduction and chromatin tethering in the meiotic phase. However, it remains unknown how these functions are regulated in different cell contexts. An inner nuclear membrane component of the LINC complex, SUN1, is ubiquitously expressed. The human SUN1 gene produces over 10 variants by alternative splicing. Although functions of SUN1 are relat...

  20. The BRCA1 variant p.Ser36Tyr abrogates BRCA1 protein function and potentially confers a moderate risk of breast cancer.

    Christou, Charita M; Hadjisavvas, Andreas; Kyratzi, Maria; Flouri, Christina; Neophytou, Ioanna; Anastasiadou, Violetta; Loizidou, Maria A; Kyriacou, Kyriacos

    2014-01-01

    The identification of variants of unknown clinical significance (VUS) in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02) in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk.

  1. The BRCA1 variant p.Ser36Tyr abrogates BRCA1 protein function and potentially confers a moderate risk of breast cancer.

    Charita M Christou

    Full Text Available The identification of variants of unknown clinical significance (VUS in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02 in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk.

  2. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    Neve, Bernadette; Fernandez-Zapico, Martin E; Ashkenazi-Katalan, Vered

    2005-01-01

    in beta cells. Genetic analysis of the KLF11 gene revealed two rare variants (Ala347Ser and Thr220Met) that segregate with diabetes in families with early-onset type 2 diabetes, and significantly impair its transcriptional activity. In addition, analysis of 1,696 type 2 diabetes mellitus and 1......,776 normoglycemic subjects show a frequent polymorphic Gln62Arg variant that significantly associates with type 2 diabetes mellitus in North European populations (OR = 1.29, P = 0.00033). Moreover, this variant alters the corepressor mSin3A-binding activity of KLF11, impairs the activation of the insulin promoter...... and shows lower levels of insulin expression in pancreatic beta cells. In addition, subjects carrying the Gln62Arg allele show decreased plasma insulin after an oral glucose challenge. Interestingly, all three nonsynonymous KLF11 variants show increased repression of the catalase 1 promoter, suggesting...

  3. Impact of BDNF Val66Met and 5-HTTLPR polymorphism variants on neural substrates related to sadness and executive function.

    Wang, L; Ashley-Koch, A; Steffens, D C; Krishnan, K R R; Taylor, W D

    2012-04-01

    The brain-derived neurotrophic factor (BDNF) Val(66) Met allelic variation is linked to both the occurrence of mood disorders and antidepressant response. These findings are not universally observed, and the mechanism by which this variation results in increased risk for mood disorders is unclear. One possible explanation is an epistatic relationship with other neurotransmitter genes associated with depression risk, such as the serotonin-transporter-linked promotor region (5-HTTLPR). Further, it is unclear how the coexistence of the BDNF Met and 5-HTTLPR S variants affects the function of the affective and cognitive control systems. To address this question, we conducted a functional magnetic resonance imaging (fMRI) study in 38 older adults (20 healthy and 18 remitted from major depressive disorder). Subjects performed an emotional oddball task during the fMRI scan and provided blood samples for genotyping. Our analyses examined the relationship between genotypes and brain activation to sad distractors and attentional targets. We found that 5-HTTLPR S allele carriers exhibited stronger activation in the amygdala in response to sad distractors, whereas BDNF Met carriers exhibited increased activation to sad stimuli but decreased activation to attentional targets in the dorsolateral prefrontal and dorsomedial prefrontal cortices. In addition, subjects with both the S allele and Met allele genes exhibited increased activation to sad stimuli in the subgenual cingulate and posterior cingulate. Our results indicate that the Met allele alone or in combination with 5-HTTLPR S allele may increase reactivity to sad stimuli, which might represent a neural mechanism underlying increased depression vulnerability. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  4. Association of functional MMP-2 gene variant with intracranial aneurysms: case-control genetic association study and meta-analysis.

    Alg, Varinder S; Ke, Xiayi; Grieve, Joan; Bonner, Stephen; Walsh, Daniel C; Bulters, Diederik; Kitchen, Neil; Houlden, Henry; Werring, David J

    2018-01-15

    Abnormalities in Matrix Metalloproteinase (MMP) genes, which are important in extracellular matrix (ECM) maintenance and therefore arterial wall integrity are a plausible underlying mechanism of intracranial aneurysm (IA) formation, growth and subsequent rupture. We investigated whether the rs243865 C > T SNP (single nucleotide polymorphism) within the MMP-2 gene (which influences gene transcription) is associated with IA compared to matched controls. We conducted a case-control genetic association study, adjusted for known IA risk factors (smoking and hypertension), in a UK Caucasian population of 1409 patients with intracranial aneurysms (IA), and 1290 matched controls, to determine the association of the rs243865 C > T functional MMP-2 gene SNP with IA (overall, and classified as ruptured and unruptured). We also undertook a meta-analysis of two previous studies examining this SNP. The rs243865 T allele was associated with IA presence in univariate (OR 1.18 [95% CI 1.04-1.33], p = .01) and in multi-variable analyses adjusted for smoking and hypertension status (OR 1.16 [95% CI 1.01-1.35], p = .042). Subgroup analysis demonstrated an association of the rs243865 SNP with ruptured IA (OR 1.18 [95% CI 1.03-1.34] p = .017), but, not unruptured IA (OR 1.17 [95% CI 0.97-1.42], p = .11). Our study demonstrated an association between the functional MMP-2 rs243865 variant and IAs. Our findings suggest a genetic role for altered extracellular matrix integrity in the pathogenesis of IA development and rupture.

  5. Functional PMS2 hybrid alleles containing a pseudogene-specific missense variant trace back to a single ancient intrachromosomal recombination event.

    Ganster, Christina; Wernstedt, Annekatrin; Kehrer-Sawatzki, Hildegard; Messiaen, Ludwine; Schmidt, Konrad; Rahner, Nils; Heinimann, Karl; Fonatsch, Christa; Zschocke, Johannes; Wimmer, Katharina

    2010-05-01

    Sequence exchange between PMS2 and its pseudogene PMS2CL, embedded in an inverted duplication on chromosome 7p22, has been reported to be an ongoing process that leads to functional PMS2 hybrid alleles containing PMS2- and PMS2CL-specific sequence variants at the 5'-and the 3'-end, respectively. The frequency of PMS2 hybrid alleles, their biological significance, and the mechanisms underlying their formation are largely unknown. Here we show that overall hybrid alleles account for one-third of 384 PMS2 alleles analyzed in individuals of different ethnic backgrounds. Depending on the population, 14-60% of hybrid alleles carry PMS2CL-specific sequences in exons 13-15, the remainder only in exon 15. We show that exons 13-15 hybrid alleles, named H1 hybrid alleles, constitute different haplotypes but trace back to a single ancient intrachromosomal recombination event with crossover. Taking advantage of an ancestral sequence variant specific for all H1 alleles we developed a simple gDNA-based polymerase chain reaction (PCR) assay that can be used to identify H1-allele carriers with high sensitivity and specificity (100 and 99%, respectively). Because H1 hybrid alleles harbor missense variant p.N775S of so far unknown functional significance, we assessed the H1-carrier frequency in 164 colorectal cancer patients. So far, we found no indication that the variant plays a major role with regard to cancer susceptibility. (c) 2010 Wiley-Liss, Inc.

  6. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Enríquez-Flores, Sergio; De la Mora-De la Mora, Ignacio; González-Valdez, Abigail; García-Torres, Itzhel; Martínez-Rosas, Víctor; Sierra-Palacios, Edgar; Lazcano-Pérez, Fernando; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency), and the G6PD Santa Maria and A+ (less severe deficiency) (Class I, II and III, respectively) affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS) fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients. PMID:26633385

  7. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein

    Saúl Gómez-Manzo

    2015-12-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD deficiency is the most common enzymopathy in the world. More than 160 mutations causing the disease have been identified, but only 10% of these variants have been studied at biochemical and biophysical levels. In this study we report on the functional and structural characterization of three naturally occurring variants corresponding to different classes of disease severity: Class I G6PD Durham, Class II G6PD Santa Maria, and Class III G6PD A+. The results showed that the G6PD Durham (severe deficiency, and the G6PD Santa Maria and A+ (less severe deficiency (Class I, II and III, respectively affect the catalytic efficiency of these enzymes, are more sensitive to temperature denaturing, and affect the stability of the overall protein when compared to the wild type WT-G6PD. In the variants, the exposure of more and buried hydrophobic pockets was induced and monitored with 8-Anilinonaphthalene-1-sulfonic acid (ANS fluorescence, directly affecting the compaction of structure at different levels and probably reducing the stability of the protein. The degree of functional and structural perturbation by each variant correlates with the clinical severity reported in different patients.

  8. Effect of Common Genetic Variants Associated with Type 2 Diabetes and Glycemic Traits on α- and β-cell Function and Insulin Action in Man

    Jonsson, Anna Elisabet; Ladenvall, Claes; Ahluwalia, Tarun Veer Singh

    2013-01-01

    , in vitro, by measuring glucose stimulated insulin and glucagon secretion from human pancreatic islets. Carriers of risk variants in BCL11A, HHEX, ZBED3, HNF1A, IGF1 and NOTCH2 showed elevated, while those in CRY2, IGF2BP2, TSPAN8 and KCNJ11 decreased fasting and/or 2hr glucagon concentrations in vivo......Although meta-analyses of genome-wide association studies have identified more than 60 single nucleotide polymorphisms (SNPs) associated with type 2 diabetes and/or glycemic traits, there is little information whether these variants also affect α-cell function. The aim of the present study...... was to evaluate the effects of glycemia-associated genetic loci on islet function in vivo and in vitro. We studied 43 SNPs in 4,654 normoglycemic participants from the Finnish population-based PPP-Botnia study. Islet function was assessed, in vivo, by measuring insulin and glucagon concentrations during OGTT, and...

  9. Heterozygosity for the Mood Disorder-Associated Variant Gln460Arg Alters P2X7 Receptor Function and Sleep Quality.

    Metzger, Michael W; Walser, Sandra M; Dedic, Nina; Aprile-Garcia, Fernando; Jakubcakova, Vladimira; Adamczyk, Marek; Webb, Katharine J; Uhr, Manfred; Refojo, Damian; Schmidt, Mathias V; Friess, Elisabeth; Steiger, Axel; Kimura, Mayumi; Chen, Alon; Holsboer, Florian; Arzt, Eduardo; Wurst, Wolfgang; Deussing, Jan M

    2017-11-29

    A single nucleotide polymorphism substitution from glutamine (Gln, Q) to arginine (Arg, R) at codon 460 of the purinergic P2X7 receptor (P2X7R) has repeatedly been associated with mood disorders. The P2X7R-Gln460Arg variant per se is not compromised in its function. However, heterologous expression of P2X7R-Gln460Arg together with wild-type P2X7R has recently been demonstrated to impair receptor function. Here we show that this also applies to humanized mice coexpressing both human P2X7R variants. Primary hippocampal cells derived from heterozygous mice showed an attenuated calcium uptake upon agonist stimulation. While humanized mice were unaffected in their behavioral repertoire under basal housing conditions, mice that harbor both P2X7R variants showed alterations in their sleep quality resembling signs of a prodromal disease stage. Also healthy heterozygous human subjects showed mild changes in sleep parameters. These results indicate that heterozygosity for the wild-type P2X7R and its mood disorder-associated variant P2X7R-Gln460Arg represents a genetic risk factor, which is potentially able to convey susceptibility to mood disorders. SIGNIFICANCE STATEMENT Depression and bipolar disorder are the most common mood disorders. The P2X7 receptor (P2X7R) regulates many cellular functions. Its polymorphic variant Gln460Arg has repeatedly been associated with mood disorders. Genetically engineered mice, with human P2X7R, revealed that heterozygous mice (i.e., they coexpress the disease-associated Gln460Arg variant together with its normal version) have impaired receptor function and showed sleep disturbances. Human participants with the heterozygote genotype also had subtle alterations in their sleep profile. Our findings suggest that altered P2X7R function in heterozygote individuals disturbs sleep and might increase the risk for developing mood disorders. Copyright © 2017 the authors 0270-6474/17/3711688-13$15.00/0.

  10. Influence of cytochrome 2C19 allelic variants on on-treatment platelet reactivity evaluated by five different platelet function tests.

    Gremmel, Thomas; Kopp, Christoph W; Moertl, Deddo; Seidinger, Daniela; Koppensteiner, Renate; Panzer, Simon; Mannhalter, Christine; Steiner, Sabine

    2012-05-01

    The antiplatelet effect of clopidogrel has been linked to cytochrome P450 2C19 (CYP2C19) carrier status. The presence of loss of function and gain of function variants were found to have a gene-dose effect on clopidogrel metabolism. However, genotyping is only one aspect of predicting response to clopidogrel and several platelet function tests are available to measure platelet response. Patients and methods We studied the influence of CYP2C19 allelic variants on on-treatment platelet reactivity as assessed by light transmission aggregometry (LTA), the VerifyNow P2Y12 assay, the VASP assay, multiple electrode aggregometry (MEA), and the Impact-R in 288 patients after stenting for cardiovascular disease. Allelic variants of CYP2C19 were determined with the Infiniti® CYP450 2C19+ assay and categorized into four metabolizer states (ultrarapid, extensive, intermediate, poor). Platelet reactivity increased linearly from ultrarapid to poor metabolizers using the VerifyNow P2Y12 assay (P = 0.04), the VASP assay (P = 0.02) and the Impact-R (P = 0.04). The proportion of patients with high on-treatment residual platelet reactivity (HRPR) identified by LTA, the VerifyNow P2Y12 assay and the VASP assay increased when the metabolizer status decreased, while no such relationship could be identified for results of MEA and Impact-R. The presence of loss of function variants (*2/*2, *2-8*/wt, *2/*17) was an independent predictor of HRPR in LTA and the VASP assay while it did not reach statistical significance in the VerifyNow P2Y12 assay, MEA, and the Impact-R. Depending on the type of platelet function test differences in the association of on-treatment platelet reactivity with CYP2C19 carrier status are observed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. The Development of Cognitive Control in Children with Chromosome 22q11.2 Deletion Syndrome

    Heather M Shapiro

    2014-06-01

    Full Text Available Chromosome 22q11.2 Deletion Syndrome (22q11.2DS is caused by the most common human microdeletion, and it is associated with cognitive impairments across many domains. While impairments in cognitive control have been described in children with 22q11.2DS, the nature and development of these impairments are not clear. Children with 22q11.2DS and typically developing children (TD were tested on four well-validated tasks aimed at measuring specific foundational components of cognitive control: response inhibition, cognitive flexibility, and working memory. Molecular assays were also conducted in order to examine genotype of catechol-O-methyltransferase (COMT, a gene located within the deleted region in 22q11.2DS and hypothesized to play a role in cognitive control. Mixed model regression analyses were used to examine group differences, as well as age-related effects on cognitive control component processes in a cross-sectional analysis. Regression models with COMT genotype were also conducted in order to examine potential effects of the different variants of the gene. Response inhibition, cognitive flexibility, and working memory were impaired in children with 22q11.2DS relative to TD children, even after accounting for global intellectual functioning (as measured by full-scale IQ. When compared with TD individuals, children with 22q11.2DS demonstrated atypical age-related patterns of response inhibition and cognitive flexibility. Both groups demonstrated typical age-related associations with working memory. The results of this cross-sectional analysis suggest a specific aberration in the development of systems mediating response inhibition in a sub-set of children with 22q11.2DS. It will be important to follow up with longitudinal analyses to directly examine these developmental trajectories, and correlate neurocognitive variables with clinical and adaptive outcome measures.

  12. Novel loss-of-function variants in DIAPH1 associated with syndromic microcephaly, blindness, and early onset seizures.

    Al-Maawali, Almundher; Barry, Brenda J; Rajab, Anna; El-Quessny, Malak; Seman, Ann; Coury, Stephanie Newton; Barkovich, A James; Yang, Edward; Walsh, Christopher A; Mochida, Ganeshwaran H; Stoler, Joan M

    2016-02-01

    Exome sequencing identified homozygous loss-of-function variants in DIAPH1 (c.2769delT; p.F923fs and c.3145C>T; p.R1049X) in four affected individuals from two unrelated consanguineous families. The affected individuals in our report were diagnosed with postnatal microcephaly, early-onset epilepsy, severe vision impairment, and pulmonary symptoms including bronchiectasis and recurrent respiratory infections. A heterozygous DIAPH1 mutation was originally reported in one family with autosomal dominant deafness. Recently, however, a homozygous nonsense DIAPH1 mutation (c.2332C4T; p.Q778X) was reported in five siblings in a single family affected by microcephaly, blindness, early onset seizures, developmental delay, and bronchiectasis. The role of DIAPH1 was supported using parametric linkage analysis, RNA and protein studies in their patients' cell lines and further studies in human neural progenitors cells and a diap1 knockout mouse. In this report, the proband was initially brought to medical attention for profound metopic synostosis. Additional concerns arose when his head circumference did not increase after surgical release at 5 months of age and he was diagnosed with microcephaly and epilepsy at 6 months of age. Clinical exome analysis identified a homozygous DIAPH1 mutation. Another homozygous DIAPH1 mutation was identified in the research exome analysis of a second family with three siblings presenting with a similar phenotype. Importantly, no hearing impairment is reported in the homozygous affected individuals or in the heterozygous carrier parents in any of the families demonstrating the autosomal recessive microcephaly phenotype. These additional families provide further evidence of the likely causal relationship between DIAPH1 mutations and a neurodevelopmental disorder. © 2016 Wiley Periodicals, Inc.

  13. ABCC8 R1420H Loss-of-Function Variant in a Southwest American Indian Community: Association With Increased Birth Weight and Doubled Risk of Type 2 Diabetes.

    Baier, Leslie J; Muller, Yunhua Li; Remedi, Maria Sara; Traurig, Michael; Piaggi, Paolo; Wiessner, Gregory; Huang, Ke; Stacy, Alyssa; Kobes, Sayuko; Krakoff, Jonathan; Bennett, Peter H; Nelson, Robert G; Knowler, William C; Hanson, Robert L; Nichols, Colin G; Bogardus, Clifton

    2015-12-01

    Missense variants in KCNJ11 and ABCC8, which encode the KIR6.2 and SUR1 subunits of the β-cell KATP channel, have previously been implicated in type 2 diabetes, neonatal diabetes, and hyperinsulinemic hypoglycemia of infancy (HHI). To determine whether variation in these genes affects risk for type 2 diabetes or increased birth weight as a consequence of fetal hyperinsulinemia in Pima Indians, missense and common noncoding variants were analyzed in individuals living in the Gila River Indian Community. A R1420H variant in SUR1 (ABCC8) was identified in 3.3% of the population (N = 7,710). R1420H carriers had higher mean birth weights and a twofold increased risk for type 2 diabetes with a 7-year earlier onset age despite being leaner than noncarriers. One individual homozygous for R1420H was identified; retrospective review of his medical records was consistent with HHI and a diagnosis of diabetes at age 3.5 years. In vitro studies showed that the R1420H substitution decreases KATP channel activity. Identification of this loss-of-function variant in ABCC8 with a carrier frequency of 3.3% affects clinical care as homozygous inheritance and potential HHI will occur in 1/3,600 births in this American Indian population. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants.

    Tuluc, Petronel; Flucher, Bernhard E

    2011-12-01

    Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel Ca(V)1.1 is the exception. The classical splice variant Ca(V)1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel Ca(V)1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. Ca(V)1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting Ca(V)1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical Ca(V)1.1a channel.

  15. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus

    Zeng, Chenjie; Guo, Xingyi; Long, Jirong

    2016-01-01

    BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300...... Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants...... with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P 

  16. Possible involvement of the glucocorticoid receptor (NR3C1) and selected NR3C1 gene variants in regulation of human testicular function

    Nordkap, L.; Almstrup, K.; Nielsen, J. E.

    2017-01-01

    Perceived stress has been associated with decreased semen quality but the mechanisms have not been elucidated. It is not known whether cortisol, the major stress hormone in humans, can act directly via receptors in the testis, and whether variants in the gene encoding the glucocorticoid receptor...... is limited, the results substantiate a suggested link between stress and testicular function. Hence this investigation should be regarded as a discovery study generating hypotheses for future studies....

  17. The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions.

    Carrion, Maria Dolores Perez; Marsicano, Silvia; Daniele, Federica; Marte, Antonella; Pischedda, Francesca; Di Cairano, Eliana; Piovesana, Ester; von Zweydorf, Felix; Kremmer, Elisabeth; Gloeckner, Christian Johannes; Onofri, Franco; Perego, Carla; Piccoli, Giovanni

    2017-07-14

    Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.

  18. Loss-of-function nuclear factor κB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans.

    Tuijnenburg, Paul; Lango Allen, Hana; Burns, Siobhan O; Greene, Daniel; Jansen, Machiel H; Staples, Emily; Stephens, Jonathan; Carss, Keren J; Biasci, Daniele; Baxendale, Helen; Thomas, Moira; Chandra, Anita; Kiani-Alikhan, Sorena; Longhurst, Hilary J; Seneviratne, Suranjith L; Oksenhendler, Eric; Simeoni, Ilenia; de Bree, Godelieve J; Tool, Anton T J; van Leeuwen, Ester M M; Ebberink, Eduard H T M; Meijer, Alexander B; Tuna, Salih; Whitehorn, Deborah; Brown, Matthew; Turro, Ernest; Thrasher, Adrian J; Smith, Kenneth G C; Thaventhiran, James E; Kuijpers, Taco W

    2018-03-02

    The genetic cause of primary immunodeficiency disease (PID) carries prognostic information. We conducted a whole-genome sequencing study assessing a large proportion of the NIHR BioResource-Rare Diseases cohort. In the predominantly European study population of principally sporadic unrelated PID cases (n = 846), a novel Bayesian method identified nuclear factor κB subunit 1 (NFKB1) as one of the genes most strongly associated with PID, and the association was explained by 16 novel heterozygous truncating, missense, and gene deletion variants. This accounted for 4% of common variable immunodeficiency (CVID) cases (n = 390) in the cohort. Amino acid substitutions predicted to be pathogenic were assessed by means of analysis of structural protein data. Immunophenotyping, immunoblotting, and ex vivo stimulation of lymphocytes determined the functional effects of these variants. Detailed clinical and pedigree information was collected for genotype-phenotype cosegregation analyses. Both sporadic and familial cases demonstrated evidence of the noninfective complications of CVID, including massive lymphadenopathy (24%), unexplained splenomegaly (48%), and autoimmune disease (48%), features prior studies correlated with worse clinical prognosis. Although partial penetrance of clinical symptoms was noted in certain pedigrees, all carriers have a deficiency in B-lymphocyte differentiation. Detailed assessment of B-lymphocyte numbers, phenotype, and function identifies the presence of an increased CD21 low B-cell population. Combined with identification of the disease-causing variant, this distinguishes between healthy subjects, asymptomatic carriers, and clinically affected cases. We show that heterozygous loss-of-function variants in NFKB1 are the most common known monogenic cause of CVID, which results in a temporally progressive defect in the formation of immunoglobulin-producing B cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans

    Acuña-Alonzo, Víctor; Flores-Dorantes, Teresa; Kruit, Janine K.; Villarreal-Molina, Teresa; Arellano-Campos, Olimpia; Hünemeier, Tábita; Moreno-Estrada, Andrés; Ortiz-López, Ma Guadalupe; Villamil-Ramírez, Hugo; León-Mimila, Paola; Villalobos-Comparan, Marisela; Jacobo-Albavera, Leonor; Ramírez-Jiménez, Salvador; Sikora, Martin; Zhang, Lin-Hua; Pape, Terry D.; de Ángeles Granados-Silvestre, Ma; Montufar-Robles, Isela; Tito-Alvarez, Ana M.; Zurita-Salinas, Camilo; Bustos-Arriaga, José; Cedillo-Barrón, Leticia; Gómez-Trejo, Celta; Barquera-Lozano, Rodrigo; Vieira-Filho, Joao P.; Granados, Julio; Romero-Hidalgo, Sandra; Huertas-Vázquez, Adriana; González-Martín, Antonio; Gorostiza, Amaya; Bonatto, Sandro L.; Rodríguez-Cruz, Maricela; Wang, Li; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A.; Lisker, Ruben; Moises, Regina S.; Menjivar, Marta; Salzano, Francisco M.; Knowler, William C.; Bortolini, M. Cátira; Hayden, Michael R.; Baier, Leslie J.; Canizales-Quinteros, Samuel

    2010-01-01

    It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 × 10−11) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations. PMID:20418488

  20. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome

    Syed, S.H.; Boulard, M.; Shukla, M.S.; Gautier, T.; Travers, A.; Bednár, Jan; Faivre-Moskalenko, C.; Dimitrov, S.; Angelov, D.

    2009-01-01

    Roč. 37, č. 14 (2009), s. 4684-4695 ISSN 0305-1048 Grant - others:GA MŠk(CZ) LC535; GA ČR(CZ) GA304/05/2168 Program:LC Institutional research plan: CEZ:AV0Z50110509 Keywords : nucleosome * histone * variant Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.479, year: 2009

  1. Functional modulation of the glutamate transporter variant GLT1b by the PDZ domain protein PICK1

    Søgaard, Rikke; Borre, Lars; Braunstein, Thomas H

    2013-01-01

    The dominant glutamate transporter isoform in the mammalian brain, GLT1, exists as at least three splice variants, GLT1a, GLT1b, and GLT1c. GLT1b interacts with the scaffold protein PICK1 (protein interacting with kinase C1), which is implicated in glutamatergic neurotransmission via its regulato...

  2. Identification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant.

    Douglas A Schober

    Full Text Available Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant. Transcriptional evidence for this splice variant was confirmed by RNA-Seq and RT-PCR experiments performed from human donor brain prefrontal cortices. We detected a human upstream exon indicating the translation of the mature longer M4 receptor transcript. The predicted size for the longer two-exon M4 receptor splice variant with the additional 155 amino acid N-terminal extension, designated M4L is 69.7 kDa compared to the 53 kDa canonical single exon M4 receptor (M4S. Western blot analysis from a mammalian overexpression system, and saturation radioligand binding with [3H]-NMS (N-methyl-scopolamine demonstrated the expression of this new splice variant. Comparative pharmacological characterization between the M4L and M4S receptors revealed that both the orthosteric and allosteric binding sites for both receptors were very similar despite the addition of an N-terminal extension.

  3. Identification, expression and functional characterization of M4L, a muscarinic acetylcholine M4 receptor splice variant.

    Schober, Douglas A; Croy, Carrie H; Ruble, Cara L; Tao, Ran; Felder, Christian C

    2017-01-01

    Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon) that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant. Transcriptional evidence for this splice variant was confirmed by RNA-Seq and RT-PCR experiments performed from human donor brain prefrontal cortices. We detected a human upstream exon indicating the translation of the mature longer M4 receptor transcript. The predicted size for the longer two-exon M4 receptor splice variant with the additional 155 amino acid N-terminal extension, designated M4L is 69.7 kDa compared to the 53 kDa canonical single exon M4 receptor (M4S). Western blot analysis from a mammalian overexpression system, and saturation radioligand binding with [3H]-NMS (N-methyl-scopolamine) demonstrated the expression of this new splice variant. Comparative pharmacological characterization between the M4L and M4S receptors revealed that both the orthosteric and allosteric binding sites for both receptors were very similar despite the addition of an N-terminal extension.

  4. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease.

    Hui, Ken Y; Fernandez-Hernandez, Heriberto; Hu, Jianzhong; Schaffner, Adam; Pankratz, Nathan; Hsu, Nai-Yun; Chuang, Ling-Shiang; Carmi, Shai; Villaverde, Nicole; Li, Xianting; Rivas, Manual; Levine, Adam P; Bao, Xiuliang; Labrias, Philippe R; Haritunians, Talin; Ruane, Darren; Gettler, Kyle; Chen, Ernie; Li, Dalin; Schiff, Elena R; Pontikos, Nikolas; Barzilai, Nir; Brant, Steven R; Bressman, Susan; Cheifetz, Adam S; Clark, Lorraine N; Daly, Mark J; Desnick, Robert J; Duerr, Richard H; Katz, Seymour; Lencz, Todd; Myers, Richard H; Ostrer, Harry; Ozelius, Laurie; Payami, Haydeh; Peter, Yakov; Rioux, John D; Segal, Anthony W; Scott, William K; Silverberg, Mark S; Vance, Jeffery M; Ubarretxena-Belandia, Iban; Foroud, Tatiana; Atzmon, Gil; Pe'er, Itsik; Ioannou, Yiannis; McGovern, Dermot P B; Yue, Zhenyu; Schadt, Eric E; Cho, Judy H; Peter, Inga

    2018-01-10

    Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10 -10 ) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10 -8 ). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Common genetic variants associated with thyroid function may be risk alleles for Hashimoto's disease and Graves' disease.

    Campbell, Purdey; Brix, Thomas H; Wilson, Scott G; Ward, Lynley C; Hui, Jennie; Beilby, John P; Hegedüs, Laszlo; Walsh, John P

    2015-02-14

    Recent studies have identified common genetic variants associated with TSH, free T4 and thyroid peroxidase antibodies, but it is unclear whether these differ between patients with Hashimoto's disease and Graves' disease. To examine whether 11 common genetic variants differ between Graves' disease and Hashimoto's disease. We genotyped 11 common variants in a discovery cohort of 203 Australian patients with autoimmune thyroid disease (AITD). Two variants with significant or suggestive associations were analysed in a replication cohort of 384 Danish patients. For rs753760 (PDE10A), the minor allele frequency in Graves' disease and Hashimoto's disease was 0·38 vs. 0·23, respectively, (P = 6·42 × 10 -4 ) in the discovery cohort, 0·29 vs. 0·24 (P = 0·147) in the replication cohort and 0·32 vs. 0·24 in combined analysis (P = 0·0021; all analyses adjusted for sex). In healthy controls from Busselton, the frequency was 0·29, significantly different from Hashimoto's disease but not Graves' disease. For rs4889009 (MAF gene region), the frequency of the minor G-allele in Graves' disease and Hashimoto's disease was 0·48 vs. 0·36 (P = 0·0156) in the discovery cohort, 0·48 vs. 0·34 (P = 1·83 × 10 -4 ) in the replication cohort and 0·48 vs. 0·35 in the combined analysis (P = 7·53 × 10 -6 ); in controls, the frequency was 0·38, significantly different from Graves' disease but not Hashimoto's disease. After further adjustment for smoking, associations with rs4889009 remained significant, whereas those with rs753760 were not. Common variants in PDE10A and MAF gene regions may influence whether patients with AITD develop Graves' disease or Hashimoto's disease. © 2015 John Wiley & Sons Ltd.

  6. Analysis of functional germline variants in APOBEC3 and driver genes on breast cancer risk in Moroccan study population

    Marouf, Chaymaa; Göhler, Stella; Filho, Miguel Inacio Da Silva; Hajji, Omar; Hemminki, Kari; Nadifi, Sellama; Försti, Asta

    2016-01-01

    Breast cancer (BC) is the most prevalent cancer in women and a major public health problem in Morocco. Several Moroccan studies have focused on studying this disease, but more are needed, especially at the genetic and molecular levels. Therefore, we investigated the potential association of several functional germline variants in the genes commonly mutated in sporadic breast cancer. In this case–control study, we examined 36 single nucleotide polymorphisms (SNPs) in 13 genes (APOBEC3A, APOBEC3B, ARID1B, ATR, MAP3K1, MLL2, MLL3, NCOR1, RUNX1, SF3B1, SMAD4, TBX3, TTN), which were located in the core promoter, 5’-and 3’UTR or which were nonsynonymous SNPs to assess their potential association with inherited predisposition to breast cancer development. Additionally, we identified a ~29.5-kb deletion polymorphism between APOBEC3A and APOBEC3B and explored possible associations with BC. A total of 226 Moroccan breast cancer cases and 200 matched healthy controls were included in this study. The analysis showed that12 SNPs in 8 driver genes, 4 SNPs in APOBEC3B gene and 1 SNP in APOBEC3A gene were associated with BC risk and/or clinical outcome at P ≤ 0.05 level. RUNX1-rs8130963 (odds ratio (OR) = 2.25; 95 % CI 1.42-3.56; P = 0.0005; dominant model), TBX3-rs8853 (OR = 2.04; 95 % CI 1.38-3.01; P = 0.0003; dominant model), TBX3-rs1061651 (OR = 2.14; 95 % CI1.43-3.18; P = 0.0002; dominant model), TTN-rs12465459 (OR = 2.02; 95 % confidence interval 1.33-3.07; P = 0.0009; dominant model), were the most significantly associated SNPs with BC risk. A strong association with clinical outcome were detected for the genes SMAD4 -rs3819122 with tumor size (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009) and TTN-rs2244492 with estrogen receptor (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009). Our results suggest that genetic variations in driver and APOBEC3 genes were associated with the risk of BC and may have impact on clinical outcome. However, the reported association between the

  7. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout.

    Olha Hurba

    Full Text Available OBJECTIVE: Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2. METHODS: The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects. We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2 and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach. RESULTS: We identified a total of 52 sequence variants (12 unpublished. Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration. CONCLUSION: Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.

  8. Complex analysis of urate transporters SLC2A9, SLC22A12 and functional characterization of non-synonymous allelic variants of GLUT9 in the Czech population: no evidence of effect on hyperuricemia and gout.

    Hurba, Olha; Mancikova, Andrea; Krylov, Vladimir; Pavlikova, Marketa; Pavelka, Karel; Stibůrková, Blanka

    2014-01-01

    Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2. The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach. We identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration. Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.

  9. Generation of a vector system facilitating cloning of DMBT1 variants and recombinant expression of functional full-length DMBT1

    End, Caroline; Lyer, Stefan; Renner, Marcus

    2005-01-01

    of a vector system that facilitates cloning of DMBT1 variants. We demonstrate applicability of the vector system by expression of the largest DMBT1 variant in a tetracycline-inducible mammalian expression system using the Chinese hamster ovary cell line. Yields up to 30 mg rDMBT1 per litre of cell culture......Deleted in malignant brain tumours 1 (DMBT1) codes for a approximately 340kDa glycoprotein with highly repetitive scavenger receptor cysteine-rich (SRCR) domains. DMBT1 was implicated in cancer, defence against viral and bacterial infections, and differentiation of epithelial cells. Recombinant...... yields, and protein preparations which may substantially vary due to differential processing and genetic polymorphism, all of which impedes functional research on DMBT1. Cloning of DMBT1 cDNAs is hampered because of the size and the 13 highly homologous SRCR exons. In this study, we report on the setup...

  10. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    Hansen, Torben; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... kinase activity were examined in wheat germ agglutinin-purified insulin receptors isolated from muscle biopsies. Moreover, insulin-stimulated glucose disposal was studied by means of the euglycemic hyperinsulinemic clamp technique. No difference in the relative expression of spliced variants......, and tyrosine kinase activity toward the exogenous substrate poly(Glu-Tyr(4:1)). Furthermore, no significant relationship was demonstrated between the glucose disposal rate and the relative expression of insulin receptor splice variants. In conclusion, in skeletal muscle from both normal control subjects...

  11. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus.

    Zeng, Chenjie; Guo, Xingyi; Long, Jirong; Kuchenbaecker, Karoline B; Droit, Arnaud; Michailidou, Kyriaki; Ghoussaini, Maya; Kar, Siddhartha; Freeman, Adam; Hopper, John L; Milne, Roger L; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Agata, Simona; Ahmed, Shahana; Aittomäki, Kristiina; Andrulis, Irene L; Anton-Culver, Hoda; Antonenkova, Natalia N; Arason, Adalgeir; Arndt, Volker; Arun, Banu K; Arver, Brita; Bacot, Francois; Barrowdale, Daniel; Baynes, Caroline; Beeghly-Fadiel, Alicia; Benitez, Javier; Bermisheva, Marina; Blomqvist, Carl; Blot, William J; Bogdanova, Natalia V; Bojesen, Stig E; Bonanni, Bernardo; Borresen-Dale, Anne-Lise; Brand, Judith S; Brauch, Hiltrud; Brennan, Paul; Brenner, Hermann; Broeks, Annegien; Brüning, Thomas; Burwinkel, Barbara; Buys, Saundra S; Cai, Qiuyin; Caldes, Trinidad; Campbell, Ian; Carpenter, Jane; Chang-Claude, Jenny; Choi, Ji-Yeob; Claes, Kathleen B M; Clarke, Christine; Cox, Angela; Cross, Simon S; Czene, Kamila; Daly, Mary B; de la Hoya, Miguel; De Leeneer, Kim; Devilee, Peter; Diez, Orland; Domchek, Susan M; Doody, Michele; Dorfling, Cecilia M; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dumont, Martine; Dwek, Miriam; Dworniczak, Bernd; Egan, Kathleen; Eilber, Ursula; Einbeigi, Zakaria; Ejlertsen, Bent; Ellis, Steve; Frost, Debra; Lalloo, Fiona; Fasching, Peter A; Figueroa, Jonine; Flyger, Henrik; Friedlander, Michael; Friedman, Eitan; Gambino, Gaetana; Gao, Yu-Tang; Garber, Judy; García-Closas, Montserrat; Gehrig, Andrea; Damiola, Francesca; Lesueur, Fabienne; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Giles, Graham G; Godwin, Andrew K; Goldgar, David E; González-Neira, Anna; Greene, Mark H; Guénel, Pascal; Haeberle, Lothar; Haiman, Christopher A; Hallberg, Emily; Hamann, Ute; Hansen, Thomas V O; Hart, Steven; Hartikainen, Jaana M; Hartman, Mikael; Hassan, Norhashimah; Healey, Sue; Hogervorst, Frans B L; Verhoef, Senno; Hendricks, Carolyn B; Hillemanns, Peter; Hollestelle, Antoinette; Hulick, Peter J; Hunter, David J; Imyanitov, Evgeny N; Isaacs, Claudine; Ito, Hidemi; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M; Joly Beauparlant, Charles; Jones, Michael; Kabisch, Maria; Kang, Daehee; Karlan, Beth Y; Kauppila, Saila; Kerin, Michael J; Khan, Sofia; Khusnutdinova, Elza; Knight, Julia A; Konstantopoulou, Irene; Kraft, Peter; Kwong, Ava; Laitman, Yael; Lambrechts, Diether; Lazaro, Conxi; Le Marchand, Loic; Lee, Chuen Neng; Lee, Min Hyuk; Lester, Jenny; Li, Jingmei; Liljegren, Annelie; Lindblom, Annika; Lophatananon, Artitaya; Lubinski, Jan; Mai, Phuong L; Mannermaa, Arto; Manoukian, Siranoush; Margolin, Sara; Marme, Frederik; Matsuo, Keitaro; McGuffog, Lesley; Meindl, Alfons; Menegaux, Florence; Montagna, Marco; Muir, Kenneth; Mulligan, Anna Marie; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Newcomb, Polly A; Nord, Silje; Nussbaum, Robert L; Offit, Kenneth; Olah, Edith; Olopade, Olufunmilayo I; Olswold, Curtis; Osorio, Ana; Papi, Laura; Park-Simon, Tjoung-Won; Paulsson-Karlsson, Ylva; Peeters, Stephanie; Peissel, Bernard; Peterlongo, Paolo; Peto, Julian; Pfeiler, Georg; Phelan, Catherine M; Presneau, Nadege; Radice, Paolo; Rahman, Nazneen; Ramus, Susan J; Rashid, Muhammad Usman; Rennert, Gad; Rhiem, Kerstin; Rudolph, Anja; Salani, Ritu; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Marjanka K; Schmutzler, Rita K; Schoemaker, Minouk J; Schürmann, Peter; Seynaeve, Caroline; Shen, Chen-Yang; Shrubsole, Martha J; Shu, Xiao-Ou; Sigurdson, Alice; Singer, Christian F; Slager, Susan; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Swerdlow, Anthony; Szabo, Csilla I; Tchatchou, Sandrine; Teixeira, Manuel R; Teo, Soo H; Terry, Mary Beth; Tessier, Daniel C; Teulé, Alex; Thomassen, Mads; Tihomirova, Laima; Tischkowitz, Marc; Toland, Amanda E; Tung, Nadine; Turnbull, Clare; van den Ouweland, Ans M W; van Rensburg, Elizabeth J; Ven den Berg, David; Vijai, Joseph; Wang-Gohrke, Shan; Weitzel, Jeffrey N; Whittemore, Alice S; Winqvist, Robert; Wong, Tien Y; Wu, Anna H; Yannoukakos, Drakoulis; Yu, Jyh-Cherng; Pharoah, Paul D P; Hall, Per; Chenevix-Trench, Georgia; Dunning, Alison M; Simard, Jacques; Couch, Fergus J; Antoniou, Antonis C; Easton, Douglas F; Zheng, Wei

    2016-06-21

    Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P association signals at

  12. Association of COMT and PRODH gene variants with intelligence quotient (IQ) and executive functions in 22q11.2DS subjects.

    Carmel, Miri; Zarchi, Omer; Michaelovsky, Elena; Frisch, Amos; Patya, Miriam; Green, Tamar; Gothelf, Doron; Weizman, Abraham

    2014-09-01

    The 22q11.2 deletion syndrome (22q11.2DS) carries the highest genetic risk factor for the development of schizophrenia. We investigated the association of genetic variants in two schizophrenia candidate genes with executive function (EF) and IQ in 22q11.2DS individuals. Ninety two individuals with 22q11.2 deletion were studied for the genetic association between COMT and PRODH variants and EF and IQ. Subjects were divided into children (under 12 years old), adolescents (between 12 and 18 years old) and adults (older than 18 years), and genotyped for the COMT Val158Met (rs4680) and PRODH Arg185Trp (rs4819756) polymorphisms. The participants underwent psychiatric evaluation and EF assessment. Our main finding is a significant influence of the COMT Val158Met polymorphism on both IQ and EF performance. Specifically, 22q11.2DS subjects with Met allele displayed higher IQ scores in all age groups compared to Val carriers, reaching significance in both adolescents and adults. The Met allele carriers performed better than Val carriers in EF tasks, being statistically significant in the adult group. PRODH Arg185Trp variant did not affect IQ or EF in our 22q11.2DS cohort. In conclusion, functional COMT variant, but not PRODH, affects IQ and EF in 22q11.2DS subjects during neurodevelopment with a maximal effect at adulthood. Future studies should monitor the cognitive performance of the same individuals from childhood to old age. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Functional expression of the Na-K-2Cl cotransporter NKCC2 in mammalian cells fails to confirm the dominant-negative effect of the AF splice variant.

    Hannemann, Anke; Christie, Jenny K; Flatman, Peter W

    2009-12-18

    The renal bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) is the major salt transport pathway in the apical membrane of the mammalian thick ascending limb. It is differentially spliced and the three major variants (A, B, and F) differ in their localization and transport characteristics. Most knowledge about its regulation comes from experiments in Xenopus oocytes as NKCC2 proved difficult to functionally express in a mammalian system. Here we report the cloning and functional expression of untagged and unmodified versions of the major splice variants from ferret kidney (fNKCC2A, -B, and -F) in human embryonic kidney (HEK) 293 cells. Many NKCC2 antibodies used in this study detected high molecular weight forms of the transfected proteins, probably NKCC2 dimers, but not the monomers. Interestingly, monomers were strongly detected by phosphospecific antibodies directed against phosphopeptides in the regulatory N terminus. Bumetanide-sensitive (86)Rb uptake was significantly higher in transfected HEK-293 cells and could be stimulated by incubating cells in a medium containing a low chloride concentration prior the uptake measurements. fNKCC2 was less sensitive to the reduction in chloride concentration than NKCC1. Using HEK-293 cells stably expressing fNKCC2A we also show that co-expression of variant NKCC2AF does not have the dominant-negative effect on NKCC2A activity that was seen in Xenopus oocytes, nor is it trafficked to the cell surface. In addition, fNKCC2AF is neither complex glycosylated nor phosphorylated in its N terminus regulatory region like other variants.

  14. Identification of a functional enhancer variant within the chronic pancreatitis-associated SPINK1 c.101A>G (p.Asn34Ser)-containing haplotype.

    Boulling, Arnaud; Masson, Emmanuelle; Zou, Wen-Bin; Paliwal, Sumit; Wu, Hao; Issarapu, Prachand; Bhaskar, Seema; Génin, Emmanuelle; Cooper, David N; Li, Zhao-Shen; Chandak, Giriraj R; Liao, Zhuan; Chen, Jian-Min; Férec, Claude

    2017-08-01

    The haplotype harboring the SPINK1 c.101A>G (p.Asn34Ser) variant (also known as rs17107315:T>C) represents the most important heritable risk factor for idiopathic chronic pancreatitis identified to date. The causal variant contained within this risk haplotype has however remained stubbornly elusive. Herein, we set out to resolve this enigma by employing a hypothesis-driven approach. First, we searched for variants in strong linkage disequilibrium (LD) with rs17107315:T>C using HaploReg v4.1. Second, we identified two candidate SNPs by visual inspection of sequences spanning all 25 SNPs found to be in LD with rs17107315:T>C, guided by prior knowledge of pancreas-specific transcription factors and their cognate binding sites. Third, employing a novel cis-regulatory module (CRM)-guided approach to further filter the two candidate SNPs yielded a solitary candidate causal variant. Finally, combining data from phylogenetic conservation and chromatin accessibility, cotransfection transactivation experiments, and population genetic studies, we suggest that rs142703147:C>A, which disrupts a PTF1L-binding site within an evolutionarily conserved HNF1A-PTF1L CRM located ∼4 kb upstream of the SPINK1 promoter, contributes to the aforementioned chronic pancreatitis risk haplotype. Further studies are required not only to improve the characterization of this functional SNP but also to identify other functional components that might contribute to this high-risk haplotype. © 2017 Wiley Periodicals, Inc.

  15. Molecular dynamics and docking simulation of a natural variant of Activated Protein C with impaired protease activity: implications for integrin-mediated antiseptic function.

    D'Ursi, Pasqualina; Orro, Alessandro; Morra, Giulia; Moscatelli, Marco; Trombetti, Gabriele; Milanesi, Luciano; Rovida, Ermanna

    2015-01-01

    Activated Protein C (APC) is a multifunctional serine protease, primarily known for its anticoagulant function in the coagulation system. Several studies have already elucidated its role in counteracting apoptosis and inflammation in cells, while significant effort is still ongoing for defining its involvement in sepsis. Earlier literature has shown that the antiseptic function of APC is mediated by its binding to leukocyte integrins, which is due to the presence of the integrin binding motif Arg-Gly-Asp at the N-terminus of the APC catalytic chain. Many natural mutants have been identified in patients with Protein C deficiency diagnosis including a variant of specificity pocket (Gly216Asp). In this work, we present a molecular model of the complex of APC with αVβ3 integrin obtained by protein-protein docking approach. A computational analysis of this variant is hereby presented, based on molecular dynamics and docking simulations, aiming at investigating the effects of the Gly216Asp mutation on the protein conformation and inferring its functional implications. Our study shows that such mutation is likely to impair the protease activity while preserving the overall protein fold. Moreover, superposition of the integrin binding motifs in wild-type and mutant forms suggests that the interaction with integrin can still occur and thus the mutant is likely to retain its antiseptic function related to the neutrophyl integrin binding. Therapeutic applications could result in this APC mutant which retains antiseptic function without anticoagulant side effects.

  16. A Loss-of-Function Splice Acceptor Variant in IGF2 Is Protective for Type 2 Diabetes.

    Mercader, Josep M; Liao, Rachel G; Bell, Avery D; Dymek, Zachary; Estrada, Karol; Tukiainen, Taru; Huerta-Chagoya, Alicia; Moreno-Macías, Hortensia; Jablonski, Kathleen A; Hanson, Robert L; Walford, Geoffrey A; Moran, Ignasi; Chen, Ling; Agarwala, Vineeta; Ordoñez-Sánchez, María Luisa; Rodríguez-Guillen, Rosario; Rodríguez-Torres, Maribel; Segura-Kato, Yayoi; García-Ortiz, Humberto; Centeno-Cruz, Federico; Barajas-Olmos, Francisco; Caulkins, Lizz; Puppala, Sobha; Fontanillas, Pierre; Williams, Amy L; Bonàs-Guarch, Sílvia; Hartl, Chris; Ripke, Stephan; Tooley, Katherine; Lane, Jacqueline; Zerrweck, Carlos; Martínez-Hernández, Angélica; Córdova, Emilio J; Mendoza-Caamal, Elvia; Contreras-Cubas, Cecilia; González-Villalpando, María E; Cruz-Bautista, Ivette; Muñoz-Hernández, Liliana; Gómez-Velasco, Donaji; Alvirde, Ulises; Henderson, Brian E; Wilkens, Lynne R; Le Marchand, Loic; Arellano-Campos, Olimpia; Riba, Laura; Harden, Maegan; Gabriel, Stacey; Abboud, Hanna E; Cortes, Maria L; Revilla-Monsalve, Cristina; Islas-Andrade, Sergio; Soberon, Xavier; Curran, Joanne E; Jenkinson, Christopher P; DeFronzo, Ralph A; Lehman, Donna M; Hanis, Craig L; Bell, Graeme I; Boehnke, Michael; Blangero, John; Duggirala, Ravindranath; Saxena, Richa; MacArthur, Daniel; Ferrer, Jorge; McCarroll, Steven A; Torrents, David; Knowler, William C; Baier, Leslie J; Burtt, Noel; González-Villalpando, Clicerio; Haiman, Christopher A; Aguilar-Salinas, Carlos A; Tusié-Luna, Teresa; Flannick, Jason; Jacobs, Suzanne B R; Orozco, Lorena; Altshuler, David; Florez, Jose C

    2017-11-01

    Type 2 diabetes (T2D) affects more than 415 million people worldwide, and its costs to the health care system continue to rise. To identify common or rare genetic variation with potential therapeutic implications for T2D, we analyzed and replicated genome-wide protein coding variation in a total of 8,227 individuals with T2D and 12,966 individuals without T2D of Latino descent. We identified a novel genetic variant in the IGF2 gene associated with ∼20% reduced risk for T2D. This variant, which has an allele frequency of 17% in the Mexican population but is rare in Europe, prevents splicing between IGF2 exons 1 and 2. We show in vitro and in human liver and adipose tissue that the variant is associated with a specific, allele-dosage-dependent reduction in the expression of IGF2 isoform 2. In individuals who do not carry the protective allele, expression of IGF2 isoform 2 in adipose is positively correlated with both incidence of T2D and increased plasma glycated hemoglobin in individuals without T2D, providing support that the protective effects are mediated by reductions in IGF2 isoform 2. Broad phenotypic examination of carriers of the protective variant revealed no association with other disease states or impaired reproductive health. These findings suggest that reducing IGF2 isoform 2 expression in relevant tissues has potential as a new therapeutic strategy for T2D, even beyond the Latin American population, with no major adverse effects on health or reproduction. © 2017 by the American Diabetes Association.

  17. Functional characterizations of rare UBA1 variants in X-linked Spinal Muscular Atrophy [version 1; referees: 2 approved

    Chris D. Balak

    2017-09-01

    Full Text Available Background: X-linked spinal muscular atrophy (XL-SMA results from mutations in the Ubiquitin-Like Modifier Activating Enzyme 1 (UBA1. Previously, four novel closely clustered mutations have been shown to cause this fatal infantile disorder affecting only males. These mutations, three missense and one synonymous, all lie within Exon15 of the UBA1 gene, which contains the active adenylation domain (AAD. Methods: In this study, our group characterized the three known missense variants in vitro. Using a novel Uba1 assay and other methods, we investigated Uba1 adenylation, thioester, and transthioesterification reactions in vitro to determine possible biochemical effects of the missense variants. Results: Our data revealed that only one of the three XL-SMA missense variants impairs the Ubiquitin-adenylating ability of Uba1. Additionally, these missense variants retained Ubiquitin thioester bond formation and transthioesterification rates equal to that found in the wild type. Conclusions: Our results demonstrate a surprising shift from the likelihood of these XL-SMA mutations playing a damaging role in Uba1’s enzymatic activity with Ubiquitin, to other roles such as altering UBA1 mRNA splicing via the disruption of splicing factor binding sites, similar to a mechanism in traditional SMA, or disrupting binding to other important in vivo binding partners.  These findings help to narrow the search for the areas of possible dysfunction in the Ubiquitin-proteasome pathway that ultimately result in XL-SMA. Moreover, this investigation provides additional critical understanding of the mutations’ biochemical mechanisms, vital for the development of future effective diagnostic assays and therapeutics.

  18. Optical Properties Of Polymeric Films Of Bacteriorhodopsin And Its Functional Variants: New Materials For Optical Information Processing

    Hampp, Norbert; Braeuchle, Christoph R.; Oesterhelt, Dieter

    1990-01-01

    Purple membrane (PM) from Halobacterium halobium consists of a two-dimensional crystal of the photochromic retinal protein bacteriorhodopsin (BR). Purple membrane embedded in inert polymer matrices can be used as reversible recording medium in holography. The thermal and photochemical stability (at least 100.000 recording cycles at room temperature), the high quantum yield (70%), the high resolution (~ 5000 lines/mm) and the wide spectral range (400-680 nm) of these films are promising features for any possible technical application. The variability of this material was restricted to chemical modifications of the chromophoric group for a long time. new class of BR based recording media is introduced by the availability of variants of BR with a modified amino acid sequence. After generation of a mutant strain PM variants can be easily produced by the same cultivation and purification procedures as the PM of the wildtype and therefore are available in virtually unlimited amounts, too. As an example the properties of PM-films containing the variant BR-326, which differs from the wildtype by a single amino acid, are reported here. The improved diffraction efficiency (~ 2-fold) and increased sensitivity (~ 50%) of films containing BR-326 give an impression of the new possibilities for optimizing reversible recording media by biochemical and gentechnological methods as an alternative or an addition to conventional chemical methods.

  19. Impact of functional germline variants and a deletion polymorphism in APOBEC3A and APOBEC3B on breast cancer risk and survival in a Swedish study population.

    Göhler, Stella; Da Silva Filho, Miguel Inacio; Johansson, Robert; Enquist-Olsson, Kerstin; Henriksson, Roger; Hemminki, Kari; Lenner, Per; Försti, Asta

    2016-01-01

    The C → T mutation signature caused by APOBEC family members contributes to the development of breast cancer (BC). Also overexpression of APOBEC3B and a ~29.5-kb deletion polymorphism between APOBEC3A and APOBEC3B have been associated with increased BC risk. We investigated in a population-based study, with 782 Swedish BC cases and 1559 controls, associations between potentially functional germline variants in APOBEC3A or APOBEC3B gene and BC risk and survival. Additionally, we identified deletion polymorphism carriers and explored possible associations with BC. No evidence of association between any germline variant, including the deletion polymorphism, and BC risk or survival was observed. Only APOBEC3A promoter polymorphism rs5757402 was associated with low stage (OR = 0.69, 95 % CI 0.50-0.96, dominant model). The reported association between the deletion polymorphism and BC risk was not confirmed in the Swedish population, nor did any genotyped germline variant show any association with BC risk or survival.

  20. A functional promoter variant of the human formimidoyltransferase cyclodeaminase (FTCD) gene is associated with working memory performance in young but not older adults.

    Greenwood, Pamela M; Schmidt, Kevin; Lin, Ming-Kuan; Lipsky, Robert; Parasuraman, Raja; Jankord, Ryan

    2018-06-21

    The central role of working memory in IQ and the high heritability of working memory performance motivated interest in identifying the specific genes underlying this heritability. The FTCD (formimidoyltransferase cyclodeaminase) gene was identified as a candidate gene for allelic association with working memory in part from genetic mapping studies of mouse Morris water maze performance. The present study tested variants of this gene for effects on a delayed match-to-sample task of a large sample of younger and older participants. The rs914246 variant, but not the rs914245 variant, of the FTCD gene modulated accuracy in the task for younger, but not older, people under high working memory load. The interaction of haplotype × distance × load had a partial eta squared effect size of 0.015. Analysis of simple main effects had partial eta squared effect sizes ranging from 0.012 to 0.040. A reporter gene assay revealed that the C allele of the rs914246 genotype is functional and a main factor regulating FTCD gene expression. This study extends previous work on the genetics of working memory by revealing that a gene in the glutamatergic pathway modulates working memory in young people but not in older people. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Crystal structure of the S187F variant of human liver alanine: Aminotransferase associated with primary hyperoxaluria type I and its functional implications

    Oppici, Elisa; Fodor, Krisztian; Paiardini, Alessandro; Williams, Chris; Voltattorni, Carla Borri; Wilmanns, Matthias; Cellini, Barbara

    2013-01-01

    The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5′-phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP-binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT-pyridoxamine 5′-phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300- to 500-fold decrease in both the rate constant of L-alanine half-transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results. Proteins 2013; 81:1457–1465. © 2013 Wiley Periodicals, Inc. PMID:23589421

  2. Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa PARP1 knock-out cells

    Rank, Lisa; Veith, Sebastian; Gwosch, Eva C.; Demgenski, Janine; Ganz, Magdalena; Jongmans, Marjolijn C.; Vogel, Christopher; Fischbach, Arthur; Buerger, Stefanie; Fischer, Jan M.F.; Zubel, Tabea; Stier, Anna; Renner, Christina; Schmalz, Michael; Beneke, Sascha; Groettrup, Marcus; Kuiper, Roland P.; Bürkle, Alexander; Ferrando-May, Elisa; Mangerich, Aswin

    2016-01-01

    Genotoxic stress activates PARP1, resulting in the post-translational modification of proteins with poly(ADP-ribose) (PAR). We genetically deleted PARP1 in one of the most widely used human cell systems, i.e. HeLa cells, via TALEN-mediated gene targeting. After comprehensive characterization of these cells during genotoxic stress, we analyzed structure–function relationships of PARP1 by reconstituting PARP1 KO cells with a series of PARP1 variants. Firstly, we verified that the PARP1\\E988K mutant exhibits mono-ADP-ribosylation activity and we demonstrate that the PARP1\\L713F mutant is constitutively active in cells. Secondly, both mutants exhibit distinct recruitment kinetics to sites of laser-induced DNA damage, which can potentially be attributed to non-covalent PARP1–PAR interaction via several PAR binding motifs. Thirdly, both mutants had distinct functional consequences in cellular patho-physiology, i.e. PARP1\\L713F expression triggered apoptosis, whereas PARP1\\E988K reconstitution caused a DNA-damage-induced G2 arrest. Importantly, both effects could be rescued by PARP inhibitor treatment, indicating distinct cellular consequences of constitutive PARylation and mono(ADP-ribosyl)ation. Finally, we demonstrate that the cancer-associated PARP1 SNP variant (V762A) as well as a newly identified inherited PARP1 mutation (F304L\\V762A) present in a patient with pediatric colorectal carcinoma exhibit altered biochemical and cellular properties, thereby potentially supporting human carcinogenesis. Together, we establish a novel cellular model for PARylation research, by revealing strong structure–function relationships of natural and artificial PARP1 variants. PMID:27694308

  3. High frequency of rare copy number variants affecting functionally related genes in patients with structural brain malformations

    Kariminejad, Roxana; Lind-Thomsen, Allan; Tümer, Zeynep

    2011-01-01

    ) to investigate copy number variants (CNVs) in a cohort of 169 patients with various structural brain malformations including lissencephaly, polymicrogyria, focal cortical dysplasia, and corpus callosum agenesis. The majority of the patients had intellectual disabilities (ID) and suffered from symptomatic...... that genes involved in "axonal transport," "cation transmembrane transporter activity," and the "c-Jun N-terminal kinase (JNK) cascade" play a significant role in the etiology of brain malformations. This is to the best of our knowledge the first systematic study of CNVs in patients with structural brain...

  4. Holoprosencephaly Variant

    J Gordon Millichap

    2003-01-01

    Full Text Available The clinical manifestations in 15 patients (6 boys and 9 girls with middle interhemispheric variant (MIH of holoprosencephaly (HPE were compared with classic subtypes (alobar, semilobar, and lobar of HPE in a multicenter study at Stanford University School of Medicine and Lucile Packard Children’s Hospital; Children’s Hospital of Philadelphia; University of California at San Francisco; Texas Scottish Rite Hospital, Dallas; and Kennedy Krieger Institute, Baltimore, MD.

  5. Functional analysis in mouse embryonic stem cells reveals wild-type activity for three MSH6 variants found in suspected Lynch syndrome patients.

    Eva A L Wielders

    Full Text Available Lynch syndrome confers an increased risk to various types of cancer, in particular early onset colorectal and endometrial cancer. Mutations in mismatch repair (MMR genes underlie Lynch syndrome, with the majority of mutations found in MLH1 and MSH2. Mutations in MSH6 have also been found but these do not always cause a clear cancer predisposition phenotype and MSH6-defective tumors often do not show the standard characteristics of MMR deficiency, such as microsatellite instability. In particular, the consequences of MSH6 missense mutations are challenging to predict, which further complicates genetic counseling. We have previously developed a method for functional characterization of MSH2 missense mutations of unknown significance. This method is based on endogenous gene modification in mouse embryonic stem cells using oligonucleotide-directed gene targeting, followed by a series of functional assays addressing the MMR functions. Here we have adapted this method for the characterization of MSH6 missense mutations. We recreated three MSH6 variants found in suspected Lynch syndrome families, MSH6-P1087R, MSH6-R1095H and MSH6-L1354Q, and found all three to behave like wild type MSH6. Thus, despite suspicion for pathogenicity from clinical observations, our approach indicates these variants are not disease causing. This has important implications for counseling of mutation carriers.

  6. Functional Properties of a Newly Identified C-terminal Splice Variant of Cav1.3 L-type Ca2+ Channels*

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E.; Sinnegger-Brauns, Martina J.; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-01-01

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Cav1.3 L-type Ca2+ channels (Cav1.3L) is a major determinant of their voltage- and Ca2+-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Cav1.342A channels that activate at a more negative voltage range and exhibit more pronounced Ca2+-dependent inactivation. Here we describe the discovery of a novel short splice variant (Cav1.343S) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Cav1.342A, still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Cav1.343S also activated at more negative voltages like Cav1.342A but Ca2+-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Cav1.3L. The presence of the proximal C terminus in Cav1.343S channels preserved their modulation by distal C terminus-containing Cav1.3- and Cav1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca2+ influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Cav1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca2+ channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca2+ accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca2+-induced neurodegenerative processes. PMID:21998310

  7. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    Kotasidis, Fotis A.; Zaidi, Habib

    2014-01-01

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailed investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function

  8. Prevalence and risk of psychiatric disorders as a function of variant rape histories: results from a national survey of women.

    Zinzow, Heidi M; Resnick, Heidi S; McCauley, Jenna L; Amstadter, Ananda B; Ruggiero, Kenneth J; Kilpatrick, Dean G

    2012-06-01

    Rape is an established risk factor for mental health disorders, such as posttraumatic stress disorder (PTSD), major depressive episodes (MDE), and substance use disorders. The majority of studies have not differentiated substance-involved rape or examined comorbid diagnoses among victims. Therefore, the aim of the present study was to estimate the prevalence of common trauma-related psychiatric disorders (and their comorbidity) in a national sample of women, with an emphasis on distinguishing between rape tactics. A secondary objective was to estimate the risk for psychiatric disorders among victims of variant rape tactics, in comparison to non-victims. A nationally representative population-based sample of 3,001 non-institutionalized, civilian, English or Spanish speaking women (aged 18-86 years) participated in a structured telephone interview assessing rape history and DSM-IV criteria for PTSD, MDE, alcohol abuse (AA), and drug abuse (DA). Descriptive statistics and multivariate logistic regression analyses were employed. Women with rape histories involving both substance facilitation and forcible tactics reported the highest current prevalence of PTSD (36%), MDE (36%), and AA (20%). Multivariate models demonstrated that this victim group was also at highest risk for psychiatric disorders, after controlling for demographics and childhood and multiple victimization history. Women with substance-facilitated rapes reported higher prevalence of substance abuse in comparison to women with forcible rape histories. Comorbidity between PTSD and other psychiatric disorders was higher among rape victims in comparison to non-rape victims. Researchers and clinicians should assess substance-facilitated rape tactics and attend to comorbidity among rape victims. Empirically supported treatments are needed to address the complex presentations observed among women with variant rape histories.

  9. A Functional Toll-Interacting Protein Variant Is Associated with Bacillus Calmette-Guérin-Specific Immune Responses and Tuberculosis.

    Shah, Javeed A; Musvosvi, Munyaradzi; Shey, Muki; Horne, David J; Wells, Richard D; Peterson, Glenna J; Cox, Jeffery S; Daya, Michelle; Hoal, Eileen G; Lin, Lin; Gottardo, Raphael; Hanekom, Willem A; Scriba, Thomas J; Hatherill, Mark; Hawn, Thomas R

    2017-08-15

    The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2 + CD4 + T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG

  10. Contribution of ARLTS1 Cys148Arg (T442C variant with prostate cancer risk and ARLTS1 function in prostate cancer cells.

    Sanna Siltanen

    Full Text Available ARLTS1 is a recently characterized tumor suppressor gene at 13q14.3, a region frequently deleted in both sporadic and hereditary prostate cancer (PCa. ARLTS1 variants, especially Cys148Arg (T442C, increase susceptibility to different cancers, including PCa. In this study the role of Cys148Arg substitution was investigated as a risk factor for PCa using both genetic and functional analysis. Cys148Arg genotypes and expression of the ARLTS1 were explored in a large set of familial and unselected PCa cases, clinical tumor samples, xenografts, prostate cancer cell lines and benign prostatic hyperplasia (BPH samples. The frequency of the variant genotype CC was significantly higher in familial (OR = 1.67, 95% CI = 1.08-2.56, P = 0.019 and unselected patients (OR = 1.52, 95% CI = 1.18-1.97, P = 0.001 and the overall risk was increased (OR = 1.54, 95% CI = 1.20-1.98, P = 0.0007. Additional analysis with clinicopathological data revealed an association with an aggressive disease (OR = 1.28, 95% CI = 1.05-∞, P = 0.02. The CC genotype of the Cys148Arg variant was also contributing to the lowered ARLTS1 expression status in lymphoblastoid cells from familial patients. In addition significantly lowered ARLTS1 expression was observed in clinical tumor samples compared to BPH samples (P = 0.01. The ARLTS1 co-expression signature based on previously published microarray data was generated from 1587 cancer samples confirming the low expression of ARLTS1 in PCa and showed that ARLTS1 expression was strongly associated with immune processes. This study provides strong confirmation of the important role of ARLTS1 Cys148Arg variant as a contributor in PCa predisposition and a potential marker for aggressive disease outcome.

  11. Characterization of a cancer cell line that expresses a splicing variant form of 53BP1: Separation of checkpoint and repair functions in 53BP1

    Iwabuchi, Kuniyoshi; Matsui, Tadashi; Hashimoto, Mitsumasa; Matsumoto, Yoshihisa; Kurihara, Takayuki; Date, Takayasu

    2008-01-01

    53BP1 plays important roles in checkpoint signaling and repair for DNA double-strand breaks. We found that a colon cancer cell line, SW48, expressed a splicing variant form of 53BP1, which lacks the residues corresponding to exons 10 and 11. Activation of ATM and phosphorylation of ATM and ATR targets occurred in SW48 cells in response to X-irradiation, and these X-ray-induced responses were not enhanced by expression of full-length 53BP1 in SW48 cells, indicating that this splicing variant fully activates the major checkpoint signaling in SW48 cells. In contrast, the expression of full-length 53BP1 in SW48 cells promoted the repair of X-ray-induced DNA damage, evidenced by faster disappearance of X-ray-induced γ-H2AX foci, a marker for DNA damage, and less residual chromosomal aberrations after X-irradiation. We conclude that the two major roles of 53BP1, the checkpoint signaling and repair for DNA damage, can be functionally separated

  12. Association Between Genetic Polymorphisms and Pain Sensitivity in Patients with Hip Osteoarthritis

    Olesen, Anne E; Nielsen, Lecia M; Feddersen, Søren

    2018-01-01

    , kappa, and delta opioid receptor genes (OPRM1, OPRK1, and OPRD1) and the catechol-O-methyltransferase gene (COMT) influenced the pain phenotype in patients with osteoarthritis. METHODS: The frequencies of 17 polymorphisms were examined. Pain sensitivity was assessed preoperatively by (1) hip rotation......BACKGROUND: Factors such as age, gender, and genetic polymorphisms may explain individual differences in pain phenotype. Genetic associations with pain sensitivity have previously been investigated in osteoarthritis patients, with a focus on the P2X7, TRPV1, and TACR1 genes. However, other genes...... may play a role as well. Osteoarthritis is a common joint disease, and many patients suffering from this disease are thought to have increased sensitivity to noxious stimuli resulting from sensitization in the nociceptive system. The aim of this study was to investigate if genetic variants of mu...

  13. Apoptotic function of human PMS2 compromised by the nonsynonymous single-nucleotide polymorphic variant R20Q.

    Marinovic-Terzic, Ivana; Yoshioka-Yamashita, Atsuko; Shimodaira, Hideki; Avdievich, Elena; Hunton, Irina C; Kolodner, Richard D; Edelmann, Winfried; Wang, Jean Y J

    2008-09-16

    Mismatch repair (MMR) corrects replication errors during DNA synthesis. The mammalian MMR proteins also activate cell cycle checkpoints and apoptosis in response to persistent DNA damage. MMR-deficient cells are resistant to cisplatin, a DNA cross-linking agent used in chemotherapy, because of impaired activation of apoptotic pathways. It is shown that postmeiotic segregation 2 (PMS2), an MMR protein, is required for cisplatin-induced activation of p73, a member of the p53 family of transcription factors with proapoptotic activity. The human PMS2 is highly polymorphic, with at least 12 known nonsynonymous codon changes identified. We show here that the PMS2(R20Q) variant is defective in activating p73-dependent apoptotic response to cisplatin. When expressed in Pms2-deficient mouse fibroblasts, human PMS2(R20Q) but not PMS2 interfered with the apoptotic response to cisplatin. Correspondingly, PMS2 but not PMS2(R20Q) enhanced the cytotoxic effect of cisplatin measured by clonogenic survival. Because PMS2(R20Q) lacks proapoptotic activity, this polymorphic allele may modulate tumor responses to cisplatin among cancer patients.

  14. Efficacy of aerosol budesonide combined with montelukast in treatment of children with cough variant asthma and its influence on lung function indexes and serum inflammatory factor levels

    Hai-Li Wu

    2016-03-01

    Full Text Available Objective: To explore the efficacy of aerosol budesonide combined with montelukast in the treatment of children with cough variant asthma (CVA and its influence on lung function indexes and serum inflammatory factor levels. Methods: A total of 102 CVA children in our hospital were randomly divided into A, B, C group (n=34. Three groups were given conventional symptomatic treatment(like phlegm dispersing, anti-infection. A group was given aerosol budesonide treatment, B group was given montelukast treatment and C group was given aerosol budesonide combined with montelukast treatment. Changes of clinical symptom scores, lung function indexes and inflammatory factor levels were compared between three groups before and after treatment. Results: After treatment, clinical symptom scores and inflammatory factor-IgE, IL-4 and TNF-毩 levels in C group were significantly lower than before treatment and that in A, B group after treatment (P<0.05; lung function index- FVC, FEV1, PEF levels were significantly higher than before treatment and that in A, B group after treatment (P<0.05. There showed obvious negative correlation between lung function index-FVC, FEV1, PEF and inflammatory factor-IgE, IL-4 and TNF-α. Conclusions: On the basis of conventional symptomatic treatment (like phlegm dispersing, anti-infection, aerosol budesonide combined with montelukast treatment could reduce the inflammatory factor levels, relieve the clinical symptoms, improve the lung function indexes.

  15. Copy number variants in attention-deficit hyperactive disorder: identification of the 15q13 deletion and its functional role.

    Valbonesi, Stefano; Magri, Chiara; Traversa, Michele; Faraone, Stephen V; Cattaneo, Annamaria; Milanesi, Elena; Valenti, Vera; Gennarelli, Massimo; Scassellati, Catia

    2015-04-01

    Evidence has supported a role for rare copy number variants in the etiology of attention-deficit hyperactivity disorder (ADHD), in particular, the region 15q13, which is also a hot spot for several neuropsychiatric disorders. This region spans several genes, but their role and the biological implications remain unclear. We carried out, for the first time, an analysis of the 15q13 region in an Italian cohort of 117 ADHD patients and 77 controls using the MLPA method, confirmed by a genome single-nucleotide polymorphism array. In addition, we probed for downstream effects of the 15q13 deletions on gene expression by carrying out a transcriptomic analysis in blood. We found 15q13 deletions in two ADHD patients and identified 129 genes as significantly dysregulated in the blood of the two ADHD patients carrying 15q13 deletions compared with ADHD patients without 15q13 deletions. As expected, genes in the deleted region (KLF13, MTMR10) were downregulated in the two patients with deletions. Moreover, a pathway analysis identified apoptosis, oxidation reduction, and immune response as the mechanisms that were altered most significantly in the ADHD patients with 15q13 deletions. Interestingly, we showed that deletions in KLF13 and CHRNA7 influenced the expression of genes belonging to the same immune/inflammatory and oxidative stress signaling pathways. Our findings are consistent with the presence of 15q13 deletions in Italian ADHD patients. More interestingly, we show that pathways related to immune/inflammatory response and oxidative stress signaling are affected by the deletion of KFL13 and CHRNA7. Because the phenotypic effects of 15q13 are pleiotropic, our findings suggest that there are shared biologic pathways among multiple neuropsychiatric conditions.

  16. Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels.

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E; Sinnegger-Brauns, Martina J; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-12-09

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.

  17. De Novo and Inherited Loss-of-Function Variants in TLK2: Clinical and Genotype-Phenotype Evaluation of a Distinct Neurodevelopmental Disorder.

    Reijnders, Margot R F; Miller, Kerry A; Alvi, Mohsan; Goos, Jacqueline A C; Lees, Melissa M; de Burca, Anna; Henderson, Alex; Kraus, Alison; Mikat, Barbara; de Vries, Bert B A; Isidor, Bertrand; Kerr, Bronwyn; Marcelis, Carlo; Schluth-Bolard, Caroline; Deshpande, Charu; Ruivenkamp, Claudia A L; Wieczorek, Dagmar; Baralle, Diana; Blair, Edward M; Engels, Hartmut; Lüdecke, Hermann-Josef; Eason, Jacqueline; Santen, Gijs W E; Clayton-Smith, Jill; Chandler, Kate; Tatton-Brown, Katrina; Payne, Katelyn; Helbig, Katherine; Radtke, Kelly; Nugent, Kimberly M; Cremer, Kirsten; Strom, Tim M; Bird, Lynne M; Sinnema, Margje; Bitner-Glindzicz, Maria; van Dooren, Marieke F; Alders, Marielle; Koopmans, Marije; Brick, Lauren; Kozenko, Mariya; Harline, Megan L; Klaassens, Merel; Steinraths, Michelle; Cooper, Nicola S; Edery, Patrick; Yap, Patrick; Terhal, Paulien A; van der Spek, Peter J; Lakeman, Phillis; Taylor, Rachel L; Littlejohn, Rebecca O; Pfundt, Rolph; Mercimek-Andrews, Saadet; Stegmann, Alexander P A; Kant, Sarina G; McLean, Scott; Joss, Shelagh; Swagemakers, Sigrid M A; Douzgou, Sofia; Wall, Steven A; Küry, Sébastien; Calpena, Eduardo; Koelling, Nils; McGowan, Simon J; Twigg, Stephen R F; Mathijssen, Irene M J; Nellaker, Christoffer; Brunner, Han G; Wilkie, Andrew O M

    2018-06-07

    Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Homozygous loss of function BRCA1 variant causing a Fanconi-anemia-like phenotype, a clinical report and review of previous patients.

    Freire, Bruna L; Homma, Thais K; Funari, Mariana F A; Lerario, Antônio M; Leal, Aline M; Velloso, Elvira D R P; Malaquias, Alexsandra C; Jorge, Alexander A L

    2018-03-01

    Fanconi Anemia (FA) is a rare and heterogeneous genetic syndrome. It is associated with short stature, bone marrow failure, high predisposition to cancer, microcephaly and congenital malformation. Many genes have been associated with FA. Previously, two adult patients with biallelic pathogenic variant in Breast Cancer 1 gene (BRCA1) had been identified in Fanconi Anemia-like condition. The proband was a 2.5 year-old girl with severe short stature, microcephaly, neurodevelopmental delay, congenital heart disease and dysmorphic features. Her parents were third degree cousins. Routine screening tests for short stature was normal. We conducted whole exome sequencing (WES) of the proband and used an analysis pipeline to identify rare nonsynonymous genetic variants that cause short stature. We identified a homozygous loss-of-function BRCA1 mutation (c.2709T > A; p. Cys903*), which promotes the loss of critical domains of the protein. Cytogenetic study with DEB showed an increased chromosomal breakage. We screened heterozygous parents of the index case for cancer and we detected, in her mother, a metastatic adenocarcinoma in an axillar lymph node with probable primary site in the breast. It is possible to consolidate the FA-like phenotype associated with biallelic loss-of-function BRCA1, characterized by microcephaly, short stature, developmental delay, dysmorphic face features and cancer predisposition. In our case, the WES allowed to establish the genetic cause of short stature in the context of a chromosome instability syndrome. An identification of BRCA1 mutations in our patient allowed precise genetic counseling and also triggered cancer screening for the patient and her family members. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Functional characterization of a novel hERG variant in a family with recurrent sudden infant death syndrome: Retracting a genetic diagnosis.

    Sergeev, Valentine; Perry, Frances; Roston, Thomas M; Sanatani, Shubhayan; Tibbits, Glen F; Claydon, Thomas W

    2018-03-01

    Long QT syndrome (LQTS) is the most common cardiac ion channelopathy and has been found to be responsible for approximately 10% of sudden infant death syndrome (SIDS) cases. Despite increasing use of broad panels and now whole exome sequencing (WES) in the investigation of SIDS, the probability of identifying a pathogenic mutation in a SIDS victim is low. We report a family-based study who are afflicted by recurrent SIDS in which several members harbor a variant, p.Pro963Thr, in the C-terminal region of the human-ether-a-go-go (hERG) gene, published to be responsible for cases of LQTS type 2. Functional characterization was undertaken due to the variable phenotype in carriers, the discrepancy with published cases, and the importance of identifying a cause for recurrent deaths in a single family. Studies of the mutated ion channel in in vitro heterologous expression systems revealed that the mutation has no detectable impact on membrane surface expression, biophysical gating properties such as activation, deactivation and inactivation, or the amplitude of the protective current conducted by hERG channels during early repolarization. These observations suggest that the p.Pro963Thr mutation is not a monogenic disease-causing LQTS mutation despite evidence of co-segregation in two siblings affected by SIDS. Our findings demonstrate some of the potential pitfalls in post-mortem molecular testing and the importance of functional testing of gene variants in determining disease-causation, especially where the impacts of cascade screening can affect multiple generations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Functional Variant at the miR-214 Binding Site in the Methylenetetrahydrofolatereductase Gene Alters Susceptibility to Gastric Cancer in a Chinese Han Population

    Qiaoyun Chen

    2015-05-01

    Full Text Available Background and Aims: Single nucleotide polymorphisms in miRNA binding sites, which are located in mRNA 3' untranslated regions (3'-UTRs, were recently found to influence microRNA-target interactions. Specifically, such polymorphisms can modulatebinding affinity or create or destroy miRNA-binding sites; such variants have also been found to be associated with cancer risk. In this study, we explored the effect of a functional variant at the miR-214 binding site in the methylenetetrahydrofolate reductase gene (rs114673809 on gastric cancer (GC risk in a hospital-based case-control study in a Chinese Han population. Methods and Results: We genotyped the rs114673809 polymorphism in 345 gastric cancer patients and 376 cancer-free controls using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP technique. The functions of rs114673809 were investigated using a luciferase activity assay and validated by immunoblotting. We found that participants carrying the rs114673809 AA genotype or A allele had a significantly increased risk of gastric cancer (OR = 1.667, 95% CI = 1.044-2.660, P = 0.034; OR = 1.261, 95% CI = 1.017-1.563, P = 0.037, respectively compared to those carrying the GG genotype and G allele. In addition, rs114673809 modified the binding of hsa-miR-214 to MTHFR as well as MTHFR protein levels in gastric cancer patients. Conclusion: Our data suggested that rs114673809, which is located at the miR-214 binding site in the 3'-UTR of MTHFR, may play an important role in the development of gastric cancer in a Chinese Han population.

  1. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB (Netherlands)

    2014-06-15

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailed investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis

  2. A functional genetic variant (N521D in natriuretic peptide receptor 3 is associated with diastolic dysfunction: the prevalence of asymptomatic ventricular dysfunction study.

    Naveen L Pereira

    Full Text Available To evaluate the impact of a functional genetic variant in the natriuretic peptide clearance receptor, NPR3, on circulating natriuretic peptides (NPs and myocardial structure and function in the general community.NPR3 plays an important role in the clearance of NPs and through direct signaling mechanisms modulates smooth muscle cell function and cardiac fibroblast proliferation. A NPR3 nonsynonymous single nucleotide polymorphism (SNP rs2270915, resulting in a N521D substitution in the intracellular catalytic domain that interacts with Gi could affect receptor function. Whether this SNP is associated with alterations in NPs levels and altered cardiac structure and function is unknown.DNA samples of 1931 randomly selected residents of Olmsted County, Minnesota were genotyped. Plasma NT-proANP1-98, ANP1-28, proBNP1-108, NT-proBNP1-76, BNP1-32 and BNP3-32 levels were measured. All subjects underwent comprehensive echocardiography.Genotype frequencies for rs2270915 were as follows: (A/A 60%, A/G 36%, G/G 4%. All analyses performed were for homozygotes G/G versus wild type A/A plus the heterozygotes A/G. Diastolic dysfunction was significantly more common (p = 0.007 in the homozygotes G/G (43% than the A/A+A/G (28% group. Multivariate regression adjusted for age, sex, body mass index and hypertension demonstrated rs2270915 to be independently associated with diastolic dysfunction (odds ratio 1.94, p = 0.03. There was no significant difference in NPs levels between the 2 groups suggesting that the clearance function of the receptor was not affected.A nonsynonymous NPR3 SNP is independently associated with diastolic dysfunction and this association does not appear to be related to alterations in circulating levels of natriuretic peptides.

  3. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy

    Brown, Sara J.; Asai, Yuka; Cordell, Heather J.; Campbell, Linda E.; Zhao, Yiwei; Liao, Haihui; Northstone, Kate; Henderson, John; Alizadehfar, Reza; Ben-Shoshan, Moshe; Morgan, Kenneth; Roberts, Graham; Masthoff, Laury J. N.; Pasmans, Suzanne G. M. A.; van den Akker, Peter C.; Wijmenga, Cisca; Hourihane, Jonathan O'B.; Palmer, Colin N. A.; Lack, Gideon; Clarke, Ann; Hull, Peter R.; Irvine, Alan D.; McLean, W. H. Irwin

    Background: IgE-mediated peanut allergy is a complex trait with strong heritability, but its genetic basis is currently unknown. Loss-of-function mutations within the filaggrin gene are associated with atopic dermatitis and other atopic diseases; therefore, filaggrin is a candidate gene in the

  4. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function

    Neve, Bernadette; Fernandez-Zapico, Martin E.; Ashkenazi-Katalan, Vered; Dina, Christian; Hamid, Yasmin H.; Joly, Erik; Vaillant, Emmanuel; Benmezroua, Yamina; Durand, Emmanuelle; Bakaher, Nicolas; Delannoy, Valerie; Vaxillaire, Martine; Cook, Tiffany; Dallinga-Thie, Geesje M.; Jansen, Hans; Charles, Marie-Aline; Clément, Karine; Galan, Pilar; Hercberg, Serge; Helbecque, Nicole; Charpentier, Guillaume; Prentki, Marc; Hansen, Torben; Pedersen, Oluf; Urrutia, Raul; Melloul, Danielle; Froguel, Philippe

    2005-01-01

    KLF11 (TIEG2) is a pancreas-enriched transcription factor that has elicited significant attention because of its role as negative regulator of exocrine cell growth in vitro and in vivo. However, its functional role in the endocrine pancreas remains to be established. Here, we report, for the first

  5. Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations | Office of Cancer Genomics

    Large-scale sequencing efforts are uncovering the complexity of cancer genomes, which are composed of causal "driver" mutations that promote tumor progression along with many more pathologically neutral "passenger" events. The majority of mutations, both in known cancer drivers and uncharacterized genes, are generally of low occurrence, highlighting the need to functionally annotate the long tail of infrequent mutations present in heterogeneous cancers.

  6. B97-3c: A revised low-cost variant of the B97-D density functional method

    Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas; Grimme, Stefan

    2018-02-01

    A revised version of the well-established B97-D density functional approximation with general applicability for chemical properties of large systems is proposed. Like B97-D, it is based on Becke's power-series ansatz from 1997 and is explicitly parametrized by including the standard D3 semi-classical dispersion correction. The orbitals are expanded in a modified valence triple-zeta Gaussian basis set, which is available for all elements up to Rn. Remaining basis set errors are mostly absorbed in the modified B97 parametrization, while an established atom-pairwise short-range potential is applied to correct for the systematically too long bonds of main group elements which are typical for most semi-local density functionals. The new composite scheme (termed B97-3c) completes the hierarchy of "low-cost" electronic structure methods, which are all mainly free of basis set superposition error and account for most interactions in a physically sound and asymptotically correct manner. B97-3c yields excellent molecular and condensed phase geometries, similar to most hybrid functionals evaluated in a larger basis set expansion. Results on the comprehensive GMTKN55 energy database demonstrate its good performance for main group thermochemistry, kinetics, and non-covalent interactions, when compared to functionals of the same class. This also transfers to metal-organic reactions, which is a major area of applicability for semi-local functionals. B97-3c can be routinely applied to hundreds of atoms on a single processor and we suggest it as a robust computational tool, in particular, for more strongly correlated systems where our previously published "3c" schemes might be problematic.

  7. A model for estimating time-variant rainfall infiltration as a function of antecedent surface moisture and hydrologic soil type

    Wilkening, H. A.; Ragan, R. M.

    1982-01-01

    Recent research indicates that the use of remote sensing techniques for the measurement of near surface soil moisture could be practical in the not too distant future. Other research shows that infiltration rates, especially for average or frequent rainfall events, are extremely sensitive to the proper definition and consideration of the role of the soil moisture at the beginning of the rainfall. Thus, it is important that an easy to use, but theoretically sound, rainfall infiltration model be available if the anticipated remotely sensed soil moisture data is to be optimally utilized for hydrologic simulation. A series of numerical experiments with the Richards' equation for an array of conditions anticipated in watershed hydrology were used to develop functional relationships that describe temporal infiltration rates as a function of soil type and initial moisture conditions.

  8. Mechanisms of CFTR Functional Variants That Impair Regulated Bicarbonate Permeation and Increase Risk for Pancreatitis but Not for Cystic Fibrosis

    LaRusch, Jessica; Jung, Jinsei; General, Ignacio J.; Lewis, Michele D.; Park, Hyun Woo; Brand, Randall E.; Gelrud, Andres; Anderson, Michelle A.; Banks, Peter A.; Conwell, Darwin; Lawrence, Christopher; Romagnuolo, Joseph; Baillie, John; Alkaade, Samer; Cote, Gregory

    2014-01-01

    CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev ) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize tha...

  9. Lack of association between a functional variant of the BRCA-1 related associated protein (BRAP) gene and ischemic stroke

    Liao, Yi-Chu; Lin, Hsiu-Fen; Guo, Yuh-Cherng; Chen, Chung-Hung; Huang, Zhi-Zhang; Juo, Suh-Hang Hank; Lin, Ruey-Tay

    2013-01-01

    Abstract Background Atherosclerosis shares common pathogenic features with myocardial infarction (MI) and ischemic stroke. BRCA-1 associated protein (BRAP), a newly identified risk gene for MI, aggravates the inflammatory response in atherosclerosis. The aim of this study was to test the association between the BRAP gene and stroke in a Taiwanese population. Methods A total of 1,074 stroke patients and 1,936 controls were genotyped for the functional SNP rs11066001. In our previous studies, t...

  10. MVP immunohistochemistry is a useful adjunct in distinguishing leiomyosarcoma from leiomyoma and leiomyoma with bizarre nuclei.

    Lintel, Nicholas J; Luebker, Stephen A; Lele, Subodh M; Koepsell, Scott A

    2018-03-01

    Morphologically, distinguishing between leiomyoma (LM) and leiomyosarcoma (LMS) is not always straightforward, especially with benign variants such as bizarre leiomyoma (BLM). To identify potential markers of malignancy in uterine smooth muscle tumors, proteomic studies were performed followed by assessment of protein expression by immunohistochemistry. Archival formalin-fixed, paraffin-embedded tissues from tumors (n = 23) diagnosed as LM, BLM, and LMS (using published criteria) were selected for the study. Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry was applied to pooled samples of formalin-fixed, paraffin-embedded LM and LMS tumor tissue to assay the relative protein quantities and look for expression patterns differentiating the 2 tumor types. A total of 592 proteins were quantified, and 10 proteins were differentially expressed between LM and LMS. Select proteins were chosen for evaluation by immunohistochemistry (IHC) based on antibody availability and biologic relevance in the literature. IHC was performed on a tissue microarray, and intensity was evaluated using imaging software. Major vault protein (MVP) and catechol O-methyltransferase had 3.05 and 13.94 times higher expression in LMS relative to LM by sequential window acquisition of all theoretical fragment ion spectra mass spectrometry, respectively. By IHC, MVP (clone 1014; Santa Cruz Biotechnology, Dallas, TX) was found to be 50% sensitive and 100% specific when comparing LMS to LM. Catechol O-methyltransferase (clone FL-271; Santa Cruz Biotechnology) had a sensitivity of 38% and a specificity of 88%. Six of 7 BLM had expression of MVP similar to LM. Immunohistochemical staining for MVP is a useful adjunct in distinguishing LMS from LM and BLM in difficult cases. Copyright © 2018. Published by Elsevier Inc.

  11. Functional dissociation between anterior temporal lobe and inferior frontal gyrus in the processing of dynamic body expressions: Insights from behavioral variant frontotemporal dementia.

    Jastorff, Jan; De Winter, Francois-Laurent; Van den Stock, Jan; Vandenberghe, Rik; Giese, Martin A; Vandenbulcke, Mathieu

    2016-12-01

    Several brain regions are involved in the processing of emotional stimuli, however, the contribution of specific regions to emotion perception is still under debate. To investigate this issue, we combined behavioral testing, structural and resting state imaging in patients diagnosed with behavioral variant frontotemporal dementia (bvFTD) and age matched controls, with task-based functional imaging in young, healthy volunteers. As expected, bvFTD patients were impaired in emotion detection as well as emotion categorization tasks, testing dynamic emotional body expressions as stimuli. Interestingly, their performance in the two tasks correlated with gray matter volume in two distinct brain regions, the left anterior temporal lobe for emotion detection and the left inferior frontal gyrus (IFG) for emotion categorization. Confirming this observation, multivoxel pattern analysis in healthy volunteers demonstrated that both ROIs contained information for emotion detection, but that emotion categorization was only possible from the pattern in the IFG. Furthermore, functional connectivity analysis showed reduced connectivity between the two regions in bvFTD patients. Our results illustrate that the mentalizing network and the action observation network perform distinct tasks during emotion processing. In bvFTD, communication between the networks is reduced, indicating one possible cause underlying the behavioral symptoms. Hum Brain Mapp 37:4472-4486, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases.

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-08-01

    The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s respectively, but no productive interaction was observed with the UBC15 E2 tested. The activity of AtPUB54 [Arabidopsis thaliana (thale cress) plant U-box 54 protein] was dependent on Trp(266) in the E2-binding cleft, and the E2 selectivity was changed by substitution of this position. The function of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis-trans isomerization of peptidyl-prolyl bonds and dissolving protein aggregates. In conclusion, both typical and atypical Arabidopsis U-box proteins were active E3s. The overlap in the E3/E2 selectivity suggests that in vivo specificity is not determined only by the E3-E2 interactions, but also by other parameters, e.g. co-existence or interactions with additional domains. The biochemical functions of AtPUB49 suggest that the protein can be involved in folding or degradation of protein substrates. Similar functions can also be retained within a protein complex with separate chaperone and U-box proteins.

  13. A putative Lynch syndrome family carrying MSH2 and MSH6 variants of uncertain significance-functional analysis reveals the pathogenic one

    Kantelinen, Jukka; Hansen, Thomas V O; Kansikas, Minttu

    2011-01-01

    Inherited pathogenic mutations in the mismatch repair (MMR) genes, MSH2, MLH1, MSH6, and PMS2 predispose to Lynch syndrome (LS). However, the finding of a variant or variants of uncertain significance (VUS) in affected family members complicates the risk assessment. Here, we describe a putative LS...

  14. The functional Pro129Thr variant of the FAAH gene is not associated with various fat accumulation phenotypes in a population-based cohort of 5,801 whites

    Jensen, Dorit P; Andersen, Mette K; Hansen, Lars

    2007-01-01

    Food intake and weight gain are influenced by endocannabinoids whose actions are regulated by the fatty acid amide hydrolase (FAAH) enzyme. The homozygous Thr/Thr genotype of the functional Pro129Thr variant (rs324420) in the gene encoding FAAH was recently reported to associate with overweight a...

  15. Characterization of form variants of Xenorhabdus luminescens.

    Gerritsen, L J; de Raay, G; Smits, P H

    1992-01-01

    From Xenorhabdus luminescens XE-87.3 four variants were isolated. One, which produced a red pigment and antibiotics, was luminescent, and could take up dye from culture media, was considered the primary form (XE-red). A pink-pigmented variant (XE-pink) differed from the primary form only in pigmentation and uptake of dye. Of the two other variants, one produced a yellow pigment and fewer antibiotics (XE-yellow), while the other did not produce a pigment or antibiotics (XE-white). Both were less luminescent, did not take up dye, and had small cell and colony sizes. These two variants were very unstable and shifted to the primary form after 3 to 5 days. It was not possible to separate the primary form and the white variant completely; subcultures of one colony always contained a few colonies of the other variant. The white variant was also found in several other X. luminescens strains. DNA fingerprints showed that all four variants are genetically identical and are therefore derivatives of the same parent. Protein patterns revealed a few differences among the four variants. None of the variants could be considered the secondary form. The pathogenicity of the variants decreased in the following order: XE-red, XE-pink, XE-yellow, and XE-white. The mechanism and function of this variability are discussed. Images PMID:1622273

  16. Selection and characterization of T-cell variants lacking molecules involved in T-cell activation (T3 T-cell receptor, T44, and T11): analysis of the functional relationship among different pathways of activation

    Moretta, A.; Poggi, A.; Olive, D.; Bottino, C.; Fortis, C.; Pantaleo, G.; Moretta, L.

    1987-01-01

    A clone of the interleukin 2-producing Jurkat leukemia cell line termed JA3 (surface phenotype, T3 + , Ti + , T44 + , T11 + , T40 + ) has been used to induce and select cell variants lacking surface molecules involved in T-cell activation. Following 200 rad of γ-radiation (1 rad = 0.01 Gy), cells were treated with monoclonal antibodies (mAbs) directed to T3, Ti, T44, or T11 antigen and complement. After growth of the residual cells in culture, negative cells were cloned under limiting conditions. Depending on the specificity of the mAb used for the immunoselection, three groups of variants were obtained. (i) The use of mAbs directed to T3 or Ti resulted in cell variants that expressed the T3 - Ti - T44 + Leu1 + T11 + T40 + 4F2 + HLA class I + surface phenotype. (ii) Immunoselection with anti-T44 mAb resulted in 2 variants that shared the T3 - Ti - T44 - Leu1 - T11 - T40 - 4F2 - HLA class I + phenotype. (iii) Cell treatment with anti-T11 mAb resulted in 15 variants characterized by the lack of T11 antigen expression and of all the other T-cell-specific surface antigens. Therefore, it appears that the different sets of JA3 cell variants, like T cells at discrete stages of intrathymic differentiation, may follow a coordinated expression of surface differentiation antigens. Analysis of the functional responsiveness of the three distinct groups of JA3 cell variants to different stimuli showed that all produced interleukin 2 in response to A23187 calcium ionophore plus phorbol 12-myristate 13-acetate

  17. Detecting variants with Metabolic Design, a new software tool to design probes for explorative functional DNA microarray development

    Gravelat Fabrice

    2010-09-01

    Full Text Available Abstract Background Microorganisms display vast diversity, and each one has its own set of genes, cell components and metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes. However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm, implemented in the user-friendly program Metabolic Design, to design efficient explorative probes. Results First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR. Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic hydrocarbons. Results show that our probe design (sensitivity and explorative quality can be used to study a complex environment efficiently. Conclusions We successfully use our microarray to detect gene expression encoding enzymes involved in polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design explorative probes and monitor metabolic pathways in complex environments

  18. Functional variant in complement C3 gene promoter and genetic susceptibility to temporal lobe epilepsy and febrile seizures.

    Sarah Jamali

    Full Text Available BACKGROUND: Human mesial temporal lobe epilepsies (MTLE represent the most frequent form of partial epilepsies and are frequently preceded by febrile seizures (FS in infancy and early childhood. Genetic associations of several complement genes including its central component C3 with disorders of the central nervous system, and the existence of C3 dysregulation in the epilepsies and in the MTLE particularly, make it the C3 gene a good candidate for human MTLE. METHODOLOGY/PRINCIPAL FINDINGS: A case-control association study of the C3 gene was performed in a first series of 122 patients with MTLE and 196 controls. Four haplotypes (HAP1 to 4 comprising GF100472, a newly discovered dinucleotide repeat polymorphism [(CA8 to (CA15] in the C3 promoter region showed significant association after Bonferroni correction, in the subgroup of MTLE patients having a personal history of FS (MTLE-FS+. Replication analysis in independent patients and controls confirmed that the rare HAP4 haplotype comprising the minimal length allele of GF100472 [(CA8], protected against MTLE-FS+. A fifth haplotype (HAP5 with medium-size (CA11 allele of GF100472 displayed four times higher frequency in controls than in the first cohort of MTLE-FS+ and showed a protective effect against FS through a high statistical significance in an independent population of 97 pure FS. Consistently, (CA11 allele by its own protected against pure FS in a second group of 148 FS patients. Reporter gene assays showed that GF100472 significantly influenced C3 promoter activity (the higher the number of repeats, the lower the transcriptional activity. Taken together, the consistent genetic data and the functional analysis presented here indicate that a newly-identified and functional polymorphism in the promoter of the complement C3 gene might participate in the genetic susceptibility to human MTLE with a history of FS, and to pure FS. CONCLUSIONS/SIGNIFICANCE: The present study provides important

  19. Functional analysis of two PLA2G2A variants associated with secretory phospholipase A2-IIA levels.

    Holly J Exeter

    Full Text Available Secretory phospholipase A2 group IIA (sPLA2-IIA has been identified as a biomarker of atherosclerosis in observational and animal studies. The protein is encoded by the PLA2G2A gene and the aim of this study was to test the functionality of two PLA2G2A non-coding SNPs, rs11573156 C>G and rs3767221 T>G where the rare alleles have been previously associated with higher and lower sPLA2-IIA levels respectively.Luciferase assays, electrophoretic mobility shift assays (EMSA, and RNA expression by RT-PCR were used to examine allelic differences. For rs3767221 the G allele showed ∼55% lower luciferase activity compared to the T allele (T = 62.1 (95% CI 59.1 to 65.1 G = 27.8 (95% CI 25.0 to 30.6, p = 1.22×10⁻³⁵, and stronger EMSA binding of a nuclear protein compared to the T-allele. For rs11573156 C >G there were no luciferase or EMSA allelic differences seen. In lymphocyte cell RNA, from individuals of known rs11573156 genotype, there was no allelic RNA expression difference for exons 5 and 6, but G allele carriers (n = 7 showed a trend to lower exon 1-2 expression compared to CC individuals. To take this further, in the ASAP study (n = 223, an rs11573156 proxy (r² = 0.91 showed ∼25% higher liver expression of PLA2G2A (1.67×10⁻¹⁷ associated with the G allele. However, considering exon specific expression, the association was greatly reduced for exon 2 (4.5×10⁻⁵ compared to exons 3-6 (10⁻¹⁰ to 10⁻²⁰, suggesting rs11573156 G allele-specific exon 2 skipping.Both SNPs are functional and provide useful tools for Mendelian Randomisation to determine whether the relationship between sPLA2-IIA and coronary heart disease is causal.

  20. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitin-protein ligases

    Wiborg, Jakob; O'Shea, Charlotte; Skriver, Karen

    2008-01-01

    of the distant U-box protein, AtPUB49, representing a large family of eukaryotic proteins containing a U-box linked to a cyclophilin-like peptidyl-prolyl cis-trans isomerase domain, was characterized biochemically. AtPUB49 functioned both as a prolyl isomerase and a chaperone by catalysing cis......The variance of the U-box domain in 64 Arabidopsis thaliana (thale cress) E3s (ubiquitin-protein ligases) was used to examine the interactions between E3s and E2s (ubiquitin-conjugating enzymes). E2s and E3s are components of the ubiquitin protein degradation pathway. Seven U-box proteins were...... analysed for their ability to ubiquitinate proteins in vitro in co-operation with different E2s. All U-box domains exhibited ubiquitination activity and interacted productively with UBC4/5-type E2s. Three and four of the U-box domains mediated ubiquitin addition in the presence of UBC13 and UBC7 E2s...

  1. COMT Val(158) met genotype and striatal D(2/3) receptor binding in adults with 22q11 deletion syndrome.

    Boot, Erik

    2011-09-01

    Although catechol-O-methyltransferase (COMT) activity evidently affects dopamine function in prefrontal cortex, the contribution is assumed less significant in striatum. We studied whether a functional polymorphism in the COMT gene (Val(158) Met) influences striatal D(2\\/3) R binding ratios (D(2\\/3) R BP(ND) ) in 15 adults with 22q11 deletion syndrome and hemizygous for this gene, using single photon emission computed tomography and the selective D(2\\/3) radioligand [(123) I]IBZM. Met hemizygotes had significantly lower mean D(2\\/3) R BPND than Val hemizygotes. These preliminary data suggest that low COMT activity may affect dopamine levels in striatum in humans and this may have implications for understanding the contribution of COMT activity to psychiatric disorders.

  2. Alanine-scanning mutagenesis of human signal transducer and activator of transcription 1 to estimate loss- or gain-of-function variants.

    Kagawa, Reiko; Fujiki, Ryoji; Tsumura, Miyuki; Sakata, Sonoko; Nishimura, Shiho; Itan, Yuval; Kong, Xiao-Fei; Kato, Zenichiro; Ohnishi, Hidenori; Hirata, Osamu; Saito, Satoshi; Ikeda, Maiko; El Baghdadi, Jamila; Bousfiha, Aziz; Fujiwara, Kaori; Oleastro, Matias; Yancoski, Judith; Perez, Laura; Danielian, Silvia; Ailal, Fatima; Takada, Hidetoshi; Hara, Toshiro; Puel, Anne; Boisson-Dupuis, Stéphanie; Bustamante, Jacinta; Casanova, Jean-Laurent; Ohara, Osamu; Okada, Satoshi; Kobayashi, Masao

    2017-07-01

    Germline heterozygous mutations in human signal transducer and activator of transcription 1 (STAT1) can cause loss of function (LOF), as in patients with Mendelian susceptibility to mycobacterial diseases, or gain of function (GOF), as in patients with chronic mucocutaneous candidiasis. LOF and GOF mutations are equally rare and can affect the same domains of STAT1, especially the coiled-coil domain (CCD) and DNA-binding domain (DBD). Moreover, 6% of patients with chronic mucocutaneous candidiasis with a GOF STAT1 mutation have mycobacterial disease, obscuring the functional significance of the identified STAT1 mutations. Current computational approaches, such as combined annotation-dependent depletion, do not distinguish LOF and GOF variants. We estimated variations in the CCD/DBD of STAT1. We mutagenized 342 individual wild-type amino acids in the CCD/DBD (45.6% of full-length STAT1) to alanine and tested the mutants for STAT1 transcriptional activity. Of these 342 mutants, 201 were neutral, 30 were LOF, and 111 were GOF mutations in a luciferase assay. This assay system correctly estimated all previously reported LOF mutations (100%) and slightly fewer GOF mutations (78.1%) in the CCD/DBD of STAT1. We found that GOF alanine mutants occurred at the interface of the antiparallel STAT1 dimer, suggesting that they destabilize this dimer. This assay also precisely predicted the effect of 2 hypomorphic and dominant negative mutations, E157K and G250E, in the CCD of STAT1 that we found in 2 unrelated patients with Mendelian susceptibility to mycobacterial diseases. The systematic alanine-scanning assay is a useful tool to estimate the GOF or LOF status and the effect of heterozygous missense mutations in STAT1 identified in patients with severe infectious diseases, including mycobacterial and fungal diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density.

    Xiao, Su-Mei; Kung, Annie Wai Chee; Gao, Yi; Lau, Kam-Shing; Ma, Alvin; Zhang, Zhen-Lin; Liu, Jian-Min; Xia, Wiebo; He, Jin-Wei; Zhao, Lin; Nie, Min; Fu, Wei-Zhen; Zhang, Min-Jia; Sun, Jing; Kwan, Johnny S H; Tso, Gloria Hoi Wan; Dai, Zhi-Jie; Cheung, Ching-Lung; Bow, Cora H; Leung, Anskar Yu Hung; Tan, Kathryn Choon Beng; Sham, Pak Chung

    2012-04-01

    Our previous genome-wide association study (GWAS) in a Hong Kong Southern Chinese population with extreme bone mineral density (BMD) scores revealed suggestive association with MPP7, which ranked second after JAG1 as a candidate gene for BMD. To follow-up this suggestive signal, we replicated the top single-nucleotide polymorphism rs4317882 of MPP7 in three additional independent Asian-descent samples (n= 2684). The association of rs4317882 reached the genome-wide significance in the meta-analysis of all available subjects (P(meta)= 4.58 × 10(-8), n= 4204). Site heterogeneity was observed, with a larger effect on spine than hip BMD. Further functional studies in a zebrafish model revealed that vertebral bone mass was lower in an mpp7 knock-down model compared with the wide-type (P= 9.64 × 10(-4), n= 21). In addition, MPP7 was found to have constitutive expression in human bone-derived cells during osteogenesis. Immunostaining of murine MC3T3-E1 cells revealed that the Mpp7 protein is localized in the plasma membrane and intracytoplasmic compartment of osteoblasts. In an assessment of the function of identified variants, an electrophoretic mobility shift assay demonstrated the binding of transcriptional factor GATA2 to the risk allele 'A' but not the 'G' allele of rs4317882. An mRNA expression study in human peripheral blood mononuclear cells confirmed that the low BMD-related allele 'A' of rs4317882 was associated with lower MPP7 expression (P= 9.07 × 10(-3), n= 135). Our data suggest a genetic and functional association of MPP7 with BMD variation.

  4. Lack of association between a functional variant of the BRCA-1 related associated protein (BRAP) gene and ischemic stroke.

    Liao, Yi-Chu; Lin, Hsiu-Fen; Guo, Yuh-Cherng; Chen, Chung-Hung; Huang, Zhi-Zhang; Juo, Suh-Hang Hank; Lin, Ruey-Tay

    2013-01-28

    Atherosclerosis shares common pathogenic features with myocardial infarction (MI) and ischemic stroke. BRCA-1 associated protein (BRAP), a newly identified risk gene for MI, aggravates the inflammatory response in atherosclerosis. The aim of this study was to test the association between the BRAP gene and stroke in a Taiwanese population. A total of 1,074 stroke patients and 1,936 controls were genotyped for the functional SNP rs11066001. In our previous studies, the rare allele of this SNP has been repeatedly shown to exert a recessive effect. Therefore, in the current study, we tested for the same recessive model. First, the genotype distributions between all the controls and all the stroke cases were compared. Then to reduce heterogeneity, we explored several population subsets by selecting young stroke subjects (using 45 years of age as the cutoff point), age- and sex-comparable controls, plaque-free controls, and stroke subtypes. We did not find any significant association for the entire data set (OR = 0.94, p = 0.74) or for the subset analyses using age- and sex-comparable controls (p = 0.70) and plaque-free controls (p = 0.91). Analyses of the four stroke subtypes also failed to show any significant associations (p = 0.42 - 0.98). For both young and old subjects, the GG genotype of rs11066001 was similar in the stroke cases and unmatched controls (8.1% vs. 9.4% in young subjects and 8.0% vs. 7.8% in old subjects). Comparing stroke cases with plaque-free controls also failed to find any significant association. The BRAP polymorphism may not play an important role in ischemic stroke in the studied population.

  5. Lack of association between a functional variant of the BRCA-1 related associated protein (BRAP gene and ischemic stroke

    Liao Yi-Chu

    2013-01-01

    Full Text Available Abstract Background Atherosclerosis shares common pathogenic features with myocardial infarction (MI and ischemic stroke. BRCA-1 associated protein (BRAP, a newly identified risk gene for MI, aggravates the inflammatory response in atherosclerosis. The aim of this study was to test the association between the BRAP gene and stroke in a Taiwanese population. Methods A total of 1,074 stroke patients and 1,936 controls were genotyped for the functional SNP rs11066001. In our previous studies, the rare allele of this SNP has been repeatedly shown to exert a recessive effect. Therefore, in the current study, we tested for the same recessive model. First, the genotype distributions between all the controls and all the stroke cases were compared. Then to reduce heterogeneity, we explored several population subsets by selecting young stroke subjects (using 45 years of age as the cutoff point, age- and sex-comparable controls, plaque-free controls, and stroke subtypes. Results We did not find any significant association for the entire data set (OR = 0.94, p = 0.74 or for the subset analyses using age- and sex-comparable controls (p = 0.70 and plaque-free controls (p = 0.91. Analyses of the four stroke subtypes also failed to show any significant associations (p = 0.42 – 0.98. For both young and old subjects, the GG genotype of rs11066001 was similar in the stroke cases and unmatched controls (8.1% vs. 9.4% in young subjects and 8.0% vs. 7.8% in old subjects. Comparing stroke cases with plaque-free controls also failed to find any significant association. Conclusions The BRAP polymorphism may not play an important role in ischemic stroke in the studied population.

  6. Three novel variants (p.Glu178Lys, p.Val245Met, p.Ser250Phe) of the phenylalanine hydroxylase (PAH) gene impair protein expression and function in vitro.

    Zong, Yanan; Liu, Ning; Ma, Shanshan; Bai, Ying; Guan, Fangxia; Kong, Xiangdong

    2018-08-20

    Phenylketonuria (PKU) is the most common inherited metabolic disease, an autosomal recessive disorder affecting >10,000 newborns each year globally. It can be caused by over 1000 different naturally occurring mutations in the phenylalanine hydroxylase (PAH) gene. We analyzed three novel naturally occurring PAH gene variants: p.Glu178Lys (c.532G>A), p.Val245Met (c.733G>A) and p.Ser250Phe (c.749C>T). The mutant effect on the PAH enzyme structure and function was predicted by bioinformatics software. Vectors expressing the corresponding PAH variants were generated for expression in E. coli and in HEK293T cells. The RNA expression of the three PAH variants was measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The mutant PAH protein levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blot and enzyme-linked immunosorbent assay (ELISA). All three variants were predicted to be pathogenic by bioinformatics analysis. The transcription of the three PAH variants was similar to the wild type PAH gene in HEK293T cells. In contrast, the levels of mutant PAH proteins decreased significantly compared to the wild type control, in both E. coli and HEK293T cells. Our results indicate that the three novel PAH gene variants (p.Glu178Lys, p.Val245Met, p.Ser250Phe) impair PAH protein expression and function in prokaryotic and eukaryotic cells. Copyright © 2018. Published by Elsevier B.V.

  7. A functional variant in the stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork.

    Joan Estany

    Full Text Available There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18 ∶ 1 by desaturating stearic acid (18 ∶ 0. Here we describe a total of 18 mutations in the promoter and 3' non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18 ∶ 1/18 ∶ 0 in muscle increases from 3.78 to 4.43 in opposite homozygotes without affecting fat content (18 ∶ 0+18 ∶ 1, intramuscular fat content, and backfat thickness. No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs (g.2108C>T; g.2228T>C; g.2281A>G of the promoter region was additively associated to enhanced 18 ∶ 1/18 ∶ 0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18 ∶ 1/18 ∶ 0 and, consequently, the proportion of monounsaturated to saturated fat.

  8. Improvement of a predictive model of castration-resistant prostate cancer: functional genetic variants in TGFβ1 signaling pathway modulation.

    Ana L Teixeira

    Full Text Available Prostate cancer (PC is the most frequently diagnosed cancer in men. The acquisition of castration-resistant (CR phenotype is associated with the activation of signaling pathways mediated by growth factors. The TGFβ1 and its receptors have an important role in tumor progression, being the pro-apoptotic function modulated by the expression of TGFBR2. A single nucleotide polymorphism -875 G > A in TGFBR2 gene has been described, which may influence the expression levels of the receptor. Our purpose was to investigate the potential role of TGFBR2-875G>A in PC risk and in the response to androgen deprivation therapy (ADT. TGFBR2-875G>A polymorphism was studied by allelic discrimination using real-time polymerase chain reaction (PCR in 891 patients with PC and 874 controls. A follow-up study was undertaken to evaluate response to ADT. The TGFBR2 and SMAD7 mRNA expression were analyzed by a quantitative real-time PCR. We found that TGFBR2-875GG homozygous patients present lower expression levels of TGFBR2 mRNA (AA/AG: 2(-ΔΔCT =1.5, P=0.016. GG genotype was also associated with higher Gleason grade (OR=1.51, P=0.019 and increased risk of an early relapse after ADT (HR=1.47, P=0.024. The concordance (c index analysis showed that the definition of profiles that contains information regarding tumor characteristics associated with genetic information present an increased capacity to predict the risk for CR development (c-index model 1: 0.683 vs model 2: 0.736 vs model 3: 0.746 vs model 4: 0.759. The TGFBR2-875G>A contribution to an early relapse in ADT patients, due to changes in mRNA expression, supports the involvement of TGFβ1 pathway in CRPC. Furthermore, according to our results, we hypothesize the potential benefits of the association of genetic information in predictive models of CR development.

  9. Gain-of-function variants in NLRP1 protect against the development of diabetic kidney disease: NLRP1 inflammasome role in metabolic stress sensing?

    Soares, Jaine L S; Fernandes, Fernanda Pereira; Patente, Thiago Andrade; Monteiro, Maria B; Parisi, Maria C; Giannella-Neto, Daniel; Corrêa-Giannella, Maria L; Pontillo, Alessandra

    2018-02-01

    Although inflammasome plays a well-known role in animal models of renal injury, limited studies in humans are available, and its participation in diabetic kidney disease (DKD) remains unknown. Aim of this study was to elucidate the contribution of inflammasome genetics in the development of DKD in type-1 diabetes (T1D). The association of functional variants in inflammasome genes with DKD was assessed by multivariate analysis in a retrospective and in a prospective cohort. NLRP1 rs2670660 and rs11651270 polymorphisms were significantly associated with a decrease risk to develop DKD (p adj <0.01), and rs11651270 also with a lower risk of new renal events during follow-up (p adj =0.01). Supporting these findings, diabetes metabolites (glycated albumin and high glucose) were able to modulate NLRP1 expression. This study is the first to suggest a protective role of NLRP1 in DKD, highlighting an emerging role of NLRP1 as a homeostatic factor against metabolic stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. COMT genotype, gambling activity, and cognition

    Grant, Jon E; Leppink, Eric W; Redden, Sarah A

    2015-01-01

    adjustment and delay aversion) and the Spatial Working Memory task (total errors). This study adds to the growing literature on the role of COMT in impulsive behaviors by showing that the Val/Val genotype was associated with specific clinical and cognitive elements among young adults who gamble......Neuropsychological studies of adults with problem gambling indicate impairments across multiple cognitive domains. Catechol-O-methyltransferase (COMT) plays a unique role in the regulation of dopamine in the prefrontal cortex, and has been implicated in the cognitive dysfunction evident in problem...... gambling. This study examined adults with varying levels of gambling behavior to determine whether COMT genotype was associated with differences in gambling symptoms and cognitive functioning. 260 non-treatment-seeking adults aged 18-29 years with varying degrees of gambling behavior provided saliva...

  11. COMT ValMet moderation of cannabis-induced psychosis: a momentary assessment study of 'switching on' hallucinations in the flow of daily life.

    Henquet, C; Rosa, A; Delespaul, P; Papiol, S; Fananás, L; van Os, J; Myin-Germeys, I

    2009-02-01

    A functional polymorphism in the catechol-o-methyltransferase gene (COMT Val(158)Met) may moderate the psychosis-inducing effects of cannabis. In order to extend this finding to dynamic effects in the flow of daily life, a momentary assessment study of psychotic symptoms in response to cannabis use was conducted. The experience sampling technique was used to collect data on cannabis use and occurrence of symptoms in daily life in patients with a psychotic disorder (n = 31) and healthy controls (n = 25). Carriers of the COMT Val(158)Met Val allele, but not subjects with the Met/Met genotype, showed an increase in hallucinations after cannabis exposure, conditional on prior evidence of psychometric psychosis liability. The findings confirm that in people with psychometric evidence of psychosis liability, COMT Val(158)Met genotype moderates the association between cannabis and psychotic phenomena in the flow of daily life.

  12. Placebo effect in clinical trial design for irritable bowel syndrome.

    Shah, Eric; Pimentel, Mark

    2014-04-30

    Ongoing efforts to improve clinical trial design in irritable bowel syndrome have been hindered by high placebo response rates and ineffective outcome measures. We assessed established strategies to minimize placebo effect as well as the various ap-proaches to placebo effect which can affect trial design. These include genetic markers such as catechol-O-methyltransferase, opioidergic and dopaminergic neurobiologic theory, pre-cebo effect centered on expectancy theory, and side effect unblinding grounded on conditioning theory. We reviewed endpoints used in the study of IBS over the past decade including adequate relief and subjective global relief, emphasizing their weaknesses in fully evaluating the IBS condition, specifically their motility effects based on functional net value and relative benefit-harm based on dropouts due to adverse events. The focus of this review is to highlight ongoing efforts to improve clinical trial design which can lead to better outcomes in a real-world setting.

  13. Identification of a functional genetic variant at 16q12.1 for breast cancer risk: results from the Asia Breast Cancer Consortium.

    Jirong Long

    2010-06-01

    Full Text Available Genetic factors play an important role in the etiology of breast cancer. We carried out a multi-stage genome-wide association (GWA study in over 28,000 cases and controls recruited from 12 studies conducted in Asian and European American women to identify genetic susceptibility loci for breast cancer. After analyzing 684,457 SNPs in 2,073 cases and 2,084 controls in Chinese women, we evaluated 53 SNPs for fast-track replication in an independent set of 4,425 cases and 1,915 controls of Chinese origin. Four replicated SNPs were further investigated in an independent set of 6,173 cases and 6,340 controls from seven other studies conducted in Asian women. SNP rs4784227 was consistently associated with breast cancer risk across all studies with adjusted odds ratios (95% confidence intervals of 1.25 (1.20-1.31 per allele (P = 3.2 x 10(-25 in the pooled analysis of samples from all Asian samples. This SNP was also associated with breast cancer risk among European Americans (per allele OR = 1.19, 95% CI = 1.09-1.31, P = 1.3 x 10(-4, 2,797 cases and 2,662 controls. SNP rs4784227 is located at 16q12.1, a region identified previously for breast cancer risk among Europeans. The association of this SNP with breast cancer risk remained highly statistically significant in Asians after adjusting for previously-reported SNPs in this region. In vitro experiments using both luciferase reporter and electrophoretic mobility shift assays demonstrated functional significance of this SNP. These results provide strong evidence implicating rs4784227 as a functional causal variant for breast cancer in the locus 16q12.1 and demonstrate the utility of conducting genetic association studies in populations with different genetic architectures.

  14. Intracavernous Delivery of a Designed Angiopoietin-1 Variant Rescues Erectile Function by Enhancing Endothelial Regeneration in the Streptozotocin-Induced Diabetic Mouse

    Jin, Hai-Rong; Kim, Woo Jean; Song, Jae Sook; Piao, Shuguang; Choi, Min Ji; Tumurbaatar, Munkhbayar; Shin, Sun Hwa; Yin, Guo Nan; Koh, Gou Young; Ryu, Ji-Kan; Suh, Jun-Kyu

    2011-01-01

    OBJECTIVE Patients with diabetic erectile dysfunction often have severe endothelial dysfunction and respond poorly to oral phosphodiesterase-5 inhibitors. We examined the effectiveness of the potent angiopoietin-1 (Ang1) variant, cartilage oligomeric matrix protein (COMP)-Ang1, in promoting cavernous endothelial regeneration and restoring erectile function in diabetic animals. RESEARCH DESIGN AND METHODS Four groups of mice were used: controls; streptozotocin (STZ)-induced diabetic mice; STZ-induced diabetic mice treated with repeated intracavernous injections of PBS; and STZ-induced diabetic mice treated with COMP-Ang1 protein (days −3 and 0). Two and 4 weeks after treatment, we measured erectile function by electrical stimulation of the cavernous nerve. The penis was harvested for histologic examinations, Western blot analysis, and cGMP quantification. We also performed a vascular permeability test. RESULTS Local delivery of the COMP-Ang1 protein significantly increased cavernous endothelial proliferation, endothelial nitric oxide (NO) synthase (NOS) phosphorylation, and cGMP expression compared with that in the untreated or PBS-treated STZ-induced diabetic group. The changes in the group that received COMP-Ang1 restored erectile function up to 4 weeks after treatment. Endothelial protective effects, such as marked decreases in the expression of p47phox and inducible NOS, in the generation of superoxide anion and nitrotyrosine, and in the number of apoptotic cells in the corpus cavernosum tissue, were noted in COMP-Ang1–treated STZ-induced diabetic mice. An intracavernous injection of COMP-Ang1 completely restored endothelial cell-cell junction proteins and decreased cavernous endothelial permeability. COMP-Ang1–induced promotion of cavernous angiogenesis and erectile function was abolished by the NOS inhibitor, N-nitro-L-arginine methyl ester, but not by the NADPH oxidase inhibitor, apocynin. CONCLUSIONS These findings support the concept of cavernous

  15. Data-variant kernel analysis

    Motai, Yuichi

    2015-01-01

    Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include

  16. Social influence on associative learning: double dissociation in high-functioning autism, early-stage behavioural variant frontotemporal dementia and Alzheimer's disease.

    Kéri, Szabolcs

    2014-05-01

    Most of our learning activity takes place in a social context. I examined how social interactions influence associative learning in neurodegenerative diseases and atypical neurodevelopmental conditions primarily characterised by social cognitive and memory dysfunctions. Participants were individuals with high-functioning autism (HFA, n = 18), early-stage behavioural variant frontotemporal dementia (bvFTD, n = 16) and Alzheimer's disease (AD, n = 20). The leading symptoms in HFA and bvFTD were social and behavioural dysfunctions, whereas AD was characterised by memory deficits. Participants received three versions of a paired associates learning task. In the game with boxes test, objects were hidden in six candy boxes placed in different locations on the computer screen. In the game with faces, each box was labelled by a photo of a person. In the real-life version of the game, participants played with real persons. Individuals with HFA and bvFTD performed well in the computer games, but failed on the task including real persons. In contrast, in patients with early-stage AD, social interactions boosted paired associates learning up to the level of healthy control volunteers. Worse performance in the real life game was associated with less successful recognition of complex emotions and mental states in the Reading the Mind in the Eyes Test. Spatial span did not affect the results. When social cognition is impaired, but memory systems are less compromised (HFA and bvFTD), real-life interactions disrupt associative learning; when disease process impairs memory systems but social cognition is relatively intact (early-stage AD), social interactions have a beneficial effect on learning and memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A robust variant of block Jacobi-Davidson for extracting a large number of eigenpairs: Application to grid-based real-space density functional theory

    Lee, M.; Leiter, K.; Eisner, C.; Breuer, A.; Wang, X.

    2017-09-01

    In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.

  18. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

    Rothmond Debora A

    2012-02-01

    Full Text Available Abstract Background Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5, catechol-O-methyltransferase, and monoamine oxidase (A and B in the developing human DLPFC (6 weeks -50 years. Results Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p O-methyltransferase (p = 0.024 were significantly higher in neonates and infants as was catechol-O-methyltransferase protein (32 kDa, p = 0.027. In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002 and dopamine D1 receptor protein expression increased throughout development (p Conclusions We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.

  19. Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers

    French, Juliet D.; Ghoussaini, Maya; Edwards, Stacey L.; Meyer, Kerstin B.; Michailidou, Kyriaki; Ahmed, Shahana; Khan, Sofia; Maranian, Mel J.; O’Reilly, Martin; Hillman, Kristine M.; Betts, Joshua A.; Carroll, Thomas; Bailey, Peter J.; Dicks, Ed; Beesley, Jonathan; Tyrer, Jonathan; Maia, Ana-Teresa; Beck, Andrew; Knoblauch, Nicholas W.; Chen, Constance; Kraft, Peter; Barnes, Daniel; González-Neira, Anna; Alonso, M. Rosario; Herrero, Daniel; Tessier, Daniel C.; Vincent, Daniel; Bacot, Francois; Luccarini, Craig; Baynes, Caroline; Conroy, Don; Dennis, Joe; Bolla, Manjeet K.; Wang, Qin; Hopper, John L.; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Verhoef, Senno; Cornelissen, Sten; Muir, Kenneth; Lophatananon, Artitaya; Stewart-Brown, Sarah; Siriwanarangsan, Pornthep; Fasching, Peter A.; Loehberg, Christian R.; Ekici, Arif B.; Beckmann, Matthias W.; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Aitken, Zoe; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Marme, Frederik; Schneeweiss, Andreas; Sohn, Christof; Burwinkel, Barbara; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Menegaux, Florence; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Milne, Roger L.; Zamora, M. Pilar; Arias Perez, Jose Ignacio; Benitez, Javier; Anton-Culver, Hoda; Brenner, Hermann; Müller, Heiko; Arndt, Volker; Stegmaier, Christa; Meindl, Alfons; Lichtner, Peter; Schmutzler, Rita K.; Engel, Christoph; Brauch, Hiltrud; Hamann, Ute; Justenhoven, Christina; Aaltonen, Kirsimari; Heikkilä, Päivi; Aittomäki, Kristiina; Blomqvist, Carl; Matsuo, Keitaro; Ito, Hidemi; Iwata, Hiroji; Sueta, Aiko; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Wu, Anna H.; Tseng, Chiu-chen; Van Den Berg, David; Stram, Daniel O.; Lambrechts, Diether; Peeters, Stephanie; Smeets, Ann; Floris, Giuseppe; Chang-Claude, Jenny; Rudolph, Anja; Nickels, Stefan; Flesch-Janys, Dieter; Radice, Paolo; Peterlongo, Paolo; Bonanni, Bernardo; Sardella, Domenico; Couch, Fergus J.; Wang, Xianshu; Pankratz, Vernon S.; Lee, Adam; Giles, Graham G.; Severi, Gianluca; Baglietto, Laura; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Teo, Soo Hwang; Yip, Cheng Har; Ng, Char-Hong; Vithana, Eranga Nishanthie; Kristensen, Vessela; Zheng, Wei; Deming-Halverson, Sandra; Shrubsole, Martha; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Andrulis, Irene L.; Knight, Julia A.; Glendon, Gord; Mulligan, Anna Marie; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Figueroa, Jonine; Chanock, Stephen J.; Lissowska, Jolanta; Czene, Kamila; Klevebring, Daniel; Schoof, Nils; Hooning, Maartje J.; Martens, John W.M.; Collée, J. Margriet; Tilanus-Linthorst, Madeleine; Hall, Per; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Shu, Xiao-Ou; Lu, Wei; Gao, Yu-Tang; Cai, Hui; Cox, Angela; Balasubramanian, Sabapathy P.; Blot, William; Signorello, Lisa B.; Cai, Qiuyin; Pharoah, Paul D.P.; Healey, Catherine S.; Shah, Mitul; Pooley, Karen A.; Kang, Daehee; Yoo, Keun-Young; Noh, Dong-Young; Hartman, Mikael; Miao, Hui; Sng, Jen-Hwei; Sim, Xueling; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Sangrajrang, Suleeporn; Gaborieau, Valerie; McKay, James; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Godwin, Andrew K.; Shen, Chen-Yang; Hsiung, Chia-Ni; Wu, Pei-Ei; Chen, Shou-Tung; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Schoemaker, Minouk J.; Ponder, Bruce A.J.; Nevanlinna, Heli; Brown, Melissa A.; Chenevix-Trench, Georgia; Easton, Douglas F.; Dunning, Alison M.

    2013-01-01

    Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1. PMID:23540573

  20. Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus

    Mahajan, Anubha; Sim, Xueling; Ng, Hui Jin

    2015-01-01

    . To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P... and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent...

  1. Naturally Occurring Missense MRGPRX2 Variants Display Loss of Function Phenotype for Mast Cell Degranulation in Response to Substance P, Hemokinin-1, Human β-Defensin-3, and Icatibant.

    Alkanfari, Ibrahim; Gupta, Kshitij; Jahan, Tahsin; Ali, Hydar

    2018-05-23

    Human mast cells (MCs) express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR X2 (MRGPRX2). Activation of this receptor by a diverse group of cationic ligands such as neuropeptides, host defense peptides, and Food and Drug Administration-approved drugs contributes to chronic inflammatory diseases and pseudoallergic drug reactions. For most GPCRs, the extracellular (ECL) domains and their associated transmembrane (TM) domains display the greatest structural diversity and are responsible for binding different ligands. The goal of the current study was to determine if naturally occurring missense variants within MRGPRX2's ECL/TM domains contribute to gain or loss of function phenotype for MC degranulation in response to neuropeptides (substance P and hemokinin-1), a host defense peptide (human β-defensin-3) and a Food and Drug Administration-approved cationic drug (bradykinin B2 receptor antagonist, icatibant). We have identified eight missense variants within MRGPRX2's ECL/TM domains from publicly available exome-sequencing databases. We investigated the ability of MRGPRX2 ligands to induce degranulation in rat basophilic leukemia-2H3 cells individually expressing these naturally occurring MRGPRX2 missense variants. Using stable and transient transfections, we found that all variants express in rat basophilic leukemia cells. However, four natural MRGPRX2 variants, G165E (rs141744602), D184H (rs372988289), W243R (rs150365137), and H259Y (rs140862085) failed to respond to any of the ligands tested. Thus, diverse MRGPRX2 ligands use common sites on the receptor to induce MC degranulation. These findings have important clinical implications for MRGPRX2 and MC-mediated pseudoallergy and chronic inflammatory diseases. Copyright © 2018 by The American Association of Immunologists, Inc.

  2. Targeted Resequencing and Functional Testing Identifies Low-Frequency Missense Variants in the Gene Encoding GARP as Significant Contributors to Atopic Dermatitis Risk.

    Manz, Judith; Rodríguez, Elke; ElSharawy, Abdou; Oesau, Eva-Maria; Petersen, Britt-Sabina; Baurecht, Hansjörg; Mayr, Gabriele; Weber, Susanne; Harder, Jürgen; Reischl, Eva; Schwarz, Agatha; Novak, Natalija; Franke, Andre; Weidinger, Stephan

    2016-12-01

    Gene-mapping studies have consistently identified a susceptibility locus for atopic dermatitis and other inflammatory diseases on chromosome band 11q13.5, with the strongest association observed for a common variant located in an intergenic region between the two annotated genes C11orf30 and LRRC32. Using a targeted resequencing approach we identified low-frequency and rare missense mutations within the LRRC32 gene encoding the protein GARP, a receptor on activated regulatory T cells that binds latent transforming growth factor-β. Subsequent association testing in more than 2,000 atopic dermatitis patients and 2,000 control subjects showed a significant excess of these LRRC32 variants in individuals with atopic dermatitis. Structural protein modeling and bioinformatic analysis predicted a disruption of protein transport upon these variants, and overexpression assays in CD4 + CD25 - T cells showed a significant reduction in surface expression of the mutated protein. Consistently, flow cytometric (FACS) analyses of different T-cell subtypes obtained from atopic dermatitis patients showed a significantly reduced surface expression of GARP and a reduced conversion of CD4 + CD25 - T cells into regulatory T cells, along with lower expression of latency-associated protein upon stimulation in carriers of the LRRC32 A407T variant. These results link inherited disturbances of transforming growth factor-β signaling with atopic dermatitis risk. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Development of in vitro and in vivo functional assays to enable diagnosis of Variants of Uncertain Significance in the common cancer predisposition Lynch syndrome

    Drost, Mark

    2014-01-01

    Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose

  4. Functional Analysis of a Carotid Intima-Media Thickness Locus Implicates BCAR1 and Suggests a Causal Variant

    Boardman-Pretty, Freya; Smith, Andrew J. P.; Cooper, Jackie

    2015-01-01

    disequilibrium (r2≥0.8) with rs4888378 were identified from 1000 Genome Project. ENCODE regulatory chromatin marks were used to create a shortlist of 6 possible regulatory variants. Electrophoretic mobility shift assays on the shortlist detected allele-specific protein binding to the lead SNP rs4888378...

  5. Functional variants at the 11q13 risk locus for breast cancer regulate cyclin D1 expression through long-range enhancers

    French, Juliet D; Ghoussaini, Maya; Edwards, Stacey L

    2013-01-01

    Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causativ...

  6. Identification of Functional Variants for Cleft Lip with or without Cleft Palate in or near PAX7, FGFR2, and NOG by Targeted Sequencing of GWAS Loci

    Leslie, Elizabeth J; Taub, Margaret A; Liu, Huan

    2015-01-01

    Although genome-wide association studies (GWASs) for nonsyndromic orofacial clefts have identified multiple strongly associated regions, the causal variants are unknown. To address this, we selected 13 regions from GWASs and other studies, performed targeted sequencing in 1,409 Asian and European...

  7. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans

    Acuña-Alonzo, Víctor; Flores-Dorantes, Teresa; Kruit, Janine K; Villarreal-Molina, Teresa; Arellano-Campos, Olimpia; Hünemeier, Tábita; Moreno-Estrada, Andrés; Ortiz-López, Ma Guadalupe; Villamil-Ramírez, Hugo; León-Mimila, Paola; Villalobos-Comparan, Marisela; Jacobo-Albavera, Leonor; Ramírez-Jiménez, Salvador; Sikora, Martin; Zhang, Lin-Hua; Pape, Terry D; Granados-Silvestre, Ma de Angeles; Montufar-Robles, Isela; Tito-Alvarez, Ana M; Zurita-Salinas, Camilo; Bustos-Arriaga, José; Cedillo-Barrón, Leticia; Gómez-Trejo, Celta; Barquera-Lozano, Rodrigo; Vieira-Filho, Joao P; Granados, Julio; Romero-Hidalgo, Sandra; Huertas-Vázquez, Adriana; González-Martín, Antonio; Gorostiza, Amaya; Bonatto, Sandro L; Rodríguez-Cruz, Maricela; Wang, Li; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A; Lisker, Ruben; Moises, Regina S; Menjivar, Marta; Salzano, Francisco M; Knowler, William C; Bortolini, M Cátira; Hayden, Michael R; Baier, Leslie J; Canizales-Quinteros, Samuel

    2010-01-01

    It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was

  8. Contributions of Function-Altering Variants in Genes Implicated in Pubertal Timing and Body Mass for Self-Limited Delayed Puberty.

    Howard, Sasha R; Guasti, Leonardo; Poliandri, Ariel; David, Alessia; Cabrera, Claudia P; Barnes, Michael R; Wehkalampi, Karoliina; O'Rahilly, Stephen; Aiken, Catherine E; Coll, Anthony P; Ma, Marcella; Rimmington, Debra; Yeo, Giles S H; Dunkel, Leo

    2018-02-01

    Self-limited delayed puberty (DP) is often associated with a delay in physical maturation, but although highly heritable the causal genetic factors remain elusive. Genome-wide association studies of the timing of puberty have identified multiple loci for age at menarche in females and voice break in males, particularly in pathways controlling energy balance. We sought to assess the contribution of rare variants in such genes to the phenotype of familial DP. We performed whole-exome sequencing in 67 pedigrees (125 individuals with DP and 35 unaffected controls) from our unique cohort of familial self-limited DP. Using a whole-exome sequencing filtering pipeline one candidate gene [fat mass and obesity-associated gene (FTO)] was identified. In silico, in vitro, and mouse model studies were performed to investigate the pathogenicity of FTO variants and timing of puberty in FTO+/- mice. We identified potentially pathogenic, rare variants in genes in linkage disequilibrium with genome-wide association studies of age at menarche loci in 283 genes. Of these, five genes were implicated in the control of body mass. After filtering for segregation with trait, one candidate, FTO, was retained. Two FTO variants, found in 14 affected individuals from three families, were also associated with leanness in these patients with DP. One variant (p.Leu44Val) demonstrated altered demethylation activity of the mutant protein in vitro. Fto+/- mice displayed a significantly delayed timing of pubertal onset (P puberty in the general population may contribute to the pathogenesis of self-limited DP. Copyright © 2017 Endocrine Society

  9. Functional Investigation of a Non-coding Variant Associated with Adolescent Idiopathic Scoliosis in Zebrafish: Elevated Expression of the Ladybird Homeobox Gene Causes Body Axis Deformation.

    Long Guo

    2016-01-01

    Full Text Available Previously, we identified an adolescent idiopathic scoliosis susceptibility locus near human ladybird homeobox 1 (LBX1 and FLJ41350 by a genome-wide association study. Here, we characterized the associated non-coding variant and investigated the function of these genes. A chromosome conformation capture assay revealed that the genome region with the most significantly associated single nucleotide polymorphism (rs11190870 physically interacted with the promoter region of LBX1-FLJ41350. The promoter in the direction of LBX1, combined with a 590-bp region including rs11190870, had higher transcriptional activity with the risk allele than that with the non-risk allele in HEK 293T cells. The ubiquitous overexpression of human LBX1 or either of the zebrafish lbx genes (lbx1a, lbx1b, and lbx2, but not FLJ41350, in zebrafish embryos caused body curvature followed by death prior to vertebral column formation. Such body axis deformation was not observed in transcription activator-like effector nucleases mediated knockout zebrafish of lbx1b or lbx2. Mosaic expression of lbx1b driven by the GATA2 minimal promoter and the lbx1b enhancer in zebrafish significantly alleviated the embryonic lethal phenotype to allow observation of the later onset of the spinal curvature with or without vertebral malformation. Deformation of the embryonic body axis by lbx1b overexpression was associated with defects in convergent extension, which is a component of the main axis-elongation machinery in gastrulating embryos. In embryos overexpressing lbx1b, wnt5b, a ligand of the non-canonical Wnt/planar cell polarity (PCP pathway, was significantly downregulated. Injection of mRNA for wnt5b or RhoA, a key downstream effector of Wnt/PCP signaling, rescued the defective convergent extension phenotype and attenuated the lbx1b-induced curvature of the body axis. Thus, our study presents a novel pathological feature of LBX1 and its zebrafish homologs in body axis deformation at

  10. Functional Analyses of a Novel Splice Variant in the CHD7 Gene, Found by Next Generation Sequencing, Confirm Its Pathogenicity in a Spanish Patient and Diagnose Him with CHARGE Syndrome

    Olatz Villate

    2018-01-01

    Full Text Available Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.

  11. Use of an in vivo FTA assay to assess the magnitude, functional avidity and epitope variant cross-reactivity of T cell responses following HIV-1 recombinant poxvirus vaccination.

    Danushka K Wijesundara

    Full Text Available Qualitative characteristics of cytotoxic CD8+ T cells (CTLs are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV-HIV prime followed by a recombinant vaccinia virus (VV-HIV booster were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold, to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting.

  12. Use of an in vivo FTA assay to assess the magnitude, functional avidity and epitope variant cross-reactivity of T cell responses following HIV-1 recombinant poxvirus vaccination.

    Wijesundara, Danushka K; Ranasinghe, Charani; Jackson, Ronald J; Lidbury, Brett A; Parish, Christopher R; Quah, Benjamin J C

    2014-01-01

    Qualitative characteristics of cytotoxic CD8+ T cells (CTLs) are important in measuring the effectiveness of CTLs in controlling HIV-1 infections. Indeed, in recent studies patients who are naturally resistant to HIV-1 infections have been shown to possess CTLs that are of high functional avidity and have a high capacity to recognize HIV epitope variants, when compared to HIV-1 infection progressors. When developing efficacious vaccines, assays that can effectively measure CTL quality specifically in vivo are becoming increasingly important. Here we report the use of a recently developed high-throughput multi-parameter technique, known as the fluorescent target array (FTA) assay, to simultaneously measure CTL killing magnitude, functional avidity and epitope variant cross-reactivity in real time in vivo. In the current study we have applied the FTA assay as a screening tool to assess a large cohort of over 20 different HIV-1 poxvirus vaccination strategies in mice. This screen revealed that heterologous poxvirus prime-boost vaccination regimes (i.e., recombinant fowlpox (FPV)-HIV prime followed by a recombinant vaccinia virus (VV)-HIV booster) were the most effective in generating high quality CTL responses in vivo. In conclusion, we have demonstrated how the FTA assay can be utilized as a cost effective screening tool (by reducing the required number of animals by >100 fold), to evaluate a large range of HIV-1 vaccination strategies in terms of CTL avidity and variant cross-reactivity in an in vivo setting.

  13. Functional Analyses of a Novel Splice Variant in the CHD7 Gene, Found by Next Generation Sequencing, Confirm Its Pathogenicity in a Spanish Patient and Diagnose Him with CHARGE Syndrome.

    Villate, Olatz; Ibarluzea, Nekane; Fraile-Bethencourt, Eugenia; Valenzuela, Alberto; Velasco, Eladio A; Grozeva, Detelina; Raymond, F L; Botella, María P; Tejada, María-Isabel

    2018-01-01

    Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS) of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T) was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD ® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG) 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.

  14. A putative Lynch syndrome family carrying MSH2 and MSH6 variants of uncertain significance-functional analysis reveals the pathogenic one

    Kantelinen, Jukka; Hansen, Thomas V O; Kansikas, Minttu

    2011-01-01

    Inherited pathogenic mutations in the mismatch repair (MMR) genes, MSH2, MLH1, MSH6, and PMS2 predispose to Lynch syndrome (LS). However, the finding of a variant or variants of uncertain significance (VUS) in affected family members complicates the risk assessment. Here, we describe a putative LS...... and the tumor pathological data suggested that the missense variation in MSH2, the more common susceptibility gene in LS, would be the predisposing alteration. However, MSH2 VUS was surprisingly found to be MMR proficient in an in vitro MMR assay and a tolerant alteration in silico. By supplying evidence...... identified VUS before predictive gene testing and genetic counseling are offered to a family....

  15. The Effect of Turmeric (Curcuma longa Extract on the Functionality of the Solute Carrier Protein 22 A4 (SLC22A4 and Interleukin-10 (IL-10 Variants Associated with Inflammatory Bowel Disease

    Mark J. McCann

    2014-10-01

    Full Text Available Inflammatory bowel disease (IBD is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual’s capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152 and interleukin-10 (IL-10, rs1800896 associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F and increasing anti-inflammatory cytokine gene promoter activity (IL-10, −1082A. The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.

  16. The effect of turmeric (Curcuma longa) extract on the functionality of the solute carrier protein 22 A4 (SLC22A4) and interleukin-10 (IL-10) variants associated with inflammatory bowel disease.

    McCann, Mark J; Johnston, Sarah; Reilly, Kerri; Men, Xuejing; Burgess, Elaine J; Perry, Nigel B; Roy, Nicole C

    2014-10-13

    Inflammatory bowel disease (IBD) is a chronic relapsing disease. Genetic predisposition to the disease reduces an individual's capacity to respond appropriately to environmental challenges in the intestine leading to inappropriate inflammation. IBD patients often modify their diet to mitigate or reduce the severity of inflammation. Turmeric (Curcuma longa L., Zingiberaceae) has historically been used in Chinese, Hindu, and Ayurvedic medicine over several centuries to treat inflammatory disorders. To understand how turmeric may influence the consequences of a genetic predisposition to inappropriate inflammation, we used HEK293 cells to examine the in vitro capacity of turmeric extract and fractions to affect the functionality of two gene variants, solute carrier protein 22 A4 (SLC22A4, rs1050152) and interleukin-10 (IL-10, rs1800896) associated with IBD. We found that a turmeric extract and several chromatographically separated fractions beneficially affected the variants of SLC22A4 and IL-10 associated with IBD, by reducing inappropriate epithelial cell transport (SLC22A4, 503F) and increasing anti-inflammatory cytokine gene promoter activity (IL-10, -1082A). The effect of turmeric on the IL-10 variant was strongly associated with the curcumin content of the extract and its fractions.

  17. Variants of cellobiohydrolases

    Bott, Richard R.; Foukaraki, Maria; Hommes, Ronaldus Wilhelmus; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Nikolaev, Igor; Sandgren, Mats; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2018-04-10

    Disclosed are a number of homologs and variants of Hypocrea jecorina Ce17A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  18. Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic

    Ahlborn, Lise B; Dandanell, Mette; Steffensen, Ane Y

    2015-01-01

    by functional analysis at the protein level. Results from a validated mini-gene splicing assay indicated that nine BRCA1 variants resulted in splicing aberrations leading to truncated transcripts and thus can be considered pathogenic (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5072C>T/p.Thr1691Ile, c......Pathogenic germline mutations in the BRCA1 gene predispose carriers to early onset breast and ovarian cancer. Clinical genetic screening of BRCA1 often reveals variants with uncertain clinical significance, complicating patient and family management. Therefore, functional examinations are urgently...... needed to classify whether these uncertain variants are pathogenic or benign. In this study, we investigated 14 BRCA1 variants by in silico splicing analysis and mini-gene splicing assay. All 14 alterations were missense variants located within the BRCT domain of BRCA1 and had previously been examined...

  19. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus

    Zeng, Chenjie; Guo, Xingyi; Long, Jirong; Kuchenbaecker, Karoline B.; Droit, Arnaud; Michailidou, Kyriaki; Ghoussaini, Maya; Kar, Siddhartha; Freeman, Adam; Hopper, John L.; Milne, Roger L.; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Agata, Simona

    2016-01-01

    Background: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. Method: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast C...

  20. Analysis of Primary Structural Determinants That Distinguish the Centromere-Specific Function of Histone Variant Cse4p from Histone H3

    Keith, Kevin C.; Baker, Richard E.; Chen, Yinhuai; Harris, Kendra; Stoler, Sam; Fitzgerald-Hayes, Molly

    1999-01-01

    Cse4p is a variant of histone H3 that has an essential role in chromosome segregation and centromere chromatin structure in budding yeast. Cse4p has a unique 135-amino-acid N terminus and a C-terminal histone-fold domain that is more than 60% identical to histone H3 and the mammalian centromere protein CENP-A. Cse4p and CENP-A have biochemical properties similar to H3 and probably replace H3 in centromere-specific nucleosomes in yeasts and mammals, respectively. In order to identify regions o...

  1. Migraine Variants in Children

    ... Headaches in Children FAQ Migraine Variants In Children Children Get Migraines Too! Learn More Migraine Information Find Help Doctors & Resources Get Connected Join the Conversation Follow Us on Social Media Company About News Resources Privacy Policy Contact Phone: ...

  2. Microsatellite Instability Use in Mismatch Repair Gene Sequence Variant Classification

    Bryony A. Thompson

    2015-03-01

    Full Text Available Inherited mutations in the DNA mismatch repair genes (MMR can cause MMR deficiency and increased susceptibility to colorectal and endometrial cancer. Microsatellite instability (MSI is the defining molecular signature of MMR deficiency. The clinical classification of identified MMR gene sequence variants has a direct impact on the management of patients and their families. For a significant proportion of cases sequence variants of uncertain clinical significance (also known as unclassified variants are identified, constituting a challenge for genetic counselling and clinical management of families. The effect on protein function of these variants is difficult to interpret. The presence or absence of MSI in tumours can aid in determining the pathogenicity of associated unclassified MMR gene variants. However, there are some considerations that need to be taken into account when using MSI for variant interpretation. The use of MSI and other tumour characteristics in MMR gene sequence variant classification will be explored in this review.

  3. Genetic and functional identification of the likely causative variant for cholesterol gallstone disease at the ABCG5/8 lithogenic locus

    von Kampen, Oliver; Buch, Stephan; Nothnagel, Michael

    2013-01-01

    The sterolin locus (ABCG5/ABCG8) confers susceptibility for cholesterol gallstone disease in humans. Both the responsible variant and the molecular mechanism causing an increased incidence of gallstones in these patients have as yet not been identified. Genetic mapping utilized patient samples from...... Germany (2,808 cases, 2,089 controls), Chile (680 cases, 442 controls), Denmark (366 cases, 766 controls), India (247 cases, 224 controls), and China (280 cases, 244 controls). Analysis of allelic imbalance in complementary DNA (cDNA) samples from human liver (n = 22) was performed using pyrosequencing....... Transiently transfected HEK293 cells were used for [(3) H]-cholesterol export assays, analysis of protein expression, and localization of allelic constructs. Through fine mapping in German and Chilean samples, an ∼250 kB disease-associated interval could be defined for this locus. Lack of allelic imbalance...

  4. TREM2 Variants in Alzheimer's Disease

    Guerreiro, Rita; Wojtas, Aleksandra; Bras, Jose; Carrasquillo, Minerva; Rogaeva, Ekaterina; Majounie, Elisa; Cruchaga, Carlos; Sassi, Celeste; Kauwe, John S.K.; Younkin, Steven; Hazrati, Lilinaz; Collinge, John; Pocock, Jennifer; Lashley, Tammaryn; Williams, Julie; Lambert, Jean-Charles; Amouyel, Philippe; Goate, Alison; Rademakers, Rosa; Morgan, Kevin; Powell, John; St. George-Hyslop, Peter; Singleton, Andrew; Hardy, John

    2013-01-01

    BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.) PMID:23150934

  5. Association of functional genetic variants of A-kinase anchoring protein 10 with QT interval length in full-term Polish newborns.

    Łoniewska, Beata; Kaczmarczyk, Mariusz; Clark, Jeremy Simon; Gorący, Iwona; Horodnicka-Józwa, Anita; Ciechanowicz, Andrzej

    2015-03-16

    A-Kinase Anchoring Proteins (AKAPs) coordinate the specificity of protein kinase A signaling by localizing the kinase to subcellular sites. The 1936G (V646) AKAP10 allele has been associated in adults with low cholinergic/vagus nerve sensitivity, shortened PR intervals in ECG recording and in newborns with increased blood pressure and higher cholesterol cord blood concentration. The aim of the study was to answer the question of whether 1936A > G AKAP10 polymorphism is associated with the newborn electrocardiographic variables. Electrocardiograms were recorded from 114 consecutive healthy Polish newborns (55 females, 59 males), born after 37 gestational weeks to healthy women with uncomplicated pregnancies. All recordings were made between 3(rd) and 7(th) day of life to avoid QT variability. The heart rate per minute and duration of PR, QRS, RR and QT intervals were usually measured. The ECGs were evaluated independently by three observers. At birth, cord blood of neonates was obtained for isolation of genomic DNA. The distribution of anthropometric and electrocardiographic variables in our cohort approached normality (skewness G variant and QTc interval in Polish newborns.

  6. Identification of Splice Variants, Targeted MicroRNAs and Functional Single Nucleotide Polymorphisms of the BOLA-DQA2 Gene in Dairy Cattle

    Hou, Qinlei; Huang, Jinming; Ju, Zhihua; Li, Qiuling; Li, Liming; Wang, Changfa; Sun, Tao; Wang, Lingling; Hou, Minghai

    2012-01-01

    Major histocompatibility complex, class II, DQ alpha 2, also named BOLA-DQA2, belongs to the Bovine Leukocyte Antigen (BOLA) class II genes which are involved in the immune response. To explore the variability of the BOLA-DQA2 gene and resistance to mastitis in cows, the splice variants (SV), targeted microRNAs (miRNAs), and single nucleotide polymorphisms (SNPs) were identified in this study. A new SV (BOLA-DQA2-SV1) lacking part of exon 3 (195 bp) and two 3′-untranslated regions (UTR) (52 bp+167 bp) of the BOLA-DQA2 gene was found in the healthy and mastitis-infected mammary gland tissues. Four of 13 new SNPs and multiple nucleotide polymorphisms resulted in amino acid changes in the protein and SNP (c. +1283 C>T) may affect the binding to the seed sequence of bta-miR-2318. Further, we detected the relative expressions of two BOLA-DQA2 transcripts and five candidated microRNAs binding to the 3′-UTR of two transcripts in the mammary gland tissues in dairy cattle by using the quantitative real-time polymerase chain reaction. The result showed that expression of the BOLA-DQA2-SV1 mRNA was significantly upregulated 2.67-fold (pmastitis-infected mammary tissues (n=5) compared with the healthy mammary gland mammary tissues (n=5). Except for bta-miR-1777a, miRNA expression (bta-miR-296, miR-2430, and miR-671) was upregulated 1.75 to 2.59-fold (pmastitis cows. Our findings reveal that BOLA-DQA2-SV1 may play an important role in the mastitis resistance in dairy cattle. Whether the SNPs affect the structure of the BOLA-DQA2 gene or association with mastitis resistance is unknown and warrants further investigation. PMID:22084936

  7. Cre-loxP–mediated Inactivation of the α6A Integrin Splice Variant In Vivo: Evidence for a Specific Functional Role of α6A in Lymphocyte Migration but Not in Heart Development

    Gimond, Clotilde; Baudoin, Christian; van der Neut, Ronald; Kramer, Duco; Calafat, Jero; Sonnenberg, Arnoud

    1998-01-01

    Two splice variants of the α6 integrin subunit, α6A and α6B, with different cytoplasmic domains, have previously been described. While α6B is expressed throughout the development of the mouse, the expression of α6A begins at 8.5 days post coitum and is initially restricted to the myocardium. Later in ontogeny, α6A is found in various epithelia and in certain cells of the immune system. In this study, we have investigated the function of α6A in vivo by generating knockout mice deficient for this splice variant. The Cre- loxP system of the bacteriophage P1 was used to specifically remove the exon encoding the cytoplasmic domain of α6A in embryonic stem cells, and the deletion resulted in the expression of α6B in all tissues that normally express α6A. We show that α6A−/− mice develop normally and are fertile. The substitution of α6A by α6B does not impair the development and function of the heart, hemidesmosome formation in the epidermis, or keratinocyte migration. Furthermore, T cells differentiated normally in α6A−/− mice. However, the substitution of α6A by α6B leads to a decrease in the migration of lymphocytes through laminin-coated Transwell filters and to a reduction of the number of T cells isolated from the peripheral and mesenteric lymph nodes. Lymphocyte homing to the lymph nodes, which involves various types of integrin–ligand interactions, was not affected in the α6A knockout mice, indicating that the reduced number of lymph node cells could not be directly attributed to defects in lymphocyte trafficking. Nevertheless, the expression of α6A might be necessary for optimal lymphocyte migration on laminin in certain pathological conditions. PMID:9763436

  8. Myocardial function and perfusion in the CREST syndrome variant of progressive systemic sclerosis. Exercise radionuclide evaluation and comparison with diffuse scleroderma

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.; Owens, G.R.; Steen, V.D.; Rodnan, G.P.

    1984-01-01

    Myocardial function and perfusion were evaluated in 22 patients with progressive systemic sclerosis with the CREST syndrome using exercise and radionuclide techniques, pulmonary function testing, and chest roentgenography. The results were compared with a similar study of 26 patients with progressive systemic sclerosis with diffuse scleroderma. The prevalence of thallium perfusion abnormalities was similar in the groups with CREST syndrome and diffuse scleroderma, (64 percent versus 77 percent), but the defects were significantly smaller in the CREST syndrome (p less than 0.01). Reperfusion thallium defects in the absence of extramural coronary artery disease were seen in 38 percent of patients with diffuse scleroderma. This finding was not seen in any of the patients with the CREST syndrome. In diffuse scleroderma, abnormalities of both right and left ventricular function were related to larger thallium perfusion defects. In the CREST syndrome, abnormalities of left ventricular function were minor, were seen only during exercise, and were unrelated to thallium perfusion defects. Abnormal resting right ventricular function was seen in 36 percent of the patients with the CREST syndrome and was associated with an isolated decrease in diffusing capacity of carbon monoxide. It is concluded that the cardiac manifestations of the CREST syndrome are distinct from those found in diffuse scleroderma. Unlike diffuse scleroderma, abnormalities of left ventricular function in the CREST syndrome are minor and are unrelated to abnormalities of coronary perfusion. Right ventricular dysfunction in the CREST syndrome appears to be primarily related to pulmonary vascular disease

  9. Histone variants and lipid metabolism

    Borghesan, Michela; Mazzoccoli, Gianluigi; Sheedfar, Fareeba; Oben, Jude; Pazienza, Valerio; Vinciguerra, Manlio

    2014-01-01

    Within nucleosomes, canonical histones package the genome, but they can be opportunely replaced with histone variants. The incorporation of histone variants into the nucleosome is a chief cellular strategy to regulate transcription and cellular metabolism. In pathological terms, cellular steatosis

  10. Molecular identification and functional analysis of two variants of myeloid differentiation factor 88 (MyD88) from disk abalone (Haliotis discus discus).

    Priyathilaka, Thanthrige Thiunuwan; Bathige, S D N K; Lee, Seongdo; Lee, Jehee

    2018-02-01

    Myeloid differentiation factor 88 (MyD88) is a crucial adaptor protein of the Toll-like receptor (TLR)- and interleukin 1 receptor-mediated signaling pathways and is involved in a diverse array of inflammatory responses via NF-κB activation. In the present study, two MyD88 variants were identified from disk abalone (Haliotis discus discus) and designated AbMyD88-2 and AbMyD88-X. The deduced AbMyD88-2 and AbMyD88-X comprised 433 and 354 amino acids with predicted molecular masses of 48.85 kDa and 40.17 kDa, respectively. AbMyD88-2 and AbMyD88-X possessed typical MyD88 domain structural features including an N-terminal death domain (DD) and C-terminal toll interleukin 1 receptor (TIR) domain similar to those in mammals. Expression analysis of AbMyD88-2 and AbMyD88-X mRNA at different early embryonic developmental stages of abalone by qPCR revealed that their constitutive expression at all developmental stages analyzed with the considerably higher values at the 16-cell (AbMyD88-2) and morula stages (AbMyD88-X). In unchallenged disk abalones, AbMyD88-2 was highly expressed in muscles, while AbMyD88-X mRNA was predominantly transcribed in hemocytes. Moreover, AbMyD88-2 and AbMyD88-X mRNA were differentially modulated in abalone hemocytes after a challenge with live bacteria (Vibrio parahaemolyticus, Listeria monocytogenes), virus (viral hemorrhagic septicemia virus), and pathogen-associated molecular patterns (lipopolysaccharides and Poly I:C). Overexpression of AbMyD88-2 and AbMyD88-X in HEK293T cells induced the activation of the NF-κB promoter. AbMyD88-2 and AbMyD88-X involvement in inflammatory responses was characterized by their overexpression in RAW264.7 murine macrophage cells. These results revealed comparatively higher NO (Nitric oxide) production, induction of inflammatory mediator genes (iNOS and COX2), and proinflammatory genes (IL1β, IL6 and TNFα) expression in abalone MyD88s-overexpressing cells than in mock control in the presence or absence of LPS

  11. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  12. Role of the functional MNS16A VNTR-243 variant of the human telomerase reverse transcriptase gene in progression and response to therapy of patients with non-Hodgkin's B-cell lymphomas.

    Wysoczanska, B; Wrobel, T; Dobrzynska, O; Mazur, G; Bogunia-Kubik, K

    2015-04-01

    MNS16A is a functional polymorphic tandem repeat within the human telomerase reverse transcriptase (hTERT) gene. To investigate whether any of the MNS16A repeats represents a genetic risk factor for NHL susceptibility, progression of or response to therapy in 75 patients with non-Hodgkin's lymphomas (NHLs) and 126 healthy individuals were genotyped using the PCR-VNTR technique. A slightly higher frequency of the MNS16A VNTR-243 variant was detected among patients who did not respond to treatment (NR) as compared to patients with complete or partial remission (0.83 vs. 0.51, P = 0.055). NR patients more frequently developed aggressive than indolent type of the disease (0.92 vs. 0.41, P = 0.001). The VNTR-243 allele was more frequently detected among patients with an intermediate-high/high International Prognostic Index (IPI 3-4) score (P = 0.063), especially in patients with advanced age and IPI 3-4 (P = 0.040). In multivariate analysis, higher IPI 3-4 score (OR = 11.364, P = 0.051) and aggressive type of the disease (OR = 18.182, P = 0.012) were found to be independent genetic markers associated with nonresponse to treatment. Presence of the MNS16A VNTR-243 variant also strongly tended to affect the risk of a less favourable response to therapy and was more frequently present among nonresponders (OR = 5.848, P = 0.059). Genetic variation within the hTERT gene may affect the progression and treatment of lymphoproliferative disorders. © 2015 John Wiley & Sons Ltd.

  13. Variants of glycoside hydrolases

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  14. Structure and function of hemoglobin variants at an internal hydrophobic site: Consequences of mutations at the β 27 (B9) position

    Huang, Yue; Pagnier, J.; Magne, P.; Kister, J.; Poyart, C.; Baklouti, F.; Delaunay, J.; Fermi, G.; Perutz, M.F.

    1990-01-01

    The authors have studied the structure-function relationships in newly discovered hemoglobin (Hb) mutants with substitutions occurring at the tight and highly hydrophobic cluster between the B and G helices in the β chains, namely, Hb Knossos or β A27S and Hb Grange-Blanche or β A27V. The β A27S mutant has a 50% decrease in oxygen affinity relative to native human Hb A, while the β A27V mutant has an increased oxygen affinity. They have also engineered the artificial β A27T mutation through site-directed mutagenesis. This new mutant exhibits functional properties similar to those of Hb A. None of these mutants is unstable. X-ray analyses show that the substitution of Val for Ala may reduce the relative stability of the T structure of the molecule through packing effects in the β chains; for the β A27S mutant a new hydrogen bond between serine and the carbonyl O at β 23 (B5) Val is observed and is likely to increase the relative stability of the T structure in the mutant hemoglobin. However, no significant changes in the crystals were observed for these mutants between the quaternary R and T structures relative to native Hb A. They conclude that small tertiary structural changes in the tight hydrophobic B-G helix interface are sufficient to induce functional abnormalities resulting in either low or high intrinsic oxygen affinities

  15. Associations of filaggrin gene loss-of-function variants and human papillomavirus-related cancer and pre-cancer in Danish adults.

    Tea Skaaby

    Full Text Available Filaggrin proteins are expressed in the skin, oral cavity, oesophagus, and cervical mucose. Loss-of-function mutations in the filaggrin gene (FLG reduce filaggrin expression and cause an impaired skin barrier function. We hypothesized that FLG mutation carriers would be more susceptible to human papillomavirus (HPV infection and thus a higher risk of HPV-related cancer and pre-cancer. We investigated the association of the FLG genotype with incidence of HPV-related cancer of cervix, vagina, vulva, penis, anus and head and neck, and pre-cancer of the cervix.We included 13,376 persons from four population-based studies conducted in the same background population in Copenhagen, Denmark. Participants were genotyped for the most common FLG mutations in Europeans. Information on cancer was obtained from The Danish Cancer Registry until 11 July 2011.There were 489 cases of prevalent and 97 cases of incident HPV-related cancer and pre-cancer (median follow-up 11.5 years. There was a statistically significant association between FLG genotype and incident HPV-related cancer and pre-cancer with a hazard ratio, HR = 2.1 (95% confidence intervals, CI: 1.2, 3.7 for FLG mutation carriers vs. wild types.FLG loss-of-function mutations were associated with higher incidence of HPV-related cancers and pre-cancers that are potentially screening and vaccine preventable.

  16. Functional and genetic epidemiological characterisation of the FFAR4 (GPR120) p.R270H variant in the Danish population

    Vestmar, Marie Aare; Andersson, Ehm A; Christensen, Charlotte Riis

    2016-01-01

    . Association with quantitative metabolic traits comprised 8720 non-diabetic individuals. RESULTS: p.R270H showed reduced surface expression of FFAR4. Ligand-independent activity was eliminated and strongly impaired through the Gq and Gi signalling pathways, respectively. The ligand-induced maximal signalling...... reactive protein; hs-CRP) and liver function (alanine aminotransferase) in the Danish population (p>0.05). CONCLUSIONS: We demonstrate that p.R270H of FFAR4 impairs Gq and Gi signalling of FFAR4 in vitro; however, this impaired signalling for p.R270H does not translate into associations with human...

  17. Phenotypic approaches to gene mapping in platelet function disorders - identification of new variant of P2Y12, TxA2 and GPVI receptors.

    Watson, S; Daly, M; Dawood, B; Gissen, P; Makris, M; Mundell, S; Wilde, J; Mumford, A

    2010-01-01

    Platelet number or function disorders cause a range of bleeding symptoms from mild to severe. Patients with platelet dysfunction but normal platelet number are the most prevalent and typically have mild bleeding symptoms. The study of this group of patients is particularly difficult because of the lack of a gold-standard test of platelet function and the variable penetrance of the bleeding phenotype among affected individuals. The purpose of this short review is to discuss the way in which this group of patients can be investigated through platelet phenotyping in combination with targeted gene sequencing. This approach has been used recently to identify patients with mutations in key platelet activation receptors, namely those for ADP, collagen and thromboxane A2 (TxA2). One interesting finding from this work is that for some patients, mild bleeding is associated with heterozygous mutations in platelet proteins that are co-inherited with other genetic disorders of haemostasis such as type 1 von Willebrand's disease. Thus, the phenotype of mild bleeding may be multifactorial in some patients and may be considered to be a complex trait.

  18. Enantiospecific (+)- and (-)-germacrene D synthases, cloned from goldenrod, reveal a functionally active variant of the universal isoprenoid-biosynthesis aspartate-rich motif.

    Prosser, Ian; Altug, Iris G; Phillips, Andy L; König, Wilfried A; Bouwmeester, Harro J; Beale, Michael H

    2004-12-15

    The naturally occurring, volatile sesquiterpene hydrocarbon germacrene D has strong effects on insect behaviour and genes encoding enzymes that produce this compound are of interest in the study of plant-insect interactions and in a number of biotechnological approaches to pest control. Goldenrod, Solidago canadensis, is unusual in that it produces both enantiomers of germacrene D. Two new sesquiterpene synthase cDNAs, designated Sc11 and Sc19, have been isolated from goldenrod and functional expression in Escherichia coli identified Sc11 as (+)-germacrene D synthase and Sc19 as (-)-germacrene D synthase. Thus, the enantiomers of germacrene D are the products of separate, but closely related (85% amino-acid identity), enzymes. Unlike other sesquiterpene synthases and the related monoterpene synthases and prenyl transferases, which contain the characteristic amino-acid motif DDXX(D,E), Sc11 is unusual in that this motif occurs as (303)NDTYD. Mutagenesis of this motif to (303)DDTYD gave rise to an enzyme that fully retained (+)-germacrene D synthase activity. The converse mutation in Sc19 (D303N) resulted in a less efficient but functional enzyme. Mutagenesis of position 303 to glutamate in both enzymes resulted in loss of activity. These results indicate that the magnesium ion-binding role of the first aspartate in the DDXXD motif may not be as critical as previously thought. Further amino-acid sequence comparisons and molecular modelling of the enzyme structures revealed that very subtle changes to the active site of this family of enzymes are required to alter the reaction pathway to form, in this case, different enantiomers from the same enzyme-bound carbocationic intermediate.

  19. Functional assays for the assessment of the pathogenicity of variants of GOSR2, an ER-to-Golgi SNARE involved in progressive myoclonus epilepsies

    Jörn M. Völker

    2017-12-01

    Full Text Available Progressive myoclonus epilepsies (PMEs are inherited disorders characterized by myoclonus, generalized tonic-clonic seizures, and ataxia. One of the genes that is associated with PME is the ER-to-Golgi Qb-SNARE GOSR2, which forms a SNARE complex with syntaxin-5, Bet1 and Sec22b. Most PME patients are homo­zygous for a p.Gly144Trp mutation and develop similar clinical presentations. Recently, a patient who was compound heterozygous for p.Gly144Trp and a previously unseen p.Lys164del mutation was identified. Because this patient presented with a milder disease phenotype, we hypothesized that the p.Lys164del mutation may be less severe compared to p.Gly144Trp. To characterize the effect of the p.Gly144Trp and p.Lys164del mutations, both of which are present in the SNARE motif of GOSR2, we examined the corresponding mutations in the yeast ortholog Bos1. Yeasts expressing the orthologous mutants in Bos1 showed impaired growth, suggesting a partial loss of function, which was more severe for the Bos1 p.Gly176Trp mutation. Using anisotropy and gel filtration, we report that Bos1 p.Gly176Trp and p.Arg196del are capable of complex formation, but with partly reduced activity. Molecular dynamics (MD simulations showed that the hydrophobic core, which triggers SNARE complex formation, is compromised due to the glycine-to-tryptophan substitution in both GOSR2 and Bos1. In contrast, the deletion of residue p.Lys164 (or p.Arg196del in Bos1 interferes with the formation of hydrogen bonds between GOSR2 and syntaxin-5. Despite these perturbations, all SNARE complexes stayed intact during longer simulations. Thus, our data suggest that the milder course of disease in compound heterozygous PME is due to less severe impairment of the SNARE function.

  20. Accurate genotyping across variant classes and lengths using variant graphs

    Sibbesen, Jonas Andreas; Maretty, Lasse; Jensen, Jacob Malte

    2018-01-01

    of read k-mers to a graph representation of the reference and variants to efficiently perform unbiased, probabilistic genotyping across the variation spectrum. We demonstrate that BayesTyper generally provides superior variant sensitivity and genotyping accuracy relative to existing methods when used...... collecting a set of candidate variants across discovery methods, individuals and databases, and then realigning the reads to the variants and reference simultaneously. However, this realignment problem has proved computationally difficult. Here, we present a new method (BayesTyper) that uses exact alignment...... to integrate variants across discovery approaches and individuals. Finally, we demonstrate that including a ‘variation-prior’ database containing already known variants significantly improves sensitivity....

  1. [Clinico-pathogenetic variants of chronic gastritis].

    Chernin, V V; Dzhulaĭ, G S

    2004-01-01

    To evaluate specific features of the course of chronic gastritis (CG), morphofunctional condition of gastric mucosa, vegetative regulation, adrenergic and cholinergic shifts, histamine metabolism and effects of exogenic and endogenic risk factors in CG patients; to study clinicopathogenetic variants of CG. A total of 311 CG patients aged from 16 to 72 years were studied. They were divided into three groups by their gastric mucosa condition. The control group consisted of 30 healthy donors. The following parameters were studied: visual and histological condition of gastric mucosa, total acidity, the levels of free hydrochloric acid, pepsin, bioelectric gastric activity, general autonomic tonicity, cholinesterase activity. Three clinicopathogenetic variants of the disease have been identified. Variant 1 was characterized by a recurrent course, subjective manifestation of the disease only in exacerbation, surface (primarily antral) mucosal affection, normal or enhanced secretory and motor functions of the stomach, adequate reaction of acid production to caffeine and histamine stimulation, parasympathicotonia, absolute hyperhistaminemia, relative hypoacetylcholinemia, subnormal urinary excretion of adrenalin. Variant 2 manifested with rare recurrences, longer and more severe exacerbations, frequent spontaneous and provoked aggravations, moderate focal atrophy of the mucosa, secretory insufficiency with adequate reaction to histamine and minor to caffeine stimuli, hypomotor gastric dyskinesia, vegetative eutonia, normohistaminemia, absolute hypoacetylcholinemia, subnormal urinary excretion of noradrenaline. Variant 3 runs without definite remissions and exacerbations, with continuous abdominal pain and dyspepsia, frequent spontaneous aggravations, marked extended mucosal atrophy with secretory insufficiency up to achlorhydria, no stimulation of acid production in response to caffeine and histamine, gastric hypomotility, sympathicotonia, absolute hypohistaminemia

  2. mir-126 rs4636297 and TGFβRI rs334348 functional gene variants are associated with susceptibility to endometriosis and its severity.

    Sepahi, Neda; Kohan, Leila; Jahromi, Athar Rasekh; Daneshbod, Yahya; Hoveidi, Elahe Nimi

    2017-06-01

    microRNAs (miRNAs) are negative regulators in a variety of cellular processes that occur in endometriosis. Therefore, functional polymorphisms in miRNA and miRNA binding sites may affect gene expression and contribute to susceptibility of endometriosis. In this study, we evaluated the association of two miRNA related polymorphisms, mir-126 rs4636297 and TGFβRI rs334348, with endometriosis risk and its severity. This case-control study was done on 157 endometriosis patients and 252 healthy women as a control group. Tetra amplification refractory mutation system-polymerase chain reaction (tetra-ARMS PCR) was designed to determine the polymorphisms. Our finding showed significant differences in genotype frequency of mir-126 rs4636297 between the groups (χ 2  = 6.26, p = 0.044). A significant protection against endometriosis was found for mir-126 rs4636297 in allele (G versus A allele: OR = 0.695, 95% CI = 0.519-0.931, p = 0.015) and genotype (GG versus AA genotype: OR = 0.451, 95%CI = 0.233-0.873, p = 0.018). Significant association was also observed between the A allele and severity of endometriosis (OR = 0.478, 95%CI = 0.297-0.768, p = 0.002). Moreover, we found a significant association between AA genotype with the risk of endometriosis (OR = 0.493, 95%CI = 0.250-0.970, p = 0.041) and its severity (OR = 0.240, 95%CI = 0.065-0.883, p = 0.032) regarding TGFβRI rs334348 polymorphism. These finding suggest that, for the first time, mir-126 rs4636297 and TGFβRI rs334348 polymorphisms may influence individual's susceptibility to endometriosis and its severity.

  3. Seizure-Onset Mapping Based on Time-Variant Multivariate Functional Connectivity Analysis of High-Dimensional Intracranial EEG: A Kalman Filter Approach.

    Lie, Octavian V; van Mierlo, Pieter

    2017-01-01

    The visual interpretation of intracranial EEG (iEEG) is the standard method used in complex epilepsy surgery cases to map the regions of seizure onset targeted for resection. Still, visual iEEG analysis is labor-intensive and biased due to interpreter dependency. Multivariate parametric functional connectivity measures using adaptive autoregressive (AR) modeling of the iEEG signals based on the Kalman filter algorithm have been used successfully to localize the electrographic seizure onsets. Due to their high computational cost, these methods have been applied to a limited number of iEEG time-series (Kalman filter implementations, a well-known multivariate adaptive AR model (Arnold et al. 1998) and a simplified, computationally efficient derivation of it, for their potential application to connectivity analysis of high-dimensional (up to 192 channels) iEEG data. When used on simulated seizures together with a multivariate connectivity estimator, the partial directed coherence, the two AR models were compared for their ability to reconstitute the designed seizure signal connections from noisy data. Next, focal seizures from iEEG recordings (73-113 channels) in three patients rendered seizure-free after surgery were mapped with the outdegree, a graph-theory index of outward directed connectivity. Simulation results indicated high levels of mapping accuracy for the two models in the presence of low-to-moderate noise cross-correlation. Accordingly, both AR models correctly mapped the real seizure onset to the resection volume. This study supports the possibility of conducting fully data-driven multivariate connectivity estimations on high-dimensional iEEG datasets using the Kalman filter approach.

  4. Functional Promoter Variant rs2868371 of HSPB1 Is Associated With Risk of Radiation Pneumonitis After Chemoradiation for Non-Small Cell Lung Cancer

    Pang, Qingsong [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States); Department of Radiation Oncology and Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China); Wei, Qingyi [Department of Epidemiology, The University of Texas MD Anderson Cancer Center (United States); Xu, Ting [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States); Yuan, Xianglin [Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan (China); Lopez Guerra, Jose Luis [Department of Medicine, Universitat Autònoma de Barcelona (Spain); Levy, Lawrence B. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States); Liu, Zhensheng [Department of Epidemiology, The University of Texas MD Anderson Cancer Center (United States); Gomez, Daniel R. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States); Zhuang, Yan [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center (United States); Wang, Li-E. [Department of Epidemiology, The University of Texas MD Anderson Cancer Center (United States); Mohan, Radhe [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center (United States); Komaki, Ritsuko [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States); Liao, Zhongxing, E-mail: zliao@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center (United States)

    2013-04-01

    Purpose: To date, no biomarkers have been found to predict, before treatment, which patients will develop radiation pneumonitis (RP), a potentially fatal toxicity, after chemoradiation for lung cancer. We investigated potential associations between single nucleotide polymorphisms (SNPs) in HSPB1 and risk of RP after chemoradiation for non-small cell lung cancer (NSCLC). Methods and Materials: Subjects were patients with NSCLC treated with chemoradiation at 1 institution. The training data set comprised 146 patients treated from 1999 to July 2004; the validation data set was 125 patients treated from August 2004 to March 2010. We genotyped 2 functional SNPs of HSPB1 (rs2868370 and rs2868371) from all patients. We used Kaplan-Meier analysis to assess the risk of grade ≥2 or ≥3 RP in both data sets and a parametric log-logistic survival model to evaluate the association of HSPB1 genotypes with that risk. Results: Grade ≥3 RP was experienced by 13% of those with CG/GG and 29% of those with CC genotype of HSPB1 rs2868371 in the training data set (P=.028); corresponding rates in the validation data set were 2% CG/GG and 14% CC (P=.02). Univariate and multivariate analysis confirmed the association of CC of HSPB1 rs2868371 with higher risk of grade ≥3 RP than CG/GG after adjustment for sex, age, performance status, and lung mean dose. This association was validated both in the validation data set and with Harrell's C statistic. Conclusions: The CC genotype of HSPB1 rs2868371 was associated with severe RP after chemoradiation for NSCLC.

  5. Facial emotion recognition in schizophrenia: An exploratory study on the role of comorbid alcohol and substance use disorders and COMT Val158Met.

    Carrà, Giuseppe; Nicolini, Gabriella; Lax, Annamaria; Bartoli, Francesco; Castellano, Filippo; Chiorazzi, Alessia; Gamba, Giulia; Bava, Mattia; Crocamo, Cristina; Papagno, Costanza

    2017-11-01

    To explore whether facial emotion recognition (FER), impaired in both schizophrenia and alcohol and substance use disorders (AUDs/SUDs), is additionally compromised among comorbid subjects, also considering the role of catechol-O-methyltransferase (COMT) Val158Met. We conducted a cross-sectional study, randomly recruiting 67 subjects with a DSM-IV-TR diagnosis of schizophrenia, and rigorously assessing AUDs/SUDs and COMT Val158Met polymorphism. FER was assessed using the Ekman 60 Faces Test- EK-60F. As a whole, the sample scored significantly lower than normative data on EK-60F. However, subjects with comorbid AUDs/SUDs did not perform worse on EK-60F than those without, who had a better performance on EK-60F if they carried the COMT Val/Met variant. This study is the first to date examining the impact of AUDs/SUDs and COMT variants on FER in an epidemiologically representative sample of subjects with schizophrenia. Our findings do not suggest an additional impairment from comorbid AUDs/SUDs on FER among subjects with schizophrenia, whilst COMT Val158Met, though based on a limited sample, might have a role just among those without AUDs/SUDs. Based on our results, additional research is needed also exploring differential roles of various substances. Copyright © 2017 John Wiley & Sons, Ltd.

  6. A Multi-scale Computational Platform to Mechanistically Assess the Effect of Genetic Variation on Drug Responses in Human Erythrocyte Metabolism.

    Mih, Nathan; Brunk, Elizabeth; Bordbar, Aarash; Palsson, Bernhard O

    2016-07-01

    Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein's structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism.

  7. A Multi-scale Computational Platform to Mechanistically Assess the Effect of Genetic Variation on Drug Responses in Human Erythrocyte Metabolism.

    Nathan Mih

    2016-07-01

    Full Text Available Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants in complex with their respective native metabolites or drug molecules. We find that changes in a protein's structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism.

  8. Biological, immunological and functional properties of two novel multi-variant chimeric recombinant proteins of CSP antigens for vaccine development against Plasmodium vivax infection.

    Shabani, Samaneh H; Zakeri, Sedigheh; Salmanian, Ali H; Amani, Jafar; Mehrizi, Akram A; Snounou, Georges; Nosten, François; Andolina, Chiara; Mourtazavi, Yousef; Djadid, Navid D

    2017-10-01

    The circumsporozoite protein (CSP) of the malaria parasite Plasmodium vivax is a major pre-erythrocyte vaccine candidate. The protein has a central repeat region that belongs to one of repeat families (VK210, VK247, and the P. vivax-like). In the present study, computer modelling was employed to select chimeric proteins, comprising the conserved regions and different arrangements of the repeat elements (VK210 and VK247), whose structure is similar to that of the native counterparts. DNA encoding the selected chimeras (named CS127 and CS712) were synthetically constructed based on E. coli codons, then cloned and expressed. Mouse monoclonal antibodies (mAbs; anti-Pv-210-CDC and -Pv-247-CDC), recognized the chimeric antigens in ELISA, indicating correct conformation and accessibility of the B-cell epitopes. ELISA using IgG from plasma samples collected from 221 Iranian patients with acute P. vivax showed that only 49.32% of the samples reacted to both CS127 and CS712 proteins. The dominant subclass for the two chimeras was IgG1 (48% of the positive responders, OD 492 =0.777±0.420 for CS127; 48.41% of the positive responders, OD 492 =0.862±0.423 for CS712, with no statistically significant difference P>0.05; Wilcoxon signed ranks test). Binding assays showed that both chimeric proteins bound to immobilized heparan sulphate and HepG2 hepatocyte cells in a concentration-dependent manner, saturable at 80μg/mL. Additionally, anti-CS127 and -CS712 antibodies raised in mice recognized the native protein on the surface of P. vivax sporozoite with high intensity, confirming the presence of common epitopes between the recombinant forms and the native proteins. In summary, despite structural differences at the molecular level, the expression levels of both chimeras were satisfactory, and their conformational structure retained biological function, thus supporting their potential for use in the development of vivax-based vaccine. Copyright © 2017 Elsevier Ltd. All rights

  9. Variants of Moreau's sweeping process

    Siddiqi, A.H.; Manchanda, P.

    2001-07-01

    In this paper we prove the existence and uniqueness of two variants of Moreau's sweeping process -u'(t) is an element of Nc (t) (u(t)), where in one variant we replace u(t) by u'(t) in the right-hand side of the inclusion and in the second variant u'(t) and u(t) are respectively replaced by u''(t) and u'(t). (author)

  10. Hairy cell leukemia-variant

    Quadri, Mohammad I.; Al-Sheikh, Iman H.

    2001-01-01

    Hairy cell leukaemia variant is a very rare chronic lymphoproliferative disorder and is closely related to hairy cell leukemia. We hereby describe a case of hairy cell leukaemia variant for the first time in Saudi Arabia. An elderly Saudi man presented with pallor, massive splenomegaly, and moderate hepatomegaly. Hemoglobin was 7.7 g/dl, Platelets were 134 x109/l and white blood count was 140x10 9/l with 97% being abnormal lymphoid cells with cytoplasmic projections. The morphology, cytochemistry, and immunophenotype of the lymphoid cells were classical of hairy cell leukaemia variant. The bone marrow was easily aspirated and findings were consistent with hairy cell leukaemia variant. (author)

  11. The combined risks of reduced or increased function variants in cell death pathway genes differentially influence cervical cancer risk and herpes simplex virus type 2 infection among black Africans and the Mixed Ancestry population of South Africa

    Chattopadhyay, Koushik; Williamson, Anna-Lise; Hazra, Annapurna; Dandara, Collet

    2015-01-01

    Cervical cancer is one of the most important cancers worldwide with a high incident and mortality rate and is caused by the human papilloma virus (HPV). Among sexually active women who get infected with human papillomavirus (HPV), a small fraction progresses to cervical cancer disease pointing to possible roles of additional risk factors in development of the disease which include host genetic factors and other infections such as HSV-2. Since cellular apoptosis plays a role in controlling the spread of virus-infections in cells, gene variants altering the function of proteins involved in cell death pathways might be associated with the clearing of virus infections. Activity altering polymorphisms in FasR (−1377G > A and -670A > G), FasL (−844 T > C) and CASP8 (−652 6 N ins/del) genes have been shown to alter the mechanism of apoptosis by modifying the level of expression of their correspondent proteins. In the present study, we set out to investigate the combined risks of CASP8, FasR, and FasL polymorphisms in cervical cancer, pre-cancerous lesions, HPV infection and HSV-2 infection. Participants were 442 South African women of black African and mixed-ancestry origin with invasive cervical cancer and 278 control women matched by age, ethnicity and domicile status. FasR and FasL polymorphisms were genotyped by TaqMan and CASP8 polymorphism by PCR-RFLP. The results were analysed with R using haplo.stats software version 1.5.2. CASP8 -652 6 N del + FasR-670A was associated with a reduced risk (P = 0.019, Combined Polymorphism Score (CPS) = −2.34) and CASP8 -652 6 N ins + FasR-1377G was associated with a marginal increased risk (P = 0.047, CPS = 1.99) of cervical cancer among black Africans. When compared within the control group, CASP8 -652 6 N ins + FasR-1377A showed a reduced risk (P = 0.023, CPS = −2.28) of HSV-2 infection in both black African and mixed-ancestry population. Our results show that the combined risks of variants in cell death pathway genes

  12. The combined risks of reduced or increased function variants in cell death pathway genes differentially influence cervical cancer risk and herpes simplex virus type 2 infection among black Africans and the Mixed Ancestry population of South Africa.

    Chattopadhyay, Koushik; Williamson, Anna-Lise; Hazra, Annapurna; Dandara, Collet

    2015-10-12

    Cervical cancer is one of the most important cancers worldwide with a high incident and mortality rate and is caused by the human papilloma virus (HPV). Among sexually active women who get infected with human papillomavirus (HPV), a small fraction progresses to cervical cancer disease pointing to possible roles of additional risk factors in development of the disease which include host genetic factors and other infections such as HSV-2. Since cellular apoptosis plays a role in controlling the spread of virus-infections in cells, gene variants altering the function of proteins involved in cell death pathways might be associated with the clearing of virus infections. Activity altering polymorphisms in FasR (-1377G > A and -670A > G), FasL (-844 T > C) and CASP8 (-652 6 N ins/del) genes have been shown to alter the mechanism of apoptosis by modifying the level of expression of their correspondent proteins. In the present study, we set out to investigate the combined risks of CASP8, FasR, and FasL polymorphisms in cervical cancer, pre-cancerous lesions, HPV infection and HSV-2 infection. Participants were 442 South African women of black African and mixed-ancestry origin with invasive cervical cancer and 278 control women matched by age, ethnicity and domicile status. FasR and FasL polymorphisms were genotyped by TaqMan and CASP8 polymorphism by PCR-RFLP. The results were analysed with R using haplo.stats software version 1.5.2. CASP8 -652 6 N del + FasR-670A was associated with a reduced risk (P = 0.019, Combined Polymorphism Score (CPS) = -2.34) and CASP8 -652 6 N ins + FasR-1377G was associated with a marginal increased risk (P = 0.047, CPS = 1.99) of cervical cancer among black Africans. When compared within the control group, CASP8 -652 6 N ins + FasR-1377A showed a reduced risk (P = 0.023, CPS = -2.28) of HSV-2 infection in both black African and mixed-ancestry population. Our results show that the combined risks of

  13. Product Variant Master as a Means to Handle Variant Design

    Hildre, Hans Petter; Mortensen, Niels Henrik; Andreasen, Mogens Myrup

    1996-01-01

    be implemented in the CAD system I-DEAS. A precondition for high degree of computer support is identification of a product variant master from which new variants can be derived. This class platform defines how a product build up fit certain production methods and rules governing determination of modules...

  14. VPA: an R tool for analyzing sequencing variants with user-specified frequency pattern

    Hu Qiang

    2012-01-01

    Full Text Available Abstract Background The massive amounts of genetic variant generated by the next generation sequencing systems demand the development of effective computational tools for variant prioritization. Findings VPA (Variant Pattern Analyzer is an R tool for prioritizing variants with specified frequency pattern from multiple study subjects in next-generation sequencing study. The tool starts from individual files of variant and sequence calls and extract variants with user-specified frequency pattern across the study subjects of interest. Several position level quality criteria can be incorporated into the variant extraction. It can be used in studies with matched pair design as well as studies with multiple groups of subjects. Conclusions VPA can be used as an automatic pipeline to prioritize variants for further functional exploration and hypothesis generation. The package is implemented in the R language and is freely available from http://vpa.r-forge.r-project.org.

  15. Different Variants of Fundamental Portfolio

    Tarczyński Waldemar

    2014-06-01

    Full Text Available The paper proposes the fundamental portfolio of securities. This portfolio is an alternative for the classic Markowitz model, which combines fundamental analysis with portfolio analysis. The method’s main idea is based on the use of the TMAI1 synthetic measure and, in limiting conditions, the use of risk and the portfolio’s rate of return in the objective function. Different variants of fundamental portfolio have been considered under an empirical study. The effectiveness of the proposed solutions has been related to the classic portfolio constructed with the help of the Markowitz model and the WIG20 market index’s rate of return. All portfolios were constructed with data on rates of return for 2005. Their effectiveness in 2006- 2013 was then evaluated. The studied period comprises the end of the bull market, the 2007-2009 crisis, the 2010 bull market and the 2011 crisis. This allows for the evaluation of the solutions’ flexibility in various extreme situations. For the construction of the fundamental portfolio’s objective function and the TMAI, the study made use of financial and economic data on selected indicators retrieved from Notoria Serwis for 2005.

  16. Gene-environment interactions involving functional variants

    Barrdahl, Myrto; Rudolph, Anja; Hopper, John L

    2017-01-01

    .36, 95% CI: 1.16-1.59, pint  = 1.9 × 10(-5) ) in relation to ER- disease risk. The remaining two gene-environment interactions were also identified in relation to ER- breast cancer risk and were found between 3p21-rs6796502 and age at menarche (ORint  = 1.26, 95% CI: 1.12-1.43, pint =1.8 × 10...... epidemiological breast cancer risk factors in relation to breast cancer. Analyses were conducted on up to 58,573 subjects (26,968 cases and 31,605 controls) from the Breast Cancer Association Consortium, in one of the largest studies of its kind. Analyses were carried out separately for estrogen receptor (ER......) positive (ER+) and ER negative (ER-) disease. The Bayesian False Discovery Probability (BFDP) was computed to assess the noteworthiness of the results. Four potential gene-environment interactions were identified as noteworthy (BFDP 

  17. Functional characterisation of the type 1 von Willebrand disease candidate VWF gene variants: p.M771I, p.L881R and p.P1413L.

    Berber, Ergul; Ozbil, Mehmet; Brown, Christine; Baslar, Zafer; Caglayan, S Hande; Lillicrap, David

    2017-10-01

    Abnormalities in the biosynthetic pathway or increased clearance of plasma von Willebrand factor (VWF) are likely to contribute to decreased plasma VWF levels in inherited type 1 von Willebrand disease (VWD). Recent studies demonstrated that 65% of type 1 VWD patients have candidate VWF mutations, the majority of which are missense variants. The purpose of this study was to explore the effects of three VWF missense mutations (p.M771I, p.L881R and p.P1413L) located in different functional domains of VWF, reported as candidate mutations in type 1 VWD patients in the course of the MCMDM-1VWD study. The focus of these studies was on the intracellular biosynthetic processing and localisation of VWF in a heterologous cell system. Molecular dynamic simulation for p.M771I and p.P1413L was also performed to analyse the conformational effects of the changes. As determined by immunofluorescence antibody staining and confocal microscopy of HEK293 cells, the intracellular localisation of recombinant VWF with the p.M771I variation was impaired. Transient transfection studies and phorbol myristate acetate stimulation in COS-7 cells revealed significant intracellular retention. In addition, major loss of VWF multimers was observed for only the p.M771I mutation. Molecular dynamic simulations on p.M771I mutant VWF revealed distinct structural rearrangements including a large deviation in the E' domain, and significant loss of β-sheet secondary structure. The pathogenic effects of candidate VWF gene mutations were explored in this study. In vitro expression studies in heterologous cell systems revealed impaired secretion of VWF and a dominant negative effect on the processing of the wild-type protein for only the p.M771I mutation and none of the mutations affected the regulated secretion.

  18. Novel de novo variant in EBF3 is likely to impact DNA binding in a patient with a neurodevelopmental disorder and expanded phenotypes: patient report, in silico functional assessment, and review of published cases.

    Blackburn, Patrick R; Barnett, Sarah S; Zimmermann, Michael T; Cousin, Margot A; Kaiwar, Charu; Pinto E Vairo, Filippo; Niu, Zhiyv; Ferber, Matthew J; Urrutia, Raul A; Selcen, Duygu; Klee, Eric W; Pichurin, Pavel N

    2017-05-01

    Pathogenic variants in EBF3 were recently described in three back-to-back publications in association with a novel neurodevelopmental disorder characterized by intellectual disability, speech delay, ataxia, and facial dysmorphisms. In this report, we describe an additional patient carrying a de novo missense variant in EBF3 (c.487C>T, p.(Arg163Trp)) that falls within a conserved residue in the zinc knuckle motif of the DNA binding domain. Without a solved structure of the DNA binding domain, we generated a homology-based atomic model and performed molecular dynamics simulations for EBF3, which predicted decreased DNA affinity for p.(Arg163Trp) compared with wild-type protein and control variants. These data are in agreement with previous experimental studies of EBF1 showing the paralogous residue is essential for DNA binding. The conservation and experimental evidence existing for EBF1 and in silico modeling and dynamics simulations to validate comparable behavior of multiple variants in EBF3 demonstrates strong support for the pathogenicity of p.(Arg163Trp). We show that our patient presents with phenotypes consistent with previously reported patients harboring EBF3 variants and expands the phenotypic spectrum of this newly identified disorder with the additional feature of a bicornuate uterus.

  19. The effect of COMT Val158 Met genotype on decision-making and preliminary findings on its interaction with the 5-HTTLPR in healthy females.

    van den Bos, Ruud; Homberg, Judith; Gijsbers, Ellen; den Heijer, Esther; Cuppen, Edwin

    2009-02-01

    Poor decision-making is inherent to several psychiatric conditions for which a genetic basis may exist. We previously showed that healthy female volunteers homozygous for the short allele (s/s) of the serotonin transporter length polymorphic region (5-HTTLPR) chose more often cards from disadvantageous decks in the Iowa Gambling Task (IGT), which measures decision-making, than long (l) allele carriers. The 5-HTTLPR and catechol-O-methyltransferase (COMT) Val(158) Met polymorphism affect the same set of neuronal structures. Therefore, we explored the effect of the (COMT) Val(158) Met polymorphism on IGT performance and its interaction with the 5-HTTLPR in the same subjects in this study. We observed that subjects homozygous for methionine (Met/Met) chose more disadvantageously than subjects homozygous for valine (Val/Val). s/s-Met/Met-subjects appeared to show the poorest IGT performance of all possible combinations of 5-HTTLPR and COMT allelic variants. Using the Expectancy-Valence model, no differences were found for the three different 5-HTTLPR or COMT genotypes regarding (i) attention to wins versus losses, (ii) updating rate, or (iii) response consistency. However, subjects with at least one Met-allele were paying more attention to wins than subjects with no Met-alleles. We discuss whether a common neuronal mechanism relates to s- and Met-allele-related deficits in updating and/or processing of choice outcome to guide subsequent choices in this gamble-based test.

  20. Interactions Between Variation in Candidate Genes and Environmental Factors in the Etiology of Schizophrenia and Bipolar Disorder: a Systematic Review.

    Misiak, Błażej; Stramecki, Filip; Gawęda, Łukasz; Prochwicz, Katarzyna; Sąsiadek, Maria M; Moustafa, Ahmed A; Frydecka, Dorota

    2017-08-18

    Schizophrenia and bipolar disorder (BD) are complex and multidimensional disorders with high heritability rates. The contribution of genetic factors to the etiology of these disorders is increasingly being recognized as the action of multiple risk variants with small effect sizes, which might explain only a minor part of susceptibility. On the other site, numerous environmental factors have been found to play an important role in their causality. Therefore, in recent years, several studies focused on gene × environment interactions that are believed to bridge the gap between genetic underpinnings and environmental insults. In this article, we performed a systematic review of studies investigating gene × environment interactions in BD and schizophrenia spectrum phenotypes. In the majority of studies from this field, interacting effects of variation in genes encoding catechol-O-methyltransferase (COMT), brain-derived neurotrophic factor (BDNF), and FK506-binding protein 5 (FKBP5) have been explored. Almost consistently, these studies revealed that polymorphisms in COMT, BDNF, and FKBP5 genes might interact with early life stress and cannabis abuse or dependence, influencing various outcomes of schizophrenia spectrum disorders and BD. Other interactions still require further replication in larger clinical and non-clinical samples. In addition, future studies should address the direction of causality and potential mechanisms of the relationship between gene × environment interactions and various categories of outcomes in schizophrenia and BD.

  1. Three-dimensional spatial analysis of missense variants in RTEL1 identifies pathogenic variants in patients with Familial Interstitial Pneumonia.

    Sivley, R Michael; Sheehan, Jonathan H; Kropski, Jonathan A; Cogan, Joy; Blackwell, Timothy S; Phillips, John A; Bush, William S; Meiler, Jens; Capra, John A

    2018-01-23

    Next-generation sequencing of individuals with genetic diseases often detects candidate rare variants in numerous genes, but determining which are causal remains challenging. We hypothesized that the spatial distribution of missense variants in protein structures contains information about function and pathogenicity that can help prioritize variants of unknown significance (VUS) and elucidate the structural mechanisms leading to disease. To illustrate this approach in a clinical application, we analyzed 13 candidate missense variants in regulator of telomere elongation helicase 1 (RTEL1) identified in patients with Familial Interstitial Pneumonia (FIP). We curated pathogenic and neutral RTEL1 variants from the literature and public databases. We then used homology modeling to construct a 3D structural model of RTEL1 and mapped known variants into this structure. We next developed a pathogenicity prediction algorithm based on proximity to known disease causing and neutral variants and evaluated its performance with leave-one-out cross-validation. We further validated our predictions with segregation analyses, telomere lengths, and mutagenesis data from the homologous XPD protein. Our algorithm for classifying RTEL1 VUS based on spatial proximity to pathogenic and neutral variation accurately distinguished 7 known pathogenic from 29 neutral variants (ROC AUC = 0.85) in the N-terminal domains of RTEL1. Pathogenic proximity scores were also significantly correlated with effects on ATPase activity (Pearson r = -0.65, p = 0.0004) in XPD, a related helicase. Applying the algorithm to 13 VUS identified from sequencing of RTEL1 from patients predicted five out of six disease-segregating VUS to be pathogenic. We provide structural hypotheses regarding how these mutations may disrupt RTEL1 ATPase and helicase function. Spatial analysis of missense variation accurately classified candidate VUS in RTEL1 and suggests how such variants cause disease. Incorporating

  2. Genotype–phenotype correlations in individuals with pathogenic RERE variants

    Jordan, Valerie K.; Fregeau, Brieana; Ge, Xiaoyan; Giordano, Jessica; Wapner, Ronald J.; Balci, Tugce B.; Carter, Melissa T.; Bernat, John A.; Moccia, Amanda N.; Srivastava, Anshika; Martin, Donna M.; Bielas, Stephanie L.; Pappas, John; Svoboda, Melissa D.; Rio, Marlène; Boddaert, Nathalie; Cantagrel, Vincent; Lewis, Andrea M.; Scaglia, Fernando; Kohler, Jennefer N.; Bernstein, Jonathan A.; Dries, Annika M.; Rosenfeld, Jill A.; DeFilippo, Colette; Thorson, Willa; Yang, Yaping; Sherr, Elliott H.; Bi, Weimin; Scott, Daryl A.

    2018-01-01

    Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7. PMID:29330883

  3. Synthesis of spatially variant lattices.

    Rumpf, Raymond C; Pazos, Javier

    2012-07-02

    It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.

  4. Investigation of the role of TCF4 rare sequence variants in schizophrenia.

    Basmanav, F Buket; Forstner, Andreas J; Fier, Heide; Herms, Stefan; Meier, Sandra; Degenhardt, Franziska; Hoffmann, Per; Barth, Sandra; Fricker, Nadine; Strohmaier, Jana; Witt, Stephanie H; Ludwig, Michael; Schmael, Christine; Moebus, Susanne; Maier, Wolfgang; Mössner, Rainald; Rujescu, Dan; Rietschel, Marcella; Lange, Christoph; Nöthen, Markus M; Cichon, Sven

    2015-07-01

    Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations. © 2015 Wiley Periodicals, Inc.

  5. Efficient population-scale variant analysis and prioritization with VAPr.

    Birmingham, Amanda; Mark, Adam M; Mazzaferro, Carlo; Xu, Guorong; Fisch, Kathleen M

    2018-04-06

    With the growing availability of population-scale whole-exome and whole-genome sequencing, demand for reproducible, scalable variant analysis has spread within genomic research communities. To address this need, we introduce the Python package VAPr (Variant Analysis and Prioritization). VAPr leverages existing annotation tools ANNOVAR and MyVariant.info with MongoDB-based flexible storage and filtering functionality. It offers biologists and bioinformatics generalists easy-to-use and scalable analysis and prioritization of genomic variants from large cohort studies. VAPr is developed in Python and is available for free use and extension under the MIT License. An install package is available on PyPi at https://pypi.python.org/pypi/VAPr, while source code and extensive documentation are on GitHub at https://github.com/ucsd-ccbb/VAPr. kfisch@ucsd.edu.

  6. Novel insights into the functional metabolic impact of an apparent de novo m.8993T>G variant in the MT-ATP6 gene associated with maternally inherited form of Leigh Syndrome.

    Uittenbogaard, Martine; Brantner, Christine A; Fang, ZiShui; Wong, Lee-Jun C; Gropman, Andrea; Chiaramello, Anne

    2018-03-27

    In this study, we report a novel perpective of metabolic consequences for the m.8993T>G variant using fibroblasts from a proband with clinical symptoms compatible with Maternally Inherited Leigh Syndrome (MILS). Definitive diagnosis was corroborated by mitochondrial DNA testing for the pathogenic variant m.8993T>G in MT-ATP6 subunit by Sanger sequencing. The long-range PCR followed by massively parallel sequencing method detected the near homoplasmic m.8993T>G variant at 83% in the proband's fibroblasts and at 0.4% in the mother's fibroblasts. Our results are compatible with very low levels of germline heteroplasmy or an apparent de novo mutation. Our mitochondrial morphometric analysis reveals severe defects in mitochondrial cristae structure in the proband's fibroblasts. Our live-cell mitochondrial respiratory analyses show impaired oxidative phosphorylation with decreased spare respiratory capacity in response to energy stress in the proband's fibroblasts. We detected a diminished glycolysis with a lessened glycolytic capacity and reserve, revealing a stunted ability to switch to glycolysis upon full inhibition of OXPHOS activities. This dysregulated energy reprogramming results in a defective interplay between OXPHOS and glycolysis during an energy crisis. Our study sheds light on the potential pathophysiologic mechanism leading to chronic energy crisis in this MILS patient harboring the m.8993T>G variant. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Spatially variant periodic structures in electromagnetics

    Rumpf, Raymond C.; Pazos, Javier J.; Digaum, Jennefir L.; Kuebler, Stephen M.

    2015-01-01

    Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058

  8. Predicting effects of noncoding variants with deep learning-based sequence model.

    Zhou, Jian; Troyanskaya, Olga G

    2015-10-01

    Identifying functional effects of noncoding variants is a major challenge in human genetics. To predict the noncoding-variant effects de novo from sequence, we developed a deep learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that directly learns a regulatory sequence code from large-scale chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations with single-nucleotide sensitivity. We further used this capability to improve prioritization of functional variants including expression quantitative trait loci (eQTLs) and disease-associated variants.

  9. Estimating the contribution of genetic variants to difference in incidence of disease between population groups.

    Moonesinghe, Ramal; Ioannidis, John P A; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J

    2012-08-01

    Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene-environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal.

  10. Estimating the contribution of genetic variants to difference in incidence of disease between population groups

    Moonesinghe, Ramal; Ioannidis, John PA; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J

    2012-01-01

    Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene–environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal. PMID:22333905

  11. RAGE splicing variants in mammals.

    Sterenczak, Katharina Anna; Nolte, Ingo; Murua Escobar, Hugo

    2013-01-01

    The receptor for advanced glycation end products (RAGE) is a multiligand receptor of environmental stressors which plays key roles in pathophysiological processes, including immune/inflammatory disorders, Alzheimer's disease, diabetic arteriosclerosis, tumorigenesis, and metastasis. Besides the full-length RAGE protein in humans nearly 20 natural occurring RAGE splicing variants were described on mRNA and protein level. These naturally occurring isoforms are characterized by either N-terminally or C-terminally truncations and are discussed as possible regulators of the full-length RAGE receptor either by competitive ligand binding or by displacing the full-length protein in the membrane. Accordingly, expression deregulations of the naturally occurring isoforms were supposed to have significant effect on RAGE-mediated disorders. Thereby the soluble C-truncated RAGE isoforms present in plasma and tissues are the mostly focused isoforms in research and clinics. Deregulations of the circulating levels of soluble RAGE forms were reported in several RAGE-associated pathological disorders including for example atherosclerosis, diabetes, renal failure, Alzheimer's disease, and several cancer types. Regarding other mammalian species, the canine RAGE gene showed high similarities to the corresponding human structures indicating RAGE to be evolutionary highly conserved between both species. Similar to humans the canine RAGE showed a complex and extensive splicing activity leading to a manifold pattern of RAGE isoforms. Due to the similarities seen in several canine and human diseases-including cancer-comparative structural and functional analyses allow the development of RAGE and ligand-specific therapeutic approaches beneficial for human and veterinary medicine.

  12. Pharmacotherapy for Parkinson's disease.

    Chen, Jack J; Swope, David M

    2007-12-01

    The available pharmacotherapies for Parkinson's disease address symptomatology because no agent has been demonstrated to provide definite neuroprotection against the disease. Choice of pharmacotherapy must include consideration of short-term benefits as well as long-term consequences. Patients with mild Parkinson's disease often function adequately without symptomatic treatment. However, recent data suggest that initiation of treatment with a well-tolerated agent (e.g., the monoamine oxidase [MAO]-B inhibitor rasagiline) in the absence of functional impairment is associated with improved long-term outcomes. Consideration should also be given to many patient-specific factors, including patient expectations, level of disability, employment status, functional as well as chronologic age, expected efficacy and tolerability of drugs, and response to previous Parkinson's disease therapies. Increasingly, initial monotherapy begins with a nondopaminergic agent or, if the patient is considered functionally young, a dopamine agonist. Since Parkinson's disease is a progressive disorder, adjustments to pharmacotherapy must be expected over time. When greater symptomatic relief is desired, or in the more frail elderly patient, levodopa therapy should be considered. If motor fluctuations develop, addition of a catechol-O-methyltransferase inhibitor or MAO-B inhibitor should be considered. For management of levodopa-induced dyskinesias, addition of amantadine is an option. Surgery may be considered when patients need additional symptomatic control or are experiencing severe motor complications despite pharmacologically optimized therapy.

  13. The effects of gender and COMT Val158Met polymorphism on fearful facial affect recognition: a fMRI study.

    Kempton, Matthew J; Haldane, Morgan; Jogia, Jigar; Christodoulou, Tessa; Powell, John; Collier, David; Williams, Steven C R; Frangou, Sophia

    2009-04-01

    The functional catechol-O-methyltransferase (COMT Val108/158Met) polymorphism has been shown to have an impact on tasks of executive function, memory and attention and recently, tasks with an affective component. As oestrogen reduces COMT activity, we focused on the interaction between gender and COMT genotype on brain activations during an affective processing task. We used functional MRI (fMRI) to record brain activations from 74 healthy subjects who engaged in a facial affect recognition task; subjects viewed and identified fearful compared to neutral faces. There was no main effect of the COMT polymorphism, gender or genotypexgender interaction on task performance. We found a significant effect of gender on brain activations in the left amygdala and right temporal pole, where females demonstrated increased activations over males. Within these regions, Val/Val carriers showed greater signal magnitude compared to Met/Met carriers, particularly in females. The COMT Val108/158Met polymorphism impacts on gender-related patterns of activation in limbic and paralimbic regions but the functional significance of any oestrogen-related COMT inhibition appears modest.

  14. Anatomy, normal variants, and basic biomechanics

    Berquist, T.H.; Johnson, K.A.

    1989-01-01

    This paper reports on the anatomy and basic functions of the foot and ankle important to physicians involved in imaging procedures, clinical medicine, and surgery. New radiographic techniques especially magnetic resonance imaging, provide more diagnostic information owing to improved tissue contrast and the ability to obtain multiple image planes (axial, sagittal, coronal, oblique). Therefore, a thorough knowledge of skeletal and soft tissue anatomy is even more essential. Normal variants must also be understood in order to distinguish normal from pathologic changes in the foot and ankle. A basic understanding of biomechanics is also essential for selecting the proper diagnostic techniques

  15. Oral fibrolipoma: A rare histological variant

    Treville Pereira

    2014-01-01

    Full Text Available Lipomas are benign soft tissue mesenchymal neoplasms. Fibrolipoma is a histological variant of lipoma that mostly affects the buccal mucosa and causes functional and cosmetic disabilities. The diagnosis and differentiation of fibrolipoma with clinically similar lesions such as fibroma and pleomorphic adenoma is very essential for a correct treatment plan and complete follow-up. This article presents a case of a 35-year-old female with a fibrolipoma on the lingual marginal gingiva of the mandibular left third molar.

  16. Evaluating how variants of floristic quality assessment indicate wetland condition.

    Kutcher, Thomas E; Forrester, Graham E

    2018-03-28

    Biological indicators are useful tools for the assessment of ecosystem condition. Multi-metric and multi-taxa indicators may respond to a broader range of disturbances than simpler indicators, but their complexity can make them difficult to interpret, which is critical to indicator utility for ecosystem management. Floristic Quality Assessment (FQA) is an example of a biological assessment approach that has been widely tested for indicating freshwater wetland condition, but less attention has been given to clarifying the factors controlling its response. FQA quantifies the aggregate of vascular plant species tolerance to habitat degradation (conservatism), and model variants have incorporated species richness, abundance, and indigenity (native or non-native). To assess bias, we tested FQA variants in open-canopy freshwater wetlands against three independent reference measures, using practical vegetation sampling methods. FQA variants incorporating species richness did not correlate with our reference measures and were influenced by wetland size and hydrogeomorphic class. In contrast, FQA variants lacking measures of species richness responded linearly to reference measures quantifying individual and aggregate stresses, suggesting a broad response to cumulative degradation. FQA variants incorporating non-native species, and a variant additionally incorporating relative species abundance, improved performance over using only native species. We relate our empirical findings to ecological theory to clarify the functional properties and implications of the FQA variants. Our analysis indicates that (1) aggregate conservatism reliably declines with increased disturbance; (2) species richness has varying relationships with disturbance and increases with site area, confounding FQA response; and (3) non-native species signal human disturbance. We propose that incorporating species abundance can improve FQA site-level relevance with little extra sampling effort. Using our

  17. Different Roles of COMT and HTR2A Genotypes in Working Memory Subprocesses.

    Hirohito M Kondo

    Full Text Available Working memory is linked to the functions of the frontal areas, in which neural activity is mediated by dopaminergic and serotonergic tones. However, there is no consensus regarding how the dopaminergic and serotonergic systems influence working memory subprocesses. The present study used an imaging genetics approach to examine the interaction between neurochemical functions and working memory performance. We focused on functional polymorphisms of the catechol-O-methyltransferase (COMT Val(158Met and serotonin 2A receptor (HTR2A -1438G/A genes, and devised a delayed recognition task to isolate the encoding, retention, and retrieval processes for visual information. The COMT genotypes affected recognition accuracy, whereas the HTR2A genotypes were associated with recognition response times. Activations specifically related to working memory were found in the right frontal and parietal areas, such as the middle frontal gyrus (MFG, inferior frontal gyrus (IFG, anterior cingulate cortex (ACC, and inferior parietal lobule (IPL. MFG and ACC/IPL activations were sensitive to differences between the COMT genotypes and between the HTR2A genotypes, respectively. Structural equation modeling demonstrated that stronger connectivity in the ACC-MFG and ACC-IFG networks is related to better task performance. The behavioral and fMRI results suggest that the dopaminergic and serotonergic systems play different roles in the working memory subprocesses and modulate closer cooperation between lateral and medial frontal activations.

  18. Amino acid changes in disease-associated variants differ radically from variants observed in the 1000 genomes project dataset.

    Tjaart A P de Beer

    Full Text Available The 1000 Genomes Project data provides a natural background dataset for amino acid germline mutations in humans. Since the direction of mutation is known, the amino acid exchange matrix generated from the observed nucleotide variants is asymmetric and the mutabilities of the different amino acids are very different. These differences predominantly reflect preferences for nucleotide mutations in the DNA (especially the high mutation rate of the CpG dinucleotide, which makes arginine mutability very much higher than other amino acids rather than selection imposed by protein structure constraints, although there is evidence for the latter as well. The variants occur predominantly on the surface of proteins (82%, with a slight preference for sites which are more exposed and less well conserved than random. Mutations to functional residues occur about half as often as expected by chance. The disease-associated amino acid variant distributions in OMIM are radically different from those expected on the basis of the 1000 Genomes dataset. The disease-associated variants preferentially occur in more conserved sites, compared to 1000 Genomes mutations. Many of the amino acid exchange profiles appear to exhibit an anti-correlation, with common exchanges in one dataset being rare in the other. Disease-associated variants exhibit more extreme differences in amino acid size and hydrophobicity. More modelling of the mutational processes at the nucleotide level is needed, but these observations should contribute to an improved prediction of the effects of specific variants in humans.

  19. Dopamine and cognitive control: sex-by-genotype interactions influence the capacity to switch attention.

    Gurvich, C; Rossell, S L

    2015-03-15

    Cognitive performance in healthy persons varies widely between individuals. Sex differences in cognition are well reported, and there is an emerging body of evidence suggesting that the relationship between dopaminergic neurotransmission, implicated in many cognitive functions, is modulated by sex. Here, we examine the influence of sex and genetic variations along the dopaminergic pathway on aspects of cognitive control. A total of 415 healthy individuals, selected from an international consortium linked to Brain Research and Integrative Neuroscience Network (BRAINnet), were genotyped for two common and functional genetic variations of dopamine regulating genes: the catechol-O-methyltransferase [COMT] gene (rs4680) and the dopamine receptor D2 [DRD2] gene (rs6277). Cognitive measures were selected to explore sustained attention (using a continuous performance task), switching of attention (using a Trails B adaptation) and working memory (a visual computerised adaptation of digit span). While there were no main effects for genotype across any tasks, analyses revealed significant sex by genotype interactions for the capacity to switch attention. In relation to COMT, superior performance was noted in females with the Val/Val genotype and for DRD2, superior performance was seen for TT females and CC males. These findings highlight the importance of considering genetic variation in baseline dopamine levels in addition to sex, when considering the impact of dopamine on cognition in healthy populations. These findings also have important implications for the many neuropsychiatric disorders that implicate dopamine, cognitive changes and sex differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Epistasis between dopamine regulating genes identifies a nonlinear response of the human hippocampus during memory tasks.

    Bertolino, Alessandro; Di Giorgio, Annabella; Blasi, Giuseppe; Sambataro, Fabio; Caforio, Grazia; Sinibaldi, Lorenzo; Latorre, Valeria; Rampino, Antonio; Taurisano, Paolo; Fazio, Leonardo; Romano, Raffaella; Douzgou, Sofia; Popolizio, Teresa; Kolachana, Bhaskar; Nardini, Marcello; Weinberger, Daniel R; Dallapiccola, Bruno

    2008-08-01

    Dopamine modulation of neuronal activity in prefrontal cortex maps to an inverted U-curve. Dopamine is also an important factor in regulation of hippocampal mediated memory processing. Here, we investigated the effect of genetic variation of dopamine inactivation via catechol-O-methyltransferase (COMT) and the dopamine transporter (DAT) on hippocampal activity in healthy humans during different memory conditions. Using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in 82 subjects matched for a series of demographic and genetic variables, we studied the effect of the COMT valine (Val)(158)methionine (Met) and the DAT 3' variable number tandem repeat (VNTR) polymorphisms on function of the hippocampus during encoding of recognition memory and during working memory. Our results consistently demonstrated a double dissociation so that DAT 9-repeat carrier alleles modulated activity in the hippocampus in the exact opposite direction of DAT 10/10-repeat alleles based on COMT Val(158)Met genotype during different memory conditions. Similar results were evident in ventrolateral and dorsolateral prefrontal cortex. These findings suggest that genetically determined dopamine signaling during memory processing maps to a nonlinear relationship also in the hippocampus. Our data also demonstrate in human brain epistasis of two genes implicated in dopamine signaling on brain activity during different memory conditions.

  1. Val158Met polymorphism in the COMT gene is associated with hypersomnia and mental health-related quality of life in a Colombian sample.

    Jiménez, Karen M; Pereira-Morales, Angela J; Forero, Diego A

    2017-03-22

    The identification of genes that are risk factors for major depressive disorder remains a main task for global psychiatric research. The Catechol-O-methyltransferase (COMT) gene has been an important candidate risk factor for several psychiatric disorders. Previous studies have shown that a functional polymorphism (Val158Met) in this gene has an effect on several brain circuits and endophenotypes of psychiatric relevance. The aim of this study was to explore the association of a functional polymorphism in the COMT gene with psychological distress, sleep problems and health-related quality of life. Two hundred seventy young Colombian subjects (mean age: 21.3 years; range: 18-57 years) completed the Patient Health Questionnaire-9, the Perceived Stress Scale, the Oviedo Sleep Questionnaire and the 12-Item Short-Form Health Survey and were genotyped for the Val158Met polymorphism (rs4680) in the COMT gene. A linear regression analysis, adjusting for potential confounding factors, was carried out. Subjects that were Met carriers (Val/Met and Met/Met genotypes) showed higher scores for hypersomnia (p=0.001) and lower scores for mental health-related quality of life (p=0.007), these associations remained significant after correcting for multiple testing. These findings support the hypothesis of a broad effect of the Val158Met polymorphism in the COMT gene on several dimensions of behavior and neuropsychiatric symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influence of COMT genotype and affective distractors on the processing of self-generated thought.

    Kilford, Emma J; Dumontheil, Iroise; Wood, Nicholas W; Blakemore, Sarah-Jayne

    2015-06-01

    The catechol-O-methyltransferase (COMT) enzyme is a major determinant of prefrontal dopamine levels. The Val(158)Met polymorphism affects COMT enzymatic activity and has been associated with variation in executive function and affective processing. This study investigated the effect of COMT genotype on the flexible modulation of the balance between processing self-generated and processing stimulus-oriented information, in the presence or absence of affective distractors. Analyses included 124 healthy adult participants, who were also assessed on standard working memory (WM) tasks. Relative to Val carriers, Met homozygotes made fewer errors when selecting and manipulating self-generated thoughts. This effect was partly accounted for by an association between COMT genotype and visuospatial WM performance. We also observed a complex interaction between the influence of affective distractors, COMT genotype and sex on task accuracy: male, but not female, participants showed a sensitivity to the affective distractors that was dependent on COMT genotype. This was not accounted for by WM performance. This study provides novel evidence of the role of dopaminergic genetic variation on the ability to select and manipulate self-generated thoughts. The results also suggest sexually dimorphic effects of COMT genotype on the influence of affective distractors on executive function. © The Author (2014). Published by Oxford University Press.

  3. SDS, a structural disruption score for assessment of missense variant deleteriousness

    Thanawadee ePreeprem

    2014-04-01

    Full Text Available We have developed a novel structure-based evaluation for missense variants that explicitly models protein structure and amino acid properties to predict the likelihood that a variant disrupts protein function. A structural disruption score (SDS is introduced as a measure to depict the likelihood that a case variant is functional. The score is constructed using characteristics that distinguish between causal and neutral variants within a group of proteins. The SDS score is correlated with standard sequence-based deleteriousness, but shows promise for improving discrimination between neutral and causal variants at less conserved sites.The prediction was performed on 3-dimentional structures of 57 gene products whose homozygous SNPs were identified as case-exclusive variants in an exome sequencing study of epilepsy disorders. We contrasted the candidate epilepsy variants with scores for likely benign variants found in the EVS database, and for positive control variants in the same genes that are suspected to promote a range of diseases. To derive a characteristic profile of damaging SNPs, we transformed continuous scores into categorical variables based on the score distribution of each measurement, collected from all possible SNPs in this protein set, where extreme measures were assumed to be deleterious. A second epilepsy dataset was used to replicate the findings. Causal variants tend to receive higher sequence-based deleterious scores, induce larger physico-chemical changes between amino acid pairs, locate in protein domains, buried sites or on conserved protein surface clusters, and cause protein destabilization, relative to negative controls. These measures were agglomerated for each variant. A list of nine high-priority putative functional variants for epilepsy was generated. Our newly developed SDS protocol facilitates SNP prioritization for experimental validation.

  4. GCPII Variants, Paralogs and Orthologs

    Hlouchová, Klára; Navrátil, Václav; Tykvart, Jan; Šácha, Pavel; Konvalinka, Jan

    2012-01-01

    Roč. 19, č. 9 (2012), s. 1316-1322 ISSN 0929-8673 R&D Projects: GA ČR GAP304/12/0847 Institutional research plan: CEZ:AV0Z40550506 Keywords : PSMA * GCPIII * NAALADase L * splice variants * homologs * PSMAL Subject RIV: CE - Biochemistry Impact factor: 4.070, year: 2012

  5. Odontogenic keratocyst: a peripheral variant.

    Vij, H; Vij, R; Gupta, V; Sengupta, S

    2011-01-01

    Odontogenic keratocyst, which is developmental in nature, is an intraosseous lesion though on rare occasions it may occur in an extraosseous location. The extraosseous variant is referred to as peripheral odontogenic keratocyst. Though, clinically, peripheral odontogenic keratocyst resembles the gingival cyst of adults, it has histologic features that are pathognomonic of odontogenic keratocyst. This article presents a case of this uncommon entity.

  6. CDKL5 variants: Improving our understanding of a rare neurologic disorder.

    Hector, Ralph D; Kalscheuer, Vera M; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E S; Cobb, Stuart R

    2017-12-01

    To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain.

  7. Lack of effect of polymorphisms in dopamine metabolism related genes on imaging of TRODAT-1 in striatum of asymptomatic volunteers and patients with Parkinson's disease.

    Lynch, David R; Mozley, P David; Sokol, Set; Maas, Nicole M C; Balcer, Laura J; Siderowf, Andrew D

    2003-07-01

    SPECT scanning using (99)Tc-TRODAT-1, a ligand that binds to dopamine transporters, may be useful for detection of early Parkinson's disease (PD), diagnosis of presymptomatic individuals, and monitoring disease progression. Understanding whether genetic factors contribute to inter-individual variability is crucial for interpreting imaging results in the context of disease pathophysiology. We tested whether polymorphisms in the genes for catechol-O-methyltransferase (COMT), monoamine-oxidase B (MAO-B), and the dopamine transporter (DAT) influence dopamine uptake parameters in the striatum in vivo in asymptomatic volunteers and patients with PD as measured with (99)Tc-TRODAT-1. (99)Tc-TRODAT-1 binding declined with age in both asymptomatic volunteers and PD patients, and depended on disease duration in PD patients. We found no significant association between COMT, MAO-B, and DAT polymorphisms and results of (99)Tc-TRODAT-1 testing in asymptomatic volunteers or patients with PD. In PD patients, the age of disease onset and speed of progression did not differ based on these polymorphisms. These results demonstrate that these specific genetic variations do not alter the fidelity of (99)Tc-TRODAT-1 as a measure of dopaminergic function in asymptomatic volunteer individuals or patients with PD. Copyright 2003 Movement Disorder Society

  8. The brain-derived neurotrophic factor (BDNF val66met polymorphism differentially affects performance on subscales of the Wechsler memory scale – third edition (WMS-III

    Yvette Nicole Lamb

    2015-08-01

    Full Text Available Single nucleotide polymorphisms in the brain-derived neurotrophic factor (BDNF gene and the catechol-O-methyltransferase (COMT gene influence brain structure and function, as well as cognitive abilities. They are most influential in the hippocampus and prefrontal cortex (PFC, respectively. Recall and recognition are forms of memory proposed to have different neural substrates, with recall having a greater dependence on the PFC and hippocampus. This study aimed to determine whether the BDNF val66met or COMT val158met polymorphisms differentially affect recall and recognition, and whether these polymorphisms interact. A sample of 100 healthy adults was assessed on recall and familiarity-based recognition using the Faces and Family Pictures subscales of the Wechsler Memory Scale – Third Edition (WMS-III. COMT genotype did not affect performance on either task. The BDNF polymorphism (i.e. met carriers relative to val homozygotes was associated with poorer recall ability, while not influencing recognition. Combining subscale scores in memory tests such as the WMS might obscure gene effects. Our results demonstrate the importance of distinguishing between recall and familiarity-based recognition in neurogenetics research.

  9. Effects of tolcapone on working memory and brain activity in abstinent smokers: A proof-of-concept study

    Ashare, Rebecca L.; Wileyto, E. Paul; Ruparel, Kosha; Goelz, Patricia M.; Hopson, Ryan D.; Valdez, Jeffrey N.; Gur, Ruben C.; Loughead, James; Lerman, Caryn

    2014-01-01

    Background Dopamine levels in the prefrontal cortex (PFC) are thought to play an important role in cognitive function and nicotine dependence. The catechol-O-methyltransferase (COMT) inhibitor tolcapone, an FDA-approved treatment for Parkinson’s disease, increases prefrontal dopamine levels, with cognitive benefits that may vary by COMT genotype. We tested whether tolcapone alters working memory-related brain activity and performance in abstinent smokers. Methods In this double-blind crossover study, 20 smokers completed 8 days of treatment with tolcapone and placebo. In both medication periods, smokers completed blood oxygen level-dependent (BOLD) fMRI scans while performing a working memory N-back task after 24 h of abstinence. Smokers were genotyped prospectively for the COMT val158met polymorphism for exploratory analysis. Results Compared to placebo, tolcapone modestly improved accuracy (p = 0.017) and enhanced suppression of activation in the ventromedial prefrontal cortex (vmPFC) (p = 0.002). There were no effects of medication in other a priori regions of interest (dorsolateral PFC, dorsal cingulate/medial prefrontal cortex, or posterior cingulate cortex). Exploratory analyses suggested that tolcapone led to a decrease in BOLD signal in several regions among smokers with val/val genotypes, but increased or remained unchanged among met allele carriers. Tolcapone did not attenuate craving, mood, or withdrawal symptoms compared to placebo. Conclusions Data from this proof-of-concept study do not provide strong support for further evaluation of COMT inhibitors as smoking cessation aids. PMID:24095246

  10. Pharmacogenetic guidance: individualized medicine promotes enhanced pain outcomes

    Dragic LL

    2017-12-01

    Full Text Available Lisa Lynn Dragic,1 Erica L Wegrzyn,2 Michael E Schatman,3–5 Jeffrey Fudin2,6 1Central Arkansas Veterans Healthcare System, Little Rock, AR, USA; 2Department of Pharmacy, Albany Stratton VA Medical Center, Albany, NY, USA; 3Research and Network Development, Boston Pain Care, Waltham, MA, USA; 4Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; 5Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA; 6Scientific and Clinical Affairs, Remitigate, LLC, Delmar, NY, USA Abstract: The use of pharmacogenomics has become more prevalent over the past several years in treating many disease states. Several cytochrome P450 enzymes play a role in the metabolism of many pain medications including opioids and antidepressants. Noncytochrome P450 enzymes such as methylenetetrahydrofolate reductase (MTHFR and catechol-O-methyl transferase (COMT also play a role in the explanation of opioid dosage requirements as well as in response to certain antidepressants. We present the case of a patient with reduced COMT and MTHFR expression treated with leucovorin 10 mg daily for the management of chronic pain. The use of leucovorin in this patient decreased pain scores, which were clinically significant and increased functionality. This case demonstrates the importance of pharmacogenetics testing in patients, as this can help direct providers to better therapeutic options for their patients. Keywords: pharmacogenetic, depression, pain, MTHFR, COMT, methyl tetrahydrofolate reductase, catechol-O-methyltransferase

  11. Influence of COMT val158met genotype on the depressed brain during emotional processing and working memory.

    Esther M Opmeer

    Full Text Available Major depressive disorder (MDD has been associated with abnormal prefrontal-limbic interactions and altered catecholaminergic neurotransmission. The val158met polymorphism on the catechol-O-methyltransferase (COMT gene has been shown to influence prefrontal cortex (PFC activation during both emotional processing and working memory (WM. Although COMT-genotype is not directly associated with MDD, it may affect MDD pathology by altering PFC activation, an endophenotype associated with both COMT and MDD. 125 participants, including healthy controls (HC, n=28 and MDD patients were genotyped for the COMT val158met polymorphism and underwent functional magnetic resonance imaging (fMRI-neuroimaging during emotion processing (viewing of emotional facial expressions and a WM task (visuospatial planning. Within HC, we observed a positive correlation between the number of met-alleles and right inferior frontal gyrus activation during emotional processing, whereas within patients the number of met-alleles was not correlated with PFC activation. During WM a negative correlation between the number of met-alleles and middle frontal gyrus activation was present in the total sample. In addition, during emotional processing there was an effect of genotype in a cluster including the amygdala and hippocampus. These results demonstrate that COMT genotype is associated with relevant endophenotypes for MDD. In addition, presence of MDD only interacts with genotype during emotional processing and not working memory.

  12. COMT Val158Met polymorphism, cognitive stability and cognitive flexibility: an experimental examination

    Rosa Elise C

    2010-09-01

    Full Text Available Abstract Background Dopamine in prefrontal cortex (PFC modulates core cognitive processes, notably working memory and executive control. Dopamine regulating genes and polymorphisms affecting PFC - including Catechol-O-Methyltransferase (COMT Val158Met - are crucial to understanding the molecular genetics of cognitive function and dysfunction. A mechanistic account of the COMT Val158Met effect associates the Met allele with increased tonic dopamine transmission underlying maintenance of relevant information, and the Val allele with increased phasic dopamine transmission underlying the flexibility of updating new information. Thus, consistent with some earlier work, we predicted that Val carriers would display poorer performance when the maintenance component was taxed, while Met carriers would be less efficient when rapid updating was required. Methods Using a Stroop task that manipulated level of required cognitive stability and flexibility, we examined reaction time performance of patients with schizophrenia (n = 67 and healthy controls (n = 186 genotyped for the Val/Met variation. Results In both groups we found a Met advantage for tasks requiring cognitive stability, but no COMT effect when a moderate level of cognitive flexibility was required, or when a conflict cost measure was calculated. Conclusions Our results do not support a simple stability/flexibility model of dopamine COMT Val/Met effects and suggest a somewhat different conceptualization and experimental operationalization of these cognitive components.

  13. Count on dopamine: influences of COMT polymorphisms on numerical cognition

    Annelise eJúlio-Costa

    2013-08-01

    Full Text Available Catechol-O-methyltransferase (COMT is an enzyme that is particularly important for the metabolism of dopamine. Functional polymorphisms of COMT have been implicated in working memory and numerical cognition. This is an exploratory study that aims at investigating associations between COMT polymorphisms, working memory and numerical cognition. Elementary school children from 2th to 6th grades were divided into two groups according to their COMT val158met polymorphism (homozygous for valine allele [n= 61] versus heterozygous plus methionine homozygous children or met+ group [n=94]. Both groups were matched for age and intelligence. Working memory was assessed through digit span and Corsi blocks. Symbolic numerical processing was assessed through transcoding and single-digit word problem tasks. Non-symbolic magnitude comparison and estimation tasks were used to assess number sense. Between-group differences were found in symbolic and non-symbolic numerical tasks, but not in working memory tasks. Children in the met+ group showed better performance in all numerical tasks while val homozygous children presented slower development of non-symbolic magnitude representations. These results suggest COMT-related dopaminergic modulation may be related not only to working memory, as found in previous studies, but also to the development of magnitude processing and magnitude representations.

  14. Delayed O-methylation of l-DOPA in MB-COMT-deficient mice after oral administration of l-DOPA and carbidopa.

    Tammimäki, Anne; Aonurm-Helm, Anu; Männistö, Pekka T

    2018-04-01

    1. Catechol-O-methyltransferase (COMT) is involved in the O-methylation of l-DOPA, dopamine, and other catechols. The enzyme is expressed in two isoforms: soluble (S-COMT), which resides in the cytoplasm, and membrane-bound (MB-COMT), which is anchored to intracellular membranes. 2. To obtain specific information on the functions of COMT isoforms, we studied how a complete MB-COMT deficiency affects the total COMT activity in the body, peripheral l-DOPA levels, and metabolism after l-DOPA (10 mg kg -1 ) plus carbidopa (30 mg kg -1 ) administration by gastric tube in wild-type (WT) and MB-COMT-deficient mice. l-DOPA and 3-O-methyl-l-DOPA (3-OMD) levels were assayed in plasma, duodenum, and liver. 3. We showed that the selective lack of MB-COMT did not alter the total COMT activity, COMT enzyme kinetics, l-DOPA levels, or the total O-methylation of l-DOPA but delayed production of 3-OMD in plasma and peripheral tissues.

  15. Novel double-isotope technique for enzymatic assay of catecholamines, permitting high precision, sensitivity and plasma sample capacity

    Brown, M.J.; Jenner, D.A.

    1981-01-01

    A novel use of a double-isotope method is described which allows radioenzymatic assays to combine precision and sensitivity. In the catechol O-methyltransferase assay separate portions of each plasma sample are incubated with either S-[ 3 H]- or S-[ 14 C]-adenosyl-L-methionine. Standards of noradrenaline and adrenaline are added to the latter portions and are thus converted into standards of [ 14 C]metadrenalines. These are added to the 3 H-labelled portions after the incubation, where they function as tracers. The final recovery of 14 C radioactivity corrects for (a) the efficiency of methylation in the plasma sample concerned and (b) the recovery of metadrenalines during the extraction procedures. The 3 H/ 14 C ratio is constant in each assay for a given catecholamine concentration and is determined for samples to which standards of noradrenaline and adrenaline are added to the 3 H- (as well as the 14 C-) labelled portions before the initial incubation. The sensitivity of the assay is increased by using high specific radioactivity S-[ 3 H]adenosyl-L-methionine, and low backgrounds are maintained by catecholamine depletion in vivo in the rats used for enzyme preparation. Both catecholamines (1.5 pg/ml; 10 pmol/l) may be detected; the coefficients of variation are 3.0 and 3.2% for noradrenaline and adrenaline respectively (intra-assay) and 4.6 and 5.0% (inter-assay). (author)

  16. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population.

    Yousri, Noha A; Fakhro, Khalid A; Robay, Amal; Rodriguez-Flores, Juan L; Mohney, Robert P; Zeriri, Hassina; Odeh, Tala; Kader, Sara Abdul; Aldous, Eman K; Thareja, Gaurav; Kumar, Manish; Al-Shakaki, Alya; Chidiac, Omar M; Mohamoud, Yasmin A; Mezey, Jason G; Malek, Joel A; Crystal, Ronald G; Suhre, Karsten

    2018-01-23

    Metabolomics-genome-wide association studies (mGWAS) have uncovered many metabolic quantitative trait loci (mQTLs) influencing human metabolic individuality, though predominantly in European cohorts. By combining whole-exome sequencing with a high-resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations, and 11 common variant mQTLs to putative protein-altering variants. This is the first work to report common and rare variant mQTLs linked to diseases and/or pharmacological targets in a consanguineous Arab cohort, with wide implications for precision medicine in the Middle East.

  17. Data on the purification and crystallization of the loss-of-function von Willebrand disease variant (p.Gly1324Ser of the von Willebrand factor A1 domain

    James C. Cambell

    2016-06-01

    In this data article we describe the production, quality control and crystallization of the p.Gly1324Ser vWD variant of the A1 domain of VWF. p.Gly1324Ser A1 was expressed in Escherichia coli as insoluble inclusion bodies. After the preparation of the inclusion bodies, the protein was solubilized, refolded, purified by affinity chromatography and crystallized. The crystal structure of the p.Gly1324Ser mutant of the A1 domain is deposited at the Protein Data Bank PDB: 5BV8

  18. The UK10K project identifies rare variants in health and disease

    Walter, Klaudia; Min, Josine L.; Huang, Jie

    2015-01-01

    -marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive...

  19. Neurodevelopmental Disorders Caused by De Novo Variants in KCNB1 Genotypes and Phenotypes

    de Kovel, Carolien G F; Syrbe, Steffen; Brilstra, Eva H

    2017-01-01

    Importance: Knowing the range of symptoms seen in patients with a missense or loss-of-function variant in KCNB1 and how these symptoms correlate with the type of variant will help clinicians with diagnosis and prognosis when treating new patients. Objectives: To investigate the clinical spectrum ...

  20. Expression defect size among unclassified MLH1 variants determines pathogenicity in Lynch syndrome diagnosis

    Hinrichsen, Inga; Brieger, Angela; Trojan, Jörg

    2013-01-01

    Lynch syndrome is caused by a germline mutation in a mismatch repair gene, most commonly the MLH1 gene. However, one third of the identified alterations are missense variants with unclear clinical significance. The functionality of these variants can be tested in the laboratory, but the results...

  1. Korean Variant Archive (KOVA): a reference database of genetic variations in the Korean population.

    Lee, Sangmoon; Seo, Jihae; Park, Jinman; Nam, Jae-Yong; Choi, Ahyoung; Ignatius, Jason S; Bjornson, Robert D; Chae, Jong-Hee; Jang, In-Jin; Lee, Sanghyuk; Park, Woong-Yang; Baek, Daehyun; Choi, Murim

    2017-06-27

    Despite efforts to interrogate human genome variation through large-scale databases, systematic preference toward populations of Caucasian descendants has resulted in unintended reduction of power in studying non-Caucasians. Here we report a compilation of coding variants from 1,055 healthy Korean individuals (KOVA; Korean Variant Archive). The samples were sequenced to a mean depth of 75x, yielding 101 singleton variants per individual. Population genetics analysis demonstrates that the Korean population is a distinct ethnic group comparable to other discrete ethnic groups in Africa and Europe, providing a rationale for such independent genomic datasets. Indeed, KOVA conferred 22.8% increased variant filtering power in addition to Exome Aggregation Consortium (ExAC) when used on Korean exomes. Functional assessment of nonsynonymous variant supported the presence of purifying selection in Koreans. Analysis of copy number variants detected 5.2 deletions and 10.3 amplifications per individual with an increased fraction of novel variants among smaller and rarer copy number variable segments. We also report a list of germline variants that are associated with increased tumor susceptibility. This catalog can function as a critical addition to the pre-existing variant databases in pursuing genetic studies of Korean individuals.

  2. Genetic Variants Associated with Circulating Parathyroid Hormone.

    Robinson-Cohen, Cassianne; Lutsey, Pamela L; Kleber, Marcus E; Nielson, Carrie M; Mitchell, Braxton D; Bis, Joshua C; Eny, Karen M; Portas, Laura; Eriksson, Joel; Lorentzon, Mattias; Koller, Daniel L; Milaneschi, Yuri; Teumer, Alexander; Pilz, Stefan; Nethander, Maria; Selvin, Elizabeth; Tang, Weihong; Weng, Lu-Chen; Wong, Hoi Suen; Lai, Dongbing; Peacock, Munro; Hannemann, Anke; Völker, Uwe; Homuth, Georg; Nauk, Matthias; Murgia, Federico; Pattee, Jack W; Orwoll, Eric; Zmuda, Joseph M; Riancho, Jose Antonio; Wolf, Myles; Williams, Frances; Penninx, Brenda; Econs, Michael J; Ryan, Kathleen A; Ohlsson, Claes; Paterson, Andrew D; Psaty, Bruce M; Siscovick, David S; Rotter, Jerome I; Pirastu, Mario; Streeten, Elizabeth; März, Winfried; Fox, Caroline; Coresh, Josef; Wallaschofski, Henri; Pankow, James S; de Boer, Ian H; Kestenbaum, Bryan

    2017-05-01

    Parathyroid hormone (PTH) is a primary calcium regulatory hormone. Elevated serum PTH concentrations in primary and secondary hyperparathyroidism have been associated with bone disease, hypertension, and in some studies, cardiovascular mortality. Genetic causes of variation in circulating PTH concentrations are incompletely understood. We performed a genome-wide association study of serum PTH concentrations among 29,155 participants of European ancestry from 13 cohort studies ( n =22,653 and n =6502 in discovery and replication analyses, respectively). We evaluated the association of single nucleotide polymorphisms (SNPs) with natural log-transformed PTH concentration adjusted for age, sex, season, study site, and principal components of ancestry. We discovered associations of SNPs from five independent regions with serum PTH concentration, including the strongest association with rs6127099 upstream of CYP24A1 ( P =4.2 × 10 -53 ), a gene that encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-dihydroxyvitamin D. Each additional copy of the minor allele at this SNP associated with 7% higher serum PTH concentration. The other SNPs associated with serum PTH concentration included rs4074995 within RGS14 ( P =6.6 × 10 -17 ), rs219779 adjacent to CLDN14 ( P =3.5 × 10 -16 ), rs4443100 near RTDR1 ( P =8.7 × 10 -9 ), and rs73186030 near CASR ( P =4.8 × 10 -8 ). Of these five SNPs, rs6127099, rs4074995, and rs219779 replicated. Thus, common genetic variants located near genes involved in vitamin D metabolism and calcium and renal phosphate transport associated with differences in circulating PTH concentrations. Future studies could identify the causal variants at these loci, and the clinical and functional relevance of these variants should be pursued. Copyright © 2017 by the American Society of Nephrology.

  3. Two new splice variants in porcine PPARGC1A

    Peelman Luc J

    2008-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A is a coactivator with a vital and central role in fat and energy metabolism. It is considered to be a candidate gene for meat quality in pigs and is involved in the development of obesity and diabetes in humans. How its many functions are regulated, is however still largely unclear. Therefore a transcription profile of PPARGC1A in 32 tissues and 4 embryonic developmental stages in the pig was constructed by screening its cDNA for possible splice variants with exon-spanning primers. Findings This led to the discovery of 2 new splice variants in the pig, which were subsequently also detected in human tissues. In these variants, exon 8 was either completely or partly (the last 66 bp were conserved spliced out, potentially coding for a much shorter protein of respectively 337 and 359 amino acids (aa, of which the first 291 aa would be the same compared to the complete protein (796 aa. Conclusion Considering the functional domains of the PPARGC1A protein, it is very likely these splice variants considerably affect the function of the protein and alternative splicing could be one of the mechanisms by which the diverse functions of PPARGC1A are regulated.

  4. Exact solutions for nonlinear variants of Kadomtsev–Petviashvili (n ...

    Studying compactons, solitons, solitary patterns and periodic solutions is important in nonlinear phenomena. In this paper we study nonlinear variants of the Kadomtsev–Petviashvili (KP) and the Korteweg–de Vries (KdV) equations with positive and negative exponents. The functional variable method is used to establish ...

  5. Swine Influenza/Variant Influenza Viruses

    ... Address What's this? Submit What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Information on Swine Influenza/Variant Influenza Virus Language: English (US) Español Recommend ...

  6. Arrhythmogenic KCNE gene variants: current knowledge and future challenges

    Shawn M Crump

    2014-01-01

    Full Text Available There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances.

  7. ABCA7 rare variants and Alzheimer disease risk.

    Le Guennec, Kilan; Nicolas, Gaël; Quenez, Olivier; Charbonnier, Camille; Wallon, David; Bellenguez, Céline; Grenier-Boley, Benjamin; Rousseau, Stéphane; Richard, Anne-Claire; Rovelet-Lecrux, Anne; Bacq, Delphine; Garnier, Jean-Guillaume; Olaso, Robert; Boland, Anne; Meyer, Vincent; Deleuze, Jean-François; Amouyel, Philippe; Munter, Hans Markus; Bourque, Guillaume; Lathrop, Mark; Frebourg, Thierry; Redon, Richard; Letenneur, Luc; Dartigues, Jean-François; Pasquier, Florence; Rollin-Sillaire, Adeline; Génin, Emmanuelle; Lambert, Jean-Charles; Hannequin, Didier; Campion, Dominique

    2016-06-07

    To study the association between ABCA7 rare coding variants and Alzheimer disease (AD) in a case-control setting. We conducted a whole exome analysis among 484 French patients with early-onset AD and 590 ethnically matched controls. After collapsing rare variants (minor allele frequency ≤1%), we detected an enrichment of ABCA7 loss of function (LOF) and predicted damaging missense variants in cases (odds ratio [OR] 3.40, 95% confidence interval [CI] 1.68-7.35, p = 0.0002). Performing a meta-analysis with previously published data, we found that in a combined sample of 1,256 patients and 1,347 controls from France and Belgium, the OR was 2.81 (95% CI 1.89-4.20, p = 3.60 × 10(-7)). These results confirm that ABCA7 LOF variants are enriched in patients with AD and extend this finding to predicted damaging missense variants. © 2016 American Academy of Neurology.

  8. Coronary artery anatomy and variants

    Malago, Roberto; Pezzato, Andrea; Barbiani, Camilla; Alfonsi, Ugolino; Nicoli, Lisa; Caliari, Giuliana; Pozzi Mucelli, Roberto [Policlinico G.B. Rossi, University of Verona, Department of Radiology, Verona (Italy)

    2011-12-15

    Variants and congenital anomalies of the coronary arteries are usually asymptomatic, but may present with severe chest pain or cardiac arrest. The introduction of multidetector CT coronary angiography (MDCT-CA) allows the detection of significant coronary artery stenosis. Improved performance with isotropic spatial resolution and higher temporal resolution provides a valid alternative to conventional coronary angiography (CCA) in many patients. MDCT-CA is now considered the ideal tool for three-dimensional visualization of the complex and tortuous anatomy of the coronary arteries. With multiplanar and volume-rendered reconstructions, MDCT-CA may even outperform CCA in determining the relative position of vessels, thus providing a better view of the coronary vascular anatomy. The purpose of this review is to describe the normal anatomy of the coronary arteries and their main variants based on MDCT-CA with appropriate reconstructions. (orig.)

  9. Systematic identification of regulatory variants associated with cancer risk.

    Liu, Song; Liu, Yuwen; Zhang, Qin; Wu, Jiayu; Liang, Junbo; Yu, Shan; Wei, Gong-Hong; White, Kevin P; Wang, Xiaoyue

    2017-10-23

    Most cancer risk-associated single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) are noncoding and it is challenging to assess their functional impacts. To systematically identify the SNPs that affect gene expression by modulating activities of distal regulatory elements, we adapt the self-transcribing active regulatory region sequencing (STARR-seq) strategy, a high-throughput technique to functionally quantify enhancer activities. From 10,673 SNPs linked with 996 cancer risk-associated SNPs identified in previous GWAS studies, we identify 575 SNPs in the fragments that positively regulate gene expression, and 758 SNPs in the fragments with negative regulatory activities. Among them, 70 variants are regulatory variants for which the two alleles confer different regulatory activities. We analyze in depth two regulatory variants-breast cancer risk SNP rs11055880 and leukemia risk-associated SNP rs12142375-and demonstrate their endogenous regulatory activities on expression of ATF7IP and PDE4B genes, respectively, using a CRISPR-Cas9 approach. By identifying regulatory variants associated with cancer susceptibility and studying their molecular functions, we hope to help the interpretation of GWAS results and provide improved information for cancer risk assessment.

  10. Human GRIN2B variants in neurodevelopmental disorders

    Chun Hu

    2016-10-01

    Full Text Available The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-d-aspartate receptor (NMDAR gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD, attention deficit hyperactivity disorder (ADHD, developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies.

  11. CEACAM6 gene variants in inflammatory bowel disease.

    Glas, Jürgen; Seiderer, Julia; Fries, Christoph; Tillack, Cornelia; Pfennig, Simone; Weidinger, Maria; Beigel, Florian; Olszak, Torsten; Lass, Ulrich; Göke, Burkhard; Ochsenkühn, Thomas; Wolf, Christiane; Lohse, Peter; Müller-Myhsok, Bertram; Diegelmann, Julia; Czamara, Darina; Brand, Stephan

    2011-04-29

    The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) acts as a receptor for adherent-invasive E. coli (AIEC) and its ileal expression is increased in patients with Crohn's disease (CD). Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD). In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC), and 1,350 healthy, unrelated controls) was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839). In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.

  12. CEACAM6 gene variants in inflammatory bowel disease.

    Jürgen Glas

    Full Text Available BACKGROUND: The carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6 acts as a receptor for adherent-invasive E. coli (AIEC and its ileal expression is increased in patients with Crohn's disease (CD. Given its contribution to the pathogenesis of CD, we aimed to investigate the role of genetic variants in the CEACAM6 region in patients with inflammatory bowel diseases (IBD. METHODOLOGY: In this study, a total of 2,683 genomic DNA samples (including DNA from 858 CD patients, 475 patients with ulcerative colitis (UC, and 1,350 healthy, unrelated controls was analyzed for eight CEACAM6 SNPs (rs10415946, rs1805223 = p.Pro42Pro, rs4803507, rs4803508, rs11548735 = p.Gly239Val, rs7246116 = pHis260His, rs2701, rs10416839. In addition, a detailed haplotype analysis and genotype-phenotype analysis were performed. Overall, our genotype analysis did not reveal any significant association of the investigated CEACAM6 SNPs and haplotypes with CD or UC susceptibility, although certain CEACAM6 SNPs modulated CEACAM6 expression in intestinal epithelial cell lines. Despite its function as receptor of AIEC in ileal CD, we found no association of the CEACAM6 SNPs with ileal or ileocolonic CD. Moreover, there was no evidence of epistasis between the analyzed CEACAM6 variants and the main CD-associated NOD2, IL23R and ATG16L1 variants. CONCLUSIONS: This study represents the first detailed analysis of CEACAM6 variants in IBD patients. Despite its important role in bacterial attachment in ileal CD, we could not demonstrate a role for CEACAM6 variants in IBD susceptibility or regarding an ileal CD phenotype. Further functional studies are required to analyze if these gene variants modulate ileal bacterial attachment.

  13. Microcystic Variant of Urothelial Carcinoma

    Anthony Kodzo-Grey Venyo

    2013-01-01

    Full Text Available Background. Microcystic variant of urothelial carcinoma is one of the new variants of urothelial carcinoma that was added to the WHO classification in 2004. Aims. To review the literature on microcystic variant of urothelial carcinoma. Methods. Various internet search engines were used to identify reported cases of the tumour. Results. Microscopic features of the tumour include: (i Conspicuous intracellular and intercellular lumina/microcysts encompassed by malignant urothelial or squamous cells. (ii The lumina are usually empty; may contain granular eosinophilic debris, mucin, or necrotic cells. (iii The cysts may be variable in size; round, or oval, up to 2 mm; lined by urothelium which are either flattened cells or low columnar cells however, they do not contain colonic epithelium or goblet cells; are infiltrative; invade the muscularis propria; mimic cystitis cystica and cystitis glandularis; occasionally exhibit neuroendocrine differentiation. (iv Elongated and irregular branching spaces are usually seen. About 17 cases of the tumour have been reported with only 2 patients who have survived. The tumour tends to be of high-grade and high-stage. There is no consensus opinion on the best option of treatment of the tumour. Conclusions. It would prove difficult at the moment to be dogmatic regarding its prognosis but it is a highly aggressive tumour. New cases of the tumour should be reported in order to document its biological behaviour.

  14. Poisson Approximation-Based Score Test for Detecting Association of Rare Variants.

    Fang, Hongyan; Zhang, Hong; Yang, Yaning

    2016-07-01

    Genome-wide association study (GWAS) has achieved great success in identifying genetic variants, but the nature of GWAS has determined its inherent limitations. Under the common disease rare variants (CDRV) hypothesis, the traditional association analysis methods commonly used in GWAS for common variants do not have enough power for detecting rare variants with a limited sample size. As a solution to this problem, pooling rare variants by their functions provides an efficient way for identifying susceptible genes. Rare variant typically have low frequencies of minor alleles, and the distribution of the total number of minor alleles of the rare variants can be approximated by a Poisson distribution. Based on this fact, we propose a new test method, the Poisson Approximation-based Score Test (PAST), for association analysis of rare variants. Two testing methods, namely, ePAST and mPAST, are proposed based on different strategies of pooling rare variants. Simulation results and application to the CRESCENDO cohort data show that our methods are more powerful than the existing methods. © 2016 John Wiley & Sons Ltd/University College London.

  15. COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury

    E.A. Winkler (Ethan A.); J.K. Yue (John); T.W. McAllister (Thomas W.); N.R. Temkin (Nancy); S.S. Oh (Sam S.); E.G. Burchard (Esteban); D. Hu (Donglei); A.R. Ferguson (Adam); H.F. Lingsma (Hester); J.F. Burke (John F.); M.D. Sorani (Marco); J. Rosand (Jonathan); E.L. Yuh (Esther); J. Barber (Jason); P.E. Tarapore (Phiroz E.); R.C. Gardner (Raquel C.); S. Sharma (Sourabh); G.G. Satris (Gabriela G.); C. Eng (Celeste); A.M. Puccio (Ava); K.K.W. Wang (Kevin K. W.); P. Mukherjee (Pratik); A.B. Valadka (Alex); D. Okonkwo (David); R. Diaz-Arrastia (Ramon); G. Manley (Geoffrey)

    2016-01-01

    textabstractMild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits

  16. The TT genotype of the rs6860 polymorphism of the charged multivesicular body protein 1A gene is associated with susceptibility to fibromyalgia in southern Spanish women

    Estévez-López, Fernando; Aparicio, Virginia A; Ruiz, Jonatan R; Martínez-González, Luis J; Delgado-Fernández, Manuel; Álvarez-Cubero, María J

    In 2012, Barbosa et al. analysed the association between the genotype frequencies of the rs4680 and rs4818 polymorphisms of the catechol-O-methyltransferase (COMT) gene. Of note is that, in the abstract, they mentioned the rs6860 polymorphism when it should have been rs4680. Indeed, the rs6860

  17. Modification of Depression by COMT val[superscript 158]Met Polymorphism in Children Exposed to Early Severe Psychosocial Deprivation

    Drury, Stacy S.; Theall, Katherine P.; Smyke, Anna T.; Keats, Bronya J. B.; Egger, Helen L.; Nelson, Charles A.; Fox, Nathan A.; Marshall, Peter J.; Zeanah, Charles H.

    2010-01-01

    Objective: To examine the impact of the catechol-O-methyltransferase (COMT) val[superscript 158]met allele on depressive symptoms in young children exposed to early severe social deprivation as a result of being raised in institutions. Methods: One hundred thirty six children from the Bucharest Early Intervention Project (BEIP) were randomized…

  18. COMT Val158Met genotype as a risk factor for problem behaviors in youth

    M.D. Albaugh (Matthew); V.S. Harder (Valerie); R.R. Althoff (Robert); D.C. Rettew (David); E.A. Ehli (Erik); T. Lengyel-Nelson (Timea); G.E. Davies (Gareth); L. Ayer (Lynsay); J. Sulman (Julie); C. Stanger (Catherine); J.J. Hudziak (James)

    2010-01-01

    textabstractObjective: To test the association between the catechol-O-methyltransferase (COMT) Val158Met polymorphism and both aggressive behavior and attention problems in youth. We hypothesized that youth carrying a Met allele would have greater average aggressive behavior scores, and that youth

  19. Cognitive control and the COMT Val158Met polymorphism: genetic modulation of videogame training and transfer to task-switching efficiency

    Colzato, L.S.; van den Wildenberg, W.P.M.; Hommel, B.

    2014-01-01

    The study investigated whether successful transfer of game-based cognitive improvements to untrained tasks might be modulated by preexisting neuro-developmental factors, such as genetic variability related to the catechol-O-methyltransferase (COMT)—an enzyme responsible for the degradation of

  20. A comprehensive approach to identification of pathogenic FANCA variants in Fanconi anemia patients and their families.

    Kimble, Danielle C; Lach, Francis P; Gregg, Siobhan Q; Donovan, Frank X; Flynn, Elizabeth K; Kamat, Aparna; Young, Alice; Vemulapalli, Meghana; Thomas, James W; Mullikin, James C; Auerbach, Arleen D; Smogorzewska, Agata; Chandrasekharappa, Settara C

    2018-02-01

    Fanconi anemia (FA) is a rare recessive DNA repair deficiency resulting from mutations in one of at least 22 genes. Two-thirds of FA families harbor mutations in FANCA. To genotype patients in the International Fanconi Anemia Registry (IFAR) we employed multiple methodologies, screening 216 families for FANCA mutations. We describe identification of 57 large deletions and 261 sequence variants, in 159 families. All but seven families harbored distinct combinations of two mutations demonstrating high heterogeneity. Pathogenicity of the 18 novel missense variants was analyzed functionally by determining the ability of the mutant cDNA to improve the survival of a FANCA-null cell line when treated with MMC. Overexpressed pathogenic missense variants were found to reside in the cytoplasm, and nonpathogenic in the nucleus. RNA analysis demonstrated that two variants (c.522G > C and c.1565A > G), predicted to encode missense variants, which were determined to be nonpathogenic by a functional assay, caused skipping of exons 5 and 16, respectively, and are most likely pathogenic. We report 48 novel FANCA sequence variants. Defining both variants in a large patient cohort is a major step toward cataloging all FANCA variants, and permitting studies of genotype-phenotype correlations. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Fine-mapping inflammatory bowel disease loci to single-variant resolution

    Huang, Hailiang; Fang, Ming; Jostins, Luke; Umićević Mirkov, Maša; Boucher, Gabrielle; Anderson, Carl A; Andersen, Vibeke; Cleynen, Isabelle; Cortes, Adrian; Crins, François; D'Amato, Mauro; Deffontaine, Valérie; Dmitrieva, Julia; Docampo, Elisa; Elansary, Mahmoud; Farh, Kyle Kai-How; Franke, Andre; Gori, Ann-Stephan; Goyette, Philippe; Halfvarson, Jonas; Haritunians, Talin; Knight, Jo; Lawrance, Ian C; Lees, Charlie W; Louis, Edouard; Mariman, Rob; Meuwissen, Theo; Mni, Myriam; Momozawa, Yukihide; Parkes, Miles; Spain, Sarah L; Théâtre, Emilie; Trynka, Gosia; Satsangi, Jack; van Sommeren, Suzanne; Vermeire, Severine; Xavier, Ramnik J; Weersma, Rinse K; Duerr, Richard H; Mathew, Christopher G; Rioux, John D; McGovern, Dermot P B; Cho, Judy H; Georges, Michel; Daly, Mark J; Barrett, Jeffrey C

    2017-01-01

    Inflammatory bowel diseases are chronic gastrointestinal inflammatory disorders that affect millions of people worldwide. Genome-wide association studies have identified 200 inflammatory bowel disease-associated loci, but few have been conclusively resolved to specific functional variants. Here we

  2. Fine-mapping inflammatory bowel disease loci to single-variant resolution

    Huang, Hailiang; Fang, Ming; Jostins, Luke

    2017-01-01

    Inflammatory bowel diseases are chronic gastrointestinal inflammatory disorders that affect millions of people worldwide. Genome-wide association studies have identified 200 inflammatory bowel disease-associated loci, but few have been conclusively resolved to specific functional variants. Here w...

  3. Weighting sequence variants based on their annotation increases power of whole-genome association studies

    Sveinbjornsson, Gardar; Albrechtsen, Anders; Zink, Florian

    2016-01-01

    The consensus approach to genome-wide association studies (GWAS) has been to assign equal prior probability of association to all sequence variants tested. However, some sequence variants, such as loss-of-function and missense variants, are more likely than others to affect protein function...... for the family-wise error rate (FWER), using as weights the enrichment of sequence annotations among association signals. We show that this weighted adjustment increases the power to detect association over the standard Bonferroni correction. We use the enrichment of associations by sequence annotation we have...

  4. Mesotrypsin Signature Mutation in a Chymotrypsin C (CTRC) Variant Associated with Chronic Pancreatitis.

    Szabó, András; Ludwig, Maren; Hegyi, Eszter; Szépeová, Renata; Witt, Heiko; Sahin-Tóth, Miklós

    2015-07-10

    Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Shift-Variant Multidimensional Systems.

    1985-05-29

    x,y;u,v) is the system response at (x,y) to an unit impulse applied at (u,v). The presence of additive noise in the preceding input-output model of a...space model developed works very effi- ciently to deblur images affected by 2-D linear shift- varying blurs, its use, in presence of noise needs to be...causal linear shift-variant (LSV) system, whose impulse res- ponse is a K-th order degenerate sequence, a K-th order state-space model was obtained

  6. Computational Approach to Annotating Variants of Unknown Significance in Clinical Next Generation Sequencing.

    Schulz, Wade L; Tormey, Christopher A; Torres, Richard

    2015-01-01

    Next generation sequencing (NGS) has become a common technology in the clinical laboratory, particularly for the analysis of malignant neoplasms. However, most mutations identified by NGS are variants of unknown clinical significance (VOUS). Although the approach to define these variants differs by institution, software algori