WorldWideScience

Sample records for functional brain study

  1. Positron emission tomography in brain function study

    International Nuclear Information System (INIS)

    Wu Hua

    2006-01-01

    Little has been recognized about the advanced brain function. Recent years several new techniques such as event-related potentials, megnetoencephalography, functional magnetic resonance imaging and positron emission tomography (PET) have been used in the study of brain function. The methodology, application study in normal people and clinical patients of PET in brain function are reviewed. (authors)

  2. Brain activation studies with PET and functional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yonekura, Yoshiharu [Fukui Medical Univ., Matsuoka (Japan). Biomedical Imaging Research Center; Sadato, Norihiro [Okazaki National Research Inst., Aichi (Japan). National Inst. for Physiological Sciences

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H{sub 2}{sup 15}O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H{sub 2}{sup 15}O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  3. Brain activation studies with PET and functional MRI

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Sadato, Norihiro

    2002-01-01

    Application of PET and functional MRI in brain activation studies is reviewed. 3D-PET images obtained repeatedly after intravenous injection of about 370 MBq of H 2 15 O can detect a faint blood flow change in the brain. Functional MRI can also detect the blood flow change in the brain due to blood oxygen level-dependent effect. Echo-planar imaging is popular in MRI with 1.5 or 3 T. Images are analyzed by statistical parametric mapping with correction of cerebral regions, anatomical normalization and statistics. PET data give the blood flow change by the H 2 15 O incorporation into the brain and MRI data, by the scarce tissue oxygen consumption despite the change. Actual images during the cognition task-performance and of frequent artifacts are given. PET is suitable for studies of brain functions like sensibility and emotion and functional MRI, like cortex functions and clinical practices in identification of functional regions prior to surgery and evaluation of functional recovery of damaged brain. (K.H.)

  4. Study of functional brain imaging for bilingual language cognition

    International Nuclear Information System (INIS)

    Sun Da

    2008-01-01

    Bilingual and multilingual brain studies of language recognition is an interdisciplinary subject which needs to identify different levels involved in the neural representation of languages, such as neuroanatomical, neurofunctional, biochemical, psychological and linguistic levels. Furthermore, specific factor's such as age, manner of acquisition and environmental factors seem to affect the neural representation. Functional brain imaging, such as PET, SPECT and functional MRI can explore the neurolinguistics representation of bilingualism in the brain in subjects, and elucidate the neuronal mechanisms of bilingual language processing. Functional imaging methods show differences in the pattern of cerebral activation associated with a second language compared with the subject's native language. It shows that verbal memory processing in two unrelated languages is mediated by a common neural system with some distinct cortical areas. The different patterns of activation differ according to the language used. It also could be ascribed either to age of acquisition or to proficiency level. And attained proficiency is more important than age of acquisition as a determinant of the cortical representation of the second language. The study used PET and SPECT shows that sign and spoken language seem to be localized in the same brain areas, and elicit similar regional cerebral blood flow patterns. But for sign language perception, the functional anatomy overlaps that of language processing contain both auditory and visual components. And the sign language is dependent on spatial information too. (authors)

  5. Brain imaging and brain function

    International Nuclear Information System (INIS)

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage

  6. Brain Functional Connectivity in MS: An EEG-NIRS Study

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0582 TITLE: Brain Functional Connectivity in MS: An EEG -NIRS Study PRINCIPAL INVESTIGATOR: Heather Wishart...Functional Connectivity in MS: An EEG -NIRS Study 5b. GRANT NUMBER W81XWH-14-1-0582 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Heather...electrical ( EEG ) and blood volume and blood oxygen-based (NIRS and fMRI) signals, and to use the results to help optimize blood oxygen level

  7. Memory networks in tinnitus: a functional brain image study.

    Directory of Open Access Journals (Sweden)

    Maura Regina Laureano

    Full Text Available Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls.Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT. The severity of tinnitus was assessed using the "Tinnitus Handicap Inventory" (THI. The images were processed and analyzed using "Statistical Parametric Mapping" (SPM8.A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05 was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus.It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes.

  8. Alteration and reorganization of functional networks: a new perspective in brain injury study

    Directory of Open Access Journals (Sweden)

    Nazareth P. Castellanos

    2011-09-01

    Full Text Available Plasticity is the mechanism underlying brain’s potential capability to compensate injury. Recently several studies have shown that functional connections among brain areas are severely altered by brain injury and plasticity leading to a reorganization of the networks. This new approach studies the impact of brain injury by means of alteration of functional interactions. The concept of functional connectivity refers to the statistical interdependencies between physiological time series simultaneously recorded in various brain areas and it could be an essential tool for brain function studies, being its deviation from healthy reference an indicator for damage. In this article, we review studies investigating functional connectivity changes after brain injury and subsequent recovery, providing an accessible introduction to common mathematical methods to infer functional connectivity, exploring their capabilities, future perspectives and clinical uses in brain injury studies.

  9. Functionally enigmatic genes: a case study of the brain ignorome.

    Directory of Open Access Journals (Sweden)

    Ashutosh K Pandey

    Full Text Available What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ from well-studied genes? To address these two questions, we devised a computational approach that defines so-called ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in brain. We find that publications associated with this set are highly skewed--the top 5% of genes absorb 70% of the relevant literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs, or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery being associated with greater research momentum--a genomic bandwagon effect. Finally we ask to what extent massive genomic, imaging, and phenotype data sets can be used to provide high-throughput functional annotation for an entire ignorome. In a majority of cases we have been able to extract and add significant information for these neglected genes. In several cases--ELMOD1, TMEM88B, and DZANK1--we have exploited sequence polymorphisms, large phenome data sets, and reverse genetic methods to evaluate the function of ignorome genes.

  10. Functionally enigmatic genes: a case study of the brain ignorome.

    Science.gov (United States)

    Pandey, Ashutosh K; Lu, Lu; Wang, Xusheng; Homayouni, Ramin; Williams, Robert W

    2014-01-01

    What proportion of genes with intense and selective expression in specific tissues, cells, or systems are still almost completely uncharacterized with respect to biological function? In what ways do these functionally enigmatic genes differ from well-studied genes? To address these two questions, we devised a computational approach that defines so-called ignoromes. As proof of principle, we extracted and analyzed a large subset of genes with intense and selective expression in brain. We find that publications associated with this set are highly skewed--the top 5% of genes absorb 70% of the relevant literature. In contrast, approximately 20% of genes have essentially no neuroscience literature. Analysis of the ignorome over the past decade demonstrates that it is stubbornly persistent, and the rapid expansion of the neuroscience literature has not had the expected effect on numbers of these genes. Surprisingly, ignorome genes do not differ from well-studied genes in terms of connectivity in coexpression networks. Nor do they differ with respect to numbers of orthologs, paralogs, or protein domains. The major distinguishing characteristic between these sets of genes is date of discovery, early discovery being associated with greater research momentum--a genomic bandwagon effect. Finally we ask to what extent massive genomic, imaging, and phenotype data sets can be used to provide high-throughput functional annotation for an entire ignorome. In a majority of cases we have been able to extract and add significant information for these neglected genes. In several cases--ELMOD1, TMEM88B, and DZANK1--we have exploited sequence polymorphisms, large phenome data sets, and reverse genetic methods to evaluate the function of ignorome genes.

  11. Lutein and Brain Function

    Directory of Open Access Journals (Sweden)

    John W. Erdman

    2015-10-01

    Full Text Available Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities.

  12. Functional brain study of chronic traumatic head injury

    International Nuclear Information System (INIS)

    Ceballos Alonso, Concepcion; Pelegrin Valero, Carmelo; Cordoba Diaz de Laspra, Elena

    2000-01-01

    Explosive aggressive behaviour is a significant clinical and medico-legal problem in patients suffering from head injury. However, experts in neuropsychiatry have proposed a specific category for this disorder: the o rganic aggressive syndrome: . The basic reason for proposing this diagnosis is that it describes the specificity of the violent conduct secondary to 'brain damage' with greater precision. Early diagnosis and treatment of the injury is critical. The impact of hnetium-99m-hexamethylpropuleneamine oxime (HMPAO) was examined for measuring brain damage in correlation to neuropsychological performance in patients with traumatic brain injury (TBI). We thus report the case of a twelve-year-old child with a history of CET, who presents with serious episodes of heteroaggressiveness and suggest the usefulness of single photon emission computerized tomography (SPECT) to establish the validity of this psychiatric diagnosis. The appearance of modern functional neuro-image techniques (SPECT) may help to increase the validity of clinical diagnoses in the field of psychiatry in general and of forensic psychiatry in particularly, as the related findings may be used as demarcation criteria to establish syndromic diagnoses (Au)

  13. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    Science.gov (United States)

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.

  14. Cognition and brain functional aging

    Directory of Open Access Journals (Sweden)

    Hui-jie LI

    2014-03-01

    Full Text Available China has the largest population of elderly adults. Meanwhile, it is one of the countries showing fastest aging speed in the world. Aging processing is always companied with a series of brain structural and functional changes, which result in the decline of processing speed, working memory, long-term memory and executive function, etc. The studies based on functional magnetic resonance imaging (fMRI found certain aging effects on brain function activation, spontaneous activity and functional connectivity in old people. However, few studies have explored the brain functional curve during the aging process while most previous studies explored the differences in the brain function between young people and old people. Delineation of the human brain functional aging curve will promote the understanding of brain aging mechanisms and support the normal aging monitoring and early detection of abnormal aging changes. doi: 10.3969/j.issn.1672-6731.2014.03.005

  15. Introductory study of brain function data processing; No kino joho shori no sendo kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    An investigational study was conducted of the brain function aiming at developing an interface with the same function as humans have. In the study, the most up-to-date information/knowledge and future problems were examined on brain measurement, brain modeling, making a model an element, and the brain function data processing system. As to the brain measurement, the paper took up the multielectrode simultaneous measuring method and the optical multipoint measuring method as an invasive measuring method, and the functional magnetic resonance imaging, near-infrared spectroscopy, magneto-encephalography, and electro-encephalography as a non-invasive measuring method. Relating to the brain modeling, studies were made on senses of sight and smell, the movement control and the learning. As to making a model an element, how to make the modeled function a chip on silicone for example becomes the problem. Reported were two reports on making the sense of sight an element and one report on making the parallel dispersed processing mechanism of brain an element. About the brain function data processing system, three reports were made on the present situation, matters in question, and the future development of the system in the case of catching data processing as a system taking a step ahead from making the model an element. 250 refs., 74 figs., 11 tabs.

  16. Laser technique for anatomical-functional study of the medial prefrontal cortex of the brain

    Science.gov (United States)

    Sanchez-Huerta, Laura; Hernandez, Adan; Ayala, Griselda; Marroquin, Javier; Silva, Adriana B.; Khotiaintsev, Konstantin S.; Svirid, Vladimir A.; Flores, Gonzalo; Khotiaintsev, Sergei N.

    1999-05-01

    The brain represents one of the most complex systems that we know yet. In its study, non-destructive methods -- in particular, behavioral studies play an important role. By alteration of brain functioning (e.g. by pharmacological means) and observation of consequent behavior changes an important information on brain organization and functioning is obtained. For inducing local alterations, permanent brain lesions are employed. However, for correct results this technique has to be quasi-non-destructive, i.e. not to affect the normal brain function. Hence, the lesions should be very small, accurate and applied precisely over the structure (e.g. the brain nucleus) of interest. These specifications are difficult to meet with the existing techniques for brain lesions -- specifically, neurotoxical, mechanical and electrical means because they result in too extensive damage. In this paper, we present new laser technique for quasi-non- destructive anatomical-functional mapping in vivo of the medial prefrontal cortex (MPFC) of the rat. The technique is based on producing of small-size, well-controlled laser- induced lesions over some areas of the MPFC. The anesthetized animals are subjected to stereotactic surgery and certain points of the MPFC are exposed the confined radiation of the 10 W cw CO2 laser. Subsequent behavioral changes observed in neonatal and adult animals as well as histological data prove effectiveness of this technology for anatomical- functional studies of the brain by areas, and as a treatment method for some pathologies.

  17. Functional brain imaging study on brain processes involved in visual awareness

    International Nuclear Information System (INIS)

    Kobayashi, Tetsuo; Futakawa, Hiroyuki; Tokita, Shohko; Jung, Jiuk

    2003-01-01

    Recently, there has been great interest in visual awareness because it is thought that it may provide valuable information in understanding aspects of consciousness. An important but still controversial issue is what region in the brain is involved in visual awareness. When viewing ambiguous figures, observers can be aware of only one of multiple competing percepts at any given moment, but experience spontaneous alternations among the percepts over time. This phenomenon is known as multistable perceptions and thought to be essential in understanding the brain processes involved in visual awareness. We used functional magnetic resonance imaging to investigate the brain activities associated with multistable perceptions. Two separate experiments were performed based on two different multistable phenomena known as binocular rivalry and perceptions of ambiguous figures. Significant differential activations in the parietal and prefrontal areas were commonly observed under multistable conditions compared to monostable control conditions in the two separate experiments. These findings suggest that neural processes in the parietal and prefrontal areas may be involved in perceptual alternations in situations involving multistable phenomena. (author)

  18. Comparative studies of brain activation with MEG and functional MRI

    International Nuclear Information System (INIS)

    George, J.S.; Aine, C.J.; Sanders, J.A.; Lewine, J.D.; Caprihan, A.

    1993-01-01

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make such measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework

  19. Pragmatic and executive functions in traumatic brain injury and right brain damage: An exploratory comparative study

    Directory of Open Access Journals (Sweden)

    Nicolle Zimmermann

    Full Text Available Abstract Objective: To describe the frequency of pragmatic and executive deficits in right brain damaged (RBD and in traumatic brain injury (TBI patients, and to verify possible dissociations between pragmatic and executive functions in these two groups. Methods: The sample comprised 7 cases of TBI and 7 cases of RBD. All participants were assessed by means of tasks from the Montreal Communication Evaluation Battery and executive functions tests including the Trail Making Test, Hayling Test, Wisconsin Card Sorting Test, semantic and phonemic verbal fluency tasks, and working memory tasks from the Brazilian Brief Neuropsychological Assessment Battery NEUPSILIN. Z-score was calculated and a descriptive analysis of frequency of deficits (Z< -1.5 was carried out. Results: RBD patients presented with deficits predominantly on conversational and narrative discursive tasks, while TBI patients showed a wider spread pattern of pragmatic deficits. Regarding EF, RBD deficits included predominantly working memory and verbal initiation impairment. On the other hand, TBI individuals again exhibited a general profile of executive dysfunction, affecting mainly working memory, initiation, inhibition, planning and switching. Pragmatic and executive deficits were generally associated upon comparisons of RBD patients and TBI cases, except for two simple dissociations: two post-TBI cases showed executive deficits in the absence of pragmatic deficits. Discussion: Pragmatic and executive deficits can be very frequent following TBI or vascular RBD. There seems to be an association between these abilities, indicating that although they can co-occur, a cause-consequence relationship cannot be the only hypothesis.

  20. Stress and brain functional changes in patients with Crohn's disease: A functional magnetic resonance imaging study.

    Science.gov (United States)

    Agostini, A; Ballotta, D; Righi, S; Moretti, M; Bertani, A; Scarcelli, A; Sartini, A; Ercolani, M; Nichelli, P; Campieri, M; Benuzzi, F

    2017-10-01

    In Crohn's disease (CD) patients, stress is believed to influence symptoms generation. Stress may act via central nervous system pathways to affect visceral sensitivity and motility thus exacerbating gastrointestinal symptoms. The neural substrate underpinning these mechanisms needs to be investigated in CD. We conducted an explorative functional magnetic resonance imaging (fMRI) study in order to investigate potential differences in the brain stress response in CD patients compared to controls. 17 CD patients and 17 healthy controls underwent a fMRI scan while performing a stressful task consisting in a Stroop color-word interference task designed to induce mental stress in the fMRI environment. Compared to controls, in CD patients the stress task elicited greater blood oxygen level dependent (BOLD) signals in the midcingulate cortex (MCC). The MCC integrate "high" emotional processes with afferent sensory information ascending from the gut. In light of these integrative functions, the stress-evoked MCC hyperactivity in CD patients might represent a plausible neural substrate for the association between stress and symptomatic disease. The MCC dysfunction might be involved in mechanisms of central disinhibition of nociceptive inputs leading to amplify the visceral sensitivity. Finally, the stress-evoked MCC hyperactivity might affect the regulation of intestinal motility resulting in exacerbation of disease symptoms and the autonomic and neuroendocrine regulation of inflammation resulting in enhanced inflammatory activity. © 2017 John Wiley & Sons Ltd.

  1. Functional MRI studies of acupuncture analgesia modulating within the human brain

    International Nuclear Information System (INIS)

    Hou Jinwen; Huang Weihao; Wang Qing; Feng Jingwei; Pu Yonglin; Gao Jiahong

    2002-01-01

    Objective: To evaluate the correlation between acupuncture analgesia and specific functional areas of the brain using functional magnetic resonance imaging (fMRI). Methods: Acupuncture stimulation was induced by manipulating acupuncture needle at the acupuncture point, large intestine 4 (LI 4, Hegu) on the right (dominant) hand of 8 healthy subjects. Functional MRI data were obtained from scanning the whole brain. A block-design paradigm was applied. Functional responses were established by students' group t-test analysis. Results: The data sets from 6 of 8 subjects were used in the study. Signal increases and signal decreases elicited by acupuncture stimulating were demonstrated in multiple brain regions. Signal increases in periaqueductal gray matter and ventral posterior nucleus of the left thalamus, and signal decreases in bilateral anterior cingulate cortex and bilateral occipital lobes were considered as the response to the acupuncture modulating within the human brain. Conclusion: The therapeutic effect of acupuncture analgesia was probably produced by the interaction of multiple brain structures of functional connectivity rather than through the activation of a single brain region

  2. Brain structure and the relationship with neurocognitive functioning in schizophrenia and bipolar disorder : MRI studies

    OpenAIRE

    Hartberg, Cecilie Bhandari

    2011-01-01

    Brain structural abnormalities as well as neurocognitive dysfunction, are found in schizophrenia and in bipolar disorder. Based on the fact that both brain structure and neurocognitive functioning are significantly heritable and affected in both schizophrenia and bipolar disorder, relationships between them are expected. However, previous studies report inconsistent findings. Also, schizophrenia and bipolar disorder are classified as separate disease entities, but demonstrate overlap with reg...

  3. Progesterone mediates brain functional connectivity changes during the menstrual cycle - A pilot resting state MRI study

    Directory of Open Access Journals (Sweden)

    Katrin eArelin

    2015-02-01

    Full Text Available The growing interest in intrinsic brain organization has sparked various innovative approaches to generating comprehensive connectivity-based maps of the human brain. Prior reports point to a sexual dimorphism of the structural and functional human connectome. However, it is uncertain whether subtle changes in sex hormones, as occur during the monthly menstrual cycle, substantially impact the functional architecture of the female brain. Here, we performed eigenvector centrality (EC mapping in 32 longitudinal resting state fMRI scans of a single healthy subject without oral contraceptive use, across four menstrual cycles, and assessed estrogen and progesterone levels. To investigate associations between cycle-dependent hormones and brain connectivity, we performed correlation analyses between the EC maps and the respective hormone levels. On the whole brain level, we found a significant positive correlation between progesterone and EC in the bilateral DLPFC and bilateral sensorimotor cortex. In a secondary region-of-interest analysis, we detected a progesterone-modulated increase in functional connectivity of both bilateral DLPFC and bilateral sensorimotor cortex with the hippocampus. Our results suggest that the menstrual cycle substantially impacts intrinsic functional connectivity, particularly in brain areas associated with contextual memory-regulation, such as the hippocampus. These findings are the first to link the subtle hormonal fluctuations that occur during the menstrual cycle, to significant changes in regional functional connectivity in the hippocampus in a longitudinal design, given the limitation of data acquisition in a single subject. Our study demonstrates the feasibility of such a longitudinal rs-fMRI design and illustrates a means of creating a personalized map of the human brain by integrating potential mediators of brain states, such as menstrual cycle phase.

  4. Continuous blood pressure recordings simultaneously with functional brain imaging: studies of the glymphatic system

    Science.gov (United States)

    Zienkiewicz, Aleksandra; Huotari, Niko; Raitamaa, Lauri; Raatikainen, Ville; Ferdinando, Hany; Vihriälä, Erkki; Korhonen, Vesa; Myllylä, Teemu; Kiviniemi, Vesa

    2017-03-01

    The lymph system is responsible for cleaning the tissues of metabolic waste products, soluble proteins and other harmful fluids etc. Lymph flow in the body is driven by body movements and muscle contractions. Moreover, it is indirectly dependent on the cardiovascular system, where the heart beat and blood pressure maintain force of pressure in lymphatic channels. Over the last few years, studies revealed that the brain contains the so-called glymphatic system, which is the counterpart of the systemic lymphatic system in the brain. Similarly, the flow in the glymphatic system is assumed to be mostly driven by physiological pulsations such as cardiovascular pulses. Thus, continuous measurement of blood pressure and heart function simultaneously with functional brain imaging is of great interest, particularly in studies of the glymphatic system. We present our MRI compatible optics based sensing system for continuous blood pressure measurement and show our current results on the effects of blood pressure variations on cerebral brain dynamics, with a focus on the glymphatic system. Blood pressure was measured simultaneously with near-infrared spectroscopy (NIRS) combined with an ultrafast functional brain imaging (fMRI) sequence magnetic resonance encephalography (MREG, 3D brain 10 Hz sampling rate).

  5. Activated and deactivated functional brain areas in the Deqi state: A functional MRI study.

    Science.gov (United States)

    Huang, Yong; Zeng, Tongjun; Zhang, Guifeng; Li, Ganlong; Lu, Na; Lai, Xinsheng; Lu, Yangjia; Chen, Jiarong

    2012-10-25

    We compared the activities of functional regions of the brain in the Deqi versus non-Deqi state, as reported by physicians and subjects during acupuncture. Twelve healthy volunteers received sham and true needling at the Waiguan (TE5) acupoint. Real-time cerebral functional MRI showed that compared with non-sensation after sham needling, true needling activated Brodmann areas 3, 6, 8, 9, 10, 11, 13, 20, 21, 37, 39, 40, 43, and 47, the head of the caudate nucleus, the parahippocampal gyrus, thalamus and red nucleus. True needling also deactivated Brodmann areas 1, 2, 3, 4, 5, 6, 7, 9, 10, 18, 24, 31, 40 and 46.

  6. The modulation of brain functional connectivity with manual acupuncture in healthy subjects: An electroencephalograph case study

    International Nuclear Information System (INIS)

    Yi Guo-Sheng; Wang Jiang; Deng Bin; Wei Xi-Le; Li Nuo; Han Chun-Xiao

    2013-01-01

    Manual acupuncture is widely used for pain relief and stress control. Previous studies on acupuncture have shown its modulatory effects on the functional connectivity associated with one or a few preselected brain regions. To investigate how manual acupuncture modulates the organization of functional networks at a whole-brain level, we acupuncture at ST36 of a right leg to obtain electroencephalograph (EEG) signals. By coherence estimation, we determine the synchronizations between all pairwise combinations of EEG channels in three acupuncture states. The resulting synchronization matrices are converted into functional networks by applying a threshold, and the clustering coefficients and path lengths are computed as a function of threshold. The results show that acupuncture can increase functional connections and synchronizations between different brain areas. For a wide range of thresholds, the clustering coefficient during acupuncture and post-acupuncture period is higher than that during the pre-acupuncture control period, whereas the characteristic path length is shorter. We provide further support for the presence of “small-world” network characteristics in functional networks by using acupuncture. These preliminary results highlight the beneficial modulations of functional connectivity by manual acupuncture, which could contribute to the understanding of the effects of acupuncture on the entire brain, as well as the neurophysiological mechanisms underlying acupuncture. Moreover, the proposed method may be a useful approach to the further investigation of the complexity of patterns of interrelations between EEG channels. (interdisciplinary physics and related areas of science and technology)

  7. The modulation of brain functional connectivity with manual acupuncture in healthy subjects: An electroencephalograph case study

    Science.gov (United States)

    Yi, Guo-Sheng; Wang, Jiang; Han, Chun-Xiao; Deng, Bin; Wei, Xi-Le; Li, Nuo

    2013-02-01

    Manual acupuncture is widely used for pain relief and stress control. Previous studies on acupuncture have shown its modulatory effects on the functional connectivity associated with one or a few preselected brain regions. To investigate how manual acupuncture modulates the organization of functional networks at a whole-brain level, we acupuncture at ST36 of a right leg to obtain electroencephalograph (EEG) signals. By coherence estimation, we determine the synchronizations between all pairwise combinations of EEG channels in three acupuncture states. The resulting synchronization matrices are converted into functional networks by applying a threshold, and the clustering coefficients and path lengths are computed as a function of threshold. The results show that acupuncture can increase functional connections and synchronizations between different brain areas. For a wide range of thresholds, the clustering coefficient during acupuncture and post-acupuncture period is higher than that during the pre-acupuncture control period, whereas the characteristic path length is shorter. We provide further support for the presence of “small-world" network characteristics in functional networks by using acupuncture. These preliminary results highlight the beneficial modulations of functional connectivity by manual acupuncture, which could contribute to the understanding of the effects of acupuncture on the entire brain, as well as the neurophysiological mechanisms underlying acupuncture. Moreover, the proposed method may be a useful approach to the further investigation of the complexity of patterns of interrelations between EEG channels.

  8. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    OpenAIRE

    Hongwen eSong; Zhiling eZou; Juan eKou; Yang eLiu; LiZhuang eYang; Anna ezilverstand; Federicod’Oleire eUquillas; Xiaochu eZhang; Xiaochu eZhang; Xiaochu eZhang

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI) have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state...

  9. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  10. B vitamins and n-3 fatty acids for brain development and function: review of human studies

    NARCIS (Netherlands)

    Rest, van de O.; Hooijdonk, L.W.A.; Doets, E.L.; Schiepers, O.J.G.; Eilander, J.H.C.; Groot, de C.P.G.M.

    2012-01-01

    Background: Nutrition is one of many factors that affect brain development and functioning, and in recent years the role of certain nutrients has been investigated. B vitamins and n–3 polyunsaturated fatty acids (PUFA) are two of the most promising and widely studied nutritional factors. Methods: In

  11. Structural and Functional MRI Differences in Master Sommeliers: A pilot study on expertise in the brain

    Directory of Open Access Journals (Sweden)

    Sarah Jane Banks

    2016-08-01

    Full Text Available Our experiences, even as adults, shape our brains. Regional differences have been found in experts, with the regions associated with their particular skill-set. Functional differences have also been noted in brain activation patterns in some experts. This study uses multimodal techniques to assess structural and functional patterns that differ between experts and nonexperts. Sommeliers are experts in wine and thus in olfaction. We assessed differences in Master Sommeliers’ brains, compared with controls, in structure and also in functional response to olfactory and visual judgment tasks. MRI data were analyzed using voxel-based morphometry as well as automated parcellation to assess structural properties, and group differences between tasks were calculated. Results indicate enhanced volume in the right insula and entorhinal cortex, with the cortical thickness of the entorhinal correlating with experience. There were regional activation differences in a large area involving the right olfactory and memory regions, with heightened activation specifically for sommeliers during an olfactory task. Our results indicate that sommeliers’ brains show specialization in the expected regions of the olfactory and memory networks, and also in regions important in integration of internal sensory stimuli and external cues. Overall, these differences suggest that specialized expertise and training might result in enhancements in the brain well into adulthood. This is particularly important given the regions involved, which are the first to be impacted by many neurodegenerative diseases.

  12. Changes in Brain Resting-state Functional Connectivity Associated with Peripheral Nerve Block: A Pilot Study.

    Science.gov (United States)

    Melton, M Stephen; Browndyke, Jeffrey N; Harshbarger, Todd B; Madden, David J; Nielsen, Karen C; Klein, Stephen M

    2016-08-01

    Limited information exists on the effects of temporary functional deafferentation (TFD) on brain activity after peripheral nerve block (PNB) in healthy humans. Increasingly, resting-state functional connectivity (RSFC) is being used to study brain activity and organization. The purpose of this study was to test the hypothesis that TFD through PNB will influence changes in RSFC plasticity in central sensorimotor functional brain networks in healthy human participants. The authors achieved TFD using a supraclavicular PNB model with 10 healthy human participants undergoing functional connectivity magnetic resonance imaging before PNB, during active PNB, and during PNB recovery. RSFC differences among study conditions were determined by multiple-comparison-corrected (false discovery rate-corrected P value less than 0.05) random-effects, between-condition, and seed-to-voxel analyses using the left and right manual motor regions. The results of this pilot study demonstrated disruption of interhemispheric left-to-right manual motor region RSFC (e.g., mean Fisher-transformed z [effect size] at pre-PNB 1.05 vs. 0.55 during PNB) but preservation of intrahemispheric RSFC of these regions during PNB. Additionally, there was increased RSFC between the left motor region of interest (PNB-affected area) and bilateral higher order visual cortex regions after clinical PNB resolution (e.g., Fisher z between left motor region of interest and right and left lingual gyrus regions during PNB, -0.1 and -0.6 vs. 0.22 and 0.18 after PNB resolution, respectively). This pilot study provides evidence that PNB has features consistent with other models of deafferentation, making it a potentially useful approach to investigate brain plasticity. The findings provide insight into RSFC of sensorimotor functional brain networks during PNB and PNB recovery and support modulation of the sensory-motor integration feedback loop as a mechanism for explaining the behavioral correlates of peripherally

  13. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study

    OpenAIRE

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d’Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain’s functional architecture during rest. In the present stu...

  14. Brain function and structure and risk for incident diabetes: The Atherosclerosis Risk in Communities Study.

    Science.gov (United States)

    Bancks, Michael P; Alonso, Alvaro; Gottesman, Rebecca F; Mosley, Thomas H; Selvin, Elizabeth; Pankow, James S

    2017-12-01

    Diabetes is prospectively associated with cognitive decline. Whether lower cognitive function and worse brain structure are prospectively associated with incident diabetes is unclear. We analyzed data for 10,133 individuals with cognitive function testing (1990-1992) and 1212 individuals with brain magnetic resonance imaging (1993-1994) from the Atherosclerosis Risk in Communities cohort. We estimated hazard ratios for incident diabetes through 2014 after adjustment for traditional diabetes risk factors and cohort attrition. Higher level of baseline cognitive function was associated with lower risk for diabetes (per 1 standard deviation, hazard ratio = 0.94; 95% confidence interval = 0.90, 0.98). This association did not persist after accounting for baseline glucose level, case ascertainment methods, and cohort attrition. No association was observed between any brain magnetic resonance imaging measure and incident diabetes. This is one of the first studies to prospectively evaluate the association between both cognitive function and brain structure and the incidence of diabetes. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  15. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study.

    Science.gov (United States)

    Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana

    2015-03-01

    There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.

  16. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    Science.gov (United States)

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Altered spontaneous brain activity in patients with hemifacial spasm: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ye Tu

    Full Text Available Resting-state functional magnetic resonance imaging (fMRI has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS, a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG, left medial cingulate cortex (MCC, left lingual gyrus, right superior temporal gyrus (STG and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC, right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027, and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028. This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.

  18. Electric Field Encephalography as a tool for functional brain research: a modeling study.

    Directory of Open Access Journals (Sweden)

    Yury Petrov

    Full Text Available We introduce the notion of Electric Field Encephalography (EFEG based on measuring electric fields of the brain and demonstrate, using computer modeling, that given the appropriate electric field sensors this technique may have significant advantages over the current EEG technique. Unlike EEG, EFEG can be used to measure brain activity in a contactless and reference-free manner at significant distances from the head surface. Principal component analysis using simulated cortical sources demonstrated that electric field sensors positioned 3 cm away from the scalp and characterized by the same signal-to-noise ratio as EEG sensors provided the same number of uncorrelated signals as scalp EEG. When positioned on the scalp, EFEG sensors provided 2-3 times more uncorrelated signals. This significant increase in the number of uncorrelated signals can be used for more accurate assessment of brain states for non-invasive brain-computer interfaces and neurofeedback applications. It also may lead to major improvements in source localization precision. Source localization simulations for the spherical and Boundary Element Method (BEM head models demonstrated that the localization errors are reduced two-fold when using electric fields instead of electric potentials. We have identified several techniques that could be adapted for the measurement of the electric field vector required for EFEG and anticipate that this study will stimulate new experimental approaches to utilize this new tool for functional brain research.

  19. Functional and Structural Network Recovery after Mild Traumatic Brain Injury: A 1-Year Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Patrizia Dall’Acqua

    2017-05-01

    Full Text Available Brain connectivity after mild traumatic brain injury (mTBI has not been investigated longitudinally with respect to both functional and structural networks together within the same patients, crucial to capture the multifaceted neuropathology of the injury and to comprehensively monitor the course of recovery and compensatory reorganizations at macro-level. We performed a prospective study with 49 mTBI patients at an average of 5 days and 1 year post-injury and 49 healthy controls. Neuropsychological assessments as well as resting-state functional and diffusion-weighted magnetic resonance imaging were obtained. Functional and structural connectome analyses were performed using network-based statistics. They included a cross-sectional group comparison and a longitudinal analysis with the factors group and time. The latter tracked the subnetworks altered at the early phase and, in addition, included a whole-brain group × time interaction analysis. Finally, we explored associations between the evolution of connectivity and changes in cognitive performance. The early phase of mTBI was characterized by a functional hypoconnectivity in a subnetwork with a large overlap of regions involved within the classical default mode network. In addition, structural hyperconnectivity in a subnetwork including central hub areas such as the cingulate cortex was found. The impaired functional and structural subnetworks were strongly correlated and revealed a large anatomical overlap. One year after trauma and compared to healthy controls we observed a partial normalization of both subnetworks along with a considerable compensation of functional and structural connectivity subsequent to the acute phase. Connectivity changes over time were correlated with improvements in working memory, divided attention, and verbal recall. Neuroplasticity-induced recovery or compensatory processes following mTBI differ between brain regions with respect to their time course and are

  20. A Brain-Wide Study of Age-Related Changes in Functional Connectivity

    NARCIS (Netherlands)

    Geerligs, Linda; Renken, Remco J.; Saliasi, Emi; Maurits, Natasha M.; Lorist, Monicque M.

    Aging affects functional connectivity between brain areas, however, a complete picture of how aging affects integration of information within and between functional networks is missing. We used complex network measures, derived from a brain-wide graph, to provide a comprehensive overview of

  1. Mapping brain function to brain anatomy

    International Nuclear Information System (INIS)

    Valentino, D.J.; Huang, H.K.; Mazziotta, J.C.

    1988-01-01

    In Imaging the human brain, MRI is commonly used to reveal anatomical structure, while PET is used to reveal tissue function. This paper presents a protocol for correlating data between these two imaging modalities; this correlation can provide in vivo regional measurements of brain function which are essential to our understanding of the human brain. The authors propose a general protocol to standardize the acquisition and analysis of functional image data. First, MR and PET images are collected to form three-dimensional volumes of structural and functional image data. Second, these volumes of image data are corrected for distortions inherent in each imaging modality. Third, the image volumes are correlated to provide correctly aligned structural and functional images. The functional images are then mapped onto the structural images in both two-dimensional and three-dimensional representations. Finally, morphometric techniques can be used to provide statistical measures of the structure and function of the human brain

  2. Brain processing of visual sexual stimuli in healthy men: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Mouras, Harold; Stoléru, Serge; Bittoun, Jacques; Glutron, Dominique; Pélégrini-Issac, Mélanie; Paradis, Anne-Lise; Burnod, Yves

    2003-10-01

    The brain plays a central role in sexual motivation. To identify cerebral areas whose activation was correlated with sexual desire, eight healthy male volunteers were studied with functional magnetic resonance imaging (fMRI). Visual stimuli were sexually stimulating photographs (S condition) and emotionally neutral photographs (N condition). Subjective responses pertaining to sexual desire were recorded after each condition. To image the entire brain, separate runs focused on the upper and the lower parts of the brain. Statistical Parametric Mapping was used for data analysis. Subjective ratings confirmed that sexual pictures effectively induced sexual arousal. In the S condition compared to the N condition, a group analysis conducted on the upper part of the brain demonstrated an increased signal in the parietal lobes (superior parietal lobules, left intraparietal sulcus, left inferior parietal lobule, and right postcentral gyrus), the right parietooccipital sulcus, the left superior occipital gyrus, and the precentral gyri. In addition, a decreased signal was recorded in the right posterior cingulate gyrus and the left precuneus. In individual analyses conducted on the lower part of the brain, an increased signal was found in the right and/or left middle occipital gyrus in seven subjects, and in the right and/or left fusiform gyrus in six subjects. In conclusion, fMRI allows to identify brain responses to visual sexual stimuli. Among activated regions in the S condition, parietal areas are known to be involved in attentional processes directed toward motivationally relevant stimuli, while frontal premotor areas have been implicated in motor preparation and motor imagery. Further work is needed to identify those specific features of the neural responses that distinguish sexual desire from other emotional and motivational states.

  3. Integration of fMRI, NIROT and ERP for studies of human brain function.

    Science.gov (United States)

    Gore, John C; Horovitz, Silvina G; Cannistraci, Christopher J; Skudlarski, Pavel

    2006-05-01

    Different methods of assessing human brain function possess specific advantages and disadvantages compared to others, but it is believed that combining different approaches will provide greater information than can be obtained from each alone. For example, functional magnetic resonance imaging (fMRI) has good spatial resolution but poor temporal resolution, whereas the converse is true for electrophysiological recordings (event-related potentials or ERPs). In this review of recent work, we highlight a novel approach to combining these modalities in a manner designed to increase information on the origins and locations of the generators of specific ERPs and the relationship between fMRI and ERP signals. Near infrared imaging techniques have also been studied as alternatives to fMRI and can be readily integrated with simultaneous electrophysiological recordings. Each of these modalities may in principle be also used in so-called steady-state acquisitions in which the correlational structure of signals from the brain may be analyzed to provide new insights into brain function.

  4. Longitudinal functional brain imaging study in early course schizophrenia before and after cognitive enhancement therapy.

    Science.gov (United States)

    Keshavan, Matcheri S; Eack, Shaun M; Prasad, Konasale M; Haller, Chiara S; Cho, Raymond Y

    2017-05-01

    Schizophrenia is characterized by impaired -social and non social cognition both of which lead to functional deficits. These deficits may benefit from cognitive remediation, but the neural underpinnings of such improvements have not been clearly delineated. We conducted a functional magnetic resonance (fMRI) study in early course schizophrenia patients randomly assigned to cognitive enhancement therapy (CET) or enriched supportive therapy (EST) and treated for two years. Imaging data over three time points including fMRI blood oxygen level dependent (BOLD) data were acquired during performance of a cognitive control paradigm, the Preparing to Overcome Prepotency (POP) task, and functional connectivity data, were analyzed. During the two years of treatment, CET patients showed a continual increase in BOLD activity in the right dorsolateral prefrontal cortex (DLPFC), whereas EST patients tended to show no change in prefrontal brain function throughout treatment. Increases in right DLPFC activity were modestly associated with improved neurocognition (β = .14, p = .041), but not social cognition. Functional connectivity analyses showed reduced connectivity between the DLPFC and the anterior cingulate cortex (ACC) in CET compared to EST over the two years of treatment, which was associated with neurocognitive improvement. These findings suggest that CET leads to enhanced neural activity in brain regions mediating cognitive control and increased efficiency in prefrontal circuits; such changes may be related to the observed therapeutic effects of CET on neurocognitive function. Copyright © 2017. Published by Elsevier Inc.

  5. Current status and future of non-invasive studies of human brain functions

    International Nuclear Information System (INIS)

    Shibasaki, Hiroshi

    2008-01-01

    Currently available non-invasive studies are divided into two groups: electrophysiological studies and functional neuroimaging based on the hemodynamic principle. The former includes electroencephalography (EEG), magnetoencephalography (MEG) and transcranial magnetic stimulation, and the latter includes functional MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT) and near-infrared spectroscopy. The hemodynamic response has been shown to be correlated with neuronal electrical activity, especially with synaptic activity rather than spiking activity, within a certain range. Since each technique has advantage and disadvantage, it is important to apply the most appropriate technique to solve each specific question. The combined use of more than one techniques of different principles, if possible, provides data of higher spatial and temporal resolution. Functional connectivity among different brain areas can be studied by using some of these techniques either alone or in combination. (author)

  6. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    OpenAIRE

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Abstract: Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sen...

  7. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  8. Cannabis use and memory brain function in adolescent boys: A cross-sectional multicenter functional magnetic resonance imaging study

    NARCIS (Netherlands)

    Jager, G.; Block, R.I.; Luijten, M.; Ramsey, N.F.

    2010-01-01

    Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex

  9. Behavioral and Brain Functions. A new journal

    Directory of Open Access Journals (Sweden)

    Sagvolden Terje

    2005-04-01

    Full Text Available Abstract Behavioral and Brain Functions (BBF is an Open Access, peer-reviewed, online journal considering original research, review, and modeling articles in all aspects of neurobiology or behavior, favoring research that relates to both domains. Behavioral and Brain Functions is published by BioMed Central. The greatest challenge for empirical science is to understand human behavior; how human behavior arises from the myriad functions such as attention, language, memory and emotion; how these functions are reflected in brain structures and functions; and how the brain and behavior are altered in disease. Behavioral and Brain Functions covers the entire area of behavioral and cognitive neuroscience – an area where animal studies traditionally play a prominent role. Behavioral and Brain Functions is published online, allowing unlimited space for figures, extensive datasets to allow readers to study the data for themselves, and moving pictures, which are important qualities assisting communication in modern science.

  10. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    Science.gov (United States)

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  11. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study.

    Science.gov (United States)

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-24

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.

  12. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study.

    Science.gov (United States)

    Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu

    2018-04-23

    Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d'Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain's functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an "in-love" group (LG, N = 34, currently intensely in love), an "ended-love" group (ELG, N = 34, ended romantic relationship recently), and a "single" group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate the

  14. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    Science.gov (United States)

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior

  15. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  16. Cannabis Use and Memory Brain Function in Adolescent Boys: A Cross-Sectional Multicenter Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Jager, Gerry; Block, Robert I.; Luijten, Maartje; Ramsey, Nick F.

    2010-01-01

    Objective: Early-onset cannabis use has been associated with later use/abuse, mental health problems (psychosis, depression), and abnormal development of cognition and brain function. During adolescence, ongoing neurodevelopmental maturation and experience shape the neural circuitry underlying complex cognitive functions such as memory and…

  17. Functional brain imaging study in patients with anxiety disorders using SPECT

    International Nuclear Information System (INIS)

    Sun Da; Zhan Hongwei; Liu Hongbiao; Li Huichun

    2005-01-01

    Objective: To evaluate the changes of brain function in patients with anxiety disorders. Methods: Regional cerebral perfusion was investigated using SPECT in 65 patients with anxiety disorders dragnosed according to the fourth edition of the diagnostic and statistical manual of mental disorder (DSMTD) criteria and in a matched control group of 21 healthy volunteers. 65 cases of the patients were further divided into: drug treated group (31 patients) and non-drug treated group (34 patients). The mean ages of the patients and the controls were (39.2±26.1) and (34.4±9.7) years, respectively. The severity of the anxiety was assessed using the 17-item Hamilton Anxiety scale (mean: 24.8±5.5 and 24.7±7.5, respectively). After administration of 740-925 MBq 99 Tc m -ethylene cysteinate direct (ECD) brain SPECT image study was performed. For the semi- quantitative analysis of the data, the ratios of the mean counts/pixel in the different cerebral regions of interest (ROI) to that of cerebellum were calculated respectively as a regional perfusion index (RPI). Some patients had a repeated SPECT after three months of treatment. Results: 93.8% (61/65) patients had relative hypoperfusions in some cerebral regions. Compared with the control group, the patients had a significant decrease of regional cerebral blood flow (rCBF) in the bilateral frontal lobes, paralimbic system, temporal lobes and basal ganglia. The course of disease had negatively correlated with the changes of rCBF in both groups of patients. Follow-up SPECT study demonstrated increased rCBF related with the symptomatic improvement. Conclusions: Patients with anxiety disorders had profound dysfunction of the frontal and temporal cortices, and was closely related to the symptom and therapy. 99 Tc m -ECD brain SPECT may offer the most accurate assessment of response to therapy. . (authors)

  18. Brain Functional Connectivity in Small Cell Lung Cancer Population after Chemotherapy Treatment: an ICA fMRI Study

    Science.gov (United States)

    Bromis, K.; Kakkos, I.; Gkiatis, K.; Karanasiou, I. S.; Matsopoulos, G. K.

    2017-11-01

    Previous neurocognitive assessments in Small Cell Lung Cancer (SCLC) population, highlight the presence of neurocognitive impairments (mainly in attention processing and executive functioning) in this type of cancer. The majority of these studies, associate these deficits with the Prophylactic Cranial Irradiation (PCI) that patients undergo in order to avoid brain metastasis. However, there is not much evidence exploring cognitive impairments induced by chemotherapy in SCLC patients. For this reason, we aimed to investigate the underlying processes that may potentially affect cognition by examining brain functional connectivity in nineteen SCLC patients after chemotherapy treatment, while additionally including fourteen healthy participants as control group. Independent Component Analysis (ICA) is a functional connectivity measure aiming to unravel the temporal correlation between brain regions, which are called brain networks. We focused on two brain networks related to the aforementioned cognitive functions, the Default Mode Network (DMN) and the Task-Positive Network (TPN). Permutation tests were performed between the two groups to assess the differences and control for familywise errors in the statistical parametric maps. ICA analysis showed functional connectivity disruptions within both of the investigated networks. These results, propose a detrimental effect of chemotherapy on brain functioning in the SCLC population.

  19. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Clinical studies of brain functional images by motor activation using single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Masahiro [Gifu Univ. (Japan). School of Medicine

    1998-09-01

    Thirty participants (10 normal controls; group A, 5 patients with brain tumors located near central sulcus without hemiparesis; group B, 10 patients with brain tumors located near central sulcus with hemiparesis; group C, and 5 patients with brain tumors besides the central regions with hemiparesis; group D) were enrolled. The images were performed by means of split-dose method with {sup 99m}Tc-ECD at rest condition (SPECT 1) and during hand grasping (SPECT 2). The activation SPECT were obtained by subtracting SPECT 1 from SPECT 2, and the functional mapping was made by the strict registration of the activation SPECT with 3D MRI. To evaluate the changes of CBF (%{Delta}CBF) of the sensorimotor and supplementary motor areas on the functional mapping, ratio of the average counts of SPECT 1 and SPECT 2 was calculated and statistically compared. The functional activation paradigms caused a significant increase of CBF in the sensorimotor area contra-lateral to the stimulated hand, although the sensorimotor area and the central sulcus in groups B and C were dislocated, compared with hemisphere of non-tumor side. The sensorimotor area ipsi-lateral to the stimulated hand could be detected in almost of all subjects. The supplementary motor area could be detected in all subjects. In group A, the average %{Delta}CBF were up 24.1{+-}4.3% in the contra-lateral sensorimotor area, and 22.3{+-}3.6% in the supplementary motor area, respectively. The average %{Delta}CBF in the contra-lateral sensorimotor area of group D was significantly higher than that of group A. The brain functional mapping by motor activation using SPECT could localize the area of cortical motor function in normal volunteers and patients with brain tumors. The changes of regional CBF by activation SPECT precisely assess the cortical motor function even in patients with brain tumors located near central sulcus. (K.H.)

  1. Clinical studies of brain functional images by motor activation using single photon emission computed tomography

    International Nuclear Information System (INIS)

    Kawaguchi, Masahiro

    1998-01-01

    Thirty participants (10 normal controls; group A, 5 patients with brain tumors located near central sulcus without hemiparesis; group B, 10 patients with brain tumors located near central sulcus with hemiparesis; group C, and 5 patients with brain tumors besides the central regions with hemiparesis; group D) were enrolled. The images were performed by means of split-dose method with 99m Tc-ECD at rest condition (SPECT 1) and during hand grasping (SPECT 2). The activation SPECT were obtained by subtracting SPECT 1 from SPECT 2, and the functional mapping was made by the strict registration of the activation SPECT with 3D MRI. To evaluate the changes of CBF (%ΔCBF) of the sensorimotor and supplementary motor areas on the functional mapping, ratio of the average counts of SPECT 1 and SPECT 2 was calculated and statistically compared. The functional activation paradigms caused a significant increase of CBF in the sensorimotor area contra-lateral to the stimulated hand, although the sensorimotor area and the central sulcus in groups B and C were dislocated, compared with hemisphere of non-tumor side. The sensorimotor area ipsi-lateral to the stimulated hand could be detected in almost of all subjects. The supplementary motor area could be detected in all subjects. In group A, the average %ΔCBF were up 24.1±4.3% in the contra-lateral sensorimotor area, and 22.3±3.6% in the supplementary motor area, respectively. The average %ΔCBF in the contra-lateral sensorimotor area of group D was significantly higher than that of group A. The brain functional mapping by motor activation using SPECT could localize the area of cortical motor function in normal volunteers and patients with brain tumors. The changes of regional CBF by activation SPECT precisely assess the cortical motor function even in patients with brain tumors located near central sulcus. (K.H.)

  2. Self-rated function, self-rated health, and postmortem evidence of brain infarcts: findings from the Nun Study.

    Science.gov (United States)

    Greiner, P A; Snowdon, D A; Greiner, L H

    1999-07-01

    Self-rated function is a new global measure. Previous findings suggest that self-rated function predicts future functional decline and is strongly associated with all-cause mortality. We hypothesized that the strength of the relationship of self-rated function to all-cause mortality was in part due to functional decline, such as would occur with brain infarcts. Self-ratings of function and health (on a 5-point scale, ranging from excellent to poor) were assessed annually on 630 participants in the Nun Study. Mortality surveillance extended from October 31, 1991 to March 1, 1998, and, among those who died, neuropathological examination determined postmortem evidence of brain infarcts. Cox regression modeling with self-rated function and health as time-dependent covariates and stratification by assessment period were used in these analyses. Self-rated function and health ratings of good, fair, and poor were significantly associated with doubling of the risk of mortality, compared with ratings of very good and excellent. Self-rated function ratings of fair or poor were associated with a threefold increase in the risk of mortality with brain infarcts, but self-rated function and health ratings of fair and poor were comparable in their association with all-cause mortality and mortality without brain infarcts. Self-rated function was significantly associated with mortality with brain infarcts, suggesting that brain infarcts may be experienced as functional loss but not recognized or labeled as disease. Our results suggest that self-rated function and health should be explored simultaneously in future research.

  3. A Volumetric and Functional Connectivity MRI Study of Brain Arginine-Vasopressin Pathways in Autistic Children.

    Science.gov (United States)

    Shou, Xiao-Jing; Xu, Xin-Jie; Zeng, Xiang-Zhu; Liu, Ying; Yuan, Hui-Shu; Xing, Yan; Jia, Mei-Xiang; Wei, Qing-Yun; Han, Song-Ping; Zhang, Rong; Han, Ji-Sheng

    2017-04-01

    Dysfunction of brain-derived arginine-vasopressin (AVP) systems may be involved in the etiology of autism spectrum disorder (ASD). Certain regions such as the hypothalamus, amygdala, and hippocampus are known to contain either AVP neurons or terminals and may play an important role in regulating complex social behaviors. The present study was designed to investigate the concomitant changes in autistic behaviors, circulating AVP levels, and the structure and functional connectivity (FC) of specific brain regions in autistic children compared with typically developing children (TDC) aged from 3 to 5 years. The results showed: (1) children with ASD had a significantly increased volume in the left amygdala and left hippocampus, and a significantly decreased volume in the bilateral hypothalamus compared to TDC, and these were positively correlated with plasma AVP level. (2) Autistic children had a negative FC between the left amygdala and the bilateral supramarginal gyri compared to TDC. The degree of the negative FC between amygdala and supramarginal gyrus was associated with a higher score on the clinical autism behavior checklist. (3) The degree of negative FC between left amygdala and left supramarginal gyrus was associated with a lowering of the circulating AVP concentration in boys with ASD. (4) Autistic children showed a higher FC between left hippocampus and right subcortical area compared to TDC. (5) The circulating AVP was negatively correlated with the visual and listening response score of the childhood autism rating scale. These results strongly suggest that changes in structure and FC in brain regions containing AVP may be involved in the etiology of autism.

  4. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akio; Iwama, Toru [Gifu University School of Medicine, Department of Neurosurgery, Gifu City (Japan); Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun [Kizawa Memorial Hospital, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Minokamo (Japan); Kuwata, Kazuo [Gifu University School of Medicine, Department of Biochemistry and Biophysics, Gifu (Japan)

    2005-07-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  5. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    International Nuclear Information System (INIS)

    Soeda, Akio; Iwama, Toru; Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun; Kuwata, Kazuo

    2005-01-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  6. A new method for brain functional study using Tc-99m HMPAO SPECT

    International Nuclear Information System (INIS)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Ohtake, Tohru; Watanabe, Toshiaki; Iio, Masahiro

    1989-01-01

    The distribution of 99m Tc-HMPAO in brain is in proportion to regional cerebral blood flow (rCBF) and can be interpreted as functional mapping. To evaluate local changes in CBF during neuropsychological testing, we developed a new subtraction method using HMPAO and SPECT. With patients resting, 15 mCi of HMPAO was injected and the first acquisition was performed, lasting a total of 10 minutes. Soon after the end of the first scan, patients were requested to undergo Buschke's memory test or to repeat words or numbers (repetition test). During the task, an additional 15 mCi of HMPAO was injected using the same position as in the first scan, and a second acquisition was started. A functional image was made by subtracting the image in the first scan from that in the second. In two patients with transient global amnesia and two normal controls, Buschke's memory test was performed in combination with SPECT. A relative increase in activity was seen in the thalamus, subthalamic area, hippocampus, and some cortial areas, apparently reflecting local functional change induced by the memory task. In two patients with moderate Alzheimer's disease with severe memory loss, no increase was detected in these areas. In one patient with aphasia, the repetition test with SPECT was correlated with the WADA test and dichotic listening test, and good agreement was obtained. In conclusion, our new SPECT technique is useful in detecting alterations in rCBF during mental activity and can be applied to neurophysiological studies. (author)

  7. Aberrant regional brain activities in alcohol dependence: a functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Tu XZ

    2018-03-01

    Full Text Available Xianzhu Tu,1 Juanjuan Wang,2 Xuming Liu,3 Jiyong Zheng4 1Department of Psychiatry, Seventh People’s Hospital of Wenzhou City, Wenzhou, Zhejiang, People’s Republic of China; 2Department of Neurology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 3Department of Radiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 4Department of Medical Imaging, The Affiliated Huai’an No 1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, People’s Republic of China Objective: Whether moderate alcohol consumption has health benefits remains controversial, but the harmful effects of excessive alcohol consumption on behavior and brain function are well recognized. The aim of this study was to investigate alcohol-induced regional brain activities and their relationships with behavioral factors. Subjects and methods: A total of 29 alcohol-dependent subjects (9 females and 20 males and 29 status-matched healthy controls (11 females and 18 males were recruited. Severity of alcohol dependence questionnaire (SADQ and alcohol use disorders identification test (AUDIT were used to evaluate the severity of alcohol craving. Regional homogeneity (ReHo analysis was used to explore the alcohol-induced regional brain changes. Receiver operating characteristic (ROC curve was used to investigate the ability of regional brain activities to distinguish alcohol-dependent subjects from healthy controls. Pearson correlations were used to investigate the relationships between alcohol-induced ReHo differences and behavioral factors. Results: Alcohol-dependent subjects related to healthy controls showed higher ReHo areas in the right superior frontal gyrus (SFG, bilateral medial frontal gyrus (MFG, left precentral gyrus (PG, bilateral middle temporal gyrus (MTG, and right inferior temporal gyrus (ITG and lower ReHo areas in

  8. Clinical impact of anatomo-functional evaluation of brain function during brain tumor surgery

    International Nuclear Information System (INIS)

    Mikuni, Nobuhiro; Kikuchi, Takayuki; Matsumoto, Atsushi; Yokoyama, Yohei; Takahashi, Jun; Hashimoto, Nobuo

    2009-01-01

    To attempt to improve surgical outcome of brain surgery, clinical significance of anatomo-functional evaluation of brain function during resection of brain tumors was assessed. Seventy four patients with glioma located near eloquent areas underwent surgery while awake. Intraoperative tractography-integrated functional neuronavigation and cortical/subcortical electrical stimulation were correlated with clinical symptoms during and after resection of tumors. Cortical functional areas were safely removed with negative electric stimulation and eloquent cortices could be removed in some circumstances. Subcortical functional mapping was difficult except for motor function. Studying cortical functional compensation allows more extensive removal of brain tumors located in the eloquent areas. (author)

  9. [11C]befloxatone brain kinetics is not influenced by Bcrp function at the blood-brain barrier: A PET study using Bcrp TGEM knockout rats

    International Nuclear Information System (INIS)

    Hosten, Benoit; Jacob, Aude; Saubamea, Bruno; Scherrmann, Jean-Michel; Boisgard, Raphael; Goutal, Sebastien; Dolle, Frederic; Tournier, Nicolas; Cisternino, Salvatore

    2013-01-01

    Knockout (KO) animals are useful tools with which to assess the interplay between P-glycoprotein (P-gp; Abcb1) and the breast cancer resistance protein (Bcrp, Abcg2), two major ABC-transporters expressed at the blood-brain barrier (BBB). However, one major drawback of such deficient models is the possible involvement of compensation between transporters. In the present study, P-gp and Bcrp distribution in the brain as well as P-gp expression levels at the BBB were compared between the Bcrp TGEM KO rat model and the wild-type (WT) strain. Therefore, we used confocal microscopy of brain slices and western blot analysis of the isolated brain microvessels forming the BBB. This deficient rat model was used to assess the influence of Bcrp on the brain and peripheral kinetics of its substrate [ 11 C]befloxatone using positron emission tomography (PET). The influence of additional P-gp inhibition was tested using elacridar (GF120918) 2 mg/kg in Bcrp KO rats. The distribution pattern of P-gp in the brain as well as P-gp expression levels at the BBB was similar in Bcrp-deficient and WT rats. Brain and peripheral kinetics of [ 11 C]befloxatone were not influenced by the lack of Bcrp. Neither was the brain uptake of [ 11 C]befloxatone in Bcrp-deficient rats influenced by the inhibition of P-gp. In conclusion, the Bcrp-deficient rat strain, in which we detected no compensatory mechanism or modification of P-gp expression as compared to WT rats, is a suitable model to study Bcrp function separately from that of P-gp at the BBB. However, although selectively transported by BCRP in vitro, our results suggest that [ 11 C]befloxatone PET imaging might not be biased by impaired function of this transporter in vivo. (authors)

  10. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  11. Creating probabilistic maps of the face network in the adolescent brain: A multi-centre functional MRI study

    International Nuclear Information System (INIS)

    Tahmasebi, Amir M.; Mareckova, Klara; Artiges, Eric; Martinot, Jean-Luc; Banaschewski, Tobias; Barker, Gareth J.; Loth, Eva; Schumann, Gunter; Bruehl, Ruediger; Ittermann, Bernd; Buchel, Christian; Conrod, Patricia J.; Flor, Herta; Strohle, Andreas; Garavan, Hugh; Gallinat, Jurgen; Heinz, Andreas; Poline, Jean-Baptiste; Rietschel, Marcella; Smolka, Michael N.; Paus, Tomas

    2012-01-01

    Large-scale magnetic resonance (MR) studies of the human brain offer unique opportunities for identifying genetic and environmental factors shaping the human brain. Here, we describe a dataset collected in the context of a multi-centre study of the adolescent brain, namely the IMAGEN Study. We focus on one of the functional paradigms included in the project to probe the brain network underlying processing of ambiguous and angry faces. Using functional MR (fMRI) data collected in 1,110 adolescents, we constructed probabilistic maps of the neural network engaged consistently while viewing the ambiguous or angry faces; 21 brain regions responding to faces with high probability were identified. We were also able to address several methodological issues, including the minimal sample size yielding a stable location of a test region, namely the fusiform face area (FFA), as well as the effect of acquisition site (eight sites) and scanner (four manufacturers) on the location and magnitude of the fMRI response to faces in the FFA. Finally, we provided a comparison between male and female adolescents in terms of the effect sizes of sex differences in brain response to the ambiguous and angry faces in the 21 regions of interest. Overall, we found a stronger neural response to the ambiguous faces in several cortical regions, including the fusiform face area, in female (vs. male) adolescents, and a slightly stronger response to the angry faces in the amygdala of male (vs. female) adolescents. (authors)

  12. Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study.

    Directory of Open Access Journals (Sweden)

    Sophia Mueller

    Full Text Available Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA. We applied diffusion tensor imaging (DTI, voxel-based morphometry (VBM and resting state functional connectivity magnetic resonance imaging (fcMRI to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male and 12 healthy controls (mean age 33.3, SD 9.0, 8 male. Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration.

  13. A new method for brain functional study using Tc-99m HMPAO SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Ohtake, Tohru; Watanabe, Toshiaki; Iio, Masahiro (Tokyo Univ. (Japan). Faculty of Medicine)

    1989-04-01

    The distribution of {sup 99m}Tc-HMPAO in brain is in proportion to regional cerebral blood flow (rCBF) and can be interpreted as functional mapping. To evaluate local changes in CBF during neuropsychological testing, we developed a new subtraction method using HMPAO and SPECT. With patients resting, 15 mCi of HMPAO was injected and the first acquisition was performed, lasting a total of 10 minutes. Soon after the end of the first scan, patients were requested to undergo Buschke's memory test or to repeat words or numbers (repetition test). During the task, an additional 15 mCi of HMPAO was injected using the same position as in the first scan, and a second acquisition was started. A functional image was made by subtracting the image in the first scan from that in the second. In two patients with transient global amnesia and two normal controls, Buschke's memory test was performed in combination with SPECT. A relative increase in activity was seen in the thalamus, subthalamic area, hippocampus, and some cortial areas, apparently reflecting local functional change induced by the memory task. In two patients with moderate Alzheimer's disease with severe memory loss, no increase was detected in these areas. In one patient with aphasia, the repetition test with SPECT was correlated with the WADA test and dichotic listening test, and good agreement was obtained. In conclusion, our new SPECT technique is useful in detecting alterations in rCBF during mental activity and can be applied to neurophysiological studies. (author).

  14. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies.

    Science.gov (United States)

    Tang, D W; Fellows, L K; Small, D M; Dagher, A

    2012-06-06

    In healthy individuals, food cues can trigger hunger and feeding behavior. Likewise, smoking cues can trigger craving and relapse in smokers. Brain imaging studies report that structures involved in appetitive behaviors and reward, notably the insula, striatum, amygdala and orbital frontal cortex, tend to be activated by both visual food and smoking cues. Here, by carrying out a meta-analysis of human neuro-imaging studies, we investigate the neural network activated by: 1) food versus neutral cues (14 studies, 142 foci) 2) smoking versus neutral cues (15 studies, 176 foci) 3) smoking versus neutral cues when correlated with craving scores (7 studies, 108 foci). PubMed was used to identify cue-reactivity imaging studies that compared brain response to visual food or smoking cues to neutral cues. Fourteen articles were identified for the food meta-analysis and fifteen articles were identified for the smoking meta-analysis. Six articles were identified for the smoking cue correlated with craving analysis. Meta-analyses were carried out using activation likelihood estimation. Food cues were associated with increased blood oxygen level dependent (BOLD) response in the left amygdala, bilateral insula, bilateral orbital frontal cortex, and striatum. Smoking cues were associated with increased BOLD signal in the same areas, with the exception of the insula. However, the smoking meta-analysis of brain maps correlating cue-reactivity with subjective craving did identify the insula, suggesting that insula activation is only found when craving levels are high. The brain areas identified here are involved in learning, memory and motivation, and their cue-induced activity is an index of the incentive salience of the cues. Using meta-analytic techniques to combine a series of studies, we found that food and smoking cues activate comparable brain networks. There is significant overlap in brain regions responding to conditioned cues associated with natural and drug rewards

  15. Imaging of brain function based on the analysis of functional ...

    African Journals Online (AJOL)

    Objective: This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. Methods: A total of 45 ...

  16. LANGUAGE COMPETENCE OF STUDENT TOWARD RIGHT HEMISPHER BRAIN FUNCTION : A Neuropragmatic Study

    OpenAIRE

    Handoko, Handoko; Sastra, Gusdi; Revita, Ike

    2015-01-01

    It has been known that the right hemisphere is contributed to language processing, especially in macro level, including macrostructure or discourse processing. This research is aimed at evaluating the students’ ability in language processing concerning macrostructure and the right hemispher brain function. This research is based on Dharmaperwira-prins method “Right Hemisphere Communication Assessment” (Pemeriksaan Komunikasi Hemisfer Kanan/PKHK). Research on students’ ability in macrostructur...

  17. Mind, brain, structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Aleksander, I

    1982-01-01

    The author discusses the type of problem one encounters when trying to formalise the nature of a state structure associated with the brain and the origins of this state structure. The paper first defines in broad terms the nature of the structure function problem, and then goes on to separate out those parts of a structure that lead to the variational and adaptive nature of the state structure. It is argued that the relationship between the structure that leads to adaptation and its embedding in an external environment are crucial areas for further study. 4 references.

  18. Minimally invasive input function for 2-{sup 18}F-fluoro-A-85380 brain PET studies

    Energy Technology Data Exchange (ETDEWEB)

    Zanotti-Fregonara, Paolo [National Institute of Mental Health, NIH, Molecular Imaging Branch, Bethesda, MD (United States); Maroy, Renaud; Peyronneau, Marie-Anne; Trebossen, Regine [CEA, DSV, I2BM, Service Hospitalier Frederic Joliot, Orsay (France); Bottlaender, Michel [CEA, DSV, I2BM, NeuroSpin, Gif-sur-Yvette (France)

    2012-04-15

    Quantitative neuroreceptor positron emission tomography (PET) studies often require arterial cannulation to measure input function. While population-based input function (PBIF) would be a less invasive alternative, it has only rarely been used in conjunction with neuroreceptor PET tracers. The aims of this study were (1) to validate the use of PBIF for 2-{sup 18}F-fluoro-A-85380, a tracer for nicotinic receptors; (2) to compare the accuracy of measures obtained via PBIF to those obtained via blood-scaled image-derived input function (IDIF) from carotid arteries; and (3) to explore the possibility of using venous instead of arterial samples for both PBIF and IDIF. Ten healthy volunteers underwent a dynamic 2-{sup 18}F-fluoro-A-85380 brain PET scan with arterial and, in seven subjects, concurrent venous serial blood sampling. PBIF was obtained by averaging the normalized metabolite-corrected arterial input function and subsequently scaling each curve with individual blood samples. IDIF was obtained from the carotid arteries using a blood-scaling method. Estimated Logan distribution volume (V{sub T}) values were compared to the reference values obtained from arterial cannulation. For all subjects, PBIF curves scaled with arterial samples were similar in shape and magnitude to the reference arterial input function. The Logan V{sub T} ratio was 1.00 {+-} 0.05; all subjects had an estimation error <10%. IDIF gave slightly less accurate results (V{sub T} ratio 1.03 {+-} 0.07; eight of ten subjects had an error <10%). PBIF scaled with venous samples yielded inaccurate results (V{sub T} ratio 1.13 {+-} 0.13; only three of seven subjects had an error <10%). Due to arteriovenous differences at early time points, IDIF could not be calculated using venous samples. PBIF scaled with arterial samples accurately estimates Logan V{sub T} for 2-{sup 18}F-fluoro-A-85380. Results obtained with PBIF were slightly better than those obtained with IDIF. Due to arteriovenous concentration

  19. Brain's reward circuits mediate itch relief. a functional MRI study of active scratching.

    Directory of Open Access Journals (Sweden)

    Alexandru D P Papoiu

    Full Text Available Previous brain imaging studies investigating the brain processing of scratching used an exogenous intervention mimicking scratching, performed not by the subjects themselves, but delivered by an investigator. In real life, scratching is a conscious, voluntary, controlled motor response to itching, which is directed to the perceived site of distress. In this study we aimed to visualize in real-time by brain imaging the core mechanisms of the itch-scratch cycle when scratching was performed by subjects themselves. Secondly, we aimed to assess the correlations between brain patterns of activation and psychophysical ratings of itch relief or pleasurability of scratching. We also compared the patterns of brain activity evoked by self-scratching vs. passive scratching. We used a robust tridimensional Arterial Spin Labeling fMRI technique that is less sensitive to motion artifacts: 3D gradient echo and spin echo (GRASE--Propeller. Active scratching was accompanied by a higher pleasurability and induced a more pronounced deactivation of the anterior cingulate cortex and insula, in comparison with passive scratching. A significant involvement of the reward system including the ventral tegmentum of the midbrain, coupled with a mechanism deactivating the periaqueductal gray matter (PAG, suggests that itch modulation operates in reverse to the mechanism known to suppress pain. Our findings not only confirm a role for the central networks processing reward in the pleasurable aspects of scratching, but also suggest they play a role in mediating itch relief.

  20. Asymmetrical brain activity induced by voluntary spatial attention depends on the visual hemifield: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-04-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a previous psychophysical study, namely, the attentional resources for the left and right visual hemifields are distinct. Increasing the attentional load asymmetrically increased the brain activity. Increase in attentional load produced a greater increase in brain activity in the case of the left visual hemifield than in the case of the right visual hemifield. This asymmetry was observed in all the examined brain areas, including the right and left occipital and parietal cortices. These results suggest the existence of asymmetrical inhibitory interactions between the hemispheres and the presence of an extensive inhibitory network. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Science.gov (United States)

    Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong

    2012-01-01

    preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.

  2. Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study.

    Directory of Open Access Journals (Sweden)

    Chen Niu

    Full Text Available Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC and supplementary motor area (SMA. Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05. We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01-0.02 Hz; middle: 0.02-0.06 Hz; and high: 0.06-0.1 Hz, at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors.

  3. Advantages in functional imaging of the brain

    OpenAIRE

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this?visualize structure-function and brain-behavior relationships. The review describes the development and current applicatio...

  4. Recent applications of UHF-MRI in the study of human brain function and structure : a review

    NARCIS (Netherlands)

    Van der Zwaag, W.; Schäfer, Andreas; Marques, José P; Turner, R.; Trampel, Robert

    The increased availability of ultra-high-field (UHF) MRI has led to its application in a wide range of neuroimaging studies, which are showing promise in transforming fundamental approaches to human neuroscience. This review presents recent work on structural and functional brain imaging, at 7 T and

  5. The effect of souvenaid on functional brain network organisation in patients with mild Alzheimer's disease: a randomised controlled study.

    Directory of Open Access Journals (Sweden)

    Hanneke de Waal

    Full Text Available Synaptic loss is a major hallmark of Alzheimer's disease (AD. Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials.To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD.A 24-week randomised, controlled, double-blind, parallel-group, multi-country study.179 drug-naïve mild AD patients who participated in the Souvenir II study.Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks.In a secondary analysis of the Souvenir II study, electroencephalography (EEG brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma and global network integration (normalised characteristic path length lambda were compared between study groups, and related to memory performance.THE NETWORK MEASURES IN THE BETA BAND WERE SIGNIFICANTLY DIFFERENT BETWEEN GROUPS: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance.The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and

  6. The effect of souvenaid on functional brain network organisation in patients with mild Alzheimer's disease: a randomised controlled study.

    Science.gov (United States)

    de Waal, Hanneke; Stam, Cornelis J; Lansbergen, Marieke M; Wieggers, Rico L; Kamphuis, Patrick J G H; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C W

    2014-01-01

    Synaptic loss is a major hallmark of Alzheimer's disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. 179 drug-naïve mild AD patients who participated in the Souvenir II study. Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance. THE NETWORK MEASURES IN THE BETA BAND WERE SIGNIFICANTLY DIFFERENT BETWEEN GROUPS: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG analysis, using the mathematical framework of graph theory, is useful and feasible for

  7. Positron Emission Tomography (PET) and its application in clinical diagnosis and functional brain organization studies

    International Nuclear Information System (INIS)

    Grabowska, A.; Krolicki, L.

    1997-01-01

    Recent advances in positron emission tomography (PET) and other brain-imaging techniques have made it possible to visualize the working brain while the human subject is thinking, speaking or planning an action. PET provides researches with an opportunity to infer the neuroanatomy of a given function. Subjects either inhale or are injected with a radioactive material that binds to a physiologically active compound in the body. This serves as a tracer of blood flow and metabolic processes that reflect the activation of a given structure by emitting gamma rays which may be detected through a tomograph. PET research has produced findings that extend our knowledge on several important issues such as cerebral representation of language, perception, attention or memory. It has also proven to be an important source of information for clinical diagnosis of various neurological and psychiatric diseases. The present article provides a short review of main achievements in those fields. However, functional brain imaging is not exempt from methodological and theoretical difficulties. The main limitations of the method have been outlined. (author)

  8. Anatomical and functional changes in the brain after simultaneous interpreting training : A longitudinal study

    NARCIS (Netherlands)

    Van De Putte, Eowyn; De Baene, W.; García-Pentón, Lorna; Woumans, Evy; Dijkgraaf, Aster; Duyck, Wouter

    In the recent literature on bilingualism, a lively debate has arisen about the long-term effects of bilingualism on cognition and the brain. These studies yield inconsistent results, in part because they rely on comparisons between bilingual and monolingual control groups that may also differ on

  9. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies.

    Directory of Open Access Journals (Sweden)

    Christian O'Reilly

    Full Text Available Although it is well recognized that autism is associated with altered patterns of over- and under-connectivity, specifics are still a matter of debate. Little has been done so far to synthesize available literature using whole-brain electroencephalography (EEG and magnetoencephalography (MEG recordings.1 To systematically review the literature on EEG/MEG functional and effective connectivity in autism spectrum disorder (ASD, 2 to synthesize and critically appraise findings related with the hypothesis that ASD is characterized by long-range underconnectivity and local overconnectivity, and 3 to provide, based on the literature, an analysis of tentative factors that are likely to mediate association between ASD and atypical connectivity (e.g., development, topography, lateralization.Literature reviews were done using PubMed and PsychInfo databases. Abstracts were screened, and only relevant articles were analyzed based on the objectives of this paper. Special attention was paid to the methodological characteristics that could have created variability in outcomes reported between studies.Our synthesis provides relatively strong support for long-range underconnectivity in ASD, whereas the status of local connectivity remains unclear. This observation was also mirrored by a similar relationship with lower frequencies being often associated with underconnectivity and higher frequencies being associated with both under- and over-connectivity. Putting together these observations, we propose that ASD is characterized by a general trend toward an under-expression of lower-band wide-spread integrative processes compensated by more focal, higher-frequency, locally specialized, and segregated processes. Further investigation is, however, needed to corroborate the conclusion and its generalizability across different tasks. Of note, abnormal lateralization in ASD, specifically an elevated left-over-right EEG and MEG functional connectivity ratio, has been also

  10. Preliminary pilot fMRI study of neuropostural optimization with a noninvasive asymmetric radioelectric brain stimulation protocol in functional dysmetria

    Directory of Open Access Journals (Sweden)

    Mura M

    2012-04-01

    Full Text Available Marco Mura1, Alessandro Castagna2, Vania Fontani2, Salvatore Rinaldi21Institute of Radiology, University of Cagliari, 2Rinaldi Fontani Institute – Department of Neuro Psycho Physical Optimization, Florence, ItalyPurpose: This study assessed changes in functional dysmetria (FD and in brain activation observable by functional magnetic resonance imaging (fMRI during a leg flexion-extension motor task following brain stimulation with a single radioelectric asymmetric conveyer (REAC pulse, according to the precisely defined neuropostural optimization (NPO protocol.Population and methods: Ten healthy volunteers were assessed using fMRI conducted during a simple motor task before and immediately after delivery of a single REAC-NPO pulse. The motor task consisted of a flexion-extension movement of the legs with the knees bent. FD signs and brain activation patterns were compared before and after REAC-NPO.Results: A single 250-millisecond REAC-NPO treatment alleviated FD, as evidenced by patellar asymmetry during a sit-up motion, and modulated activity patterns in the brain, particularly in the cerebellum, during the performance of the motor task.Conclusion: Activity in brain areas involved in motor control and coordination, including the cerebellum, is altered by administration of a REAC-NPO treatment and this effect is accompanied by an alleviation of FD.Keywords: motor behavior, motor control, cerebellum, dysmetria, functional dysmetria, fluctuating asymmetry

  11. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Directory of Open Access Journals (Sweden)

    Guihua Jiang

    Full Text Available Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs and 15 age-, gender-matched normal controls (NCs were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  12. Disrupted topological organization in whole-brain functional networks of heroin-dependent individuals: a resting-state FMRI study.

    Science.gov (United States)

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.

  13. Parametrically defined cerebral blood vessels as non-invasive blood input functions for brain PET studies

    International Nuclear Information System (INIS)

    Asselin, Marie-Claude; Cunningham, Vincent J; Amano, Shigeko; Gunn, Roger N; Nahmias, Claude

    2004-01-01

    A non-invasive alternative to arterial blood sampling for the generation of a blood input function for brain positron emission tomography (PET) studies is presented. The method aims to extract the dimensions of the blood vessel directly from PET images and to simultaneously correct the radioactivity concentration for partial volume and spillover. This involves simulation of the tomographic imaging process to generate images of different blood vessel and background geometries and selecting the one that best fits, in a least-squares sense, the acquired PET image. A phantom experiment was conducted to validate the method which was then applied to eight subjects injected with 6-[ 18 F]fluoro-L-DOPA and one subject injected with [ 11 C]CO-labelled red blood cells. In the phantom study, the diameter of syringes filled with an 11 C solution and inserted into a water-filled cylinder were estimated with an accuracy of half a pixel (1 mm). The radioactivity concentration was recovered to 100 ± 4% in the 8.7 mm diameter syringe, the one that most closely approximated the superior sagittal sinus. In the human studies, the method systematically overestimated the calibre of the superior sagittal sinus by 2-3 mm compared to measurements made in magnetic resonance venograms on the same subjects. Sources of discrepancies related to the anatomy of the blood vessel were found not to be fundamental limitations to the applicability of the method to human subjects. This method has the potential to provide accurate quantification of blood radioactivity concentration from PET images without the need for blood samples, corrections for delay and dispersion, co-registered anatomical images, or manually defined regions of interest

  14. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies

    Energy Technology Data Exchange (ETDEWEB)

    Devous, M.D. Sr. [Nuclear Medicine Center and Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX (United States)

    2002-12-01

    This review considers the role of functional brain imaging techniques in the dementias. The substantial assistance that especially single-photon emission tomography and positron emission tomography can play in the initial diagnosis of dementia and in the differential diagnosis of the specific dementing disorder is discussed. These techniques alone essentially match the sensitivity and specificity of clinical diagnoses in distinguishing Alzheimer's dementia (AD) from age-matched controls, from frontal lobe dementia and vascular dementia, and even from Lewy body dementia. Newer analytic techniques such as voxel-based correlational analyses and discriminant function analyses enhance the power of such differential diagnoses. Functional brain imaging techniques can also significantly assist in patient screening for clinical trials. The correlation of the observed deficits with specific patterns of cognitive abnormalities permits enhanced patient management and treatment planning and improved longitudinal assessment of outcome. It is also noteworthy that the classic abnormalities of temporoparietal and posterior cingulate hypoperfusion or hypometabolism appear to be present prior to symptom onset. These abnormalities predict progression to AD in the presence of the earliest of symptoms, and are present even in cognitively normal but at-risk subjects, with a severity proportional to the risk status. Even greater predictive ability for progression to AD is obtained by combining measures of perfusion or metabolism with risk factors, tau protein levels, hippocampal N-Acetyl aspartate concentrations, or hippocampal volume measures. (orig.)

  15. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies

    International Nuclear Information System (INIS)

    Devous, M.D. Sr.

    2002-01-01

    This review considers the role of functional brain imaging techniques in the dementias. The substantial assistance that especially single-photon emission tomography and positron emission tomography can play in the initial diagnosis of dementia and in the differential diagnosis of the specific dementing disorder is discussed. These techniques alone essentially match the sensitivity and specificity of clinical diagnoses in distinguishing Alzheimer's dementia (AD) from age-matched controls, from frontal lobe dementia and vascular dementia, and even from Lewy body dementia. Newer analytic techniques such as voxel-based correlational analyses and discriminant function analyses enhance the power of such differential diagnoses. Functional brain imaging techniques can also significantly assist in patient screening for clinical trials. The correlation of the observed deficits with specific patterns of cognitive abnormalities permits enhanced patient management and treatment planning and improved longitudinal assessment of outcome. It is also noteworthy that the classic abnormalities of temporoparietal and posterior cingulate hypoperfusion or hypometabolism appear to be present prior to symptom onset. These abnormalities predict progression to AD in the presence of the earliest of symptoms, and are present even in cognitively normal but at-risk subjects, with a severity proportional to the risk status. Even greater predictive ability for progression to AD is obtained by combining measures of perfusion or metabolism with risk factors, tau protein levels, hippocampal N-Acetyl aspartate concentrations, or hippocampal volume measures. (orig.)

  16. The brain network reflecting bodily self-consciousness: a functional connectivity study

    Science.gov (United States)

    Ionta, Silvio; Martuzzi, Roberto; Salomon, Roy

    2014-01-01

    Several brain regions are important for processing self-location and first-person perspective, two important aspects of bodily self-consciousness. However, the interplay between these regions has not been clarified. In addition, while self-location and first-person perspective in healthy subjects are associated with bilateral activity in temporoparietal junction (TPJ), disturbed self-location and first-person perspective result from damage of only the right TPJ. Identifying the involved brain network and understanding the role of hemispheric specializations in encoding self-location and first-person perspective, will provide important information on system-level interactions neurally mediating bodily self-consciousness. Here, we used functional connectivity and showed that right and left TPJ are bilaterally connected to supplementary motor area, ventral premotor cortex, insula, intraparietal sulcus and occipitotemporal cortex. Furthermore, the functional connectivity between right TPJ and right insula had the highest selectivity for changes in self-location and first-person perspective. Finally, functional connectivity revealed hemispheric differences showing that self-location and first-person perspective modulated the connectivity between right TPJ, right posterior insula, and right supplementary motor area, and between left TPJ and right anterior insula. The present data extend previous evidence on healthy populations and clinical observations in neurological deficits, supporting a bilateral, but right-hemispheric dominant, network for bodily self-consciousness. PMID:24396007

  17. PET imaging for brain function

    International Nuclear Information System (INIS)

    Fukuda, Hiroshi

    2003-01-01

    Described are the principle of PET and its characteristics, imaging of human brain function, mapping of detailed human cerebral functions and PET imaging of nerve transmission. Following compounds labeled by positron emitters are used for PET imaging of brain functions: for blood flow and oxygen metabolism, 15 O-O 2 gas, water and carbon dioxide; for energy metabolism, 18 F-fluorodeoxyglucose; and for nerve transmission functions in receptor binding, transporter, transmitter synthesis and enzyme, 11 C- or 18 F-dopamine, serotonin and their analogues, and acetylcholine analogues. For brain mapping, examples of cognition tasks, results and their statistics are presented with images for blood flow. Nerve transmissions in schizophrenia and Alzheimer disease are imaged with labeled analogues of dopamine and acetylcholine, respectively. PET is becoming more and more important in the field of psychiatric science particularly in the coming society of increasing aged people. (N.I.)

  18. The brain stem function in patients with brain bladder

    International Nuclear Information System (INIS)

    Takahashi, Toshihiro

    1990-01-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author)

  19. Aging and functional brain networks

    International Nuclear Information System (INIS)

    Tomasi D.; Volkow, N.D.

    2012-01-01

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

  20. Aberrant brain regional homogeneity and functional connectivity in middle-aged T2DM patients: a resting-state functional MRI study

    Directory of Open Access Journals (Sweden)

    Daihong Liu

    2016-09-01

    Full Text Available Type 2 diabetes mellitus (T2DM has been associated with cognitive impairment. However, its neurological mechanism remains elusive. Combining regional homogeneity (ReHo and functional connectivity (FC analyses, the present study aimed to investigate brain functional alterations in middle-aged T2DM patients, which could provide complementary information for the neural substrates underlying T2DM-associated brain dysfunction. Twenty-five T2DM patients and 25 healthy controls were involved in neuropsychological testing and structural and resting-state functional magnetic resonance imaging data acquisition. ReHo analysis was conducted to determine the peak coordinates of brain regions with abnormal local brain activity synchronization. Then, the identified brain regions were considered as seeds, and FC between these brain regions and global voxels was computed. Finally, the potential correlations between the imaging indices and neuropsychological data were also explored. Compared with healthy controls, T2DM patients exhibited higher ReHo values in the anterior cingulate gyrus and lower ReHo in right fusiform gyrus, right precentral gyrus and right medial orbit of the superior frontal gyrus. Considering these areas as seed regions, T2DM patients displayed aberrant FC, mainly in the frontal and parietal lobes. The pattern of FC alterations in T2DM patients was characterized by decreased connectivity and positive to negative or negative to positive converted connectivity. Digital Span Test forward scores revealed significant correlations with the ReHo values of the right precentral gyrus (ρ = 0.527, p = 0.014 and FC between the right fusiform gyrus and middle temporal gyrus (ρ = -0.437, p = 0.048. Our findings suggest that T2DM patients suffer from cognitive dysfunction related to spatially local and remote brain activity synchronization impairment. The patterns of ReHo and FC alterations shed light on the mechanisms underlying T2DM-associated brain

  1. DHA effects in brain development and function

    DEFF Research Database (Denmark)

    Lauritzen, Lotte; Brambilla, Paola; Mazzocchi, Allesandra

    2016-01-01

    the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies...... justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects...

  2. Development of the brain's functional network architecture.

    Science.gov (United States)

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  3. Acupuncture at Waiguan (SJ5) and sham points influences activation of functional brain areas of ischemic stroke patients: a functional magnetic resonance imaging study

    OpenAIRE

    Qi, Ji; Chen, Junqi; Huang, Yong; Lai, Xinsheng; Tang, Chunzhi; Yang, Junjun; Chen, Hua; Qu, Shanshan

    2014-01-01

    Most studies addressing the specificity of meridians and acupuncture points have focused mainly on the different neural effects of acupuncture at different points in healthy individuals. This study examined the effects of acupuncture on brain function in a pathological context. Sixteen patients with ischemic stroke were randomly assigned to true point group (true acupuncture at right Waiguan (SJ5)) and sham point group (sham acupuncture). Results of functional magnetic resonance imaging revea...

  4. Anaemia worsens early functional outcome after traumatic brain injury: a preliminary study.

    Science.gov (United States)

    Litofsky, N Scott; Miller, Douglas C; Chen, Zhenzhou; Simonyi, Agnes; Klakotskaia, Diana; Giritharan, Andrew; Feng, Qi; McConnell, Diane; Cui, Jiankun; Gu, Zezong

    2018-01-01

    To determine early effects on outcome from traumatic brain injury (TBI) induced by controlled cortical impact (CCI) associated with anaemia in mice. Outcome from TBI with concomitant anaemia would be worse than TBI without anaemia. CCI was induced with electromagnetic impaction in four groups of C57BL/6J mice: sham, sham+anaemia; TBI; and TBI+anaemia. Anaemia was created by withdrawal of 30% of calculated intravascular blood volume and saline replacement of equal volume. Functional outcome was assessed by beam-walking test and open field test (after pre-injury training) on post-injury days 3 and 7. After functional assessment, brains removed from sacrificed animals were pathological reviewed with haematoxylin and eosin, cresyl violet, Luxol Fast Blue, and IBA-1 immunostains. Beam-walking was similar between animals with TBI and TBI+anaemia (p = 0.9). In open field test, animals with TBI+anaemia walked less distance than TBI alone or sham animals on days 3 (p < 0.001) and 7 (p < 0.05), indicating less exploratory and locomotion behaviours. No specific pathologic differences could be identified. Anaemia associated with TBI from CCI is associated with worse outcome as measured by less distance travelled in the open field test at three days than if anaemia is not present.

  5. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Bum Seok [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Jee Wook [Daejeon St. Mary' s Hospital, The Catholic University of Korea College of Medicine, Daejeon (Korea, Republic of); Kim, Ji Woong [College of Medical Science, Konyang University, Daejeon(Korea, Republic of)

    2012-06-15

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  6. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    International Nuclear Information System (INIS)

    Jeong, Bum Seok; Choi, Jee Wook; Kim, Ji Woong

    2012-01-01

    Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network.

  7. Altered Brain Functional Connectome in Migraine with and without Restless Legs Syndrome: A Resting-State Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Fu-Chi Yang

    2018-01-01

    Full Text Available BackgroundMigraine is frequently comorbid with restless legs syndrome (RLS, both displaying functional connectivity (FC alterations in multiple brain networks, although the neurological basis of this association is unknown.MethodsWe performed resting-state functional magnetic resonance imaging and network-wise analysis of FC in migraine patients with and without RLS and healthy controls (CRL. Network-based statistics (NBS and composite FC matrix analyses were performed to identify the patterns of FC changes. Correlation analyses were performed to identify associations between alterations in FC and clinical profiles.ResultsNBS results revealed that both migraine patients with and without RLS exhibited lower FC than CRL in the dorsal attention, salience, default mode, cingulo-opercular, visual, frontoparietal, auditory, and sensory/somatomotor networks. Further composite FC matrix analyses revealed differences in FC of the salience, default mode to subcortical and frontoparietal, auditory to salience, and memory retrieval networks between migraine patients with and without RLS. There was a trend toward a negative association between RLS severity and cross-network abnormalities in the default mode to subcortical network.DiscussionMigraine patients with and without RLS exhibit disruptions of brain FC. Such findings suggest that these disorders are associated with differential neuropathological mechanisms and may aid in the future development of neuroimaging-driven biomarkers for these conditions.

  8. Altered brain functions in HIV positive patients free of HIV- associated neurocognitive disorders: A MRI study during unilateral hand movements

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-03-01

    Full Text Available This paper aimed to investigate the brain activity of human immunodeficiency virus (HIV positive patients with normal cognition during unilateral hand movement and whether highly active antiretroviral therapy (HAART could affect the brain function. Functional magnetic resonance imaging (fMRI was performed for 60 HIV positive (HIV+ subjects and −42 healthy age-matched right-handed control subjects. Each subject was evaluated by the neuropsychological test and examined with fMRI during left and right hand movement tasks. HIV+ subjects showed greater activation in anterior cingulum, precuneus, occipital lobes, ipsilateral postcentral gyrus and contralateral cerebellum compared with control group during right hand movement task. However, during left hand movement no statistically significant difference was detected between these two groups. HAART medication for HIV+ subjects lowered the increased activity to normal level. Meanwhile patients receiving the regimen of zidovudine, lamivudine and efavirenz showed lower activity at bilateral caudate and ipsilateral inferior frontal gyrus in comparison with subjects receiving other HAART regimens. Therefore, HIV+ subjects demonstrated brain asymmetry in motor cortex, with increased activity present during right hand movement but absent during left hand movement. HAART proves effective in HIV+ subjects even with normal cognition and the specific regimen of HAART could prevent cerebral abnormal functions. Meanwhile, this study validates that during motor tasks, fMRI can detect the brain signal changes prior to the occurrences of other HIV- associated dysfunctions.

  9. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  10. On development of functional brain connectivity in the young brain

    Directory of Open Access Journals (Sweden)

    G.E. Anna-Jasmijn eHoff

    2013-10-01

    Full Text Available Our brain is a complex network of structurally and functionally interconnected regions, shaped to efficiently process and integrate information. The development from a brain equipped with basic functionalities to an efficient network facilitating complex behavior starts during gestation and continues into adulthood. Resting-state functional MRI (rs-fMRI enables the examination of developmental aspects of functional connectivity and functional brain networks. This review will discuss changes observed in the developing brain on the level of network functional connectivity (FC from a gestational age of 20 weeks onwards. We discuss findings of resting-state fMRI studies showing that functional network development starts during gestation, creating a foundation for each of the resting-state networks to be established. Visual and sensorimotor areas are reported to develop first, with other networks, at different rates, increasing both in network connectivity and size over time. Reaching childhood, marked fine-tuning and specialization takes place in the regions necessary for higher-order cognitive functions.

  11. Digital Gaming for Improving the Functioning of People With Traumatic Brain Injury: Randomized Clinical Feasibility Study.

    Science.gov (United States)

    Välimäki, Maritta; Mishina, Kaisa; Kaakinen, Johanna K; Holm, Suvi K; Vahlo, Jukka; Kirjonen, Markus; Pekurinen, Virve; Tenovuo, Olli; Korkeila, Jyrki; Hämäläinen, Heikki; Sarajuuri, Jaana; Rantanen, Pekka; Orenius, Tage; Koponen, Aki

    2018-03-19

    Traumatic brain injury (TBI) is a major health problem that often requires intensive and long-term rehabilitation. The aim of this study was to determine whether rehabilitative digital gaming facilitates cognitive functioning and general well-being in people with TBI. A total of 90 Finnish-speaking adults with TBI (18-65 years) were recruited from an outpatient neuroscience clinic. The participants were randomly allocated to one of the three groups: a rehabilitation gaming group (n=29, intervention), an entertainment gaming group (n=29, active control), or a passive control group (n=32). The gaming groups were instructed to engage in gaming for a minimum of 30 min per day for 8 weeks. Primary and secondary outcomes were measured at three time points: before the intervention, after the intervention, and 3 months following the intervention. The primary outcome was cognitive status measured by processing speed and visuomotor tasks (The Trail Making Test; Wechsler Adult Intelligence Scale-Fourth Edition, WAIS-IV, symbol search, coding, and cancellation tasks). Secondary outcomes were attention and executive functions (Simon task), working memory (WAIS-IV digit span and Paced Auditory Serial Addition Test, PASAT), depression (Patient Health Questionnaire-9), self-efficacy (General Self-efficacy Scale), and executive functions (Behavior Rating Inventory of Executive Function-Adult Version). Feasibility information was assessed (acceptability, measurement instruments filled, dropouts, adherence, usability, satisfaction, and possible future use). Cognitive measurements were conducted in face-to-face interviews by trained psychologists, and questionnaires were self-administered. The effects of rehabilitation gaming did not significantly differ from the effects of entertainment gaming or being in a passive control group. For primary outcomes and PASAT tests, the participants in all three groups showed overall improvement in test scores across the three measurement points

  12. Liver transplantation nearly normalizes brain spontaneous activity and cognitive function at 1 month: a resting-state functional MRI study.

    Science.gov (United States)

    Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen

    2015-08-01

    To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.

  13. Altered brain function in new onset childhood acute lymphoblastic leukemia before chemotherapy: A resting-state fMRI study.

    Science.gov (United States)

    Hu, Zhanqi; Zou, Dongfang; Mai, Huirong; Yuan, Xiuli; Wang, Lihong; Li, Yue; Liao, Jianxiang; Liu, Liwei; Liu, Guosheng; Zeng, Hongwu; Wen, Feiqiu

    2017-10-01

    Cognitive impairments had been reported in childhood acute lymphoblastic leukemia, what caused the impairments needed to be demonstrated, chemotherapy-related or the disease itself. The primary aim of this exploratory investigation was to determine if there were changes in brain function of children with acute lymphoblastic leukemia before chemotherapy. In this study, we advanced a measure named regional homogeneity to evaluate the resting-state brain activities, intelligence quotient test was performed at same time. Using regional homogeneity, we first investigated the resting state brain function in patients with new onset childhood acute lymphoblastic leukemia before chemotherapy, healthy children as control. The decreased ReHo values were mainly founded in the default mode network and left frontal lobe, bilateral inferior parietal lobule, bilateral temporal lobe, bilateral occipital lobe, precentral gyrus, bilateral cerebellum in the newly diagnosed acute lymphoblastic leukemia patients compared with the healthy control. While in contrast, increased ReHo values were mainly shown in the right frontal lobe (language area), superior frontal gyrus-R, middle frontal gyrus-R and inferior parietal lobule-R for acute lymphoblastic leukemia patients group. There were no significant differences for intelligence quotient measurements between the acute lymphoblastic leukemia patient group and the healthy control in performance intelligence quotient, verbal intelligence quotient, total intelligence quotient. The altered brain functions are associated with cognitive change and language, it is suggested that there may be cognition impairment before the chemotherapy. Regional homogeneity by functional magnetic resonance image is a sensitive way for early detection on brain damage in childhood acute lymphoblastic leukemia. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. LANGUAGE COMPETENCE OF STUDENT TOWARD RIGHT HEMISPHER BRAIN FUNCTION : A Neuropragmatic Study

    Directory of Open Access Journals (Sweden)

    Handoko Handoko

    2015-04-01

    Full Text Available It has been known that the right hemisphere is contributed to language processing, especially in macro level, including macrostructure or discourse processing. This research is aimed at evaluating the students’ ability in language processing concerning macrostructure and the right hemispher brain function. This research is based on Dharmaperwira-prins method “Right Hemisphere Communication Assessment” (Pemeriksaan Komunikasi Hemisfer Kanan/PKHK. Research on students’ ability in macrostructure processing is important to conduct since students nowadays are regarded lack of ability in well being communication. The research is conducted toward 38 students of English Department of Andalas University. The data are taken by paper test which is designed to evaluate the students’ ability in macrostructure. The result of research shows that most students have problems in providing important information, adjective, and feeling. By this result, it can be assumed that the participants have problem in right hemisphere competence concerning to language processing. These problems evoke not by accident or lesion in right hemisphere, yet it is caused by brain development which is focused on left hemisphere only. Keyword: Right Hemisphere, Language Assessment, Lexical Semantic, Macrostructure, Pragmatic

  15. Altered brain network topology in left-behind children: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su

    2016-12-01

    Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. General and specialized brain correlates for analogical reasoning: A meta-analysis of functional imaging studies.

    Science.gov (United States)

    Hobeika, Lucie; Diard-Detoeuf, Capucine; Garcin, Béatrice; Levy, Richard; Volle, Emmanuelle

    2016-05-01

    Reasoning by analogy allows us to link distinct domains of knowledge and to transfer solutions from one domain to another. Analogical reasoning has been studied using various tasks that have generally required the consideration of the relationships between objects and their integration to infer an analogy schema. However, these tasks varied in terms of the level and the nature of the relationships to consider (e.g., semantic, visuospatial). The aim of this study was to identify the cerebral network involved in analogical reasoning and its specialization based on the domains of information and task specificity. We conducted a coordinate-based meta-analysis of 27 experiments that used analogical reasoning tasks. The left rostrolateral prefrontal cortex was one of the regions most consistently activated across the studies. A comparison between semantic and visuospatial analogy tasks showed both domain-oriented regions in the inferior and middle frontal gyri and a domain-general region, the left rostrolateral prefrontal cortex, which was specialized for analogy tasks. A comparison of visuospatial analogy to matrix problem tasks revealed that these two relational reasoning tasks engage, at least in part, distinct right and left cerebral networks, particularly separate areas within the left rostrolateral prefrontal cortex. These findings highlight several cognitive and cerebral differences between relational reasoning tasks that can allow us to make predictions about the respective roles of distinct brain regions or networks. These results also provide new, testable anatomical hypotheses about reasoning disorders that are induced by brain damage. Hum Brain Mapp 37:1953-1969, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. A Resting-State Brain Functional Network Study in MDD Based on Minimum Spanning Tree Analysis and the Hierarchical Clustering

    Directory of Open Access Journals (Sweden)

    Xiaowei Li

    2017-01-01

    Full Text Available A large number of studies demonstrated that major depressive disorder (MDD is characterized by the alterations in brain functional connections which is also identifiable during the brain’s “resting-state.” But, in the present study, the approach of constructing functional connectivity is often biased by the choice of the threshold. Besides, more attention was paid to the number and length of links in brain networks, and the clustering partitioning of nodes was unclear. Therefore, minimum spanning tree (MST analysis and the hierarchical clustering were first used for the depression disease in this study. Resting-state electroencephalogram (EEG sources were assessed from 15 healthy and 23 major depressive subjects. Then the coherence, MST, and the hierarchical clustering were obtained. In the theta band, coherence analysis showed that the EEG coherence of the MDD patients was significantly higher than that of the healthy controls especially in the left temporal region. The MST results indicated the higher leaf fraction in the depressed group. Compared with the normal group, the major depressive patients lost clustering in frontal regions. Our findings suggested that there was a stronger brain interaction in the MDD group and a left-right functional imbalance in the frontal regions for MDD controls.

  18. [Aberrant topological properties of whole-brain functional network in chronic right-sided sensorineural hearing loss: a resting-state functional MRI study].

    Science.gov (United States)

    Zhang, Lingling; Liu, Bin; Xu, Yangwen; Yang, Ming; Feng, Yuan; Huang, Yaqing; Huan, Zhichun; Hou, Zhaorui

    2015-02-03

    To investigate the topological properties of the functional brain network in unilateral sensorineural hearing loss patients. In this study, we acquired resting-state BOLD- fMRI data from 19 right-sided SNHL patients and 31 healthy controls with normal hearing and constructed their whole brain functional networks. Two-sample two-tailed t-tests were performed to investigate group differences in topological parameters between the USNHL patients and the controls. Partial correlation analysis was conducted to determine the relationships between the network metrics and USNHL-related variables. Both USNHL patients and controls exhibited small-word architecture in their brain functional networks within the range 0. 1 - 0. 2 of sparsity. Compared to the controls, USNHL patients showed significant increase in characteristic path length and normalized characteristic path length, but significant decrease in global efficiency. Clustering coefficient, local efficiency and normalized clustering coefficient demonstrated no significant difference. Furthermore, USNHL patients exhibited no significant association between the altered network metrics and the duration of USNHL or the severity of hearing loss. Our results indicated the altered topological properties of whole brain functional networks in USNHL patients, which may help us to understand pathophysiologic mechanism of USNHL patients.

  19. Brain plasticity and recovery of cognitive functions

    Directory of Open Access Journals (Sweden)

    Anja Čuš

    2011-10-01

    Full Text Available Through its capacity of plastic changes, the adult brain enables successful dealing with new demands of everyday life and recovery after an acquired brain damage either spontaneously or by the help of rehabilitation interventions. Studies which explored the effects of cognitive training in the normal population report on different types of changes in the performance of cognitive tasks as well as different types of changes in brain activation patterns.Following practice, brain activation can change in its extent, intensity or location, while cognitive processes can become more efficient or can be replaced by different processes.After acquired brain damage plastic changes are somewhat different. After the injury, the damaged brain area can either gradually regain its previous function, or different brain regions are recruited to perform that function.Studies of spontaneous and guided recovery of cognitive functions have revealed both types of plastic changes that follow each other, as well as significant correlations between these changes and improvement on the behavioural level.

  20. The brain study : Cognition, quality of life and social functioning following preeclampsia; An observational study

    NARCIS (Netherlands)

    Postma, I. R.; Groen, H.; Easterling, T. R.; Tsigas, E. Z.; Wilson, M. L.; Porcel, J.; Zeeman, G. G.

    2013-01-01

    Objectives: Previously preeclamptic women may express cognitive difficulties, which have largely been unappreciated or attributed to stresses of a complicated pregnancy. This study aimed to explore the scope of perceived neurocognitive and psychosocial problems as well as quality of life following

  1. Disrupted functional brain networks in autistic toddlers

    NARCIS (Netherlands)

    Boersma, M.; Kemner, C.; Reus, M.A. de; Collin, G; Snijders, T.M.; Hofman, D.; Buitelaar, J.K.; Stam, C.J.; Heuvel, M.P. van den

    2013-01-01

    Communication and integration of information between brain regions plays a key role in healthy brain function. Conversely, disruption in brain communication may lead to cognitive and behavioral problems. Autism is a neurodevelopmental disorder that is characterized by impaired social interactions

  2. Effects of different correlation metrics and preprocessing factors on small-world brain functional networks: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Xia Liang

    and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.

  3. How study of respiratory physiology aided our understanding of abnormal brain function in panic disorder.

    Science.gov (United States)

    Sinha, S; Papp, L A; Gorman, J M

    2000-12-01

    There is a substantial body of literature demonstrating that stimulation of respiration (hyperventilation) is a common event in panic disorder patients during panic attack episodes. Further, a number of abnormalities in respiration, such as enhanced CO2 sensitivity, have been detected in panic patients. This led some to posit that there is a fundamental abnormality in the physiological mechanisms that control breathing in panic disorder and that this abnormality is central to illness etiology. More recently, however, evidence has accumulated suggesting that respiratory physiology is normal in panic patients and that their tendency to hyperventilate and to react with panic to respiratory stimulants like CO2 represents the triggering of a hypersensitive fear network. The fear network anatomy is taken from preclinical studies that have identified the brain pathways that subserve the acquisition and maintenance of conditioned fear. Included are the amygdala and its brain stem projections, the hippocampus, and the medial prefrontal cortex. Although attempts to image this system in patients during panic attacks have been difficult, the theory that the fear network is operative and hyperactive in panic patients explains why both medication and psychosocial therapies are clearly effective. Studies of respiration in panic disorder are an excellent example of the way in which peripheral markers have guided researchers in developing a more complete picture of the neural events that occur in psychopathological states.

  4. Mapping the brain correlates of borderline personality disorder: A functional neuroimaging meta-analysis of resting state studies.

    Science.gov (United States)

    Visintin, Eleonora; De Panfilis, Chiara; Amore, Mario; Balestrieri, Matteo; Wolf, Robert Christian; Sambataro, Fabio

    2016-11-01

    Altered intrinsic function of the brain has been implicated in Borderline Personality Disorder (BPD). Nonetheless, imaging studies have yielded inconsistent alterations of brain function. To investigate the neural activity at rest in BPD, we conducted a set of meta-analyses of brain imaging studies performed at rest. A total of seven functional imaging studies (152 patients with BPD and 147 control subjects) were combined using whole-brain Signed Differential Mapping meta-analyses. Furthermore, two conjunction meta-analyses of neural activity at rest were also performed: with neural activity changes during emotional processing, and with structural differences, respectively. We found altered neural activity in the regions of the default mode network (DMN) in BPD. Within the regions of the midline core DMN, patients with BPD showed greater activity in the anterior as well as in the posterior midline hubs relative to controls. Conversely, in the regions of the dorsal DMN they showed reduced activity compared to controls in the right lateral temporal complex and bilaterally in the orbitofrontal cortex. Increased activity in the precuneus was observed both at rest and during emotional processing. Reduced neural activity at rest in lateral temporal complex was associated with smaller volume of this area. Heterogeneity across imaging studies. Altered activity in the regions of the midline core as well as of the dorsal subsystem of the DMN may reflect difficulties with interpersonal and affective regulation in BPD. These findings suggest that changes in spontaneous neural activity could underlie core symptoms in BPD. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Alterations in Spontaneous Brain Activity and Functional Network Reorganization following Surgery in Children with Medically Refractory Epilepsy: A Resting-State Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Yongxin Li

    2017-08-01

    Full Text Available For some patients with medically refractory epilepsy (MRE, surgery is a safe and effective treatment for controlling epilepsy. However, the functional consequences of such surgery on brain activity and connectivity in children remain unknown. In the present study, we carried out a longitudinal study using resting-state functional magnetic resonance imaging in 10 children with MRE before and again at a mean of 79 days after surgery, as well as in a group of 28 healthy controls. Compared with the controls, children with epilepsy exhibited abnormalities in intrinsic activity in the thalamus, putamen, pallidum, insula, hippocampus, cerebellum, and cingulate gyrus both before and after surgery. Longitudinal analyses showed that the amplitude of low frequency fluctuations (ALFF increased in the parietal–frontal cortex and decreased in the deep nuclei from pre- to post-surgery. The percentage changes in ALFF values in the deep nuclei were positively correlated with the age of epilepsy onset. Functional connectivity (FC analyses demonstrated a reorganization of FC architecture after surgery. These changes in brain activity and FC after surgery might indicate that the previously disrupted functional interactions were reorganized after surgery. All these results provide preliminary evidence that the age of epilepsy onset may have some potential to predict the outcome of brain functional reorganization after surgery in children with MRE.

  6. Study of tonotopic brain changes with functional MRI and FDG-PET in a patient with unilateral objective cochlear tinnitus.

    Science.gov (United States)

    Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R

    2016-11-01

    We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    Science.gov (United States)

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  8. Clinical studies of functional imaging of dynamic CT for chronic brain-damaged patients

    International Nuclear Information System (INIS)

    Inada, Haruo; Miyano, Satoshi

    1995-01-01

    The 311 brain-damaged patients, mostly of cerebrovascular disease (CVD) were examined by functional imaging to dynamic CT (FIDCT) at Tokyo Metropolitan Rehabilitation Hospital. The abnormal patterns of FIDCT were classified according to two categories, i.e. focal area where plain CT showed low density area (LDA), and extra-focal area where plain CT showed no abnormal findings. These patterns were diagnosed by using the two parameters, i.e. Corrected First Moment (CM) and Time to Peak (TP). Over 50% of the focal abnormal FIDCT revealed tha same area with LDA on plain CT. The extra-focal FIDCT showed various abnormal patterns, and only 11% of all the findings had no abnormalities. The correlation of the specific patterns of extra-focal FIDCT with the multiple CVD episodes was investigated, and the findings that had significant correlation were (a) delayed CM of bilateral white matter, (b) diffusely delayed TP of the affected hemisphere, and the patient group that showed no extra-focal abnormal FIDCT had significant low incidence of multiple CVD episodes. From these results, it is concluded that the high-risk group of stroke recurrence can be predicted by extra-focal findings of FIDCT. (author)

  9. Clinical studies of functional imaging of dynamic CT for chronic brain-damaged patients

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Haruo; Miyano, Satoshi [Jikei Univ., Tokyo (Japan). School of Medicine

    1995-03-01

    The 311 brain-damaged patients, mostly of cerebrovascular disease (CVD) were examined by functional imaging to dynamic CT (FIDCT) at Tokyo Metropolitan Rehabilitation Hospital. The abnormal patterns of FIDCT were classified according to two categories, i.e. focal area where plain CT showed low density area (LDA), and extra-focal area where plain CT showed no abnormal findings. These patterns were diagnosed by using the two parameters, i.e. Corrected First Moment (CM) and Time to Peak (TP). Over 50% of the focal abnormal FIDCT revealed tha same area with LDA on plain CT. The extra-focal FIDCT showed various abnormal patterns, and only 11% of all the findings had no abnormalities. The correlation of the specific patterns of extra-focal FIDCT with the multiple CVD episodes was investigated, and the findings that had significant correlation were (a) delayed CM of bilateral white matter, (b) diffusely delayed TP of the affected hemisphere, and the patient group that showed no extra-focal abnormal FIDCT had significant low incidence of multiple CVD episodes. From these results, it is concluded that the high-risk group of stroke recurrence can be predicted by extra-focal findings of FIDCT. (author).

  10. Headache, migraine, and structural brain lesions and function: population based Epidemiology of Vascular Ageing-MRI study

    International Nuclear Information System (INIS)

    Kurth, T.; Mohamed, S.; Zhu, Y.C.; Dufouil, C.; Tzourio, Ch.; Kurth, T.; Zhu, Y.C.; Dufouil, C.; Tzourio, Ch.; Kurth, T.; Maillard, P.; Mazoyer, B.; Zhu, Y.C.; Chabriat, H.; Bousser, M.G.; Tzourio, Ch.; Zhu, Y.C.; Chabriat, H.; Bousser, M.G.; Mazoyer, B.

    2011-01-01

    Objective: To evaluate the association of overall and specific headaches with volume of white matter hyper-intensities, brain infarcts, and cognition. Design: Population based, cross sectional study. Setting: Epidemiology of Vascular Ageing study, Nantes, France. Participants: 780 participants (mean age 69, 58.5% women) with detailed headache assessment. Main outcome measures: Brain scans were evaluated for volume of white matter hyper-intensities (by fully automated imaging processing) and for classification of infarcts (by visual reading with a standardised assessment grid). Cognitive function was assessed by a battery of tests including the mini-mental state examination. Results: 163 (20.9%) participants reported a history of severe headache and 116 had migraine, of whom 17 (14.7%) reported aura symptoms. An association was found between any history of severe headache and increasing volume of white matter hyper-intensities. The adjusted odds ratio of being in the highest third for total volume of white matter hyper-intensities was 2.0 (95% confidence interval 1.3 to 3.1, P for trend 0.002) for participants with any history of severe headache when compared with participants without severe headache being in the lowest third. The association pattern was similar for all headache types. Migraine with aura was the only headache type strongly associated with volume of deep white matter hyper-intensities (highest third odds ratio 12.4, 1.6 to 99.4, P for trend 0.005) and with brain infarcts (3.4, 1.2 to 9.3). The location of infarcts was predominantly outside the cerebellum and brain stem. Evidence was lacking for cognitive impairment for any headache type with or without brain lesions. Conclusions: In this population based study, any history of severe headache was associated with an increased volume of white matter hyper-intensities. Migraine with aura was the only headache type associated with brain infarcts. Evidence that headache of any type by itself or in

  11. 采用CT技术研究颅脑损伤患者的早期神经功能恢复:脑水肿和脑肿胀的比较%CT study of patients neurological function recovery in the acute stage of brain injury:compared brain swelling and brain edema

    Institute of Scientific and Technical Information of China (English)

    李龙; 池晓宇; 黄新才; 刘卫国; 蒋德清

    2002-01-01

    @@ ckground: Secondary clinical manifestations following brain injury may be due to either intracranial hemorrhage or brain edema and brain swelling.But brain swelling hasn't been understand adequately in clinical practice.Objective: 71 patients with brain edema or brain swelling following brain injury admitted to our hospital during Jan 1998 to Dec 1999 were selected for this study.Their CT findings were compared,and CT characters of traumatic brain swelling and neurological function recovery were analyzed emphatically.Unit: Department of Radiology,Guangdong Provincial Corps Hospital,Chinese People's Armed Police Forces.

  12. Abacus in the brain: a longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion.

    Science.gov (United States)

    Tanaka, Satoshi; Seki, Keiko; Hanakawa, Takashi; Harada, Madoka; Sugawara, Sho K; Sadato, Norihiro; Watanabe, Katsumi; Honda, Manabu

    2012-01-01

    The abacus, a traditional physical calculation device, is still widely used in Asian countries. Previous behavioral work has shown that skilled abacus users perform rapid and precise mental arithmetic by manipulating a mental representation of an abacus, which is based on visual imagery. However, its neurophysiological basis remains unclear. Here, we report the case of a patient who was a good abacus user, but transiently lost her "mental abacus" and superior arithmetic performance after a stroke owing to a right hemispheric lesion including the dorsal premotor cortex (PMd) and inferior parietal lobule (IPL). Functional magnetic resonance imaging experiments were conducted 6 and 13 months after her stroke. In the mental calculation task, her brain activity was shifted from the language-related areas, including Broca's area and the left dorsolateral prefrontal and IPLs, to the visuospatial-related brain areas including the left superior parietal lobule (SPL), according to the recovery of her arithmetic abilities. In the digit memory task, activities in the bilateral SPL, and right visual association cortex were also observed after recovery. The shift of brain activities was consistent with her subjective report that she was able to shift the calculation strategy from linguistic to visuospatial as her mental abacus became stable again. In a behavioral experiment using an interference paradigm, a visual presentation of an abacus picture, but not a human face picture, interfered with the performance of her digit memory, confirming her use of the mental abacus after recovery. This is the first case report on the impairment of the mental abacus by a brain lesion and on recovery-related brain activity. We named this rare case "abacus-based acalculia." Together with previous neuroimaging studies, the present result suggests an important role for the PMd and parietal cortex in the superior arithmetic ability of abacus users.

  13. Disrupted Topological Organization in Whole-Brain Functional Networks of Heroin-Dependent Individuals: A Resting-State fMRI Study

    OpenAIRE

    Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang

    2013-01-01

    Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subj...

  14. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study.

    Science.gov (United States)

    Mitchell, Gary F; van Buchem, Mark A; Sigurdsson, Sigurdur; Gotal, John D; Jonsdottir, Maria K; Kjartansson, Ólafur; Garcia, Melissa; Aspelund, Thor; Harris, Tamara B; Gudnason, Vilmundur; Launer, Lenore J

    2011-11-01

    Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, Pwave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, Pwave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, Pwave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, Pwave

  15. Advantages in functional imaging of the brain.

    Science.gov (United States)

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this-visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  16. A Preliminary Study of Functional Brain Activation among Marijuana Users during Performance of a Virtual Water Maze Task

    Directory of Open Access Journals (Sweden)

    Jennifer Tropp Sneider

    2013-01-01

    Full Text Available Numerous studies have reported neurocognitive impairments associated with chronic marijuana use. Given that the hippocampus contains a high density of cannabinoid receptors, hippocampal-mediated cognitive functions, including visuospatial memory, may have increased vulnerability to chronic marijuana use. Thus, the current study examined brain activation during the performance of a virtual analogue of the classic Morris water maze task in 10 chronic marijuana (MJ users compared to 18 nonusing (NU comparison subjects. Imaging data were acquired using blood oxygen level-dependent (BOLD functional MRI at 3.0 Tesla during retrieval (hidden platform and motor control (visible platform conditions. While task performance on learning trials was similar between groups, MJ users demonstrated a deficit in memory retrieval. For BOLD fMRI data, NU subjects exhibited greater activation in the right parahippocampal gyrus and cingulate gyrus compared to the MJ group for the Retrieval-Motor Control contrast (NU > MJ. These findings suggest that hypoactivation in MJ users may be due to differences in the efficient utilization of neuronal resources during the retrieval of memory. Given the paucity of data on visuospatial memory function in MJ users, these findings may help elucidate the neurobiological effects of marijuana on brain activation during memory retrieval.

  17. Thermodynamic laws apply to brain function.

    Science.gov (United States)

    Salerian, Alen J

    2010-02-01

    Thermodynamic laws and complex system dynamics govern brain function. Thus, any change in brain homeostasis by an alteration in brain temperature, neurotransmission or content may cause region-specific brain dysfunction. This is the premise for the Salerian Theory of Brain built upon a new paradigm for neuropsychiatric disorders: the governing influence of neuroanatomy, neurophysiology, thermodynamic laws. The principles of region-specific brain function thermodynamics are reviewed. The clinical and supporting evidence including the paradoxical effects of various agents that alter brain homeostasis is demonstrated.

  18. The Effect of Souvenaid on Functional Brain Network Organisation in Patients with Mild Alzheimer's Disease: A Randomised Controlled Study

    NARCIS (Netherlands)

    de Waal, H.; Stam, C.J.; Lansbergen, M.M.; Wieggers, R.L.; Kamphuis, P.J.G.H.; Scheltens, P.; Maestu, F.; van Straaten, E.C.W.

    2014-01-01

    Background: Synaptic loss is a major hallmark of Alzheimer's disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn

  19. Functional brain imaging across development.

    Science.gov (United States)

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to

  20. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    International Nuclear Information System (INIS)

    Ismail, S S; Mohamad, M; Syazarina, S O; Nafisah, W Y

    2014-01-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain

  1. Hand grips strength effect on motor function in human brain using fMRI: a pilot study

    Science.gov (United States)

    Ismail, S. S.; Mohamad, M.; Syazarina, S. O.; Nafisah, W. Y.

    2014-11-01

    Several methods of motor tasks for fMRI scanning have been evolving from simple to more complex tasks. Motor tasks on upper extremity were applied in order to excite the increscent of motor activation on contralesional and ipsilateral hemispheres in brain. The main objective of this study is to study the different conditions for motor tasks on upper extremity that affected the brain activation. Ten healthy right handed with normal vision (3 male and 7 female, age range=20-30 years, mean=24.6 years, SD=2.21) participated in this study. Prior to the scanning, participants were trained on hand grip tasks using rubber ball and pressure gauge tool outside the scanner. During fMRI session, a block design with 30-s task blocks and alternating 30-s rest periods was employed while participants viewed a computer screen via a back projection-mirror system and instructed to follow the instruction by gripping their hand with normal and strong grips using a rubber ball. Statistical Parametric mapping (SPM8) software was used to determine the brain activation. Both tasks activated the primary motor (M1), supplementary motor area (SMA), dorsal and ventral of premotor cortex area (PMA) in left hemisphere while in right hemisphere the area of primary motor (M1) somatosensory was activated. However, the comparison between both tasks revealed that the strong hand grip showed the higher activation at M1, PMA and SMA on left hemisphere and also the area of SMA on right hemisphere. Both conditions of motor tasks could provide insights the functional organization on human brain.

  2. Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study.

    Science.gov (United States)

    Li, Peng; Jing, Ri-Xing; Zhao, Rong-Jiang; Ding, Zeng-Bo; Shi, Le; Sun, Hong-Qiang; Lin, Xiao; Fan, Teng-Teng; Dong, Wen-Tian; Fan, Yong; Lu, Lin

    2017-05-11

    Previous studies suggested that electroconvulsive therapy can influence regional metabolism and dopamine signaling, thereby alleviating symptoms of schizophrenia. It remains unclear what patients may benefit more from the treatment. The present study sought to identify biomarkers that predict the electroconvulsive therapy response in individual patients. Thirty-four schizophrenia patients and 34 controls were included in this study. Patients were scanned prior to treatment and after 6 weeks of treatment with antipsychotics only (n = 16) or a combination of antipsychotics and electroconvulsive therapy (n = 13). Subject-specific intrinsic connectivity networks were computed for each subject using a group information-guided independent component analysis technique. Classifiers were built to distinguish patients from controls and quantify brain states based on intrinsic connectivity networks. A general linear model was built on the classification scores of first scan (referred to as baseline classification scores) to predict treatment response. Classifiers built on the default mode network, the temporal lobe network, the language network, the corticostriatal network, the frontal-parietal network, and the cerebellum achieved a cross-validated classification accuracy of 83.82%, with specificity of 91.18% and sensitivity of 76.47%. After the electroconvulsive therapy, psychosis symptoms of the patients were relieved and classification scores of the patients were decreased. Moreover, the baseline classification scores were predictive for the treatment outcome. Schizophrenia patients exhibited functional deviations in multiple intrinsic connectivity networks which were able to distinguish patients from healthy controls at an individual level. Patients with lower classification scores prior to treatment had better treatment outcome, indicating that the baseline classification scores before treatment is a good predictor for treatment outcome. CONNECTIVITY NETWORKS

  3. Functional MRI studies of the neural mechanisms of human brain attentional networks

    International Nuclear Information System (INIS)

    Hao Jing; Li Kuncheng; Chen Qi; Wang Yan; Peng Xiaozhe; Zhou Xiaolin

    2005-01-01

    Objective: To identify the neural mechanisms of the anterior attention network (AAN) and posterior attention network (PAN) , investigate the possible interaction between them with event-related functional MRI(ER-fMRI). Methods: Eight right-handed healthy volunteers participated in the experiment designed with inhibition of return in visual orienting and Stroop color-word interference effect. The fMRI data were collected on Siemens 1.5 T Sonata MRI systems and analyzed by AFNI to generate the activation map. Results: The data sets from 6 of 8 subjects were used in the study. The functional localizations of the Stroop and IOR, which manifest the function of the AAN and PAN respectively, were consistent with previous imaging researches. On cued locations, left inferior parietal lobule (IPL), area MT/V5, right dorsolateral prefrontal cortex (DLPFC) and left anterior cingulated cortex (ACC) were significantly activated. On uncued locations, right superior parietal lobule (SPL) and bilateral area MT/V5 were significantly activated. Conclusion: The AAN exerts control over the PAN, while its function can be in turn modulated by the PAN. There are interaction between the AAN and PAN. In addition, it is also proved that ER-fMRI is a feasible method to revise preexisting cognitive model and theory. (authors)

  4. The correlative study between acupoint stimulations and corresponding brain cortices on functional MRI

    International Nuclear Information System (INIS)

    Zhou Cheng; Chen Min; Cai Kui; Wang Wenchao; Yang Zhenghan; Zhao Weifeng; Li Guozhen; Wang Jiazhou; Tian Lifang; Zhou Tiangang; Lai Song

    2005-01-01

    Objective: To characterize the cortical activation of acupuncture with BOLD-based fMRI technique. Methods: The study was performed in 31 healthy volunteers (27 men, 4 women; age range 21-48 years) with acupuncture of points along the stomach meridian of Foot-Yangming and the gallbladder meridian of Foot-Shaoyang. The acupoints of the stomach meridian of Foot-Yangming included Futu (S 32) in 7 volunteers and Zusanli (S 36) in 9 volunteers; and the acupoints of the gallbladder meridian of Foot-Shaoyang included Yanglingquan (G34) in 7 volunteers and Guangming (G37) in 8 volunteers. MRI data were acquired on a GE 1.5 T Signa Horizon/Echo-speed scanner. 12 oblique axial slices paralleled to the AC-PC line were scanned. T 2 * images were acquired using EPI technique. Data sets of sequential images were analyzed with software package AFNI. Results: Acupuncture at points S32 and S36 resulted in activation of the hypothalamus, nucleus accumbens, hippocampal complex, and frontal gyri, and the average enhancement in the above activated areas was (4.28 ± 1.50)%. Acupuncture at vision-related points G34 and G37 resulted in activation of the occipital lobe as well as other cortices such as pons, basal ganglion, temporal lobe, and frontal lobe, and the BOLD signal changes of the visual cortex were (3.31 ± l.2)%. Conclusion: These preliminary fMRI results demonstrate strong regional BOLD signal changes in the brain upon acupuncture, hence demonstrates physiological evidence of acupuncture effect. (authors)

  5. Multivariate Heteroscedasticity Models for Functional Brain Connectivity

    Directory of Open Access Journals (Sweden)

    Christof Seiler

    2017-12-01

    Full Text Available Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI. We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  6. Common brain areas engaged in false belief reasoning and visual perspective taking: A meta-analysis of functional brain imaging studies.

    Directory of Open Access Journals (Sweden)

    Matthias eSchurz

    2013-11-01

    Full Text Available We performed a quantitative meta-analysis of functional neuroimaging studies to identify brain areas which are commonly engaged in social and visuo-spatial perspective taking. Specifically, we compared brain activation found for visual-perspective taking to activation for false belief reasoning, a task which requires awareness of perspective to understand someone’s mistaken belief about the world which contrasts with reality. In support of a previous account by Perner & Leekam (2008, a meta-analytic conjunction analysis found activation for false belief reasoning and visual perspective taking in the left but not the right dorsal temporo-parietal junction. This fits with the idea that the left dorsal TPJ is responsible for representing different perspectives in a domain-general fashion. Moreover, the conjunction found activation in the precuneus and the left middle occipital gyrus close to the putative Extrastriate Body Area. The precuneus is linked to mental-imagery processes, which may aid in the construction of a different perspective. The Extrastriate Body Area may be engaged due to imagined body-transformations when another’s viewpoint is adopted.

  7. Visceral Afferent Pathways and Functional Brain Imaging

    Directory of Open Access Journals (Sweden)

    Stuart W.G. Derbyshire

    2003-01-01

    Full Text Available The application of functional imaging to study painful sensations has generated considerable interest regarding insight into brain dysfunction that may be responsible for functional pain such as that suffered in patients with irritable bowel syndrome (IBS. This review provides a brief introduction to the development of brain science as it relates to pain processing and a snapshot of recent functional imaging results with somatic and visceral pain. Particular emphasis is placed on current hypotheses regarding dysfunction of the brain-gut axis in IBS patients. There are clear and interpretable differences in brain activation following somatic as compared with visceral noxious sensation. Noxious visceral distension, particularly of the lower gastrointestinal tract, activates regions associated with unpleasant affect and autonomic responses. Noxious somatic sensation, in contrast, activates regions associated with cognition and skeletomotor responses. Differences between IBS patients and control subjects, however, were far less clear and interpretable. While this is in part due to the newness of this field, it also reflects weaknesses inherent within the current understanding of IBS. Future use of functional imaging to examine IBS and other functional disorders will be more likely to succeed by describing clear theoretical and clinical endpoints.

  8. DHA Effects in Brain Development and Function

    Science.gov (United States)

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B. S.; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  9. DHA Effects in Brain Development and Function

    Directory of Open Access Journals (Sweden)

    Lotte Lauritzen

    2016-01-01

    Full Text Available Docosahexaenoic acid (DHA is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  10. Abnormal functional connectivity of brain network hubs associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder: A resting-state functional MRI study.

    Science.gov (United States)

    Tian, Lin; Meng, Chun; Jiang, Ying; Tang, Qunfeng; Wang, Shuai; Xie, Xiyao; Fu, Xiangshuai; Jin, Chunhui; Zhang, Fuquan; Wang, Jidong

    2016-04-03

    Abnormal brain networks have been observed in patients with obsessive-compulsive disorder (OCD). However, detailed network hub and connectivity changes remained unclear in treatment-naive patients with OCD. Here, we sought to determine whether patients show hub-related connectivity changes in their whole-brain functional networks. We used resting-state functional magnetic resonance imaging data and voxel-based graph-theoretic analysis to investigate functional connectivity strength and hubs of whole-brain networks in 29 treatment-naive patients with OCD and 29 age- and gender-matched healthy controls. Correlation analysis was applied for potential associations with OCD symptom severity. OCD selectively targeted brain regions of higher functional connectivity strength than the average including brain network hubs, mainly distributed in the cortico-striato-thalamo-cortical (CSTC) circuits and additionally parietal, occipital, temporal and cerebellar regions. Moreover, affected functional connectivity strength in the cerebellum, the medial orbitofrontal cortex and superior occipital cortex was significantly associated with global OCD symptom severity. Our results provide the evidence about OCD-related brain network hub changes, not only in the CSTC circuits but more distributed in whole brain networks. Data suggest that whole brain network hub analysis is useful for understanding the pathophysiology of OCD. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Feasibility and results of a case study of yoga to improve physical functioning in people with chronic traumatic brain injury.

    Science.gov (United States)

    Schmid, Arlene A; Miller, Kristine K; Van Puymbroeck, Marieke; Schalk, Nancy

    2016-01-01

    The purpose of this mixed-methods case study was to investigate whether an 8-week 1:1 yoga program was feasible and beneficial to people with traumatic brain injury (TBI). This was a mixed-methods case study of one-to-one yoga for people with TBI included three people. We completed assessments before and after the 8-week yoga intervention and included measures of balance, balance confidence, pain, range of motion, strength and mobility. Qualitative interviews were included at the post-assessment. We include a percent change calculation and salient quotes that represent the perceived impact of the yoga intervention. All participants completed the yoga intervention and all demonstrated improvements in physical outcome measures. For the group, balance increased by 36%, balance confidence by 39%, lower extremity strength by 100% and endurance by 105%. Qualitative data support the use of yoga to improve multiple aspects of physical functioning, one participant stated: "I mean it's rocked my world. It's changed my life. I mean all the different aspects. I mean physically, emotionally, mentally, it's given me you know my life back…". Yoga, delivered in a one-to-one setting, appears to be feasible and beneficial to people with chronic TBI. Chronic traumatic brain injury (TBI) leads to many aspects of physical functioning impairment. Yoga delivered in a one-to-one setting may be feasible and beneficial for people with chronic TBI.

  12. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.

    Science.gov (United States)

    Wijayasiri, Pramudi; Hartley, Douglas E H; Wiggins, Ian M

    2017-08-01

    The purpose of this study was to establish whether functional near-infrared spectroscopy (fNIRS), an emerging brain-imaging technique based on optical principles, is suitable for studying the brain activity that underlies effortful listening. In an event-related fNIRS experiment, normally-hearing adults listened to sentences that were either clear or degraded (noise vocoded). These sentences were presented simultaneously with a non-speech distractor, and on each trial participants were instructed to attend either to the speech or to the distractor. The primary region of interest for the fNIRS measurements was the left inferior frontal gyrus (LIFG), a cortical region involved in higher-order language processing. The fNIRS results confirmed findings previously reported in the functional magnetic resonance imaging (fMRI) literature. Firstly, the LIFG exhibited an elevated response to degraded versus clear speech, but only when attention was directed towards the speech. This attention-dependent increase in frontal brain activation may be a neural marker for effortful listening. Secondly, during attentive listening to degraded speech, the haemodynamic response peaked significantly later in the LIFG than in superior temporal cortex, possibly reflecting the engagement of working memory to help reconstruct the meaning of degraded sentences. The homologous region in the right hemisphere may play an equivalent role to the LIFG in some left-handed individuals. In conclusion, fNIRS holds promise as a flexible tool to examine the neural signature of effortful listening. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Large Scale Functional Brain Networks Underlying Temporal Integration of Audio-Visual Speech Perception: An EEG Study.

    Science.gov (United States)

    Kumar, G Vinodh; Halder, Tamesh; Jaiswal, Amit K; Mukherjee, Abhishek; Roy, Dipanjan; Banerjee, Arpan

    2016-01-01

    Observable lip movements of the speaker influence perception of auditory speech. A classical example of this influence is reported by listeners who perceive an illusory (cross-modal) speech sound (McGurk-effect) when presented with incongruent audio-visual (AV) speech stimuli. Recent neuroimaging studies of AV speech perception accentuate the role of frontal, parietal, and the integrative brain sites in the vicinity of the superior temporal sulcus (STS) for multisensory speech perception. However, if and how does the network across the whole brain participates during multisensory perception processing remains an open question. We posit that a large-scale functional connectivity among the neural population situated in distributed brain sites may provide valuable insights involved in processing and fusing of AV speech. Varying the psychophysical parameters in tandem with electroencephalogram (EEG) recordings, we exploited the trial-by-trial perceptual variability of incongruent audio-visual (AV) speech stimuli to identify the characteristics of the large-scale cortical network that facilitates multisensory perception during synchronous and asynchronous AV speech. We evaluated the spectral landscape of EEG signals during multisensory speech perception at varying AV lags. Functional connectivity dynamics for all sensor pairs was computed using the time-frequency global coherence, the vector sum of pairwise coherence changes over time. During synchronous AV speech, we observed enhanced global gamma-band coherence and decreased alpha and beta-band coherence underlying cross-modal (illusory) perception compared to unisensory perception around a temporal window of 300-600 ms following onset of stimuli. During asynchronous speech stimuli, a global broadband coherence was observed during cross-modal perception at earlier times along with pre-stimulus decreases of lower frequency power, e.g., alpha rhythms for positive AV lags and theta rhythms for negative AV lags. Thus, our

  14. Functional brain imaging; Funktionelle Hirnbildgebung

    Energy Technology Data Exchange (ETDEWEB)

    Gizewski, E.R. [Medizinische Universitaet Innsbruck, Universitaetsklinik fuer Neuroradiologie, Innsbruck (Austria)

    2016-02-15

    Functional magnetic resonance imaging (fMRI) is a non-invasive method that has become one of the major tools for understanding human brain function and in recent years has also been developed for clinical applications. Changes in hemodynamic signals correspond to changes in neuronal activity with good spatial and temporal resolution in fMRI. Using high-field MR systems and increasingly dedicated statistics and postprocessing, activated brain areas can be detected and superimposed on anatomical images. Currently, fMRI data are often combined in multimodal imaging, e. g. with diffusion tensor imaging (DTI) sequences. This method is helping to further understand the physiology of cognitive brain processes and is also being used in a number of clinical applications. In addition to the blood oxygenation level-dependent (BOLD) signals, this article deals with the construction of fMRI investigations, selection of paradigms and evaluation in the clinical routine. Clinically, this method is mainly used in the planning of brain surgery, analyzing the location of brain tumors in relation to eloquent brain areas and the lateralization of language processing. As the BOLD signal is dependent on the strength of the magnetic field as well as other limitations, an overview of recent developments is given. Increases of magnetic field strength (7 T), available head coils and advances in MRI analytical methods have led to constant improvement in fMRI signals and experimental design. Especially the depiction of eloquent brain regions can be done easily and quickly and has become an essential part of presurgical planning. (orig.) [German] Mittlerweile ist die funktionelle MRT (fMRT) eine Methode, die nicht mehr nur in der neurowissenschaftlichen Routine verwendet wird. Die fMRT ermoeglicht die nichtinvasive Darstellung der Hirnaktivitaet in guter raeumlicher und zeitlicher Aufloesung unter Ausnutzung der Durchblutungsaenderung aufgrund der erhoehten Nervenzellaktivitaet. Unter

  15. Neural mechanisms of subclinical depressive symptoms in women: a pilot functional brain imaging study

    Directory of Open Access Journals (Sweden)

    Felder Jennifer N

    2012-09-01

    Full Text Available Abstract Background Studies of individuals who do not meet criteria for major depressive disorder (MDD but with subclinical levels of depressive symptoms may aid in the identification of neurofunctional abnormalities that possibly precede and predict the development of MDD. The purpose of this study was to evaluate relations between subclinical levels of depressive symptoms and neural activation patterns during tasks previously shown to differentiate individuals with and without MDD. Methods Functional magnetic resonance imaging (fMRI was used to assess neural activations during active emotion regulation, a resting state scan, and reward processing. Participants were twelve females with a range of depressive symptoms who did not meet criteria for MDD. Results Increased depressive symptom severity predicted (1 decreased left midfrontal gyrus activation during reappraisal of sad stimuli; (2 increased right midfrontal gyrus activation during distraction from sad stimuli; (3 increased functional connectivity between a precuneus seed region and left orbitofrontal cortex during a resting state scan; and (4 increased paracingulate activation during non-win outcomes during a reward-processing task. Conclusions These pilot data shed light on relations between subclinical levels of depressive symptoms in the absence of a formal MDD diagnosis and neural activation patterns. Future studies will be needed to test the utility of these activation patterns for predicting MDD onset in at-risk samples.

  16. Histone deacetylases (HDACs and brain function

    Directory of Open Access Journals (Sweden)

    Claude-Henry Volmar

    2015-01-01

    Full Text Available Modulation of gene expression is a constant and necessary event for mammalian brain function. An important way of regulating gene expression is through the remodeling of chromatin, the complex of DNA, and histone proteins around which DNA wraps. The “histone code hypothesis” places histone post-translational modifications as a significant part of chromatin remodeling to regulate transcriptional activity. Acetylation of histones by histone acetyl transferases and deacetylation by histone deacetylases (HDACs at lysine residues are the most studied histone post-translational modifications in cognition and neuropsychiatric diseases. Here, we review the literature regarding the role of HDACs in brain function. Among the roles of HDACs in the brain, studies show that they participate in glial lineage development, learning and memory, neuropsychiatric diseases, and even rare neurologic diseases. Most HDACs can be targeted with small molecules. However, additional brain-penetrant specific inhibitors with high central nervous system exposure are needed to determine the cause-and-effect relationship between individual HDACs and brain-associated diseases.

  17. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints...... individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships...... in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/....

  18. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    OpenAIRE

    Kleinridders, Andr?; Ferris, Heather A.; Cai, Weikang; Kahn, C. Ronald

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in t...

  19. A Clinical Framework for Functional Recovery in a Person With Chronic Traumatic Brain Injury: A Case Study.

    Science.gov (United States)

    McCain, Karen; Shearin, Staci

    2017-07-01

    This case study describes a task-specific training program for gait walking and functional recovery in a young man with severe chronic traumatic brain injury. The individual was a 26-year-old man 4 years post-traumatic brain injury with severe motor impairments who had not walked outside of therapy since his injury. He had received extensive gait training prior to initiation of services. His goal was to recover the ability to walk. The primary focus of the interventions was the restoration of walking. A variety of interventions were used, including locomotor treadmill training, electrical stimulation, orthoses, and specialized assistive devices. A total of 79 treatments were delivered over a period of 62 weeks. At the conclusion of therapy, the client was able to walk independently with a gait trainer for approximately 1km (over 3000 ft) and walked in the community with the assistance of his mother using a rocker bottom crutch for distances of 100m (330 ft). Specific interventions were intentionally selected in the development of the treatment plan. The program emphasized structured practice of the salient task, that is, walking, with adequate intensity and frequency. Given the chronicity of this individual's injury, the magnitude of his functional improvements was unexpected.Video Abstract available for additional insights from the Authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A175).

  20. Long-term effects of cranial irradiation on endocrine function in children with brain tumors. A prospective study

    International Nuclear Information System (INIS)

    Duffner, P.K.; Cohen, M.E.; Voorhess, M.L.; MacGillivray, M.H.; Brecher, M.L.; Panahon, A.; Gilani, B.B.

    1985-01-01

    This study prospectively evaluated the endocrine function of 11 children treated with cranial irradiation (CRT) for brain tumors. All tumors were remote from the hypothalamic-pituitary axis. Children were studied before treatment and at 3, 6, and 12 months after the completion of CRT. T4, thyroid-stimulating hormone, prolactin, plasma cortisol, and urinary follicle-stimulating hormone and luteinizing hormone values were normal before and after treatment in all patients. Growth hormone (GH) deficiency was identified in 0 of 7 patients before treatment, in 2 of 7 patients 3 months post-CRT, in 9 of 11 patients 6 months post-CRT, and in 7 of 8 patients 12 months post-CRT. Growth deceleration was identified in five of seven prepubertal patients. GH deficiency is an extremely common sequelae of CRT, beginning as early as 3 months after the completion of CRT. The deficit is progressive over time

  1. Physiological functions of brain metallothionein

    International Nuclear Information System (INIS)

    Yasutake, Akira

    2000-01-01

    It has been known that the brain has a certain kind of metallothinein (MT)-3 that has not been found in other tissues.This evidence is only based on the data of mRNA level. In this study, isolation method and quantification method which allows specific determination of MT-3 were developed. The cerebrum and cerebellum were removed from rats exposed to mercury vapor for 24 hours to induce MT-3 and Hg concentration, which reflects the concentration of MT-3 in their supernatants was determined. Then, each supernatant was applied onto FPLC column chromatography and Hg concentration of each fraction was determined. Since the molecular weight of MT-3 was slightly larger than MT-1, MT-2, its isolation was conducted using gel filtration chromatography. When the two columns were linked, MT-3 obtained from the brain of MT-null mouse and MT-1/2 from the kidney of wild mouse could be isolated without any overlapping and it was indicated that the larger MT-3 was eluted in a fraction earlier than the others. Whereas for Hg-MT sample from wild mouse brain, which includes all MT isomers, there appeared two peaks corresponding to MT-3 and MT-1/2, respectively, showing that isolation and quantification of MT-3 using a linked column were possible. It was demonstrated that MT-3 occupies 70-80% of the total amount of MT in wild mouse brain and the total amount in the MT-null brain was about 80% of that of the wild. Therefore, the absolute amount of MT- 3 was thought to be not different between the wild and MT-null mouse. Since detection threshold of Hg for this apparatus was 0.2 ng (1 pmole), that for MT was estimated to be 0.1 pmole because 10 Hg atoms are bound to one MT. Therefore, it is thought the sensitivity of this method is higher than that of UV detection method. (M.N.)

  2. Physiological functions of brain metallothionein

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, Akira [National Inst. for Minamata Disease, Kumamoto (Japan)

    2000-02-01

    It has been known that the brain has a certain kind of metallothinein (MT)-3 that has not been found in other tissues.This evidence is only based on the data of mRNA level. In this study, isolation method and quantification method which allows specific determination of MT-3 were developed. The cerebrum and cerebellum were removed from rats exposed to mercury vapor for 24 hours to induce MT-3 and Hg concentration, which reflects the concentration of MT-3 in their supernatants was determined. Then, each supernatant was applied onto FPLC column chromatography and Hg concentration of each fraction was determined. Since the molecular weight of MT-3 was slightly larger than MT-1, MT-2, its isolation was conducted using gel filtration chromatography. When the two columns were linked, MT-3 obtained from the brain of MT-null mouse and MT-1/2 from the kidney of wild mouse could be isolated without any overlapping and it was indicated that the larger MT-3 was eluted in a fraction earlier than the others. Whereas for Hg-MT sample from wild mouse brain, which includes all MT isomers, there appeared two peaks corresponding to MT-3 and MT-1/2, respectively, showing that isolation and quantification of MT-3 using a linked column were possible. It was demonstrated that MT-3 occupies 70-80% of the total amount of MT in wild mouse brain and the total amount in the MT-null brain was about 80% of that of the wild. Therefore, the absolute amount of MT- 3 was thought to be not different between the wild and MT-null mouse. Since detection threshold of Hg for this apparatus was 0.2 ng (1 pmole), that for MT was estimated to be 0.1 pmole because 10 Hg atoms are bound to one MT. Therefore, it is thought the sensitivity of this method is higher than that of UV detection method. (M.N.)

  3. Gender-related asymmetric brain vasomotor response to color stimulation: a functional transcranial Doppler spectroscopy study.

    Science.gov (United States)

    Njemanze, Philip C

    2010-11-30

    The present study was designed to examine the effects of color stimulation on cerebral blood mean flow velocity (MFV) in men and women. The study included 16 (8 men and 8 women) right-handed healthy subjects. The MFV was recorded simultaneously in both right and left middle cerebral arteries in Dark and white Light conditions, and during color (Blue, Yellow and Red) stimulations, and was analyzed using functional transcranial Doppler spectroscopy (fTCDS) technique. Color processing occurred within cortico-subcortical circuits. In men, wavelength-differencing of Yellow/Blue pairs occurred within the right hemisphere by processes of cortical long-term depression (CLTD) and subcortical long-term potentiation (SLTP). Conversely, in women, frequency-differencing of Blue/Yellow pairs occurred within the left hemisphere by processes of cortical long-term potentiation (CLTP) and subcortical long-term depression (SLTD). In both genders, there was luminance effect in the left hemisphere, while in men it was along an axis opposite (orthogonal) to that of chromatic effect, in women, it was parallel. Gender-related differences in color processing demonstrated a right hemisphere cognitive style for wavelength-differencing in men, and a left hemisphere cognitive style for frequency-differencing in women. There are potential applications of fTCDS technique, for stroke rehabilitation and monitoring of drug effects.

  4. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, Luca; Veer, Ilya M.; Baerends, Evelinda; van Tol, Marie-Jose; Renken, Remco J.; van der Wee, Nic J. A.; Veltman, Dirk. J.; Aleman, Andre; Zitman, Frans G.; Penninx, Brenda W. J. H.; van Buchem, Mark A.; Reiber, Johan H. C.; Rombouts, Serge A. R. B.; Milles, Julien

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a

  5. Hierarchical Functional Modularity in the Resting-State Human Brain

    NARCIS (Netherlands)

    Ferrarini, L.; Veer, I.M.; Baerends, E.; van Tol, M.J.; Renken, R.J.; van der Wee, N.J.A.; Veltman, D.J.; Aleman, A.; Zitman, F.G.; Penninx, B.W.J.H.; van Buchem, M.A.; Reiber, J.H.C.; Rombouts, S.A.R.B.; Milles, J.

    2009-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a

  6. Synaesthetic colour in the brain: beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls.

    Science.gov (United States)

    van Leeuwen, Tessa M; Petersson, Karl Magnus; Hagoort, Peter

    2010-08-10

    In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of

  7. Synaesthetic colour in the brain: beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls.

    Directory of Open Access Journals (Sweden)

    Tessa M van Leeuwen

    Full Text Available BACKGROUND: In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour. Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. METHODOLOGY/PRINCIPAL FINDINGS: First, in a free viewing functional magnetic resonance imaging (fMRI experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. CONCLUSIONS/SIGNIFICANCE: Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal

  8. Acupuncture of Weizhong (BL 40) and Zusanli (ST 36) on the study of brain function by PET/CT imaging

    International Nuclear Information System (INIS)

    Shao Guangrui; Chen Ying; Yan Bin; Liu Cheng; Wang Guangcai; Tan Qiwen

    2006-01-01

    Objective: To explore the correlation between acupuncture of the points and certain functional areas of brain by PET/CT imaging. Methods: Twelve healthy volunteers were acupunctured separately in the point Weizhong (BL 40, right leg) and Zusanli(ST 36, right leg), and 5 consecutive PET/CT images were taken, statistical parameter map (SPM) paired t-test was analyzed between the different activated brain PET/CT imagings. Results: Changes of PET/CT imaging were found in acupuncture of the point Weizhong (BL 40) and Zusanli(ST 36) in 12 healthy volunteers. High metabolic areas were demonstrated in multiple brain regions, the data of two groups had significant difference between 2 points (t>4.03, P< 0.01). Conclusion: Acupuncturing the different point resulted activation of the glucose metabolism in different brain areas. (authors)

  9. Age-related differences in functional nodes of the brain cortex - a high model order group ICA study

    Directory of Open Access Journals (Sweden)

    Harri Littow

    2010-08-01

    Full Text Available Functional MRI measured with blood oxygen dependent (BOLD contrast in the absence of intermittent tasks reflects spontaneous activity of so called resting state networks (RSN of the brain. Group level independent component analysis (ICA of BOLD data can separate the human brain cortex into 42 independent RSNs. In this study we evaluated age related effects from primary motor and sensory, and, higher level control RSNs. 168 healthy subjects were scanned and divided into three groups: 55 adolescents (ADO, 13.2 ± 2.4 yrs, 59 young adults (YA, 22.2 ± 0.6yrs , and 54 older adults (OA, 42.7 ± 0.5 yrs, all with normal IQ. High model order group probabilistic ICA components (70 were calculated and dual regression analysis was used to compare 21 RSN’s spatial differences between groups. The power spectra were derived from individual ICA mixing matrix time series of the group analyses for frequency domain analysis. We show that primary sensory and motor networks tend to alter more in younger age groups, whereas associative and higher level cognitive networks consolidate and re-arrange until older adulthood. The change has a common trend: both spatial extent and the low frequency power of the RSN’s reduce with increasing age. We interpret these result as a sign of normal pruning via focusing of activity to less distributed local hubs.

  10. Brain functional integration: an epidemiologic study on stress-producing dissociative phenomena

    Directory of Open Access Journals (Sweden)

    Sperandeo R

    2017-12-01

    , significantly correlated to total DES score, were used as covariates. The model consisted of seven explanatory variables (four factors and three covariates explaining 82% of variance. The four significant factors were the presence of borderline and narcissistic personality disorder, substance abuse disorders and psychotic disorders. Significant covariates were psychopathologic traits of anger, psychoticism and obsessiveness. This study, confirming Janet’s theory, explains that, mental disorders and psychopathologic experiences of patients can configure the chronic stress condition that produces functional damage to the adaptive executive system. The symptoms of dissociative depersonalization/derealization and dissociative amnesia can be explained, in large part, through their current and previous psychopathologic experiences. Keywords: mental disorders, personality disorders, amnesia, depersonalization/derealization 

  11. Brain functional connectivity and cognition in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Xiong, K.L.; Zhang, Y.L.; Chen, H.; Zhang, J.N.; Zhang, Y.; Qiu, M.G.

    2016-01-01

    The aim of this study was to analyze brain functional connectivity and its relationship to cognition in patients with mild traumatic brain injury (mTBI). Twenty-five patients with mTBI and 25 healthy control subjects were studied using resting-state functional MRI (rs-fMRI). Amplitudes of low-frequency fluctuations (ALFFs) and functional connectivity (FC) were calculated and correlated with cognition. Compared with the normal control group, the mTBI patients showed a significant decrease in working memory index (WMI) and processing speed index (PSI), as well as significantly decreased ALFFs in the cingulate gyrus, the middle frontal gyrus and superior frontal gyrus. In contrast, the mTBI patients' ALFFs in the left middle occipital gyrus, the left precuneus, and lingual gyrus increased. Additionally, FC significantly decreased in the thalamus, caudate nucleus, and right hippocampus in the mTBI patients. Statistical analysis further showed a significant positive correlation between the ALFF in the cingulate gyrus and the WMI (R 2 = 0.423, P < 0.05) and a significant positive correlation between the FC in the left thalamus and left middle frontal gyrus and the WMI (R 2 = 0.381, P < 0.05). rs-fMRI can reveal the functional state of the brain in patients with mTBI. This finding differed from observations of the normal control group and was significantly associated with clinical cognitive dysfunction. Therefore, rs-fMRI offers an objective imaging modality for treatment planning and prognosis assessment in patients with mTBI. (orig.)

  12. Brain functional integration: an epidemiologic study on stress-producing dissociative phenomena

    Science.gov (United States)

    Messina, Giovanni; Carotenuto, Marco; Maldonato, Nelson Mauro; Moretto, Enrico; Leone, Elena; De Luca, Vincenzo; Monda, Marcellino; Messina, Antonietta

    2018-01-01

    Dissociative phenomena are common among psychiatric patients; the presence of these symptoms can worsen the prognosis, increasing the severity of their clinical conditions and exposing them to increased risk of suicidal behavior. Personality disorders as long duration stressful experiences may support the development of dissociative phenomena. In 933 psychiatric outpatients consecutively recruited, presence of dissociative phenomena was identified with the Dissociative Experience Scale (DES). Dissociative phenomena were significantly more severe in the group of people with mental disorders and/or personality disorders. All psychopathologic traits detected with the symptom checklist-90-revised had a significant correlation with the total score on the DES. Using total DES score as the dependent variable, a linear regression model was constructed. Mental and personality disorders which were associated with greater severity of dissociative phenomena on analysis of variance were included as predictors; scores from the nine scales of symptom checklist-90-revised, significantly correlated to total DES score, were used as covariates. The model consisted of seven explanatory variables (four factors and three covariates) explaining 82% of variance. The four significant factors were the presence of borderline and narcissistic personality disorder, substance abuse disorders and psychotic disorders. Significant covariates were psychopathologic traits of anger, psychoticism and obsessiveness. This study, confirming Janet’s theory, explains that, mental disorders and psychopathologic experiences of patients can configure the chronic stress condition that produces functional damage to the adaptive executive system. The symptoms of dissociative depersonalization/derealization and dissociative amnesia can be explained, in large part, through their current and previous psychopathologic experiences. PMID:29296086

  13. Nicotine increases brain functional network efficiency.

    Science.gov (United States)

    Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R

    2012-10-15

    Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.

  14. Neuropsychological functioning and brain structure in schizophrenia.

    Science.gov (United States)

    Crespo-Facorro, Benedicto; Barbadillo, Laura; Pelayo-Terán, José Maria; Rodríguez-Sánchez, José Manuel

    2007-08-01

    Cognitive deficits are core features of schizophrenia that are already evident at early phases of the illness. The study of specific relationships between cognition and brain structure might provide valuable clues about neural basis of schizophrenia and its phenomenology. The aim of this article was to review the most consistent findings of the studies exploring the relationships between cognitive deficits and brain anomalies in schizophrenia. Besides several important methodological shortcomings to bear in mind before drawing any consistent conclusion from the revised literature, we have attempted to systematically summarize these findings. Thus, this review has revealed that whole brain volume tends to positively correlate with a range of cognitive domains in healthy volunteers and female patients. An association between prefrontal morphological characteristics and general inability to control behaviour seems to be present in schizophrenia patients. Parahippocampal volume is related to semantic cognitive functions. Thalamic anomalies have been associated with executive deficits specifically in patients. Available evidence on the relationship between cognitive functions and cerebellar structure is still contradictory. Nonetheless, a larger cerebellum appears to be associated with higher IQ in controls and in female patients. Enlarged ventricles, including lateral and third ventricles, are associated with deficits in attention, executive and premorbid cognitive functioning in patients. Several of these reported findings seem to be counterintuitive according to neural basis of cognitive functioning drawn from animal, lesion, and functional imaging investigations. Therefore, there is still a great need for more methodologically stringent investigations that would help in the advance of our understanding of the cognition/brain structure relationships in schizophrenia.

  15. Application of 5-hydroxytryptamine receptor imaging for study of neuropsychiatric disorders and brain functions

    International Nuclear Information System (INIS)

    Qiu Chun; Guan Yihui

    2011-01-01

    In the central nervous system, the widely distributed 5-hydroxytryptamine (5-HT)receptors are involved in regulating a large number of psychological and physiological functions, including mood, sleep, endocrine and autonomic nervous system. Abnormal 5-HT transmission has been implicated in a variety of neuropsychiatric disorders, such as pain, depression and epilepsy. With the development of radioligands, non-invasive nuclear imaging technique with exquisite sensitivity and specificity has been applied for delineation of neurotransmitter function in vivo. It does great benefit for researches of these diseases and development of drugs. This review provided an overview of 5-HT receptors radioligands and recent findings. (authors)

  16. Incidental use of ecstasy: no evidence for harmful effects on cognitive brain function in a prospective fMRI study

    NARCIS (Netherlands)

    Jager, G.; Win, M.M. de; Vervaeke, H.K.; Schilt, T.; Kahn, R.S.; Brink, W. van den; Ree, J.M. van; Ramsey, M.F.

    2007-01-01

    Rationale Heavy ecstasy use in humans has been associated with cognitive impairments and changes in cognitive brain function supposedly due to damage to the serotonin system. There is concern that even a single dose of 3,4-methylenedioxymethamphetamine may be neurotoxic, but very little is known

  17. Asymmetrical Brain Activity Induced by Voluntary Spatial Attention Depends on the Visual Hemifield: A Functional Near-Infrared Spectroscopy Study

    Science.gov (United States)

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-01-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a…

  18. Neuroserpin and brain-derived neurotrophic factor in neuroendocrine and neuronal plasticity. Functional studies in (transgenic) Xenopus intermediate pituitary cells

    NARCIS (Netherlands)

    Rotteveel-de Groot, D.M. de

    2007-01-01

    The molecular mechanisms underlying neuronal plasticity, i.e. the capacity of the brain to continuously adapt its structural organization to new situations, remain largely unknown. In this thesis, we explored functional aspects of two proteins that presumably play a role in neuronal plasticity,

  19. Non-invasive brain-to-brain interface (BBI: establishing functional links between two brains.

    Directory of Open Access Journals (Sweden)

    Seung-Schik Yoo

    Full Text Available Transcranial focused ultrasound (FUS is capable of modulating the neural activity of specific brain regions, with a potential role as a non-invasive computer-to-brain interface (CBI. In conjunction with the use of brain-to-computer interface (BCI techniques that translate brain function to generate computer commands, we investigated the feasibility of using the FUS-based CBI to non-invasively establish a functional link between the brains of different species (i.e. human and Sprague-Dawley rat, thus creating a brain-to-brain interface (BBI. The implementation was aimed to non-invasively translate the human volunteer's intention to stimulate a rat's brain motor area that is responsible for the tail movement. The volunteer initiated the intention by looking at a strobe light flicker on a computer display, and the degree of synchronization in the electroencephalographic steady-state-visual-evoked-potentials (SSVEP with respect to the strobe frequency was analyzed using a computer. Increased signal amplitude in the SSVEP, indicating the volunteer's intention, triggered the delivery of a burst-mode FUS (350 kHz ultrasound frequency, tone burst duration of 0.5 ms, pulse repetition frequency of 1 kHz, given for 300 msec duration to excite the motor area of an anesthetized rat transcranially. The successful excitation subsequently elicited the tail movement, which was detected by a motion sensor. The interface was achieved at 94.0±3.0% accuracy, with a time delay of 1.59±1.07 sec from the thought-initiation to the creation of the tail movement. Our results demonstrate the feasibility of a computer-mediated BBI that links central neural functions between two biological entities, which may confer unexplored opportunities in the study of neuroscience with potential implications for therapeutic applications.

  20. Heart rate variability and QT dispersion study in brain death patients and comatose patients with normal brainstem function

    International Nuclear Information System (INIS)

    Vakilian, A.R.; Iranmanesh, F.; Nadimi, A.E.; Kahnali, J.A.

    2011-01-01

    To compare heart rate variability (HRV) and QT dispersion in comatose patients with normal brainstem function and with brain death. Fourteen brain death patients with clinical signs of imminent brain death and 15 comatose patients were examined by neurologist in intensive care unit. HRV, RR interval and QT dispersion on ECG were assessed for 24 hours in both groups. Independent t-test and chi-square test were used for statistical analysis to determine significance which was set at p < 0.05. According to Holter findings, mean of standard deviation of RR-interval in the comatose and brain death groups was 48.33 and 35 respectively (p = 0.045). Mean of covariance coefficient of RR-interval was 0.065 in the comatose group and 0.043 in the brain deaths (p = 0.006). QT dispersion was not significant difference in two groups. HRV and RR-interval analysis appeared as an early finding for the diagnosis of brainstem death in comparison to comatose patients with normal brainstem function. QT dispersion had not significant in this regard. (author)

  1. [Brain function recovery after prolonged posttraumatic coma].

    Science.gov (United States)

    Klimash, A V; Zhanaidarov, Z S

    2016-01-01

    To explore the characteristics of brain function recovery in patients after prolonged posttraumatic coma and with long-unconscious states. Eighty-seven patients after prolonged posttraumatic coma were followed-up for two years. An analysis of a clinical/neurological picture after a prolonged episode of coma was based on the dynamics of vital functions, neurological status and patient's reactions to external stimuli. Based on the dynamics of the clinical/neurological picture that shows the recovery of functions of the certain brain areas, three stages of brain function recovery after a prolonged episode of coma were singled out: brain stem areas, diencephalic areas and telencephalic areas. These functional/anatomic areas of brain function recovery after prolonged coma were compared to the present classifications.

  2. Brain functional connectivity during the experience of thought blocks in schizophrenic patients with persistent auditory verbal hallucinations: an EEG study.

    Science.gov (United States)

    Angelopoulos, Elias; Koutsoukos, Elias; Maillis, Antonis; Papadimitriou, George N; Stefanis, Costas

    2014-03-01

    Thought blocks (TBs) are characterized by regular interruptions in the stream of thought. Outward signs are abrupt and repeated interruptions in the flow of conversation or actions while subjective experience is that of a total and uncontrollable emptying of the mind. In the very limited bibliography regarding TB, the phenomenon is thought to be conceptualized as a disturbance of consciousness that can be attributed to stoppages of continuous information processing due to an increase in the volume of information to be processed. In an attempt to investigate potential expression of the phenomenon on the functional properties of electroencephalographic (EEG) activity, an EEG study was contacted in schizophrenic patients with persisting auditory verbal hallucinations (AVHs) who additionally exhibited TBs. In this case, we hypothesized that the persistent and dense AVHs could serve the role of an increased information flow that the brain is unable to process, a condition that is perceived by the person as TB. Phase synchronization analyses performed on EEG segments during the experience of TBs showed that synchrony values exhibited a long-range common mode of coupling (grouped behavior) among the left temporal area and the remaining central and frontal brain areas. These common synchrony-fluctuation schemes were observed for 0.5 to 2s and were detected in a 4-s window following the estimated initiation of the phenomenon. The observation was frequency specific and detected in the broad alpha band region (6-12Hz). The introduction of synchrony entropy (SE) analysis applied on the cumulative synchrony distribution showed that TB states were characterized by an explicit preference of the system to be functioned at low values of synchrony, while the synchrony values are broadly distributed during the recovery state. Our results indicate that during TB states, the phase locking of several brain areas were converged uniformly in a narrow band of low synchrony values and in a

  3. Functionality predictors in acquired brain damage.

    Science.gov (United States)

    Huertas Hoyas, E; Pedrero Pérez, E J; Águila Maturana, A M; García López-Alberca, S; González Alted, C

    2015-01-01

    Most individuals who have survived an acquired brain injury present consequences affecting the sensorimotor, cognitive, affective or behavioural components. These deficits affect the proper performance of daily living activities. The aim of this study is to identify functional differences between individuals with unilateral acquired brain injury using functional independence, capacity, and performance of daily activities. Descriptive cross-sectional design with a sample of 58 people, with right-sided injury (n=14 TBI; n=15 stroke) or left-sided injury (n = 14 TBI, n = 15 stroke), right handed, and with a mean age of 47 years and time since onset of 4 ± 3.65 years. The functional assessment/functional independence measure (FIM/FAM) and the International Classification of Functioning (ICF) were used for the study. The data showed significant differences (P<.000), and a large size effect (dr=0.78) in the cross-sectional estimates, and point to fewer restrictions for patients with a lesion on their right side. The major differences were in the variables 'speaking' and 'receiving spoken messages' (ICF variables), and 'Expression', 'Writing' and 'intelligible speech' (FIM/FAM variables). In the linear regression analysis, the results showed that only 4 FIM/FAM variables, taken together, predict 44% of the ICF variance, which measures the ability of the individual, and up to 52% of the ICF, which measures the individual's performance. Gait alone predicts a 28% of the variance. It seems that individuals with acquired brain injury in the left hemisphere display important differences regarding functional and communication variables. The motor aspects are an important prognostic factor in functional rehabilitation. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  4. Adult functioning of mothers with traumatic brain injury at high risk of child abuse: a pilot study.

    Science.gov (United States)

    van Vliet-Ruissen, Cora; McKinlay, Audrey; Taylor, Annabel

    2014-01-01

    There is little information regarding the impact that traumatic brain injury (TBI) has on the functioning of mothers at risk of child abuse. This study evaluated adult functioning (e.g. child abuse, substance use, criminal convictions, and mental health problems) of mothers, at high risk for child abuse, who also had a history of TBI compared with those without TBI. It was hypothesised that mothers with a history of TBI would engage in higher rates of dysfunctional behaviour compared to those with no history of TBI. Participants were 206 women engaged in a child abuse prevention programme for mothers who are highly socially disadvantaged, and at high risk for child abuse. Using historical data collected as part of the referral, and self report intake process, this study compared child abuse, mental health problems (depression, anxiety, substance use) and rates of criminal offending for mothers with a history of TBI versus those with no history of TBI. Mothers with TBI were no more likely than those without TBI to have engaged in child abuse. However, mothers with a history of TBI were significantly more likely to have one or more mental health problems, engage in substance use and have a history of criminal offending. Parents with TBI who have been identified as high risk for engaging in child abuse have increased risk for mental health problems and criminal offending. These issues need to be considered when designing parenting programmes in order for intervention strategies to be effective.

  5. COMPARATIVE STUDY OF THE EFFECTS OF DETONATION NANODIAMONDS WITH VARIED PROPERTIES ON FUNCTIONAL STATE OF BRAIN NERVE TERMINALS

    Directory of Open Access Journals (Sweden)

    M. A. Galkin

    2016-12-01

    Full Text Available The aim of the study was to compare the effects of detonation nanodiamond preparations from different batches cleaned from impurities by diverse methods of chemical treatment on the membrane potential and glutamate transport characteristics of rat brain nerve terminals. The size of nanodiamond particles vary from 10–20 nm to 10 μm. There are carbonyl, hydroxyl and carboxyl functional groups on the surface of the particles. Physical-chemical properties such as a magnetic susceptibility and the amount of incombustible residue in samples of detonation nanodia-mond vary depending on the synthesis regime and the method of chemical cleaning of the product and therefore, the neuroactive properties of nanodiamonds from different batches can be different. It was shown by dynamic light scattering analysis that nanodiamond preparations from different batches treated by diverse technologies of chemical treatment had varied average size of particles and distribution of particles by size. Nanodiamond preparations from different batches changed the plasma membrane potential and caused membrane depolarization of nerve terminals. Analysis of the effects of nanodiamonds on transporter-mediated L-[14C]glutamate uptake by nerve terminals also revealed that all studied nanodiamond preparations decreased abovementioned parameter. Therefore, detonation nanodiamonds from different batches have similar principal effects on functional state of nerve terminals, however variability in their physical and chemical properties is associated with diverse strength of these effects.

  6. Functional brain imaging of gastrointestinal sensation in health and disease

    Institute of Scientific and Technical Information of China (English)

    Lukas Van Oudenhove; Steven J Coen; Qasim Aziz

    2007-01-01

    It has since long been known, from everyday experience as well as from animal and human studies, that psychological processes-both affective and cognitiveexert an influence on gastrointestinal sensorimotor function. More specifically, a link between psychological factors and visceral hypersensitivity has been suggested,mainly based on research in functional gastrointestinal disorder patients. However, until recently, the exact nature of this putative relationship remained unclear,mainly due to a lack of non-invasive methods to study the (neurobiological) mechanisms underlying this relationship in non-sleeping humans. As functional brain imaging, introduced in visceral sensory neuroscience some 10 years ago, does provide a method for in vivo study of brain-gut interactions, insight into the neurobiological mechanisms underlying visceral sensation in general and the influence of psychological factors more particularly,has rapidly grown. In this article, an overview of brain imaging evidence on gastrointestinal sensation will be given, with special emphasis on the brain mechanisms underlying the interaction between affective & cognitive processes and visceral sensation. First, the reciprocal neural pathways between the brain and the gut (braingut axis) will be briefly outlined, including brain imaging evidence in healthy volunteers. Second, functional brain imaging studies assessing the influence of psychological factors on brain processing of visceral sensation in healthy humans will be discussed in more detail.Finally, brain imaging work investigating differences in brain responses to visceral distension between healthy volunteers and functional gastrointestinal disorder patients will be highlighted.

  7. Association between glycemic load and cognitive function in community-dwelling older adults: Results from the Brain in Motion study.

    Science.gov (United States)

    Garber, Anna; Csizmadi, Ilona; Friedenreich, Christine M; Sajobi, Tolulope T; Longman, Richard S; Tyndall, Amanda V; Drogos, Lauren L; Davenport, Margie H; Poulin, Marc J

    2017-07-17

    Impaired glucose tolerance is a risk factor for non-age-related cognitive decline and is also associated with measures of physical activity (PA) and cardiorespiratory fitness (CRF). A low glycemic load (GL) diet can aid in the management of blood glucose levels, but little is known about its effect on cognition with poor glucoregulation. We assessed the relation between GL and cognitive function by glucoregulation and possible mediatory effects by CRF and PA in older adults from the Brain in Motion Study. A cross-sectional analysis of 194 cognitively healthy adults aged ≥55 years (mean = 65.7, SD = 6.1) was conducted. GL was assessed using a quantitative food frequency questionnaire, and glucoregulation was characterized on the HOMA-IR index. Subjects also completed a cognitive assessment, CRF testing, a validated self-reported PA questionnaire, and a blood draw. Multiple linear regression models adjusted for significant covariates were used to evaluate the relation between GL and cognition, and mediation by CRF and PA was also assessed. GL was inversely associated with global cognition (β = -0.014; 95% CI -0.024, -0.004) and figural memory (β = -0.035; 95% CI -0.052, -0.018) in subjects with poor glucoregulation. Neither CRF nor PA mediated these relations. In subjects with good glucoregulation, no association was found between GL and cognitive function (p > 0.05). A low GL diet is associated with better cognitive function in older adults with poor glucoregulation. This study provides supportive evidence for the role of GL in maintaining better cognitive function during the aging process. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy: a prospective study

    International Nuclear Information System (INIS)

    Tsai, Ping-Fang; Yang, Chi-Cheng; Chuang, Chi-Cheng; Huang, Ting-Yi; Wu, Yi-Ming; Pai, Ping-Ching; Tseng, Chen-Kan; Wu, Tung-Ho; Shen, Yi-Liang; Lin, Shinn-Yn

    2015-01-01

    Whole brain radiotherapy (WBRT) has been the treatment of choice for patients with brain metastases. However, change/decline of neurocognitive functions (NCFs) resulting from impaired hippocampal neurogenesis might occur after WBRT. It is reported that conformal hippocampal sparing would provide the preservation of NCFs. Our study aims to investigate the hippocampal dosimetry and to demonstrate the correlation between hippocampal dosimetry and neurocognitive outcomes in patients receiving hippocampal sparing during WBRT (HS-WBRT). Forty prospectively recruited cancer patients underwent HS-WBRT for therapeutic or prophylactic purposes. Before receiving HS-WBRT, all participants received a battery of baseline neurocognitive assessment, including memory, executive functions and psychomotor speed. The follow-up neurocognitive assessment at 4 months after HS-WBRT was also performed. For the delivery of HS-WBRT, Volumetric Modulated Arc Therapy (VMAT) with two full arcs and two non-coplanar partial arcs was employed. For each treatment planning, dose volume histograms were generated for left hippocampus, right hippocampus, and the composite hippocampal structure respectively. Biologically equivalent doses in 2-Gy fractions (EQD 2 ) assuming an alpha/beta ratio of 2 Gy were computed. To perform analyses addressing the correlation between hippocampal dosimetry and the change in scores of NCFs, pre- and post-HS-WBRT neurocognitive assessments were available in 24 patients in this study. Scores of NCFs were quite stable before and after HS-WBRT in terms of hippocampus-dependent memory. Regarding verbal memory, the corresponding EQD 2 values of 0, 10, 50, 80 % irradiating the composite hippocampal structure with <12.60 Gy, <8.81, <7.45 Gy and <5.83 Gy respectively were significantly associated with neurocognitive preservation indicated by the immediate recall of Word List Test of Wechsler Memory Scale-III. According to logistic regression analyses, it was noted that

  9. Study of human brain functions by functional magnetic resonance imaging (fMRI) and spectroscopy (fMRS)

    International Nuclear Information System (INIS)

    Jagannathan, N.R.

    1998-01-01

    Functional magnetic resonance imaging (fMRI) has become a powerful tool in the detection and assessment of cerebral pathophysiology and the regional mapping and characterization of cognitive processes such as motor skills, vision, language and memory. The results of the effect of motor cortex stimulation during repetitive hand squeezing task activation using in-vivo single voxel NMR spectroscopy carried out on normal volunteer subjects are presented

  10. Synaesthetic Colour in the Brain: Beyond Colour Areas. A Functional Magnetic Resonance Imaging Study of Synaesthetes and Matched Controls

    OpenAIRE

    van Leeuwen, Tessa M.; Petersson, Karl Magnus; Hagoort, Peter

    2010-01-01

    Background In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our q...

  11. Functional MRI study of the brain with malformations of cortical development

    International Nuclear Information System (INIS)

    Zhang Lei; Zhou Wenjing; Jin Zhen; Li Ke; Zhang Chaoli

    2012-01-01

    Objective: To explore the patterns of motor and linguistic activation in cortical and its correlations with abnormal gray matter in patients with malformations of cortical development (MCD) and epilepsy. Methods: Seven MCD patients with epilepsy (2 patients with focal cortical dysplasia, 2 heterotopia, 2 schizencephaly, and 1 polymicrogyria) underwent blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) in a 3 T MR scanner when practicing bilateral fingers tapping,toes twisting, verb generation, and picture naming.Functional images were post-processed by using SPM 5 software based on a general linear model (GLM) to generate activations above a uniform threshold with the cluster size (≥30 voxels, P<0.001 corrected). The activations were recognized and classified by two experienced neuroradiologists, and then compared with that in abnormal gray matter. Results: The clusters and intensities of motor activations were mainly located in the sensormotor cortex (SMC) and premotor area (PMA). In linguistic tasks, activations produced by verb generation were found in language-associated cortical regions and PMA with higher activation in Wernicke area, picture naming significantly in the visual cortex, and language in Broca area. Combination of the two linguistic tasks produced significant clusters and intensities in language cortex. For MCD patients with abnormal cortical abnormalities, motor and language task could produce neuronal activities within normal as well as abnormal cortex regions. In 6 patients who underwent respective surgery, epileptic seizures decreased significantly, and the follow-up images demonstrated no new neurological dysfunctions and cognitive impairments. Conclusions: fMRI can visualize neuronal activities in patients with MCD and epilepsy and demonstrate the motor and linguistic activations occurring in normal and abnormal gray matter. It should be cautious for surgery in patient with MCD and epilepsy. (authors)

  12. Functional brain networks in schizophrenia: a review

    Directory of Open Access Journals (Sweden)

    Vince D Calhoun

    2009-08-01

    Full Text Available Functional magnetic resonance imaging (fMRI has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their

  13. Insulin action in brain regulates systemic metabolism and brain function.

    Science.gov (United States)

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. © 2014 by the American Diabetes Association.

  14. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  15. Assessment of cognitive brain function in ecstasy users and contributions of other drugs of abuse: results from an FMRI study

    NARCIS (Netherlands)

    Jager, Gerry; de Win, Maartje M. L.; van der Tweel, Ingeborg; Schilt, Thelma; Kahn, Rene S.; van den Brink, Wim; van Ree, Jan M.; Ramsey, Nick F.

    2008-01-01

    Heavy ecstasy use has been associated with neurocognitive deficits in various behavioral and brain imaging studies. However, this association is not conclusive owing to the unavoidable confounding factor of polysubstance use. The present study, as part of the Netherlands XTC Toxicity study,

  16. State-related functional integration and functional segregation brain networks in schizophrenia.

    Science.gov (United States)

    Yu, Qingbao; Sui, Jing; Kiehl, Kent A; Pearlson, Godfrey; Calhoun, Vince D

    2013-11-01

    Altered topological properties of brain connectivity networks have emerged as important features of schizophrenia. The aim of this study was to investigate how the state-related modulations to graph measures of functional integration and functional segregation brain networks are disrupted in schizophrenia. Firstly, resting state and auditory oddball discrimination (AOD) fMRI data of healthy controls (HCs) and schizophrenia patients (SZs) were decomposed into spatially independent components (ICs) by group independent component analysis (ICA). Then, weighted positive and negative functional integration (inter-component networks) and functional segregation (intra-component networks) brain networks were built in each subject. Subsequently, connectivity strength, clustering coefficient, and global efficiency of all brain networks were statistically compared between groups (HCs and SZs) in each state and between states (rest and AOD) within group. We found that graph measures of negative functional integration brain network and several positive functional segregation brain networks were altered in schizophrenia during AOD task. The metrics of positive functional integration brain network and one positive functional segregation brain network were higher during the resting state than during the AOD task only in HCs. These findings imply that state-related characteristics of both functional integration and functional segregation brain networks are impaired in schizophrenia which provides new insight into the altered brain performance in this brain disorder. © 2013.

  17. Association Between Brain Activation and Functional Connectivity.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  18. When vision guides movement: a functional imaging study of the monkey brain.

    Science.gov (United States)

    Gregoriou, Georgia G; Savaki, Helen E

    2003-07-01

    Goal-directed reaching requires a precise neural representation of the arm position and the target location. Parietal and frontal cortical areas rely on visual, somatosensory, and motor signals to guide the reaching arm to the desired position in space. To dissociate the regions processing these signals, we applied the quantitative [(14)C]-deoxyglucose method on monkeys reaching either in the light or in the dark. Nonvisual (somatosensory and memory-related) guidance of the arm, during reaching in the dark, induced activation of discrete regions in the parietal, premotor, and motor cortices. These included the dorsal part of the medial bank of the intraparietal sulcus, the ventral premotor area F4, the dorsal premotor area F2 below the superior precentral dimple, and the primary somatosensory and motor cortices. Additional parietal and premotor regions comprising the ventral intraparietal cortex, ventral premotor area F5, and the ventral part of dorsal premotor area F2 were activated by visual guidance of the arm during reaching in the light. This study provides evidence that different regions of the parieto-premotor circuit process the visual, somatosensory, and motor-memory-related signals which guide the moving arm.

  19. Assessment of Platelet Function in Traumatic Brain Injury-A Retrospective Observational Study in the Neuro-Critical Care Setting.

    Science.gov (United States)

    Lindblad, Caroline; Thelin, Eric Peter; Nekludov, Michael; Frostell, Arvid; Nelson, David W; Svensson, Mikael; Bellander, Bo-Michael

    2018-01-01

    Despite seemingly functional coagulation, hemorrhagic lesion progression is a common and devastating condition following traumatic brain injury (TBI), stressing the need for new diagnostic techniques. Multiple electrode aggregometry (MEA) measures platelet function and could aid in coagulopathy assessment following TBI. The aims of this study were to evaluate MEA temporal dynamics, influence of concomitant therapy, and its capabilities to predict lesion progression and clinical outcome in a TBI cohort. Adult TBI patients in a neurointensive care unit that underwent MEA sampling were retrospectively included. MEA was sampled if the patient was treated with antiplatelet therapy, bled heavily during surgery, or had abnormal baseline coagulation values. We assessed platelet activation pathways involving the arachidonic acid receptor (ASPI), P2Y 12 receptor, and thrombin receptor (TRAP). ASPI was the primary focus of analysis. If several samples were obtained, they were included. Retrospective data were extracted from hospital charts. Outcome variables were radiologic hemorrhagic progression and Glasgow Outcome Scale assessed prospectively at 12 months posttrauma. MEA levels were compared between patients on antiplatelet therapy. Linear mixed effect models and uni-/multivariable regression models were used to study longitudinal dynamics, hemorrhagic progression and outcome, respectively. In total, 178 patients were included (48% unfavorable outcome). ASPI levels increased from initially low values in a time-dependent fashion ( p  trend of MEA is identified in this TBI cohort, even in patients without known antiplatelet therapies. Values appear also affected by platelet inhibitory treatment and by platelet transfusions. While significant in univariate models to predict outcome, MEA values did not independently correlate to outcome or lesion progression in multivariable analyses. Further prospective studies to monitor coagulation in TBI patients are warranted, in

  20. Dynamic functional brain connectivity for face perception

    NARCIS (Netherlands)

    Yang, Yuan; Qiu, Yihong; Schouten, Alfred C.

    2015-01-01

    Face perception is mediated by a distributed brain network comprised of the core system at occipito-temporal areas and the extended system at other relevant brain areas involving bilateral hemispheres. In this study we explored how the brain connectivity changes over the time for face-sensitive

  1. Subjective Cognitive Decline: Mapping Functional and Structural Brain Changes-A Combined Resting-State Functional and Structural MR Imaging Study.

    Science.gov (United States)

    Sun, Yu; Dai, Zhengjia; Li, Yuxia; Sheng, Can; Li, Hongyan; Wang, Xiaoni; Chen, Xiaodan; He, Yong; Han, Ying

    2016-10-01

    Purpose To determine whether individuals with subjective cognitive decline (SCD) exhibit functional and structural brain alterations by using resting-state functional and structural magnetic resonance (MR) imaging. Materials and Methods This study received institutional review board approval, and all participants gave informed consent. Resting-state functional MR imaging and structural MR imaging techniques were used to measure amplitude of low-frequency fluctuations (ALFF) and regional gray matter volume in 25 subjects with SCD (mean age, 65.52 years ± 6.12) and 61 control subjects (mean age, 64.11 years ± 8.59). Voxel-wise general linear model analyses were used to examine between-group differences in ALFF or in gray matter volume and to further determine the brain-behavioral relationship. Results Subjects with SCD exhibited higher ALFF values than did control subjects in the bilateral inferior parietal lobule (left: 0.44 ± 0.25 vs 0.27 ± 0.18, respectively; P = .0003; right: 1.46 ± 0.45 vs 1.10 ± 0.37, respectively; P = .0015), right inferior (0.45 ± 0.15 vs 0.37 ± 0.08, repectively; P = .0106) and middle (1.03 ± 0.32 vs 0.83 ± 0.20, respectively; P = .0008) occipital gyrus, right superior temporal gyrus (0.11 ± 0.07 vs 0.07 ± 0.04, respectively; P = .0016), and right cerebellum posterior lobe (0.51 ± 0.27 vs 0.39 ± 0.15, respectively; P = .0010). In the SCD group, significant correlations were found between Auditory Verbal Learning Test recognition scores and ALFF in the left inferior parietal lobe (r = -0.79, P Learning Test immediate recall scores and ALFF values in the right middle occipital gyrus (r = -0.64, P = .002). Nonsignificant group differences were found in gray matter volume (P > .05, corrected). Conclusion Individuals with SCD had altered spontaneous functional activity, suggesting that resting-state functional MR imaging may be a noninvasive method for characterizing SCD. (©) RSNA, 2016 Online supplemental material is available for

  2. Large-Scale Network Analysis of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury: A Comparative Study.

    Science.gov (United States)

    Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar

    2017-09-01

    Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.

  3. Acupuncture at Waiguan (SJ5) and sham points influences activation of functional brain areas of ischemic stroke patients: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Qi, Ji; Chen, Junqi; Huang, Yong; Lai, Xinsheng; Tang, Chunzhi; Yang, Junjun; Chen, Hua; Qu, Shanshan

    2014-02-01

    Most studies addressing the specificity of meridians and acupuncture points have focused mainly on the different neural effects of acupuncture at different points in healthy individuals. This study examined the effects of acupuncture on brain function in a pathological context. Sixteen patients with ischemic stroke were randomly assigned to true point group (true acupuncture at right Waiguan (SJ5)) and sham point group (sham acupuncture). Results of functional magnetic resonance imaging revealed activation in right parietal lobe (Brodmann areas 7 and 19), the right temporal lobe (Brodmann area 39), the right limbic lobe (Brodmann area 23) and bilateral occipital lobes (Brodmann area 18). Furthermore, inhibition of bilateral frontal lobes (Brodmann area 4, 6, and 45), right parietal lobe (Brodmann areas 1 and 5) and left temporal lobe (Brodmann area 21) were observed in the true point group. Activation in the precuneus of right parietal lobe (Brodmann area 7) and inhibition of the left superior frontal gyrus (Brodmann area 10) was observed in the sham group. Compared with sham acupuncture, acupuncture at Waiguan in stroke patients inhibited Brodmann area 5 on the healthy side. Results indicated that the altered specificity of sensation-associated cortex (Brodmann area 5) is possibly associated with a central mechanism of acupuncture at Waiguan for stroke patients.

  4. Prospective study of a community reintegration programme for patients with acquired chronic brain injury: effects on caregivers' emotional burden and family functioning

    NARCIS (Netherlands)

    Geurtsen, Gert J.; van Heugten, Caroline M.; Meijer, Ron; Martina, Juan D.; Geurts, Alexander C. H.

    2011-01-01

    Objective: To examine the effects of a residential community reintegration programme for patients with psychosocial problems due to acquired chronic brain injury on caregivers' emotional burden and family functioning. Design: A prospective cohort study with waiting list control and 1-year follow-up.

  5. Mortality and preoperative cardiac function in vascular amputees : an N-terminal pro-brain natriuretic peptide (NT-proBNP) pilot study

    NARCIS (Netherlands)

    Riemersma, Marcel; Dijkstra, Pieter U.; van Veldhuisen, Dirk Jan; Muskiet, Frits A. J.; van den Dungen, Jan A. M. M.; Geertzen, Jan H. B.

    Objective: To determine preoperative ventricular function in vascular amputees by measuring N-terminal pro-brain natriuretic peptide (NT-proBNP) and to analyse the relationship between NT-proBNP levels and 30-day postoperative mortality. Design: Prospective pilot study. Subjects and methods: In 19

  6. The Effect of Souvenaid on Functional Brain Network Organisation in Patients with Mild Alzheimer’s Disease: A Randomised Controlled Study

    Science.gov (United States)

    de Waal, Hanneke; Stam, Cornelis J.; Lansbergen, Marieke M.; Wieggers, Rico L.; Kamphuis, Patrick J. G. H.; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C. W.

    2014-01-01

    Background Synaptic loss is a major hallmark of Alzheimer’s disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. Objective To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. Design A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. Participants 179 drug-naïve mild AD patients who participated in the Souvenir II study. Intervention Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. Outcome In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance. Results The network measures in the beta band were significantly different between groups: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. Conclusions The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG

  7. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  8. Centrality of Social Interaction in Human Brain Function.

    Science.gov (United States)

    Hari, Riitta; Henriksson, Linda; Malinen, Sanna; Parkkonen, Lauri

    2015-10-07

    People are embedded in social interaction that shapes their brains throughout lifetime. Instead of emerging from lower-level cognitive functions, social interaction could be the default mode via which humans communicate with their environment. Should this hypothesis be true, it would have profound implications on how we think about brain functions and how we dissect and simulate them. We suggest that the research on the brain basis of social cognition and interaction should move from passive spectator science to studies including engaged participants and simultaneous recordings from the brains of the interacting persons. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genetic impact on cognition and brain function in newly diagnosed Parkinson’s disease: ICICLE-PD study

    Science.gov (United States)

    Rowe, James B.; Winder-Rhodes, Sophie E.; Hampshire, Adam; Owen, Adrian M.; Breen, David P.; Duncan, Gordon W.; Khoo, Tien K.; Yarnall, Alison J.; Firbank, Michael J.; Chinnery, Patrick F.; Robbins, Trevor W.; O’Brien, John T.; Brooks, David J.; Burn, David J.; Barker, Roger A.

    2014-01-01

    activation associated with memory encoding. This study demonstrates that neurocognitive deficits are common even in recently diagnosed patients with Parkinson’s disease, and that the associated regional brain activations are influenced by genotype. These data further support the dual syndrome hypothesis of cognitive change in Parkinson’s disease. Longitudinal data will confirm the extent to which these early neurocognitive changes, and their genetic factors, influence the long-term risk of dementia in Parkinson’s disease. The combination of genetics and functional neuroimaging provides a potentially useful method for stratification and identification of candidate markers, in future clinical trials against cognitive decline in Parkinson’s disease. PMID:25080285

  10. A case study of a multiply talented savant with an autism spectrum disorder: neuropsychological functioning and brain morphometry.

    Science.gov (United States)

    Wallace, Gregory L; Happé, Francesca; Giedd, Jay N

    2009-05-27

    Neuropsychological functioning and brain morphometry in a savant (case GW) with an autism spectrum disorder (ASD) and both calendar calculation and artistic skills are quantified and compared with small groups of neurotypical controls. Good memory, mental calculation and visuospatial processing, as well as (implicit) knowledge of calendar structure and 'weak' central coherence characterized the cognitive profile of case GW. Possibly reflecting his savant skills, the superior parietal region of GW's cortex was the only area thicker (while areas such as the superior and medial prefrontal, middle temporal and motor cortices were thinner) than that of a neurotypical control group. Taken from the perspective of learning/practice-based models, skills in domains (e.g. calendars, art, music) that capitalize upon strengths often associated with ASD, such as detail-focused processing, are probably further enhanced through over-learning and massive exposure, and reflected in atypical brain structure.

  11. Neuroenergetics: How energy constraints shape brain function

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The nervous system consumes a disproportionate fraction of the resting body’s energy production. In humans, the brain represents 2% of the body’s mass, yet it accounts for ~20% of the total oxygen consumption. Expansion in the size of the brain relative to the body and an increase in the number of connections between neurons during evolution underpin our cognitive powers and are responsible for our brains’ high metabolic rate. The molecules at the center of cellular energy metabolism also act as intercellular signals and constitute an important communication pathway, coordinating for instance the immune surveillance of the brain. Despite the significance of energy consumption in the nervous system, how energy constrains and shapes brain function is often under appreciated. I will illustrate the importance of brain energetics and metabolism with two examples from my recent work. First, I will show how the brain trades information for energy savings in the visual pathway. Indeed, a significant fraction ...

  12. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  13. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  14. Functional neuroimaging of normal aging: Declining brain, adapting brain.

    Science.gov (United States)

    Sugiura, Motoaki

    2016-09-01

    Early functional neuroimaging research on normal aging brain has been dominated by the interest in cognitive decline. In this framework the age-related compensatory recruitment of prefrontal cortex, in terms of executive system or reduced lateralization, has been established. Further details on these compensatory mechanisms and the findings reflecting cognitive decline, however, remain the matter of intensive investigations. Studies in another framework where age-related neural alteration is considered adaptation to the environmental change are recently burgeoning and appear largely categorized into three domains. The age-related increase in activation of the sensorimotor network may reflect the alteration of the peripheral sensorimotor systems. The increased susceptibility of the network for the mental-state inference to the socioemotional significance may be explained by the age-related motivational shift due to the altered social perception. The age-related change in activation of the self-referential network may be relevant to the focused positive self-concept of elderly driven by a similar motivational shift. Across the domains, the concept of the self and internal model may provide the theoretical bases of this adaptation framework. These two frameworks complement each other to provide a comprehensive view of the normal aging brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Coherence and phase synchrony analyses of EEG signals in Mild Cognitive Impairment (MCI): A study of functional brain connectivity

    Science.gov (United States)

    Handayani, Nita; Haryanto, Freddy; Khotimah, Siti Nurul; Arif, Idam; Taruno, Warsito Purwo

    2018-03-01

    This paper presents an EEG study for coherence and phase synchrony in mild cognitive impairment (MCI) subjects. MCI is characterized by cognitive decline, which is an early stage of Alzheimer's disease (AD). AD is a neurodegenerative disorder with symptoms such as memory loss and cognitive impairment. EEG coherence is a statistical measure of correlation between signals from electrodes spatially separated on the scalp. The magnitude of phase synchrony is expressed in the phase locking value (PLV), a statistical measure of neuronal connectivity in the human brain. Brain signals were recorded using an Emotiv Epoc 14-channel wireless EEG at a sampling frequency of 128 Hz. In this study, we used 22 elderly subjects consisted of 10 MCI subjects and 12 healthy subjects as control group. The coherence between each electrode pair was measured for all frequency bands (delta, theta, alpha and beta). In the MCI subjects, the value of coherence and phase synchrony was generally lower than in the healthy subjects especially in the beta frequency. A decline of intrahemisphere coherence in the MCI subjects occurred in the left temporo-parietal-occipital region. The pattern of decline in MCI coherence is associated with decreased cholinergic connectivity along the path that connects the temporal, occipital, and parietal areas of the brain to the frontal area of the brain. EEG coherence and phase synchrony are able to distinguish persons who suffer AD in the early stages from healthy elderly subjects.

  16. Cognitive functions in drivers with brain injury : Anticipation and adaption

    OpenAIRE

    Lundqvist, Anna

    2001-01-01

    The purpose of this thesis was to improve the understanding of what cognitive functions are important for driving performance, investigate the impact of impaired cognitive functions on drivers with brain injury, and study adaptation strategies relevant for driving performance after brain injury. Finally, the predictive value of a neuropsychological test battery was evaluated for driving performance. Main results can be summarized in the following conclusions: (a) Cognitive functions in terms ...

  17. The Complex Functioning of the Human Brain: The Two Hemispheres

    Directory of Open Access Journals (Sweden)

    Iulia Cristina Timofti

    2010-04-01

    Full Text Available The present study reveals just a glimpse of the possible functions and reactions that the human brain can have. I considered as good examples different situations characteristic both of a normal person and a split-brain one. These situations prove that the brain, although divided in two, works as a unit, as an amazing computer that has data processing as a main goal.

  18. Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing.

    Science.gov (United States)

    Yanes, Julio A; Riedel, Michael C; Ray, Kimberly L; Kirkland, Anna E; Bird, Ryan T; Boeving, Emily R; Reid, Meredith A; Gonzalez, Raul; Robinson, Jennifer L; Laird, Angela R; Sutherland, Matthew T

    2018-03-01

    Lagging behind rapid changes to state laws, societal views, and medical practice is the scientific investigation of cannabis's impact on the human brain. While several brain imaging studies have contributed important insight into neurobiological alterations linked with cannabis use, our understanding remains limited. Here, we sought to delineate those brain regions that consistently demonstrate functional alterations among cannabis users versus non-users across neuroimaging studies using the activation likelihood estimation meta-analysis framework. In ancillary analyses, we characterized task-related brain networks that co-activate with cannabis-affected regions using data archived in a large neuroimaging repository, and then determined which psychological processes may be disrupted via functional decoding techniques. When considering convergent alterations among users, decreased activation was observed in the anterior cingulate cortex, which co-activated with frontal, parietal, and limbic areas and was linked with cognitive control processes. Similarly, decreased activation was observed in the dorsolateral prefrontal cortex, which co-activated with frontal and occipital areas and linked with attention-related processes. Conversely, increased activation among users was observed in the striatum, which co-activated with frontal, parietal, and other limbic areas and linked with reward processing. These meta-analytic outcomes indicate that cannabis use is linked with differential, region-specific effects across the brain.

  19. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study

    OpenAIRE

    Szűcs, Denes; Soltész, F

    2012-01-01

    BACKGROUND: Several conflict processing studies aimed to dissociate neuroimaging phenomena related to stimulus and response conflict processing. However, previous studies typically did not include a paradigm-independent measure of either stimulus or response conflict. Here we have combined electro-myography (EMG) with event-related brain potentials (ERPs) in order to determine whether a particularly robust marker of conflict processing, the N450 ERP effect usually related to the activity of t...

  20. Prospective study of cognitive function in children receiving whole-brain radiotherapy and chemotherapy: 2-year results

    International Nuclear Information System (INIS)

    Packer, R.J.; Sutton, L.N.; Atkins, T.E.; Radcliffe, J.; Bunin, G.R.; D'Angio, G.; Siegel, K.R.; Schut, L.

    1989-01-01

    As survival rates have risen for children with malignant primary brain tumors, so has the concern that many survivors have significant permanent cognitive deficits. Cranial irradiation (CRT) has been implicated as the major cause for cognitive dysfunction. To clarify the etiology, incidence, and severity of intellectual compromise in children with brain tumors after CRT, a prospective study was undertaken comparing the neuropsychological outcome in 18 consecutive children with malignant brain tumors treated with CRT to outcome in 14 children harboring brain tumors in similar sites in the nervous system who had not received CRT. Children with cortical or subcortical brain tumors were not eligible for study. Neuropsychological testing was performed after surgery prior to radiotherapy, after radiotherapy, and at 1- and 2-year intervals thereafter. Children who had received CRT had a mean full-scale intelligence quotient (FSIQ) of 105 at diagnosis which fell to 91 by Year 2. Similar declines were noted in their performance intelligence quotient (IQ) and verbal IQ. After CRT, patients demonstrated a statistically significant decline from baseline in FSIQ (p less than 0.02) and verbal IQ (p less than 0.04). Children who had not received CRT did not demonstrate a fall in any cognitive parameter over time. The decline between baseline testing and testing performed at Year 2 in patients who had CRT was inversely correlated with age (p less than 0.02), as younger children demonstrated the greatest loss of intelligence. Children less than 7 years of age at diagnosis had a mean decline in FSIQ of 25 points 2 years posttreatment. No other clinical parameter correlated with the overall IQ or decline in IQ. After CRT, children demonstrated a wide range of dysfunction including deficits in fine motor, visual-motor, and visual-spatial skills and memory difficulties

  1. Assessment of Platelet Function in Traumatic Brain Injury—A Retrospective Observational Study in the Neuro-Critical Care Setting

    Directory of Open Access Journals (Sweden)

    Caroline Lindblad

    2018-01-01

    Full Text Available BackgroundDespite seemingly functional coagulation, hemorrhagic lesion progression is a common and devastating condition following traumatic brain injury (TBI, stressing the need for new diagnostic techniques. Multiple electrode aggregometry (MEA measures platelet function and could aid in coagulopathy assessment following TBI. The aims of this study were to evaluate MEA temporal dynamics, influence of concomitant therapy, and its capabilities to predict lesion progression and clinical outcome in a TBI cohort.Material and methodsAdult TBI patients in a neurointensive care unit that underwent MEA sampling were retrospectively included. MEA was sampled if the patient was treated with antiplatelet therapy, bled heavily during surgery, or had abnormal baseline coagulation values. We assessed platelet activation pathways involving the arachidonic acid receptor (ASPI, P2Y12 receptor, and thrombin receptor (TRAP. ASPI was the primary focus of analysis. If several samples were obtained, they were included. Retrospective data were extracted from hospital charts. Outcome variables were radiologic hemorrhagic progression and Glasgow Outcome Scale assessed prospectively at 12 months posttrauma. MEA levels were compared between patients on antiplatelet therapy. Linear mixed effect models and uni-/multivariable regression models were used to study longitudinal dynamics, hemorrhagic progression and outcome, respectively.ResultsIn total, 178 patients were included (48% unfavorable outcome. ASPI levels increased from initially low values in a time-dependent fashion (p < 0.001. Patients on cyclooxygenase inhibitors demonstrated low ASPI levels (p < 0.001, while platelet transfusion increased them (p < 0.001. The first ASPI (p = 0.039 and TRAP (p = 0.009 were significant predictors of outcome, but not lesion progression, in univariate analyses. In multivariable analysis, MEA values were not independently correlated with outcome

  2. Hierarchical functional modularity in the resting-state human brain.

    Science.gov (United States)

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  3. Correlation of emmprin expression in vascular endothelial cells with blood-brain-barrier function: a study using magnetic resonance imaging enhanced by Gd-DTPA and immunohistochemistry in brain tumors.

    Science.gov (United States)

    Sameshima, Tetsuro; Nabeshima, Kazuki; Toole, Bryan P; Inoue, Teruhiko; Yokogami, Kiyotaka; Nakano, Shinichi; Ohi, Takekazu; Wakisaka, Shinichiro

    2003-06-01

    In a previous study, we demonstrated that the expression levels in tumor cells of emmprin (CD147) correlated with the grade of astrocytic tumors. Also, we found that emmprin was expressed in vascular endothelial cells of the non-neoplastic brain and hypothesized that emmprin expression could be associated with normal blood-brain-barrier (BBB) function of vascular endothelial cells. In this study, this possibility was examined in non-neoplastic brain, glioma and metastatic carcinoma tissues by comparing emmprin immunohistochemistry with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) enhancement of magnetic resonance imaging (MRI), which is a clinical indicator of the BBB function. This study included 10 cases of non-neoplastic brain tissues, 7 of metastatic carcinoma, 7 of diffuse astrocytoma, 4 of anaplastic astrocytoma and 13 of glioblastoma multiforme. In all the cases, MRI with administration of Gd-DTPA was performed. The lesions were resected using the microdissection method with the help of ultrasonography and a neuronavigator. The tissues from Gd-DTPA-enhanced or non-enhanced areas were processed into frozen sections and subjected to immunohistochemistry with anti-emmprin antibody. The expression of emmprin in brain vascular endothelial cells inversely correlated with Gd-DTPA-enhancement of MRI: emmprin was positive in tissues not enhanced by Gd-DTPA and was negative in DTPA-enhanced tissues. Since BBB function presumably remains unimpaired in regions in which MR images are not Gd-DTPA-enhanced, emmprin expression appears to be associated with unimpaired BBB function. This is the first report to demonstrate a possible correlation between emmprin expression and BBB function in humans.

  4. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.; Allaman, Igor

    2015-01-01

    The energy demands of the brain are high: they account for at least 20% of the body's energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization

  5. Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette J; Huppert, Theodore J; Franceschini, Maria Angela; Boas, David A

    2017-12-01

    Functional Near-Infrared Spectroscopy (fNIRS) maps human brain function by measuring and imaging local changes in hemoglobin concentrations in the brain that arise from the modulation of cerebral blood flow and oxygen metabolism by neural activity. Since its advent over 20 years ago, researchers have exploited and continuously advanced the ability of near infrared light to penetrate through the scalp and skull in order to non-invasively monitor changes in cerebral hemoglobin concentrations that reflect brain activity. We review recent advances in signal processing and hardware that significantly improve the capabilities of fNIRS by reducing the impact of confounding signals to improve statistical robustness of the brain signals and by enhancing the density, spatial coverage, and wearability of measuring devices respectively. We then summarize the application areas that are experiencing rapid growth as fNIRS begins to enable routine functional brain imaging.

  6. A Preliminary Study of the Effects of an Arts Education Program on Executive Function, Behavior, and Brain Structure in a Sample of Nonclinical School-Aged Children.

    Science.gov (United States)

    Park, Subin; Lee, Jong-Min; Baik, Young; Kim, Kihyun; Yun, Hyuk Jin; Kwon, Hunki; Jung, Yeon-Kyung; Kim, Bung-Nyun

    2015-11-01

    The authors examined the effects of arts education on cognition, behavior, and brain of children. Twenty-nine nonclinical children participated in a 15-week arts education program that was composed of either creative movement or musical arts. Children completed the Wisconsin Card Sorting Test, clinical scales, and brain magnetic resonance imaging before and after the intervention. Following program completion, performances on the Wisconsin Card Sorting Test, the Children's Depression Inventory scores, and conduct disorder scores were significantly improved. Furthermore, cortical thickness in the left postcentral gyrus and superior parietal lobule were increased, and the mean diffusivity values in the right posterior corona radiate and superior longitudinal fasciculus were decreased. Positive correlations between changes in cognitive measurements and changes in cortical thickness were observed. This preliminary study suggests a positive effect of arts education on executive functions in association with brain changes. However, these findings must be interpreted with caution due to the noncomparative study design. © The Author(s) 2015.

  7. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    Science.gov (United States)

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Abnormal rich club organization and functional brain dynamics in schizophrenia.

    Science.gov (United States)

    van den Heuvel, Martijn P; Sporns, Olaf; Collin, Guusje; Scheewe, Thomas; Mandl, René C W; Cahn, Wiepke; Goñi, Joaquín; Hulshoff Pol, Hilleke E; Kahn, René S

    2013-08-01

    The human brain forms a large-scale structural network of regions and interregional pathways. Recent studies have reported the existence of a selective set of highly central and interconnected hub regions that may play a crucial role in the brain's integrative processes, together forming a central backbone for global brain communication. Abnormal brain connectivity may have a key role in the pathophysiology of schizophrenia. To examine the structure of the rich club in schizophrenia and its role in global functional brain dynamics. Structural diffusion tensor imaging and resting-state functional magnetic resonance imaging were performed in patients with schizophrenia and matched healthy controls. Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, the Netherlands. Forty-eight patients and 45 healthy controls participated in the study. An independent replication data set of 41 patients and 51 healthy controls was included to replicate and validate significant findings. MAIN OUTCOME(S) AND MEASURES: Measures of rich club organization, connectivity density of rich club connections and connections linking peripheral regions to brain hubs, measures of global brain network efficiency, and measures of coupling between brain structure and functional dynamics. Rich club organization between high-degree hub nodes was significantly affected in patients, together with a reduced density of rich club connections predominantly comprising the white matter pathways that link the midline frontal, parietal, and insular hub regions. This reduction in rich club density was found to be associated with lower levels of global communication capacity, a relationship that was absent for other white matter pathways. In addition, patients had an increase in the strength of structural connectivity-functional connectivity coupling. Our findings provide novel biological evidence that schizophrenia is characterized by a selective

  9. Effects of gender, digit ratio, and menstrual cycle on intrinsic brain functional connectivity: A whole-brain, voxel-wise exploratory study using simultaneous local and global functional connectivity mapping.

    Science.gov (United States)

    Donishi, Tomohiro; Terada, Masaki; Kaneoke, Yoshiki

    2018-01-01

    Gender and sex hormones influence brain function, but their effects on functional network organization within the brain are not yet understood. We investigated the influence of gender, prenatal sex hormones (estimated by the 2D:4D digit ratio), and the menstrual cycle on the intrinsic functional network organization of the brain (as measured by 3T resting-state functional MRI (rs-fMRI)) using right-handed, age-matched university students (100 males and 100 females). The mean (± SD ) age was 20.9 ± 1.5 (range: 18-24) years and 20.8 ± 1.3 (range: 18-24) years for males and females, respectively. Using two parameters derived from the normalized alpha centrality analysis (one for local and another for global connectivity strength), we created mean functional connectivity strength maps. There was a significant difference between the male mean map and female mean map in the distributions of network properties in almost all cortical regions and the basal ganglia but not in the medial parietal, limbic, and temporal regions and the thalamus. A comparison between the mean map for the low 2D:4D digit ratio group (indicative of high exposure to testosterone during the prenatal period) and that for the high 2D:4D digit ratio group revealed a significant difference in the network properties of the medial parietal region for males and in the temporal region for females. The menstrual cycle affected network organization in the brain, which varied with the 2D:4D digit ratio. Most of these findings were reproduced with our other datasets created with different preprocessing steps. The results suggest that differences in gender, prenatal sex hormone exposure, and the menstrual cycle are useful for understanding the normal brain and investigating the mechanisms underlying the variable prevalence and symptoms of neurological and psychiatric diseases.

  10. Altered Brain Functional Activity in Infants with Congenital Bilateral Severe Sensorineural Hearing Loss: A Resting-State Functional MRI Study under Sedation

    Directory of Open Access Journals (Sweden)

    Shuang Xia

    2017-01-01

    Full Text Available Early hearing deprivation could affect the development of auditory, language, and vision ability. Insufficient or no stimulation of the auditory cortex during the sensitive periods of plasticity could affect the function of hearing, language, and vision development. Twenty-three infants with congenital severe sensorineural hearing loss (CSSHL and 17 age and sex matched normal hearing subjects were recruited. The amplitude of low frequency fluctuations (ALFF and regional homogeneity (ReHo of the auditory, language, and vision related brain areas were compared between deaf infants and normal subjects. Compared with normal hearing subjects, decreased ALFF and ReHo were observed in auditory and language-related cortex. Increased ALFF and ReHo were observed in vision related cortex, which suggest that hearing and language function were impaired and vision function was enhanced due to the loss of hearing. ALFF of left Brodmann area 45 (BA45 was negatively correlated with deaf duration in infants with CSSHL. ALFF of right BA39 was positively correlated with deaf duration in infants with CSSHL. In conclusion, ALFF and ReHo can reflect the abnormal brain function in language, auditory, and visual information processing in infants with CSSHL. This demonstrates that the development of auditory, language, and vision processing function has been affected by congenital severe sensorineural hearing loss before 4 years of age.

  11. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  12. The Brain Prize 2014: complex human functions.

    Science.gov (United States)

    Grigaityte, Kristina; Iacoboni, Marco

    2014-11-01

    Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Brain microvascular function during cardiopulmonary bypass

    International Nuclear Information System (INIS)

    Sorensen, H.R.; Husum, B.; Waaben, J.; Andersen, K.; Andersen, L.I.; Gefke, K.; Kaarsen, A.L.; Gjedde, A.

    1987-01-01

    Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracers being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass

  14. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Marg, E.

    1988-01-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  15. Disrupted Cerebro-cerebellar Intrinsic Functional Connectivity in Young Adults with High-functioning Autism Spectrum Disorder: A Data-driven, Whole-brain, High Temporal Resolution fMRI Study.

    Science.gov (United States)

    Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan

    2018-06-13

    To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.

  16. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study.

    Science.gov (United States)

    Riedl, Valentin; Bienkowska, Katarzyna; Strobel, Carola; Tahmasian, Masoud; Grimmer, Timo; Förster, Stefan; Friston, Karl J; Sorg, Christian; Drzezga, Alexander

    2014-04-30

    Over the last decade, synchronized resting-state fluctuations of blood oxygenation level-dependent (BOLD) signals between remote brain areas [so-called BOLD resting-state functional connectivity (rs-FC)] have gained enormous relevance in systems and clinical neuroscience. However, the neural underpinnings of rs-FC are still incompletely understood. Using simultaneous positron emission tomography/magnetic resonance imaging we here directly investigated the relationship between rs-FC and local neuronal activity in humans. Computational models suggest a mechanistic link between the dynamics of local neuronal activity and the functional coupling among distributed brain regions. Therefore, we hypothesized that the local activity (LA) of a region at rest determines its rs-FC. To test this hypothesis, we simultaneously measured both LA (glucose metabolism) and rs-FC (via synchronized BOLD fluctuations) during conditions of eyes closed or eyes open. During eyes open, LA increased in the visual system, and the salience network (i.e., cingulate and insular cortices) and the pattern of elevated LA coincided almost exactly with the spatial pattern of increased rs-FC. Specifically, the voxelwise regional profile of LA in these areas strongly correlated with the regional pattern of rs-FC among the same regions (e.g., LA in primary visual cortex accounts for ∼ 50%, and LA in anterior cingulate accounts for ∼ 20% of rs-FC with the visual system). These data provide the first direct evidence in humans that local neuronal activity determines BOLD FC at rest. Beyond its relevance for the neuronal basis of coherent BOLD signal fluctuations, our procedure may translate into clinical research particularly to investigate potentially aberrant links between local dynamics and remote functional coupling in patients with neuropsychiatric disorders.

  17. Abnormal brain activation during threatening face processing in schizophrenia: A meta-analysis of functional neuroimaging studies.

    Science.gov (United States)

    Dong, Debo; Wang, Yulin; Jia, Xiaoyan; Li, Yingjia; Chang, Xuebin; Vandekerckhove, Marie; Luo, Cheng; Yao, Dezhong

    2017-11-15

    Impairment of face perception in schizophrenia is a core aspect of social cognitive dysfunction. This impairment is particularly marked in threatening face processing. Identifying reliable neural correlates of the impairment of threatening face processing is crucial for targeting more effective treatments. However, neuroimaging studies have not yet obtained robust conclusions. Through comprehensive literature search, twenty-one whole brain datasets were included in this meta-analysis. Using seed-based d-Mapping, in this voxel-based meta-analysis, we aimed to: 1) establish the most consistent brain dysfunctions related to threating face processing in schizophrenia; 2) address task-type heterogeneity in this impairment; 3) explore the effect of potential demographic or clinical moderator variables on this impairment. Main meta-analysis indicated that patients with chronic schizophrenia demonstrated attenuated activations in limbic emotional system along with compensatory over-activation in medial prefrontal cortex (MPFC) during threatening faces processing. Sub-task analyses revealed under-activations in right amygdala and left fusiform gyrus in both implicit and explicit tasks. The remaining clusters were found to be differently involved in different types of tasks. Moreover, meta-regression analyses showed brain abnormalities in schizophrenia were partly modulated by age, gender, medication and severity of symptoms. Our results highlighted breakdowns in limbic-MPFC circuit in schizophrenia, suggesting general inability to coordinate and contextualize salient threat stimuli. These findings provide potential targets for neurotherapeutic and pharmacological interventions for schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Exploring brain function with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G.

    1999-01-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology

  19. Exploring brain function with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Di Salle, F.; Formisano, E.; Linden, D.E.J.; Goebel, R.; Bonavita, S.; Pepino, A.; Smaltino, F.; Tedeschi, G

    1999-05-01

    Since its invention in the early 1990s, functional magnetic resonance imaging (fMRI) has rapidly assumed a leading role among the techniques used to localize brain activity. The spatial and temporal resolution provided by state-of-the-art MR technology and its non-invasive character, which allows multiple studies of the same subject, are some of the main advantages of fMRI over the other functional neuroimaging modalities that are based on changes in blood flow and cortical metabolism. This paper describes the basic principles and methodology of fMRI and some aspects of its application to functional activation studies. Attention is focused on the physiology of the blood oxygenation level-dependent (BOLD) contrast mechanism and on the acquisition of functional time-series with echo planar imaging (EPI). We also provide an introduction to the current strategies for the correction of signal artefacts and other image processing techniques. In order to convey an idea of the numerous applications of fMRI, we will review some of the recent results in the fields of cognitive and sensorimotor psychology and physiology.

  20. Functional Disorganization of Small-World Brain Networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: An EEG Study using Relative Wavelet Entropy (RWE

    Directory of Open Access Journals (Sweden)

    Christos A. Frantzidis

    2014-08-01

    Full Text Available Previous neuroscientific findings have linked Alzheimer’s disease (AD with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD. Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT, and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N=500, 600, 700, 800 edges across all participants and groups (fixed density values. All groups exhibited a small-world (SW brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant’s generic cognitive status. The deterioration of the network’s organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.

  1. An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting : The importance of selective blood–brain barrier uptake

    NARCIS (Netherlands)

    Bode, Gerard H.; Coué, G.M.J.P.C.; Freese, Christian; Pickl, Karin E.; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; van Winden, Ewoud C.; Tziveleka, Leto Aikaterini; Sideratou, Zili; Engbersen, Johan F.J.; Singh, Smriti; Albrecht, Krystyna; Groll, Jürgen; Möller, Martin; Pötgens, Andy J.G.; Schmitz, Christoph; Fröhlich, Eleonore; Grandfils, Christian; Sinner, Frank M.; Kirkpatrick, C. James; Steinbusch, Harry W.M.; Frank, Hans Georg; Unger, Ronald E.; Martinez-Martinez, Pilar

    2017-01-01

    Targeted delivery of drugs across endothelial barriers remains a formidable challenge, especially in the case of the brain, where the blood–brain barrier severely limits entry of drugs into the central nervous system. Nanoparticle-mediated transport of peptide/protein-based drugs across endothelial

  2. Functional brain imaging to investigate the higher brain dysfunction induced by diffuse brain injury

    International Nuclear Information System (INIS)

    Nariai, Tadashi; Inaji, Motoki; Ohno, Kikuo; Hiura, Mikio; Ishii, Kenji; Hosoda, Chihiro

    2011-01-01

    Higher brain dysfunction is the major problem of patients who recover from neurotrauma the prevents them from returning to their previous social life. Many such patients do not have focal brain damage detected with morphological imaging. We focused on studying the focal brain dysfunction that can be detected only with functional imaging with positron emission tomography (PET) in relation to the score of various cognition batteries. Patients who complain of higher brain dysfunction without apparent morphological cortical damage were recruited for this study. Thirteen patients with diffuse axonal injury (DAI) or cerebral concussion was included. They underwent a PET study to image glucose metabolism by 18 F-fluorodeoxyglucose (FDG), and central benodiazepine receptor (cBZD-R) (marker of neuronal body) by 11 C-flumazenil, together with cognition measurement by WAIS-R, WMS-R, and WCST etc. PET data were compared with age matched normal controls using statistical parametric mapping (SPM)2. DAI patients had a significant decrease in glucose matabolism and cBZD-R distribution in the cingulated cortex than normal controls. Patients diagnosed with concussion because of shorter consciousness disturbance also had abnormal FDG uptake and cBZD-R distribution. Cognition test scores were variable among patients. Degree of decreased glucose metabolism and cBZD-R distribution in the dominant hemishphere corresponded well to the severity of cognitive disturbance. PET molecular imaging was useful to depict focal cortical dysfunction of neurotrauma patients even when morphological change was not apparent. This method may be promising to clarify the pathophysiology of higher brain dysfunction of patients with diffuse axonal injury or chronic traumatic encephalopathy. (author)

  3. Brain regions involved in subprocesses of small-space episodic object-location memory: a systematic review of lesion and functional neuroimaging studies.

    Science.gov (United States)

    Zimmermann, Kathrin; Eschen, Anne

    2017-04-01

    Object-location memory (OLM) enables us to keep track of the locations of objects in our environment. The neurocognitive model of OLM (Postma, A., Kessels, R. P. C., & Van Asselen, M. (2004). The neuropsychology of object-location memory. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 143-160). Mahwah, NJ: Lawrence Erlbaum, Postma, A., Kessels, R. P. C., & Van Asselen, M. (2008). How the brain remembers and forgets where things are: The neurocognition of object-location memory. Neuroscience & Biobehavioral Reviews, 32, 1339-1345. doi: 10.1016/j.neubiorev.2008.05.001 ) proposes that distinct brain regions are specialised for different subprocesses of OLM (object processing, location processing, and object-location binding; categorical and coordinate OLM; egocentric and allocentric OLM). It was based mainly on findings from lesion studies. However, recent episodic memory studies point to a contribution of additional or different brain regions to object and location processing within episodic OLM. To evaluate and update the neurocognitive model of OLM, we therefore conducted a systematic literature search for lesion as well as functional neuroimaging studies contrasting small-space episodic OLM with object memory or location memory. We identified 10 relevant lesion studies and 8 relevant functional neuroimaging studies. We could confirm some of the proposals of the neurocognitive model of OLM, but also differing hypotheses from episodic memory research, about which brain regions are involved in the different subprocesses of small-space episodic OLM. In addition, we were able to identify new brain regions as well as important research gaps.

  4. Age-related functional brain changes in young children.

    Science.gov (United States)

    Long, Xiangyu; Benischek, Alina; Dewey, Deborah; Lebel, Catherine

    2017-07-15

    Brain function and structure change significantly during the toddler and preschool years. However, most studies focus on older or younger children, so the specific nature of these changes is unclear. In the present study, we analyzed 77 functional magnetic resonance imaging datasets from 44 children aged 2-6 years. We extracted measures of both local (amplitude of low frequency fluctuation and regional homogeneity) and global (eigenvector centrality mapping) activity and connectivity, and examined their relationships with age using robust linear correlation analysis and strict control for head motion. Brain areas within the default mode network and the frontoparietal network, such as the middle frontal gyrus, the inferior parietal lobule and the posterior cingulate cortex, showed increases in local and global functional features with age. Several brain areas such as the superior parietal lobule and superior temporal gyrus presented opposite development trajectories of local and global functional features, suggesting a shifting connectivity framework in early childhood. This development of functional connectivity in early childhood likely underlies major advances in cognitive abilities, including language and development of theory of mind. These findings provide important insight into the development patterns of brain function during the preschool years, and lay the foundation for future studies of altered brain development in young children with brain disorders or injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Mortality and preoperative cardiac function in vascular amputees: an N-terminal pro-brain natriuretic peptide (NT-proBNP) pilot study

    OpenAIRE

    Riemersma, Marcel; Dijkstra, Pieter U.; van Veldhuisen, Dirk Jan; Muskiet, Frits A. J.; van den Dungen, Jan A. M. M.; Geertzen, Jan H. B.

    2008-01-01

    Objective: To determine preoperative ventricular function in vascular amputees by measuring N-terminal pro-brain natriuretic peptide (NT-proBNP) and to analyse the relationship between NT-proBNP levels and 30-day postoperative mortality. Design: Prospective pilot study. Subjects and methods: In 19 patients planned for a lower limb amputation for nonreconstructable peripheral arterial disease NT-proBNP was measured the day before amputation. Results: Four amputees died within 30 days after the...

  6. Changes in brain activation induced by visual stimulus during and after propofol conscious sedation: a functional MRI study.

    Science.gov (United States)

    Shinohe, Yutaka; Higuchi, Satomi; Sasaki, Makoto; Sato, Masahito; Noda, Mamoru; Joh, Shigeharu; Satoh, Kenichi

    2016-12-07

    Conscious sedation with propofol sometimes causes amnesia while keeping the patient awake. However, it remains unknown how propofol compromises the memory function. Therefore, we investigated the changes in brain activation induced by visual stimulation during and after conscious sedation with propofol using serial functional MRI. Healthy volunteers received a target-controlled infusion of propofol, and underwent functional MRI scans with a block-design paradigm of visual stimulus before, during, and after conscious sedation. Random-effect model analyses were performed using Statistical Parametric Mapping software. Among the areas showing significant activation in response to the visual stimulus, the visual cortex and fusiform gyrus were significantly suppressed in the sedation session and tended to recover in the early-recovery session of ∼20 min (Psedation and early-recovery sessions (Psedation with propofol may cause prolonged suppression of the activation of memory-related structures, such as the hippocampus, during the early-recovery period, which may lead to transient amnesia.

  7. Functional brain imaging - baric and clinical questions

    International Nuclear Information System (INIS)

    Mager, T.; Moeller, H.J.

    1997-01-01

    The advancing biological knowledge of disease processes plays a central part in the progress of modern psychiatry. An essential contribution comes from the functional and structural brain imaging techniques (CT, MRI, SPECT, PET). Their application is important for biological oriented research in psychiatry and there is also a growing relevance in clinical aspects. This development is taken into account by recent diagnostic classification systems in psychiatry. The capabilities and limitations of functional brain imaging in the context of research and clinic will be presented and discussed by examples and own investigations. (orig.) [de

  8. Interrelationship of brain-functions with cardiovascular regulations

    International Nuclear Information System (INIS)

    Rahman, M.K.

    1993-03-01

    Neurotransmitters and neuropeptides are involved in the regulation of nervous function, behaviour, emotion, sex, sleep, mood of higher animals including the humans. They act and they occur simultaneously in the brain as neurotransmitters or neuromodulators and in plasma as circulating hormones. The direct regulatory interactions of a given substance in the blood and in the brain are still unknown, but some results have already been published regarding these relationships. The present paper briefly describes the systematic review-type studies on the interrelationship of the brain functions and the cardiovascular regulation. 35 refs, 7 figs, 1 tab

  9. The brain, a choice subject for radioisotopic functional imaging

    International Nuclear Information System (INIS)

    Maziere, B.

    1996-01-01

    Progresses realized in the use of radioisotopes and in tomographic imaging techniques have permitted to access to the visualization of the human body functions. The application of this radioisotopic functional imaging (or emission tomography functional imaging) has been particularly fruitful in the study of brain functioning. This method is the only exploratory method for the biochemical aspects of the cerebral functioning and is used both by the physiologist and the therapist. (J.S.)

  10. [Hunger-driven modulation in brain functions].

    Science.gov (United States)

    Hirano, Yukinori; Saitoe, Minoru

    2014-01-01

    \\All organisms must obtain nutrition in order to survive and produce their progeny. In the natural environment, however, adequate nutrition or food is not always available. Thus, all organisms are equipped with mechanisms by which their nutritional condition alters their internal activities. In animals, the loss of nutritional intake (fasting) alters not only metabolism, but also behavior in a manner dependent on hormones such as insulin, glucagon, leptin, and ghrelin. As a result, animals are able to maintain their blood sugar level, and are motivated to crave food upon fasting. Moreover, our recent study revealed a novel role of hunger, which facilitates long-term memory (LTM) formation, and its molecular mechanism in the fruit fly, Drosophila. Here, we review the overall effect of fasting, and how fasting affects brain function. I then introduce our finding in which mild fasting facilitates LTM formation, and discuss its biological significance.

  11. The effects of a mid-task break on the brain connectome in healthy participants: A resting-state functional MRI study.

    Science.gov (United States)

    Sun, Yu; Lim, Julian; Dai, Zhongxiang; Wong, KianFoong; Taya, Fumihiko; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios

    2017-05-15

    Although rest breaks are commonly administered as a countermeasure to reduce mental fatigue and boost cognitive performance, the effects of taking a break on behavior are not consistent. Moreover, our understanding of the underlying neural mechanisms of rest breaks and how they modulate mental fatigue is still rudimentary. In this study, we investigated the effects of receiving a rest break on the topological properties of brain connectivity networks via a two-session experimental paradigm, in which one session comprised four successive blocks of a mentally demanding visual selective attention task (No-rest session), whereas the other contained a rest break between the second and third task blocks (Rest session). Functional brain networks were constructed using resting-state functional MRI data recorded from 20 healthy adults before and after the performance of the task blocks. Behaviorally, subjects displayed robust time-on-task (TOT) declines, as reflected by increasingly slower reaction time as the test progressed and lower post-task self-reported ratings of engagement. However, we did not find a significant effect on task performance due to administering a mid-task break. Compared to pre-task measurements, post-task functional brain networks demonstrated an overall decrease of optimal small-world properties together with lower global efficiency. Specifically, we found TOT-related reduced nodal efficiency in brain regions that mainly resided in the subcortical areas. More interestingly, a significant block-by-session interaction was revealed in local efficiency, attributing to a significant post-task decline in No-rest session and a preserved local efficiency when a mid-task break opportunity was introduced in the Rest session. Taken together, these findings augment our understanding of how the resting brain reorganizes following the accumulation of prolonged task, suggest dissociable processes between the neural mechanisms of fatigue and recovery, and provide

  12. Magnetic resonance imaging research progress on brain functional reorganization after peripheral nerve injury

    International Nuclear Information System (INIS)

    Wang Weiwei; Liu Hanqiu

    2013-01-01

    In the recent years, with the development of functional magnetic resonance imaging technology the brain plasticity and functional reorganization are hot topics in the central nervous system imaging studies. Brain functional reorganization and rehabilitation after peripheral nerve injury may have certain regularity. In this paper, the progress of brain functional magnetic resonance imaging technology and its applications in the world wide clinical and experimental researches of the brain functional reorganization after peripheral nerve injury is are reviewed. (authors)

  13. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.

    Science.gov (United States)

    Cheng, Lin; Zhu, Yang; Sun, Junfeng; Deng, Lifu; He, Naying; Yang, Yang; Ling, Huawei; Ayaz, Hasan; Fu, Yi; Tong, Shanbao

    2018-01-25

    Task-related reorganization of functional connectivity (FC) has been widely investigated. Under classic static FC analysis, brain networks under task and rest have been demonstrated a general similarity. However, brain activity and cognitive process are believed to be dynamic and adaptive. Since static FC inherently ignores the distinct temporal patterns between rest and task, dynamic FC may be more a suitable technique to characterize the brain's dynamic and adaptive activities. In this study, we adopted [Formula: see text]-means clustering to investigate task-related spatiotemporal reorganization of dynamic brain networks and hypothesized that dynamic FC would be able to reveal the link between resting-state and task-state brain organization, including broadly similar spatial patterns but distinct temporal patterns. In order to test this hypothesis, this study examined the dynamic FC in default-mode network (DMN) and motor-related network (MN) using Blood-Oxygenation-Level-Dependent (BOLD)-fMRI data from 26 healthy subjects during rest (REST) and a hand closing-and-opening (HCO) task. Two principal FC states in REST and one principal FC state in HCO were identified. The first principal FC state in REST was found similar to that in HCO, which appeared to represent intrinsic network architecture and validated the broadly similar spatial patterns between REST and HCO. However, the second FC principal state in REST with much shorter "dwell time" implied the transient functional relationship between DMN and MN during REST. In addition, a more frequent shifting between two principal FC states indicated that brain network dynamically maintained a "default mode" in the motor system during REST, whereas the presence of a single principal FC state and reduced FC variability implied a more temporally stable connectivity during HCO, validating the distinct temporal patterns between REST and HCO. Our results further demonstrated that dynamic FC analysis could offer unique

  14. 1H diffusion-weighted, 13C and 17O NMR spectroscopy: methodological developments to study brain structure and function in vivo

    International Nuclear Information System (INIS)

    Najac, Chloe

    2014-01-01

    Magnetic Resonance Spectroscopy is a unique tool that allows acquiring brain biochemical profiles and quantifying many cellular parameters in vivo. During this thesis, three different techniques have been developed: (i) 1 H diffusion-weighted, (ii) carbon-13 ( 13 C) and (iii) oxygen-17 ( 17 O) NMR spectroscopy to study brain structure and function in vivo. Brain metabolites are cell-specific endogenous tracers of the intracellular space whose translational diffusion depends on many cellular properties (e.g.: cytosol viscosity and intracellular restriction). Studying the variation of the diffusion coefficient (ADC) as a function of diffusion time (td) allows untangling and quantifying those parameters. In particular, measuring metabolites ADC at long diffusion times gives information about the metabolites compartmentation in cells. In a first study, we measured neuronal and astrocytic metabolites ADC over a large time window (from 80 ms to 1 s) in a large voxel in the macaque brain. No dependence of all metabolites ADC on td was observed suggesting that metabolites primarily diffuse in neuronal (dendrites and axons) and astrocytic processes and are not confined inside the cell body and organelles (nucleus, mitochondria). The large size of the voxel, due to low detection sensitivity, did not allow us to study metabolites compartmentation in pure white (WM) and grey matters (GM). Therefore, we performed a new study in the human brain. Results showed that in both WM and GM metabolites diffuse in fiber-like cell structure. Finally, using an even larger time window (up to 2 s) in the macaque brain and analytical models mimicking the cell structure, we estimated the length of neuronal (∼110 μm) and astrocytic (∼70 μm) processes. ATP (adenosine triphosphate), the main source of energy in the organism, is produced thanks to glucose oxidation inside the mitochondria. 13 C NMR spectroscopy is a well-known technique to study brain energy metabolism and can be used to

  15. Effects of gestational age on brain volume and cognitive functions in generally healthy very preterm born children during school-age: A voxel-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Sakari Lemola

    Full Text Available To determine whether the relationship of gestational age (GA with brain volumes and cognitive functions is linear or whether it follows a threshold model in preterm and term born children during school-age.We studied 106 children (M = 10 years 1 month, SD = 16 months; 40 females enrolled in primary school: 57 were healthy very preterm children (10 children born 24-27 completed weeks' gestation (extremely preterm, 14 children born 28-29 completed weeks' gestation, 19 children born 30-31 completed weeks' gestation (very preterm, and 14 born 32 completed weeks' gestation (moderately preterm all born appropriate for GA (AGA and 49 term-born children. Neuroimaging involved voxel-based morphometry with the statistical parametric mapping software. Cognitive functions were assessed with the WISC-IV. General Linear Models and multiple regressions were conducted controlling age, sex, and maternal education.Compared to groups of children born 30 completed weeks' gestation and later, children born <28 completed weeks' gestation had less gray matter volume (GMV and white matter volume (WMV and poorer cognitive functions including decreased full scale IQ, and processing speed. Differences in GMV partially mediated the relationship between GA and full scale IQ in preterm born children.In preterm children who are born AGA and without major complications GA is associated with brain volume and cognitive functions. In particular, decreased brain volume becomes evident in the extremely preterm group (born <28 completed weeks' gestation. In preterm children born 30 completed weeks' gestation and later the relationship of GA with brain volume and cognitive functions may be less strong as previously thought.

  16. Default Mode of Brain Function in Monkeys

    Science.gov (United States)

    Mantini, Dante; Gerits, Annelis; Nelissen, Koen; Durand, Jean-Baptiste; Joly, Olivier; Simone, Luciano; Sawamura, Hiromasa; Wardak, Claire; Orban, Guy A.; Buckner, Randy L.; Vanduffel, Wim

    2013-01-01

    Human neuroimaging has revealed a specific network of brain regions—the default-mode network (DMN)—that reduces its activity during goal-directed behavior. So far, evidence for a similar network in monkeys is mainly indirect, since, except for one positron emission tomography study, it is all based on functional connectivity analysis rather than activity increases during passive task states. Here, we tested whether a consistent DMN exists in monkeys using its defining property. We performed a meta-analysis of functional magnetic resonance imaging data collected in 10 awake monkeys to reveal areas in which activity consistently decreases when task demands shift from passive tasks to externally oriented processing. We observed task-related spatially specific deactivations across 15 experiments, implying in the monkey a functional equivalent of the human DMN. We revealed by resting-state connectivity that prefrontal and medial parietal regions, including areas 9/46d and 31, respectively, constitute the DMN core, being functionally connected to all other DMN areas. We also detected two distinct subsystems composed of DMN areas with stronger functional connections between each other. These clusters included areas 24/32, 8b, and TPOC and areas 23, v23, and PGm, respectively. Such a pattern of functional connectivity largely fits, but is not completely consistent with anatomical tract tracing data in monkeys. Also, analysis of afferent and efferent connections between DMN areas suggests a multisynaptic network structure. Like humans, monkeys increase activity during passive epochs in heteromodal and limbic association regions, suggesting that they also default to internal modes of processing when not actively interacting with the environment. PMID:21900574

  17. Does IQ affect the functional brain network involved in pseudoword reading in students with reading disability? A magnetoencephalography study

    Directory of Open Access Journals (Sweden)

    Panagiotis G Simos

    2014-01-01

    Full Text Available The study examined whether individual differences in performance and verbal IQ affect the profiles of reading-related regional brain activation in 127 students experiencing reading difficulties and typical readers. Using magnetoencephalography in a pseudoword read-aloud task, we compared brain activation profiles of students experiencing word-level reading difficulties who did (n=29 or did not (n=36 meet the IQ-reading achievement discrepancy criterion. Typical readers assigned to a lower-IQ (n=18 or a higher IQ (n=44 subgroup served as controls. Minimum norm estimates of regional cortical activity revealed that the degree of hypoactivation in the left superior temporal and supramarginal gyri in both RD subgroups was not affected by IQ. Moreover, IQ did not moderate the positive association between degree of activation in the left fusiform gyrus and phonological decoding ability. We did find, however, that the hypoactivation of the left pars opercularis in RD was restricted to lower-IQ participants. In accordance with previous morphometric and fMRI studies, degree of activity in inferior frontal and inferior parietal regions correlated with IQ across reading ability subgroups. Results are consistent with current views questioning the relevance of IQ measures and IQ-discrepancy criteria in the diagnosis of dyslexia.

  18. The cooperation of the functional activation areas in human brain: an application of event-related fMRI study of the voluntary motor function

    International Nuclear Information System (INIS)

    Li Enzhong; Tian Jie; Dai Ruwei

    2002-01-01

    Objective: To detect the cooperation of the functional activation areas in human brain using event-related fMRI technique developed in recent years. Methods: Forty-four subjects were selected in this experiment and scanned by GE Signa Horizon 1.5 Tesla superconductive MR system. A CUE-GO paradigm was used in this experiment. The data were analyzed in SUN and SGI workstation. Results: The activation areas were found in contralateral primary motor area (Ml), bilateral supplementary motor areas (SMA), pre-motor areas (PMA), basal ganglia, and cerebellar cortices. The time-signal curve of Ml was a typical single-peak curve, but the curves in PMA, basal ganglia, and cerebellar cortices were double-peak curves. SMA had 2 parts, one was Pre-SMA, and another was SMA Proper. The curve was double-peak type in Pre-SMA and single-peak type in SMA Proper. There was difference between the time-signal intensity curves in above-mentioned areas. Conclusion: (1) Ml is mainly associated with motor execution, while others with both motor preparation and execution. There are differences in the function at the variant areas in the brain. (2) The fact that bilateral SMA, PMA, basal ganglia, and cerebellar cortices were activated, is different from what the classical theories told. (3) Event-related fMRI technique has higher temporary and spatial resolutions. (4) There is cooperation among different cortical areas, basal ganglia, and cerebellum

  19. Computerized emission transaxial tomography and determination of local brain function

    International Nuclear Information System (INIS)

    Kuhl, D.E.; Alavi, A.; Reivich, M.; Edwards, R.Q.; Fenton, C.A.; Zimmerman, R.A.

    1975-01-01

    Accurate knowledge of regional function in the brain would be of great value for the detection and localization of a wide variety of diseases and for assessment of patients under treatment. The management of patients would be greatly improved with a day-to-day knowledge of the status of blood flow, blood volume, metabolism, permeability, brain swelling, and other functions on a local basis throughout the brain. In the past this kind of information has not been available. Instead, function has usually been examined only for the organ as a whole and regional information has been restricted to morphology as determined by radiographic or radionuclide imaging studies. Three-dimensional radionuclide reconstruction imaging will become more important in the study of the brain, providing accurate measurement of radionuclide concentration within functional structural units of the brain. Measurement of local function with three-dimensional resolution throughout the brain and without the necessity for intracarotid injection of indicator could therefore provide a significant advance over presently available methods

  20. Violent Video Games Alter Brain Function in Young Men

    Science.gov (United States)

    ... feed News from the RSNA Annual Meeting Violent Video Games Alter Brain Function in Young Men At A ... functional MRI, researchers have found that playing violent video games for one week causes changes in brain function. ...

  1. Functional imaging of the brain with positron emission tomography

    International Nuclear Information System (INIS)

    Alavi, A.; Reivich, M.; Jones, S.C.; Greenberg, J.H.; Wolf, A.P.

    1982-01-01

    An extensive review, with 191 references, of the development and diagnostic use of positron emission tomography (PET) of the brain is presented. An historical overview of functional studies of the brain reviews the use of nitrons oxide, 85 Kr and 133 Xe, [ 14 C]2-deoxyglucose, and [ 18 F]FDG. The [ 18 F]FDG technique allows the investigation of the effects of physiologic stimulation on the brain. Several studies using this technique are reported. The effects of stroke, seizure disorders, aging and dementia, and schizophrenia on cerebral metabolism as demosntrated by PET are explored

  2. Clinimetrics and functional outcome one year after traumatic brain injury

    NARCIS (Netherlands)

    J.T.M. van Baalen (Bianca)

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic

  3. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study

    Energy Technology Data Exchange (ETDEWEB)

    Morbelli, Silvia [University of Genoa, Nuclear Medicine Unit, Department of Internal Medicine, Genoa (Italy); Piccardo, Arnoldo; Villavecchia, Giampiero [Galliera Hospital, Nuclear Medicine Unit, Department of Radiology, Genoa (Italy); Dessi, Barbara; Brugnolo, Andrea; Rodriguez, Guido; Nobili, Flavio [University of Genoa, Clinical Neurophysiology Unit, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy); Piccini, Alessandra [Cell Biology Unit, National Cancer Research Institute, Genoa (Italy); Caroli, Anna [LENITEM - Laboratory of Epidemiology Neuroimaging and Telemedicine, Brescia (Italy); Mario Negri Institute, Medical Imaging Unit, Biomedical Engineering Department, Bergamo (Italy); Frisoni, Giovanni [LENITEM - Laboratory of Epidemiology Neuroimaging and Telemedicine, Brescia (Italy)

    2010-01-15

    To reveal the morphological and functional substrates of memory impairment and conversion to Alzheimer disease (AD) from the stage of amnestic mild cognitive impairment (aMCI). Brain MRI and FDG-PET were performed in 20 patients with aMCI and 12 controls at baseline. During a mean follow-up of about 2 years, 9 patients developed AD (converters), and 11 did not (nonconverters). All images were processed with SPM2. FDG-PET and segmented grey matter (GM) images were compared in: (1) converters versus controls, (2) nonconverters versus controls, and (3) converters versus nonconverters. As compared to controls, converters showed lower GM density in the left parahippocampal gyrus and both thalami, and hypometabolism in the precuneus, posterior cingulate and superior parietal lobule in the left hemisphere. Hypometabolism was found in nonconverters as compared to controls in the left precuneus and posterior cingulated gyrus. As compared to nonconverters, converters showed significant hypometabolism in the left middle and superior temporal gyri. The discordant topography between atrophy and hypometabolism reported in AD is already present at the aMCI stage. Posterior cingulate-precuneus hypometabolism seemed to be an early sign of memory deficit, whereas hypometabolism in the left temporal cortex marked the conversion to AD. (orig.)

  4. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study

    International Nuclear Information System (INIS)

    Morbelli, Silvia; Piccardo, Arnoldo; Villavecchia, Giampiero; Dessi, Barbara; Brugnolo, Andrea; Rodriguez, Guido; Nobili, Flavio; Piccini, Alessandra; Caroli, Anna; Frisoni, Giovanni

    2010-01-01

    To reveal the morphological and functional substrates of memory impairment and conversion to Alzheimer disease (AD) from the stage of amnestic mild cognitive impairment (aMCI). Brain MRI and FDG-PET were performed in 20 patients with aMCI and 12 controls at baseline. During a mean follow-up of about 2 years, 9 patients developed AD (converters), and 11 did not (nonconverters). All images were processed with SPM2. FDG-PET and segmented grey matter (GM) images were compared in: (1) converters versus controls, (2) nonconverters versus controls, and (3) converters versus nonconverters. As compared to controls, converters showed lower GM density in the left parahippocampal gyrus and both thalami, and hypometabolism in the precuneus, posterior cingulate and superior parietal lobule in the left hemisphere. Hypometabolism was found in nonconverters as compared to controls in the left precuneus and posterior cingulated gyrus. As compared to nonconverters, converters showed significant hypometabolism in the left middle and superior temporal gyri. The discordant topography between atrophy and hypometabolism reported in AD is already present at the aMCI stage. Posterior cingulate-precuneus hypometabolism seemed to be an early sign of memory deficit, whereas hypometabolism in the left temporal cortex marked the conversion to AD. (orig.)

  5. Bayesian Modelling of Functional Whole Brain Connectivity

    DEFF Research Database (Denmark)

    Røge, Rasmus

    the prevalent strategy of standardizing of fMRI time series and model data using directional statistics or we model the variability in the signal across the brain and across multiple subjects. In either case, we use Bayesian nonparametric modeling to automatically learn from the fMRI data the number......This thesis deals with parcellation of whole-brain functional magnetic resonance imaging (fMRI) using Bayesian inference with mixture models tailored to the fMRI data. In the three included papers and manuscripts, we analyze two different approaches to modeling fMRI signal; either we accept...... of funcional units, i.e. parcels. We benchmark the proposed mixture models against state of the art methods of brain parcellation, both probabilistic and non-probabilistic. The time series of each voxel are most often standardized using z-scoring which projects the time series data onto a hypersphere...

  6. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: a population-based prospective cohort study.

    Science.gov (United States)

    Korevaar, Tim I M; Muetzel, Ryan; Medici, Marco; Chaker, Layal; Jaddoe, Vincent W V; de Rijke, Yolanda B; Steegers, Eric A P; Visser, Theo J; White, Tonya; Tiemeier, Henning; Peeters, Robin P

    2016-01-01

    Thyroid hormone is involved in the regulation of early brain development. Since the fetal thyroid gland is not fully functional until week 18-20 of pregnancy, neuronal migration and other crucial early stages of intrauterine brain development largely depend on the supply of maternal thyroid hormone. Current clinical practice mostly focuses on preventing the negative consequences of low thyroid hormone concentrations, but data from animal studies have shown that both low and high concentrations of thyroid hormone have negative effects on offspring brain development. We aimed to investigate the association of maternal thyroid function with child intelligence quotient (IQ) and brain morphology. In this population-based prospective cohort study, embedded within the Generation R Study (Rotterdam, Netherlands), we investigated the association of maternal thyroid function with child IQ (assessed by non-verbal intelligence tests) and brain morphology (assessed on brain MRI scans). Eligible women were those living in the study area at their delivery date, which had to be between April 1, 2002, and Jan 1, 2006. For this study, women with available serum samples who presented in early pregnancy (brain MRI scans (done at a median of 8·0 years of age [6·2-10·0]) were obtained. Analyses were adjusted for potential confounders including concentrations of human chorionic gonadotropin and child thyroid-stimulating hormone and free thyroxine. Data for child IQ were available for 3839 mother-child pairs, and MRI scans were available from 646 children. Maternal free thyroxine concentrations showed an inverted U-shaped association with child IQ (p=0·0044), child grey matter volume (p=0·0062), and cortex volume (p=0·0011). For both low and high maternal free thyroxine concentrations, this association corresponded to a 1·4-3·8 points reduction in mean child IQ. Maternal thyroid-stimulating hormone was not associated with child IQ or brain morphology. All associations remained

  7. Stimulation of Functional Vision in Children with Perinatal Brain Damage

    OpenAIRE

    Alimović, Sonja; Mejaški-Bošnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual st...

  8. Robust transient dynamics and brain functions

    Directory of Open Access Journals (Sweden)

    Mikhail I Rabinovich

    2011-06-01

    Full Text Available In the last few decades several concepts of Dynamical Systems Theory (DST have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc. have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework -heteroclinic sequential dynamics- to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i within the same modality, (ii among different modalities from the same family (like perception, and (iii among modalities from different families (like emotion and cognition. The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory -a vital cognitive function-, and to find specific dynamical signatures -different kinds of instabilities- of several brain functions and mental diseases.

  9. Human brain functional MRI and DTI visualization with virtual reality.

    Science.gov (United States)

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed.

  10. The Serotonin Receptor 6 Antagonist Idalopirdine and Acetylcholinesterase Inhibitor Donepezil Have Synergistic Effects on Brain Activity—A Functional MRI Study in the Awake Rat

    Directory of Open Access Journals (Sweden)

    Craig F. Ferris

    2017-06-01

    Full Text Available The 5-HT6 receptor is a promising target for cognitive disorders, in particular for Alzheimer's disease (AD and other CNS disorders. The high-affinity and selective 5-HT6 receptor antagonist idalopirdine (Lu AE58054 is currently in development for mild-moderate AD as adjunct therapy to acetylcholinesterase inhibitors (AChEIs. We studied the effects of idalopirdine alone and in combination with the AChEI donepezil on brain activity using BOLD (Blood Oxygen Level Dependent functional magnetic resonance imaging (fMRI in the awake rat. Idalopirdine (2 mg/kg, i.v. alone had a modest effect on brain activity, resulting in activation of eight brain regions at the peak response. Of these, the cholinergic diagonal band of Broca, the infralimbic cortex, the ventral pallidum, the nucleus accumbens shell, and the magnocellular preoptic area were shared with the effects of donepezil (0.3 mg/kg, i.v.. Donepezil alone activated 19 brain regions at the peak response, including several cortical regions, areas of the septo-hippocampal system and the serotonergic raphe nucleus. When idalopirdine and donepezil were combined, there was a robust stimulation pattern with activation of 36 brain regions spread across the extended-amygdala-, striato-pallidal, and septo-hippocampal networks as well as the cholinergic system. These findings indicate that, whilst idalopirdine and donepezil recruit a number of overlapping regions including one of the forebrain cholinergic nuclei, the synergistic effect of both compounds extends beyond the cholinergic system and the effects of donepezil alone toward recruitment of multiple neural circuits and neurotransmitter systems. These data provide new insight into the mechanisms via which idalopirdine might improve cognition in donepezil-treated AD patients.

  11. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.

    Science.gov (United States)

    Finn, Emily S; Shen, Xilin; Scheinost, Dustin; Rosenberg, Monica D; Huang, Jessica; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd

    2015-11-01

    Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint' that can accurately identify subjects from a large group. Identification was successful across scan sessions and even between task and rest conditions, indicating that an individual's connectivity profile is intrinsic, and can be used to distinguish that individual regardless of how the brain is engaged during imaging. Characteristic connectivity patterns were distributed throughout the brain, but the frontoparietal network emerged as most distinctive. Furthermore, we show that connectivity profiles predict levels of fluid intelligence: the same networks that were most discriminating of individuals were also most predictive of cognitive behavior. Results indicate the potential to draw inferences about single subjects on the basis of functional connectivity fMRI.

  12. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies

    DEFF Research Database (Denmark)

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian Numelin

    2016-01-01

    Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task-related sensorimotor activation in dystonia, but the results appear to be rather variable across studies....... Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia-related alterations in task-related activity...... postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between-group differences in task-related activity were retrieved in a sub-analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased...

  13. Synaesthetic Colour in the Brain: Beyond Colour Areas. A Functional Magnetic Resonance Imaging Study of Synaesthetes and Matched Controls

    NARCIS (Netherlands)

    Leeuwen, T.M. van; Petersson, K.M.; Hagoort, P.

    2010-01-01

    Background: In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e. g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory

  14. Neural signatures of social conformity: A coordinate-based activation likelihood estimation meta-analysis of functional brain imaging studies.

    Science.gov (United States)

    Wu, Haiyan; Luo, Yi; Feng, Chunliang

    2016-12-01

    People often align their behaviors with group opinions, known as social conformity. Many neuroscience studies have explored the neuropsychological mechanisms underlying social conformity. Here we employed a coordinate-based meta-analysis on neuroimaging studies of social conformity with the purpose to reveal the convergence of the underlying neural architecture. We identified a convergence of reported activation foci in regions associated with normative decision-making, including ventral striatum (VS), dorsal posterior medial frontal cortex (dorsal pMFC), and anterior insula (AI). Specifically, consistent deactivation of VS and activation of dorsal pMFC and AI are identified when people's responses deviate from group opinions. In addition, the deviation-related responses in dorsal pMFC predict people's conforming behavioral adjustments. These are consistent with current models that disagreement with others might evoke "error" signals, cognitive imbalance, and/or aversive feelings, which are plausibly detected in these brain regions as control signals to facilitate subsequent conforming behaviors. Finally, group opinions result in altered neural correlates of valuation, manifested as stronger responses of VS to stimuli endorsed than disliked by others. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study

    Science.gov (United States)

    2012-01-01

    Background Several conflict processing studies aimed to dissociate neuroimaging phenomena related to stimulus and response conflict processing. However, previous studies typically did not include a paradigm-independent measure of either stimulus or response conflict. Here we have combined electro-myography (EMG) with event-related brain potentials (ERPs) in order to determine whether a particularly robust marker of conflict processing, the N450 ERP effect usually related to the activity of the Anterior Cingulate Cortex (ACC), is related to stimulus- or to response-conflict processing. EMG provided paradigm-independent measure of response conflict. In a numerical Stroop paradigm participants compared pairs of digits and pressed a button on the side where they saw the larger digit. 50% of digit-pairs were preceded by an effective cue which provided accurate information about the required response. 50% of trials were preceded by a neutral cue which did not communicate the side of response. Results EMG showed that response conflict was significantly larger in neutrally than in effectively cued trials. The N450 was similar when response conflict was high and when it was low. Conclusions We conclude that the N450 is related to stimulus or abstract, rather than to response conflict detection/resolution. Findings may enable timing ACC conflict effects. PMID:22452924

  16. The Effects of Acupuncture Stimulation for Brain Activation and Alcohol Abstinence Self-Efficacy: Functional MRI Study

    Directory of Open Access Journals (Sweden)

    Chae Ha Yang

    2017-01-01

    Full Text Available We attempted to investigate whether acupuncture stimulation at HT7 can have an effect on brain activation patterns and alcohol abstinence self-efficacy. Thirty-four right-handed healthy subjects were recruited for this study. They were randomly assigned into two groups: the HT7 (Shenmen group and the LI5 (Yangxi group. Acupuncture stimulation was performed using a block paradigm during fMRI scanning. Additionally, the Korean version of Alcohol Abstinence Self-Efficacy Scale (AASES was used to determine the effect of acupuncture stimulation on self-efficacy to abstain from alcohol use. According to the result of fMRI group analysis, the activation induced by HT7 stimulation was found on the bilateral postcentral gyrus, inferior parietal lobule, inferior frontal gyrus, claustrum, insula, and anterior lobe of the cerebellum, as well as on the left posterior lobe of the cerebellum (p<0.001, uncorrected. According to the AASES analysis, the interaction effect for gender and treatment was marginally significant (F(1,30=4.152, p=0.050. For female group, the simple main effect of treatment was significant (F(1,11=8.040, p=0.016, indicating that the mean change score was higher in the HT7 stimulation than in the LI5 stimulation. Therefore, our study has provided evidence to support that HT7 stimulation has a positive therapeutic effect on the alcohol-related diseases.

  17. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study.

    Science.gov (United States)

    Szűcs, Dénes; Soltész, Fruzsina

    2012-03-27

    Several conflict processing studies aimed to dissociate neuroimaging phenomena related to stimulus and response conflict processing. However, previous studies typically did not include a paradigm-independent measure of either stimulus or response conflict. Here we have combined electro-myography (EMG) with event-related brain potentials (ERPs) in order to determine whether a particularly robust marker of conflict processing, the N450 ERP effect usually related to the activity of the Anterior Cingulate Cortex (ACC), is related to stimulus- or to response-conflict processing. EMG provided paradigm-independent measure of response conflict. In a numerical Stroop paradigm participants compared pairs of digits and pressed a button on the side where they saw the larger digit. 50% of digit-pairs were preceded by an effective cue which provided accurate information about the required response. 50% of trials were preceded by a neutral cue which did not communicate the side of response. EMG showed that response conflict was significantly larger in neutrally than in effectively cued trials. The N450 was similar when response conflict was high and when it was low. We conclude that the N450 is related to stimulus or abstract, rather than to response conflict detection/resolution. Findings may enable timing ACC conflict effects.

  18. Combining Exergame Training with Omega-3 Fatty Acid Supplementation: Protocol for a Randomized Controlled Study assessing the Effect on Neuronal Structure/Function in the Elderly Brain

    Directory of Open Access Journals (Sweden)

    Alexandra Schättin

    2016-11-01

    Full Text Available A common problem in the older population is the risk of falling that might lead to injury, immobility, and reduced survival. Age-related neuronal changes, e.g. decline in grey- and white-matter, affect neuronal, cognitive, and motor functioning. The improvement of these factors might decrease fall events in elderly. Studies showed that the sole administration of video game-based physical exercise, a so-called exergame, or omega-3 fatty acid (FA may improve motor and/or cognitive functioning through neuronal changes in the brain of older adults. The aim of this study is to assess the effects of a combination of exergame training with omega-3 FA supplementation on the elderly brain. We hypothesize that an intervention using a combination approach differently effects on the neuronal structure and function of the elderly’s brain as compared to the sole administration of exergame training. The study is a parallel, double-blinded, randomized controlled trial lasting 26 weeks. Sixty autonomous living, non-smoking, and right-handed healthy older (>65 years adults who live independently or in a senior residency are included, randomized, and allocated to one of two study groups. The experimental group receives a daily amount of 13.5ml fish oil (including 2.9g of omega-3 FA, whereas the control group receives a daily amount of 13.5ml olive oil for 26 weeks. After 16 weeks, both groups start with an exergame training program three times per week. Measurements are performed on three time-points by treatment blinded investigators: pre-intervention measurement, blood sample after 16 week, and post-intervention measurements. The main outcomes are motor evoked potentials of the right M. tibialis anterior (transcranial magnetic stimulation and response-related potentials (electroencephalography during a cognitive test. For secondary outcomes, reaction times during cognitive tests and spatio-temporal parameters during gait performance are measured. Statistics

  19. Electroencephalographic power and coherence analyses suggest altered brain function in abstinent male heroin-dependent patients

    NARCIS (Netherlands)

    Franken, Ingmar H. A.; Stam, Cornelis J.; Hendriks, Vincent M.; van den Brink, Wim

    2004-01-01

    Previous studies have shown that drug abuse is associated with altered brain function. However, studies of heroin abuse-related brain dysfunctions are scarce. Electroencephalographic ( EEG) power and coherence analyses are two important tools for examining the effects of drugs on brain function. In

  20. Acute caffeine administration impact on working memory-related brain activation and functional connectivity in the elderly: a BOLD and perfusion MRI study.

    Science.gov (United States)

    Haller, S; Rodriguez, C; Moser, D; Toma, S; Hofmeister, J; Sinanaj, I; Van De Ville, D; Giannakopoulos, P; Lovblad, K-O

    2013-10-10

    In young individuals, caffeine-mediated blockade of adenosine receptors and vasoconstriction has direct repercussions on task-related activations, changes in functional connectivity, as well as global vascular effects. To date, no study has explored the effect of caffeine on brain activation patterns during highly demanding cognitive tasks in the elderly. This prospective, placebo-controlled crossover design comprises 24 healthy elderly individuals (mean age 68.8 ± 4.0 years, 17 females) performing a 2-back working memory (WM) task in functional magnetic resonance imaging (fMRI). Analyses include complimentary assessment of task-related activations (general linear model, GLM), functional connectivity (tensorial independent component analysis, TICA), and baseline perfusion (arterial spin labeling). Despite a reduction in whole-brain global perfusion (-22.7%), caffeine-enhanced task-related GLM activation in a local and distributed network is most pronounced in the bilateral striatum and to a lesser degree in the right middle and inferior frontal gyrus, bilateral insula, left superior and inferior parietal lobule as well as in the cerebellum bilaterally. TICA was significantly enhanced (+8.2%) in caffeine versus placebo in a distributed and task-relevant network including the pre-frontal cortex, the supplementary motor area, the ventral premotor cortex and the parietal cortex as well as the occipital cortex (visual stimuli) and basal ganglia. The inverse comparison of placebo versus caffeine had no significant difference. Activation strength of the task-relevant-network component correlated with response accuracy for caffeine yet not for placebo, indicating a selective cognitive effect of caffeine. The present findings suggest that acute caffeine intake enhances WM-related brain activation as well as functional connectivity of blood oxygen level-dependent fMRI in elderly individuals. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. When "altering brain function" becomes "mind control".

    Science.gov (United States)

    Koivuniemi, Andrew; Otto, Kevin

    2014-01-01

    Functional neurosurgery has seen a resurgence of interest in surgical treatments for psychiatric illness. Deep brain stimulation (DBS) technology is the preferred tool in the current wave of clinical experiments because it allows clinicians to directly alter the functions of targeted brain regions, in a reversible manner, with the intent of correcting diseases of the mind, such as depression, addiction, anorexia nervosa, dementia, and obsessive compulsive disorder. These promising treatments raise a critical philosophical and humanitarian question. "Under what conditions does 'altering brain function' qualify as 'mind control'?" In order to answer this question one needs a definition of mind control. To this end, we reviewed the relevant philosophical, ethical, and neurosurgical literature in order to create a set of criteria for what constitutes mind control in the context of DBS. We also outline clinical implications of these criteria. Finally, we demonstrate the relevance of the proposed criteria by focusing especially on serendipitous treatments involving DBS, i.e., cases in which an unintended therapeutic benefit occurred. These cases highlight the importance of gaining the consent of the subject for the new therapy in order to avoid committing an act of mind control.

  2. Functional Recovery and Life Satisfaction in the First Year After Severe Traumatic Brain Injury: A Prospective Multicenter Study of a Norwegian National Cohort.

    Science.gov (United States)

    Anke, Audny; Andelic, Nada; Skandsen, Toril; Knoph, Rein; Ader, Tiina; Manskow, Unn; Sigurdardottir, Solrun; Røe, Cecilie

    2015-01-01

    (1) To examine the impact of demographic and acute injury-related variables on functional recovery and life satisfaction after severe traumatic brain injury (sTBI) and (2) to test whether postinjury functioning, postconcussive symptoms, emotional state, and functional improvement are related to life satisfaction. Prospective national multicenter study. Level 1 trauma centers in Norway. 163 adults with sTBI. Functional recovery between 3 and 12 months postinjury measured with Glasgow Outcome Scale Extended, Rivermead Postconcussion Symptoms Questionnaire, Hospital Anxiety and Depression Scale, and satisfaction with life situation. 60% of cases experienced functional improvement from 3 to 12 months postinjury. Multivariate logistic regression analysis revealed that discharge to a rehabilitation department from acute care (odds ratio [OR] = 2.14; P life situation. Regression analysis revealed that older age (>65 years), low education, better functional outcome, and the absence of depressive and postconcussion symptoms were significant (P life satisfaction. Functional improvement was significantly associated with emotional state but not to life satisfaction. Following sTBI, approximately two-thirds of survivors improve between 3 and 12 months postinjury and are satisfied with their life. Direct discharge from acute care to specialized rehabilitation appears to increase functional recovery.

  3. Adaptation of brain functional and structural networks in aging.

    Directory of Open Access Journals (Sweden)

    Annie Lee

    Full Text Available The human brain, especially the prefrontal cortex (PFC, is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI, and high angular resolution diffusion imaging (HARDI, and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  4. Adaptation of brain functional and structural networks in aging.

    Science.gov (United States)

    Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2015-01-01

    The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  5. The effects of senior brain health exercise program on basic physical fitness, cognitive function and BDNF of elderly women - a feasibility study.

    Science.gov (United States)

    Byun, Jung-Eun; Kang, Eun-Bum

    2016-06-01

    This study was to investigate the impacts of senior brain heath exercise (SBHE) program for 12 weeks to basic active physical fitness, cognitive function and brain derived neurotrophic factor (BDNF) in elderly women. Subject of this study is total of 24 women in the age of 65-79 who can conduct normal daily activity and communication but have not participated in regular exercise in recent 6 months. The study groups were divided into an exercise group (EG, n=13) and a control group (CG, n=11). The exercise program was consisted of SBHE, and training frequency was 4 times weekly, of which training time was a total of 50 minutes each time in level of intensity of 9-14 by rating of perceived exertion (RPE). First, 12-week SBHE program has shown statistical increase in basic physical fitness in the EG comparing with the CG, such as lower body strength, upper body strength and aerobic endurance, but not in flexibility, agility and dynamic balance. Second, in the case of Mini-mental state examination Korean version (MMSE-K) and BDNF, it showed that there was a statistically significant increase in the EG comparing with the CG. In this study, 12-week SBHE program has resulted in positive effect on change of basic physical fitness (strength and aerobic endurance), cognitive function and BDNF. If above program adds movements that can enhance flexibility, dynamic balance and agility, this can be practical exercise program to help seniors maintain overall healthy lifestyle.

  6. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  7. Hemispheric asymmetry of electroencephalography-based functional brain networks.

    Science.gov (United States)

    Jalili, Mahdi

    2014-11-12

    Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.

  8. A functional MRI study of the brain in stroke patients with upper-limb paralysis treated with constraint-induced movement therapy

    International Nuclear Information System (INIS)

    Wen Bo; Ma Lin; Weng Changshui; Zheng Zhixin; Sun Tong

    2009-01-01

    Objective: To investigate and compare the activation patterns of stroke patients with upper-limb paralysis using functional MRI before and after treatment with constraint-induced movement therapy (CIMT) so as to explore the mechanism of CIMT. Methods: Six patients in chronic stage of brain infarction who have functional disturbance in right upper-limb and 9 normal controls were entered into the study. All of the patients were asked to perform the thumb-to-index finger tapping task and underwent functional MRI before and two weeks after CIMT. The controls underwent fMRI of same protocol once. The patients' upper-limb function scores before and after CIMT were analyzed with SPSS 11.5 by paired t test. The fMRI data were analyzed with analysis of functional neurolmages (AFNI) software. The percentage of blood oxygenation level dependent (BOLD) signal change for the normal control was analyzed by one-sample t test to indentify the activated brain regions. The percentage change of BOLD signal for the patients before and after CIMT was compared to control's data by independent-samples t test. The percentage change of BOLD signal for the patients before and after CIMT was analyzed by paired-samples t test. The significant difference level was set P<0.05. Results: The fMRI showed the patients' activated brain regions before CIMT were similar to that of the controls', while the activation level was lower. There were wide areas activated to compensate the impaired function especially for the fight upper-limb. Before CIMT, the patients' score for fight upper-limb on the action research arm test was 27±4. After CIMT, the patients' score was 40±3, and the difference was significant (t=14.626, P<0.05), which indicated the improved function. These subjects also displayed cortical reorganization after CIMT on fMRI. The areas responsible for the right hand movement showed increased activation and the activation level at bilateral corpora striata thalami, and cerebella increased

  9. Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study.

    Science.gov (United States)

    Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou

    2014-06-01

    This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (pright superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (pright superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (prights reserved.

  10. Dynamic functional brain networks involved in simple visual discrimination learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Vascular Function Is Improved After an Environmental Enrichment Program: The Train the Brain-Mind the Vessel Study.

    Science.gov (United States)

    Bruno, Rosa Maria; Stea, Francesco; Sicari, Rosa; Ghiadoni, Lorenzo; Taddei, Stefano; Ungar, Andrea; Bonuccelli, Ubaldo; Tognoni, Gloria; Cintoli, Simona; Del Turco, Serena; Sbrana, Silverio; Gargani, Luna; D'Angelo, Gennaro; Pratali, Lorenza; Berardi, Nicoletta; Maffei, Lamberto; Picano, Eugenio

    2018-06-01

    Environmental enrichment may slow cognitive decay possibly acting through an improvement in vascular function. Aim of the study was to assess the effects of a 7-month cognitive, social, and physical training program on cognitive and vascular function in patients with mild cognitive impairment. In a single-center, randomized, parallel-group study, 113 patients (age, 65-89 years) were randomized to multidomain training (n=55) or usual care (n=58). All participants underwent neuropsychological tests and vascular evaluation, including brachial artery flow-mediated dilation, carotid-femoral pulse wave velocity, carotid distensibility, and assessment of circulating hematopoietic CD34+ and endothelial progenitor cells. At study entry, an age-matched control group (n=45) was also studied. Compared with controls, patients had at study entry a reduced flow-mediated dilation (2.97±2.14% versus 3.73±2.06%; P =0.03) and hyperemic stimulus (shear rate area under the curve, 19.1±15.7 versus 25.7±15.1×10 -3 ; P =0.009); only the latter remained significant after adjustment for confounders ( P =0.03). Training improved Alzheimer disease assessment scale cognitive (training, 14.0±4.8 to 13.1±5.5; nontraining, 12.1±3.9 to 13.2±4.8; P for interaction visit×training=0.02), flow-mediated dilation (2.82±2.19% to 3.40±1.81%, 3.05±2.08% to 2.24±1.59%; P =0.006; P =0.023 after adjustment for diameter and shear rate area under the curve), and circulating hematopoietic CD34 + cells and prevented the decline in carotid distensibility (18.4±5.3 to 20.0±6.6, 23.9±11.0 to 19.5±7.1 Pa -1 ; P =0.005). The only clinical predictor of improvement of cognitive function after training was established hypertension. There was no correlation between changes in measures of cognitive and vascular function. In conclusion, a multidomain training program slows cognitive decline, especially in hypertensive individuals. This effect is accompanied by improved systemic endothelial function

  12. Deep brain stimulation as a functional scalpel.

    Science.gov (United States)

    Broggi, G; Franzini, A; Tringali, G; Ferroli, P; Marras, C; Romito, L; Maccagnano, E

    2006-01-01

    Since 1995, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan (INNCB,) 401 deep brain electrodes were implanted to treat several drug-resistant neurological syndromes (Fig. 1). More than 200 patients are still available for follow-up and therapeutical considerations. In this paper our experience is reviewed and pioneered fields are highlighted. The reported series of patients extends the use of deep brain stimulation beyond the field of Parkinson's disease to new fields such as cluster headache, disruptive behaviour, SUNCt, epilepsy and tardive dystonia. The low complication rate, the reversibility of the procedure and the available image guided surgery tools will further increase the therapeutic applications of DBS. New therapeutical applications are expected for this functional scalpel.

  13. Synaesthetic colour in the brain: Beyond colour areas. A functional magnetic resonance imaging study of synaesthetes and matched controls

    NARCIS (Netherlands)

    van Leeuwen, T.M.; Petersson, K.M.; Hagoort, P.

    2010-01-01

    Background

    In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual

  14. Laterality patterns of brain functional connectivity: gender effects.

    Science.gov (United States)

    Tomasi, Dardo; Volkow, Nora D

    2012-06-01

    Lateralization of brain connectivity may be essential for normal brain function and may be sexually dimorphic. Here, we study the laterality patterns of short-range (implicated in functional specialization) and long-range (implicated in functional integration) connectivity and the gender effects on these laterality patterns. Parallel computing was used to quantify short- and long-range functional connectivity densities in 913 healthy subjects. Short-range connectivity was rightward lateralized and most asymmetrical in areas around the lateral sulcus, whereas long-range connectivity was rightward lateralized in lateral sulcus and leftward lateralizated in inferior prefrontal cortex and angular gyrus. The posterior inferior occipital cortex was leftward lateralized (short- and long-range connectivity). Males had greater rightward lateralization of brain connectivity in superior temporal (short- and long-range), inferior frontal, and inferior occipital cortices (short-range), whereas females had greater leftward lateralization of long-range connectivity in the inferior frontal cortex. The greater lateralization of the male's brain (rightward and predominantly short-range) may underlie their greater vulnerability to disorders with disrupted brain asymmetries (schizophrenia, autism).

  15. Effects of Soccer Heading on Brain Structure and Function

    Science.gov (United States)

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  16. Effects of soccer heading on brain structure and function

    Directory of Open Access Journals (Sweden)

    Ana Carolina Oliveira Rodrigues

    2016-03-01

    Full Text Available Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of six to twelve incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the

  17. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Abbas, Kausar; Shenk, Trey E; Poole, Victoria N; Breedlove, Evan L; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M; Robinson, Meghan E

    2015-03-01

    Long-term neurological damage as a result of head trauma while playing sports is a major concern for football athletes today. Repetitive concussions have been linked to many neurological disorders. Recently, it has been reported that repetitive subconcussive events can be a significant source of accrued damage. Since football athletes can experience hundreds of subconcussive hits during a single season, it is of utmost importance to understand their effect on brain health in the short and long term. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was used to study changes in the default mode network (DMN) after repetitive subconcussive mild traumatic brain injury. Twenty-two high school American football athletes, clinically asymptomatic, were scanned using the rs-fMRI for a single season. Baseline scans were acquired before the start of the season, and follow-up scans were obtained during and after the season to track the potential changes in the DMN as a result of experienced trauma. Ten noncollision-sport athletes were scanned over two sessions as controls. Overall, football athletes had significantly different functional connectivity measures than controls for most of the year. The presence of this deviation of football athletes from their healthy peers even before the start of the season suggests a neurological change that has accumulated over the years of playing the sport. Football athletes also demonstrate short-term changes relative to their own baseline at the start of the season. Football athletes exhibited hyperconnectivity in the DMN compared to controls for most of the sessions, which indicates that, despite the absence of symptoms typically associated with concussion, the repetitive trauma accrued produced long-term brain changes compared to their healthy peers.

  18. Pro-cognitive drug effects modulate functional brain network organization

    Science.gov (United States)

    Giessing, Carsten; Thiel, Christiane M.

    2012-01-01

    Previous studies document that cholinergic and noradrenergic drugs improve attention, memory and cognitive control in healthy subjects and patients with neuropsychiatric disorders. In humans neural mechanisms of cholinergic and noradrenergic modulation have mainly been analyzed by investigating drug-induced changes of task-related neural activity measured with functional magnetic resonance imaging (fMRI). Endogenous neural activity has often been neglected. Further, although drugs affect the coupling between neurons, only a few human studies have explicitly addressed how drugs modulate the functional connectome, i.e., the functional neural interactions within the brain. These studies have mainly focused on synchronization or correlation of brain activations. Recently, there are some drug studies using graph theory and other new mathematical approaches to model the brain as a complex network of interconnected processing nodes. Using such measures it is possible to detect not only focal, but also subtle, widely distributed drug effects on functional network topology. Most important, graph theoretical measures also quantify whether drug-induced changes in topology or network organization facilitate or hinder information processing. Several studies could show that functional brain integration is highly correlated with behavioral performance suggesting that cholinergic and noradrenergic drugs which improve measures of cognitive performance should increase functional network integration. The purpose of this paper is to show that graph theory provides a mathematical tool to develop theory-driven biomarkers of pro-cognitive drug effects, and also to discuss how these approaches can contribute to the understanding of the role of cholinergic and noradrenergic modulation in the human brain. Finally we discuss the “global workspace” theory as a theoretical framework of pro-cognitive drug effects and argue that pro-cognitive effects of cholinergic and noradrenergic drugs

  19. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS

    OpenAIRE

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    Objective: This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. Methods: A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, a...

  20. Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers.

    Science.gov (United States)

    Huang, Xiaojun; Pu, Weidan; Liu, Haihong; Li, Xinmin; Greenshaw, Andrew J; Dursun, Serdar M; Xue, Zhimin; Liu, Zhening

    2017-01-01

    Betel quid (BQ) is a common psychoactive substance worldwide with particularly high usage in many Asian countries. This study aimed to explore the effect of BQ use on functional connectivity by comparing global functional brain networks and their subset between BQ chewers and healthy controls (HCs). Resting-state functional magnetic resonance imaging (fMRI) was obtained from 24 betel quid-dependent (BQD) male chewers and 27 healthy male individuals on a 3.0T scanner. We used independent component analysis (ICA) to determine components that represent the brain's functional networks and their spatial aspects of functional connectivity. Two sample t -tests were used to identify the functional connectivity differences in each network between these two groups. Seventeen networks were identified by ICA. Nine of them showed connectivity differences between BQD and HCs (two sample t -tests, p  betel quid dependence scale scores were positively related to the increased functional connectivity in the orbitofrontal ( r  = 0.39, p  = 0.03) while negatively related to the decreased functional connectivity in medial frontal/anterior cingulate networks ( r  = -0.35, p  = 0.02). Our findings provide further evidence that BQ chewing may lead to brain functional connectivity changes, which may play a key role in the psychological and physiological effects of BQ.

  1. Nuclear magnetic resonance imaging and brain functional exploration

    International Nuclear Information System (INIS)

    Le Bihan, D.; CEA, 91 - Orsay

    1997-01-01

    The utilization of nuclear magnetic resonance imaging for functional analysis of the brain is presented: the oxygenated and deoxygenated blood flowing in the brain do not have the same effect on NMR images; the oxygenated blood, related to brain activity, may be detected and the corresponding activity zone in the brain, identified; functional NMR imaging could be used to gain a better understanding of functional troubles linked to neurological or psychiatric diseases

  2. Anatomo-functional study of the temporo-parieto-occipital region: dissection, tractographic and brain mapping evidence from a neurosurgical perspective

    Science.gov (United States)

    De Benedictis, Alessandro; Duffau, Hugues; Paradiso, Beatrice; Grandi, Enrico; Balbi, Sergio; Granieri, Enrico; Colarusso, Enzo; Chioffi, Franco; Marras, Carlo Efisio; Sarubbo, Silvio

    2014-01-01

    The temporo-parieto-occipital (TPO) junction is a complex brain territory heavily involved in several high-level neurological functions, such as language, visuo-spatial recognition, writing, reading, symbol processing, calculation, self-processing, working memory, musical memory, and face and object recognition. Recent studies indicate that this area is covered by a thick network of white matter (WM) connections, which provide efficient and multimodal integration of information between both local and distant cortical nodes. It is important for neurosurgeons to have good knowledge of the three-dimensional subcortical organisation of this highly connected region to minimise post-operative permanent deficits. The aim of this dissection study was to highlight the subcortical functional anatomy from a topographical surgical perspective. Eight human hemispheres (four left, four right) obtained from four human cadavers were dissected according to Klingler's technique. Proceeding latero-medially, the authors describe the anatomical courses of and the relationships between the main pathways crossing the TPO. The results obtained from dissection were first integrated with diffusion tensor imaging reconstructions and subsequently with functional data obtained from three surgical cases, all resection of infiltrating glial tumours using direct electrical mapping in awake patients. The subcortical limits for performing safe lesionectomies within the TPO region are as follows: within the parietal region, the anterior horizontal part of the superior longitudinal fasciculus and, more deeply, the arcuate fasciculus; dorsally, the vertical projective thalamo-cortical fibres. For lesions located within the temporal and occipital lobes, the resection should be tailored according to the orientation of the horizontal associative pathways (the inferior fronto-occipital fascicle, inferior longitudinal fascicle and optic radiation). The relationships between the WM tracts and the ventricle

  3. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study

    OpenAIRE

    Raider, Kayla; Ma, Delin; Harris, Janna L.; Fuentes, Isabella; Rogers, Robert S.; Wheatley, Joshua L.; Geiger, Paige C.; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M.; Stanford, John A.

    2016-01-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy (1H-MRS) to measure neurochemicals in ...

  4. Prospective study of a community reintegration programme for patients with acquired chronic brain injury: effects on caregivers' emotional burden and family functioning.

    Science.gov (United States)

    Geurtsen, Gert J; van Heugten, Caroline M; Meijer, Ron; Martina, Juan D; Geurts, Alexander C H

    2011-01-01

    To examine the effects of a residential community reintegration programme for patients with psychosocial problems due to acquired chronic brain injury on caregivers' emotional burden and family functioning. A prospective cohort study with waiting list control and 1-year follow-up. Forty-one caregivers of which 28 female. Mean age was 48 ± 8.3 years and 33 caregivers were parents. A structured residential treatment programme was offered to the patients directed at domestic life, work, leisure time and social interactions. The Involvement Evaluation Questionnaire for Brain Injury (IEQ-BI) for emotional burden, the General Health Questionnaire (GHQ) for psychological health and the Family Assessment Device (FAD) for family functioning were used. There was an overall significant effect of Time for all outcome measures (MANOVA T(2 )= 9.1, F(15,317) = 64.1, p = 0.000). The effect sizes were moderate for three IEQ-BI sub-scales (partial η(2 )= 0.12-0.17) and small for two sub-scales (partial η(2 )= 0.05-0.09). The effect size for GHQ was moderate (partial η(2 )= 0.11). As for FAD no significant time effects were present (partial η(2 )= 0.00-0.04). Emotional burden and psychological health of the caregivers improved significantly when patients with acquired brain injury and psychosocial problems followed a residential community reintegration programme. Family dynamics remained stable.

  5. Alterations in brain metabolism and function following administration of low-dose codeine phosphate: 1H-magnetic resonance spectroscopy and resting-state functional magnetic resonance imaging studies

    OpenAIRE

    Cao, Zhen; Lin, Pei-Yin; Shen, Zhi-Wei; Wu, Ren-Hua; Xiao, Ye-Yu

    2016-01-01

    The aim of the present study was to identify alterations in brain function following administration of a single, low-dose of codeine phosphate in healthy volunteers using resting-state functional magnetic resonance imaging (fMRI). In addition, the metabolic changes in the two sides of the frontal lobe were identified using 1H-magnetic resonance spectroscopy (1H-MRS). A total of 20 right-handed healthy participants (10 males, 10 females) were evaluated, and a Signa HDx 1.5T MRI scanner was use...

  6. Magnetic Resonance and Brain Function. Approaches from Physics

    International Nuclear Information System (INIS)

    Maraviglia, B.

    1999-01-01

    In the last decade of this millennium, while, on the one hand, the international scientific community has focused with increasing endeavour on the research about the great unknown of the mechanism and the pathologies of the human brain, on the other hand, the NMR community has achieved some important results, which should widely affect, in the future, the possibility of understanding the function and disfunction of the human brain. In the early 1980's, the beginning of the application of Magnetic Resonance Imaging (MRI) to the morphological study of the brain in vivo, has played an extraordinary role, which, since then, placed MRI in a leading position among the methodologies used for investigation and diagnostics of the Central Nervous System. In the 1990s, the objective of finding new means, based on MRI, capable of giving functional and metabolic information, with the highest possible space resolution, drove the scientists towards different approaches. Among these, the first one to generate a breakthrough in the localization of specific cerebral functions was the Blood Oxygen Level Development (BOLD) MRI. A very wide range of applications followed the discovery of BOLD imaging. Still, this method gives an indirect information of the localization of functions, via the variation of oxygen release and deoxyhemoglobin formation. Of course, a high-resolution spatial distribution of the metabolites, crucial to brain function, would give a deeper insight into the occurring processes. This finality is aimed at by the Double Magnetic Resonance methods, which are developing new procedures able to detect some metabolites with increasing sensitivity and resolution. A third new promising approach to functional MRI should derive from the use of hyperpolarized, opens a series of potential applications to the study of brain function

  7. Left Brain vs. Right Brain: Findings on Visual Spatial Capacities and the Functional Neurology of Giftedness

    Science.gov (United States)

    Kalbfleisch, M. Layne; Gillmarten, Charles

    2013-01-01

    As neuroimaging technologies increase their sensitivity to assess the function of the human brain and results from these studies draw the attention of educators, it becomes paramount to identify misconceptions about what these data illustrate and how these findings might be applied to educational contexts. Some of these "neuromyths" have…

  8. Cognitive function is related to fronto-striatal serotonin transporter levels--a brain PET study in young healthy subjects

    DEFF Research Database (Denmark)

    Madsen, Karine; Erritzøe, David Frederik; Mortensen, Erik Lykke

    2011-01-01

    Pharmacological manipulation of serotonergic neurotransmission in healthy volunteers impacts on cognitive test performance. Specifically, markers of serotonin function are associated with attention and executive functioning, long-term memory, and general cognitive ability. The serotonin transporter...

  9. Altered resting brain function and structure in professional badminton players.

    Science.gov (United States)

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  10. Clinimetrics and functional outcome one year after traumatic brain injury

    OpenAIRE

    Baalen, Bianca

    2008-01-01

    textabstractThis thesis is based on the findings of the FuPro-TBI (Functional Prognosis in Traumatic Brain Injury) study, which was part of the national FuPro research programme which investigated the functional prognosis of four neurological disorders: multiple sclerosis (MS), stroke, amyotrofic lateral sclerosis (ALS), and TBI. Frequently used measurement instruments were tested at different moments on their reliability and sensitivity to change. At the moment of discharge from hospital a r...

  11. Wada-test, functional magnetic resonance imaging and direct electrical stimulation - brain mapping methods

    International Nuclear Information System (INIS)

    Minkin, K.; Tanova, R.; Busarski, A.; Penkov, M.; Penev, L.; Hadjidekov, V.

    2009-01-01

    Modern neurosurgery requires accurate preoperative and intraoperative localization of brain pathologies but also of brain functions. The presence of individual variations in healthy subjects and the shift of brain functions in brain diseases provoke the introduction of various methods for brain mapping. The aim of this paper was to analyze the most widespread methods for brain mapping: Wada-test, functional magnetic resonance imaging (fMRI) and intraoperative direct electrical stimulation (DES). This study included 4 patients with preoperative brain mapping using Wada-test and fMRI. Intraoperative mapping with DES during awake craniotomy was performed in one case. The histopathological diagnosis was low-grade glioma in 2 cases, cortical dysplasia (1 patient) and arteriovenous malformation (1 patient). The brain mapping permits total lesion resection in three of four patients. There was no new postoperative deficit despite surgery near or within functional brain areas. Brain plasticity provoking shift of eloquent areas from their usual locations was observed in two cases. The brain mapping methods allow surgery in eloquent brain areas recognized in the past as 'forbidden areas'. Each method has advantages and disadvantages. The precise location of brain functions and pathologies frequently requires combination of different brain mapping methods. (authors)

  12. Brain perfusion and cognitive function changes in hypertensive patients

    International Nuclear Information System (INIS)

    Efimova, I.Y.; Efimova, N.Y.; Triss, S.V.; Lishmanov, Y.B.

    2008-01-01

    The aim of our study was to estimate brain perfusion and cognitive function (CF) in patients with arterial hypertension (AH) before and after hypotensive therapy. The study included 15 patients (mean age, 53.0±5.7 years) with previously untreated or ineffectively treated essential hypertension of the second degree. All patients underwent brain single photon emission computed tomography (SPECT) scanning with 99m Tc-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) and comprehensive neuropsychological testing before and after 24 weeks of hypotensive therapy (angiotensin-converting enzyme [ACE] inhibitor or diuretics). The brain perfusion was significantly lower (15-22%) in all regions of AH patients. These patients showed a 25% decrease in attention and psychomotor speed as well as a 14% decrease in mentation. Six months of hypotensive therapy led to an increase in brain perfusion by an average of 7-11% in all brain regions. After treatment these patients demonstrated an average 11-18% improvements in attention and psychomotor speed, as well as an average 10% improvement in abstract mentation. Marked signs of brain hypoperfusion and impaired CF: decrease in attention, slowing psychomotor speed and mentation was found in hypertensive patients even without focal neurological symptomatology. Twenty-four weeks of hypotensive treatment with ACE inhibitors or diuretics had a positive effect on cerebral perfusion and led to CF improvement. (author)

  13. Brain sexual differentiation and effects of cross-sex hormone therapy in transpeople: A resting-state functional magnetic resonance study.

    Science.gov (United States)

    Nota, Nienke M; Burke, Sarah M; den Heijer, Martin; Soleman, Remi S; Lambalk, Cornelis B; Cohen-Kettenis, Peggy T; Veltman, Dick J; Kreukels, Baudewijntje P

    2017-12-01

    It is hypothesized that transpeople show sex-atypical differentiation of the brain. Various structural neuroimaging studies provide support for this notion, but little is known about the sexual differentiation of functional resting-state networks in transpeople. In this study we therefore aimed to determine whether brain functional connectivity (FC) patterns in transpeople are sex-typical or sex-atypical, before and after the start of cross-sex hormone therapy (CHT). We acquired resting-state functional magnetic resonance data in 36 transpeople (22 with female sex assigned at birth), first during gonadal suppression, and again four months after start of CHT, and in 37 cisgender people (20 females), both sessions without any hormonal intervention. We used independent component analysis to identify the default mode network (DMN), salience network (SN), and left and right working memory network (WMN). These spatial maps were used for group comparisons. Within the DMN, SN, and left WMN similar FC patterns were found across groups. However, within the right WMN, cisgender males showed significantly greater FC in the right caudate nucleus than cisgender females. There was no such sex difference in FC among the transgender groups and they did not differ significantly from either of the cisgender groups. CHT (in transgender participants) and circulating sex steroids (in cisgender participants) did not affect FC. Our findings may suggest that cisgender males and females experience a dissimilar (early) differentiation of the right WMN and that such differentiation is less pronounced in transpeople. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    Science.gov (United States)

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  15. The Multiple Correspondence Analysis Method and Brain Functional Connectivity: Its Application to the Study of the Non-linear Relationships of Motor Cortex and Basal Ganglia.

    Science.gov (United States)

    Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel

    2017-01-01

    The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.

  16. Pharmacologic and radioimmunologic studies on the role of the dopaminergic system in the brain for the regulation of adenohypophyseal adrenocorticotropic function

    Energy Technology Data Exchange (ETDEWEB)

    Boyadzhieva, N; Milkov, V; Milanov, S [Meditsinska Akademiya, Sofia (Bulgaria). Nauchen Inst. po Rentgenologiya i Radiobiologiya

    1990-01-01

    The studies were performed in three experimental setups after single and repeated (5, 10, 20 and 30 times daily) application of dopamine agonists and antagonists (levodopa, bromcryptine, apomorphine hydrochloride, levodopa + carbidopa combination and haloperidol) for determining the changes in the serum ACTH level in rats. In stress-free conditions and in the presence of stress effects dopamine agonists were shown to exert inhibiting effect on ACTH release. The independent role of the brain dopaminergic system was studied on combined application of agents (obsidan, phentolamine and piperoxan) blocking the central alpha- and beta-receptors and dopamine agonists and antagonists, accordingly under stress-free conditions and after cold-induced stress. The results pointed out the participation of the dopaminergic system in the complex neuro-meditary mechanism of controlling the production and release of ACTH from the adenohypophysis both under stress-free and stress conditions. A hypothesis is advanced that the brain dopaminergic system is implicated in the regulation of the adrenocorticotropic function in suppressed adrenergic system. 3 figs, 7 refs.

  17. Pharmacologic and radioimmunologic studies on the role of the dopaminergic system in the brain for the regulation of adenohypophyseal adrenocorticotropic function

    International Nuclear Information System (INIS)

    Boyadzhieva, N.; Milkov, V.; Milanov, S.

    1990-01-01

    The studies were performed in three experimental setups after single and repeated (5, 10, 20 and 30 times daily) application of dopamine agonists and antagonists (levodopa, bromcryptine, apomorphine hydrochloride, levodopa + carbidopa combination and haloperidol) for determining the changes in the serum ACTH level in rats. In stress-free conditions and in the presence of stress effects dopamine agonists were shown to exert inhibiting effect on ACTH release. The independent role of the brain dopaminergic system was studied on combined application of agents (obsidan, phentolamine and piperoxan) blocking the central alpha- and beta-receptors and dopamine agonists and antagonists, accordingly under stress-free conditions and after cold-induced stress. The results pointed out the participation of the dopaminergic system in the complex neuro-meditary mechanism of controlling the production and release of ACTH from the adenohypophysis both under stress-free and stress conditions. A hypothesis is advanced that the brain dopaminergic system is implicated in the regulation of the adrenocorticotropic function in suppressed adrenergic system. 3 figs, 7 refs

  18. Large-Scale Functional Brain Network Abnormalities in Alzheimer’s Disease: Insights from Functional Neuroimaging

    Directory of Open Access Journals (Sweden)

    Bradford C. Dickerson

    2009-01-01

    Full Text Available Functional MRI (fMRI studies of mild cognitive impairment (MCI and Alzheimer’s disease (AD have begun to reveal abnormalities in large-scale memory and cognitive brain networks. Since the medial temporal lobe (MTL memory system is a site of very early pathology in AD, a number of studies have focused on this region of the brain. Yet it is clear that other regions of the large-scale episodic memory network are affected early in the disease as well, and fMRI has begun to illuminate functional abnormalities in frontal, temporal, and parietal cortices as well in MCI and AD. Besides predictable hypoactivation of brain regions as they accrue pathology and undergo atrophy, there are also areas of hyperactivation in brain memory and cognitive circuits, possibly representing attempted compensatory activity. Recent fMRI data in MCI and AD are beginning to reveal relationships between abnormalities of functional activity in the MTL memory system and in functionally connected brain regions, such as the precuneus. Additional work with “resting state” fMRI data is illuminating functional-anatomic brain circuits and their disruption by disease. As this work continues to mature, it will likely contribute to our understanding of fundamental memory processes in the human brain and how these are perturbed in memory disorders. We hope these insights will translate into the incorporation of measures of task-related brain function into diagnostic assessment or therapeutic monitoring, which will hopefully one day be useful for demonstrating beneficial effects of treatments being tested in clinical trials.

  19. Therapist-Assisted Rehabilitation of Visual Function and Hemianopia after Brain Injury: Intervention Study on the Effect of the Neuro Vision Technology Rehabilitation Program.

    Science.gov (United States)

    Rasmussen, Rune Skovgaard; Schaarup, Anne Marie Heltoft; Overgaard, Karsten

    2018-02-27

    Serious and often lasting vision impairments affect 30% to 35% of people following stroke. Vision may be considered the most important sense in humans, and even smaller permanent injuries can drastically reduce quality of life. Restoration of visual field impairments occur only to a small extent during the first month after brain damage, and therefore the time window for spontaneous improvements is limited. One month after brain injury causing visual impairment, patients usually will experience chronically impaired vision and the need for compensatory vision rehabilitation is substantial. The purpose of this study is to investigate whether rehabilitation with Neuro Vision Technology will result in a significant and lasting improvement in functional capacity in persons with chronic visual impairments after brain injury. Improving eyesight is expected to increase both physical and mental functioning, thus improving the quality of life. This is a prospective open label trial in which participants with chronic visual field impairments are examined before and after the intervention. Participants typically suffer from stroke or traumatic brain injury and will be recruited from hospitals and The Institute for the Blind and Partially Sighted. Treatment is based on Neuro Vision Technology, which is a supervised training course, where participants are trained in compensatory techniques using specially designed equipment. Through the Neuro Vision Technology procedure, the vision problems of each individual are carefully investigated, and personal data is used to organize individual training sessions. Cognitive face-to-face assessments and self-assessed questionnaires about both life and vision quality are also applied before and after the training. Funding was provided in June 2017. Results are expected to be available in 2020. Sample size is calculated to 23 participants. Due to age, difficulty in transport, and the time-consuming intervention, up to 25% dropouts are

  20. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy.

    Science.gov (United States)

    Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong

    2012-01-01

    The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.

  1. THE PRENATAL PARENTAL REFLECTIVE FUNCTIONING QUESTIONNAIRE: EXPLORING FACTOR STRUCTURE AND CONSTRUCT VALIDITY OF A NEW MEASURE IN THE FINN BRAIN BIRTH COHORT PILOT STUDY.

    Science.gov (United States)

    Pajulo, Marjukka; Tolvanen, Mimmi; Karlsson, Linnea; Halme-Chowdhury, Elina; Öst, Camilla; Luyten, Patrick; Mayes, Linda; Karlsson, Hasse

    2015-01-01

    Parental reflective functioning (PRF) is the capacity to focus on experience and feelings in oneself and in the child. Individual differences in PRF reportedly affect child attachment and socioemotional development. In this study, we report work on developing a questionnaire to assess PRF during pregnancy (Prenatal Parental Reflective Functioning Questionnaire; P-PRFQ). The factor structure of the 33-item version of the P-PRFQ was explored using pilot study data from the Finn Brain Birth Cohort Study (n = 124 mothers, n = 82 fathers). Construct validity was assessed against the Pregnancy Interview (PI; A. Slade, L. Grunebaum, L. Huganir, & M. Reeves, 1987, 2002, 2011) in a subsample of 29 mothers from the same pilot sample. Exploratory and confirmatory factor analysis resulted in a 14-item P-PRFQ, with three factors which seem to capture relevant aspects of prenatal parental mentalization-F1: "Opacity of mental states," F2: "Reflecting on the fetus-child," and F3: "The dynamic nature of the mental states." Functioning of the factor structure was further tested in the large cohort with 600 mothers and 600 fathers. Correlations with the PI result were high, both regarding total and factor scores of the P-PRFQ. Cost-effective tools to assess key areas of early parenting are needed for both research and clinical purposes. The 14-item P-PRFQ seems to be an applicable and promising new tool for assessing very early parental mentalizing capacity. © 2015 Michigan Association for Infant Mental Health.

  2. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study

    Directory of Open Access Journals (Sweden)

    Takashi Itahashi

    2015-01-01

    Full Text Available Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI or diffusion tensor imaging (DTI, and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA, to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder.

  3. Study on the relation of brain functional connectivity to movement disorders and cognitive impairment in patients with rapid eye movement sleep behavior disorder

    Directory of Open Access Journals (Sweden)

    Hong-ju ZHANG

    2017-09-01

    Full Text Available Objective To explore the relation between abnormal functional connectivity of substantia nigra and impairment of movement and cognition in patients with rapid eye movement sleep behavior disorder (RBD. Methods A total of 22 subjects, including 14 patients with RBD and 8 sex, age, education-matched healthy controls, were enrolled in this study according to international diagnostic criteria. Unified Parkinson's Disease Rating Scale Ⅲ (UPDRS Ⅲ and Hoehn-Yahr Stage were used to evaluate motor function. Digit Ordering Test - Attention (DOT - A, Symbol Digit Modalities Test (SDMT, Stroop Color-Word Test (SCWT, Trail Making Test (TMT, Rey-Osterrieth Complex Figure Test (ROCFT, Clock Drawing Test (CDT, Boston Naming Test (BNT and Auditory Verbal Learning Test (AVLT were used to evaluate cognitive function. The functional connectivity from left and right substantia nigra to brain region were examined. Results There were no statistical differences of UPDRSⅢ and Hoehn?Yahr Stage between 2 groups (P > 0.05, for all. In comparison with control group, SDMT (P = 0.001, ROCFT-copy (P = 0.013 and AVLT-N2 (P = 0.032 were significantly lower, while TMT-B test was significantly higher (P =0.005 in RBD group. Compared with control group, the functional connectivity of right substantia nigra to left precentral gyrus (P < 0.005 and right angular gyrus (P < 0.005 were all decreased in RBD group. Conclusions The results suggest that cognitive impairment occurs earlier than movement disorders in RBD, and there are abnormal functional connectivity from right substantia nigra to left precentral gyrus and right angular gyrus, proving that abnormal functional connectivity is the base of behavior disorders in RBD. DOI: 10.3969/j.issn.1672-6731.2017.09.005

  4. Radioisotopic Studies of Brain Uptake

    International Nuclear Information System (INIS)

    Oldendorf, W. H.

    1970-01-01

    Measurements of the uptake of radioactive substances in the brain tissues after their administration by injection or inhalation provide an a traumatic approach to the study of blood flow and metabolic processes in the brain. This paper reviews the anatomical,physiological and physical problems arising in the measurement of radioactivity in the brain. The factors governing the passage of various classes of substances through the brain capillaries and their transport through the brain tissues are first considered. The physical problems arising in the measurement of radioactivity in the brain are then discussed. The main difficulties in such measurements is shown to arise from the contribution to the observed counting rate from radioactivity in the scalp and skull. This contribution can be minimized by the use of special collimators designed to view only a part of the brain but to include in their field of view a minimum of non-neural tissue. A further possibility arises with radioisotopes such as 113 In m which emit characteristic X radiation as well as y radiation since the contribution of the former to the total observed counting rate is almost entirely due to radioactivity in the superficial tissues whereas that of the latter is due to radioactivity in the superficial tissues and the brain. By recording the counting rates in appropriate channels of the photon spectrum it is thus possible to correct the results for radioactivity in the scalp and skull. With radioisotopes such as 75 Sc which emit two or more photons in cascade, coincidence counting techniques offer still a further possibility to minimize the contribution from radioactivity in the superficial tissues. Various potential applications of these techniques are described. (author)

  5. Function of insulin in snail brain in associative learning.

    Science.gov (United States)

    Kojima, S; Sunada, H; Mita, K; Sakakibara, M; Lukowiak, K; Ito, E

    2015-10-01

    Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla.

  6. Functional organization of the transcriptome in human brain

    Science.gov (United States)

    Oldham, Michael C; Konopka, Genevieve; Iwamoto, Kazuya; Langfelder, Peter; Kato, Tadafumi; Horvath, Steve; Geschwind, Daniel H

    2009-01-01

    The enormous complexity of the human brain ultimately derives from a finite set of molecular instructions encoded in the human genome. These instructions can be directly studied by exploring the organization of the brain’s transcriptome through systematic analysis of gene coexpression relationships. We analyzed gene coexpression relationships in microarray data generated from specific human brain regions and identified modules of coexpressed genes that correspond to neurons, oligodendrocytes, astrocytes and microglia. These modules provide an initial description of the transcriptional programs that distinguish the major cell classes of the human brain and indicate that cell type–specific information can be obtained from whole brain tissue without isolating homogeneous populations of cells. Other modules corresponded to additional cell types, organelles, synaptic function, gender differences and the subventricular neurogenic niche. We found that subventricular zone astrocytes, which are thought to function as neural stem cells in adults, have a distinct gene expression pattern relative to protoplasmic astrocytes. Our findings provide a new foundation for neurogenetic inquiries by revealing a robust and previously unrecognized organization to the human brain transcriptome. PMID:18849986

  7. Changes in Regional Brain Homogeneity Induced by Electro-Acupuncture Stimulation at the Baihui Acupoint in Healthy Subjects: A Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Deng, Demao; Duan, Gaoxiong; Liao, Hai; Liu, Yanfei; Wang, Geliang; Liu, Huimei; Tang, Lijun; Pang, Yong; Tao, Jien; He, Xin; Yuan, Wenzhao; Liu, Peng

    2016-10-01

    According to the Traditional Chinese Medicine theory of acupuncture, Baihui (GV20) is applied to treat neurological and psychiatric disorders. However, the relationships between neural responses and GV20 remain unknown. Thus, the main aim of this study was to examine the brain responses induced by electro-acupuncture stimulation (EAS) at GV20. Functional magnetic resonance imaging (fMRI) was performed in 33 healthy subjects. Based on the non-repeated event-related (NRER) paradigm, group differences were examined between GV20 and a sham acupoint using the regional homogeneity (ReHo) method. Compared with the sham acupoint, EAS at GV20 induced increased ReHo in regions including the orbital frontal cortex (OFC), middle cingulate cortex (MCC), precentral cortex, and precuneus (preCUN). Decreased ReHo was found in the anterior cingulate cortex (ACC), supplementary motor area (SMA), thalamus, putamen, and cerebellum. The current findings provide preliminary neuroimaging evidence to indicate that EAS at GV20 could induce a specific pattern of neural responses by analysis of ReHo of brain activity. These findings might improve the understanding of mechanisms of acupuncture stimulation at GV20.

  8. Aberrant brain functional connectome in patients with obstructive sleep apnea.

    Science.gov (United States)

    Chen, Li-Ting; Fan, Xiao-Le; Li, Hai-Jun; Ye, Cheng-Long; Yu, Hong-Hui; Xin, Hui-Zhen; Gong, Hong-Han; Peng, De-Chang; Yan, Li-Ping

    2018-01-01

    Obstructive sleep apnea (OSA) is accompanied by widespread abnormal spontaneous regional activity related to cognitive deficits. However, little is known about the topological properties of the functional brain connectome of patients with OSA. This study aimed to use the graph theory approaches to investigate the topological properties and functional connectivity (FC) of the functional connectome in patients with OSA, based on resting-state functional magnetic resonance imaging (rs-fMRI). Forty-five male patients with newly diagnosed untreated severe OSA and 45 male good sleepers (GSs) underwent a polysomnography (PSG), clinical evaluations, and rs-fMRI scans. The automated anatomical labeling (AAL) atlas was used to construct the functional brain connectome. The topological organization and FC of brain functional networks in patients with OSA were characterized using graph theory methods and investigated the relationship between functional network topology and clinical variables. Both the patients with OSA and the GSs exhibited high-efficiency "small-world" network attributes. However, the patients with OSA exhibited decreased σ, γ, E glob ; increased Lp, λ; and abnormal nodal centralities in several default-mode network (DMN), salience network (SN), and central executive network (CEN) regions. However, the patients with OSA exhibited abnormal functional connections between the DMN, SN, and CEN. The disrupted FC was significantly positive correlations with the global network metrics γ and σ. The global network metrics were significantly correlated with the Epworth Sleepiness Scale (ESS) score, Montreal Cognitive Assessment (MoCA) score, and oxygen desaturation index. The findings suggest that the functional connectome of patients with OSA exhibited disrupted functional integration and segregation, and functional disconnections of the DMN, SN, and CEN. The aberrant topological attributes may be associated with disrupted FC and cognitive functions. These

  9. Memory Function Before and After Whole Brain Radiotherapy in Patients With and Without Brain Metastases

    International Nuclear Information System (INIS)

    Welzel, Grit; Fleckenstein, Katharina; Schaefer, Joerg; Hermann, Brigitte; Kraus-Tiefenbacher, Uta; Mai, Sabine K.; Wenz, Frederik

    2008-01-01

    Purpose: To prospectively compare the effect of prophylactic and therapeutic whole brain radiotherapy (WBRT) on memory function in patients with and without brain metastases. Methods and Materials: Adult patients with and without brain metastases (n = 44) were prospectively evaluated with serial cognitive testing, before RT (T0), after starting RT (T1), at the end of RT (T2), and 6-8 weeks (T3) after RT completion. Data were obtained from small-cell lung cancer patients treated with prophylactic cranial irradiation, patients with brain metastases treated with therapeutic cranial irradiation (TCI), and breast cancer patients treated with RT to the breast. Results: Before therapy, prophylactic cranial irradiation patients performed worse than TCI patients or than controls on most test scores. During and after WBRT, verbal memory function was influenced by pretreatment cognitive status (p < 0.001) and to a lesser extent by WBRT. Acute (T1) radiation effects on verbal memory function were only observed in TCI patients (p = 0.031). Subacute (T3) radiation effects on verbal memory function were observed in both TCI and prophylactic cranial irradiation patients (p = 0.006). These effects were more pronounced in patients with above-average performance at baseline. Visual memory and attention were not influenced by WBRT. Conclusions: The results of our study have shown that WBRT causes cognitive dysfunction immediately after the beginning of RT in patients with brain metastases only. At 6-8 weeks after the end of WBRT, cognitive dysfunction was seen in patients with and without brain metastases. Because cognitive dysfunction after WBRT is restricted to verbal memory, patients should not avoid WBRT because of a fear of neurocognitive side effects

  10. Brain and heart disease studies

    International Nuclear Information System (INIS)

    Budinger, T.F.; Sargent, T.W. III; Yen, C.K.; Friedland, R.F.; Moyer, B.R.

    1981-01-01

    Highlights of important studies completed during the past year using the Donner 280-crystal positron ring tomograph are summarized in this article. Using rubidium-82, images of a brain tumor and an arteriovenous malformation are described. An image demonstrating methionine uptake in a patient with schizophrenia and an image reflecting sugar metabolism in the brain of a man with Alzheimer's disease are also included. Uptake of rubidium-82 in subjects before and after exercise is being investigated. The synthesis of new radiopharmaceuticals and the development of a new synthesis for C-taurine for use in the study of metabolism in the human heart are also being studied

  11. Computer-aided cognitive rehabilitation improves cognitive performances and induces brain functional connectivity changes in relapsing remitting multiple sclerosis patients: an exploratory study.

    Science.gov (United States)

    Bonavita, S; Sacco, R; Della Corte, M; Esposito, S; Sparaco, M; d'Ambrosio, A; Docimo, R; Bisecco, A; Lavorgna, L; Corbo, D; Cirillo, S; Gallo, A; Esposito, F; Tedeschi, G

    2015-01-01

    To better understand the effects of short-term computer-based cognitive rehabilitation (cCR) on cognitive performances and default mode network (DMN) intrinsic functional connectivity (FC) in cognitively impaired relapsing remitting (RR) multiple sclerosis (MS) patients. Eighteen cognitively impaired RRMS patients underwent neuropsychological evaluation by the Rao's brief repeatable battery and resting-state functional magnetic resonance imaging to evaluate FC of the DMN before and after a short-term (8 weeks, twice a week) cCR. A control group of 14 cognitively impaired RRMS patients was assigned to an aspecific cognitive training (aCT), and underwent the same study protocol. Correlations between DMN and cognitive performances were also tested. After cCR, there was a significant improvement of the following tests: SDMT (p Color-Word Interference Test and FC in the PCC emerged. After aCT, the control group did not show any significant effect either on FC or neuropsychological tests. No significant differences were found in brain volumes and lesion load in both groups when comparing data acquired at baseline and after cCR or aCT. In cognitively impaired RRMS patients, cCR improves cognitive performances (i.e., processing speed and visual and verbal sustained memory), and increases FC in the PCC and IPC of the DMN. This exploratory study suggests that cCR may induce adaptive cortical reorganization favoring better cognitive performances, thus strengthening the value of cognitive exercise in the general perspective of building either cognitive or brain reserve.

  12. Brain regional homogeneity changes following transjugular intrahepatic portosystemic shunt in cirrhotic patients support cerebral adaptability theory—A resting-state functional MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Ling; Qi, Rongfeng [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002 (China); Zhang, Long Jiang, E-mail: kevinzhlj@163.com [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002 (China); Zhong, Jianhui [Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zheng, Gang [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002 (China); Wu, Xingjiang; Fan, Xinxin [Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002 (China); Lu, Guang Ming, E-mail: cjr.luguangming@vip.163.com [Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002 (China)

    2014-03-15

    Purpose: The exact neuro-pathophysiological effect of transjugular intrahepatic portosystemic shunt (TIPS) on brain function remains unclear. The purpose of this study was to investigate the longitudinal brain activity changes in cirrhotic patients with TIPS insertion using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Methods: Fifteen cirrhotic patients without overt hepatic encephalopathy (OHE) planned for TIPS procedure and 15 age- and gender-matched healthy controls were included in this study. Eleven of the 15 patients underwent repeated fMRI examinations at median 7-day following TIPS, 8 patients in median 3-month, and 7 patients in median 1-year follow-up duration, respectively. Regional homogeneity was calculated by the Kendall's coefficient of concordance (KCC) and compared between patients before TIPS and healthy controls with two-sample t test as well as pre-and post-TIPS patients with paired t test. Correlations between the pre- and post-TIPS changes of ReHo and the changes of venous blood ammonia level and number connection test type A (NCT-A)/digit symbol test (DST) scores were calculated by crossing subjects. Results: Compared with healthy controls, 15 cirrhotic patients before TIPS procedure showed decreased ReHo in the bilateral frontal, parietal, temporal and occipital lobes and increased ReHo in the bilateral caudate. Compared with the pre-TIPS patients, 11 post-TIPS patients in the median 7-day follow-up examinations demonstrated decreased ReHo in the medial frontal gyrus (MFG), superior parietal gyrus (SPG), middle/superior temporal gyrus (M/STG), anterior cingulate cortex (ACC), caudate, and increased ReHo in the insula. Eight post-TIPS patients in the median 3-month follow-up examinations showed widespread decreased ReHo in the bilateral frontal and parietal lobes, ACC, caudate, and increased ReHo in the insula and precuneus/cuneus. In the median 1-year follow-up studies, seven post-TIPS patients displayed

  13. Brain regional homogeneity changes following transjugular intrahepatic portosystemic shunt in cirrhotic patients support cerebral adaptability theory—A resting-state functional MRI study

    International Nuclear Information System (INIS)

    Ni, Ling; Qi, Rongfeng; Zhang, Long Jiang; Zhong, Jianhui; Zheng, Gang; Wu, Xingjiang; Fan, Xinxin; Lu, Guang Ming

    2014-01-01

    Purpose: The exact neuro-pathophysiological effect of transjugular intrahepatic portosystemic shunt (TIPS) on brain function remains unclear. The purpose of this study was to investigate the longitudinal brain activity changes in cirrhotic patients with TIPS insertion using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Methods: Fifteen cirrhotic patients without overt hepatic encephalopathy (OHE) planned for TIPS procedure and 15 age- and gender-matched healthy controls were included in this study. Eleven of the 15 patients underwent repeated fMRI examinations at median 7-day following TIPS, 8 patients in median 3-month, and 7 patients in median 1-year follow-up duration, respectively. Regional homogeneity was calculated by the Kendall's coefficient of concordance (KCC) and compared between patients before TIPS and healthy controls with two-sample t test as well as pre-and post-TIPS patients with paired t test. Correlations between the pre- and post-TIPS changes of ReHo and the changes of venous blood ammonia level and number connection test type A (NCT-A)/digit symbol test (DST) scores were calculated by crossing subjects. Results: Compared with healthy controls, 15 cirrhotic patients before TIPS procedure showed decreased ReHo in the bilateral frontal, parietal, temporal and occipital lobes and increased ReHo in the bilateral caudate. Compared with the pre-TIPS patients, 11 post-TIPS patients in the median 7-day follow-up examinations demonstrated decreased ReHo in the medial frontal gyrus (MFG), superior parietal gyrus (SPG), middle/superior temporal gyrus (M/STG), anterior cingulate cortex (ACC), caudate, and increased ReHo in the insula. Eight post-TIPS patients in the median 3-month follow-up examinations showed widespread decreased ReHo in the bilateral frontal and parietal lobes, ACC, caudate, and increased ReHo in the insula and precuneus/cuneus. In the median 1-year follow-up studies, seven post-TIPS patients displayed

  14. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O

    2018-01-01

    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...... was notably lower throughout the cortex in both respondents and nonrespondents, without significant differences between them. CONCLUSION:: Our study suggests that frontal cholinergic dysfunction is associated with the clinical response to cholinergic stimulation in patients with traumatic brain injury....

  15. Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia : A PET study with [C-11]verapamil as a probe for P-glycoprotein function

    NARCIS (Netherlands)

    de Klerk, Onno L.; Willemsen, Antoon T. M.; Bosker, Fokko J.; Bartels, Anna L.; Hendrikse, N. Harry; den Boer, Johan A.; Dierckx, Rudy A.

    2010-01-01

    P-glycoprotein (P-gp), a major efflux pump in the blood-brain barrier (BBB) has a profound effect on entry of drugs, peptides and other substances into the central nervous system (CNS). The brain's permeability can be negatively influenced by modulation of the transport function of P-gp.

  16. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    Science.gov (United States)

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  17. Anatomical and functional assemblies of brain BOLD oscillations

    Science.gov (United States)

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  18. Progress in clinical research and application of resting state functional brain imaging

    International Nuclear Information System (INIS)

    Long Miaomiao; Ni Hongyan

    2013-01-01

    Resting state functional brain imaging experimental design is free of stimulus task and offers various parametric maps through different data-driven post processing methods with endogenous BOLD signal changes as the source of imaging. Mechanism of resting state brain activities could be extensively studied with improved patient compliance and clinical application compared with task related functional brain imaging. Also resting state functional brain imaging can be used as a method of data acquisition, with implicit neuronal activity as a kind of experimental design, to reveal characteristic brain activities of epileptic patient. Even resting state functional brain imaging data processing method can be used to analyze task related functional MRI data, opening new horizons of task related functional MRI study. (authors)

  19. Partial sleep in the context of augmentation of brain function.

    Directory of Open Access Journals (Sweden)

    Ivan N. Pigarev

    2014-05-01

    Full Text Available Inability to solve complex problems or errors in decision making is often attributed to poor brain processing, and raises the issue of brain augmentation. Investigation of neuronal activity in the cerebral cortex in the sleep-wake cycle offers insights into the mechanisms underlying the reduction in mental abilities for complex problem solving. Some cortical areas may transit into a sleep state while an organism is still awake. Such local sleep would reduce behavioral ability in the tasks for which the sleeping areas are crucial. The studies of this phenomenon have indicated that local sleep develops in high order cortical areas. This is why complex problem solving is mostly affected by local sleep, and prevention of local sleep might be a potential way of augmentation of brain function. For this approach to brain augmentation not to entail negative consequences for the organism, it is necessary to understand the functional role of sleep. Our studies have given an unexpected answer to this question. It was shown that cortical areas that process signals from extero- and proprioreceptors during wakefulness, switch to the processing of interoceptive information during sleep. It became clear that during sleep all computational power of the brain is directed to the restoration of the vital functions of internal organs. These results explain the logic behind the initiation of total and local sleep. Indeed, a mismatch between the current parameters of any visceral system and the genetically determined normal range would provide the feeling of tiredness, or sleep pressure. If an environmental situation allows falling asleep, the organism would transit to a normal total sleep in all cortical areas. However, if it is impossible to go to sleep immediately, partial sleep may develop in some cortical areas in the still behaviorally awake organism. This local sleep may reduce both the intellectual power and the restorative function of sleep for visceral

  20. Regulation of Central Nervous System Myelination in Higher Brain Functions

    Directory of Open Access Journals (Sweden)

    Mara Nickel

    2018-01-01

    Full Text Available The hippocampus and the prefrontal cortex are interconnected brain regions, playing central roles in higher brain functions, including learning and memory, planning complex cognitive behavior, and moderating social behavior. The axons in these regions continue to be myelinated into adulthood in humans, which coincides with maturation of personality and decision-making. Myelin consists of dense layers of lipid membranes wrapping around the axons to provide electrical insulation and trophic support and can profoundly affect neural circuit computation. Recent studies have revealed that long-lasting changes of myelination can be induced in these brain regions by experience, such as social isolation, stress, and alcohol abuse, as well as by neurological and psychiatric abnormalities. However, the mechanism and function of these changes remain poorly understood. Myelin regulation represents a new form of neural plasticity. Some progress has been made to provide new mechanistic insights into activity-independent and activity-dependent regulations of myelination in different experimental systems. More extensive investigations are needed in this important but underexplored research field, in order to shed light on how higher brain functions and myelination interplay in the hippocampus and prefrontal cortex.

  1. Scholastic performance and functional connectivity of brain networks in children.

    Directory of Open Access Journals (Sweden)

    Laura Chaddock-Heyman

    Full Text Available One of the keys to understanding scholastic success is to determine the neural processes involved in school performance. The present study is the first to use a whole-brain connectivity approach to explore whether functional connectivity of resting state brain networks is associated with scholastic performance in seventy-four 7- to 9-year-old children. We demonstrate that children with higher scholastic performance across reading, math and language have more integrated and interconnected resting state networks, specifically the default mode network, salience network, and frontoparietal network. To add specificity, core regions of the dorsal attention and visual networks did not relate to scholastic performance. The results extend the cognitive role of brain networks in children as well as suggest the importance of network connectivity in scholastic success.

  2. Acetyl-L-carnitine improves aged brain function.

    Science.gov (United States)

    Kobayashi, Satoru; Iwamoto, Machiko; Kon, Kazuo; Waki, Hatsue; Ando, Susumu; Tanaka, Yasukazu

    2010-07-01

    The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.

  3. Dynamics of pathomorphological changes in rat brain as a function of γ-radiation dose

    International Nuclear Information System (INIS)

    Fedorov, V.P.

    1990-01-01

    Neurohistological, histochemical, electron-microscopic and biometric techniques were used to study the response of rat brain to irradiation within a wide range of doses. Nerve cells were shown to be highly radioresistant. At the same time, synapses and blood-brain barrier structures were highly radiosensitive. The pathomorphologic changes in different brain areas followed a dose-time function

  4. Topological Organization of Functional Brain Networks in Healthy Children: Differences in Relation to Age, Sex, and Intelligence

    OpenAIRE

    Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C.; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-01-01

    Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then ...

  5. Personality is reflected in the brain's intrinsic functional architecture.

    Directory of Open Access Journals (Sweden)

    Jonathan S Adelstein

    Full Text Available Personality describes persistent human behavioral responses to broad classes of environmental stimuli. Investigating how personality traits are reflected in the brain's functional architecture is challenging, in part due to the difficulty of designing appropriate task probes. Resting-state functional connectivity (RSFC can detect intrinsic activation patterns without relying on any specific task. Here we use RSFC to investigate the neural correlates of the five-factor personality domains. Based on seed regions placed within two cognitive and affective 'hubs' in the brain--the anterior cingulate and precuneus--each domain of personality predicted RSFC with a unique pattern of brain regions. These patterns corresponded with functional subdivisions responsible for cognitive and affective processing such as motivation, empathy and future-oriented thinking. Neuroticism and Extraversion, the two most widely studied of the five constructs, predicted connectivity between seed regions and the dorsomedial prefrontal cortex and lateral paralimbic regions, respectively. These areas are associated with emotional regulation, self-evaluation and reward, consistent with the trait qualities. Personality traits were mostly associated with functional connections that were inconsistently present across participants. This suggests that although a fundamental, core functional architecture is preserved across individuals, variable connections outside of that core encompass the inter-individual differences in personality that motivate diverse responses.

  6. The Effect of Souvenaid on Functional Brain Network Organisation in Patients with Mild Alzheimer’s Disease: A Randomised Controlled Study

    OpenAIRE

    de Waal, Hanneke; Stam, Cornelis J.; Lansbergen, Marieke M.; Wieggers, Rico L.; Kamphuis, Patrick J. G. H.; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C. W.

    2014-01-01

    Background: Synaptic loss is a major hallmark of Alzheimer's disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. Objective: To explore the effe...

  7. Developmental studies of avian brain organization.

    Science.gov (United States)

    Puelles, Luis

    2018-01-01

    Avian brain organization or brain Bauplan is identical with that of vertebrates in general. This essay visits avian studies that contained advances or discussions about brain organization, trying to explain critically what they contributed. In order to start from a specific background, the new prevailing paradigm as regards brain organization, the prosomeric model, is presented first. Next a brief historic survey is made of how ideas on this topic evolved from the start of modern neuromorphology at the end of the 19th century. Longitudinal zonal organization with or without transverse segmentation (neuromeres) was the first overall concept applied to the brain. The idea of neuromeric structure later decayed in favour of a columnar model. This emphasized functional correlations rather than causal developmental content, assimilating forebrain functions to hindbrain ones. Though it became prevalent in the post-world-war period of neuroscience, in the last decades of the 20th century advances in molecular biology allowed developmental genes to be mapped, and it became evident that gene expression patterns support the old neuromeric model rather than the columnar one. This was also corroborated by modern experimental approaches (fate-mapping and analysis of patterning).

  8. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study.

    Science.gov (United States)

    Koloski, N A; Jones, M; Talley, N J

    2016-09-01

    Traditionally, functional gastrointestinal disorders (FGIDs) are conceptualised as originating in the brain via stress pathways (brain-to-gut). It is uncertain how many with irritable bowel syndrome (IBS) and functional dyspepsia (FD) have a gut origin of symptoms (gut-to-brain pathway). To determine if there is a distinct brain-to-gut FGID (where psychological symptoms begin first) and separately a distinct gut-to-brain FGID (where gut symptoms start first). A prospective random population sample from Newcastle, Australia who responded to a validated survey in 2012 and completed a 1-year follow-up survey (n = 1900). The surveys contained questions on Rome III IBS and FD and the Hospital Anxiety and Depression Scale. We found that higher levels of anxiety and depression at baseline were significant predictors of developing IBS (OR = 1.31; 95% CI 1.06-1.61, P = 0.01; OR = 1.54; 95% CI 1.29-1.83, P intestinal features in many cases. © 2016 John Wiley & Sons Ltd.

  9. Functional magnetic resonance imaging of higher brain activity

    International Nuclear Information System (INIS)

    Cui He; Wang Yunjiu; Chen Runsheng; Tang Xiaowei.

    1996-01-01

    Functional magnetic resonance images (fMRIs) exhibit small differences in the magnetic resonance signal intensity in positions corresponding to focal areas of brain activation. These signal are caused by variation in the oxygenation state of the venous vasculature. Using this non-invasive and dynamic method, it is possible to localize functional brain activation, in vivo, in normal individuals, with an accuracy of millimeters and a temporal resolution of seconds. Though a series of technical difficulties remain, fMRI is increasingly becoming a key method for visualizing the working brain, and uncovering the topographical organization of the human brain, and understanding the relationship between brain and the mind

  10. The Default Mode Network as a Biomarker of Persistent Complaints after Mild Traumatic Brain Injury: A Longitudinal Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    van der Horn, Harm J; Scheenen, Myrthe E; de Koning, Myrthe E; Liemburg, Edith J; Spikman, Jacoba M; van der Naalt, Joukje

    2017-12-01

    The objective of this study was to examine longitudinal functional connectivity of resting-state networks in patients with and without complaints after uncomplicated mild traumatic brain injury (mTBI). Second, we aimed to determine the value of network connectivity in predicting persistent complaints, anxiety, depression and long-term outcome. Thirty mTBI patients with three or more post-traumatic complaints at 2 weeks post-injury, 19 without complaints, and 20 matched healthy controls were selected for this study. Resting-state functional MRI (fMRI) was performed in patients at 1 month and 3 months post-injury, and once in healthy controls. Independent component analysis (ICA) was used to investigate the default mode, executive and salience networks. Persistent post-traumatic complaints, anxiety, and depression were measured at 3 months post-injury, and outcome was determined at 1 year post-injury. Within the group with complaints, higher functional connectivity between the anterior and posterior components of the default mode network at 1 month post-injury was associated with a greater number of complaints at 3 months post-injury (ρ = 0.59, p = 0.001). Minor longitudinal changes in functional connectivity were found for patients with and without complaints after mTBI, which were limited to connectivity within the precuneus component of the default mode network. No significant results were found for the executive and salience networks. Current results suggest that the default mode network may serve as a biomarker of persistent complaints in patients with uncomplicated mTBI.

  11. Two distinct forms of functional lateralization in the human brain

    OpenAIRE

    Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex

    2013-01-01

    This study alters our fundamental understanding of the functional interactions between the cerebral hemispheres of the human brain by establishing that the left and right hemispheres have qualitatively different biases in how they dynamically interact with one another. Left-hemisphere regions are biased to interact more strongly within the same hemisphere, whereas right-hemisphere regions interact more strongly with both hemispheres. These two different patterns of interaction are associated ...

  12. Altered functional brain connectivity in patients with visually induced dizziness

    Directory of Open Access Journals (Sweden)

    Angelique Van Ombergen

    2017-01-01

    Conclusions: We found alterations in the visual and vestibular cortical network in VID patients that could underlie the typical VID symptoms such as a worsening of their vestibular symptoms when being exposed to challenging visual stimuli. These preliminary findings provide the first insights into the underlying functional brain connectivity in VID patients. Future studies should extend these findings by employing larger sample sizes, by investigating specific task-based paradigms in these patients and by exploring the implications for treatment.

  13. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS.

    Science.gov (United States)

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.

  14. Mapping Language Function in the Brain: A Review of the Recent Literature.

    Science.gov (United States)

    Crafton, Robert E.; Kido, Elissa

    2000-01-01

    Considers the potential importance of brain study for composition instruction, briefly describes functional imaging techniques, and reviews the findings of recent brain-mapping studies investigating the neurocognitive systems involved in language function. Presents a review of the recent literature and considers the possible implications of this…

  15. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    Science.gov (United States)

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Recruiting specialized macrophages across the borders to restore brain functions.

    Science.gov (United States)

    Corraliza, Inés

    2014-01-01

    Although is well accepted that the central nervous system has an immune privilege protected by the blood-brain barrier (BBB) and maintained by the glia, it is also known that in homeostatic conditions, peripheral immune cells are able to penetrate to the deepest regions of brain without altering the structural integrity of the BBB. Nearly all neurological diseases, including degenerative, autoimmune or infectious ones, compromising brain functions, develop with a common pattern of inflammation in which macrophages and microglia activation have been regarded often as the "bad guys." However, recognizing the huge heterogeneity of macrophage populations and also the different expression properties of microglia, there is increasing evidence of alternative conditions in which these cells, if primed and addressed in the correct direction, could be essential for reparative and regenerative functions. The main proposal of this review is to integrate studies about macrophage's biology at the brain borders where the ultimate challenge is to penetrate through the BBB and contribute to change or even stop the course of disease. Thanks to the efforts made in the last century, this special wall is currently recognized as a highly regulated cooperative structure, in which their components form neurovascular units. This new scenario prompted us to review the precise cross-talk between the mind and body modes of immune response.

  17. Characterizing Resting-State Brain Function Using Arterial Spin Labeling

    Science.gov (United States)

    Jann, Kay; Wang, Danny J.J.

    2015-01-01

    Abstract Arterial spin labeling (ASL) is an increasingly established magnetic resonance imaging (MRI) technique that is finding broader applications in studying the healthy and diseased brain. This review addresses the use of ASL to assess brain function in the resting state. Following a brief technical description, we discuss the use of ASL in the following main categories: (1) resting-state functional connectivity (FC) measurement: the use of ASL-based cerebral blood flow (CBF) measurements as an alternative to the blood oxygen level-dependent (BOLD) technique to assess resting-state FC; (2) the link between network CBF and FC measurements: the use of network CBF as a surrogate of the metabolic activity within corresponding networks; and (3) the study of resting-state dynamic CBF-BOLD coupling and cerebral metabolism: the use of dynamic CBF information obtained using ASL to assess dynamic CBF-BOLD coupling and oxidative metabolism in the resting state. In addition, we summarize some future challenges and interesting research directions for ASL, including slice-accelerated (multiband) imaging as well as the effects of motion and other physiological confounds on perfusion-based FC measurement. In summary, this work reviews the state-of-the-art of ASL and establishes it as an increasingly viable MRI technique with high translational value in studying resting-state brain function. PMID:26106930

  18. Changes in cognitive function and brain glucose metabolism in elderly women with subjective memory impairment: a 24-month prospective pilot study.

    Science.gov (United States)

    Jeong, H S; Park, J S; Song, I U; Chung, Y A; Rhie, S J

    2017-01-01

    Subjective memory impairment (SMI) may precede mild cognitive impairment (MCI) stage and would offer an earlier therapeutic opportunity than MCI would. However, it is not clear whether complaints of forgetfulness are truly reflective of objective memory dysfunction or of impairments in other cognitive domains. The aim of this current longitudinal study was to investigate changes in various cognitive functions and in regional cerebral metabolic rate of glucose (rCMRglc) among elderly women with SMI. Clinical evaluation, comprehensive neuropsychological test, and 18 F-fluoro-2-deoxyglucose positron emission tomography scans were conducted on 24 women with SMI at the baseline and 24-month follow-up. Changes in the cognitive domain scores and rCMRglc were assessed, and the relationships between them were analyzed. All participants stayed in SMI all the way till the follow-up, not converted to MCI or dementia. A significant reduction in executive function was found (mean difference in z-score: -0.21, P = 0.02) without changes in other cognitive domains. Declines in rCMRglc were detected in the left superior temporal gyrus, right posterior cingulate gyrus, left parahippocampal gyrus, right lingual gyrus, and right angular gyrus. The change in executive function had a positive correlation with the percent change of rCMRglc in the right posterior cingulate gyrus (β = 0.43, P = 0.02). Our findings suggest that elderly women with SMI symptoms should be carefully monitored for declines in executive function and related brain glucose metabolism over time. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Topographic Brain Mapping: A Window on Brain Function?

    Science.gov (United States)

    Karniski, Walt M.

    1989-01-01

    The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…

  20. Human astrocytes: structure and functions in the healthy brain.

    Science.gov (United States)

    Vasile, Flora; Dossi, Elena; Rouach, Nathalie

    2017-07-01

    Data collected on astrocytes' physiology in the rodent have placed them as key regulators of synaptic, neuronal, network, and cognitive functions. While these findings proved highly valuable for our awareness and appreciation of non-neuronal cell significance in brain physiology, early structural and phylogenic investigations of human astrocytes hinted at potentially different astrocytic properties. This idea sparked interest to replicate rodent-based studies on human samples, which have revealed an analogous but enhanced involvement of astrocytes in neuronal function of the human brain. Such evidence pointed to a central role of human astrocytes in sustaining more complex information processing. Here, we review the current state of our knowledge of human astrocytes regarding their structure, gene profile, and functions, highlighting the differences with rodent astrocytes. This recent insight is essential for assessment of the relevance of findings using animal models and for comprehending the functional significance of species-specific properties of astrocytes. Moreover, since dysfunctional astrocytes have been described in many brain disorders, a more thorough understanding of human-specific astrocytic properties is crucial for better-adapted translational applications.

  1. Fun cube based brain gym cognitive function assessment system.

    Science.gov (United States)

    Zhang, Tao; Lin, Chung-Chih; Yu, Tsang-Chu; Sun, Jing; Hsu, Wen-Chuin; Wong, Alice May-Kuen

    2017-05-01

    The aim of this study is to design and develop a fun cube (FC) based brain gym (BG) cognitive function assessment system using the wireless sensor network and multimedia technologies. The system comprised (1) interaction devices, FCs and a workstation used as interactive tools for collecting and transferring data to the server, (2) a BG information management system responsible for managing the cognitive games and storing test results, and (3) a feedback system used for conducting the analysis of cognitive functions to assist caregivers in screening high risk groups with mild cognitive impairment. Three kinds of experiments were performed to evaluate the developed FC-based BG cognitive function assessment system. The experimental results showed that the Pearson correlation coefficient between the system's evaluation outcomes and the traditional Montreal Cognitive Assessment scores was 0.83. The average Technology Acceptance Model 2 score was close to six for 31 elderly subjects. Most subjects considered that the brain games are interesting and the FC human-machine interface is easy to learn and operate. The control group and the cognitive impairment group had statistically significant difference with respect to the accuracy of and the time taken for the brain cognitive function assessment games, including Animal Naming, Color Search, Trail Making Test, Change Blindness, and Forward / Backward Digit Span. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Beyond sex differences: new approaches for thinking about variation in brain structure and function.

    Science.gov (United States)

    Joel, Daphna; Fausto-Sterling, Anne

    2016-02-19

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being. © 2016 The Author(s).

  3. Emotional valence modulates brain functional abnormalities in depression : Evidence from a meta-analysis of fMRI studies

    NARCIS (Netherlands)

    Groenewold, Nynke A.; Opmeer, Esther M.; de Jonge, Peter; Aleman, Andre; Costafreda, Sergi G.

    Models describing the neural correlates of biased emotion processing in depression have focused on increased activation of anterior cingulate and amygdala and decreased activation of striatum and dorsolateral prefrontal cortex. However, neuroimaging studies investigating emotion processing in

  4. Three-dimensional reconstruction of functional brain images

    International Nuclear Information System (INIS)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao

    1999-01-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  5. Three-dimensional reconstruction of functional brain images

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface

  6. Altered intrinsic regional brain activity in male patients with severe obstructive sleep apnea: a resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Peng DC

    2014-09-01

    Full Text Available De-Chang Peng,1 Xi-Jian Dai,1,2 Hong-Han Gong,1 Hai-Jun Li,1 Xiao Nie,1 Wei Zhang3 1Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi, 2Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, Special Administrative Region, 3Department of Pneumology, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China Background: Previous studies have demonstrated that obstructive sleep apnea (OSA is associated with abnormal brain structural deficits. However, little is known about the changes in local synchronization of spontaneous activity in patients with OSA. The primary aim of the present study was to investigate spontaneous brain activity in patients with OSA compared with good sleepers (GSs using regional homogeneity (ReHo analysis based on resting-state ­functional magnetic resonance imaging (MRI. Methods: Twenty-five untreated male patients with severe OSA and 25 male GSs matched for age and years of education were included in this study. The ReHo method was calculated to assess the strength of local signal synchrony and was compared between the two groups. The observed mean ReHo values were entered into Statistical Package for the Social Sciences software to assess their correlation with behavioral performance. Results: Compared with GSs, patients with OSA showed significantly lower ReHo in the right medial frontal gyrus (BA11, right superior frontal gyrus (BA10, right cluster of the precuneus and angular gyrus (BA39, and left superior parietal lobule (BA7, and higher ReHo in the right posterior lobe of the cerebellum, right cingulate gyrus (BA23, and bilateral cluster covering the lentiform nucleus, putamen, and insula (BA13. The lower mean ReHo value in the right cluster of the precuneus and angular gyrus had a significant negative correlation with sleep time (r=-0.430, P=0.032, and higher ReHo in

  7. Effects of Tianmagouteng particles on brain cognitive function in spontaneously hypertensive rats with hyperactivity of liver-yang: A [F-18] FDG micro-PET imaging study.

    Science.gov (United States)

    Zhang, Xiu-Jing; Sun, Tian-Cai; Liu, Zi-Wang; Wang, Feng-Jiao; Wang, Yong-De; Liu, Jing

    2017-11-01

    To collect visualized proof of Tianmagouteng particles (TMGTP) in alleviating cognitive dysfunction and to explore its effects on brain activity in spontaneously hypertensive rats (SHRs) with hyperactivity of liver-yang (Gan Yang Shang Kang, GYSK). Sixteen SHRs were randomized into treatment group and non-treatment. The SHR with GYSK was induced by gavaging aconite decoction (10mL/kg at 0.2g/mL). After the SHR models were prepared, the rats in the treatment group were administered TMGTP (10mL/kg) once a day for 14days.The rats in the non-treatment group or normal rats (control group) received an equivalent volume of saline. Morris water maze test was conducted before and after the treatment to observe cognitive function. Fluorine 18-deoxy glucose [F-18]FDG micro-PET brain imaging scans was performed after treatment. Data were analyzed with two-sample t-test (Pfunctions, TMGTP induced strong brain activity in the following sites: right dorsolateral nucleus and ventrolateral nucleus of thalamus, amygdala, left met thalamus, cerebellum leaflets, original crack, front cone crack, loop-shaped leaflets; but deactivation of right medial frontal gyrus, bilateral corpus callosum, hippocampus, and left dentate gyrus. TMGTP could alleviate cognitive dysfunction in SHRs with GYSK, which was possibly by inducing alteration of glucose metabolism in different brain regions with corresponding functions. Copyright © 2017. Published by Elsevier Masson SAS.

  8. Effects of chondroitin sulfate on brain response to painful stimulation in knee osteoarthritis patients. A randomized, double-blind, placebo-controlled functional magnetic resonance imaging study.

    Science.gov (United States)

    Monfort, Jordi; Pujol, Jesús; Contreras-Rodríguez, Oren; Llorente-Onaindia, Jone; López-Solà, Marina; Blanco-Hinojo, Laura; Vergés, Josep; Herrero, Marta; Sánchez, Laura; Ortiz, Hector; Montañés, Francisco; Deus, Joan; Benito, Pere

    2017-06-21

    Knee osteoarthritis is causing pain and functional disability. One of the inherent problems with efficacy assessment of pain medication was the lack of objective pain measurements, but functional magnetic resonance imaging (fMRI) has emerged as a useful means to objectify brain response to painful stimulation. We have investigated the effect of chondroitin sulfate (CS) on brain response to knee painful stimulation in patients with knee osteoarthritis using fMRI. Twenty-two patients received CS (800mg/day) and 27 patients placebo, and were assessed at baseline and after 4 months of treatment. Two fMRI tests were conducted in each session by applying painful pressure on the knee interline and on the patella surface. The outcome measurement was attenuation of the response evoked by knee painful stimulation in the brain. fMRI of patella pain showed significantly greater activation reduction under CS compared with placebo in the region of the mesencephalic periaquecductal gray. The CS group, additionally showed pre/post-treatment activation reduction in the cortical representation of the leg. No effects of CS were detected using the interline pressure test. fMRI was sensitive to objectify CS effects on brain response to painful pressure on patellofemoral cartilage, which is consistent with the known CS action on chondrocyte regeneration. The current work yields further support to the utility of fMRI to objectify treatment effects on osteoarthritis pain. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  9. The issues in the study of brain plasticity after stroke

    International Nuclear Information System (INIS)

    Zuo Chuantao

    2004-01-01

    Nowadays, the study on the plasticity of the brain is one of the hotspots in nerve scientific research. PET and fMRI provided powerful weapon to study brain plasticity, but some metholody can conflict the brain function study. The review elucide the the metholody questions from the choice of pantiets and control, defining motor recovery, the choice of motor task, the effect of brian morphological, interpreting changes in activation and analysis methods of PET images. (authors)

  10. Surviving a brain tumor in childhood: impact on family functioning in adolescence

    NARCIS (Netherlands)

    Beek, Laura; Schappin, Renske; Gooskens, Rob; Huisman, Jaap; Jongmans, Marian

    2015-01-01

    OBJECTIVE: To investigate family functioning in families with an adolescent survivor of a pediatric brain tumor. We explored whether adolescent, parent, disease and treatment factors, and demographic characteristics predicted family functioning. METHODS: In this cross-sectional study, 45 adolescent

  11. Insulin in the brain: sources, localization and functions.

    Science.gov (United States)

    Ghasemi, Rasoul; Haeri, Ali; Dargahi, Leila; Mohamed, Zahurin; Ahmadiani, Abolhassan

    2013-02-01

    Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.

  12. Assessment of cognitive brain function in ecstasy users and contributions of other drugs of abuse : Results from an fMRI study

    NARCIS (Netherlands)

    Jager, Gerry; de Win, Maartje M. L.; van der Tweel, Ingeborg; Schilt, Thelma; Kahn, Rene S.; van den Brink, Wim; van Ree, Jan M.; Ramsey, Nick F.

    Heavy ecstasy use has been associated with neurocognitive deficits in various behavioral and brain imaging studies. However, this association is not conclusive owing to the unavoidable confounding factor of polysubstance use. The present study, as part of the Netherlands XTC Toxicity study,

  13. Brain function measurement using optical topography

    International Nuclear Information System (INIS)

    Koizumi, Hideaki; Maki, Atsushi; Yamamoto, Tsuyoshi; Kawaguchi, Hideo

    2003-01-01

    Optical topography is a completely non-invasive method to image the high brain function with the near infrared spectroscopy, does not need the restriction of human behavior for imaging and thereby is applicable even for infants. The principle is based on irradiation of the near infrared laser beam with the optical-fiber onto the head surface and detection with the fiber of the reflection, of which spectroscopy for blood-borne hemoglobin gives the local cerebral homodynamics related with the nerve activity. The infrared laser beam of 1-10 mW is found safe on direct irradiation to the human body. The topography is applicable in the fields of clinical medicine like internal neurology (an actual image of the activated Broca's and Welnicke's areas at writing is presented), neurosurgery, psychiatry and pedriatric neurology, of developmental cognitive neuroscience, of educational science and of communication. ''MIT Technology Reviews'' mentions that this technique is one of 4 recent promising innovative techniques in the world. (N.I.)

  14. Demonstration: A smartphone 3D functional brain scanner

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Stopczynski, Arkadiusz; Larsen, Jakob Eg

    We demonstrate a fully portable 3D real-time functional brain scanner consisting of a wireless 14-channel ‘Neuroheadset‘ (Emotiv EPOC) and a Nokia N900 smartphone. The novelty of our system is the ability to perform real-time functional brain imaging on a smartphone device, including stimulus...

  15. Whole-brain functional connectivity predicted by indirect structural connections

    DEFF Research Database (Denmark)

    Røge, Rasmus; Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon

    2017-01-01

    Modern functional and diffusion magnetic resonance imaging (fMRI and dMRI) provide data from which macro-scale networks of functional and structural whole brain connectivity can be estimated. Although networks derived from these two modalities describe different properties of the human brain, the...

  16. Control channels in the brain and their influence on brain executive functions

    Science.gov (United States)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  17. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study.

    Science.gov (United States)

    Fair, Damien A; Choi, Alexander H; Dosenbach, Yannic B L; Coalson, Rebecca S; Miezin, Francis M; Petersen, Steven E; Schlaggar, Bradley L

    2010-08-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. 2009 Elsevier Inc. All rights reserved.

  18. Surface-Based fMRI-Driven Diffusion Tractography in the Presence of Significant Brain Pathology: A Study Linking Structure and Function in Cerebral Palsy

    Science.gov (United States)

    Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.

    2016-01-01

    Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011

  19. Functional photoacoustic tomography for neonatal brain imaging: developments and challenges

    Science.gov (United States)

    Hariri, Ali; Tavakoli, Emytis; Adabi, Saba; Gelovani, Juri; Avanaki, Mohammad R. N.

    2017-03-01

    Transfontanelle ultrasound imaging (TFUSI) is a routine diagnostic brain imaging method in infants who are born prematurely, whose skull bones have not completely fused together and have openings between them, so-called fontanelles. Open fontanelles in neonates provide acoustic windows, allowing the ultrasound beam to freely pass through. TFUSI is used to rule out neurological complications of premature birth including subarachnoid hemorrhage (SAH), intraventricular (IVH), subependimal (SEPH), subdural (SDH) or intracerebral (ICH) hemorrhages, as well as hypoxic brain injuries. TFUSI is widely used in the clinic owing to its low cost, safety, accessibility, and noninvasive nature. Nevertheless, the accuracy of TFUSI is limited. To address several limitations of current clinical imaging modalities, we develop a novel transfontanelle photoacoustic imaging (TFPAI) probe, which, for the first time, should allow for non-invasive structural and functional imaging of the infant brain. In this study, we test the feasibility of TFPAI for detection of experimentally-induced intra ventricular and Intraparenchymal hemorrhage phantoms in a sheep model with a surgically-induced cranial window which will serve as a model of neonatal fontanelle. This study is towards using the probe we develop for bedside monitoring of neonates with various disease conditions and complications affecting brain perfusion and oxygenation, including apnea, asphyxia, as well as for detection of various types of intracranial hemorrhages (SAH, IVH, SEPH, SDH, ICH).

  20. An exploratory study of the association of acute posttraumatic stress, depression, and pain to cognitive functioning in mild traumatic brain injury.

    Science.gov (United States)

    Massey, Jessica S; Meares, Susanne; Batchelor, Jennifer; Bryant, Richard A

    2015-07-01

    Few studies have examined whether psychological distress and pain affect cognitive functioning in the acute to subacute phase (up to 30 days postinjury) following mild traumatic brain injury (mTBI). The current study explored whether acute posttraumatic stress, depression, and pain were associated with performance on a task of selective and sustained attention completed under conditions of increasing cognitive demands (standard, auditory distraction, and dual-task), and on tests of working memory, memory, processing speed, reaction time (RT), and verbal fluency. At a mean of 2.87 days (SD = 2.32) postinjury, 50 adult mTBI participants, consecutive admissions to a Level 1 trauma hospital, completed neuropsychological tests and self-report measures of acute posttraumatic stress, depression, and pain. A series of canonical correlation analyses was used to explore the relationships of a common set of psychological variables to various sets of neuropsychological variables. Significant results were found on the task of selective and sustained attention. Strong relationships were found between psychological variables and speed (r(c) = .56, p = .02) and psychological variables and accuracy (r(c) = .68, p = .002). Pain and acute posttraumatic stress were associated with higher speed scores (reflecting more correctly marked targets) under standard conditions. Acute posttraumatic stress was associated with lower accuracy scores across all task conditions. Moderate but nonsignificant associations were found between psychological variables and most cognitive tasks. Acute posttraumatic stress and pain show strong associations with selective and sustained attention following mTBI. (c) 2015 APA, all rights reserved).

  1. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study

    OpenAIRE

    Nozawa, Takayuki; Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Nouchi, Rui; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki

    2015-01-01

    Background. Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Methods. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a simil...

  2. Data-driven analysis of functional brain interactions during free listening to music and speech.

    Science.gov (United States)

    Fang, Jun; Hu, Xintao; Han, Junwei; Jiang, Xi; Zhu, Dajiang; Guo, Lei; Liu, Tianming

    2015-06-01

    Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain's functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain's mechanism in comprehension of complex natural music and speech.

  3. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    Science.gov (United States)

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  4. A Mapping Between Structural and Functional Brain Networks.

    Science.gov (United States)

    Meier, Jil; Tewarie, Prejaas; Hillebrand, Arjan; Douw, Linda; van Dijk, Bob W; Stufflebeam, Steven M; Van Mieghem, Piet

    2016-05-01

    The relationship between structural and functional brain networks is still highly debated. Most previous studies have used a single functional imaging modality to analyze this relationship. In this work, we use multimodal data, from functional MRI, magnetoencephalography, and diffusion tensor imaging, and assume that there exists a mapping between the connectivity matrices of the resting-state functional and structural networks. We investigate this mapping employing group averaged as well as individual data. We indeed find a significantly high goodness of fit level for this structure-function mapping. Our analysis suggests that a functional connection is shaped by all walks up to the diameter in the structural network in both modality cases. When analyzing the inverse mapping, from function to structure, longer walks in the functional network also seem to possess minor influence on the structural connection strengths. Even though similar overall properties for the structure-function mapping are found for different functional modalities, our results indicate that the structure-function relationship is modality dependent.

  5. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties.

    Science.gov (United States)

    Schlageter, K E; Molnar, P; Lapin, G D; Groothuis, D R

    1999-11-01

    We studied microvessel organization in five brain tumor models (ENU, MSV, RG-2, S635cl15, and D-54MG) and normal brain, including microvessel diameter (LMVD), intermicrovessel distance (IMVD), microvessel density (MVD), surface area (S(v)), and orientation. LMVD and IMVD were larger and MVD was lower in tumors than normal brain. S(v) in tumors overlapped normal brain values and orientation was random in both tumors and brain. ENU and RG-2 tumors and brain were studied by electron microscopy. Tumor microvessel wall was thicker than that of brain. ENU and normal brain microvessels were continuous and nonfenestrated. RG-2 microvessels contained fenestrations and endothelial gaps; the latter had a maximum major axis of 3.0 microm. Based on anatomic measurements, the pore area of RG-2 tumors was estimated at 7.4 x 10(-6) cm(2) g(-1) from fenestrations and 3.5 x 10(-5) cm(2) g(-1) from endothelial gaps. Increased permeability of RG-2 microvessels to macromolecules is most likely attributable to endothelial gaps. Three microvessel populations may occur in brain tumors: (1) continuous nonfenestrated, (2) continuous fenestrated, and (3) discontinuous (with or without fenestrations). The first group may be unique to brain tumors; the latter two are similar to microvessels found in systemic tumors. Since structure-function properties of brain tumor microvessels will affect drug delivery, studies of microvessel function should be incorporated into clinical trials of brain tumor therapy, especially those using macromolecules. Copyright 1999 Academic Press.

  6. Sugar for the brain: the role of glucose in physiological and pathological brain function.

    Science.gov (United States)

    Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A; Meisel, Andreas

    2013-10-01

    The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We synthesize these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation that lead to disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Stimulation of functional vision in children with perinatal brain damage.

    Science.gov (United States)

    Alimović, Sonja; Mejaski-Bosnjak, Vlatka

    2011-01-01

    Cerebral visual impairment (CVI) is one of the most common causes of bilateral visual loss, which frequently occurs due to perinatal brain injury. Vision in early life has great impact on acquisition of basic comprehensions which are fundamental for further development. Therefore, early detection of visual problems and early intervention is necessary. The aim of the present study is to determine specific visual functioning of children with perinatal brain damage and the influence of visual stimulation on development of functional vision at early age of life. We initially assessed 30 children with perinatal brain damage up to 3 years of age, who were reffered to our pediatric low vision cabinet in "Little house" from child neurologists, ophthalmologists Type and degree of visual impairment was determined according to functional vision assessment of each child. On the bases of those assessments different kind of visual stimulations were carried out with children who have been identified to have a certain visual impairment. Through visual stimulation program some of the children were stimulated with light stimulus, some with different materials under the ultraviolet (UV) light, and some with bright color and high contrast materials. Children were also involved in program of early stimulation of overall sensory motor development. Goals and methods of therapy were determined individually, based on observation of child's possibilities and need. After one year of program, reassessment was done. Results for visual functions and functional vision were compared to evaluate the improvement of the vision development. These results have shown that there was significant improvement in functional vision, especially in visual attention and visual communication.

  8. Altered Brain Functional Connectivity in Betel Quid-Dependent Chewers

    Directory of Open Access Journals (Sweden)

    Xiaojun Huang

    2017-11-01

    Full Text Available BackgroundBetel quid (BQ is a common psychoactive substance worldwide with particularly high usage in many Asian countries. This study aimed to explore the effect of BQ use on functional connectivity by comparing global functional brain networks and their subset between BQ chewers and healthy controls (HCs.MethodsResting-state functional magnetic resonance imaging (fMRI was obtained from 24 betel quid-dependent (BQD male chewers and 27 healthy male individuals on a 3.0T scanner. We used independent component analysis (ICA to determine components that represent the brain’s functional networks and their spatial aspects of functional connectivity. Two sample t-tests were used to identify the functional connectivity differences in each network between these two groups.ResultsSeventeen networks were identified by ICA. Nine of them showed connectivity differences between BQD and HCs (two sample t-tests, p < 0.001 uncorrected. We found increased functional connectivity in the orbitofrontal, bilateral frontoparietal, frontotemporal, occipital/parietal, frontotemporal/cerebellum, and temporal/limbic networks, and decreased connectivity in the parietal and medial frontal/anterior cingulate networks in the BQD compared to the HCs. The betel quid dependence scale scores were positively related to the increased functional connectivity in the orbitofrontal (r = 0.39, p = 0.03 while negatively related to the decreased functional connectivity in medial frontal/anterior cingulate networks (r = −0.35, p = 0.02.DiscussionOur findings provide further evidence that BQ chewing may lead to brain functional connectivity changes, which may play a key role in the psychological and physiological effects of BQ.

  9. Functional brain mapping during recitation of Buddhist scriptures and repetition of the Namu Amida Butsu: a study in experienced Japanese monks.

    Science.gov (United States)

    Shimomura, Tsuyoshi; Fujiki, Minoru; Akiyoshi, Jotaro; Yoshida, Takashi; Tabata, Masahisa; Kabasawa, Hiroyuki; Kobayashi, Hidenori

    2008-04-01

    The invocation Namu Amida Butsu (Nembutsu), voices the hope of rebirth into Amida's Pure Land. In the Nembutsu, Buddhists imagine that they are absorbed into Amida's Pure Land. Shiritori, a Japanese word chain game, is a common task used to activate language related regions in Japanese. The purpose of this study was to identify the regions activated during praying of the Namo Amida Butsu (Nembutsu), and the reciting of Buddhist scriptures (Sutra). Functional MRI (fMRI) was used to identify the regions activated by the Nenbutsu, the Sutra and the Shiritori in eight highlytrained Japanese monks. The task of repeating the Nenbutsu activates the medial frontal gyrus, which is mainly related to mental concentration and visuospatial attention, similar to the areas activated by meditation. The task of reciting the Sutra activates the left lateral middle frontal gyrus, the right angular gyrus, and the right supramarginal gyrus, which are related to visuospatial attention also involved in the area activated by meditation. These results suggest that different types of meditation in Japanese Buddhism showed different brain regional activation. The Nenbutsu activated the prefrontal cortex, and the Sutra activated the left dorsolateral prefrontal cortex and right parietal cortex.

  10. Sleep, Neuronal Plasticity and Brain Function

    NARCIS (Netherlands)

    Meerlo, Peter; Benca, Ruth M.; Abel, Ted

    2015-01-01

    Sleep is truly one of the biggest mysteries in behavioral neuroscience. Humans spend a substantial portion of their lives asleep, as do all other mammalian and bird species that have been studied to date, yet the functions of sleep remain elusive and continue to be a topic of debate among sleep

  11. Personality Is Reflected in the Brain's Intrinsic Functional Architecture

    Science.gov (United States)

    Adelstein, Jonathan S.; Shehzad, Zarrar; Mennes, Maarten; DeYoung, Colin G.; Zuo, Xi-Nian; Kelly, Clare; Margulies, Daniel S.; Bloomfield, Aaron; Gray, Jeremy R.; Castellanos, F. Xavier; Milham, Michael P.

    2011-01-01

    Personality describes persistent human behavioral responses to broad classes of environmental stimuli. Investigating how personality traits are reflected in the brain's functional architecture is challenging, in part due to the difficulty of designing appropriate task probes. Resting-state functional connectivity (RSFC) can detect intrinsic activation patterns without relying on any specific task. Here we use RSFC to investigate the neural correlates of the five-factor personality domains. Based on seed regions placed within two cognitive and affective ‘hubs’ in the brain—the anterior cingulate and precuneus—each domain of personality predicted RSFC with a unique pattern of brain regions. These patterns corresponded with functional subdivisions responsible for cognitive and affective processing such as motivation, empathy and future-oriented thinking. Neuroticism and Extraversion, the two most widely studied of the five constructs, predicted connectivity between seed regions and the dorsomedial prefrontal cortex and lateral paralimbic regions, respectively. These areas are associated with emotional regulation, self-evaluation and reward, consistent with the trait qualities. Personality traits were mostly associated with functional connections that were inconsistently present across participants. This suggests that although a fundamental, core functional architecture is preserved across individuals, variable connections outside of that core encompass the inter-individual differences in personality that motivate diverse responses. PMID:22140453

  12. Functional MRI brain imaging studies using the Contact Heat Evoked Potential Stimulator (CHEPS in a human volunteer topical capsaicin pain model

    Directory of Open Access Journals (Sweden)

    Shenoy R

    2011-10-01

    Full Text Available Ravikiran Shenoy1, Katherine Roberts1, Anastasia Papadaki2, Donald McRobbie2, Maarten Timmers3, Theo Meert3, Praveen Anand11Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London; 2Imaging Sciences Department, Charing Cross Hospital, London, United Kingdom; 3Johnson and Johnson Pharmaceutical Research and Development, Beerse, BelgiumAbstract: Acute application of topical capsaicin produces spontaneous burning and stinging pain similar to that seen in some neuropathic states, with local hyperalgesia. Use of capsaicin applied topically or injected intradermally has been described as a model for neuropathic pain, with patterns of activation in brain regions assessed using functional magnetic resonance imaging (fMRI and positron emission tomography. The Contact Heat Evoked Potential Stimulator (CHEPS is a noninvasive clinically practical method of stimulating cutaneous A-delta nociceptors. In this study, topical capsaicin (1% was applied to the left volar forearm for 15 minutes of twelve adult healthy human volunteers. fMRI scans and a visual analog pain score were recorded during CHEPS stimulation precapsaicin and postcapsaicin application. Following capsaicin application there was a significant increase in visual analog scale (mean ± standard error of the mean; precapsaicin 26.4 ± 5.3; postcapsaicin 48.9 ± 6.0; P < 0.0001. fMRI demonstrated an overall increase in areas of activation, with a significant increase in the contralateral insular signal (mean ± standard error of the mean; precapsaicin 0.434 ± 0.03; postcapsaicin 0.561 ± 0.07; P = 0.047. The authors of this paper recently published a study in which CHEPS-evoked A-delta cerebral potential amplitudes were found to be decreased postcapsaicin application. In patients with neuropathic pain, evoked pain and fMRI brain responses are typically increased, while A-delta evoked potential amplitudes are decreased. The protocol of recording fMRI following CHEPS stimulation

  13. Evidence for Functional Networks within the Human Brain's White Matter.

    Science.gov (United States)

    Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar

    2017-07-05

    brain. However, most fMRI studies ignored a major part of the brain, the white-matter, discarding signals from it as arising from noise. Here we use resting-state fMRI data from 176 subjects to show that signals from the human white-matter contain meaningful information. We identify 12 functional networks composed of interacting long-distance white-matter tracts. Moreover, we show that these networks are highly correlated to resting-state gray-matter networks, highlighting their functional role. Our findings enable reinterpretation of many existing fMRI datasets, and suggest a new way to explore the white-matter role in cognition and its disturbances in neuropsychiatric disorders. Copyright © 2017 the authors 0270-6474/17/376394-14$15.00/0.

  14. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain

    OpenAIRE

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Quentin; Culver, Joseph P.; Wang, Lihong V.

    2013-01-01

    The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bu...

  15. Imaging structural and functional brain networks in temporal lobe epilepsy

    Science.gov (United States)

    Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda

    2013-01-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281

  16. Imaging structural and functional brain networks in temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    Boris eBernhardt

    2013-10-01

    Full Text Available Early imaging studies in temporal lobe epilepsy (TLE focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  17. Imaging structural and functional brain networks in temporal lobe epilepsy.

    Science.gov (United States)

    Bernhardt, Boris C; Hong, Seokjun; Bernasconi, Andrea; Bernasconi, Neda

    2013-10-01

    Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.

  18. Sex differences in normal age trajectories of functional brain networks.

    Science.gov (United States)

    Scheinost, Dustin; Finn, Emily S; Tokoglu, Fuyuze; Shen, Xilin; Papademetris, Xenophon; Hampson, Michelle; Constable, R Todd

    2015-04-01

    Resting-state functional magnetic resonance image (rs-fMRI) is increasingly used to study functional brain networks. Nevertheless, variability in these networks due to factors such as sex and aging is not fully understood. This study explored sex differences in normal age trajectories of resting-state networks (RSNs) using a novel voxel-wise measure of functional connectivity, the intrinsic connectivity distribution (ICD). Males and females showed differential patterns of changing connectivity in large-scale RSNs during normal aging from early adulthood to late middle-age. In some networks, such as the default-mode network, males and females both showed decreases in connectivity with age, albeit at different rates. In other networks, such as the fronto-parietal network, males and females showed divergent connectivity trajectories with age. Main effects of sex and age were found in many of the same regions showing sex-related differences in aging. Finally, these sex differences in aging trajectories were robust to choice of preprocessing strategy, such as global signal regression. Our findings resolve some discrepancies in the literature, especially with respect to the trajectory of connectivity in the default mode, which can be explained by our observed interactions between sex and aging. Overall, results indicate that RSNs show different aging trajectories for males and females. Characterizing effects of sex and age on RSNs are critical first steps in understanding the functional organization of the human brain. © 2014 Wiley Periodicals, Inc.

  19. A probabilistic approach to delineating functional brain regions

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Svarer, Claus; Frokjaer, Vibe G

    2009-01-01

    The purpose of this study was to develop a reliable observer-independent approach to delineating volumes of interest (VOIs) for functional brain regions that are not identifiable on structural MR images. The case is made for the raphe nuclei, a collection of nuclei situated in the brain stem known...... to be densely packed with serotonin transporters (5-hydroxytryptaminic [5-HTT] system). METHODS: A template set for the raphe nuclei, based on their high content of 5-HTT as visualized in parametric (11)C-labeled 3-amino-4-(2-dimethylaminomethyl-phenylsulfanyl)-benzonitrile PET images, was created for 10...... healthy subjects. The templates were subsequently included in the region sets used in a previously published automatic MRI-based approach to create an observer- and activity-independent probabilistic VOI map. The probabilistic map approach was tested in a different group of 10 subjects and compared...

  20. Catechol-O-Methyltransferase Genotypes and Parenting Influence on Long-Term Executive Functioning After Moderate to Severe Early Childhood Traumatic Brain Injury: An Exploratory Study.

    Science.gov (United States)

    Kurowski, Brad G; Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L

    To examine catechol-O-methyltransferase (COMT) rs4680 genotypes as moderators of the effects of parenting style on postinjury changes in parent behavior ratings of executive dysfunction following moderate to severe early childhood traumatic brain injury. Research was conducted in an outpatient setting. Participants included children admitted to hospital with moderate to severe traumatic brain injury (n = 55) or orthopedic injuries (n = 70) between ages 3 and 7 years. Prospective cohort followed over 7 years postinjury. Parenting Practices Questionnaire and the Behavior Rating Inventory of Executive Functioning obtained at baseline, 6, 12, and 18 months, and 3.5 and 6.8 years postinjury. DNA was collected from saliva samples, purified using the Oragene (DNA Genotek, Ottawa, Ontario, Canada) OG-500 self-collection tubes, and analyzed using TaqMan (Applied Biosystems, Thermo Fisher Scientific, Waltham, Massachusetts) assay protocols to identify the COMT rs4680 polymorphism. Linear mixed models revealed a significant genotype × parenting style × time interaction (F = 5.72, P = .02), which suggested that the adverse effects of authoritarian parenting on postinjury development of executive functioning were buffered by the presence of the COMT AA genotype (lower enzyme activity, higher dopamine levels). There were no significant associations of executive functioning with the interaction between genotype and authoritative or permissive parenting ratings. The lower activity COMT rs4680 genotype may buffer the negative effect of authoritarian parenting on long-term executive functioning following injury in early childhood. The findings provide preliminary evidence for associations of parenting style with executive dysfunction in children and for a complex interplay of genetic and environmental factors as contributors to decreases in these problems after traumatic injuries in children. Further investigation is warranted to understand the interplay among genetic and

  1. Functional brain networks develop from a "local to distributed" organization.

    Directory of Open Access Journals (Sweden)

    Damien A Fair

    2009-05-01

    Full Text Available The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI, graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength between regions close in anatomical space and 'integration' (an increased correlation strength between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults

  2. Functional brain networks develop from a "local to distributed" organization.

    Science.gov (United States)

    Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E

    2009-05-01

    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have

  3. Hierarchical organization of brain functional networks during visual tasks.

    Science.gov (United States)

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  4. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain

    Science.gov (United States)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Quentin; Culver, Joseph P.; Wang, Lihong V.

    2014-01-01

    The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bulb, limbic, parietal, somatosensory, retrosplenial, visual, motor, and temporal regions, as well as in several subregions. The borders and locations of these regions agreed well with the Paxinos mouse brain atlas. By subjecting the mouse to alternating hyperoxic and hypoxic conditions, strong and weak functional connectivities were observed, respectively. In addition to connectivity images, vascular images were simultaneously acquired. These studies show that functional connectivity photoacoustic tomography is a promising, noninvasive technique for functional imaging of the mouse brain. PMID:24367107

  5. The effects of vitamin D on brain development and adult brain function.

    Science.gov (United States)

    Kesby, James P; Eyles, Darryl W; Burne, Thomas H J; McGrath, John J

    2011-12-05

    A role for vitamin D in brain development and function has been gaining support over the last decade. Multiple lines of evidence suggest that this vitamin is actually a neuroactive steroid that acts on brain development, leading to alterations in brain neurochemistry and adult brain function. Early deficiencies have been linked with neuropsychiatric disorders, such as schizophrenia, and adult deficiencies have been associated with a host of adverse brain outcomes, including Parkinson's disease, Alzheimer's disease, depression and cognitive decline. This review summarises the current state of research on the actions of vitamin D in the brain and the consequences of deficiencies in this vitamin. Furthermore, we discuss specific implications of vitamin D status on the neurotransmitter, dopamine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Functional brain imaging in neuropsychology over the past 25 years.

    Science.gov (United States)

    Roalf, David R; Gur, Ruben C

    2017-11-01

    Outline effects of functional neuroimaging on neuropsychology over the past 25 years. Functional neuroimaging methods and studies will be described that provide a historical context, offer examples of the utility of neuroimaging in specific domains, and discuss the limitations and future directions of neuroimaging in neuropsychology. Tracking the history of publications on functional neuroimaging related to neuropsychology indicates early involvement of neuropsychologists in the development of these methodologies. Initial progress in neuropsychological application of functional neuroimaging has been hampered by costs and the exposure to ionizing radiation. With rapid evolution of functional methods-in particular functional MRI (fMRI)-neuroimaging has profoundly transformed our knowledge of the brain. Its current applications span the spectrum of normative development to clinical applications. The field is moving toward applying sophisticated statistical approaches that will help elucidate distinct neural activation networks associated with specific behavioral domains. The impact of functional neuroimaging on clinical neuropsychology is more circumscribed, but the prospects remain enticing. The theoretical insights and empirical findings of functional neuroimaging have been led by many neuropsychologists and have transformed the field of behavioral neuroscience. Thus far they have had limited effects on the clinical practices of neuropsychologists. Perhaps it is time to add training in functional neuroimaging to the clinical neuropsychologist's toolkit and from there to the clinic or bedside. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Identification of alterations associated with age in the clustering structure of functional brain networks.

    Science.gov (United States)

    Guzman, Grover E C; Sato, Joao R; Vidal, Maciel C; Fujita, Andre

    2018-01-01

    Initial studies using resting-state functional magnetic resonance imaging on the trajectories of the brain network from childhood to adulthood found evidence of functional integration and segregation over time. The comprehension of how healthy individuals' functional integration and segregation occur is crucial to enhance our understanding of possible deviations that may lead to brain disorders. Recent approaches have focused on the framework wherein the functional brain network is organized into spatially distributed modules that have been associated with specific cognitive functions. Here, we tested the hypothesis that the clustering structure of brain networks evolves during development. To address this hypothesis, we defined a measure of how well a brain region is clustered (network fitness index), and developed a method to evaluate its association with age. Then, we applied this method to a functional magnetic resonance imaging data set composed of 397 males under 31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium. As results, we identified two brain regions for which the clustering change over time, namely, the left middle temporal gyrus and the left putamen. Since the network fitness index is associated with both integration and segregation, our finding suggests that the identified brain region plays a role in the development of brain systems.

  8. Large-scale functional MRI analysis to accumulate knowledge on brain functions

    International Nuclear Information System (INIS)

    Schwartz, Yannick

    2015-01-01

    How can we accumulate knowledge on brain functions? How can we leverage years of research in functional MRI to analyse finer-grained psychological constructs, and build a comprehensive model of the brain? Researchers usually rely on single studies to delineate brain regions recruited by mental processes. They relate their findings to previous works in an informal way by defining regions of interest from the literature. Meta-analysis approaches provide a more principled way to build upon the literature. This thesis investigates three ways to assemble knowledge using activation maps from a large amount of studies. First, we present an approach that uses jointly two similar fMRI experiments, to better condition an analysis from a statistical standpoint. We show that it is a valuable data-driven alternative to traditional regions of interest analyses, but fails to provide a systematic way to relate studies, and thus does not permit to integrate knowledge on a large scale. Because of the difficulty to associate multiple studies, we resort to using a single dataset sampling a large number of stimuli for our second contribution. This method estimates functional networks associated with functional profiles, where the functional networks are interacting brain regions and the functional profiles are a weighted set of cognitive descriptors. This work successfully yields known brain networks and automatically associates meaningful descriptions. Its limitations lie in the unsupervised nature of this method, which is more difficult to validate, and the use of a single dataset. It however brings the notion of cognitive labels, which is central to our last contribution. Our last contribution presents a method that learns functional atlases by combining several datasets. [Henson 2006] shows that forward inference, i.e. the probability of an activation given a cognitive process, is often not sufficient to conclude on the engagement of brain regions for a cognitive process

  9. Decreased prefrontal functional brain response during memory testing in women with Cushing's syndrome in remission.

    Science.gov (United States)

    Ragnarsson, Oskar; Stomby, Andreas; Dahlqvist, Per; Evang, Johan A; Ryberg, Mats; Olsson, Tommy; Bollerslev, Jens; Nyberg, Lars; Johannsson, Gudmundur

    2017-08-01

    Neurocognitive dysfunction is an important feature of Cushing's syndrome (CS). Our hypothesis was that patients with CS in remission have decreased functional brain responses in the prefrontal cortex and hippocampus during memory testing. In this cross-sectional study we included 19 women previously treated for CS and 19 controls matched for age, gender, and education. The median remission time was 7 (IQR 6-10) years. Brain activity was studied with functional magnetic resonance imaging during episodic- and working-memory tasks. The primary regions of interest were the prefrontal cortex and the hippocampus. A voxel-wise comparison of functional brain responses in patients and controls was performed. During episodic-memory encoding, patients displayed lower functional brain responses in the left and right prefrontal gyrus (pright inferior occipital gyrus (pbrain responses in the left posterior hippocampus in patients (p=0.05). During episodic-memory retrieval, the patients displayed lower functional brain responses in several brain areas with the most predominant difference in the right prefrontal cortex (pbrain response during a more complex working memory task compared with a simpler one. In conclusion, women with CS in long-term remission have reduced functional brain responses during episodic and working memory testing. This observation extends previous findings showing long-term adverse effects of severe hypercortisolaemia on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    Science.gov (United States)

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Functional MRI of food-induced brain responses

    NARCIS (Netherlands)

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional

  12. The Efficiency of a Small-World Functional Brain Network

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing-Bai; ZHANG Xiao-Fei; SUI Dan-Ni; ZHOU Zhi-Jin; CHEN Qi-Cai; TANG Yi-Yuan

    2012-01-01

    We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task.Functional brain networks are constructed by multichannel eventrelated potential data,in which the electrodes are the nodes and the functional connectivities between them are the edges.The results show that the correlation between small-world measures and reaction time is task-specific,such that in global imagery,there is a positive correlation between the clustering coefficient and reaction time,while in local imagery the average path length is positively correlated with the reaction time.This suggests that the efficiency of a functional brain network is task-dependent.%We investigate whether the small-world topology of a functional brain network means high information processing efficiency by calculating the correlation between the small-world measures of a functional brain network and behavioral reaction during an imagery task. Functional brain networks are constructed by multichannel event-related potential data, in which the electrodes are the nodes and the functional connectivities between them are the edges. The results show that the correlation between small-world measures and reaction time is task-specific, such that in global imagery, there is a positive correlation between the clustering coefficient and reaction time, while in local imagery the average path length is positively correlated with the reaction time. This suggests that the efficiency of a functional brain network is task-dependent.

  13. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.

    Science.gov (United States)

    Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong

    2017-10-01

    Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals

  14. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    Science.gov (United States)

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  15. Does Apolipoprotein e4 Status Moderate the Association of Family Environment with Long-Term Child Functioning following Early Moderate to Severe Traumatic Brain Injury? A Preliminary Study.

    Science.gov (United States)

    Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Martin, Lisa J; Yeates, Keith Owen; Taylor, H Gerry; Wade, Shari L; Kurowski, Brad G

    2016-09-01

    To examine whether apolipoprotein e4 (APOE) status moderates the association of family environment with child functioning following early traumatic brain injury (TBI). Sixty-five children with moderate to severe TBI and 70 children with orthopedic injury (OI) completed assessments 6, 12, 18 months, and 3.5 and 6.8 years post injury. DNA was extracted from saliva samples and genotyped for APOE e4 status. Linear mixed models examined moderating effects of APOE e4 status on associations between two family environment factors (parenting style, home environment) and three child outcomes (executive functioning, behavioral adjustment, adaptive functioning). Children with TBI who were carriers of the e4 allele showed poorer adaptive functioning relative to non-carriers with TBI and children with OI in the context of low authoritarianism. At high levels of authoritarianism, non-carriers with TBI showed the poorest adaptive functioning among groups. There were no main effects or interactions involving APOE and executive functioning or behavioral adjustment. The APOE e4 allele was detrimental for long-term adaptive functioning in the context of positive parenting, whereas in less optimal parenting contexts, being a non-carrier was detrimental. We provide preliminary evidence for an interaction of APOE e4 status and parenting style in predicting long-term outcomes following early TBI. (JINS, 2016, 22, 859-864).

  16. Functional neuroanatomy of executive function after neonatal brain injury in adults who were born very preterm.

    Directory of Open Access Journals (Sweden)

    Anastasia K Kalpakidou

    Full Text Available Individuals who were born very preterm (VPT; <33 gestational weeks are at risk of experiencing deficits in tasks involving executive function in childhood and beyond. In addition, the type and severity of neonatal brain injury associated with very preterm birth may exert differential effects on executive functioning by altering its neuroanatomical substrates. Here we addressed this question by investigating with functional magnetic resonance imaging (fMRI the haemodynamic response during executive-type processing using a phonological verbal fluency and a working memory task in VPT-born young adults who had experienced differing degrees of neonatal brain injury. 12 VPT individuals with a history of periventricular haemorrhage and ventricular dilatation (PVH+VD, 17 VPT individuals with a history of uncomplicated periventricular haemorrhage (UPVH, 13 VPT individuals with no history of neonatal brain injury and 17 controls received an MRI scan whilst completing a verbal fluency task with two cognitive loads ('easy' and 'hard' letters. Two groups of VPT individuals (PVH+VD; n = 10, UPVH; n = 8 performed an n-back task with three cognitive loads (1-, 2-, 3-back. Results demonstrated that VPT individuals displayed hyperactivation in frontal, temporal, and parietal cortices and in caudate nucleus, insula and thalamus compared to controls, as demands of the verbal fluency task increased, regardless of type of neonatal brain injury. On the other hand, during the n-back task and as working memory load increased, the PVH+VD group showed less engagement of the frontal cortex than the UPVH group. In conclusion, this study suggests that the functional neuroanatomy of different executive-type processes is altered following VPT birth and that neural activation associated with specific aspects of executive function (i.e., working memory may be particularly sensitive to the extent of neonatal brain injury.

  17. Electrical stunning and exsanguination decrease the extracellular volume in the broiler brain as studied with brain impedance recordings

    NARCIS (Netherlands)

    Savenije, B; Lambooij, E; Pieterse, C; Korf, J

    Electrical stunning in the process of slaughtering poultry is used to induce unconsciousness and immobilize the animal for easier processing. Unconsciousness is a function of brain damage. Brain damage has been studied with brain impedance recordings under ischemic conditions. This experiment

  18. Differentiating functional brain regions using optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Gil, Daniel A.; Bow, Hansen C.; Shen, Jin-H.; Joos, Karen M.; Skala, Melissa C.

    2017-02-01

    The human brain is made up of functional regions governing movement, sensation, language, and cognition. Unintentional injury during neurosurgery can result in significant neurological deficits and morbidity. The current standard for localizing function to brain tissue during surgery, intraoperative electrical stimulation or recording, significantly increases the risk, time, and cost of the procedure. There is a need for a fast, cost-effective, and high-resolution intraoperative technique that can avoid damage to functional brain regions. We propose that optical coherence tomography (OCT) can fill this niche by imaging differences in the cellular composition and organization of functional brain areas. We hypothesized this would manifest as differences in the attenuation coefficient measured using OCT. Five functional regions (prefrontal, somatosensory, auditory, visual, and cerebellum) were imaged in ex vivo porcine brains (n=3), a model chosen due to a similar white/gray matter ratio as human brains. The attenuation coefficient was calculated using a depth-resolved model and quantitatively validated with Intralipid phantoms across a physiological range of attenuation coefficients (absolute difference Nissl-stained histology will be used to validate our results and correlate OCT-measured attenuation coefficients to neuronal density. Additional development and validation of OCT algorithms to discriminate brain regions are planned to improve the safety and efficacy of neurosurgical procedures such as biopsy, electrode placement, and tissue resection.

  19. Hyper-connectivity of functional networks for brain disease diagnosis.

    Science.gov (United States)

    Jie, Biao; Wee, Chong-Yaw; Shen, Dinggang; Zhang, Daoqiang

    2016-08-01

    Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer's disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also help

  20. Neural substrate expansion for the restoration of brain function

    Directory of Open Access Journals (Sweden)

    Han-Chiao Isaac Chen

    2016-01-01

    Full Text Available Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks.

  1. The brain stem function in patients with brain bladder; Clinical evaluation using dynamic CT scan and auditory brainstem response

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Toshihiro (Yokohama City Univ. (Japan). Faculty of Medicine)

    1990-11-01

    A syndrome of detrusor-sphincter dyssynergia (DSD) is occasionally found in patients with brain bladder. To evaluate the brain stem function in cases of brain bladder, urodynamic study, dynamic CT scan of the brain stem (DCT) and auditory brainstem response (ABR) were performed. The region of interest of DCT aimed at the posterolateral portion of the pons. The results were analysed in contrast with the presense of DSD in urodynamic study. DCT studies were performed in 13 cases with various brain diseases and 5 control cases without neurological diseases. Abnormal patterns of the time-density curve consisted of low peak value, prolongation of filling time and low rapid washout ratio (low clearance ratio) of the contrast medium. Four of 6 cases with DSD showed at least one of the abnormal patterns of the time-density curve bilaterally. In 7 cases without DSD none showed bilateral abnormality of the curve and in 2 of 7 cases only unilateral abnormality was found. ABR was performed in 8 patients with brain diseases. The interpeak latency of the wave I-V (I-V IPL) was considered to be prolonged in 2 cases with DSD compared to that of 4 without DSD. In 2 cases with DSD who had normal DCT findings, measurement of the I-V IPL was impossible due to abnormal pattern of the ABR wave. Above mentioned results suggests the presence of functional disturbance at the posterolateral portion of the pons in cases of brain bladder with DSD. (author).

  2. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  3. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    Science.gov (United States)

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  4. Subjective and objective cognitive function among older adults with a history of traumatic brain injury: A population-based cohort study.

    Science.gov (United States)

    Gardner, Raquel C; Langa, Kenneth M; Yaffe, Kristine

    2017-03-01

    Traumatic brain injury (TBI) is extremely common across the lifespan and is an established risk factor for dementia. The cognitive profile of the large and growing population of older adults with prior TBI who do not have a diagnosis of dementia, however, has not been well described. Our aim was to describe the cognitive profile associated with prior TBI exposure among community-dwelling older adults without dementia-an understudied but potentially vulnerable population. In this population-based cohort study, we studied 984 community-dwelling older adults (age 51 y and older and their spouses) without dementia who had been randomly selected from respondents to the 2014 wave of the Health and Retirement Study to participate in a comprehensive TBI survey and who either reported no prior TBI (n = 737) or prior symptomatic TBI resulting in treatment in a hospital (n = 247). Mean time since first TBI was 38 ± 19 y. Outcomes assessed included measures of global cognitive function, verbal episodic memory, semantic fluency, and calculation as well as a measure of subjective memory ("How would you rate your memory at the present time?"). We compared outcomes between the two TBI groups using regression models adjusting for demographics, medical comorbidities, and depression. Sensitivity analyses were performed stratified by TBI severity (no TBI, TBI without loss of consciousness [LOC], and TBI with LOC). Respondents with TBI were younger (mean age 64 ± 10 y versus 68 ± 11 y), were less likely to be female, and had higher prevalence of medical comorbidities and depression than respondents without TBI. Respondents with TBI did not perform significantly differently from respondents without TBI on any measure of objective cognitive function in either raw or adjusted models (fully adjusted: global cognitive function score 15.4 versus 15.2, p = 0.68; verbal episodic memory score 4.4 versus 4.3, p = 0.79; semantic fluency score 15.7 versus 14.0, p = 0.21; calculation impairment

  5. Subjective and objective cognitive function among older adults with a history of traumatic brain injury: A population-based cohort study.

    Directory of Open Access Journals (Sweden)

    Raquel C Gardner

    2017-03-01

    Full Text Available Traumatic brain injury (TBI is extremely common across the lifespan and is an established risk factor for dementia. The cognitive profile of the large and growing population of older adults with prior TBI who do not have a diagnosis of dementia, however, has not been well described. Our aim was to describe the cognitive profile associated with prior TBI exposure among community-dwelling older adults without dementia-an understudied but potentially vulnerable population.In this population-based cohort study, we studied 984 community-dwelling older adults (age 51 y and older and their spouses without dementia who had been randomly selected from respondents to the 2014 wave of the Health and Retirement Study to participate in a comprehensive TBI survey and who either reported no prior TBI (n = 737 or prior symptomatic TBI resulting in treatment in a hospital (n = 247. Mean time since first TBI was 38 ± 19 y. Outcomes assessed included measures of global cognitive function, verbal episodic memory, semantic fluency, and calculation as well as a measure of subjective memory ("How would you rate your memory at the present time?". We compared outcomes between the two TBI groups using regression models adjusting for demographics, medical comorbidities, and depression. Sensitivity analyses were performed stratified by TBI severity (no TBI, TBI without loss of consciousness [LOC], and TBI with LOC. Respondents with TBI were younger (mean age 64 ± 10 y versus 68 ± 11 y, were less likely to be female, and had higher prevalence of medical comorbidities and depression than respondents without TBI. Respondents with TBI did not perform significantly differently from respondents without TBI on any measure of objective cognitive function in either raw or adjusted models (fully adjusted: global cognitive function score 15.4 versus 15.2, p = 0.68; verbal episodic memory score 4.4 versus 4.3, p = 0.79; semantic fluency score 15.7 versus 14.0, p = 0.21; calculation

  6. Dynamic reconfiguration of human brain functional networks through neurofeedback.

    Science.gov (United States)

    Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri

    2013-11-01

    Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Sparse coding reveals greater functional connectivity in female brains during naturalistic emotional experience.

    Directory of Open Access Journals (Sweden)

    Yudan Ren

    Full Text Available Functional neuroimaging is widely used to examine changes in brain function associated with age, gender or neuropsychiatric conditions. FMRI (functional magnetic resonance imaging studies employ either laboratory-designed tasks that engage the brain with abstracted and repeated stimuli, or resting state paradigms with little behavioral constraint. Recently, novel neuroimaging paradigms using naturalistic stimuli are gaining increasing attraction, as they offer an ecologically-valid condition to approximate brain function in real life. Wider application of naturalistic paradigms in exploring individual differences in brain function, however, awaits further advances in statistical methods for modeling dynamic and complex dataset. Here, we developed a novel data-driven strategy that employs group sparse representation to assess gender differences in brain responses during naturalistic emotional experience. Comparing to independent component analysis (ICA, sparse coding algorithm considers the intrinsic sparsity of neural coding and thus could be more suitable in modeling dynamic whole-brain fMRI signals. An online dictionary learning and sparse coding algorithm was applied to the aggregated fMRI signals from both groups, which was subsequently factorized into a common time series signal dictionary matrix and the associated weight coefficient matrix. Our results demonstrate that group sparse representation can effectively identify gender differences in functional brain network during natural viewing, with improved sensitivity and reliability over ICA-based method. Group sparse representation hence offers a superior data-driven strategy for examining brain function during naturalistic conditions, with great potential for clinical application in neuropsychiatric disorders.

  8. Cue-Induced Brain Activation in Chronic Ketamine-Dependent Subjects, Cigarette Smokers, and Healthy Controls: A Task Functional Magnetic Resonance Imaging Study

    Directory of Open Access Journals (Sweden)

    Yanhui Liao

    2018-03-01

    Full Text Available BackgroundObservations of drug-related cues may induce craving in drug-dependent patients, prompting compulsive drug-seeking behavior. Sexual dysfunction is common in drug users. The aim of the study was to examine regional brain activation to drug (ketamine, cigarette smoking associated cues and natural (sexual rewards.MethodsA sample of 129 [40 ketamine use smokers (KUS, 45 non-ketamine use smokers (NKUS and 44 non-ketamine use non-smoking healthy controls (HC] participants underwent functional magnetic resonance imaging (fMRI while viewing ketamine use related, smoking and sexual films.ResultsWe found that KUS showed significant increased activation in anterior cingulate cortex and precuneus in response to ketamine cues. Ketamine users (KUS showed lower activation in cerebellum and middle temporal cortex compared with non-ketamine users (NKUS and HC in response to sexual cues. Smokers (KUS and NKUS showed higher activation in the right precentral frontal cortex in response to smoking cues. Non-ketamine users (NKUS and HC showed significantly increased activation of cerebellum and middle temporal cortex while viewing sexual cues.ConclusionThese findings clearly show the engagement of distinct neural circuitry for drug-related stimuli in chronic ketamine users. While smokers (both KUS and NKUS showed overlapping differences in activation for smoking cues, the former group showed a specific neural response to relevant (i.e., ketamine-related cues. In particular, the heightened response in anterior cingulate cortex may have important implications for how attentionally salient such cues are in this group. Ketamine users (KUS showed lower activation in response to sexual cues may partly reflect the neural basis of sexual dysfunction.

  9. THE BEHAVIOUR AND BRAIN FUNCTION OF THE CICHLID FISH ...

    African Journals Online (AJOL)

    male and female conspecifics on a visual basis. ... Brain Function, Teleost, telencephalon, Cichlid fish behaviour, limbic system, hippocampus. ...... The effects of forebrain ablations on the behaviour of H. philander cannot be satisfactorily.

  10. Examination of brain function using PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Yasuhito; Momose, Toshinitsu; Watanabe, Toshiaki; Oku, Shinya; Nishikawa, Junichi [Tokyo Univ. (Japan). Faculty of Medicine

    1996-12-31

    The purpose of the presentation is to elucidate the unique role of PET (positron emission computed tomography) and SPECT (single photon emission computed tomography) in assessing physiological and biochemical functions of the brain.

  11. Brain Connectivity Studies in Schizophrenia: Unravelling the Effects of Antipsychotics

    DEFF Research Database (Denmark)

    Nejad, A.B.; Ebdrup, Bjørn Hylsebeck; Glenthøj, Birte Yding

    2012-01-01

    Impaired brain connectivity is a hallmark of schizophrenia brain dysfunction. However, the effect of drug treatment and challenges on the dysconnectivity of functional networks in schizophrenia is an understudied area. In this review, we provide an overview of functional magnetic resonance imaging...... studies examining dysconnectivity in schizophrenia and discuss the few studies which have also attempted to probe connectivity changes with antipsychotic drug treatment. We conclude with a discussion of possible avenues for further investigation....

  12. Regulation of brain insulin signaling: A new function for tau.

    Science.gov (United States)

    Gratuze, Maud; Planel, Emmanuel

    2017-08-07

    In this issue of JEM, Marciniak et al. (https://doi.org/10.1084/jem.20161731) identify a putative novel function of tau protein as a regulator of insulin signaling in the brain. They find that tau deletion impairs hippocampal response to insulin through IRS-1 and PTEN dysregulation and suggest that, in Alzheimer's disease, impairment of brain insulin signaling might occur via tau loss of function. © 2017 Gratuze and Planel.

  13. ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION

    OpenAIRE

    Silvestri, L.; Mascaro, A. L. Allegra; Lotti, J.; Sacconi, L.; Pavone, F. S.

    2013-01-01

    Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brain...

  14. Mismatch negativity, social cognition, and functional outcomes in patients after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hui-yan Sun

    2015-01-01

    Full Text Available Mismatch negativity is generated automatically, and is an early monitoring indicator of neuronal integrity impairment and functional abnormality in patients with brain injury, leading to decline of cognitive function. Antipsychotic medication cannot affect mismatch negativity. The present study aimed to explore the relationships of mismatch negativity with neurocognition, daily life and social functional outcomes in patients after brain injury. Twelve patients with traumatic brain injury and 12 healthy controls were recruited in this study. We examined neurocognition with the Wechsler Adult Intelligence Scale-Revised China, and daily and social functional outcomes with the Activity of Daily Living Scale and Social Disability Screening Schedule, respectively. Mismatch negativity was analyzed from electroencephalogram recording. The results showed that mismatch negativity amplitudes decreased in patients with traumatic brain injury compared with healthy controls. Mismatch negativity amplitude was negatively correlated with measurements of neurocognition and positively correlated with functional outcomes in patients after traumatic brain injury. Further, the most significant positive correlations were found between mismatch negativity in the fronto-central region and measures of functional outcomes. The most significant positive correlations were also found between mismatch negativity at the FCz electrode and daily living function. Mismatch negativity amplitudes were extremely positively associated with Social Disability Screening Schedule scores at the Fz electrode in brain injury patients. These experimental findings suggest that mismatch negativity might efficiently reflect functional outcomes in patients after traumatic brain injury.

  15. Functional brain imaging of episodic memory decline in ageing.

    Science.gov (United States)

    Nyberg, L

    2017-01-01

    The episodic long-term memory system supports remembering of events. It is considered to be the most age-sensitive system, with an average onset of decline around 60 years of age. However, there is marked interindividual variability, such that some individuals show faster than average change and others show no or very little change. This variability may be related to the risk of developing dementia, with elevated risk for individuals with accelerated episodic memory decline. Brain imaging with functional magnetic resonance imaging (MRI) of blood oxygen level-dependent (BOLD) signalling or positron emission tomography (PET) has been used to reveal the brain bases of declining episodic memory in ageing. Several studies have demonstrated a link between age-related episodic memory decline and the hippocampus during active mnemonic processing, which is further supported by studies of hippocampal functional connectivity in the resting state. The hippocampus interacts with anterior and posterior neocortical regions to support episodic memory, and alterations in hippocampus-neocortex connectivity have been shown to contribute to impaired episodic memory. Multimodal MRI studies and more recently hybrid MRI/PET studies allow consideration of various factors that can influence the association between the hippocampal BOLD signal and memory performance. These include neurovascular factors, grey and white matter structural alterations, dopaminergic neurotransmission, amyloid-Β and glucose metabolism. Knowledge about the brain bases of episodic memory decline can guide interventions to strengthen memory in older adults, particularly in those with an elevated risk of developing dementia, with promising results for combinations of cognitive and physical stimulation. © 2016 The Association for the Publication of the Journal of Internal Medicine.

  16. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study

    Science.gov (United States)

    Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta

    2015-01-01

    Background. Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Methods. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. Results. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. Conclusion. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach. PMID:26161000

  17. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Takayuki Nozawa

    2015-01-01

    Full Text Available Background. Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Methods. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. Results. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. Conclusion. The results support the effectiveness of the onboard training program in enhancing the elderly’s abilities to drive safely and the potential advantages of a multimodal training approach.

  18. Effects of Different Types of Cognitive Training on Cognitive Function, Brain Structure, and Driving Safety in Senior Daily Drivers: A Pilot Study.

    Science.gov (United States)

    Nozawa, Takayuki; Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Nouchi, Rui; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta

    2015-01-01

    Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach.

  19. Bisphenol A Interaction With Brain Development and Functions

    Directory of Open Access Journals (Sweden)

    P. Negri-Cesi

    2015-06-01

    Full Text Available Brain development is an organized, but constantly adaptive, process in which genetic and epigenetic signals allow neurons to differentiate, to migrate, and to develop correct connections. Gender specific prenatal sex hormone milieu participates in the dimorphic development of many neuronal networks. Environmental cues may interfere with these developmental programs, producing adverse outcomes. Bisphenol A (BPA, an estrogenic/antiandrogenic endocrine disruptor widely diffused in the environment, produces adverse effects at levels below the acceptable daily intake. This review analyzes the recent literature on the consequences of perinatal exposure to BPA environmental doses on the development of a dimorphic brain. The BPA interference with the development and function of the neuroendocrine hypothalamus and of the nuclei controlling energy balance, and with the hippocampal memory processing is also discussed. The detrimental action of BPA appears complex, involving different hormonal and epigenetic pathways activated, often in a dimorphic way, within clearcut susceptibility windows. To date, discrepancies in experimental approaches and in related outcomes make unfeasible to translate the available information into clear dose–response models for human risk assessment. Evaluation of BPA brain levels in relation to the appearance of adverse effects in future basic studies will certainly give better definition of the warning threshold for human health.

  20. Exploring brain function from anatomical connectivity

    Directory of Open Access Journals (Sweden)

    Gorka eZamora-López

    2011-06-01

    Full Text Available The intrinsic relationship between the architecture of the brain and the range of sensory and behavioral phenomena it produces is a relevant question in neuroscience. Here, we review recent knowledge gained on the architecture of the anatomical connectivity by means of complex network analysis. It has been found that corticocortical networks display a few prominent characteristics: (i modular organization, (ii abundant alternative processing paths and (iii the presence of highly connected hubs. Additionally, we present a novel classification of cortical areas of the cat according to the role they play in multisensory connectivity. All these properties represent an ideal anatomical substrate supporting rich dynamical behaviors, as-well-as facilitating the capacity of the brain to process sensory information of different modalities segregated and to integrate them towards a comprehensive perception of the real world. The result here exposed are mainly based in anatomical data of cats’ brain, but we show how further observations suggest that, from worms to humans, the nervous system of all animals might share fundamental principles of organization.

  1. Critical periods of brain growth and cognitive function in children.

    Science.gov (United States)

    Gale, Catharine R; O'Callaghan, Finbar J; Godfrey, Keith M; Law, Catherine M; Martyn, Christopher N

    2004-02-01

    There is evidence that IQ tends to be higher in those who were heavier at birth or who grew taller in childhood and adolescence. Although these findings imply that growth in both foetal and postnatal life influences cognitive performance, little is known about the relative importance of brain growth during different periods of development. We investigated the relationship between brain growth in different periods of pre- and postnatal life and cognitive function in 221 9-year-old children whose mothers had taken part in a study of nutrition in pregnancy and whose head circumference had been measured at 18 weeks gestation, birth and 9 months of age. Cognitive function of the children and their mothers was assessed with the Wechsler Abbreviated Scale of Intelligence. Full-scale IQ at age 9 years rose by 1.98 points [95% confidence interval (CI) 0.34 to 3.62] for each SD increase in head circumference at 9 months and by 2.87 points (95% CI 1.05 to 4.69) for each SD increase in head circumference at 9 years of age, after adjustment for sex, number of older siblings, maternal IQ, age, education, social class, duration of breastfeeding and history of low mood in the post-partum period. Postnatal head growth was significantly greater in children whose mothers were educated to degree level or of higher socio-economic status. There was no relation between IQ and measurements of head size at 18 weeks gestation or at birth. These results suggest that brain growth during infancy and early childhood is more important than growth during foetal life in determining cognitive function.

  2. The developmental trajectory of brain-scalp distance from birth through childhood: implications for functional neuroimaging.

    Directory of Open Access Journals (Sweden)

    Michael S Beauchamp

    Full Text Available Measurements of human brain function in children are of increasing interest in cognitive neuroscience. Many techniques for brain mapping used in children, including functional near-infrared spectroscopy (fNIRS, electroencephalography (EEG, magnetoencephalography (MEG and transcranial magnetic stimulation (TMS, use probes placed on or near the scalp. The distance between the scalp and the brain is a key variable for these techniques because optical, electrical and magnetic signals are attenuated by distance. However, little is known about how scalp-brain distance differs between different cortical regions in children or how it changes with development. We investigated scalp-brain distance in 71 children, from newborn to age 12 years, using structural T1-weighted MRI scans of the whole head. Three-dimensional reconstructions were created from the scalp surface to allow for accurate calculation of brain-scalp distance. Nine brain landmarks in different cortical regions were manually selected in each subject based on the published fNIRS literature. Significant effects were found for age, cortical region and hemisphere. Brain-scalp distances were lowest in young children, and increased with age to up to double the newborn distance. There were also dramatic differences between brain regions, with up to 50% differences between landmarks. In frontal and temporal regions, scalp-brain distances were significantly greater in the right hemisphere than in the left hemisphere. The largest contributors to developmental changes in brain-scalp distance were increases in the corticospinal fluid (CSF and inner table of the cranium. These results have important implications for functional imaging studies of children: age and brain-region related differences in fNIRS signals could be due to the confounding factor of brain-scalp distance and not true differences in brain activity.

  3. Functional connectivity of the rodent brain using optical imaging

    Science.gov (United States)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techn