WorldWideScience

Sample records for function method based

  1. LEVEL SET METHODS BASED ON DISTANCE FUNCTION

    Institute of Scientific and Technical Information of China (English)

    王德军; 唐云; 于洪川; 唐泽圣

    2003-01-01

    Some basic problems on the level set methods were discussed, such as the method used to preserve the distance function, the existence and uniqueness of solution for the level set equations. The main contribution is to prove that in a neighborhood of the initial zero level set, the level set equations with the restriction of the distance function have a unique solution, which must be the signed distance function with respect to the evolving surface. Some skillful approaches were used: Noticing that any solution for the original equation was a distance function, the original level set equations were transformed into a simpler alternative form. Moreover, since the new system was not a classical one, the system was transforned into an ordinary one, for which the implicit function method was adopted.

  2. Theory-Based Lexicographical Methods in a Functional Perspective

    DEFF Research Database (Denmark)

    Tarp, Sven

    2014-01-01

    This contribution provides an overview of some of the methods used in relation to the function theory. It starts with a definition of the concept of method and the relation existing between theory and method. It establishes an initial distinction between artisanal and theory-based methods...... of various methods used in the different sub-phases of the overall dictionary compilation process, from the making of the concept to the preparation for publication on the chosen media, with focus on the Internet. Finally, it briefly discusses some of the methods used to create and test the function theory...

  3. FUZZY IDENTIFICATION METHOD BASED ON A NEW OBJECTIVE FUNCTION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the system do not exert an influence on the input space in the proposed objective functions of fuzzy clustering. The method could simultaneously solve the problems about structure identification and parameter estimation; thus it makes the fuzzy model become optimal. Simulation example demonstrates that the method could identify non-linear systems and obviously improve modeling accuracy.

  4. A novel classification method based on membership function

    Science.gov (United States)

    Peng, Yaxin; Shen, Chaomin; Wang, Lijia; Zhang, Guixu

    2011-03-01

    We propose a method for medical image classification using membership function. Our aim is to classify the image as several classes based on a prior knowledge. For every point, we calculate its membership function, i.e., the probability that the point belongs to each class. The point is finally labeled as the class with the highest value of membership function. The classification is reduced to a minimization problem of a functional with arguments of membership functions. Three novelties are in our paper. First, bias correction and Rudin-Osher-Fatemi (ROF) model are adopted to the input image to enhance the image quality. Second, unconstrained functional is used. We use variable substitution to avoid the constraints that membership functions should be positive and with sum one. Third, several techniques are used to fasten the computation. The experimental result of ventricle shows the validity of this approach.

  5. AN IMPROVED RADIAL BASIS FUNCTION BASED METHOD FOR IMAGE WARPING

    Institute of Scientific and Technical Information of China (English)

    Nie Xuan; Zhao Rongchun; Zhang Cheng; Zhang Xiaoyan

    2005-01-01

    A new image warping method is proposed in this letter, which can warp a given image by some manual defined features. Based on the radial basis interpolation function algorithm, the proposed method can transform the original optimized problem into nonsingular linear problem by adding one-order term and affine differentiable condition. This linear system can get the steady unique solution by choosing suitable kernel function. Furthermore, the proposed method demonstrates how to set up the radial basis function in the target image so as to achieve supports to adopt the backward re-sampling technology accordingly which could gain the very slippery warping image. Theexperimental result shows that the proposed method can implement smooth and gradual image warping with multi-anchor points' accurate interpolation.

  6. TOPOLOGY DESCRIPTION FUNCTION BASED METHOD FOR MATERIAL DESIGN

    Institute of Scientific and Technical Information of China (English)

    Cao Xianfan; Liu Shutian

    2006-01-01

    The purpose of this paper is to investigate the application of topology description function (TDF) in material design. Using TDF to describe the topology of the microstructure,the formulation and the solving technique of the design problem of materials with prescribed mechanical properties are presented. By presenting the TDF as the sum of a series of basis functions determined by parameters, the topology optimization of material microstructure is formulated as a size optimization problem whose design variables are parameters of TDF basis functions and independent of the mesh of the design domain. By this method, high quality topologies for describing the distribution of constituent material in design domain can be obtained and checkerboard problem often met in the variable density method is avoided. Compared with the conventional level set method, the optimization problem can be solved simply by existing optimization techniques without the process to solve the‘Hamilton-Jacobi-type'equation by the difference method.The method proposed is illustrated with two 2D examples. One gives the unit cell with positive Poisson's ratio, the other with negative Poisson's ratio. The examples show the method based on TDF is effective for material design.

  7. Density functional theory based generalized effective fragment potential method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Kiet A., E-mail: kiet.nguyen@wpafb.af.mil, E-mail: ruth.pachter@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); UES, Inc., Dayton, Ohio 45432 (United States); Pachter, Ruth, E-mail: kiet.nguyen@wpafb.af.mil, E-mail: ruth.pachter@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Day, Paul N. [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); General Dynamics Information Technology, Inc., Dayton, Ohio 45431 (United States)

    2014-06-28

    We present a generalized Kohn-Sham (KS) density functional theory (DFT) based effective fragment potential (EFP2-DFT) method for the treatment of solvent effects. Similar to the original Hartree-Fock (HF) based potential with fitted parameters for water (EFP1) and the generalized HF based potential (EFP2-HF), EFP2-DFT includes electrostatic, exchange-repulsion, polarization, and dispersion potentials, which are generated for a chosen DFT functional for a given isolated molecule. The method does not have fitted parameters, except for implicit parameters within a chosen functional and the dispersion correction to the potential. The electrostatic potential is modeled with a multipolar expansion at each atomic center and bond midpoint using Stone's distributed multipolar analysis. The exchange-repulsion potential between two fragments is composed of the overlap and kinetic energy integrals and the nondiagonal KS matrices in the localized molecular orbital basis. The polarization potential is derived from the static molecular polarizability. The dispersion potential includes the intermolecular D3 dispersion correction of Grimme et al. [J. Chem. Phys. 132, 154104 (2010)]. The potential generated from the CAMB3LYP functional has mean unsigned errors (MUEs) with respect to results from coupled cluster singles, doubles, and perturbative triples with a complete basis set limit (CCSD(T)/CBS) extrapolation, of 1.7, 2.2, 2.0, and 0.5 kcal/mol, for the S22, water-benzene clusters, water clusters, and n-alkane dimers benchmark sets, respectively. The corresponding EFP2-HF errors for the respective benchmarks are 2.41, 3.1, 1.8, and 2.5 kcal/mol. Thus, the new EFP2-DFT-D3 method with the CAMB3LYP functional provides comparable or improved results at lower computational cost and, therefore, extends the range of applicability of EFP2 to larger system sizes.

  8. Dominant partition method. [based on a wave function formalism

    Science.gov (United States)

    Dixon, R. M.; Redish, E. F.

    1979-01-01

    By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.

  9. Numerical methods for characterization of synchrotron radiation based on the Wigner function method

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2014-06-01

    Full Text Available Numerical characterization of synchrotron radiation based on the Wigner function method is explored in order to accurately evaluate the light source performance. A number of numerical methods to compute the Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and wigglers, are presented, which significantly improve the computation efficiency and reduce the total computation time. As a practical example of the numerical characterization, optimization of betatron functions to maximize the brilliance of undulator radiation is discussed.

  10. A Novel Method for Functional Annotation Prediction Based on Combination of Classification Methods

    Directory of Open Access Journals (Sweden)

    Jaehee Jung

    2014-01-01

    Full Text Available Automated protein function prediction defines the designation of functions of unknown protein functions by using computational methods. This technique is useful to automatically assign gene functional annotations for undefined sequences in next generation genome analysis (NGS. NGS is a popular research method since high-throughput technologies such as DNA sequencing and microarrays have created large sets of genes. These huge sequences have greatly increased the need for analysis. Previous research has been based on the similarities of sequences as this is strongly related to the functional homology. However, this study aimed to designate protein functions by automatically predicting the function of the genome by utilizing InterPro (IPR, which can represent the properties of the protein family and groups of the protein function. Moreover, we used gene ontology (GO, which is the controlled vocabulary used to comprehensively describe the protein function. To define the relationship between IPR and GO terms, three pattern recognition techniques have been employed under different conditions, such as feature selection and weighted value, instead of a binary one.

  11. A T Matrix Method Based upon Scalar Basis Functions

    Science.gov (United States)

    Mackowski, D.W.; Kahnert, F. M.; Mishchenko, Michael I.

    2013-01-01

    A surface integral formulation is developed for the T matrix of a homogenous and isotropic particle of arbitrary shape, which employs scalar basis functions represented by the translation matrix elements of the vector spherical wave functions. The formulation begins with the volume integral equation for scattering by the particle, which is transformed so that the vector and dyadic components in the equation are replaced with associated dipole and multipole level scalar harmonic wave functions. The approach leads to a volume integral formulation for the T matrix, which can be extended, by use of Green's identities, to the surface integral formulation. The result is shown to be equivalent to the traditional surface integral formulas based on the VSWF basis.

  12. Calculation of VPP basing on functional analyzing method

    Institute of Scientific and Technical Information of China (English)

    Bai Kaixiang; Wang Dexun; Han Jiurui

    2007-01-01

    The establishment and realization of the VPP calucation's model for the functional analytic theory are discussed in this paper. Functional analyzing method is a theoretical model of the VPP calculation which can eliminate the influence of the sail and board's size skillfully, so it can be regarded as a brief standard of the sailboard's VPP results. As a brief watery dynamical model, resistance on board can be regarded as a direct proportion to the square of the boat-velocity. The boat-velocities at the state of six wind-velocities (3 m/s-8 m/s) with angles of 25°-180° are obtained by calculating, which provides an important gist of the sailing-route's selection in upwind-sailing.

  13. Fingerprint Representation Methods Based on B-Spline Functions

    Institute of Scientific and Technical Information of China (English)

    Ruan Ke; Xia De-lin; Yan Pu-liu

    2004-01-01

    The global characteristics of a fingerprint image such as the ridge shape and ridge topology are often ignored in most automatic fingerprint verification system. In this paper, a new representative method based on B-Spline curve is proposed to address this problem. The resultant B-Spline curves can represent the global characteristics completely and the curves are analyzable and precise. An algorithm is also proposed to extract the curves from the fingerprint image. In addition to preserve the most information of the fingerprint image, the knot-points number of the B-Spline curve is reduced to minimum in this algorithm. At the same time, the influence of the fingerprint image noise is discussed. In the end, an example is given to demonstrate the effectiveness of the representation method.

  14. A Modified Beam Propagation Method Based on the Galerkin Method with Hermite-Gauss Basis Functions

    Institute of Scientific and Technical Information of China (English)

    Xiao Jinbiao; Liu Xu; Cai Chun; Fan Hehong; Sun Xiaohan

    2006-01-01

    A beam propagation method based on the Galerkin method with Hermite-Gauss basis functions for studying optical field propagation in weakly guiding dielectric structures is described. The selected basis functions naturally satisfy the required boundary conditions at infinity so that the boundary truncation is avoided. The paraxial propagation equation is converted into a set of first-order ordinary differential equations,which are solved by means of standard numerical library routines. Besides, the calculation is efficient due to its small resulted matrix. The evolution of the injected field and its normalized power along the propagation distance in an asymmetric slab waveguide and directional coupler are presented, and the solutions are good agreement with those obtained by finite difference BPM, which tests the validity of the present approach.

  15. A novel domain-based method for predicting the functional classes of proteins

    Institute of Scientific and Technical Information of China (English)

    YU Xiaojing; LIN Jiancheng; SHI Tieliu; LI Yixue

    2004-01-01

    Prediction of protein functions from known genomic sequences is an important mission of bioinformatics. One approach is to classify proteins into functional categories. We have therefore developed a method based on protein domain composition and the maximum likelihood estimation (MLE) algorithm to classify proteins according to functions. Using the Saccharomyces cerevisiae genome, we compared the effectiveness of the MLE approach with that of an intuitive and simple method. The MLE method outperformed the simple method, achieving an estimated specificity of 75.45% and an estimated sensitivity of 40.26%. These results indicate that domain is an important feature of proteins and is closely related to protein function.

  16. Multi-group pin power reconstruction method based on colorset form functions

    Institute of Scientific and Technical Information of China (English)

    HUANG Hao

    2009-01-01

    A multi-group pin power reconstruction method that fully exploits nodal information obtained from global coarse mesh solution has been developed.It expands the intra-nodal flux distributions into nonseparable semi-analytic basis functions,and a colorset based form function generating method is proposed,which can accurately model the spectral interaction occurring at assembly interface.To demonstrate its accuracy and applicability to realistic problems,the new method is tested against two benchmark problems,including a mixed-oxide fuel problem.The results show that the new method is comparable in accuracy to fine-mesh methods.

  17. A Method of Clustering Components into Modules Based on Products' Functional and Structural Analysis

    Institute of Scientific and Technical Information of China (English)

    MENG Xiang-hui; JIANG Zu-hua; ZHENG Ying-fei

    2006-01-01

    Modularity is the key to improving the cost-variety trade-off in product development. To achieve the functional independency and structural independency of modules, a method of clustering components to identify modules based on functional and structural analysis was presented. Two stages were included in the method. In the first stage the products' function was analyzed to determine the primary level of modules. Then the objective function for modules identifying was formulated to achieve functional independency of modules. Finally the genetic algorithm was used to solve the combinatorial optimization problem in modules identifying to form the primary modules of products. In the second stage the cohesion degree of modules and the coupling degree between modules were analyzed. Based on this structural analysis the modular scheme was refined according to the thinking of structural independency. A case study on the gear reducer was conducted to illustrate the validity of the presented method.

  18. A Matrix Method Based on the Fibonacci Polynomials to the Generalized Pantograph Equations with Functional Arguments

    Directory of Open Access Journals (Sweden)

    Ayşe Betül Koç

    2014-01-01

    Full Text Available A pseudospectral method based on the Fibonacci operational matrix is proposed to solve generalized pantograph equations with linear functional arguments. By using this method, approximate solutions of the problems are easily obtained in form of the truncated Fibonacci series. Some illustrative examples are given to verify the efficiency and effectiveness of the proposed method. Then, the numerical results are compared with other methods.

  19. [A new wavelet image de-noising method based on new threshold function].

    Science.gov (United States)

    Xing, Guoquan; Ye, Huashan; Zhang, Yuxia; Yan, Yu

    2013-08-01

    In order to improve image de-noising effect,a new threshold function de-noising method based on wavelet analysis was proposed, which can overcome the continuity problem of the hard-threshold function, and eliminate the constant deviation of the soft one by constructing a new threshold function. Experimental results showed that the new threshold function could obtain higher peak signal to noise ratio (PSNR) in image de-nosing. A better denoising effect could be obtained compared with the hard-threshold function, the soft one, the semi-soft one, the cubic polynomial interpolation semi-soft one, and the asymptotic semi-soft one.

  20. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    Science.gov (United States)

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  1. A Method of Gene-Function Annotation Based on Variable Precision Rough Sets

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is very important in the field of bioinformatics to apply computer to perform the function annotation for new sequenced bio-sequences. Based on GO database and BLAST program, a novel method for the function annotation of new biological sequences is presented by using the variable-precision rough set theory. The proposed method is applied to the real data in GO database to examine its effectiveness. Numerical results show that the proposed method has better precision, recall-rate and harmonic mean value compared with existing methods.

  2. An improved method for functional similarity analysis of genes based on Gene Ontology.

    Science.gov (United States)

    Tian, Zhen; Wang, Chunyu; Guo, Maozu; Liu, Xiaoyan; Teng, Zhixia

    2016-12-23

    Measures of gene functional similarity are essential tools for gene clustering, gene function prediction, evaluation of protein-protein interaction, disease gene prioritization and other applications. In recent years, many gene functional similarity methods have been proposed based on the semantic similarity of GO terms. However, these leading approaches may make errorprone judgments especially when they measure the specificity of GO terms as well as the IC of a term set. Therefore, how to estimate the gene functional similarity reliably is still a challenging problem. We propose WIS, an effective method to measure the gene functional similarity. First of all, WIS computes the IC of a term by employing its depth, the number of its ancestors as well as the topology of its descendants in the GO graph. Secondly, WIS calculates the IC of a term set by means of considering the weighted inherited semantics of terms. Finally, WIS estimates the gene functional similarity based on the IC overlap ratio of term sets. WIS is superior to some other representative measures on the experiments of functional classification of genes in a biological pathway, collaborative evaluation of GO-based semantic similarity measures, protein-protein interaction prediction and correlation with gene expression. Further analysis suggests that WIS takes fully into account the specificity of terms and the weighted inherited semantics of terms between GO terms. The proposed WIS method is an effective and reliable way to compare gene function. The web service of WIS is freely available at http://nclab.hit.edu.cn/WIS/ .

  3. Research on the iterative method for model updating based on the frequency response function

    Institute of Scientific and Technical Information of China (English)

    Wei-Ming Li; Jia-Zhen Hong

    2012-01-01

    Model reduction technique is usually employed in model updating process,In this paper,a new model updating method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the model reduction technique is investigated.The new model updating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency response function,which could greatly increase the number of the equations and the updating parameters.Based on the traditional iterative method,a correction term related to the errors resulting from the replacement of the reduction matrix of the experimental model with that of the finite element model is added in the new iterative method.Comparisons between the traditional iterative method and the proposed iterative method are shown by model updating examples of solar panels,and both of these two iterative methods combine the CMCF method and the succession-level approximate reduction technique.Results show the effectiveness of the CMCF method and the proposed iterative method.

  4. Method of Fusion Diagnosis for Dam Service Status Based on Joint Distribution Function of Multiple Points

    Directory of Open Access Journals (Sweden)

    Zhenxiang Jiang

    2016-01-01

    Full Text Available The traditional methods of diagnosing dam service status are always suitable for single measuring point. These methods also reflect the local status of dams without merging multisource data effectively, which is not suitable for diagnosing overall service. This study proposes a new method involving multiple points to diagnose dam service status based on joint distribution function. The function, including monitoring data of multiple points, can be established with t-copula function. Therefore, the possibility, which is an important fusing value in different measuring combinations, can be calculated, and the corresponding diagnosing criterion is established with typical small probability theory. Engineering case study indicates that the fusion diagnosis method can be conducted in real time and the abnormal point can be detected, thereby providing a new early warning method for engineering safety.

  5. A Method for Data Classification Based on Discernibility Matrix and Discernibility Function

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A method for data classification will influence the efficiency of classification. Attributes reduction based on discernibility matrix and discernibility function in rough sets can use in data classification, so we put forward a method for data classification. Namely, firstly, we use discernibility matrix and discernibility function to delete superfluous attributes in formation system and get a necessary attribute set. Secondly, we delete superfluous attribute values and get decision rules. Finally, we classify data by means of decision rules. The experiments show that data classification using this method is simpler in the structure, and can improve the efficiency of classification.

  6. Cross-Correlation-Function-Based Multipath Mitigation Method for Sine-BOC Signals

    Directory of Open Access Journals (Sweden)

    H. H. Chen

    2012-06-01

    Full Text Available Global Navigation Satellite Systems (GNSS positioning accuracy indoor and urban canyons environments are greatly affected by multipath due to distortions in its autocorrelation function. In this paper, a cross-correlation function between the received sine phased Binary Offset Carrier (sine-BOC modulation signal and the local signal is studied firstly, and a new multipath mitigation method based on cross-correlation function for sine-BOC signal is proposed. This method is implemented to create a cross-correlation function by designing the modulated symbols of the local signal. The theoretical analysis and simulation results indicate that the proposed method exhibits better multipath mitigation performance compared with the traditional Double Delta Correlator (DDC techniques, especially the medium/long delay multipath signals, and it is also convenient and flexible to implement by using only one correlator, which is the case of low-cost mass-market receivers.

  7. A new method of heart sound signal analysis based on independent function element

    Directory of Open Access Journals (Sweden)

    Cheng Xie-feng

    2014-09-01

    Full Text Available In this paper, a new method is presented for heart sound signal processing in statistical domain. The multiple components obtained from the conventional linear transformation are possibly irrelevant, but usually do not possess the characteristics of statistical independence. First, the definition and obtaining method of independent function element are discussed; the method of signal decomposition and reconstruction based on the independent function element, not only inherits the advantages of linear transformation, but also has the capability of signal representation in the statistical domain. After that, the application of independent function element in heart sound signal analysis is analyzed in detail. The validity and practicability of the method are demonstrated through two experiments.

  8. AHP-based approach for optimization of waste disposal method in urban functional zone.

    Science.gov (United States)

    Yin, Li-Jie; Wang, Cheng; Hu, Yu-Yan; Chen, De-Zhen; Xu, Ji-Fu; Liu, Juan

    2017-07-01

    In this study, the municipal solid waste (MSW) is considered as one kind of energy source in urban planning scheme instead of a trash stream. Considering the characteristics of MSW from different urban functional zones and the current energy supply modes, an evaluation model for waste-to-energy (WtE) method was set up based on the analytical hierarchy process technique. The model consists of three layers: 15 fundamental indices, 4 influencing factors based on fundamental indices and the target functions supported by influencing factors. Taking an urban functional region of a city in north China as the research object, 4 alternatives are compared according to their weights and the sensitivities of the influencing factors are analyzed. The result will provide guide for the disposal method of WtE in new urban district planning and old urban redevelopment.

  9. A SVM-based quantitative fMRI method for resting-state functional network detection.

    Science.gov (United States)

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies.

  10. A method based on Monte Carlo simulation for the determination of the G(E) function.

    Science.gov (United States)

    Chen, Wei; Feng, Tiancheng; Liu, Jun; Su, Chuanying; Tian, Yanjie

    2015-02-01

    The G(E) function method is a spectrometric method for the exposure dose estimation; this paper describes a method based on Monte Carlo method to determine the G(E) function of a 4″ × 4″ × 16″ NaI(Tl) detector. Simulated spectrums of various monoenergetic gamma rays in the region of 40 -3200 keV and the corresponding deposited energy in an air ball in the energy region of full-energy peak were obtained using Monte Carlo N-particle Transport Code. Absorbed dose rate in air was obtained according to the deposited energy and divided by counts of corresponding full-energy peak to get the G(E) function value at energy E in spectra. Curve-fitting software 1st0pt was used to determine coefficients of the G(E) function. Experimental results show that the calculated dose rates using the G(E) function determined by the authors' method are accordant well with those values obtained by ionisation chamber, with a maximum deviation of 6.31 %.

  11. Functional-based screening methods for lipases, esterases, and phospholipases in metagenomic libraries.

    Science.gov (United States)

    Reyes-Duarte, Dolores; Ferrer, Manuel; García-Arellano, Humberto

    2012-01-01

    The use of metagenomic techniques for enzyme discovery constitutes a powerful approach. Functional screens, in contrast to sequence homology search, enable us to select enzymes based on their activity. It is noteworthy that they additionally guarantee the identification of genes coding for enzymes that exhibited no sequence similarity to known counterparts from public databases and that even do not match any putative catalytic residues, involved in the selected catalytic function. Therefore, this strategy not only provides new enzymes for new biotechnological applications, but also allows functional assignment of many proteins, found in abundance in the databases, currently designated as "hypothetical" or "conserved hypothetical" proteins. In the past decade, there has been an exponential increase in the design of functional screening programmes, the majority of them established for hydrolases and oxidoreductases. Here, functional screening methods that guarantee the greatest enzyme diversity, for mining esterases and lipases, are described.

  12. A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions.

    Science.gov (United States)

    Vedadi, Farhang; Shirani, Shahram

    2014-01-01

    A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.

  13. Hygrothermal Fracture Analysis of Orthotropic Functionally Graded Materials Using Jk-Integral-Based Methods

    Directory of Open Access Journals (Sweden)

    Serra Topal

    2013-01-01

    Full Text Available This paper puts forward two different Jk-integral-based methods, which can be used to perform mixed-mode fracture analysis of orthotropic functionally graded materials subjected to hygrothermal stresses. The first method requires the evaluation of both components of Jk-integral, whereas the second method employs the first component J1 and the asymptotic crack tip displacement fields. Plane orthotropic hygrothermoelasticity is the basic theory behind the Jk-integral formulation, which is carried out by assuming that all material properties are functions of the spatial coordinates. Developed procedures are implemented by means of the finite element method and integrated into a general purpose finite element analysis software. Temperature and specific moisture concentration fields needed in the fracture analyses are also computed through finite element analysis. Each of the developed methods is utilized in conjunction with the superposition technique to calculate the hygrothermal fracture parameters. An inclined crack located in a hygrothermally loaded orthotropic functionally graded layer is examined in parametric analyses. Comparisons of the results generated by the proposed methods do indicate that both methods lead to numerical results of high accuracy and that the developed form of the Jk-integral is domain independent. Further results are presented so as to illustrate the influences of crack inclination angle, crack length, and crack location upon the modes I and II stress intensity factors.

  14. Performance Analysis of Transfer function Based Active Noise Cancellation Method Using Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Prof. Vikas Gupta

    2014-01-01

    Full Text Available Due to the exponential increase of noise pollution, the demand for noise controlling system is also increases. Basically two types of techniques are used for noise cancellation active and passive. But passive techniques are inactive for low frequency noise, hence there is an increasing demand of research and developmental work on active noise cancellation techniques. In this paper we introduce a new method in the active noise cancellation system. This new method is the transfer function based method which used Genetic and Particle swarm optimization (PSO algorithm for noise cancellation. This method is very simple and efficient for low frequency noise cancellation. Here we analysis the performance of this method in the presence of white Gaussian noise and compare the results of Particle swarm optimization (PSO and Genetic algorithm. Both algorithms are suitable for different environment, so we observe their performance in different fields. In this paper a comparative study of Genetic and Particle swarm optimization (PSO is described with proper results. It will go in depth what exactly transfer function method, how it work and advantages over neural network based method

  15. Time Slice Analysis Method Based on OTCA Used in fMRI Weak Signal Function Extraction

    Institute of Scientific and Technical Information of China (English)

    LUO Sen-lin; LI Li; ZHANG Xin-li; ZHANG Tie-mei

    2007-01-01

    The original temporal clustering analysis (OTCA) is an effective technique for obtaining brain activation maps when the timing and location of the activation are completely unknown, but its deficiency of sensitivity is exposed in processing brain activation signal which is relatively weak. The time slice analysis method based on OTCA is proposed considering the weakness of the functional magnetic resonance imaging (fMRI) signal of the rat model. By dividing the stimulation period into several time slices and analyzing each slice to detect the activated pixels respectively after the background removal, the sensitivity is significantly improved. The inhibitory response in the hypothalamus after glucose loading is detected successfully with this method in the experiment on rat. Combined with the OTCA method, the time slice analysis method based on OTCA is effective on detecting when, where and which type of response will happen after stimulation, even if the fMRI signal is weak.

  16. Evaluation and calibration of functional network modeling methods based on known anatomical connections.

    Science.gov (United States)

    Dawson, Debra Ann; Cha, Kuwook; Lewis, Lindsay B; Mendola, Janine D; Shmuel, Amir

    2013-02-15

    Recent studies have identified large scale brain networks based on the spatio-temporal structure of spontaneous fluctuations in resting-state fMRI data. It is expected that functional connectivity based on resting-state data is reflective of - but not identical to - the underlying anatomical connectivity. However, which functional connectivity analysis methods reliably predict the network structure remains unclear. Here we tested and compared network connectivity analysis methods by applying them to fMRI resting-state time-series obtained from the human visual cortex. The methods evaluated here are those previously tested against simulated data in Smith et al. (Neuroimage, 2011). To this end, we defined regions within retinotopic visual areas V1, V2, and V3 according to their eccentricity in the visual field, delineating central, intermediate, and peripheral eccentricity regions of interest (ROIs). These ROIs served as nodes in the models we study. We based our evaluation on the "ground-truth", thoroughly studied retinotopically-organized anatomical connectivity in the monkey visual cortex. For each evaluated method, we computed the fractional rate of detecting connections known to exist ("c-sensitivity"), while using a threshold of the 95th percentile of the distribution of interaction magnitudes of those connections not expected to exist. Under optimal conditions - including session duration of 68min, a relatively small network consisting of 9 nodes and artifact-free regression of the global effect - each of the top methods predicted the expected connections with 67-85% c-sensitivity. Correlation methods, including Correlation (Corr; 85%), Regularized Inverse Covariance (ICOV; 84%) and Partial Correlation (PCorr; 81%) performed best, followed by Patel's Kappa (80%), Bayesian Network method PC (BayesNet; 77%), General Synchronization measures (67-77%), and Coherence (CohB; 74%). With decreased session duration, these top methods saw decreases in c

  17. Computational optical distortion correction using a radial basis function-based mapping method.

    Science.gov (United States)

    Bauer, Aaron; Vo, Sophie; Parkins, Keith; Rodriguez, Francisco; Cakmakci, Ozan; Rolland, Jannick P

    2012-07-01

    A distortion mapping and computational image unwarping method based on a network interpolation that uses radial basis functions is presented. The method is applied to correct distortion in an off-axis head-worn display (HWD) presenting up to 23% highly asymmetric distortion over a 27°x21° field of view. A 10(-5) mm absolute error of the mapping function over the field of view was achieved. The unwarping efficacy was assessed using the image-rendering feature of optical design software. Correlation coefficients between unwarped images seen through the HWD and the original images, as well as edge superimposition results, are presented. In an experiment, images are prewarped using radial basis functions for a recently built, off-axis HWD with a 20° diagonal field of view in a 4:3 ratio. Real-time video is generated by a custom application with 2 ms added latency and is demonstrated.

  18. Modulating Function-Based Method for Parameter and Source Estimation of Partial Differential Equations

    KAUST Repository

    Asiri, Sharefa M.

    2017-10-08

    Partial Differential Equations (PDEs) are commonly used to model complex systems that arise for example in biology, engineering, chemistry, and elsewhere. The parameters (or coefficients) and the source of PDE models are often unknown and are estimated from available measurements. Despite its importance, solving the estimation problem is mathematically and numerically challenging and especially when the measurements are corrupted by noise, which is often the case. Various methods have been proposed to solve estimation problems in PDEs which can be classified into optimization methods and recursive methods. The optimization methods are usually heavy computationally, especially when the number of unknowns is large. In addition, they are sensitive to the initial guess and stop condition, and they suffer from the lack of robustness to noise. Recursive methods, such as observer-based approaches, are limited by their dependence on some structural properties such as observability and identifiability which might be lost when approximating the PDE numerically. Moreover, most of these methods provide asymptotic estimates which might not be useful for control applications for example. An alternative non-asymptotic approach with less computational burden has been proposed in engineering fields based on the so-called modulating functions. In this dissertation, we propose to mathematically and numerically analyze the modulating functions based approaches. We also propose to extend these approaches to different situations. The contributions of this thesis are as follows. (i) Provide a mathematical analysis of the modulating function-based method (MFBM) which includes: its well-posedness, statistical properties, and estimation errors. (ii) Provide a numerical analysis of the MFBM through some estimation problems, and study the sensitivity of the method to the modulating functions\\' parameters. (iii) Propose an effective algorithm for selecting the method\\'s design parameters

  19. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  20. AN SQP METHOD BASED ON SMOOTHING PENALTY FUNCTION FOR NONLINEAR OPTIMIZATION WITH INEQUALITY CONSTRAINT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Juliang; ZHANG Xiangsun

    2001-01-01

    In this paper, we use the smoothing penalty function proposed in [1] as the merit function of SQP method for nonlinear optimization with inequality constraints. The global convergence of the method is obtained.

  1. Frames and other bases in abstract and function spaces novel methods in harmonic analysis

    CERN Document Server

    Gia, Quoc; Mayeli, Azita; Mhaskar, Hrushikesh; Zhou, Ding-Xuan

    2017-01-01

    The first of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume I is organized around the theme of frames and other bases in abstract and function spaces, covering topics such as: The advanced development of frames, including ...

  2. Projector Augmented Wave Method Incorporated into Gauss-Type Atomic Orbital Based Density Functional Theory.

    Science.gov (United States)

    Xiong, Xiao-Gen; Yanai, Takeshi

    2017-07-11

    The Projector Augmented Wave (PAW) method developed by Blöchl is well recognized as an efficient, accurate pseudopotential approach in solid-state density functional theory (DFT) calculations with the plane-wave basis. Here we present an approach to incorporate the PAW method into the Gauss-type function (GTF) based DFT implementation, which is widely used for molecular quantum chemistry calculations. The nodal and high-exponent GTF components of valence molecular orbitals (MOs) are removed or pseudized by the ultrasoft PAW treatment, while there is elaborate transparency to construct an accurate and well-controlled pseudopotential from all-electron atomic description and to reconstruct an all-electron form of valence MOs from the pseudo MOs. The smoothness of the pseudo MOs should benefit the efficiency of GTF-based DFT calculations in terms of elimination of high-exponent primitive GTFs and reduction of grid points in the numerical quadrature. The processes of the PAW method are divided into basis-independent and -dependent parts. The former is carried out using the previously developed PAW libraries libpaw and atompaw. The present scheme is implemented by incorporating libpaw into the conventional GTF-based DFT solver. The details of the formulations and implementations of GTF-related PAW procedures are presented. The test calculations are shown for illustrating the performance. With the near-complete GTF basis at the cc-pVQZ level, the total energies obtained using our PAW method with suited frozen core treatments converge to those with the conventional all-electron GTF-based method with a rather small absolute error.

  3. Convex objective function-based design method developed for minimizing side lobe.

    Science.gov (United States)

    Liu, Jian; Tan, Jiubin; Zhao, Chenguang

    2008-08-01

    The existence of multiple local solutions makes it very difficult to search for filter parameters to achieve a desired side lobe level during the design of superresolution pupil filters. To deal with the difficult issue of side lobe control in the designing process, a convex objective function-based design method is developed through phase rotation and variable replacement to transform the complicated solving process with multiextreme subintervals into a simple optimization process with a convex interval. A group of constant annular complex superresolving filters are designed using the developed method. The comparison of the superresolving filters designed in this way with the well-known continuous phase filter and 3-zone multiphase diffractive superresolution filters proves the validity of the developed method.

  4. The Estimation Methods for Agricultural Surplus Labor Based on Stochastic Frontier Production Function

    Institute of Scientific and Technical Information of China (English)

    Chaozhou; LU; Yanfen; LUO

    2014-01-01

    The existing calculation methods for the number of agricultural surplus labor have a common flaw,that is,they can not reflect the impact of technical efficiency changes in agricultural production on the surplus labor. Based on the basic principle of stochastic frontier production function,this paper calculates the agricultural production technical efficiency of various provinces,and selects the province with the highest technical efficiency to assume that its agricultural labor is fully utilized,and there is no agricultural surplus labor. With the ratio of agricultural labor number to agricultural output value in this province as a reference,this paper calculates the number of agricultural surplus labor in other provinces. This calculation method makes up for the shortcomings of the existing calculation methods; it reflects the relationship between the number of agricultural surplus labor and production technical efficiency.

  5. An efficient method for ectopic beats cancellation based on radial basis function.

    Science.gov (United States)

    Mateo, Jorge; Torres, Ana; Rieta, José J

    2011-01-01

    The analysis of the surface Electrocardiogram (ECG) is the most extended noninvasive technique in cardiological diagnosis. In order to properly use the ECG, we need to cancel out ectopic beats. These beats may occur in both normal subjects and patients with heart disease, and their presence represents an important source of error which must be handled before any other analysis. This paper presents a method for electrocardiogram ectopic beat cancellation based on Radial Basis Function Neural Network (RBFNN). A train-able neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care is presented. Six types of beats including: Normal Beats (NB); Premature Ventricular Contractions (PVC); Left Bundle Branch Blocks (LBBB); Right Bundle Branch Blocks (RBBB); Paced Beats (PB) and Ectopic Beats (EB) are obtained from the MIT-BIH arrhythmia database. Four morphological features are extracted from each beat after the preprocessing of the selected records. Average Results for the RBFNN based method provided an ectopic beat reduction (EBR) of (mean ± std) EBR = 7, 23 ± 2.18 in contrast to traditional compared methods that, for the best case, yielded EBR = 4.05 ± 2.13. The results prove that RBFNN based methods are able to obtain a very accurate reduction of ectopic beats together with low distortion of the QRST complex.

  6. Comparison of function approximation, heuristic, and derivative-based methods for automatic calibration of computationally expensive groundwater bioremediation models

    Science.gov (United States)

    Mugunthan, Pradeep; Shoemaker, Christine A.; Regis, Rommel G.

    2005-11-01

    The performance of function approximation (FA) methods is compared to heuristic and derivative-based nonlinear optimization methods for automatic calibration of biokinetic parameters of a groundwater bioremediation model of chlorinated ethenes on a hypothetical and a real field case. For the hypothetical case, on the basis of 10 trials on two different objective functions, the FA methods had the lowest mean and smaller deviation of the objective function among all algorithms for a combined Nash-Sutcliffe objective and among all but the derivative-based algorithm for a total squared error objective. The best algorithms in the hypothetical case were applied to calibrate eight parameters to data obtained from a site in California. In three trials the FA methods outperformed heuristic and derivative-based methods for both objective functions. This study indicates that function approximation methods could be a more efficient alternative to heuristic and derivative-based methods for automatic calibration of computationally expensive bioremediation models.

  7. Two-state model based on the block-localized wave function method

    Science.gov (United States)

    Mo, Yirong

    2007-06-01

    The block-localized wave function (BLW) method is a variant of ab initio valence bond method but retains the efficiency of molecular orbital methods. It can derive the wave function for a diabatic (resonance) state self-consistently and is available at the Hartree-Fock (HF) and density functional theory (DFT) levels. In this work we present a two-state model based on the BLW method. Although numerous empirical and semiempirical two-state models, such as the Marcus-Hush two-state model, have been proposed to describe a chemical reaction process, the advantage of this BLW-based two-state model is that no empirical parameter is required. Important quantities such as the electronic coupling energy, structural weights of two diabatic states, and excitation energy can be uniquely derived from the energies of two diabatic states and the adiabatic state at the same HF or DFT level. Two simple examples of formamide and thioformamide in the gas phase and aqueous solution were presented and discussed. The solvation of formamide and thioformamide was studied with the combined ab initio quantum mechanical and molecular mechanical Monte Carlo simulations, together with the BLW-DFT calculations and analyses. Due to the favorable solute-solvent electrostatic interaction, the contribution of the ionic resonance structure to the ground state of formamide and thioformamide significantly increases, and for thioformamide the ionic form is even more stable than the covalent form. Thus, thioformamide in aqueous solution is essentially ionic rather than covalent. Although our two-state model in general underestimates the electronic excitation energies, it can predict relative solvatochromic shifts well. For instance, the intense π →π* transition for formamide upon solvation undergoes a redshift of 0.3eV, compared with the experimental data (0.40-0.5eV).

  8. THREE-DIMENSIONAL ANALYSIS OF FUNCTIONALLY GRADED PLATE BASED ON THE HAAR WAVELET METHOD

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. With good features in treating singularities, Haar series solution converges rapidly for arbitrary distributions, especially for the case where the material properties change rapidly in some regions. Through numerical examples the influences of the ratio of material constants on the top and bottom surfaces and different material gradient distributions on the structural response of the plate to mechanical stimuli are studied.

  9. A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes.

    Science.gov (United States)

    Wheeler, Nicole E; Barquist, Lars; Kingsley, Robert A; Gardner, Paul P

    2016-12-01

    Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predicting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms. A program implementing DBS for pairwise genome comparisons is freely available at: https://github.com/UCanCompBio/deltaBS CONTACT: nicole.wheeler@pg.canterbury.ac.nz or lars.barquist@uni-wuerzburg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  10. An Interval-Valued Intuitionistic Fuzzy TOPSIS Method Based on an Improved Score Function

    Directory of Open Access Journals (Sweden)

    Zhi-yong Bai

    2013-01-01

    Full Text Available This paper proposes an improved score function for the effective ranking order of interval-valued intuitionistic fuzzy sets (IVIFSs and an interval-valued intuitionistic fuzzy TOPSIS method based on the score function to solve multicriteria decision-making problems in which all the preference information provided by decision-makers is expressed as interval-valued intuitionistic fuzzy decision matrices where each of the elements is characterized by IVIFS value and the information about criterion weights is known. We apply the proposed score function to calculate the separation measures of each alternative from the positive and negative ideal solutions to determine the relative closeness coefficients. According to the values of the closeness coefficients, the alternatives can be ranked and the most desirable one(s can be selected in the decision-making process. Finally, two illustrative examples for multicriteria fuzzy decision-making problems of alternatives are used as a demonstration of the applications and the effectiveness of the proposed decision-making method.

  11. Dynamic Reliability Analysis Method of Degraded Mechanical Components Based on Process Probability Density Function of Stress

    Directory of Open Access Journals (Sweden)

    Peng Gao

    2014-01-01

    Full Text Available It is necessary to develop dynamic reliability models when considering strength degradation of mechanical components. Instant probability density function (IPDF of stress and process probability density function (PPDF of stress, which are obtained via different statistical methods, are defined, respectively. In practical engineering, the probability density function (PDF for the usage of mechanical components is mostly PPDF, such as the PDF acquired via the rain flow counting method. For the convenience of application, IPDF is always approximated by PPDF when using the existing dynamic reliability models. However, it may cause errors in the reliability calculation due to the approximation of IPDF by PPDF. Therefore, dynamic reliability models directly based on PPDF of stress are developed in this paper. Furthermore, the proposed models can be used for reliability assessment in the case of small amount of stress process samples by employing the fuzzy set theory. In addition, the mechanical components in solar array of satellites are chosen as representative examples to illustrate the proposed models. The results show that errors are caused because of the approximation of IPDF by PPDF and the proposed models are accurate in the reliability computation.

  12. Formal Analysis of SET and NSL Protocols Using the Interpretation Functions-Based Method

    Directory of Open Access Journals (Sweden)

    Hanane Houmani

    2012-01-01

    Full Text Available Most applications in the Internet such as e-banking and e-commerce use the SET and the NSL protocols to protect the communication channel between the client and the server. Then, it is crucial to ensure that these protocols respect some security properties such as confidentiality, authentication, and integrity. In this paper, we analyze the SET and the NSL protocols with respect to the confidentiality (secrecy property. To perform this analysis, we use the interpretation functions-based method. The main idea behind the interpretation functions-based technique is to give sufficient conditions that allow to guarantee that a cryptographic protocol respects the secrecy property. The flexibility of the proposed conditions allows the verification of daily-life protocols such as SET and NSL. Also, this method could be used under different assumptions such as a variety of intruder abilities including algebraic properties of cryptographic primitives. The NSL protocol, for instance, is analyzed with and without the homomorphism property. We show also, using the SET protocol, the usefulness of this approach to correct weaknesses and problems discovered during the analysis.

  13. Characteristics and functions for place brands based on a Delphi method

    Directory of Open Access Journals (Sweden)

    J de San Eugenio Vela

    2013-10-01

    Full Text Available Introduction. Representation of territories through brands is a recurring issue in today’s modern society. The aim of this article is to establish certain characteristics and functions pertaining to brands linked to geographical areas. Methodology. The decision was made to conduct qualitative research based on a Delphi method comprising a panel of fourteen place branding experts. Results. In relation to commercial brands, it is found that, since they are publicly owned, place brands call for more complex management, preferably on three levels: public administration, private organisations and citizens. Conclusions. Based on the results obtained, it is concluded that management of places centres on the projection of unique, spatial identities on the context of increasing competition between territories.

  14. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Directory of Open Access Journals (Sweden)

    Lingyu Zhu

    Full Text Available The capacitors in high-voltage direct-current (HVDC converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  15. Rotation Matrix Method Based on Ambiguity Function for GNSS Attitude Determination.

    Science.gov (United States)

    Yang, Yingdong; Mao, Xuchu; Tian, Weifeng

    2016-06-08

    Global navigation satellite systems (GNSS) are well suited for attitude determination. In this study, we use the rotation matrix method to resolve the attitude angle. This method achieves better performance in reducing computational complexity and selecting satellites. The condition of the baseline length is combined with the ambiguity function method (AFM) to search for integer ambiguity, and it is validated in reducing the span of candidates. The noise error is always the key factor to the success rate. It is closely related to the satellite geometry model. In contrast to the AFM, the LAMBDA (Least-squares AMBiguity Decorrelation Adjustment) method gets better results in solving the relationship of the geometric model and the noise error. Although the AFM is more flexible, it is lack of analysis on this aspect. In this study, the influence of the satellite geometry model on the success rate is analyzed in detail. The computation error and the noise error are effectively treated. Not only is the flexibility of the AFM inherited, but the success rate is also increased. An experiment is conducted in a selected campus, and the performance is proved to be effective. Our results are based on simulated and real-time GNSS data and are applied on single-frequency processing, which is known as one of the challenging case of GNSS attitude determination.

  16. An accurate and efficient analytical method for 1D hexagonal quasicrystal coating based on Green's function

    Science.gov (United States)

    Hou, Peng-Fei; Chen, Bing-Jie; Zhang, Yang

    2017-08-01

    As a solid material between the crystal and the amorphous, the study on quasicrystals has become an important branch of condensed matter physics. Due to the special arrangement of atoms, quasicrystals own some desirable properties, such as low friction coefficient, low adhesion, high wear resistance and low porosity. Thus, quasicrystals are expected to be applied to the coating surfaces for engines, solar cells, nuclear fuel containers and heat converters. However, when the quasicrystals are used as coating material, it is very hard to simulate the coupling fields by the finite elements numerical methods because of its thin thickness and extreme stress gradient. This is the main reason why the structure of quasicrystal coating cannot be calculated accurately and stably by various numerical platform. A general solution method which can be used to solve this contact problem for a 1D hexagonal quasicrystal coating perfectly bonded to a transversely isotropic semi-infinite substrate under the point force is presented in this paper. The solutions of the Green's function under the distributed load can be obtained through the superposition principle. The simulation results show that this method is correct and effective, which has high calculation accuracy and fast convergence speed. The phonon-phason coupling field and elastic field in the coating and semi-infinite substrate will be derived based on the axisymmetric general solution, and the complicated coupling field of quasicrystals in coating contact space is explicitly presented in terms of elementary functions. In addition, the relationship between the coating thickness or external force and the stress component is also obtained to solve practical problems in engineering applications. The solutions presented not only bear theoretical merits, but also can serve as benchmarks to clarify various approximate methods.

  17. Adaptive and non-adaptive data hiding methods for grayscale images based on modulus function

    Directory of Open Access Journals (Sweden)

    Najme Maleki

    2014-07-01

    Full Text Available This paper presents two adaptive and non-adaptive data hiding methods for grayscale images based on modulus function. Our adaptive scheme is based on the concept of human vision sensitivity, so the pixels in edge areas than to smooth areas can tolerate much more changes without making visible distortion for human eyes. In our adaptive scheme, the average differencing value of four neighborhood pixels into a block via a threshold secret key determines whether current block is located in edge or smooth area. Pixels in the edge areas are embedded by Q-bit of secret data with a larger value of Q than that of pixels placed in smooth areas. Also in this scholar, we represent one non-adaptive data hiding algorithm. Our non-adaptive scheme, via an error reduction procedure, produces a high visual quality for stego-image. The proposed schemes present several advantages. 1-of aspects the embedding capacity and visual quality of stego-image are scalable. In other words, the embedding rate as well as the image quality can be scaled for practical applications 2-the high embedding capacity with minimal visual distortion can be achieved, 3-our methods require little memory space for secret data embedding and extracting phases, 4-secret keys have used to protect of the embedded secret data. Thus, level of security is high, 5-the problem of overflow or underflow does not occur. Experimental results indicated that the proposed adaptive scheme significantly is superior to the currently existing scheme, in terms of stego-image visual quality, embedding capacity and level of security and also our non-adaptive method is better than other non-adaptive methods, in view of stego-image quality. Results show which our adaptive algorithm can resist against the RS steganalysis attack.

  18. [fMRI functional connectivity analysis of anxiety disease patients based on spatiotemporal Lyapunov exponent method].

    Science.gov (United States)

    Wang, Zhikang; Lou, Haifang; Sun, Jianzhong

    2011-07-01

    Attempting to use nonlinear spatiotemporal Lyapunov exponent to characterize fMRI brain functional connectivity of anxiety disease patients, we adopted the methods of nonlinear spatiotemporal Lyapunov exponent and linear correlation coefficients to analyses fMRI datum of 11 anxiety disease patients and 11 healthy volunteers, respectively. The results show that there are significant normalized variance exponent (NVE) differences in Inferior Frontal Gyrus (rIFG) and Medial Frontal Gyrus (MFG) between the two groups (PLyapunov exponent method had higher sensitivity than the correlation coefficient method in the characterization of functional connectivity; Anxiety disease patients have abnormal functional connectivity in rIFG and MFG during our experiment.

  19. Machinery Fault Diagnosis Using Two-Channel Analysis Method Based on Fictitious System Frequency Response Function

    Directory of Open Access Journals (Sweden)

    Kihong Shin

    2015-01-01

    Full Text Available Most existing techniques for machinery health monitoring that utilize measured vibration signals usually require measurement points to be as close as possible to the expected fault components of interest. This is particularly important for implementing condition-based maintenance since the incipient fault signal power may be too small to be detected if a sensor is located further away from the fault source. However, a measurement sensor is often not attached to the ideal point due to geometric or environmental restrictions. In such a case, many of the conventional diagnostic techniques may not be successfully applicable. In this paper, a two-channel analysis method is proposed to overcome such difficulty. It uses two vibration signals simultaneously measured at arbitrary points in a machine. The proposed method is described theoretically by introducing a fictitious system frequency response function. It is then verified experimentally for bearing fault detection. The results show that the suggested method may be a good alternative when ideal points for measurement sensors are not readily available.

  20. A knowledge-based scoring function for protein-RNA interactions derived from a statistical mechanics-based iterative method.

    Science.gov (United States)

    Huang, Sheng-You; Zou, Xiaoqin

    2014-04-01

    Protein-RNA interactions play important roles in many biological processes. Given the high cost and technique difficulties in experimental methods, computationally predicting the binding complexes from individual protein and RNA structures is pressingly needed, in which a reliable scoring function is one of the critical components. Here, we have developed a knowledge-based scoring function, referred to as ITScore-PR, for protein-RNA binding mode prediction by using a statistical mechanics-based iterative method. The pairwise distance-dependent atomic interaction potentials of ITScore-PR were derived from experimentally determined protein-RNA complex structures. For validation, we have compared ITScore-PR with 10 other scoring methods on four diverse test sets. For bound docking, ITScore-PR achieved a success rate of up to 86% if the top prediction was considered and up to 94% if the top 10 predictions were considered, respectively. For truly unbound docking, the respective success rates of ITScore-PR were up to 24 and 46%. ITScore-PR can be used stand-alone or easily implemented in other docking programs for protein-RNA recognition.

  1. A Numerical Matrix-Based Method for Stability and Power Quality Studies Based on Harmonic Transfer Functions

    DEFF Research Database (Denmark)

    Dowlatabadi, Mohammadkazem Bakhshizadeh; Blaabjerg, Frede; Hjerrild, Jesper

    2017-01-01

    Some couplings exist between the positive- and negative-sequence impedances of a voltage sourced power converter especially in the low frequency range due to the nonlinearities and low bandwidth control loops like the PLL. In this paper, a new numerical method based on the Harmonic Transfer...... Function for analysis of the Linear Time Periodic systems is presented, which is able to handle these couplings. In a balanced three-phase system, there is only one coupling term, but in an unbalanced (asymmetrical) system, there are more couplings, and therefore, in order to study the interactions between...

  2. Generic primal-dual interior point methods based on a new kernel function

    NARCIS (Netherlands)

    EL Ghami, M.; Roos, C.

    2008-01-01

    In this paper we present a generic primal-dual interior point methods (IPMs) for linear optimization in which the search direction depends on a univariate kernel function which is also used as proximity measure in the analysis of the algorithm. The proposed kernel function does not satisfy all the c

  3. Novel Walking Stability-Based Gait Recognition Method for Functional Electrical Stimulation System Control

    Institute of Scientific and Technical Information of China (English)

    MING Dong; WAN Baikun; HU Yong; WANG Yan; WANG Weijie; WU Yinghua; LU Dieji

    2007-01-01

    Gait recognition is the key question of functional electrical stimulation (FES) system control for paraplegic walking. A new risk-tendency-graph (RTG) method was proposed to recognize the stability information in FES-assisted walking gait. The main instrument was a specialized walker dynamometer system based on a multi-channel strain-gauge bridge network fixed on the walker frame. During walking process, this system collected the reaction forces between patient's upper extremities and walker and converted them into RTG morphologic curves of dynamic gait stability in temporal and spatial domains.To demonstrate the potential usefulness of RTG, preliminary clinical trials were done with paraplegic patients. The gait stability levels of two walking cases with 4- and 12-week FES training from one subject were quantified (0.43 and 0.19) from the results of temporal and spatial RTG. Relevant instable phases in gait cycle and dangerous inclinations of patient's body during walking process were also brought forward. In conclusion, the new RTG method is practical for distinguishing more useful gait stability information for FES system control.

  4. A ROBUST SQP METHOD BASED ON A SMOOTHING APPROXIMATE PENALTY FUNCTION FOR INEQUALITY CONSTRAINED OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Juliang; ZHANG Xiangsun

    2002-01-01

    A robust SQP method, which is analogous to Facchinei's algorithm, is intro duced. The algorithm is globally convergent. It uses automatic rules for choosing penalty parameter, and can efficiently cope with the possible inconsistency of the quadratic search subproblem. In addition, the algorithm employs a differentiable approximate exact penalty function as a merit function. Unlike the merit function in Facchinei's algorithm, which is quite complicated and is not easy to be implemented in practice, this new merit function is very simple. As a result, we can use the Facchinei's idea to construct an algorithm which is easy to be implemented in practice.

  5. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.

    Science.gov (United States)

    Parasuram, Ramya; Mills, Caitlyn L; Wang, Zhouxi; Somasundaram, Saroja; Beuning, Penny J; Ondrechen, Mary Jo

    2016-01-15

    Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural

  6. A New Unconditionally Stable Method for Telegraph Equation Based on Associated Hermite Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2016-01-01

    Full Text Available The present paper proposes a new unconditionally stable method to solve telegraph equation by using associated Hermite (AH orthogonal functions. Unlike other numerical approaches, the time variables in the given equation can be handled analytically by AH basis functions. By using the Galerkin’s method, one can eliminate the time variables from calculations, which results in a series of implicit equations. And the coefficients of results for all orders can then be obtained by the expanded equations and the numerical results can be reconstructed during the computing process. The precision and stability of the proposed method are proved by some examples, which show the numerical solution acquired is acceptable when compared with some existing methods.

  7. Creatinine-based estimation of rate of long term renal function loss in lung transplant recipients. Which method is preferable?

    NARCIS (Netherlands)

    Broekroelofs, J; Stegeman, CA; Navis, GJ; de Haan, J; van der Bij, W; de Zeeuw, D; de Jong, PE

    2000-01-01

    Background: Progressive renal function loss during long-term follow up is common after lung transplantation and close monitoring is warranted, Since changes in creatinine generation and excretion may occur after lung transplantation, the reliability of creatinine-based methods of renal function asse

  8. Direct adaptive control for nonlinear uncertain system based on control Lyapunov function method

    Institute of Scientific and Technical Information of China (English)

    Chen Yimei; Han Zhengzhi; Tang Houjun

    2006-01-01

    The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.

  9. Modulating functions-based method for parameters and source estimation in one-dimensional partial differential equations

    KAUST Repository

    Asiri, Sharefa M.

    2016-10-20

    In this paper, modulating functions-based method is proposed for estimating space–time-dependent unknowns in one-dimensional partial differential equations. The proposed method simplifies the problem into a system of algebraic equations linear in unknown parameters. The well-posedness of the modulating functions-based solution is proved. The wave and the fifth-order KdV equations are used as examples to show the effectiveness of the proposed method in both noise-free and noisy cases.

  10. Lower limb examinations for muscular tension estimation methods for each muscle group based on functionally different effective muscle theory.

    Science.gov (United States)

    Nishii, Taiki; Komada, Satoshi; Yashiro, Daisuke; Hirai, Junji

    2013-01-01

    Conventional estimation methods distribute tension to muscles by solving optimization problems, because the system is redundant. The theory of functionally different effective muscle, based on 3 antagonistic pairs of muscle groups in limbs, has enabled to calculate the maximum joint torque of each pair, i.e. functionally different effective muscle force. Based on this theory, a method to estimate muscular tension has been proposed, where joint torque of each muscle group is derived by multiplying functionally different effective muscle force, the muscular activity of muscular activity pattern for direction of tip force, and ratio of tip force to maximum output force. The estimation of this method is as good as Crowninshield's method, moreover this method also reduce the computation time if the estimation concerns a selected muscle group.

  11. Prediction Method of El Nino Southern Oscillation: ENSO by Means of Wavelet Based Data Compression with Appropriate Support Length of Base Function

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-08-01

    Full Text Available Method for El Nino/Southern Oscillation: ENSO by means of wavelet based data compression with appropriate support length of base function is proposed. Through the experiments with observed southern oscillation index, the proposed method is validated. Also a method for determination of appropriate support length is proposed and is validated.

  12. A Nonlinear Blind Source Separation Method Based On Radial Basis Function and Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Pidong

    2016-01-01

    Full Text Available Blind source separation is a hot topic in signal processing. Most existing works focus on dealing with linear combined signals, while in practice we always encounter with nonlinear mixed signals. To address the problem of nonlinear source separation, in this paper we propose a novel algorithm using radial basis function neutral network, optimized by multi-universe parallel quantum genetic algorithm. Experiments show the efficiency of the proposed method.

  13. Comprehensive Reliability Allocation Method for CNC Lathes Based on Cubic Transformed Functions of Failure Mode and Effects Analysis

    Institute of Scientific and Technical Information of China (English)

    YANG Zhou; ZHU Yunpeng; REN Hongrui; ZHANG Yimin

    2015-01-01

    Reliability allocation of computerized numerical controlled(CNC) lathes is very important in industry. Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components, which is not applicable in some conditions. Aiming at solving the problem of CNC lathes reliability allocating, a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA) is presented. Firstly, conventional reliability allocation methods are introduced. Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated. Subsequently, a cubic transformed function is established in order to overcome these limitations. Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence. Designers can choose appropriate transform amplitudes according to their requirements. Finally, a CNC lathe and a spindle system are used as an example to verify the new allocation method. Seven criteria are considered to compare the results of the new method with traditional methods. The allocation results indicate that the new method is more flexible than traditional methods. By employing the new cubic transformed function, the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.

  14. A novel JPEG steganography method based on modulus function with histogram analysis

    Directory of Open Access Journals (Sweden)

    V. Banoci

    2012-06-01

    Full Text Available In this paper, we present a novel steganographic method for embedding of secret data in still grayscale JPEG image. In order to provide large capacity of the proposed method while maintaining good visual quality of stego-image, the embedding process is performed in quantized transform coefficients of Discrete Cosine transform (DCT by modifying coefficients according to modulo function, what gives to the steganography system blind extraction predisposition. After-embedding histogram of proposed Modulo Histogram Fitting (MHF method is analyzed to secure steganography system against steganalysis attacks. In addition, AES ciphering was implemented to increase security and improve histogram after-embedding characteristics of proposed steganography system as experimental results show.

  15. A fast computation method for MUSIC spectrum function based on circular arrays

    Science.gov (United States)

    Du, Zhengdong; Wei, Ping

    2015-02-01

    The large computation amount of multiple signal classification (MUSIC) spectrum function seriously affects the timeliness of direction finding system using MUSIC algorithm, especially in the two-dimensional directions of arrival (DOA) estimation of azimuth and elevation with a large antenna array. This paper proposes a fast computation method for MUSIC spectrum. It is suitable for any circular array. First, the circular array is transformed into a virtual uniform circular array, in the process of calculating MUSIC spectrum, for the cyclic characteristics of steering vector, the inner product in the calculation of spatial spectrum is realised by cyclic convolution. The computational amount of MUSIC spectrum is obviously less than that of the conventional method. It is a very practical way for MUSIC spectrum computation in circular arrays.

  16. A measurement method of a detector response function for monochromatic electrons based on the Compton scattering

    Science.gov (United States)

    Bakhlanov, S. V.; Bazlov, N. V.; Derbin, A. V.; Drachnev, I. S.; Kayunov, A. S.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.

    2016-06-01

    In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.

  17. A measurement method of a detector response function for monochromatic electrons based on the Compton scattering

    CERN Document Server

    Bakhlanov, S V; Derbin, A V; Drachnev, I S; Kayunov, A S; Muratova, V N; Semenov, D A; Unzhakov, E V

    2016-01-01

    In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.

  18. A measurement method of a detector response function for monochromatic electrons based on the Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bakhlanov, S.V. [St.Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”, Gatchina 188300 (Russian Federation); Bazlov, N.V. [Saint-Petersburg State University, Universitetskaja nab. 7/9, Saint-Petersburg 199034 (Russian Federation); Derbin, A.V., E-mail: derbin@pnpi.spb.ru [St.Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”, Gatchina 188300 (Russian Federation); Drachnev, I.S. [St.Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”, Gatchina 188300 (Russian Federation); GranSasso Science Institute, INFN, L' Aquila (AQ) I-67100 (Italy); Kayunov, A.S.; Muratova, V.N.; Semenov, D.A.; Unzhakov, E.V. [St.Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”, Gatchina 188300 (Russian Federation)

    2016-06-11

    In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered photon in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.

  19. Sequential RBF Surrogate-based Efficient Optimization Method for Engineering Design Problems with Expensive Black-Box Functions

    Institute of Scientific and Technical Information of China (English)

    PENG Lei; LIU Li; LONG Teng; GUO Xiaosong

    2014-01-01

    As a promising technique, surrogate-based design and optimization(SBDO) has been widely used in modern engineering design optimizations. Currently, static surrogate-based optimization methods have been successfully applied to expensive optimization problems. However, due to the low efficiency and poor flexibility, static surrogate-based optimization methods are difficult to efficiently solve practical engineering cases. At the aim of enhancing efficiency, a novel surrogate-based efficient optimization method is developed by using sequential radial basis function(SEO-SRBF). Moreover, augmented Lagrangian multiplier method is adopted to solve the problems involving expensive constraints. In order to study the performance of SEO-SRBF, several numerical benchmark functions and engineering problems are solved by SEO-SRBF and other well-known surrogate-based optimization methods including EGO, MPS, and IARSM. The optimal solutions, number of function evaluations, and algorithm execution time are recorded for comparison. The comparison results demonstrate that SEO-SRBF shows satisfactory performance in both optimization efficiency and global convergence capability. The CPU time required for running SEO-SRBF is dramatically less than that of other algorithms. In the torque arm optimization case using FEA simulation, SEO-SRBF further reduces 21% of thematerial volume compared with the solution from static-RBF subject to the stress constraint. This study provides the efficient strategy to solve expensive constrained optimization problems.

  20. A fuzzy method for improving the functionality of search engines based on user's web interactions

    Directory of Open Access Journals (Sweden)

    Farzaneh Kabirbeyk

    2015-04-01

    Full Text Available Web mining has been widely used to discover knowledge from various sources in the web. One of the important tools in web mining is mining of web user’s behavior that is considered as a way to discover the potential knowledge of web user’s interaction. Nowadays, Website personalization is regarded as a popular phenomenon among web users and it plays an important role in facilitating user access and provides information of users’ requirements based on their own interests. Extracting important features about web user behavior plays a significant role in web usage mining. Such features are page visit frequency in each session, visit duration, and dates of visiting a certain pages. This paper presents a method to predict user’s interest and to propose a list of pages based on their interests by identifying user’s behavior based on fuzzy techniques called fuzzy clustering method. Due to the user’s different interests and use of one or more interest at a time, user’s interest may belong to several clusters and fuzzy clustering provide a possible overlap. Using the resulted cluster helps extract fuzzy rules. This helps detecting user’s movement pattern and using neural network a list of suggested pages to the users is provided.

  1. An effective virus-based gene silencing method for functional genomics studies in common bean

    Directory of Open Access Journals (Sweden)

    Kachroo Aardra

    2011-06-01

    Full Text Available Abstract Background Common bean (Phaseolus vulgaris L. is a crop of economic and nutritious importance in many parts of the world. The lack of genomic resources have impeded the advancement of common bean genomics and thereby crop improvement. Although concerted efforts from the "Phaseomics" consortium have resulted in the development of several genomic resources, functional studies have continued to lag due to the recalcitrance of this crop for genetic transformation. Results Here we describe the use of a bean pod mottle virus (BPMV-based vector for silencing of endogenous genes in common bean as well as for protein expression. This BPMV-based vector was originally developed for use in soybean. It has been successfully employed for both protein expression and gene silencing in this species. We tested this vector for applications in common bean by targeting common bean genes encoding nodulin 22 and stearoyl-acyl carrier protein desaturase for silencing. Our results indicate that the BPMV vector can indeed be employed for reverse genetics studies of diverse biological processes in common bean. We also used the BPMV-based vector for expressing the green fluorescent protein (GFP in common bean and demonstrate stable GFP expression in all common bean tissues where BPMV was detected. Conclusions The availability of this vector is an important advance for the common bean research community not only because it provides a rapid means for functional studies in common bean, but also because it does so without generating genetically modified plants. Here we describe the detailed methodology and provide essential guidelines for the use of this vector for both gene silencing and protein expression in common bean. The entire VIGS procedure can be completed in 4-5 weeks.

  2. Phase transfer function based method to alleviate image artifacts in wavefront coding imaging system

    Science.gov (United States)

    Mo, Xutao; Wang, Jinjiang

    2013-09-01

    Wavefront coding technique can extend the depth of filed (DOF) of the incoherent imaging system. Several rectangular separable phase masks (such as cubic type, exponential type, logarithmic type, sinusoidal type, rational type, et al) have been proposed and discussed, because they can extend the DOF up to ten times of the DOF of ordinary imaging system. But according to the research on them, researchers have pointed out that the images are damaged by the artifacts, which usually come from the non-linear phase transfer function (PTF) differences between the PTF used in the image restoration filter and the PTF related to real imaging condition. In order to alleviate the image artifacts in imaging systems with wavefront coding, an optimization model based on the PTF was proposed to make the PTF invariance with the defocus. Thereafter, an image restoration filter based on the average PTF in the designed depth of field was introduced along with the PTF-based optimization. The combination of the optimization and the image restoration proposed can alleviate the artifacts, which was confirmed by the imaging simulation of spoke target. The cubic phase mask (CPM) and exponential phase mask (EPM) were discussed as example.

  3. A novel method for one-way hash function construction based on spatiotemporal chaos

    Energy Technology Data Exchange (ETDEWEB)

    Ren Haijun [College of Software Engineering, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China)], E-mail: jhren@cqu.edu.cn; Wang Yong; Xie Qing [Key Laboratory of Electronic Commerce and Logistics of Chongqing, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Yang Huaqian [Department of Computer and Modern Education Technology, Chongqing Education of College, Chongqing 400067 (China)

    2009-11-30

    A novel hash algorithm based on a spatiotemporal chaos is proposed. The original message is first padded with zeros if needed. Then it is divided into a number of blocks each contains 32 bytes. In the hashing process, each block is partitioned into eight 32-bit values and input into the spatiotemporal chaotic system. Then, after iterating the system for four times, the next block is processed by the same way. To enhance the confusion and diffusion effect, the cipher block chaining (CBC) mode is adopted in the algorithm. The hash value is obtained from the final state value of the spatiotemporal chaotic system. Theoretic analyses and numerical simulations both show that the proposed hash algorithm possesses good statistical properties, strong collision resistance and high efficiency, as required by practical keyed hash functions.

  4. A Method to Optimize Geometric Errors of Machine Tool based on SNR Quality Loss Function and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Cai Ligang

    2017-01-01

    Full Text Available Instead improving the accuracy of machine tool by increasing the precision of key components level blindly in the production process, the method of combination of SNR quality loss function and machine tool geometric error correlation analysis to optimize five-axis machine tool geometric errors will be adopted. Firstly, the homogeneous transformation matrix method will be used to build five-axis machine tool geometric error modeling. Secondly, the SNR quality loss function will be used for cost modeling. And then, machine tool accuracy optimal objective function will be established based on the correlation analysis. Finally, ISIGHT combined with MATLAB will be applied to optimize each error. The results show that this method is reasonable and appropriate to relax the range of tolerance values, so as to reduce the manufacturing cost of machine tools.

  5. [Research on ECG de-noising method based on ensemble empirical mode decomposition and wavelet transform using improved threshold function].

    Science.gov (United States)

    Ye, Linlin; Yang, Dan; Wang, Xu

    2014-06-01

    A de-noising method for electrocardiogram (ECG) based on ensemble empirical mode decomposition (EEMD) and wavelet threshold de-noising theory is proposed in our school. We decomposed noised ECG signals with the proposed method using the EEMD and calculated a series of intrinsic mode functions (IMFs). Then we selected IMFs and reconstructed them to realize the de-noising for ECG. The processed ECG signals were filtered again with wavelet transform using improved threshold function. In the experiments, MIT-BIH ECG database was used for evaluating the performance of the proposed method, contrasting with de-noising method based on EEMD and wavelet transform with improved threshold function alone in parameters of signal to noise ratio (SNR) and mean square error (MSE). The results showed that the ECG waveforms de-noised with the proposed method were smooth and the amplitudes of ECG features did not attenuate. In conclusion, the method discussed in this paper can realize the ECG denoising and meanwhile keep the characteristics of original ECG signal.

  6. A Smoothing Method with Appropriate Parameter Control Based on Fischer-Burmeister Function for Second-Order Cone Complementarity Problems

    Directory of Open Access Journals (Sweden)

    Yasushi Narushima

    2013-01-01

    Full Text Available We deal with complementarity problems over second-order cones. The complementarity problem is an important class of problems in the real world and involves many optimization problems. The complementarity problem can be reformulated as a nonsmooth system of equations. Based on the smoothed Fischer-Burmeister function, we construct a smoothing Newton method for solving such a nonsmooth system. The proposed method controls a smoothing parameter appropriately. We show the global and quadratic convergence of the method. Finally, some numerical results are given.

  7. A statistical method of identifying interactions in neuron-glia systems based on functional multicell Ca2+ imaging.

    Directory of Open Access Journals (Sweden)

    Ken Nakae

    2014-11-01

    Full Text Available Crosstalk between neurons and glia may constitute a significant part of information processing in the brain. We present a novel method of statistically identifying interactions in a neuron-glia network. We attempted to identify neuron-glia interactions from neuronal and glial activities via maximum-a-posteriori (MAP-based parameter estimation by developing a generalized linear model (GLM of a neuron-glia network. The interactions in our interest included functional connectivity and response functions. We evaluated the cross-validated likelihood of GLMs that resulted from the addition or removal of connections to confirm the existence of specific neuron-to-glia or glia-to-neuron connections. We only accepted addition or removal when the modification improved the cross-validated likelihood. We applied the method to a high-throughput, multicellular in vitro Ca2+ imaging dataset obtained from the CA3 region of a rat hippocampus, and then evaluated the reliability of connectivity estimates using a statistical test based on a surrogate method. Our findings based on the estimated connectivity were in good agreement with currently available physiological knowledge, suggesting our method can elucidate undiscovered functions of neuron-glia systems.

  8. A Statistical Method of Identifying Interactions in Neuron–Glia Systems Based on Functional Multicell Ca2+ Imaging

    Science.gov (United States)

    Nakae, Ken; Ikegaya, Yuji; Ishikawa, Tomoe; Oba, Shigeyuki; Urakubo, Hidetoshi; Koyama, Masanori; Ishii, Shin

    2014-01-01

    Crosstalk between neurons and glia may constitute a significant part of information processing in the brain. We present a novel method of statistically identifying interactions in a neuron–glia network. We attempted to identify neuron–glia interactions from neuronal and glial activities via maximum-a-posteriori (MAP)-based parameter estimation by developing a generalized linear model (GLM) of a neuron–glia network. The interactions in our interest included functional connectivity and response functions. We evaluated the cross-validated likelihood of GLMs that resulted from the addition or removal of connections to confirm the existence of specific neuron-to-glia or glia-to-neuron connections. We only accepted addition or removal when the modification improved the cross-validated likelihood. We applied the method to a high-throughput, multicellular in vitro Ca2+ imaging dataset obtained from the CA3 region of a rat hippocampus, and then evaluated the reliability of connectivity estimates using a statistical test based on a surrogate method. Our findings based on the estimated connectivity were in good agreement with currently available physiological knowledge, suggesting our method can elucidate undiscovered functions of neuron–glia systems. PMID:25393874

  9. Sparse Markov chain-based semi-supervised multi-instance multi-label method for protein function prediction.

    Science.gov (United States)

    Han, Chao; Chen, Jian; Wu, Qingyao; Mu, Shuai; Min, Huaqing

    2015-10-01

    Automated assignment of protein function has received considerable attention in recent years for genome-wide study. With the rapid accumulation of genome sequencing data produced by high-throughput experimental techniques, the process of manually predicting functional properties of proteins has become increasingly cumbersome. Such large genomics data sets can only be annotated computationally. However, automated assignment of functions to unknown protein is challenging due to its inherent difficulty and complexity. Previous studies have revealed that solving problems involving complicated objects with multiple semantic meanings using the multi-instance multi-label (MIML) framework is effective. For the protein function prediction problems, each protein object in nature may associate with distinct structural units (instances) and multiple functional properties (class labels) where each unit is described by an instance and each functional property is considered as a class label. Thus, it is convenient and natural to tackle the protein function prediction problem by using the MIML framework. In this paper, we propose a sparse Markov chain-based semi-supervised MIML method, called Sparse-Markov. A sparse transductive probability graph is constructed to encode the affinity information of the data based on ensemble of Hausdorff distance metrics. Our goal is to exploit the affinity between protein objects in the sparse transductive probability graph to seek a sparse steady state probability of the Markov chain model to do protein function prediction, such that two proteins are given similar functional labels if they are close to each other in terms of an ensemble Hausdorff distance in the graph. Experimental results on seven real-world organism data sets covering three biological domains show that our proposed Sparse-Markov method is able to achieve better performance than four state-of-the-art MIML learning algorithms.

  10. VR-BFDT: A variance reduction based binary fuzzy decision tree induction method for protein function prediction.

    Science.gov (United States)

    Golzari, Fahimeh; Jalili, Saeed

    2015-07-21

    In protein function prediction (PFP) problem, the goal is to predict function of numerous well-sequenced known proteins whose function is not still known precisely. PFP is one of the special and complex problems in machine learning domain in which a protein (regarded as instance) may have more than one function simultaneously. Furthermore, the functions (regarded as classes) are dependent and also are organized in a hierarchical structure in the form of a tree or directed acyclic graph. One of the common learning methods proposed for solving this problem is decision trees in which, by partitioning data into sharp boundaries sets, small changes in the attribute values of a new instance may cause incorrect change in predicted label of the instance and finally misclassification. In this paper, a Variance Reduction based Binary Fuzzy Decision Tree (VR-BFDT) algorithm is proposed to predict functions of the proteins. This algorithm just fuzzifies the decision boundaries instead of converting the numeric attributes into fuzzy linguistic terms. It has the ability of assigning multiple functions to each protein simultaneously and preserves the hierarchy consistency between functional classes. It uses the label variance reduction as splitting criterion to select the best "attribute-value" at each node of the decision tree. The experimental results show that the overall performance of the proposed algorithm is promising. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method

    Science.gov (United States)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2016-10-01

    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  12. Method for improving catalyst function in auto-thermal and partial oxidation reformer-based processors

    Science.gov (United States)

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.

    2014-08-26

    The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  13. Numerical Methods for a Kohn-Sham Density Functional Model Based on Optimal Transport.

    Science.gov (United States)

    Chen, Huajie; Friesecke, Gero; Mendl, Christian B

    2014-10-14

    In this paper, we study numerical discretizations to solve density functional models in the "strictly correlated electrons" (SCE) framework. Unlike previous studies, our work is not restricted to radially symmetric densities. In the SCE framework, the exchange-correlation functional encodes the effects of the strong correlation regime by minimizing the pairwise Coulomb repulsion, resulting in an optimal transport problem. We give a mathematical derivation of the self-consistent Kohn-Sham-SCE equations, construct an efficient numerical discretization for this type of problem for N = 2 electrons, and apply it to the H2 molecule in its dissociating limit.

  14. Path Planning for Mobile Objects in Four-Dimension Based on Particle Swarm Optimization Method with Penalty Function

    Directory of Open Access Journals (Sweden)

    Yong Ma

    2013-01-01

    Full Text Available We present one algorithm based on particle swarm optimization (PSO with penalty function to determine the conflict-free path for mobile objects in four-dimension (three spatial and one-time dimensions with obstacles. The shortest path of the mobile object is set as goal function, which is constrained by conflict-free criterion, path smoothness, and velocity and acceleration requirements. This problem is formulated as a calculus of variation problem (CVP. With parametrization method, the CVP is converted to a time-varying nonlinear programming problem (TNLPP. Constraints of TNLPP are transformed to general TNLPP without any constraints through penalty functions. Then, by using a little calculations and applying the algorithm PSO, the solution of the CVP is consequently obtained. Approach efficiency is confirmed by numerical examples.

  15. Design of wide-area time-delay supplementary controller for interconnected Network based on Hamilton function method

    Science.gov (United States)

    Hailati, G.; Hu, Z. H.

    2016-08-01

    The transient stability of interconnected network with supplementary time-delay controller for generator excitations and static var compensator (SVC) has been investigated in this paper. Firstly, a delay-dependent stability criterion based on Hamilton function method is derived, and the criterion is in term of matrix inequalities. Secondly, a nonlinear time-delay Hamilton function model of interconnected network with SVCs is constructed. Thirdly, the wide-area time-delay supplementary controller (WATSC) for the interconnected network is designed and converted into the form of Hamiltonian system. The delay-dependent stability of the closed-loop power system is analysed. The gains of the WATSC are determined by using the theoretical analysis results. It is effective for the designed WATSC installed in the 16- machine, 68-bus power system for damping the inter-area modes. Then simulation results show that the method of the controller is effective.

  16. An accurate and efficient method for piezoelectric coated functional devices based on the two-dimensional Green’s function for a normal line force and line charge

    Science.gov (United States)

    Hou, Peng-Fei; Zhang, Yang

    2017-09-01

    Because most piezoelectric functional devices, including sensors, actuators and energy harvesters, are in the form of a piezoelectric coated structure, it is valuable to present an accurate and efficient method for obtaining the electro-mechanical coupling fields of this coated structure under mechanical and electrical loads. With this aim, the two-dimensional Green’s function for a normal line force and line charge on the surface of coated structure, which is a combination of an orthotropic piezoelectric coating and orthotropic elastic substrate, is presented in the form of elementary functions based on the general solution method. The corresponding electro-mechanical coupling fields of this coated structure under arbitrary mechanical and electrical loads can then be obtained by the superposition principle and Gauss integration. Numerical results show that the presented method has high computational precision, efficiency and stability. It can be used to design the best coating thickness in functional devices, improve the sensitivity of sensors, and improve the efficiency of actuators and energy harvesters. This method could be an efficient tool for engineers in engineering applications.

  17. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran

    Energy Technology Data Exchange (ETDEWEB)

    Mornet, Stephane [Institut de Chimie de la Matiere Condensee de Bordeaux, CNRS UPR 9048, Universite Bordeaux-1, 87 avenue du Dr Albert Schweitzer, F-33608 Pessac, Cedex (France); Portier, Josik [Institut de Chimie de la Matiere Condensee de Bordeaux, CNRS UPR 9048, Universite Bordeaux-1, 87 avenue du Dr Albert Schweitzer, F-33608 Pessac, Cedex (France); Duguet, Etienne [Institut de Chimie de la Matiere Condensee de Bordeaux, CNRS UPR 9048, Universite Bordeaux-1, 87 avenue du Dr Albert Schweitzer, F-33608 Pessac, Cedex (France)]. E-mail: duguet@icmcb.u-bordeaux1.fr

    2005-05-15

    A new generation of susceptibility contrast agents for MRI and based on maghemite cores covalently bonded to dextran stabilizing macromolecules was investigated. The multistep preparation of these versatile ultrasmall superparamagnetic iron oxides (VUSPIO) consisted of colloidal maghemite synthesis, surface modification by aminopropylsilane groups, and coupling of partially oxidized dextran via Schiff's bases and secondary amine bonds. The dextran corona might be easily derivatized, e.g. by PEGylation.

  18. A meta-analysis based method for prioritizing candidate genes involved in a pre-specific function

    Directory of Open Access Journals (Sweden)

    Jingjing Zhai

    2016-12-01

    Full Text Available The identification of genes associated with a given biological function in plants remains a challenge, although network-based gene prioritization algorithms have been developed for Arabidopsis thaliana and many non-model plant species. Nevertheless, these network-based gene prioritization algorithms have encountered several problems; one in particular is that of unsatisfactory prediction accuracy due to limited network coverage, varying link quality, and/or uncertain network connectivity. Thus a model that integrates complementary biological data may be expected to increase the prediction accuracy of gene prioritization. Towards this goal, we developed a novel gene prioritization method named RafSee, to rank candidate genes using a random forest algorithm that integrates sequence, evolutionary, and epigenetic features of plants. Subsequently, we proposed an integrative approach named RAP (Rank Aggregation-based data fusion for gene Prioritization, in which an order statistics-based meta-analysis was used to aggregate the rank of the network-based gene prioritization method and RafSee, for accurately prioritizing candidate genes involved in a pre-specific biological function. Finally, we showcased the utility of RAP by prioritizing 380 flowering-time genes in Arabidopsis. The ‘leave-one-out’ cross-validation experiment showed that RafSee could work as a complement to a current state-of-art network-based gene prioritization system (AraNet v2. Moreover, RAP ranked 53.68% (204/380 flowering-time genes higher than AraNet v2, resulting in an 39.46% improvement in term of the first quartile rank. Further evaluations also showed that RAP was effective in prioritizing genes-related to different abiotic stresses. To enhance the usability of RAP for Arabidopsis and non-model plant species, an R package implementing the method is freely available at http://bioinfo.nwafu.edu.cn/software.

  19. Application of Novel Processing Methods for Greater Retention of Functional Compounds in Fruit-Based Beverages

    Directory of Open Access Journals (Sweden)

    Mariana Morales-de la Peña

    2016-06-01

    Full Text Available Eating habits of western populations are changing due to modern lifestyles. As a result, people are becoming more susceptible to chronic and degenerative diseases. This fact has motivated the food industry to develop functional products that could decrease the incidence of those disorders. It is well known that fruit juices, milk and soymilk possess high concentrations of antioxidant and bioactive substances. Hence, the development of these functional beverages is a potential way to take advantage of their nutritional properties and exotic flavors that could attract the interest of consumers. At the same time, application of the right preservation treatment is of high relevance in order to obtain safe products with convenient shelf life and high concentration of health-related compounds. This fact represents a great challenge that scientists and technologists are currently facing. Today, novel preservation processes such as high hydrostatic pressure (HHP, high intensity pulsed electric fields (HIPEF and ultrasound (US, among others, are being evaluated as an alternative to heat pasteurization, obtaining promising results. Hence, this review gathers the most relevant information about the development of mixed beverages containing fruit juices and milk or soymilk. Furthermore, the advantages and drawbacks of the application of non-thermal treatments for functional beverages’ preservation with high content of bioactive compounds are also mentioned.

  20. A third-generation density-functional-theory-based method for calculating canonical molecular orbitals of large molecules.

    Science.gov (United States)

    Hirano, Toshiyuki; Sato, Fumitoshi

    2014-07-28

    We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.

  1. Green-Function-Based Monte Carlo Method for Classical Fields Coupled to Fermions

    OpenAIRE

    Weiße, Alexander

    2009-01-01

    Microscopic models of classical degrees of freedom coupled to non-interacting fermions occur in many different contexts. Prominent examples from solid state physics are descriptions of colossal magnetoresistance manganites and diluted magnetic semiconductors, or auxiliary field methods for correlated electron systems. Monte Carlo simulations are vital for an understanding of such systems, but notorious for requiring the solution of the fermion problem with each change in the classical field c...

  2. Compact numerical function generators based on quadratic approximation: architecture and synthesis method

    OpenAIRE

    NAGAYAMA,Shinobu; Sasao, Tsutomu; BUTLER,Jon T.

    2006-01-01

    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E89-A, No.12, Dec. 2006, pp.3510-3518,Special Section on VLSI Design and CAD Algorithms. This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. As such, it is in the public domain, and under the provisions of Title 17, United States Code, Section 105, may not be copyrighted. This paper presents an architecture and a synthesis method for compac...

  3. Structural properties of metal-organic frameworks within the density-functional based tight-binding method

    Energy Technology Data Exchange (ETDEWEB)

    Lukose, Binit; Supronowicz, Barbara; Kuc, Agnieszka B.; Heine, Thomas [School of Engineering and Science, Jacobs University Bremen (Germany); Petkov, Petko S.; Vayssilov, Georgi N. [Faculty of Chemistry, University of Sofia (Bulgaria); Frenzel, Johannes [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum (Germany); Seifert, Gotthard [Physikalische Chemie, Technische Universitaet Dresden (Germany)

    2012-02-15

    Density-functional based tight-binding (DFTB) is a powerful method to describe large molecules and materials. Metal-organic frameworks (MOFs), materials with interesting catalytic properties and with very large surface areas, have been developed and have become commercially available. Unit cells of MOFs typically include hundreds of atoms, which make the application of standard density-functional methods computationally very expensive, sometimes even unfeasible. The aim of this paper is to prepare and to validate the self-consistent charge-DFTB (SCC-DFTB) method for MOFs containing Cu, Zn, and Al metal centers. The method has been validated against full hybrid density-functional calculations for model clusters, against gradient corrected density-functional calculations for supercells, and against experiment. Moreover, the modular concept of MOF chemistry has been discussed on the basis of their electronic properties. We concentrate on MOFs comprising three common connector units: copper paddlewheels (HKUST-1), zinc oxide Zn{sub 4}O tetrahedron (MOF-5, MOF-177, DUT-6 (MOF-205)), and aluminum oxide AlO{sub 4}(OH){sub 2} octahedron (MIL-53). We show that SCC-DFTB predicts structural parameters with a very good accuracy (with less than 5% deviation, even for adsorbed CO and H{sub 2}O on HKUST-1), while adsorption energies differ by 12 kJ mol{sup -1} or less for CO and water compared to DFT benchmark calculations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Prediction of optimal gene functions for osteosarcoma using network-based- guilt by association method based on gene oncology and microarray profile.

    Science.gov (United States)

    Chen, Xinrang

    2017-06-01

    In the current study, we planned to predict the optimal gene functions for osteosarcoma (OS) by integrating network-based method with guilt by association (GBA) principle (called as network-based gene function inference approach) based on gene oncology (GO) data and gene expression profile. To begin with, differentially expressed genes (DEGs) were extracted using linear models for microarray data (LIMMA) package. Then, construction of differential co-expression network (DCN) relying on DEGs was implemented, and sub-DCN was identified using Spearman correlation coefficient (SCC). Subsequently, GO annotations for OS were collected according to known confirmed database and DEGs. Ultimately, gene functions were predicted by means of GBA principle based on the area under the curve (AUC) for GO terms, and we determined GO terms with AUC >0.7 as the optimal gene functions for OS. Totally, 123 DEGs and 137 GO terms were obtained for further analysis. A DCN was constructed, which included 123 DEGs and 7503 interactions. A total of 105 GO terms were identified when the threshold was set as AUC >0.5, which had a good classification performance. Among these 105 GO terms, 2 functions had the AUC >0.7 and were determined as the optimal gene functions including angiogenesis (AUC =0.767) and regulation of immune system process (AUC =0.710). These gene functions appear to have potential for early detection and clinical treatment of OS in the future.

  5. Multistep Lattice-Voxel method utilizing lattice function for Monte-Carlo treatment planning with pixel based voxel model.

    Science.gov (United States)

    Kumada, H; Saito, K; Nakamura, T; Sakae, T; Sakurai, H; Matsumura, A; Ono, K

    2011-12-01

    Treatment planning for boron neutron capture therapy generally utilizes Monte-Carlo methods for calculation of the dose distribution. The new treatment planning system JCDS-FX employs the multi-purpose Monte-Carlo code PHITS to calculate the dose distribution. JCDS-FX allows to build a precise voxel model consisting of pixel based voxel cells in the scale of 0.4×0.4×2.0 mm(3) voxel in order to perform high-accuracy dose estimation, e.g. for the purpose of calculating the dose distribution in a human body. However, the miniaturization of the voxel size increases calculation time considerably. The aim of this study is to investigate sophisticated modeling methods which can perform Monte-Carlo calculations for human geometry efficiently. Thus, we devised a new voxel modeling method "Multistep Lattice-Voxel method," which can configure a voxel model that combines different voxel sizes by utilizing the lattice function over and over. To verify the performance of the calculation with the modeling method, several calculations for human geometry were carried out. The results demonstrated that the Multistep Lattice-Voxel method enabled the precise voxel model to reduce calculation time substantially while keeping the high-accuracy of dose estimation.

  6. Automated extraction and assessment of functional features of areal measured microstructures using a segmentation-based evaluation method

    Science.gov (United States)

    Hartmann, Wito; Loderer, Andreas

    2014-10-01

    In addition to currently available surface parameters, according to ISO 4287:2010 and ISO 25178-2:2012—which are defined particularly for stochastic surfaces—a universal evaluation procedure is provided for geometrical, well-defined, microstructured surfaces. Since several million of features (like diameters, depths, etc) are present on microstructured surfaces, segmentation techniques are used for the automation of the feature-based dimensional evaluation. By applying an additional extended 3D evaluation after the segmentation and classification procedure, the accuracy of the evaluation is improved compared to the direct evaluation of segments, and additional functional parameters can be derived. Advantages of the extended segmentation-based evaluation method include not only the ability to evaluate the manufacturing process statistically (e.g. by capability indices, according to ISO 21747:2007 and ISO 3534-2:2013) and to derive statistical reliable values for the correction of microstructuring processes but also the direct re-use of the evaluated parameter (including its statistical distribution) in simulations for the calculation of probabilities with respect to the functionality of the microstructured surface. The practical suitability of this method is demonstrated using examples of microstructures for the improvement of sliding and ink transfers for printing machines.

  7. A sensitivity function-based conjugate gradient method for optical tomography with the frequency-domain equation of radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Keol [Departement des Sciences Appliquees, Universite du Quebec a Chicoutimi, Chicoutimi, Que., G7H 2B1 (Canada); Charette, Andre [Departement des Sciences Appliquees, Universite du Quebec a Chicoutimi, Chicoutimi, Que., G7H 2B1 (Canada)]. E-mail: andre_charette@uqac.ca

    2007-03-15

    The Sensitivity Function-based Conjugate Gradient Method (SFCGM) is described. This method is used to solve the inverse problems of function estimation, such as the local maps of absorption and scattering coefficients, as applied to optical tomography for biomedical imaging. A highly scattering, absorbing, non-reflecting, non-emitting medium is considered here and simultaneous reconstructions of absorption and scattering coefficients inside the test medium are achieved with the proposed optimization technique, by using the exit intensity measured at boundary surfaces. The forward problem is solved with a discrete-ordinates finite-difference method on the framework of the frequency-domain full equation of radiative transfer. The modulation frequency is set to 600 MHz and the frequency data, obtained with the source modulation, is used as the input data. The inversion results demonstrate that the SFCGM can retrieve simultaneously the spatial distributions of optical properties inside the medium within a reasonable accuracy, by significantly reducing a cross-talk between inter-parameters. It is also observed that the closer-to-detector objects are better retrieved.

  8. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Fedorov, Dmitri G., E-mail: d.g.fedorov@aist.go.jp [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Zahariev, Federico; Schmidt, Michael W.; Gordon, Mark S. [Department of Chemistry and Ames Laboratory, US-DOE, Iowa State University, Ames, Iowa 50011 (United States); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2015-03-28

    Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in S{sub N}2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.

  9. How useful are prescribing indicators based on the DU90% method to distinguish the quality of prescribing between pharmacotherapy audit meetings with different levels of functioning?

    NARCIS (Netherlands)

    Teichert, M.; Aalst, A. van der; Wit, H. de; Stroo, M.; Smet, P.A.G.M. de

    2007-01-01

    OBJECTIVES: The objective of the study was to assess the association between the quality of drug prescribing based on three indicator types derived from the DU90% method and different levels of functioning in pharmacotherapy audit meetings (PTAMs). MATERIALS AND METHODS: The level of functioning in

  10. Assessing the density functional theory-based multireference configuration interaction (DFT/MRCI) method for transition metal complexes.

    Science.gov (United States)

    Escudero, Daniel; Thiel, Walter

    2014-05-21

    We report an assessment of the performance of density functional theory-based multireference configuration interaction (DFT/MRCI) calculations for a set of 3d- and 4d-transition metal (TM) complexes. The DFT/MRCI results are compared to published reference data from reliable high-level multi-configurational ab initio studies. The assessment covers the relative energies of different ground-state minima of the highly correlated CrF6 complex, the singlet and triplet electronically excited states of seven typical TM complexes (MnO4(-), Cr(CO)6, [Fe(CN)6](4-), four larger Fe and Ru complexes), and the corresponding electronic spectra (vertical excitation energies and oscillator strengths). It includes comparisons with results from different flavors of time-dependent DFT (TD-DFT) calculations using pure, hybrid, and long-range corrected functionals. The DFT/MRCI method is found to be superior to the tested TD-DFT approaches and is thus recommended for exploring the excited-state properties of TM complexes.

  11. Implementational Improvements of the early warning method based on P-wave waveform envelope function with an application to Korea

    Science.gov (United States)

    Heo, T.; Kim, J.

    2016-12-01

    From recent earthquakes, it is observed the production in high-tech industrial plants can be affected significantly even by a weak earthquake ground shaking. This kind of risk may be mitigated by building an earthquake early warning system. In order to be effective, the warning should be issued within few seconds after the occurrence of an earthquake, which is a daunting task. So far there have been developed several warning systems. Among them, a system based on P-wave waveform envelope function utilizing a single station data appears to be very promising. This method estimates the epicentral distance and magnitude from the initial part of the P-wave waveform using the relationships between waveform envelope parameters and seismic parameters. The system employed by Japan Meteorological Agency uses the relationships obtained from the data of earthquakes with magnitudes larger than 5. In this study, however, we attempted to extend the method to the earthquakes as small as magnitude 3 in order to implement to Korea of moderate seismicity. In total, 1,586 records from earthquakes of magnitude between 3 and 5.2 are analyzed. The epicentral distances of these records are less than 140km. The reliability of the prediction of epicenter is found to be very dependent on the accurate picking of P-wave arrival time from a record. Compared with the existing method, a significant improvement is achieved in identifying P-wave arrival time by analyzing the wave in 2-dimensional horizontal plane instead of analyzing in each orthogonal direction, by tracking waveform of which amplitude exceeds the noise level and by utilizing the continuity of the waveform. It enabled us to estimate accurately the direction to the epicenter. To estimate the epicentral distance, we used, as a parameter, the slope from the initial point to the maximum of the envelope function instead of the power of exponential envelope function. Consequently, the location of epicenter can be predicted very

  12. A functional-dependencies-based Bayesian networks learning method and its application in a mobile commerce system.

    Science.gov (United States)

    Liao, Stephen Shaoyi; Wang, Huai Qing; Li, Qiu Dan; Liu, Wei Yi

    2006-06-01

    This paper presents a new method for learning Bayesian networks from functional dependencies (FD) and third normal form (3NF) tables in relational databases. The method sets up a linkage between the theory of relational databases and probabilistic reasoning models, which is interesting and useful especially when data are incomplete and inaccurate. The effectiveness and practicability of the proposed method is demonstrated by its implementation in a mobile commerce system.

  13. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    Science.gov (United States)

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  14. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-01-01

    Full Text Available The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  15. Functional methods in differential equations

    CERN Document Server

    Hokkanen, Veli-Matti

    2002-01-01

    In recent years, functional methods have become central to the study of theoretical and applied mathematical problems. As demonstrated in this Research Note, functional methods can not only provide more generality, but they can also unify results and techniques and lead to better results than those obtained by classical methods. Presenting entirely original results, the authors use functional methods to explore a broad range of elliptic, parabolic, and hyperbolic boundary value problems and various classes of abstract differential and integral equations. They show that while it is crucial to choose an appropriate functional framework, this approach can lead to mathematical models that better describe concrete physical phenomena. In particular, they reach a concordance between the physical sense and the mathematical sense for the solutions of some special models. Beyond its importance as a survey of the primary techniques used in the area, the results illuminated in this volume will prove valuable in a wealth ...

  16. Estimation of resting-state functional connectivity using random subspace based partial correlation: a novel method for reducing global artifacts.

    Science.gov (United States)

    Chen, Tianwen; Ryali, Srikanth; Qin, Shaozheng; Menon, Vinod

    2013-11-15

    Intrinsic functional connectivity analysis using resting-state functional magnetic resonance imaging (rsfMRI) has become a powerful tool for examining brain functional organization. Global artifacts such as physiological noise pose a significant problem in estimation of intrinsic functional connectivity. Here we develop and test a novel random subspace method for functional connectivity (RSMFC) that effectively removes global artifacts in rsfMRI data. RSMFC estimates the partial correlation between a seed region and each target brain voxel using multiple subsets of voxels sampled randomly across the whole brain. We evaluated RSMFC on both simulated and experimental rsfMRI data and compared its performance with standard methods that rely on global mean regression (GSReg) which are widely used to remove global artifacts. Using extensive simulations we demonstrate that RSMFC is effective in removing global artifacts in rsfMRI data. Critically, using a novel simulated dataset we demonstrate that, unlike GSReg, RSMFC does not artificially introduce anti-correlations between inherently uncorrelated networks, a result of paramount importance for reliably estimating functional connectivity. Furthermore, we show that the overall sensitivity, specificity and accuracy of RSMFC are superior to GSReg. Analysis of posterior cingulate cortex connectivity in experimental rsfMRI data from 22 healthy adults revealed strong functional connectivity in the default mode network, including more reliable identification of connectivity with left and right medial temporal lobe regions that were missed by GSReg. Notably, compared to GSReg, negative correlations with lateral fronto-parietal regions were significantly weaker in RSMFC. Our results suggest that RSMFC is an effective method for minimizing the effects of global artifacts and artificial negative correlations, while accurately recovering intrinsic functional brain networks.

  17. The edge-based face element method for 3D-stream function and flux calculations in porous media flow

    NARCIS (Netherlands)

    Zijl, W.; Nawalany, M.

    2004-01-01

    We present a velocity-oriented discrete analog of the partial differential equations governing porous media flow: the edge-based face element method. Conventional finite element techniques calculate pressures in the nodes of the grid. However, such methods do not satisfy the requirement of flux cont

  18. A Combinatorial Method Based on Function Block and Object-Orientation Concepts for Modeling Distributed Real-Time Control Systems

    Directory of Open Access Journals (Sweden)

    Mohsen Sadighi Moshkenani

    2007-06-01

    Full Text Available This paper presents a novel modeling method for distributed real-time control systems. The method uses function blocks model of IEC 61499 standard related to industrial control systems in combination with object-oriented approach for software production. The new modeling technique is named OO+FB. This method models distribution characteristics and real-time constraints accurately and provides a proper background for analysis and design of controllers. The new methodology, gives a complete framework for facing with modern industrial processes, using the good characteristics of both fundamental method. In this paper, different steps of OO+FB is described and advantages of using such a model is discussed, so a reliable approach is introduced for modeling.

  19. Developing A Method of Learning English Speaking Skills Based on the Language Functions Used in the Food and Beverage Service

    Directory of Open Access Journals (Sweden)

    Denok Lestari

    2017-01-01

    Full Text Available This research is aimed to analyse language functions in  English, specifically those which are used in the context of Food and Beverage Service. The findings of the analysis related to the language functions are then applied in a teaching method which is designed to improve the students’ abilities in speaking English. There are two novelties in this research. The first one is  the theory of language functions which is reconstructed in accordance with the Food and Beverage Service context. Those language functions are: permisive (to soften utterances, to avoid repetition, and  to adjust intonation; interactive (to greet, to have small talks, and farewell; informative (to introduce, to show, to state, to explain, to ask, to agree, to reject, and to confirm; persuasive (to offer, to promise, to suggest, and to persuade; directive (to tell, to order, and to request; indicative (to praise, to complain, to thank, and to apologize. The second  novelty which is more practical is the design  of the ASRI method which consists of four basic components, namely: Aims (the purpose in communicating; Sequence (the operational procedure in handling guests in the restaurant; Role play (the simmulation activities in language learning; and Interaction (the interactive communications between participants. The method of ASRI with the application of the language functions in its ABCD procedure, namely Acquire, Brainstorm, Chance and Develop is proven to be effective in improving the students’ abilities in speaking English, specifically in the context of  Food and Beverage Service.

  20. The Improved Moment-type Methods for the Parameters Estimation of the Gaussian and Symmetric Alpha Stable Distributions Based on Empirical Characteristic Function

    Institute of Scientific and Technical Information of China (English)

    XIAGuangrong; LIUXingzhao

    2004-01-01

    In this paper, the existing moment-type method is firstly analyzed, and it easily diverges. Based on Empirical characteristic function (ECF), two innovative moment-type methods are then proposed to estimate parameters of the Probability density function (PDF) of the mixture of Gaussian and Symmetric α stable (SαS) distributions. One is named modified moment-type method, the other is named improved moment-type method. The latter method is mainly discussed. Compared with the existing moment-type method, it is more robust, enhances convergence and overcomes the constraint in using ECF. Further more. it avoids solving complicated equation. Monte Carlo simulation experiments show that the improved momenttype method has excellent accuracy, and consumes less computation than the existing moment-type method.

  1. Assessing the ability of sequence-based methods to provide functional insight within membrane integral proteins: a case study analyzing the neurotransmitter/Na+ symporter family

    Directory of Open Access Journals (Sweden)

    Eskandari Sepehr

    2007-10-01

    Full Text Available Abstract Background Efforts to predict functional sites from globular proteins is increasingly common; however, the most successful of these methods generally require structural insight. Unfortunately, despite several recent technological advances, structural coverage of membrane integral proteins continues to be sparse. ConSequently, sequence-based methods represent an important alternative to illuminate functional roles. In this report, we critically examine the ability of several computational methods to provide functional insight within two specific areas. First, can phylogenomic methods accurately describe the functional diversity across a membrane integral protein family? And second, can sequence-based strategies accurately predict key functional sites? Due to the presence of a recently solved structure and a vast amount of experimental mutagenesis data, the neurotransmitter/Na+ symporter (NSS family is an ideal model system to assess the quality of our predictions. Results The raw NSS sequence dataset contains 181 sequences, which have been aligned by various methods. The resultant phylogenetic trees always contain six major subfamilies are consistent with the functional diversity across the family. Moreover, in well-represented subfamilies, phylogenetic clustering recapitulates several nuanced functional distinctions. Functional sites are predicted using six different methods (phylogenetic motifs, two methods that identify subfamily-specific positions, and three different conservation scores. A canonical set of 34 functional sites identified by Yamashita et al. within the recently solved LeuTAa structure is used to assess the quality of the predictions, most of which are predicted by the bioinformatic methods. Remarkably, the importance of these sites is largely confirmed by experimental mutagenesis. Furthermore, the collective set of functional site predictions qualitatively clusters along the proposed transport pathway, further

  2. Computational Methods and Function Theory

    CERN Document Server

    Saff, Edward; Salinas, Luis; Varga, Richard

    1990-01-01

    The volume is devoted to the interaction of modern scientific computation and classical function theory. Many problems in pure and more applied function theory can be tackled using modern computing facilities: numerically as well as in the sense of computer algebra. On the other hand, computer algorithms are often based on complex function theory, and dedicated research on their theoretical foundations can lead to great enhancements in performance. The contributions - original research articles, a survey and a collection of problems - cover a broad range of such problems.

  3. ADRC Method for Noncascaded Integral System Based on the Total Derivative of Composite Functions of Several Variables

    Directory of Open Access Journals (Sweden)

    Zhijian Huang

    2016-01-01

    Full Text Available The standard ADRC controller usually selects the canonical plant in the form of cascaded integrators. However, the condition variables of practical system do not necessarily have the cascaded integral relationship. Therefore, this paper proposes a method of total derivative of composite functions of several variables and a structure, which can convert the state space system of noncascaded integral form into the cascaded integral form. In this way, the converted system can be directly controlled with ADRC. Meanwhile, the control of Chen chaotic system is discussed in detail to show the conversion and the controller design. The control performances under different levels of complication and different strengths of disturbance are comparably researched. The converted system achieves significantly better control effects under ADRC than that of the PID. This converting method solves the control problem of some noncascaded integral systems in both theory and application and greatly expands the application scope of the standard ADRC method.

  4. A New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function

    Directory of Open Access Journals (Sweden)

    Seyed Vahab Shojaedini

    2012-03-01

    Full Text Available Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by microwave breast radar. In this method, a decision function is constructed based on noise and signal cross-entropy, using hypothesis testing concept. Then noise and signal are separated using the calculated value for the decision function in each time frame. To estimate value of the decision function, discrete wavelet transform and discrete S transform are used. Results Performance of the proposed method was evaluated in two different scenarios, in which the breast was considered homogenous and heterogeneous, respectively. The obtained results showed that the proposed method detected breast backscattered signals 55% and 49% better than existing methods in two above scenarios. Conclusion Performance of S transform was 21% better than discrete wavelet transform in detection of weak backscattered signals. So it can be concluded that hypothesis testing method which uses S coefficients of received wave for construction of its decision function may be a suitable choice for detection of backscattered signals in breast radar.

  5. Benchmarking Density Functional Theory Based Methods To Model NiOOH Material Properties: Hubbard and van der Waals Corrections vs Hybrid Functionals.

    Science.gov (United States)

    Zaffran, Jeremie; Caspary Toroker, Maytal

    2016-08-09

    NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.

  6. Penalty parameter of the penalty function method

    DEFF Research Database (Denmark)

    Si, Cheng Yong; Lan, Tian; Hu, Junjie;

    2014-01-01

    The penalty parameter of penalty function method is systematically analyzed and discussed. For the problem that Deb's feasibility-based rule doesnot give the detailed instruction as how to rank two solutions when they have the same constraint violation, an improved Deb's feasibility-based rule...

  7. Minimization of Functional Majorant in a Posteriori Error Analysis Based on H(div Multigrid-Preconditioned CG Method

    Directory of Open Access Journals (Sweden)

    Jan Valdman

    2009-01-01

    Full Text Available We consider a Poisson boundary value problem and its functional a posteriori error estimate derived by S. Repin in 1999. The estimate majorizes the H1 seminorm of the error of the discrete solution computed by FEM method and contains a free ux variable from the H(div space. In order to keep the estimate sharp, a procedure for the minimization of the majorant term with respect to the ux variable is introduced, computing the free ux variable from a global linear system of equations. Since the linear system is symmetric and positive definite, few iterations of a conjugate gradient method with a geometrical multigrid preconditioner are applied. Numerical techniques are demonstated on one benchmark example with a smooth solution on a unit square domain including the computation of the approximate value of the constant in Friedrichs' inequality.

  8. MR-based methods of the functional imaging of the CNS; MR-basierte Methoden der funktionellen Bildgebung des zentralen Nervensystems

    Energy Technology Data Exchange (ETDEWEB)

    Giesel, F.L.; Weber, M.A.; Zechmann, C.; Tengg-Kobligk, H. von; Essig, M.; Kauczor, H.U. [Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Wuestenberg, T. [Abt. fuer Medizinische Psychologie, Georg-August-Univ. Goettingen (Germany); Bongers, A.; Baudendistel, K.T. [Medizinische Physik in der Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Hahn, H.K. [MeVis, Zentrum fuer Medizinische Diagnosesysteme und Visualisierung, Bremen (Germany)

    2005-05-01

    This review presents the basic principles of functional imaging of the central nervous system utilizing magnetic resonance imaging. The focus is set on visualization of different functional aspects of the brain and related pathologies. Additionally, clinical cases are presented to illustrate the applications of functional imaging techniques in the clinical setting. The relevant physics and physiology of contrast-enhanced and non-contrast-enhanced methods are discussed. The two main functional MR techniques requiring contrast-enhancement are dynamic T1- and T2{sup *}-MRI to image perfusion. Based on different pharmacokinetic models of contrast enhancement diagnostic applications for neurology and radio-oncology are discussed. The functional non-contrast enhanced imaging techniques are based on ''blood oxygenation level dependent (BOLD)-fMRI and arterial spin labeling (ASL) technique. They have gained clinical impact particularly in the fields of psychiatry and neurosurgery. (orig.)

  9. An auto-tuning method for focusing and astigmatism correction in HAADF-STEM, based on the image contrast transfer function.

    Science.gov (United States)

    Baba, N; Terayama, K; Yoshimizu, T; Ichise, N; Tanaka, N

    2001-01-01

    An auto-tuning method for high-angle annular detector dark field scanning transmission electron microscopy (HAADF-STEM) is proposed which corrects the defocus to the optimum Scherzer focus and compensates the astigmatism. Because the method is based on the image contrast transfer function formulated for the HAADF-STEM, the defocus and the astigmatism are accurately measured from input of two different defocus images. The method is designed to work independent of object function in the linear imaging model by analysing the spectral ratio between two Fourier spectra of their images, which is useful for cases where the spectrum of object function is not uniformly spread out over the reciprocal space. The method was preliminarily tested in a Hitachi HD-2000 STEM, and successful results of the auto-tunings from the viewpoint of verification of the algorithm were obtained using general specimens of Au fine particles and a thin section of a semiconductor device.

  10. Development and Application of Explicitly Correlated Wave Function Based Methods for the Investigation of Optical Properties of Semiconductor Nanomaterials

    Science.gov (United States)

    Elward, Jennifer Mary

    Semiconductor nanoparticles, or quantum dots (QDs), are well known to have very unique optical and electronic properties. These properties can be controlled and tailored as a function of several influential factors, including but not limited to the particle size and shape, effect of composition and heterojunction as well as the effect of ligand on the particle surface. This customizable nature leads to extensive experimental and theoretical research on the capabilities of these quantum dots for many application purposes. However, in order to be able to understand and thus further the development of these materials, one must first understand the fundamental interaction within these nanoparticles. In this thesis, I have developed a theoretical method which is called electron-hole explicitly correlated Hartee-Fock (eh-XCHF). It is a variational method for solving the electron-hole Schrodinger equation and has been used in this work to study electron-hole interaction in semiconductor quantum dots. The method was benchmarked with respect to a parabolic quantum dot system, and ground state energy and electron-hole recombination probability were computed. Both of these properties were found to be in good agreement with expected results. Upon successful benchmarking, I have applied the eh-XCHF method to study optical properties of several quantum dot systems including the effect of dot size on exciton binding energy and recombination probability in a CdSe quantum dot, the effect of shape on a CdSe quantum dot, the effect of heterojunction on a CdSe/ZnS quantum dot and the effect of quantum dot-biomolecule interaction within a CdSe-firefly Luciferase protein conjugate system. As metrics for assessing the effect of these influencers on the electron-hole interaction, the exciton binding energy, electron-hole recombination probability and the average electron-hole separation distance have been computed. These excitonic properties have been found to be strongly infuenced by the

  11. Landscape object-based analysis of wetland plant functional types: the effects of spatial scale, vegetation classes and classifier methods

    Science.gov (United States)

    Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.

    2011-12-01

    Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because

  12. Nonfitting protein-ligand interaction scoring function based on first-principles theoretical chemistry methods: development and application on kinase inhibitors.

    Science.gov (United States)

    Rao, Li; Zhang, Igor Ying; Guo, Wenping; Feng, Li; Meggers, Eric; Xu, Xin

    2013-07-15

    Targeted therapy is currently a hot topic in the fields of cancer research and drug design. An important requirement for this approach is the development of potent and selective inhibitors for the identified target protein. However, current ways to estimate inhibitor efficacy rely on empirical protein-ligand interaction scoring functions which, suffering from their heavy parameterizations, often lead to a low accuracy. In this work, we develop a nonfitting scoring function, which consists of three terms: (1) gas-phase protein-ligand binding enthalpy obtained by the eXtended ONIOM hybrid method based on an integration of density functional theory (DFT) methods (XYG3 and ωB97X-D) and the semiempirical PM6 method, (2) solvation free energy based on DFT-SMD solvation model, and (3) entropy effect estimated by using DFT frequency analysis. The new scoring function is tested on a cyclin-dependent kinase 2 (CDK2) inhibitor database including 76 CDK2 protein inhibitors and a p21-activated kinase 1 (PAK1) inhibitor database including 20 organometallic PAK1 protein inhibitors. From the results, good correlations are found between the calculated scores and the experimental inhibitor efficacies with the square of correlation coefficient R(2) of 0.76-0.88. This suggests a good predictive power of this scoring function. To the best of our knowledge, this is the first high level theory-based nonfitting scoring function with such a good level of performance. This scoring function is recommended to be used in the final screening of lead structure derivatives.

  13. A novel 2nd-order shape function based digital image correlation method for large deformation measurements

    Science.gov (United States)

    Bai, Ruixiang; Jiang, Hao; Lei, Zhenkun; Li, Weikang

    2017-03-01

    Compared with the traditional forward compositional matching strategy, the inverse compositional matching strategy has almost the same accuracy, but has an obviously higher efficiency than the former in digital image correlation (DIC) algorithms. Based on the inverse compositional matching strategy and the auxiliary displacement functions, a more accurate inverse compositional Gauss-Newton (IC-GN2) algorithm with a new second-order shape operator is proposed for nonuniform and large deformation measurements. A theoretical deduction showed that the new proposed second-order shape operator is invertible and can steadily attain second-order precision. The result of the numerical simulation showed that the matching accuracy of the new IC-GN2 algorithm is the same as that of the forward compositional Gauss-Newton (FC-GN2) algorithm and is relatively better than in IC-GN2 algorithm. Finally, a rubber tension experiment with a large deformation of 27% was performed to validate the feasibility of the proposed algorithm.

  14. Quantum master equation method based on the broken-symmetry time-dependent density functional theory: application to dynamic polarizability of open-shell molecular systems.

    Science.gov (United States)

    Kishi, Ryohei; Nakano, Masayoshi

    2011-04-21

    A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.

  15. Diabatic-At-Construction Method for Diabatic and Adiabatic Ground and Excited States Based on Multistate Density Functional Theory.

    Science.gov (United States)

    Grofe, Adam; Qu, Zexing; Truhlar, Donald G; Li, Hui; Gao, Jiali

    2017-03-14

    We describe a diabatic-at-construction (DAC) strategy for defining diabatic states to determine the adiabatic ground and excited electronic states and their potential energy surfaces using the multistate density functional theory (MSDFT). The DAC approach differs in two fundamental ways from the adiabatic-to-diabatic (ATD) procedures that transform a set of preselected adiabatic electronic states to a new representation. (1) The DAC states are defined in the first computation step to form an active space, whose configuration interaction produces the adiabatic ground and excited states in the second step of MSDFT. Thus, they do not result from a similarity transformation of the adiabatic states as in the ATD procedure; they are the basis for producing the adiabatic states. The appropriateness and completeness of the DAC active space can be validated by comparison with experimental observables of the ground and excited states. (2) The DAC diabatic states are defined using the valence bond characters of the asymptotic dissociation limits of the adiabatic states of interest, and they are strictly maintained at all molecular geometries. Consequently, DAC diabatic states have specific and well-defined physical and chemical meanings that can be used for understanding the nature of the adiabatic states and their energetic components. Here we present results for the four lowest singlet states of LiH and compare them to a well-tested ATD diabatization method, namely the 3-fold way; the comparison reveals both similarities and differences between the ATD diabatic states and the orthogonalized DAC diabatic states. Furthermore, MSDFT can provide a quantitative description of the ground and excited states for LiH with multiple strongly and weakly avoided curve crossings spanning over 10 Å of interatomic separation.

  16. Identification of family-specific residue packing motifs and their use for structure-based protein function prediction: I. Method development.

    Science.gov (United States)

    Bandyopadhyay, Deepak; Huan, Jun; Prins, Jan; Snoeyink, Jack; Wang, Wei; Tropsha, Alexander

    2009-11-01

    Protein function prediction is one of the central problems in computational biology. We present a novel automated protein structure-based function prediction method using libraries of local residue packing patterns that are common to most proteins in a known functional family. Critical to this approach is the representation of a protein structure as a graph where residue vertices (residue name used as a vertex label) are connected by geometrical proximity edges. The approach employs two steps. First, it uses a fast subgraph mining algorithm to find all occurrences of family-specific labeled subgraphs for all well characterized protein structural and functional families. Second, it queries a new structure for occurrences of a set of motifs characteristic of a known family, using a graph index to speed up Ullman's subgraph isomorphism algorithm. The confidence of function inference from structure depends on the number of family-specific motifs found in the query structure compared with their distribution in a large non-redundant database of proteins. This method can assign a new structure to a specific functional family in cases where sequence alignments, sequence patterns, structural superposition and active site templates fail to provide accurate annotation.

  17. Network-based functional enrichment

    Directory of Open Access Journals (Sweden)

    Poirel Christopher L

    2011-11-01

    Full Text Available Abstract Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i determine which functions are enriched in a given network, ii given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are

  18. VICMpred: An SVM-based Method for the Prediction of Functional Proteins of Gram-negative Bacteria Using Amino Acid Patterns and Composition

    Institute of Scientific and Technical Information of China (English)

    Sudipto Saha; G.P.S. Raghava

    2006-01-01

    In this study, an attempt has been made to predict the major functions of gramnegative bacterial proteins from their amino acid sequences. The dataset used for training and testing consists of 670 non-redundant gram-negative bacterial proteins (255 ofcellular process, 60 of information molecules, 285 of metabolism, and 70 of virulence factors). First we developed an SVM-based method using amino acid and dipeptide composition and achieved the overall accuracy of 52.39% and 47.01%, respectively. We introduced a new concept for the classification of proteins based on tetrapeptides, in which we identified the unique tetrapeptides significantly found in a class of proteins. These tetrapeptides were used as the input feature for predicting the function of a protein and achieved the overall accuracy of 68.66%. We also developed a hybrid method in which the tetrapeptide information was used with amino acid composition and achieved the overall accuracy of 70.75%. A five-fold cross validation was used to evaluate the performance of these methods. The web server VICMpred has been developed for predicting the function of gram-negative bacterial proteins (http://www.imtech.res.in/raghava/vicmpred/).

  19. Simulation Methods for Functional Materials

    Institute of Scientific and Technical Information of China (English)

    Youqi Yang

    2004-01-01

    @@ Functional materials embrace a broad area, ranging from functional information materials to special polymers, from special chemicals for printing to materials used in making paints. Inasmuch as most functional materials are particulate, the present contribution is considered pertinent to the present FORUM.

  20. Decoupling of mechanical systems based on in-situ frequency response functions: The link-preserving, decoupling method

    Science.gov (United States)

    Keersmaekers, Laurent; Mertens, Luc; Penne, Rudi; Guillaume, Patrick; Steenackers, Gunther

    2015-06-01

    Mechanical structures often consist of active and passive parts, the former containing the sources, the latter the transfer paths and the targets. The active and passive parts are connected to each other by means of links. In this paper, an innovative theoretical model has been developed to achieve the mathematical decoupling of such structures without disassembling the substructures, when the links connecting the structures are resilient enough. This procedure is required to identify components causing a specific Noise, Vibration and Harsh-ness (NVH) problem. The links are regarded as a parallel connection of springs and dampers, ignoring some physical properties. However, the new procedure will provide a powerful construction in which different link models can be investigated. Therefore, this procedure will be called the Link-Preserving, Decoupling Method (LPD method). The absence of a time-consuming physical decoupling procedure distinguishes the LPD method from all known methods such as the classical TPA method. The LPD method is validated by two numerical simulations using linear and nonlinear lumped parameter models and by an experimental case study.

  1. A study of parallelizing O(N) Green-function-based Monte Carlo method for many fermions coupled with classical degrees of freedom

    Science.gov (United States)

    Zhang, Shixun; Yamagia, Shinichi; Yunoki, Seiji

    2013-08-01

    Models of fermions interacting with classical degrees of freedom are applied to a large variety of systems in condensed matter physics. For this class of models, Weiße [Phys. Rev. Lett. 102, 150604 (2009)] has recently proposed a very efficient numerical method, called O(N) Green-Function-Based Monte Carlo (GFMC) method, where a kernel polynomial expansion technique is used to avoid the full numerical diagonalization of the fermion Hamiltonian matrix of size N, which usually costs O(N3) computational complexity. Motivated by this background, in this paper we apply the GFMC method to the double exchange model in three spatial dimensions. We mainly focus on the implementation of GFMC method using both MPI on a CPU-based cluster and Nvidia's Compute Unified Device Architecture (CUDA) programming techniques on a GPU-based (Graphics Processing Unit based) cluster. The time complexity of the algorithm and the parallel implementation details on the clusters are discussed. We also show the performance scaling for increasing Hamiltonian matrix size and increasing number of nodes, respectively. The performance evaluation indicates that for a 323 Hamiltonian a single GPU shows higher performance equivalent to more than 30 CPU cores parallelized using MPI.

  2. Application of microarray and functional-based screening methods for the detection of antimicrobial resistance genes in the microbiomes of healthy humans.

    Directory of Open Access Journals (Sweden)

    Roderick M Card

    Full Text Available The aim of this study was to screen for the presence of antimicrobial resistance genes within the saliva and faecal microbiomes of healthy adult human volunteers from five European countries. Two non-culture based approaches were employed to obviate potential bias associated with difficult to culture members of the microbiota. In a gene target-based approach, a microarray was employed to screen for the presence of over 70 clinically important resistance genes in the saliva and faecal microbiomes. A total of 14 different resistance genes were detected encoding resistances to six antibiotic classes (aminoglycosides, β-lactams, macrolides, sulphonamides, tetracyclines and trimethoprim. The most commonly detected genes were erm(B, blaTEM, and sul2. In a functional-based approach, DNA prepared from pooled saliva samples was cloned into Escherichia coli and screened for expression of resistance to ampicillin or sulphonamide, two of the most common resistances found by array. The functional ampicillin resistance screen recovered genes encoding components of a predicted AcrRAB efflux pump. In the functional sulphonamide resistance screen, folP genes were recovered encoding mutant dihydropteroate synthase, the target of sulphonamide action. The genes recovered from the functional screens were from the chromosomes of commensal species that are opportunistically pathogenic and capable of exchanging DNA with related pathogenic species. Genes identified by microarray were not recovered in the activity-based screen, indicating that these two methods can be complementary in facilitating the identification of a range of resistance mechanisms present within the human microbiome. It also provides further evidence of the diverse reservoir of resistance mechanisms present in bacterial populations in the human gut and saliva. In future the methods described in this study can be used to monitor changes in the resistome in response to antibiotic therapy.

  3. Finding function: evaluation methods for functional genomic data

    Directory of Open Access Journals (Sweden)

    Barrett Daniel R

    2006-07-01

    Full Text Available Abstract Background Accurate evaluation of the quality of genomic or proteomic data and computational methods is vital to our ability to use them for formulating novel biological hypotheses and directing further experiments. There is currently no standard approach to evaluation in functional genomics. Our analysis of existing approaches shows that they are inconsistent and contain substantial functional biases that render the resulting evaluations misleading both quantitatively and qualitatively. These problems make it essentially impossible to compare computational methods or large-scale experimental datasets and also result in conclusions that generalize poorly in most biological applications. Results We reveal issues with current evaluation methods here and suggest new approaches to evaluation that facilitate accurate and representative characterization of genomic methods and data. Specifically, we describe a functional genomics gold standard based on curation by expert biologists and demonstrate its use as an effective means of evaluation of genomic approaches. Our evaluation framework and gold standard are freely available to the community through our website. Conclusion Proper methods for evaluating genomic data and computational approaches will determine how much we, as a community, are able to learn from the wealth of available data. We propose one possible solution to this problem here but emphasize that this topic warrants broader community discussion.

  4. Arrhenius parameter determination as a function of heating method and cellular microenvironment based on spatial cell viability analysis.

    Science.gov (United States)

    Whitney, Jon; Carswell, William; Rylander, Nichole

    2013-06-01

    Predictions of injury in response to photothermal therapy in vivo are frequently made using Arrhenius parameters obtained from cell monolayers exposed to laser or water bath heating. However, the impact of different heating methods and cellular microenvironments on Arrhenius predictions has not been thoroughly investigated. This study determined the influence of heating method (water bath and laser irradiation) and cellular microenvironment (cell monolayers and tissue phantoms) on Arrhenius parameters and spatial viability. MDA-MB-231 cells seeded in monolayers and sodium alginate phantoms were heated with a water bath for 3-20 min at 46, 50, and 54 °C or laser irradiated (wavelength of 1064 nm and fluences of 40 W/cm(2) or 3.8 W/cm(2) for 0-4 min) in combination with photoabsorptive carbon nanohorns. Spatial viability was measured using digital image analysis of cells stained with calcein AM and propidium iodide and used to determine Arrhenius parameters. The influence of microenvironment and heating method on Arrhenius parameters and capability of parameters derived from more simplistic experimental conditions (e.g. water bath heating of monolayers) to predict more physiologically relevant systems (e.g. laser heating of phantoms) were assessed. Arrhenius predictions of the treated area (Arrhenius parameters, with heating method having the greater impact.

  5. O-hydroxy-functionalized diamines, polymides, methods of making each, and methods of use

    KAUST Repository

    Ma, Xiaohua

    2016-01-21

    Embodiments of the present disclosure provide for an ortho (o)-hydroxy-functionalized diamine, a method of making an o-hydroxy-functionalized diamine, an o-hydroxy-functionalized diamine-based polyimide, a method of making an o-hydroxy-functionalized diamine imide, methods of gas separation, and the like.

  6. A direct phasing method based on the origin-free modulus sum function and the FFT algorithm. XII.

    Science.gov (United States)

    Rius, Jordi; Crespi, Anna; Torrelles, Xavier

    2007-03-01

    An alternative way of refining phases with the origin-free modulus sum function S is shown that, instead of applying the tangent formula in sequential mode [Rius (1993). Acta Cryst. A49, 406-409], applies it in parallel mode with the help of the fast Fourier transform (FFT) algorithm. The test calculations performed on intensity data of small crystal structures at atomic resolution prove the convergence and hence the viability of the procedure. This new procedure called S-FFT is valid for all space groups and especially competitive for low-symmetry ones. It works well when the charge-density peaks in the crystal structure have the same sign, i.e. either positive or negative.

  7. Development and application of a functional CE-SSCP fingerprinting method based on [Fe-Fe]-hydrogenase genes for monitoring hydrogen-producing Clostridium in mixed cultures

    Energy Technology Data Exchange (ETDEWEB)

    Quemeneur, Marianne; Hamelin, Jerome; Latrille, Eric; Steyer, Jean-Philippe; Trably, Eric [INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, avenue des Etangs, Narbonne F-11100 (France)

    2010-12-15

    A Capillary Electrophoresis Single Strand Conformation Polymorphism (CE-SSCP) method based on functional [Fe-Fe]-hydrogenase genes was developed for monitoring the hydrogen (H{sub 2})-producing clostridial population in mixed-culture bioprocesses. New non-degenerated primers were designed and then validated on their specific PCR detection of a broad range of clostridial hydA genes. The hydA-based CE-SSCP method gave a specific and discriminating profile for each of the Clostridium strains tested. This method was validated using H{sub 2}-producing mixed cultures incubated at temperatures ranging from 25 C to 45 C. The hydA CE-SSCP profiles clearly differed between temperatures tested. Hence, they varied according to variations of the H{sub 2} production performances. The HydA sequences amplified with the new primer set indicated that diverse Clostridium strains impacted the H{sub 2} production yields. The highest performances were related to the dominance of Clostridium sporogenes-like hydA sequences. This CE-SSCP tool offers highly reliable and throughput analysis of the functional diversity and structure of the hydA genes for better understanding of the H{sub 2}-producing clostridial population dynamics in H{sub 2} dark fermentation bioreactors. (author)

  8. Research on a Nonlinear Robust Adaptive Control Method of the Elbow Joint of a Seven-Function Hydraulic Manipulator Based on Double-Screw-Pair Transmission

    Directory of Open Access Journals (Sweden)

    Gaosheng Luo

    2014-01-01

    Full Text Available A robust adaptive control method with full-state feedback is proposed based on the fact that the elbow joint of a seven-function hydraulic manipulator with double-screw-pair transmission features the following control characteristics: a strongly nonlinear hydraulic system, parameter uncertainties susceptible to temperature and pressure changes of the external environment, and unknown outer disturbances. Combined with the design method of the back-stepping controller, the asymptotic stability of the control system in the presence of disturbances from uncertain systematic parameters and unknown external disturbances was demonstrated using Lyapunov stability theory. Based on the elbow joint of the seven-function master-slave hydraulic manipulator for the 4500 m Deep-Sea Working System as the research subject, a comparative study was conducted using the control method presented in this paper for unknown external disturbances. Simulations and experiments of different unknown outer disturbances showed that (1 the proposed controller could robustly track the desired reference trajectory with satisfactory dynamic performance and steady accuracy and that (2 the modified parameter adaptive laws could also guarantee that the estimated parameters are bounded.

  9. Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hiroya, E-mail: nakata.h.ab@m.titech.ac.jp [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Fedorov, Dmitri G. [NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Yokojima, Satoshi [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tokyo University of Pharmacy and Life Sciences, 1423-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Kitaura, Kazuo [Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Sakurai, Minoru [Center for Biological Resources and Informatics, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501 (Japan); Nakamura, Shinichiro [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2014-04-14

    We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer.

  10. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.

    Directory of Open Access Journals (Sweden)

    Emre Guney

    Full Text Available Complex biological systems usually pose a trade-off between robustness and fragility where a small number of perturbations can substantially disrupt the system. Although biological systems are robust against changes in many external and internal conditions, even a single mutation can perturb the system substantially, giving rise to a pathophenotype. Recent advances in identifying and analyzing the sequential variations beneath human disorders help to comprehend a systemic view of the mechanisms underlying various disease phenotypes. Network-based disease-gene prioritization methods rank the relevance of genes in a disease under the hypothesis that genes whose proteins interact with each other tend to exhibit similar phenotypes. In this study, we have tested the robustness of several network-based disease-gene prioritization methods with respect to the perturbations of the system using various disease phenotypes from the Online Mendelian Inheritance in Man database. These perturbations have been introduced either in the protein-protein interaction network or in the set of known disease-gene associations. As the network-based disease-gene prioritization methods are based on the connectivity between known disease-gene associations, we have further used these methods to categorize the pathophenotypes with respect to the recoverability of hidden disease-genes. Our results have suggested that, in general, disease-genes are connected through multiple paths in the human interactome. Moreover, even when these paths are disturbed, network-based prioritization can reveal hidden disease-gene associations in some pathophenotypes such as breast cancer, cardiomyopathy, diabetes, leukemia, parkinson disease and obesity to a greater extend compared to the rest of the pathophenotypes tested in this study. Gene Ontology (GO analysis highlighted the role of functional diversity for such diseases.

  11. Shock sensitivity of a double-base propellant as a function of age, processing method, and size

    Science.gov (United States)

    Sandusky, H. W.

    2017-01-01

    Shock sensitivity of a double-base propellant (nitroglycerin and nitrocellulose with smaller quantities of other ingredients) was compared for fresh and aged samples. Because the available amount of propellant was less than that needed for extrusion, most samples were pressed. The large-scale gap test (LSGT) was consistent for 240-g samples of fresh propellant whether extruded as one piece or 6-mm pieces pressed together directly into the confinement tube. The latter had the same density but with microscopic gaps between pieces and nitrocellulose fibers randomly oriented instead of being aligned with the extrusion axis. In a further reduction of the amount of required propellant, 11-g samples pressed from 3-mm pieces had the same critical shock pressure in the Insensitive High Explosive gap test (IHEGT), which has a LSGT donor and replicates its confinement. There was just enough propellant aged for 13 and 16 years to press several IHEGT samples each. The critical shock pressure was somewhat lower for aged propellant. These results demonstrate how smaller tests can mimic results in larger ones upon proper consideration of shock, detonation, and material science.

  12. A comparison of item response theory-based methods for examining differential item functioning in object naming test by language of assessment among older Latinos

    Directory of Open Access Journals (Sweden)

    Frances M. Yang

    2011-12-01

    Full Text Available Object naming tests are commonly included in neuropsychological test batteries. Differential item functioning (DIF in these tests due to cultural and language differences may compromise the validity of cognitive measures in diverse populations. We evaluated 26 object naming items for DIF due to Spanish and English language translations among Latinos (n=1,159, mean age of 70.5 years old (Standard Deviation (SD±7.2, using the following four item response theory-based ap-proaches: Mplus/Multiple Indicator, Multiple Causes (Mplus/MIMIC; Muthén & Muthén, 1998-2011, Item Response Theory Likelihood Ratio Differential Item Functioning (IRTLRDIF/MULTILOG; Thissen, 1991, 2001, difwithpar/Parscale (Crane, Gibbons, Jolley, & van Belle, 2006; Muraki & Bock, 2003, and Differential Functioning of Items and Tests/MULTILOG (DFIT/MULTILOG; Flowers, Oshima, & Raju, 1999; Thissen, 1991. Overall, there was moderate to near perfect agreement across methods. Fourteen items were found to exhibit DIF and 5 items observed consistently across all methods, which were more likely to be answered correctly by individuals tested in Spanish after controlling for overall ability.

  13. A comparison of item response theory-based methods for examining differential item functioning in object naming test by language of assessment among older Latinos.

    Science.gov (United States)

    Yang, Frances M; Heslin, Kevin C; Mehta, Kala M; Yang, Cheng-Wu; Ocepek-Welikson, Katja; Kleinman, Marjorie; Morales, Leo S; Hays, Ron D; Stewart, Anita L; Mungas, Dan; Jones, Richard N; Teresi, Jeanne A

    2011-01-01

    Object naming tests are commonly included in neuropsychological test batteries. Differential item functioning (DIF) in these tests due to cultural and language differences may compromise the validity of cognitive measures in diverse populations. We evaluated 26 object naming items for DIF due to Spanish and English language translations among Latinos (n=1,159), mean age of 70.5 years old (Standard Deviation (SD)±7.2), using the following four item response theory-based approaches: Mplus/Multiple Indicator, Multiple Causes (Mplus/MIMIC; Muthén & Muthén, 1998-2011), Item Response Theory Likelihood Ratio Differential Item Functioning (IRTLRDIF/MULTILOG; Thissen, 1991, 2001), difwithpar/Parscale (Crane, Gibbons, Jolley, & van Belle, 2006; Muraki & Bock, 2003), and Differential Functioning of Items and Tests/MULTILOG (DFIT/MULTILOG; Flowers, Oshima, & Raju, 1999; Thissen, 1991). Overall, there was moderate to near perfect agreement across methods. Fourteen items were found to exhibit DIF and 5 items observed consistently across all methods, which were more likely to be answered correctly by individuals tested in Spanish after controlling for overall ability.

  14. Numerical calculation of light scattering from metal and dielectric randomly rough Gaussian surfaces using microfacet slope probability density function based method

    Science.gov (United States)

    Wang, Shouyu; Xue, Liang; Yan, Keding

    2017-07-01

    Light scattering from randomly rough surfaces is of great significance in various fields such as remote sensing and target identification. As numerical methods can obtain scattering distributions without complex setups and complicated operations, they become important tools in light scattering study. However, most of them suffer from huge computing load and low operating efficiency, limiting their applications in dynamic measurements and high-speed detections. Here, to overcome these disadvantages, microfacet slope probability density function based method is presented, providing scattering information without computing ensemble average from numerous scattered fields, thus it can obtain light scattering distributions with extremely fast speed. Additionally, it can reach high-computing accuracy quantitatively certificated by mature light scattering computing algorithms. It is believed the provided approach is useful in light scattering study and offers potentiality for real-time detections.

  15. A new method based on fractal variance function for analysis and quantification of sympathetic and vagal activity in variability of R-R time series in ECG signals

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); School of Advanced International Studies on Nuclear, Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: fisio2@fisiol.uniba.it; Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)

    2009-08-15

    It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.

  16. An interactive segmentation method based on superpixel

    DEFF Research Database (Denmark)

    Yang, Shu; Zhu, Yaping; Wu, Xiaoyu

    2015-01-01

    This paper proposes an interactive image-segmentation method which is based on superpixel. To achieve fast segmentation, the method is used to establish a Graphcut model using superpixels as nodes, and a new energy function is proposed. Experimental results demonstrate that the authors' method has...... excellent performance in terms of segmentation accuracy and computation efficiency compared with other segmentation algorithm based on pixels....

  17. Including anatomical and functional information in MC simulation of PET and SPECT brain studies. Brain-VISET: a voxel-based iterative method.

    Science.gov (United States)

    Marti-Fuster, Berta; Esteban, Oscar; Thielemans, Kris; Setoain, Xavier; Santos, Andres; Ros, Domenec; Pavia, Javier

    2014-10-01

    Monte Carlo (MC) simulation provides a flexible and robust framework to efficiently evaluate and optimize image processing methods in emission tomography. In this work we present Brain-VISET (Voxel-based Iterative Simulation for Emission Tomography), a method that aims to simulate realistic [ (99m) Tc]-SPECT and [ (18) F]-PET brain databases by including anatomical and functional information. To this end, activity and attenuation maps generated using high-resolution anatomical images from patients were used as input maps in a MC projector to simulate SPECT or PET sinograms. The reconstructed images were compared with the corresponding real SPECT or PET studies in an iterative process where the activity inputs maps were being modified at each iteration. Datasets of 30 refractory epileptic patients were used to assess the new method. Each set consisted of structural images (MRI and CT) and functional studies (SPECT and PET), thereby allowing the inclusion of anatomical and functional variability in the simulation input models. SPECT and PET sinograms were obtained using the SimSET package and were reconstructed with the same protocols as those employed for the clinical studies. The convergence of Brain-VISET was evaluated by studying the behavior throughout iterations of the correlation coefficient, the quotient image histogram and a ROI analysis comparing simulated with real studies. The realism of generated maps was also evaluated. Our findings show that Brain-VISET is able to generate realistic SPECT and PET studies and that four iterations is a suitable number of iterations to guarantee a good agreement between simulated and real studies.

  18. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1999-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  19. Sinc-function based Network

    DEFF Research Database (Denmark)

    Madsen, Per Printz

    1998-01-01

    The purpose of this paper is to describe a neural network (SNN), that is based on Shannons ideas of reconstruction of a real continuous function from its samples. The basic function, used in this network, is the Sinc-function. Two learning algorithms are described. A simple one called IM...

  20. 基于距离函数的自动调焦方法研究%Auto-focusing method based on distance function

    Institute of Scientific and Technical Information of China (English)

    何祯鑫; 刘春桐; 赵晓枫; 马健

    2011-01-01

    望远镜系统自动调焦功能的实现是摄像经纬仪对目标方位自动精密测量的首要条件.本文针对小视场、恶劣环境以及响应时间短的特定要求,提出了一种基于距离函数的自动调焦方法,根据被测目标的物距通过调用距离函数解算出相应的调焦距离,进而产生位置信号驱动直线步进电机使调焦透镜发生移动,达到调焦的目的.分析表明该方法具有精度高、响应速度快以及环境适应性强等优点,能够满足经纬仪全自动精密测量的实际需要.%Achievement of auto-focusing function in theodolite s telescope system is a primary condition in automatically measur ing the angels of the targets. To meet the specific requirement such as small view field, severe environment and short response time, an auto-focusing method based on distance function was presented in the paper. According to the objective distance of target by use of well designed distance function the focusing distance could be calculated and subsequently transformed into locating signal, which drives the linear stepping motor to make the pancreatic lens move to the appropriate place. The analysis results showed that this method could meet the automatically measuring requirement of theodolite system with high precision, quick response and good adaptability to environment.

  1. The Functional Methods of Discourse Analysis

    Institute of Scientific and Technical Information of China (English)

    覃卓敏

    2008-01-01

    From the macroscopic angle of function, methods of discourse analysis are clarified to find out two important methods in pragmatics and through which will better used in the understanding of discourse.

  2. Basic Methods for Computing Special Functions

    NARCIS (Netherlands)

    Gil, A.; Segura, J.; Temme, N.M.; Simos, T.E.

    2011-01-01

    This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are frequent

  3. Compositions and methods for hydrocarbon functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Gunnoe, Thomas Brent; Fortman, George; Boaz, Nicholas C.; Groves, John T.

    2017-03-28

    Embodiments of the present disclosure provide for methods of hydrocarbon functionalization, methods and systems for converting a hydrocarbon into a compound including at least one group ((e.g., hydroxyl group) (e.g., methane to methanol)), functionalized hydrocarbons, and the like.

  4. Basic Methods for Computing Special Functions

    OpenAIRE

    Gil, Amparo; Segura, Javier; Temme, Nico; Simos, T. E.

    2011-01-01

    This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are frequently used in the numerical evaluation of special functions: converging and asymptotic series, including Chebyshev expansions, linear recurrence relations, and numerical quadrature. Several other metho...

  5. An Alternate Method for Computation of Transfer Function Matrix

    Directory of Open Access Journals (Sweden)

    Appukuttan K. K.

    2010-01-01

    Full Text Available A direct and simple numerical method is presented for calculating the transfer function matrix of a linear time invariant multivariable system (A, B, C. The method is based on the matrix-determinant identity, and it involves operations with an auxiliary vector on the matrices. The method is computationally faster compared to Liverrier and Danilevsky methods.

  6. Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks.

    Directory of Open Access Journals (Sweden)

    Matteo Garofalo

    Full Text Available Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs. First we tested these "connectivity methods" on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic and PPC (Positive Precision Curve, a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings.

  7. Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors

    Science.gov (United States)

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

    2013-01-08

    The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

  8. Evaluation of the Performance of Information Theory-Based Methods and Cross-Correlation to Estimate the Functional Connectivity in Cortical Networks

    Science.gov (United States)

    Garofalo, Matteo; Nieus, Thierry; Massobrio, Paolo; Martinoia, Sergio

    2009-01-01

    Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs). First we tested these “connectivity methods” on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic) and PPC (Positive Precision Curve), a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings. PMID:19652720

  9. Methods in Logic Based Control

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1999-01-01

    Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC-design met......Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...

  10. Numerical methods for hyperbolic differential functional problems

    Directory of Open Access Journals (Sweden)

    Roman Ciarski

    2008-01-01

    Full Text Available The paper deals with the initial boundary value problem for quasilinear first order partial differential functional systems. A general class of difference methods for the problem is constructed. Theorems on the error estimate of approximate solutions for difference functional systems are presented. The convergence results are proved by means of consistency and stability arguments. A numerical example is given.

  11. Method to fabricate functionalized conical nanopores

    Science.gov (United States)

    Small, Leo J.; Spoerke, Erik David; Wheeler, David R.

    2016-07-12

    A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.

  12. Absolute Orientation Based on Distance Kernel Functions

    Directory of Open Access Journals (Sweden)

    Yanbiao Sun

    2016-03-01

    Full Text Available The classical absolute orientation method is capable of transforming tie points (TPs from a local coordinate system to a global (geodetic coordinate system. The method is based only on a unique set of similarity transformation parameters estimated by minimizing the total difference between all ground control points (GCPs and the fitted points. Nevertheless, it often yields a transformation with poor accuracy, especially in large-scale study cases. To address this problem, this study proposes a novel absolute orientation method based on distance kernel functions, in which various sets of similarity transformation parameters instead of only one set are calculated. When estimating the similarity transformation parameters for TPs using the iterative solution of a non-linear least squares problem, we assigned larger weighting matrices for the GCPs for which the distances from the point are short. The weighting matrices can be evaluated using the distance kernel function as a function of the distances between the GCPs and the TPs. Furthermore, we used the exponential function and the Gaussian function to describe distance kernel functions in this study. To validate and verify the proposed method, six synthetic and two real datasets were tested. The accuracy was significantly improved by the proposed method when compared to the classical method, although a higher computational complexity is experienced.

  13. Direct functionalization of pristine single-walled carbon nanotubes by diazonium-based method with various five-membered S- or N- heteroaromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, Heli; Lajunen, Marja, E-mail: marja.lajunen@oulu.fi [University of Oulu, Department of Chemistry (Finland)

    2012-09-15

    Reactivity of five-membered, variously substituted, heteroaromatic diazonium salts was studied toward pristine single-walled carbon nanotubes (SWCNTs), prepared by high-pressure CO conversion (HiPCO) method. Average size range of individual HiPCO SWCNTs was 0.8-1.2 nm (diameter) and 100-1,000 nm (length). Functionalizations were performed by a one-pot diazotization-dediazotization method with methyl-2-aminothiophene-3-carboxylate, 2-aminothiophene-3-carbonitrile, 2-aminoimidazole sulfate, or 3-aminopyrazole in acetic acid using sodium nitrite at room temperature or by heating. According to Raman and Fourier transform infrared spectroscopy, all used heterocyclic diazonium salts formed a covalent bond with SWCNTs and yielded new kinds of five-membered heterocycle-functionalized SWCNTs. Methyl-2-thiophenyl-3-carboxylate-functionalized SWCNTs formed a highly soluble, stable dispersion in tetrahydrofuran (THF), 3-pyrazoyl-functionalized SWCNTs in ethanol, and 2-imidazoyl- or 2-thiophenyl-3-carbonitrile-functionalized SWCNTs in ethanol and THF. The thermogravimetric analysis as well as energy-filtered transmission electron microscopy imaging of the products confirmed the successful functionalization of SWCNTs.

  14. Hermite-distributed approximating functional-based formulation of multiconfiguration time-dependent Hartree method: A case study of quantum tunnelling in a coupled double-well system

    Indian Academy of Sciences (India)

    KAUSHIK MAJI

    2016-08-01

    We propose a variant of the multiconfiguration time-dependent Hartree (MCTDH) method within the framework of Hermite-distributed approximating functional (HDAF) method. The discretized Hamiltonian is a highly banded Toeplitz matrix which significantly reduces computational cost in terms of both storage and number of operations. The method proposed is employed to carry out the study of tunnelling dynamics of two coupled double well oscillators. We have calculated the orthogonality time \\tau , which is a measure of the time interval for an initial state to evolve into its orthogonal state. It is observed that the coupling has a significant effect on \\tau .

  15. FFOP Prediction Method Based on Bathtub-shaped Failure Rate Function%基于浴盆曲线故障率函数的FFOP预计方法

    Institute of Scientific and Technical Information of China (English)

    马纪明; 万蔚; 曾声奎

    2012-01-01

    Failure free operating period (FFOP) is defined as a period during which no failures resulting in a loss of system functionality occur. First, the concept of FFOP and the difference between FFOP and mean time between failures (MTBF) are introduced. Three hypotheses are held as the preconditions of the presented methodology. First, the fault event is a Possion process. Second, the failure rate function is shaped like a bathtub curve. Third, constant interval scheduled maintenance is permitted during which the product must maintain trouble-free function. A modified Weibull distribution function is used to model the bathtub-shaped failure rate function. Furthermore, based on the probability and stochastic processes theory, FFOP prediction algorithm and procedure are developed, whose accuracy is verified through simulation. Finally, an actuator is selected as the sample case to validate the feasibility of the proposed method. The result shows the FFOP is correlated with maintenance free operating period (MFOP) and the predefined confidence coefficient. Shorter MFOP will deliver both higher maintenance and operating costs and longer FFOP. In engineering practice, a tradeoff between FFOP and maintenance and operation cost should be considered.%与传统可靠性指标中假设产品的随机失效不可避免不同,无故障工作期(FFOP)内产品不会发生任何故障(即零故障).首先阐述了FFOP的概念内涵、与平均故障间隔时间(MTBF)的区别和联系,提出了一种FFOP的预计方法.该方法假设产品的故障率函数具有浴盆曲线特征、故障发生过程为泊松过程、产品具有固定的免维修工作期.然后以一种改进的Weibull分布函数描述具有浴盆曲线函数特征产品的故障率.基于泊松过程理论,给出了FFOP的预计算法、流程和仿真验证手段.最后以某型无人机舵机为案例对研究方法的可用性进行了验证.结果表明:FFOP与免维修工作期(MFOP)、

  16. Methods in Logic Based Control

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    1999-01-01

    Desing and theory of Logic Based Control systems.Boolean Algebra, Karnaugh Map, Quine McClusky's algorithm. Sequential control design. Logic Based Control Method, Cascade Control Method. Implementation techniques: relay, pneumatic, TTL/CMOS,PAL and PLC- and Soft_PLC implementation. PLC...

  17. Estimating initial contaminant mass based on fitting mass-depletion functions to contaminant mass discharge data: Testing method efficacy with SVE operations data

    Science.gov (United States)

    Mainhagu, J.; Brusseau, M. L.

    2016-09-01

    The mass of contaminant present at a site, particularly in the source zones, is one of the key parameters for assessing the risk posed by contaminated sites, and for setting and evaluating remediation goals and objectives. This quantity is rarely known and is challenging to estimate accurately. This work investigated the efficacy of fitting mass-depletion functions to temporal contaminant mass discharge (CMD) data as a means of estimating initial mass. Two common mass-depletion functions, exponential and power functions, were applied to historic soil vapor extraction (SVE) CMD data collected from 11 contaminated sites for which the SVE operations are considered to be at or close to essentially complete mass removal. The functions were applied to the entire available data set for each site, as well as to the early-time data (the initial 1/3 of the data available). Additionally, a complete differential-time analysis was conducted. The latter two analyses were conducted to investigate the impact of limited data on method performance, given that the primary mode of application would be to use the method during the early stages of a remediation effort. The estimated initial masses were compared to the total masses removed for the SVE operations. The mass estimates obtained from application to the full data sets were reasonably similar to the measured masses removed for both functions (13 and 15% mean error). The use of the early-time data resulted in a minimally higher variation for the exponential function (17%) but a much higher error (51%) for the power function. These results suggest that the method can produce reasonable estimates of initial mass useful for planning and assessing remediation efforts.

  18. The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: rationale, design and methods of the TAPASS study

    NARCIS (Netherlands)

    van de Ven, R.M.; Schmand, B.; Groet, E.; Veltman, D.J.; Murre, J.M.J.

    2015-01-01

    Background: Stroke survivors frequently suffer from executive impairments even in the chronic phase after stroke, and there is a need for improved rehabilitation of these functions. One way of improving current rehabilitation treatment may be by online cognitive training. Based on a review of the ef

  19. Entropy-based benchmarking methods

    OpenAIRE

    2012-01-01

    We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth preservation method of Causey and Trager (1981) may violate this principle, while its requirements are explicitly taken into account in the pro-posed entropy-based benchmarking methods. Our illustrati...

  20. Activity based costing (ABC Method

    Directory of Open Access Journals (Sweden)

    Prof. Ph.D. Saveta Tudorache

    2008-05-01

    Full Text Available In the present paper the need and advantages are presented of using the Activity BasedCosting method, need arising from the need of solving the information pertinence issue. This issue has occurreddue to the limitation of classic methods in this field, limitation also reflected by the disadvantages ofsuch classic methods in establishing complete costs.

  1. A Brief Discussion on "Formula -Based and Digram - Based" Learning Method for Trigonometric Functions%浅谈三角函数知识的“口诀化、图形化”学习方法

    Institute of Scientific and Technical Information of China (English)

    克玛丽亚·沙塔尔

    2013-01-01

    How to guide students to learn trigonometric functions well is an issue secondary vocational mathematics teachers should carefully research. This paper introduces a“formu-la-based and digram-based” learning method for trigonometric functions, hoping to be helpful for all teachers and students.%  如何有效指导学生学好三角函数,是中职数学教师需要认真思考研究的问题。本文阐述笔者总结的一套以“口诀记忆、图形深化”为主的三角函数知识学习方法,希望对广大同行和学生有所帮助。

  2. A Numerical Method for Lane-Emden Equations Using Hybrid Functions and the Collocation Method

    Directory of Open Access Journals (Sweden)

    Changqing Yang

    2012-01-01

    Full Text Available A numerical method to solve Lane-Emden equations as singular initial value problems is presented in this work. This method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The collocation method transforms the differential equation into a system of algebraic equations. It also has application in a wide area of differential equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

  3. Introducing trimming and function ranking to Solid Works based on function analysis

    NARCIS (Netherlands)

    Chechurin, Leonid S.; Wits, Wessel W.; Bakker, Hans M.; Vaneker, Tom H.J.; Cascini, G.; Vaneker, T.H.J.

    2011-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model t

  4. Introducing Trimming and Function Ranking to SolidWorks based on Function Analysis

    NARCIS (Netherlands)

    Chechurin, L.S.; Wits, W.W.; Bakker, H.M.; Vaneker, T.H.J.

    2015-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model t

  5. Introducing Trimming and Function Ranking to SolidWorks based on Function Analysis

    NARCIS (Netherlands)

    Chechurin, L.S.; Wits, Wessel Willems; Bakker, Hans M.; Vaneker, Thomas H.J.

    2015-01-01

    TRIZ based Function Analysis models existing products based on functional interactions between product parts. Such a function model description is the ideal starting point for product innovation. Design engineers can apply (TRIZ) methods such as trimming and function ranking to this function model

  6. Bilateral generating functions and operational methods

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Frascati, Frascati, RM (Italy)

    2000-07-01

    Bilateral generating functions are those involving products of different types of polynomials. It is showed that operational methods offer a powerful tool to derive these families of generating functions. Cases relevant to products of Hermite and Laguerre, Hermite and Legendre ... polynomials and propose further extensions of the method are studied in this report. [Italian] Le funzioni generatrici bilaterali sono quelle che coinvolgono prodotti di tipi differenti di polinomi, si dimostra che i metodi operazionali offrono uno strumento potente per derivare queste nuove famiglie di funzioni speciali. Si studiano casi relativi a prodotti di polinomi di Hermite e Laguerre, Hermite e Legendre. Si propongono infine possibili estensioni del metodo.

  7. Eikonal method for calculation of coherence functions.

    Science.gov (United States)

    Zysk, Adam M; Carney, P Scott; Schotland, John C

    2005-07-22

    A method is presented for computing the cross-spectral density of a special class of partially coherent fields in which the coherent modes obey an eikonal equation. This method allows for statistical analysis of optical systems based on simple ray tracing.

  8. Minimizing convex functions by continuous descent methods

    Directory of Open Access Journals (Sweden)

    Sergiu Aizicovici

    2010-01-01

    Full Text Available We study continuous descent methods for minimizing convex functions, defined on general Banach spaces, which are associated with an appropriate complete metric space of vector fields. We show that there exists an everywhere dense open set in this space of vector fields such that each of its elements generates strongly convergent trajectories.

  9. Function Parametrization - a Fast Inverse Mapping Method

    NARCIS (Netherlands)

    van Milligen, B. P.; Cardozo, N. J. L.

    1991-01-01

    Function parametrization (FP) is a method to invert computer models that map physical parameters describing the state of a physical system onto measurements. It find a mapping of the measurements onto the physical parameters that requires little computing time to evaluate. The major advantages of FP

  10. Methods for selective functionalization and separation of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H (Inventor); Smalley, Richard E. (Inventor); Marek, legal representative, Irene Marie (Inventor)

    2011-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  11. 基于Prehabilitation的肌肉功能训练的方法和发展动向%Muscle Function Training Methods and Development Trends on Prehabilitation Base

    Institute of Scientific and Technical Information of China (English)

    曲科宇; 张军; 佟岗

    2015-01-01

    采用文献资料法和逻辑分析法阐述新的康复理论“Prehabilitation”,主要从静力性力量训练、动力力量训练、离心性力量以及plyometric练习几个方面论述基于Prehabilitation发展力量的方法手段,重点从Prehabilitation视角下阐明肌肉力量训练的方法、作用,以及在国内外的发展与动向,丰富肌肉功能训练的方法,包括悬吊训练法( S-E-T)、超等长练习( Plyometric)、核心力量训练( Core Strength Training)等,Prehabilitation的性肌肉功能训练在运动实践中能起到预防运动损伤的积极作用。%By literature material method and logic analysis,it addresses the new rehabilitation theory“Prehabilitation”, from static and dynamic strength train,centifuge and plyometric,to explain muscle strength training methods, function and the development from the perspective of Prehabilitation and the trend at home and abroad. There are abundant of muscle function training methods, such as S-E-T、plyometric training and core strength training. It plays a positive role to prevent sports injury in practice.

  12. The synchronous neural interactions test as a functional neuromarker for post-traumatic stress disorder (PTSD): a robust classification method based on the bootstrap

    Science.gov (United States)

    Georgopoulos, A. P.; Tan, H.-R. M.; Lewis, S. M.; Leuthold, A. C.; Winskowski, A. M.; Lynch, J. K.; Engdahl, B.

    2010-02-01

    Traumatic experiences can produce post-traumatic stress disorder (PTSD) which is a debilitating condition and for which no biomarker currently exists (Institute of Medicine (US) 2006 Posttraumatic Stress Disorder: Diagnosis and Assessment (Washington, DC: National Academies)). Here we show that the synchronous neural interactions (SNI) test which assesses the functional interactions among neural populations derived from magnetoencephalographic (MEG) recordings (Georgopoulos A P et al 2007 J. Neural Eng. 4 349-55) can successfully differentiate PTSD patients from healthy control subjects. Externally cross-validated, bootstrap-based analyses yielded >90% overall accuracy of classification. In addition, all but one of 18 patients who were not receiving medications for their disease were correctly classified. Altogether, these findings document robust differences in brain function between the PTSD and control groups that can be used for differential diagnosis and which possess the potential for assessing and monitoring disease progression and effects of therapy.

  13. Image Definition Evaluation Method Based on Image Moments Function%基于图像矩函数的图像清晰度评价方法

    Institute of Scientific and Technical Information of China (English)

    聂凯; 刘文耀; 王晋疆

    2013-01-01

    Auto-focusing as the key technology of microscopic image measurement, its core is image definition evaluation function. When the contrast between focus target and background is relatively low, evaluation curves of existing image definition evaluation functions are inclined to lose their ideal characteristics with low sensitivity,which came the decrease of focusing accuracy, or the multiple of local extremums, resulting in the failure of focusing. Targeting at such problem,a new image definition evaluation function based on image moments is proposed on account of analyzing the image-forming principle of out-of-focus image,and its definition is presented. New evaluation function is composed by the weighting of image moments of different order,and the sensitivity and noise immunity of evaluation function could be flexibly controlled by adjusting weighting coefficient. Experimental verification on the new evaluation function was carried out by the microscopic image sequence of tiny transparent sphere. In addition,the analysis and comparison between the new evaluation function and four common evaluation functions were conducted. Experiment result shows that under low contrast, as compared to other four common evaluation functions, the image resolution evaluation function based on image moments not only effectively maintains ideal curve characteristics such as unimodality and unbiasedness,but also has obvious advantages in the aspects of sensitivity and noise immunity.%自动调焦作为显微图像测量中的关键技术,其核心为图像清晰度评价函数。现有图像清晰度评价函数在对焦目标与背景的对比度较低时,评价曲线极易失去其理想特性,或灵敏度下降,造成聚焦精度的降低;或出现多个局部极值,造成调焦失败。针对这一问题,在分析离焦图像成像原理的基础上,提出一种新的基于图像矩的图像清晰度评价函数,并给出定义。新的评价函数由不同阶的

  14. Gate-based decomposition of index generation functions

    Science.gov (United States)

    Łuba, Tadeusz; Borowik, Grzegorz; Jankowski, Cezary

    2016-09-01

    Index Generation Functions may be useful in distribution of IP addresses, virus scanning, or undesired data detection. Traditional approach leads to universal cells based decomposition. In this paper an original method is proposed. The proposed multilevel logic synthesis method based on functional decomposition uses gates instead of cells. Furthermore, it preserves advantages of functional decomposition and is well suited for ROM-based synthesis of Index Generation Functions.

  15. Methods for assessing mitochondrial function in diabetes.

    Science.gov (United States)

    Perry, Christopher G R; Kane, Daniel A; Lanza, Ian R; Neufer, P Darrell

    2013-04-01

    A growing body of research is investigating the potential contribution of mitochondrial function to the etiology of type 2 diabetes. Numerous in vitro, in situ, and in vivo methodologies are available to examine various aspects of mitochondrial function, each requiring an understanding of their principles, advantages, and limitations. This review provides investigators with a critical overview of the strengths, limitations and critical experimental parameters to consider when selecting and conducting studies on mitochondrial function. In vitro (isolated mitochondria) and in situ (permeabilized cells/tissue) approaches provide direct access to the mitochondria, allowing for study of mitochondrial bioenergetics and redox function under defined substrate conditions. Several experimental parameters must be tightly controlled, including assay media, temperature, oxygen concentration, and in the case of permeabilized skeletal muscle, the contractile state of the fibers. Recently developed technology now offers the opportunity to measure oxygen consumption in intact cultured cells. Magnetic resonance spectroscopy provides the most direct way of assessing mitochondrial function in vivo with interpretations based on specific modeling approaches. The continuing rapid evolution of these technologies offers new and exciting opportunities for deciphering the potential role of mitochondrial function in the etiology and treatment of diabetes.

  16. FUNCTIONAL CORRELATION OF FP AND DC METHODS

    Directory of Open Access Journals (Sweden)

    Marin Kaluža

    2013-02-01

    Full Text Available Most of organizations today use information-communication technologies (ICT for building an information system (IS. IS is assembled of hardware, software, network resources, organizational and human resources. In IS development process, complexity is crucial for evaluating quantities of resources needed (time, people, money, equipment. Complexity of an IS can be evaluated and/or measured in different phases of development. There are many methods for measuring complexity, but mostly used and thoroughly described method is Function Point Analysis (FP. The opposite method, Database Complexity (DC, does not measure all the aspects of IS, but it could evaluate system complexity depending on the database complexity. DC method is intended to be used for measuring semantic complexity of the IS database, and can be shown by counting attributes A and foreign keys F. This paper describes a very high correlation between FP and DC methods, and defines a function which can in 95% of accuracy express FP values from measured DC values.

  17. Microcontroller-Based Function Generator

    Directory of Open Access Journals (Sweden)

    Ammar I. Abdullah

    2008-01-01

    Full Text Available This paper describes a microcontroller-based function generator system. By the function generator sine wave, square wave, quasi-square wave, saw-tooth and triangular waveforms are generated over a wide frequency range according to user requirements. By utilizing processing capabilities of the microcontroller the hardware is minimized exceedingly. The output waveform shapes are digitally-controlled to achieve the required wave shape. The single chip microcomputer of waveform generation equipment offers the possibility of improvements in manufacture reliability, maintenance and servicing and increased control flexibility. The system is built and tested. The results of test were satisfactory and appreciated by test engineers at different centers of ministry of communications.

  18. Changes in resting-state brain function of pilots after hypoxic exposure based on methods for fALFF and ReHo analysis

    Directory of Open Access Journals (Sweden)

    Jie LIU

    2015-07-01

    Full Text Available Objective The objective of this study was to evaluate the basic changes in brain activity of pilots after hypoxic exposure with the use of resting-state functional magnetic resonance imaging (rs-fMRI and regional homogeneity (ReHo method. Methods Thirty healthy male pilots were successively subjected to normal and hypoxic exposure (with an oxygen concentration of 14.5%. Both the fALFF and ReHo methods were adopted to analyze the resting-state functional MRI data before and after hypoxic exposure of the subjects, the areas of the brain with fALFF and ReHo changes after hypoxic exposure were observed. Results  After hypoxic exposure, the pulse was 64.0±10.6 beats/min, and the oxygen saturation was 92.4%±3.9% in these 30 pilots, and it was lower than those before exposure (71.4±10.9 beats/min, 96.3%±1.3%, P<0.05. Compared with the condition before hypoxic exposure, the fALFF value was decreased in superior temporal gyri on both sides and the right superior frontal gyrus, and increase in the left precuneus, while the value of ReHo was decreased in the right superior frontal gyrus (P<0.05. No brain area with an increase in ReHo value was found. Conclusions Hypoxic exposure could significantly affect the brain functions of pilots, which may contribute to change in their cognitive ability. DOI: 10.11855/j.issn.0577-7402.2015.06.18

  19. Current Developments in Nuclear Density Functional Methods

    CERN Document Server

    Dobaczewski, J

    2010-01-01

    Density functional theory (DFT) became a universal approach to compute ground-state and excited configurations of many-electron systems held together by an external one-body potential in condensed-matter, atomic, and molecular physics. At present, the DFT strategy is also intensely studied and applied in the area of nuclear structure. The nuclear DFT, a natural extension of the self-consistent mean-field theory, is a tool of choice for computations of ground-state properties and low-lying excitations of medium-mass and heavy nuclei. Over the past thirty-odd years, a lot of experience was accumulated in implementing, adjusting, and using the density-functional methods in nuclei. This research direction is still extremely actively pursued. In particular, current developments concentrate on (i) attempts to improve the performance and precision delivered by the nuclear density-functional methods, (ii) derivations of density functionals from first principles rooted in the low-energy chromodynamics and effective th...

  20. Temporal and spatial characteristics of extreme precipitation events in the Midwest of Jilin Province based on multifractal detrended fluctuation analysis method and copula functions

    Science.gov (United States)

    Guo, Enliang; Zhang, Jiquan; Si, Ha; Dong, Zhenhua; Cao, Tiehua; Lan, Wu

    2016-08-01

    Environmental changes have brought about significant changes and challenges to water resources and management in the world; these include increasing climate variability, land use change, intensive agriculture, and rapid urbanization and industrial development, especially much more frequency extreme precipitation events. All of which greatly affect water resource and the development of social economy. In this study, we take extreme precipitation events in the Midwest of Jilin Province as an example; daily precipitation data during 1960-2014 are used. The threshold of extreme precipitation events is defined by multifractal detrended fluctuation analysis (MF-DFA) method. Extreme precipitation (EP), extreme precipitation ratio (EPR), and intensity of extreme precipitation (EPI) are selected as the extreme precipitation indicators, and then the Kolmogorov-Smirnov (K-S) test is employed to determine the optimal probability distribution function of extreme precipitation indicators. On this basis, copulas connect nonparametric estimation method and the Akaike Information Criterion (AIC) method is adopted to determine the bivariate copula function. Finally, we analyze the characteristics of single variable extremum and bivariate joint probability distribution of the extreme precipitation events. The results show that the threshold of extreme precipitation events in semi-arid areas is far less than that in subhumid areas. The extreme precipitation frequency shows a significant decline while the extreme precipitation intensity shows a trend of growth; there are significant differences in spatiotemporal of extreme precipitation events. The spatial variation trend of the joint return period gets shorter from the west to the east. The spatial distribution of co-occurrence return period takes on contrary changes and it is longer than the joint return period.

  1. Method for gesture based modeling

    DEFF Research Database (Denmark)

    2006-01-01

    A computer program based method is described for creating models using gestures. On an input device, such as an electronic whiteboard, a user draws a gesture which is recognized by a computer program and interpreted relative to a predetermined meta-model. Based on the interpretation, an algorithm...... is assigned to the gesture drawn by the user. The executed algorithm may, for example, consist in creating a new model element, modifying an existing model element, or deleting an existing model element....

  2. Entropy-based benchmarking methods

    NARCIS (Netherlands)

    Temurshoev, Umed

    2012-01-01

    We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth pre

  3. Adjustable entropy function method for support vector machine

    Institute of Scientific and Technical Information of China (English)

    Wu Qing; Liu Sanyang; Zhang Leyou

    2008-01-01

    Based on KKT complementary condition in optimization theory,an unconstrained non-differential optimization model for support vector machine is proposed.An adjustable entropy function method is given to deal with the proposed optimization problem and the Newton algorithm is used to figure out the optimal solution.The proposed method can find an optimal solution with a relatively small parameter p,which avoids the numerical overflow in the traditional entropy function methods.It is a new approach to solve support vector machine.The theoretical analysis and experimental results illustrate the feasibility and efficiency of the proposed algorithm.

  4. WE-D-204-02: Novel Method for Correcting Degradation of Sharpness of Liquid-Crystal Display Based On Modulation Transfer Function

    Energy Technology Data Exchange (ETDEWEB)

    Tokurei, S [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka (Japan); Department of Radiology, Yamaguchi University Hospital, Ube, Yamaguchi (Japan); Morishita, J; Yabuuchi, H [Department of Health Sciences, Faculty of Medical Sciences, Kyushu Universi, Fukuoka, Fukuoka (Japan); Shiotsuki, K [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka (Japan); Bamba, Y; Ogaki, M; Kita, M [Eizo Corporation, Hakusan, Ishikawa (Japan)

    2015-06-15

    Purpose: To develop a method for improving sharpness of images reproduced on liquid-crystal displays (LCDs) by compensating for the degradation of modulation transfer function (MTF) of the LCD. Methods: The inherent MTF of a color LCD (display MTF) was measured using a commercially available color digital camera. The frequency responses necessary to compensate for the resolution property of the LCD were calculated from the inverses of the display MTFs in both the horizontal and vertical directions. In addition, the inverses of the display MTFs were combined with the response of the human eye. The finite impulse response (FIR) filters were computed by taking the inverse Fourier transform of the frequency responses, and the effects of the FIR filtering on both the resolution and noise properties of the displayed images were verified by measuring the MTF and Wiener spectrum (WS), respectively. The FIR filtering was then applied to the representation of digital bone and chest radiographs. Results: The FIR filtering improved the MTF values by up to almost 1.0 or greater over the frequency range of interest, while it minimally increased the WS values. Combining the inverses of the display MTFs with the response of the human eye led to further refinement of the MTF. Our method was successfully and beneficially applied to the image interpretation of bone radiographs. The resolution enhancement of chest radiographs, which include larger scattered radiation than bone radiographs, was easily perceived by incorporating the response of the human eye. In addition, no artifacts were observed on the processed images. Conclusion: Our proposed method to compensate for the degradation of the resolution properties of LCDs has the potential to improve the observer performance of radiologists when reading digital radiographs. This work was supported in part by grant from EIZO Corporation.

  5. Density functional theory (DFT)-based modified embedded atom method potentials: Bridging the gap between nanoscale theoretical simulations and DFT calculations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A density functional theory (DFT)-calculation scheme for constructing the modified embedded atom method (MEAM) potentials for face-centered cubic (fcc) metals is presented. The input quantities are carefully selected and a more reliable DFT approach for surface energy determination is introduced in the parameterization scheme, enabling MEAM to precisely predict the surface and nanoscale properties of metallic materials. Molecular dynamics simulations on Pt and Au crystals show that the parameterization employed leads to significantly improved accuracy of MEAM in calculating the surface and nanoscale properties, with the results agreeing well with both DFT calculations and experimental observations. The present study implies that rational DFT parameterization of MEAM may lead to a theoretical tool to bridge the gap between nanoscale theoretical simulations and DFT calculations.

  6. Source parameters estimation of 2003 Bam earthquake Mw 6.5 using empirical Green’s function method, based on an evolutionary approach

    Indian Academy of Sciences (India)

    Ahmad Nicknam; Reza Abbasnia; Yasser Eslamian; Mohsen Bozorgnasab; Ehsan Adeli Mosabbeb

    2010-06-01

    We determine the source parameters for 2003 (Mw 6.5) Bam, Iran, earthquake using an empirical Green’s function summation approach to model ground motions recorded by two strong motion stations at approximately 45 km epicentral distance. We introduce a genetic algorithm technique to optimize the fit to observed elastic response spectra. The proposed genetic algorithm technique allows us to explore the sensitivity of the results to multiple source parameters, including hypocenter location, focal mechanism (Strike and Dip), P-wave velocity in depth, fault dimension and rupture and healing velocities. We simulated the three components of seismogram at a far station, Mohammad-Abad station, by means of an inversion solution technique and predicted seismograms at another far station, Abaragh, incorporating the estimated model parameters. More agreement of our synthesized seismograms with those of the observed data in comparison with the results of other investigators confirms the reliability of estimated seismological parameters and the applicability of our technique. A series of sensitivity analysis are performed for demonstrating the influence of individual model parameter variation on defined error value. Using the empirical Green’s function summation method, our inferred source parameters provide the basis for predicting main shock shaking and guiding retrofitting efforts at sites, for example, the historical buildings in Arge- Bam site which were damaged during the 2003 Bam earthquake and strong motion data is unavailable.

  7. THEORETICAL ASPECTS AND METHODS OF PARAMETERS IDENTIFICATION OF ELECTRIC TRACTION SYSTEM DEVICES. METHOD OF WEIGHT FUNCTION

    Directory of Open Access Journals (Sweden)

    T. N. Mishchenko

    2014-10-01

    Full Text Available Purpose. Development and substantiation of a new method of structural identification of electrical devices of electric traction systems for both DC and AC current. Methodology. To solve this problem the following methods are used: the methods and techniques of the linear electrical engineering, in particular, the Laplace operator method; the numerical method for solving the integral equation, which is based on the representation of the Wiener-Hopf linear equations system (this allows forming the solutions of the problem in a mathematical form of the correlation and weight functions; the factorization method, which provides certain partition of the correlation functions of the stochastic processes. Findings. It was developed the method of weight function of the electrical devices identification, which can be fully used in the systems of electric traction. As the use example of the developed method it was considered a feeder section of DC electric traction with the single power supply. On this section move two electric locomotives of the type DE 1, they have been identified by the weighting functions. The required currents and voltages of electric locomotives are also formulated in the electric traction network in probabilistic and statistical form, that is, the functions of mathematical expectation and the correlation functions are determined. At this, it is taken into account that the correlation function of the sum of random functions is equal to the sum of the correlation functions of additives, and the correlation function of the integral of a random function is defined as the double integral of the correlation function of the output of a random function. Originality. Firstly, originality consists of the adaption of the developed method of structural identification for the devices of electric traction system. Secondly, it lies in the proper development of the new method of weight function. And finally, it lies in the solution of the Wiener

  8. Control Method for Robots Based on the Visual Function of Kinect%基于Kinect视觉功能的机器人控制方法

    Institute of Scientific and Technical Information of China (English)

    阮晓钢; 田重阳; 李望博

    2016-01-01

    A control method based on Kinect for robots is proposed in this paper. For the motion control system of two-wheel robot, the method, which is combined with Kinect and DTW gesture recognition, is referred to the field of robotic control, and it can be applied in human-computer interaction system. A series of experiments indicate that this method can realize the dynamic gesture recognition and it has a good performance of real-time and robustness.%介绍了一种基于Kinect装置的机器人控制方法,该方法涉及机器人控制领域,并且具体应用于两轮自平衡机器人运动控制和人机交互系统。该方法针对两轮自平衡机器人的运动控制系统利用Kinect与DTW手势识别算法对其进行控制。实验结果表明:该方法能够实现人与两轮自平衡机器人的自然交互控制,并且具有良好的实时性和鲁棒性。

  9. General Structures of Block Based Interpolational Function

    Institute of Scientific and Technical Information of China (English)

    ZOU LE; TANG SHUO; Ma Fu-ming

    2012-01-01

    We construct general structures of one and two variable interpolation function,without depending on the existence of divided difference or inverse differences,and we also discuss the block based osculatory interpolation in one variable case.Clearly,our method offers many flexible interpolation schemes for choices.Error terms for the interpolation are determined and numerical examples are given to show the effectiveness of the results.

  10. Arterial endothelial function measurement method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Jonathan S; Budinger, Thomas F

    2014-03-04

    A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.

  11. Development of a transfer function method for dynamic stability measurement

    Science.gov (United States)

    Johnson, W.

    1977-01-01

    Flutter testing method based on transfer function measurements is developed. The error statistics of several dynamic stability measurement methods are reviewed. It is shown that the transfer function measurement controls the error level by averaging the data and correlating the input and output. The method also gives a direct estimate of the error in the response measurement. An algorithm is developed for obtaining the natural frequency and damping ratio of low damped modes of the system, using integrals of the transfer function in the vicinity of a resonant peak. Guidelines are given for selecting the parameters in the transfer function measurement. Finally, the dynamic stability measurement technique is applied to data from a wind tunnel test of a proprotor and wing model.

  12. Lectures on the functional renormalization group method

    CERN Document Server

    Polonyi, J

    2001-01-01

    These introductory notes are about functional renormalization group equations and some of their applications. It is emphasised that the applicability of this method extends well beyond critical systems, it actually provides us a general purpose algorithm to solve strongly coupled quantum field theories. The renormalization group equation of F. Wegner and A. Houghton is shown to resum the loop-expansion. Another version, due to J. Polchinski, is obtained by the method of collective coordinates and can be used for the resummation of the perturbation series. The genuinely non-perturbative evolution equation is obtained in a manner reminiscent of the Schwinger-Dyson equations. Two variants of this scheme are presented where the scale which determines the order of the successive elimination of the modes is extracted from external and internal spaces. The renormalization of composite operators is discussed briefly as an alternative way to arrive at the renormalization group equation. The scaling laws and fixed poin...

  13. A variational method for spectral functions

    CERN Document Server

    Harris, Tim; Robaina, Daniel

    2016-01-01

    The Generalized Eigenvalue Problem (GEVP) has been used extensively in the past in order to reliably extract energy levels from time-dependent Euclidean correlators calculated in Lattice QCD. We propose a formulation of the GEVP in frequency space. Our approach consists of applying the model-independent Backus-Gilbert method to a set of Euclidean two-point functions with common quantum numbers. A GEVP analysis in frequency space is then applied to a matrix of estimators that allows us, among other things, to obtain particular linear combinations of the initial set of operators that optimally overlap to different local regions in frequency. We apply this method to lattice data from NRQCD. This approach can be interesting both for vacuum physics as well as for finite-temperature problems.

  14. MHCcluster, a method for functional clustering of MHC molecules

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Lundegaard, Claus; Buus, Søren;

    2013-01-01

    binding specificity. The method has a flexible web interface that allows the user to include any MHC of interest in the analysis. The output consists of a static heat map and graphical tree-based visualizations of the functional relationship between MHC variants and a dynamic TreeViewer interface where...

  15. Modulation Based on Probability Density Functions

    Science.gov (United States)

    Williams, Glenn L.

    2009-01-01

    A proposed method of modulating a sinusoidal carrier signal to convey digital information involves the use of histograms representing probability density functions (PDFs) that characterize samples of the signal waveform. The method is based partly on the observation that when a waveform is sampled (whether by analog or digital means) over a time interval at least as long as one half cycle of the waveform, the samples can be sorted by frequency of occurrence, thereby constructing a histogram representing a PDF of the waveform during that time interval.

  16. Exp-function method for solving fractional partial differential equations.

    Science.gov (United States)

    Zheng, Bin

    2013-01-01

    We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.

  17. Systems and methods for interpolation-based dynamic programming

    KAUST Repository

    Rockwood, Alyn

    2013-01-03

    Embodiments of systems and methods for interpolation-based dynamic programming. In one embodiment, the method includes receiving an object function and a set of constraints associated with the objective function. The method may also include identifying a solution on the objective function corresponding to intersections of the constraints. Additionally, the method may include generating an interpolated surface that is in constant contact with the solution. The method may also include generating a vector field in response to the interpolated surface.

  18. An effective and in-situ method based tresyl-functionalized porous polymer material for enrichment and digestion of membrane proteins and its application in extraction tips.

    Science.gov (United States)

    Wang, Jiaxi; Gao, Mingxia; Yan, Guoquan; Zhang, Xiangmin

    2015-06-23

    Membrane proteins are one of promising targets for drug discovery because of the unique properties in physiological processes. Due to their low abundance and extremely hydrophobic nature, the analysis of membrane proteins is still a great challenge. In this work, an effective and in-situ method were developed to enrich and digest membrane proteins by adopting tresyl-functionalized porous polymer material. With tresyl groups, the material can effectively immobilize membrane proteins via covalent bonding on the surface. The material became a facile carrier to enrich membrane proteins from the rat liver in detergents and organic solvents owing to its outstanding binding capacity and excellent biocompatibility. Moreover, it was further applied in extraction tips to capture and in-situ digest the pretreatment membrane proteins in two different solutions. A total of 600 membrane proteins (51% of total protein groups) and 359 transmembrane proteins were identified by nano-LC-ESI-MS/MS in 4% sodium dodecyl sulfate (SDS), and similar results were achieved in the 60% methanol solution. All these results demonstrated that the new approach is of great promise for large-scale characterization of membrane proteins.

  19. New approach to equipment quality evaluation method with distinct functions

    Directory of Open Access Journals (Sweden)

    Milisavljević Vladimir M.

    2016-01-01

    Full Text Available The paper presents new approach for improving method for quality evaluation and selection of equipment (devices and machinery by applying distinct functions. Quality evaluation and selection of devices and machinery is a multi-criteria problem which involves the consideration of numerous parameters of various origins. Original selection method with distinct functions is based on technical parameters with arbitrary evaluation of each parameter importance (weighting. Improvement of this method, presented in this paper, addresses the issue of weighting of parameters by using Delphi Method. Finally, two case studies are provided, which included quality evaluation of standard boilers for heating and evaluation of load-haul-dump (LHD machines, to demonstrate applicability of this approach. Analytical Hierarchical Process (AHP is used as a control method.

  20. Activity – based costing method

    Directory of Open Access Journals (Sweden)

    Èuchranová Katarína

    2001-06-01

    Full Text Available Activity based costing is a method of identifying and tracking the operating costs directly associated with processing items. It is the practice of focusing on some unit of output, such as a purchase order or an assembled automobile and attempting to determine its total as precisely as poccible based on the fixed and variable costs of the inputs.You use ABC to identify, quantify and analyze the various cost drivers (such as labor, materials, administrative overhead, rework. and to determine which ones are candidates for reduction.A processes any activity that accepts inputs, adds value to these inputs for customers and produces outputs for these customers. The customer may be either internal or external to the organization. Every activity within an organization comprimes one or more processes. Inputs, controls and resources are all supplied to the process.A process owner is the person responsible for performing and or controlling the activity.The direction of cost through their contact to partial activity and processes is a new modern theme today. Beginning of this method is connected with very important changes in the firm processes.ABC method is a instrument , that bring a competitive advantages for the firm.

  1. A Comparison of Functional Models for Use in the Function-Failure Design Method

    Science.gov (United States)

    Stock, Michael E.; Stone, Robert B.; Tumer, Irem Y.

    2006-01-01

    When failure analysis and prevention, guided by historical design knowledge, are coupled with product design at its conception, shorter design cycles are possible. By decreasing the design time of a product in this manner, design costs are reduced and the product will better suit the customer s needs. Prior work indicates that similar failure modes occur with products (or components) with similar functionality. To capitalize on this finding, a knowledge base of historical failure information linked to functionality is assembled for use by designers. One possible use for this knowledge base is within the Elemental Function-Failure Design Method (EFDM). This design methodology and failure analysis tool begins at conceptual design and keeps the designer cognizant of failures that are likely to occur based on the product s functionality. The EFDM offers potential improvement over current failure analysis methods, such as FMEA, FMECA, and Fault Tree Analysis, because it can be implemented hand in hand with other conceptual design steps and carried throughout a product s design cycle. These other failure analysis methods can only truly be effective after a physical design has been completed. The EFDM however is only as good as the knowledge base that it draws from, and therefore it is of utmost importance to develop a knowledge base that will be suitable for use across a wide spectrum of products. One fundamental question that arises in using the EFDM is: At what level of detail should functional descriptions of components be encoded? This paper explores two approaches to populating a knowledge base with actual failure occurrence information from Bell 206 helicopters. Functional models expressed at various levels of detail are investigated to determine the necessary detail for an applicable knowledge base that can be used by designers in both new designs as well as redesigns. High level and more detailed functional descriptions are derived for each failed component based

  2. Functional Knowledge Representation Based on Problem Reduction

    Institute of Scientific and Technical Information of China (English)

    高济

    1992-01-01

    This paper proposes an approach for functional knowledge representation based on problem reuction,which represents the organization of problem-solving activities in two levels:reduction and reasoning.The former makes the functional plans for problem-solving while the latter constructs functional units, called handlers,for executing subproblems designated by these plans.This approach emphasizes that the representation of domain knowledge should be closely combined with(rather than separated from)its use,therefore provides a set of reasoning-level primitives to construct handlers and formulate the control strategies for executing them,As reduction-level primitives,handlers are used to construct handler-associative networks,which become the executable representation of problem-reduction graphs,in order to realize the problem-solving methods suited to domain features.Besides,handlers and their control slots can be used to focus the attention of knowledge acquisition and reasoning control.

  3. Structure-based predictions of 13C-NMR chemical shifts for a series of 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indoles derivatives using GA-based MLR method

    Science.gov (United States)

    Ghavami, Raouf; Sadeghi, Faridoon; Rasouli, Zolikha; Djannati, Farhad

    2012-12-01

    Experimental values for the 13C NMR chemical shifts (ppm, TMS = 0) at 300 K ranging from 96.28 ppm (C4' of indole derivative 17) to 159.93 ppm (C4' of indole derivative 23) relative to deuteride chloroform (CDCl3, 77.0 ppm) or dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in CDCl3 or DMSO-d6 solutions have been collected from literature for thirty 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indole derivatives containing different substituted groups. An effective quantitative structure-property relationship (QSPR) models were built using hybrid method combining genetic algorithm (GA) based on stepwise selection multiple linear regression (SWS-MLR) as feature-selection tools and correlation models between each carbon atom of indole derivative and calculated descriptors. Each compound was depicted by molecular structural descriptors that encode constitutional, topological, geometrical, electrostatic, and quantum chemical features. The accuracy of all developed models were confirmed using different types of internal and external procedures and various statistical tests. Furthermore, the domain of applicability for each model which indicates the area of reliable predictions was defined.

  4. Collision-resistant hash function based on composition of functions

    CERN Document Server

    Ndoundam, Rene

    2011-01-01

    cryptographic hash function is a deterministic procedure that compresses an arbitrary block of numerical data and returns a fixed-size bit string. There exist many hash functions: MD5, HAVAL, SHA, ... It was reported that these hash functions are not longer secure. Our work is focused in the construction of a new hash function based on composition of functions. The construction used the NP-completeness of Three-dimensional contingency tables and the relaxation of the constraint that a hash function should also be a compression function.

  5. DISPLACEMENT BASED SEISMIC DESIGN METHODS.

    Energy Technology Data Exchange (ETDEWEB)

    HOFMAYER,C.MILLER,C.WANG,Y.COSTELLO,J.

    2003-07-15

    A research effort was undertaken to determine the need for any changes to USNRC's seismic regulatory practice to reflect the move, in the earthquake engineering community, toward using expected displacement rather than force (or stress) as the basis for assessing design adequacy. The research explored the extent to which displacement based seismic design methods, such as given in FEMA 273, could be useful for reviewing nuclear power stations. Two structures common to nuclear power plants were chosen to compare the results of the analysis models used. The first structure is a four-story frame structure with shear walls providing the primary lateral load system, referred herein as the shear wall model. The second structure is the turbine building of the Diablo Canyon nuclear power plant. The models were analyzed using both displacement based (pushover) analysis and nonlinear dynamic analysis. In addition, for the shear wall model an elastic analysis with ductility factors applied was also performed. The objectives of the work were to compare the results between the analyses, and to develop insights regarding the work that would be needed before the displacement based analysis methodology could be considered applicable to facilities licensed by the NRC. A summary of the research results, which were published in NUREGICR-6719 in July 2001, is presented in this paper.

  6. Facial Beautification Method Based on Age Evolution

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan; DING Shou-hong; HU Gan-le; MA Li-zhuang

    2013-01-01

    This paper proposes a new facial beautification method using facial rejuvenation based on the age evolution. Traditional facial beautification methods only focus on the color of skin and deformation and do the transformation based on an experimental standard of beauty. Our method achieves the beauty effect by making facial image looks younger, which is different from traditional methods and is more reasonable than them. Firstly, we decompose the image into different layers and get a detail layer. Secondly, we get an age-related parameter:the standard deviation of the Gaussian distribution that the detail layer follows, and the support vector machine (SVM) regression is used to fit a function about the age and the standard deviation. Thirdly, we use this function to estimate the age of input image and generate a new detail layer with a new standard deviation which is calculated by decreasing the age. Lastly, we combine the original layers and the new detail layer to get a new face image. Experimental results show that this algo-rithm can make facial image become more beautiful by facial rejuvenation. The proposed method opens up a new way about facial beautification, and there are great potentials for applications.

  7. Framework for gradient integration by combining radial basis functions method and least-squares method.

    Science.gov (United States)

    Huang, Lei; Asundi, Anand Krishna

    2013-08-20

    A framework with a combination of the radial basis functions (RBFs) method and the least-squares integration method is proposed to improve the integration process from gradient to shape. The principle of the framework is described, and the performance of the proposed method is investigated by simulation. Improvement in accuracy is verified by comparing the result with the usual RBFs-based subset-by-subset stitching method. The proposed method is accurate, automatic, easily implemented, and robust and even works with incomplete data.

  8. Atlas-based functional radiosurgery: Early results

    Energy Technology Data Exchange (ETDEWEB)

    Stancanello, J.; Romanelli, P.; Pantelis, E.; Sebastiano, F.; Modugno, N. [Politecnico di Milano, Bioengineering Department and NEARlab, Milano, 20133 (Italy) and Siemens AG, Research and Clinical Collaborations, Erlangen, 91052 (Germany); Functional Neurosurgery Deptartment, Neuromed IRCCS, Pozzilli, 86077 (Italy); CyberKnife Center, Iatropolis, Athens, 15231 (Greece); Functional Neurosurgery Deptartment, Neuromed IRCCS, Pozzilli, 86077 (Italy)

    2009-02-15

    Functional disorders of the brain, such as dystonia and neuropathic pain, may respond poorly to medical therapy. Deep brain stimulation (DBS) of the globus pallidus pars interna (GPi) and the centromedian nucleus of the thalamus (CMN) may alleviate dystonia and neuropathic pain, respectively. A noninvasive alternative to DBS is radiosurgical ablation [internal pallidotomy (IP) and medial thalamotomy (MT)]. The main technical limitation of radiosurgery is that targets are selected only on the basis of MRI anatomy, without electrophysiological confirmation. This means that, to be feasible, image-based targeting must be highly accurate and reproducible. Here, we report on the feasibility of an atlas-based approach to targeting for functional radiosurgery. In this method, masks of the GPi, CMN, and medio-dorsal nucleus were nonrigidly registered to patients' T1-weighted MRI (T1w-MRI) and superimposed on patients' T2-weighted MRI (T2w-MRI). Radiosurgical targets were identified on the T2w-MRI registered to the planning CT by an expert functional neurosurgeon. To assess its feasibility, two patients were treated with the CyberKnife using this method of targeting; a patient with dystonia received an IP (120 Gy prescribed to the 65% isodose) and a patient with neuropathic pain received a MT (120 Gy to the 77% isodose). Six months after treatment, T2w-MRIs and contrast-enhanced T1w-MRIs showed edematous regions around the lesions; target placements were reevaluated by DW-MRIs. At 12 months post-treatment steroids for radiation-induced edema and medications for dystonia and neuropathic pain were suppressed. Both patients experienced significant relief from pain and dystonia-related problems. Fifteen months after treatment edema had disappeared. Thus, this work shows promising feasibility of atlas-based functional radiosurgery to improve patient condition. Further investigations are indicated for optimizing treatment dose.

  9. Method and realization for product innovative design based on endogenous function requirements%功能需求内生式产品创新设计方法及其实现

    Institute of Scientific and Technical Information of China (English)

    万延见; 李彦; 李文强; 闫喜强

    2013-01-01

    基于对产品自身蕴含的进化特性信息挖掘的设计思想,提出了一种功能需求内生式产品创新设计方法.通过引入系统功能分析方法对已有产品建模,从超系统组件功能关联、系统内单组件功能改变、系统内多组件功能组合三个角度,运用功能相关矩阵、功能裁剪、功能合并等策略及工具进行功能遍历扩展.针对内生的功能需求进行概念求解及方案确定,形成最终产品创新方案.基于激励模型的创新应用流程,开发了相应设计功能模块.以冰箱制冰机的改进设计为例,验证了所提方法的有效性与实用性.%In order to excavate products evolution characteristic information more effectively and conduct product innovative design more quickly, a product innovative design method based on endogenous function requirements was put forward. Models for the existing products were set up by introducing system function analysis method. From the three perspectives of super system component function correlation, single-component function change within the system, and multi-component function combination within the system, an all-over creative expanding was conducted by using the analysis strategies and tools as function matrices, function trimming, function combination, et al. Aiming at the function requirement information produced by incentives, concept solution and analysis of domain specific were conducted, then the final product improved solution was generated. Based on the creative application process of the incentive model, design function modules in prototype system were developed. An example of the improved design of fridge freezer was used to prove the validity and practicability of the method.

  10. Functional renormalization group methods in quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J.

    2006-12-18

    We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD). First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied to extrapolate lattice results for low-energy observables. Phase transitions in QCD at finite temperature and density are currently very actively researched. We study the chiral phase transition at finite temperature with two approaches. First, we compute the phase transition temperature in infinite and in finite volume with the quark-meson model. Though qualitatively correct, our results suggest that the model does not describe the dynamics of QCD near the finite-temperature phase boundary accurately. Second, we study the approach to chiral symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all temperatures and scales. We use this result to determine quantitatively the phase boundary in the plane of temperature and number of quark flavors and find good agreement with lattice results. (orig.)

  11. Function-weighted frequency response function sensitivity method for analytical model updating

    Science.gov (United States)

    Lin, R. M.

    2017-09-01

    Since the frequency response function (FRF) sensitivity method was first proposed [26], it has since become a most powerful and practical method for analytical model updating. Nevertheless, the original formulation of the FRF sensitivity method does suffer the limitation that the initial analytical model to be updated should be reasonably close to the final updated model to be sought, due the assumed mathematical first order approximation implicit to most sensitivity based methods. Convergence to correct model is not guaranteed when large modelling errors exist and blind application often leads to optimal solutions which are truly sought. This paper seeks to examine all the important numerical characteristics of the original FRF sensitivity method including frequency data selection, numerical balance and convergence performance. To further improve the applicability of the method to cases of large modelling errors, a new novel function-weighted sensitivity method is developed. The new method has shown much superior performance on convergence even in the presence of large modelling errors. Extensive numerical case studies based on a mass-spring system and a GARTEUR structure have been conducted and very encouraging results have been achieved. Effect of measurement noise has been examined and the method works reasonably well in the presence of measurement uncertainties. The new method removes the restriction of modelling error magnitude being of second order in Euclidean norm as compared with that of system matrices, thereby making it a truly general method applicable to most practical model updating problems.

  12. Methods of filtering the graph images of the functions

    Directory of Open Access Journals (Sweden)

    Олександр Григорович Бурса

    2017-06-01

    Full Text Available The theoretical aspects of cleaning raster images of scanned graphs of functions from digital, chromatic and luminance distortions by using computer graphics techniques have been considered. The basic types of distortions characteristic of graph images of functions have been stated. To suppress the distortion several methods, providing for high-quality of the resulting images and saving their topological features, were suggested. The paper describes the techniques developed and improved by the authors: the method of cleaning the image of distortions by means of iterative contrasting, based on the step-by-step increase in image contrast in the graph by 1%; the method of small entities distortion restoring, based on the thinning of the known matrix of contrast increase filter (the allowable dimensions of the nucleus dilution radius convolution matrix, which provide for the retention of the graph lines have been established; integration technique of the noise reduction method by means of contrasting and distortion restoring method of small entities with known σ-filter. Each method in the complex has been theoretically substantiated. The developed methods involve treatment of graph images as the entire image (global processing and its fragments (local processing. The metrics assessing the quality of the resulting image with the global and local processing have been chosen, the substantiation of the choice as well as the formulas have been given. The proposed complex methods of cleaning the graphs images of functions from grayscale image distortions is adaptive to the form of an image carrier, the distortion level in the image and its distribution. The presented results of testing the developed complex of methods for a representative sample of images confirm its effectiveness

  13. Bootstrapping conformal field theories with the extremal functional method.

    Science.gov (United States)

    El-Showk, Sheer; Paulos, Miguel F

    2013-12-13

    The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future.

  14. METHOD OF ASSESSING A PERSON’S FUNCTIONAL STATE BASED ON THE PHENOMENON OF STABILITY THE CONDUCTIVITY AVERAGE IN MICRO-ZONES

    Directory of Open Access Journals (Sweden)

    O. P. Strakhova

    2015-05-01

    Given the non-chaotic mutual relative distribution of electrocutaneous characteristics of micro-zones mean values, we can assume that the micro-zones actually exist; each of them has some informative parameters (like the teeth of the ECG and are functional reflections of skin -and- visceral connections. Probably it is a representation of one more regulatory system of an organism.

  15. Functional group based Ligand binding affinity scoring function at atomic environmental level

    OpenAIRE

    Varadwaj, Pritish Kumar; Lahiri, Tapobrata

    2009-01-01

    Use of knowledge based scoring function (KBSF) for virtual screening and molecular docking has become an established method for drug discovery. Lack of a precise and reliable free energy function that describes several interactions including water-mediated atomic interaction between amino-acid residues and ligand makes distance based statistical measure as the only alternative. Till now all the distance based scoring functions in KBSF arena use atom singularity concept, which neglects the env...

  16. Method of non-functional requirements balancing during service development

    Directory of Open Access Journals (Sweden)

    Larisa Globa

    2012-09-01

    Full Text Available Today, the list of telecom services, their functionality and requirements for Service Execu-tion Environment (SEE are changing extremely fast. Especially when it concerns require-ments for charging as they have a high influence on business. This results in the need for constant adaptation and reconfiguration of Online Charging System (OCS used in mobile operator networks. Moreover any new functionality requested from a service can have an impact on system behavior (performance, response time, delays which are in general non-functional requirements. Currently, this influence and reconfiguration strategies are poorly formalized and validated. Current state-of-the-art approaches are considered methodolo-gies that can model non-functional or functional requirements but these approaches don’t take into account interaction between functional and nonfunctional requirements and col-laboration between services. All these result in time and money consuming service devel-opment and testing, and cause delays during service deployment. The balancing method proposed in this paper fills this gap. It employs a well-defined workflow with predefined stages for development and deployment process for OCS. The applicability of this novel ap-proach is described in a separate section which contains an example of GPRS service charging. A tool, based on this method will be developed, providing automation of service functionality influence on non-functional requirements and allowing to provide a target de-ployment model for a particular customer. The reduction of development time and thus nec-essary financial input has been proved based on real-world experiments.

  17. FUNCTIONAL BEVERAGES BASED ON VEGETABLE JUICES

    Directory of Open Access Journals (Sweden)

    Limareva N. S.

    2014-01-01

    Full Text Available This article covers development of functional beverages technology based on using vegetable juice with apple and beetroot pectin concentrates, content of vitamins, minerals and functional properties

  18. A lattice Boltzmann method based on generalized polynomials

    CERN Document Server

    Coelho, Rodrigo C V; Doria, Mauro M

    2015-01-01

    We propose a lattice Boltzmann method based on the expansion of the equilibrium distribution function in powers of generalized orthonormal polynomials which are weighted by the equilibrium distribution function itself. The D-dimensional Euclidean space Hermite polynomials correspond to the particular weight of a gaussian function. The proposed polynomials give a general method to obtain an expansion of the equilibrium distribution function in powers of the ratio between the displacement velocity and the local scale velocity of the fluid.

  19. Identification of fractional order systems using modulating functions method

    KAUST Repository

    Liu, Dayan

    2013-06-01

    The modulating functions method has been used for the identification of linear and nonlinear systems. In this paper, we generalize this method to the on-line identification of fractional order systems based on the Riemann-Liouville fractional derivatives. First, a new fractional integration by parts formula involving the fractional derivative of a modulating function is given. Then, we apply this formula to a fractional order system, for which the fractional derivatives of the input and the output can be transferred into the ones of the modulating functions. By choosing a set of modulating functions, a linear system of algebraic equations is obtained. Hence, the unknown parameters of a fractional order system can be estimated by solving a linear system. Using this method, we do not need any initial values which are usually unknown and not equal to zero. Also we do not need to estimate the fractional derivatives of noisy output. Moreover, it is shown that the proposed estimators are robust against high frequency sinusoidal noises and the ones due to a class of stochastic processes. Finally, the efficiency and the stability of the proposed method is confirmed by some numerical simulations.

  20. Functional methods in the generalized Dicke model

    Energy Technology Data Exchange (ETDEWEB)

    Alcalde, M. Aparicio; Lemos, A.L.L. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mails: aparicio@cbpf.br; aluis@cbpf.br; nfuxsvai@cbpf.br

    2007-07-01

    The Dicke model describes an ensemble of N identical two-level atoms (qubits) coupled to a single quantized mode of a bosonic field. The fermion Dicke model should be obtained by changing the atomic pseudo-spin operators by a linear combination of Fermi operators. The generalized fermion Dicke model is defined introducing different coupling constants between the single mode of the bosonic field and the reservoir, g{sub 1} and g{sub 2} for rotating and counter-rotating terms respectively. In the limit N -> {infinity}, the thermodynamic of the fermion Dicke model can be analyzed using the path integral approach with functional method. The system exhibits a second order phase transition from normal to superradiance at some critical temperature with the presence of a condensate. We evaluate the critical transition temperature and present the spectrum of the collective bosonic excitations for the general case (g{sub 1} {ne} 0 and g{sub 2} {ne} 0). There is quantum critical behavior when the coupling constants g{sub 1} and g{sub 2} satisfy g{sub 1} + g{sub 2}=({omega}{sub 0} {omega}){sup 1/2}, where {omega}{sub 0} is the frequency of the mode of the field and {omega} is the energy gap between energy eigenstates of the qubits. Two particular situations are analyzed. First, we present the spectrum of the collective bosonic excitations, in the case g{sub 1} {ne} 0 and g{sub 2} {ne} 0, recovering the well known results. Second, the case g{sub 1} {ne} 0 and g{sub 2} {ne} 0 is studied. In this last case, it is possible to have a super radiant phase when only virtual processes are introduced in the interaction Hamiltonian. Here also appears a quantum phase transition at the critical coupling g{sub 2} ({omega}{sub 0} {omega}){sup 1/2}, and for larger values for the critical coupling, the system enter in this super radiant phase with a Goldstone mode. (author)

  1. Surface Functionalization of Graphene-based Materials

    Science.gov (United States)

    Mathkar, Akshay

    Graphene-based materials have generated tremendous interest in the past decade. Manipulating their characteristics using wet-chemistry methods holds distinctive value, as it provides a means towards scaling up, while not being limited by yield. The majority of this thesis focuses on the surface functionalization of graphene oxide (GO), which has drawn tremendous attention as a tunable precursor due to its readily chemically manipulable surface and richly functionalized basal plane. Firstly, a room-temperature based method is presented to reduce GO stepwise, with each organic moiety being removed sequentially. Characterization confirms the carbonyl group to be reduced first, while the tertiary alcohol is reduced last, as the optical gap decrease from 3.5 eV down to 1 eV. This provides greater control over GO, which is an inhomogeneous system, and is the first study to elucidate the order of removal of each functional group. In addition to organically manipulating GO, this thesis also reports a chemical methodology to inorganically functionalize GO and tune its wetting characteristics. A chemical method to covalently attach fluorine atoms in the form of tertiary alkyl fluorides is reported, and confirmed by MAS 13C NMR, as two forms of fluorinated graphene oxide (FGO) with varying C/F and C/O ratios are synthesized. Introducing C-F bonds decreases the overall surface free energy, which drastically reduces GO's wetting behavior, especially in its highly fluorinated form. Ease of solution processing leads to development of sprayable inks that are deposited on a range of porous and nonporous surfaces to impart amphiphobicity. This is the first report that tunes the wetting characteristics of GO. Lastly as a part of a collaboration with ConocoPhillips, another class of carbon nanomaterials - carbon nanotubes (CNTs), have been inorganically functionalized to repel 30 wt% MEA, a critical solvent in CO 2 recovery. In addition to improving the solution processability of CNTs

  2. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels.

    Science.gov (United States)

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-11-28

    A density matrix-based time-dependent self-consistent field (D-TDSCF) method for the calculation of dynamic polarizabilities and first hyperpolarizabilities using the Hartree-Fock and Kohn-Sham density functional theory approaches is presented. The D-TDSCF method allows us to reduce the asymptotic scaling behavior of the computational effort from cubic to linear for systems with a nonvanishing band gap. The linear scaling is achieved by combining a density matrix-based reformulation of the TDSCF equations with linear-scaling schemes for the formation of Fock- or Kohn-Sham-type matrices. In our reformulation only potentially linear-scaling matrices enter the formulation and efficient sparse algebra routines can be employed. Furthermore, the corresponding formulas for the first hyperpolarizabilities are given in terms of zeroth- and first-order one-particle reduced density matrices according to Wigner's (2n+1) rule. The scaling behavior of our method is illustrated for first exemplary calculations with systems of up to 1011 atoms and 8899 basis functions.

  3. Efficient Functional-Based Adaptation for CFD Applications

    CERN Document Server

    Tyson, William C

    2015-01-01

    Adjoint methods have gained popularity in recent years for driving adaptation procedures which aim to reduce error in solution functionals. While adjoint methods have been proven effective for functional-based adaptation, the practical implementation of an adjoint method can be quite burdensome since code developers constantly need to ensure and maintain a dual consistent discretization as updates are made. Also, since most engineering problems consider multiple functionals, an adjoint solution must be obtained for each functional of interest which can increase the overall computational cost significantly. In this paper, an alternative to adjoints is presented which uses a sparse approximate inverse of the Jacobian of the residual to obtain approximate adjoint sensitivities for functional-based adaptation indicators. Since the approximate inverse need only be computed once, it can be recycled for any number of functionals making the new approach more efficient than a conventional adjoint method. This new meth...

  4. Basic methods of linear functional analysis

    CERN Document Server

    Pryce, John D

    2011-01-01

    Introduction to the themes of mathematical analysis, geared toward advanced undergraduate and graduate students. Topics include operators, function spaces, Hilbert spaces, and elementary Fourier analysis. Numerous exercises and worked examples.1973 edition.

  5. Transport properties of a binary mixture of CO2-N2 from the pair potential energy functions based on a semi-empirical inversion method

    Institute of Scientific and Technical Information of China (English)

    Song Bo; Wang Xiao-Po; Yang Fu-Xin; Liu Zhi-Gang

    2012-01-01

    The potential energy surface of a CO2-N2 mixture is determined by using an inversion method,together with a new collision integral correlation [J.Phys.Chem.Ref.Data 19 1179 (1990)].With the new invert potential,the transport properties of CO2-N2 mixture are presented in a temperature range from 273.15 K to 3273.15 K at low density by employing the Chapman-Enskog scheme and the Wang Chang-Uhlenbeck-de Boer theory,consisting of a viscosity coefficient,a thermal conductivity coefficient,a binary diffusion coefficient,and a thermal diffusion factor.The accuracy of the predicted results is estimated to be 2% for viscosity,5% for thermal conductivity,and 10% for binary diffusion coefficient.

  6. Techniques and methods to study functional characteristics of emulsion systems

    Directory of Open Access Journals (Sweden)

    Yin-Ting Hu

    2017-01-01

    Full Text Available With the growing popularity of the functional food market, bioactive ingredients from natural sources are discovered one after another for their ability to promote better health and prevent chronic diseases. Emulsion, widely occurring in many food systems, has become a popular vehicle to facilitate the incorporation of bioactive components into the food system. Depending on the designated functionality, an emulsion can be developed with various physical and chemical properties. To ensure the successful development of a high-quality emulsion-based system to serve their purpose in food, knowledge of the analytical methods that could efficiently evaluate their quality parameters is important for investigators who work in this field. In this work, important emulsion properties are overviewed, and techniques that are commonly used to assess them are provided. Discussions and recommendations are also included to make suggestions on advantages and disadvantages when selecting suitable techniques and methods to characterize these quality parameters of emulsion systems.

  7. ADVANCES IN THE FINITE ELEMENT METHOD BASED ON THE ANALYTICAL TRIAL FUNCTIONS%基于解析试函数有限单元法的研究进展

    Institute of Scientific and Technical Information of China (English)

    傅向荣; 田歌

    2012-01-01

    基于解析试函数的有限单元法是一种将有限单元的离散法与解析法成果有机融合的方法,在有限单元理论的几个传统问题中取得了一些进展.该文介绍近几年该类方法在克服剪切闭锁以及消除网格畸变对单元性能影响等方面的研究进展;通过运用含应力函数变分原理,得到了一类不受网格畸变影响的高次精度精确单元;利用特征微分方程解法,给出了一个在弹性力学问题中构造独立完备解析试函数的通用方法.%The finite element method based on the analytical trial functions is an organic integration of the analytical method with the discrete method. This method has overcome some challenges to the tradition finite element method. This paper introduces some newest advances in the research of shear locking problems and the sensitivity of mesh distortions. According to the variational principle containing stress functions, the study of the high-performance and high-order element models shows the way to obtain the high-order exact element models which are not sensitive to the mesh distortion. According to "Operator matrix" theory of partial differential equations, the solving of characteristic differential equations is proposed as a general mehod for constructing complete and independent analytical trial functions.

  8. Layout Method for the Functional Area of Railway Logistics Center Based on the Improved Systematic Layout Planning%基于改进SLP的铁路物流中心功能区布局方法

    Institute of Scientific and Technical Information of China (English)

    冯芬玲; 景莉; 杨柳文

    2012-01-01

    According to the business process of railway logistics center and the relationship between each business, the logistics center is divided into 12 functional areas according to three categories of functions, namely, basic function, value-added function and auxiliary function. By quantitatively analyzing the influencing factors of the functional area layout, mathematical method is used to improve Systematic Layout Planning (SLP) method. With the improved SLP, and based on the close degree of the logistics and non-logistics relationships among each functional area in logistics center, the comprehensive relationship table of functional area is set up. Accordingly, under the following constraints, such as, railway loading and unloading line in fixed position, each functional area layout not overlapping, each functional area may not exceed the boundary of planned area in the logistics center, the logistics center gateway can only be at the boundary of the planned area in the logistics center and so on, the objective function is constructed with the minimum total handling cost and the maximum comprehensive relationship. Then the optimal single objective function of the functional area layout is got by the normalized processing. Genetic algorithm is used to work out the solution, and a scientific and reasonable layout scheme for functional area is obtained. Example has validated that the method is reasonable and effective.%根据铁路物流中心业务流程及各业务间的关联性,将物流中心划分为基本功能、增值功能和辅助功能三大类12个功能区;通过对影响功能区布局因素的定量化分析,用数学方法对系统布置规划(SLP)方法进行改进;按照改进的SLP方法,根据物流中心各功能区之间物流相互关系和非物流相互关系的密切程度,建立功能区综合相互关系表;据此在铁路装卸线位置固定、各功能区布局不相互重叠、各功能区的边界不得超出物流中心规划

  9. Numerical method of slope failure probability based on Bishop model

    Institute of Scientific and Technical Information of China (English)

    SU Yong-hua; ZHAO Ming-hua; ZHANG Yue-ying

    2008-01-01

    Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced according to numerical analysis theory. After complicated multi-independent variables implicit functional function was simplified to be a single independent variable implicit function and rule of calculating derivative for composite function was combined with principle of the mean deviations method, an approximative solution format of implicit functional function was established through Taylor expansion series and iterative solution approach of reliability degree index was given synchronously. An engineering example was analyzed by the method. The result shows its absolute error is only 0.78% as compared with accurate solution.

  10. 由基函数选择辅助线性算子的方法1%The Method of Choosing the Auxiliary Linear Operator According to Set of Base Functions

    Institute of Scientific and Technical Information of China (English)

    苏道毕力格; 王晓民; 盖立涛

    2013-01-01

    In this paper , we study a method which choosing auxiliary linear operator to homotopy analysis method according to set of base functions .We apply our method to homotopy analysis method and solve a boundary value problem of nonlinear partial differential equation , and obtain convergent series solutions .The results show that our method is effective , and it leads to further research of homotopy analysis method .%本文研究了同伦分析方法中由基函数选择有效的辅助线性算子的方法,并将其应用到同伦分析方法中,求解了一个非线性偏微分方程边值问题,并且获得了收敛的级数解。结果表明此方法是有效的,也有利于同伦分析方法的进一步研究。

  11. Function Optimization Based on Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2014-01-01

    Full Text Available Optimization method is important in engineering design and application. Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on. It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed, which is called Variable-boundary-coded Quantum Genetic Algorithm (vbQGA in which qubit chromosomes are collapsed into variable-boundary-coded chromosomes instead of binary-coded chromosomes. Therefore much shorter chromosome strings can be gained. The method of encoding and decoding of chromosome is first described before a new adaptive selection scheme for angle parameters used for rotation gate is put forward based on the core ideas and principles of quantum computation. Eight typical functions are selected to optimize to evaluate the effectiveness and performance of vbQGA against standard Genetic Algorithm (sGA and Genetic Quantum Algorithm (GQA. The simulation results show that vbQGA is significantly superior to sGA in all aspects and outperforms GQA in robustness and solving velocity, especially for multidimensional and complicated functions.

  12. Phylogenetic and functional assessment of orthologs inference projects and methods.

    Directory of Open Access Journals (Sweden)

    Adrian M Altenhoff

    2009-01-01

    Full Text Available Accurate genome-wide identification of orthologs is a central problem in comparative genomics, a fact reflected by the numerous orthology identification projects developed in recent years. However, only a few reports have compared their accuracy, and indeed, several recent efforts have not yet been systematically evaluated. Furthermore, orthology is typically only assessed in terms of function conservation, despite the phylogeny-based original definition of Fitch. We collected and mapped the results of nine leading orthology projects and methods (COG, KOG, Inparanoid, OrthoMCL, Ensembl Compara, Homologene, RoundUp, EggNOG, and OMA and two standard methods (bidirectional best-hit and reciprocal smallest distance. We systematically compared their predictions with respect to both phylogeny and function, using six different tests. This required the mapping of millions of sequences, the handling of hundreds of millions of predicted pairs of orthologs, and the computation of tens of thousands of trees. In phylogenetic analysis or in functional analysis where high specificity is required, we find that OMA and Homologene perform best. At lower functional specificity but higher coverage level, OrthoMCL outperforms Ensembl Compara, and to a lesser extent Inparanoid. Lastly, the large coverage of the recent EggNOG can be of interest to build broad functional grouping, but the method is not specific enough for phylogenetic or detailed function analyses. In terms of general methodology, we observe that the more sophisticated tree reconstruction/reconciliation approach of Ensembl Compara was at times outperformed by pairwise comparison approaches, even in phylogenetic tests. Furthermore, we show that standard bidirectional best-hit often outperforms projects with more complex algorithms. First, the present study provides guidance for the broad community of orthology data users as to which database best suits their needs. Second, it introduces new methodology

  13. 失效概率函数的可靠性度量及其求解的条件概率模拟法%Reliability Measure Based on Failure Probability Function and Its Solution by Conditional Probability Simulation Method

    Institute of Scientific and Technical Information of China (English)

    袁修开; 吕震宙; 周长聪

    2012-01-01

    结构失效概率为设计参数的函数的求解是可靠性优化中的关键问题.提出一种失效概率函数的高效求解方法及一种新的可靠性度量指标,它为失效概率函数在分布参数空间上的统计特征值.所提方法的主要思路是采用条件概率模拟及三阶最大熵法来求解失效概率函数.条件概率模拟法是引入中间失效域,将所求失效概率转化成条件概率比值与中间失效域的概率的乘积形式,并通过两次马尔科夫链模拟分别对失效域及中间失效域的模拟来得到条件概率的比值.中间失效域为线性形式,其失效概率可容易求得.此外还采用三阶最大熵法来得到失效域样本的条件密度分布,最终得到所求的失效概率函数.结合算例探讨所提方法的精度、效率和适用性,结果表明所提的求解方法在确保精度的情况下具有较高的效率,在工程上是可行的.%The solution of the failure probability as a function of the distribution parameters is the key problem in reliability-based optimization. A novel method is proposed to obtain the failure probability function and a new reliability measure, which is the statistics characteristic value of the failure probability function. The key idea of the proposed method is using the conditional probability Markov chain simulation and the third order maximum entropy method to obtain the failure probability function. The conditional probability Markov chain simulation firstly transforms the failure probability into the product of a feature ratio factor and the probability of an introduced linear failure region, and then Markov chain algorithm is adopted to calculate the ratio factor by directly simulating the samples of the failure regions, the probability of the introduced linear failure region can be calculated easily. The third order maximum entropy method is implemented to estimate the conditional density function based on failure samples and obtain

  14. Density Functional Approach Based on Numerically Obtained Bridge Functional

    Institute of Scientific and Technical Information of China (English)

    ZHOUShi-Qi

    2002-01-01

    The ornstein-zenike equation is solved with the Rogers-Young approximation for bulk hard sphere fluid and Lennard-Jones fluid for several state points.Then the resulted bulk fluid radial distribution function combined with the test particle method is employed to determine numerically the function relationship of bridge functional as a function of indirect correlation function.It is found that all of the calculated points from different phase space state points for a same type of fluid collapse onto a same smooth curve.Then the numerically obtained curve is used to substitute the analytic expression of the bridge functional as a function of indirect correlation function required in the methodology [J.Chem.Phys,112(2000)8079] to determine the density distribution of non-uniform hard sphere fluid and Lennard-Jones fluid.The good agreement of theoretical predictions with the computer simulation data is obtained.The present numerical procedure incroporates the knowledge of bulk fluid radial distribution function into the constructing of the density functional approximation and makes the original methodology more accurate and more filexible for various interaction potential fluid.

  15. Online Fault Diagnosis Method Based on Nonlinear Spectral Analysis

    Institute of Scientific and Technical Information of China (English)

    WEI Rui-xuan; WU Li-xun; WANG Yong-chang; HAN Chong-zhao

    2005-01-01

    The fault diagnosis based on nonlinear spectral analysis is a new technique for the nonlinear fault diagnosis, but its online application could be limited because of the enormous compution requirements for the estimation of general frequency response functions. Based on the fully decoupled Volterra identification algorithm, a new online fault diagnosis method based on nonlinear spectral analysis is presented, which can availably reduce the online compution requirements of general frequency response functions. The composition and working principle of the method are described, the test experiments have been done for damping spring of a vehicle suspension system by utilizing the new method, and the results indicate that the method is efficient.

  16. Density Functional Approach Based on Numerically Obtained Bridge Functional

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Qi

    2002-01-01

    The Ornstein Zernike equation is solved with the Rogers Young approximation for bulk hard sphere fluidand Lennard-Jones fluid for several state points. Then the resulted bulk fluid radial distribution function combinedwith the test particle method is employed to determine numerically the function relationship of bridge functional as afunction of indirect correlation function. It is found that all of the calculated points from different phase space statepoints for a same type of fluid collapse onto a same smooth curve. Then the numerically obtained curve is used tosubstitute the analytic expression of the bridge functional as a function of indirect correlation function required in themethodology [J. Chem. Phys. 112 (2000) 8079] to deterrnine the density distribution of non-uniform hard spherefluid and Lennard Jones fluid. The good agreement of theoretical predictions with the computer simulation data isobtained. The present numerical procedure incorporates the knowledge of bulk fluid radial distribution function intothe constructing of the density functional approximation and makes the original methodology more accurate and moreflexible for various interaction potential fluid.

  17. Image segmentation based on scaled fuzzy membership functions

    DEFF Research Database (Denmark)

    Jantzen, Jan; Ring,, P.; Christiansen, Pernille

    1993-01-01

    As a basis for an automated interpretation of magnetic resonance images, the authors propose a fuzzy segmentation method. The method uses five standard fuzzy membership functions: small, small medium, medium, large medium, and large. The method fits these membership functions to the modes...... of interest in the image histogram by means of a piecewise-linear transformation. A test example is given concerning a human head image, including a sensitivity analysis based on the fuzzy area measure. The method provides a rule-based interface to the physician...

  18. Quadratic function approaching method for magnetotelluric soundingdata inversion

    Energy Technology Data Exchange (ETDEWEB)

    Liangjun, Yan; Wenbao, Hu; Zhang, Keni

    2004-04-05

    The quadratic function approaching method (QFAM) is introduced for magnetotelluric sounding (MT) data inversion. The method takes the advantage of that quadratic function has single extreme value, which avoids leading to an inversion solution for local minimum and ensures the solution for global minimization of an objective function. The method does not need calculation of sensitivity matrix and not require a strict initial earth model. Examples for synthetic data and field measurement data indicate that the proposed inversion method is effective.

  19. EEG Denoising Method Based on Improved Bivariate Shrinkage Function%改进的双变量收缩函数模型脑电信号消噪方法

    Institute of Scientific and Technical Information of China (English)

    陈顺飞; 罗志增; 周镇定

    2016-01-01

    针对传统小波消噪全局阈值处理独立性假设和双变量函数模型对没有父系数的最高层小波系数不做处理的缺陷,提出一种高密度离散小波变换中利用双变量收缩函数对脑电信号进行消噪的方法。子小波系数根据双变量函数实现局部自适应收缩处理。同时根据父系数趋于0时,阈值函数近似于软阈值函数,对最高尺度小波系数进行软阈值法消噪。从实际信号处理效果和客观定量指标两方面进行评价,结果表明这种改进算法都优于软阈值法、硬阈值法以及双变量收缩法。%Traditional wavelet denoising methods have an assumption that the wavelet coefficients are independent in global thresholding. Then traditional bivariate shrinkage function model has a deficient in not considering the highest scale wavelet coefficients with no parents coefficients.To tackle these defects,in this paper an EEG denois⁃ing method is proposed based on high density discrete wavelet transform using bivariate shrinkage function. In this method,the children coefficients will achieve local and adaptive shrinking treatment using bivariate function. Then because of the appearance when the parents coefficients tend to zero,the threshold function approximate to the soft threshold,the soft threshold is used for denoising in the highest scale wavelet coefficients. The results show that this improved method is better than the soft threshold,the hard threshold method and bivariate shrinkage method from two perspectives,the actual signal processing effect and the objective quantitative indicators.

  20. GALERKIN MESHLESS METHODS BASED ON PARTITION OF UNITY QUADRATURE

    Institute of Scientific and Technical Information of China (English)

    ZENG Qing-hong; LU De-tang

    2005-01-01

    Numerical quadrature is an important ingredient of Galerkin meshless methods. A new numerical quadrature technique, partition of unity quadrature (PUQ),for Galerkin meshless methods was presented. The technique is based on finite covering and partition of unity. There is no need to decompose the physical domain into small cell. It possesses remarkable integration accuracy. Using Element-free Galerkin methods as example, Galerkin meshless methods based on PUQ were studied in detail. Meshing is always not required in the procedure of constitution of approximate function or numerical quadrature, so Galerkin meshless methods based on PUQ are "truly"meshless methods.

  1. Pilates Method for Lung Function and Functional Capacity in Obese Adults.

    Science.gov (United States)

    Niehues, Janaina Rocha; Gonzáles, Inês; Lemos, Robson Rodrigues; Haas, Patrícia

    2015-01-01

    Obesity is defined as the condition in which the body mass index (BMI) is ≥ 30 kg/m2 and is responsible for decreased quality of life and functional limitations. The harmful effects on ventilatory function include reduced lung capacity and volume; diaphragmatic muscle weakness; decreased lung compliance and stiffness; and weakness of the abdominal muscles, among others. Pilates is a method of resistance training that works with low-impact muscle exercises and is based on isometric exercises. The current article is a review of the literature that aims to investigate the hypothesis that the Pilates method, as a complementary method of training, might be beneficial to pulmonary function and functional capacity in obese adults. The intent of the review was to evaluate the use of Pilates as an innovative intervention in the respiratory dysfunctions of obese adults. In studies with other populations, it has been observed that Pilates can be effective in improving chest capacity and expansion and lung volume. That finding is due to the fact that Pilates works through the center of force, made ​​up of the abdominal muscles and gluteus muscles lumbar, which are responsible for the stabilization of the static and dynamic body that is associated with breath control. It has been observed that different Pilates exercises increase the activation and recruitment of the abdominal muscles. Those muscles are important in respiration, both in expiration and inspiration, through the facilitation of diaphragmatic action. In that way, strengthening the abdominal muscles can help improve respiratory function, leading to improvements in lung volume and capacity. The results found in the current literature review support the authors' observations that Pilates promotes the strengthening of the abdominal muscles and that improvements in diaphragmatic function may result in positive outcomes in respiratory function, thereby improving functional capacity. However, the authors did not

  2. Method of synchronizing independent functional unit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changhoan

    2017-05-16

    A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream of program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.

  3. Method of synchronizing independent functional unit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changhoan

    2017-02-14

    A system for synchronizing parallel processing of a plurality of functional processing units (FPU), a first FPU and a first program counter to control timing of a first stream of program instructions issued to the first FPU by advancement of the first program counter; a second FPU and a second program counter to control timing of a second stream of program instructions issued to the second FPU by advancement of the second program counter, the first FPU is in communication with a second FPU to synchronize the issuance of a first stream of program instructions to the second stream of program instructions and the second FPU is in communication with the first FPU to synchronize the issuance of the second stream program instructions to the first stream of program instructions.

  4. COMPANY VALUATION METHODS BASED ON PATRIMONY

    Directory of Open Access Journals (Sweden)

    SUCIU GHEORGHE

    2013-02-01

    Full Text Available The methods used for the company valuation can be divided into 3 main groups: methods based on patrimony,methods based on financial performance, methods based both on patrimony and on performance. The companyvaluation methods based on patrimony are implemented taking into account the balance sheet or the financialstatement. The financial statement refers to that type of balance in which the assets are arranged according to liquidity,and the liabilities according to their financial maturity date. The patrimonial methods are based on the principle thatthe value of the company equals that of the patrimony it owns. From a legal point of view, the patrimony refers to allthe rights and obligations of a company. The valuation of companies based on their financial performance can be donein 3 ways: the return value, the yield value, the present value of the cash flows. The mixed methods depend both onpatrimony and on financial performance or can make use of other methods.

  5. Constructing exact solutions to discrete systems with the trial function method

    Institute of Scientific and Technical Information of China (English)

    Taogetusang Sirendaoerji

    2008-01-01

    Based on the homogenous balance method and the trial function method, several trial function methods composed of exponential functions are proposed and applied to nonlinear discrete systems. With the help of symbolic computation system, the new exact solitary wave solutions to discrete nonlinear mKdV lattice equation, discrete nonlinear (2+1) dimensional Toda lattice equation, Ablowitz-Ladik-lattice system are constructed.The method is of significance to seek exact solitary wave solutions to other nonlinear discrete systems.

  6. A Spatialization-based Method for Checking and Updating Metadata

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper the application of spatialization technology on metadata quality check and updating was discussed. A new method based on spatialization was proposed for checking and updating metadata to overcome the deficiency of text based methods with the powerful functions of spatial query and analysis provided by GIS software. This method employs the technology of spatialization to transform metadata into a coordinate space and the functions of spatial analysis in GIS to check and update spatial metadata in a visual environment. The basic principle and technical flow of this method were explained in detail, and an example of implementation using ArcMap of GIS software was illustrated with a metadata set of digital raster maps. The result shows the new method with the support of interaction of graph and text is much more intuitive and convenient than the ordinary text based method, and can fully utilize the functions of GIS spatial query and analysis with more accuracy and efficiency.

  7. Quantification of landscape multifunctionality based on farm functionality indices

    DEFF Research Database (Denmark)

    Andersen, Peter Stubkjær; Vejre, Henrik; Dalgaard, Tommy

    2011-01-01

    landscapes differ in the capacity to provide such goods and services (Willemen et al. 2008). The quantification of different functions in comparable units is challenging. Willemen et al. (2010) presented a top-down method in which interactions of functions are quantified based on national survey data. We...

  8. 基于多Lyapunov函数方法的模糊滑模控制算法%Fuzzy sliding mode control algorithm based on multi-Lyapunov function method

    Institute of Scientific and Technical Information of China (English)

    杨治平; 陈姗姗; 聂振华

    2014-01-01

    对于多电机操控的高复杂度机电系统,构建对多电机控制的通用性强的控制算法十分重要。给出了基于多Lyapunov函数方法设计的感应电机速度控制模糊滑模控制算法。在控制方案中,首先应用Lyapunov 函数方法设计感应电机的速度估计器;其次应用Lyapunov 函数方法设计滑模控制器;最后应用Lyapunov 稳定条件,设计模糊滑模控制器。整合的模糊滑模控制技术,为多电机控制提供了有效的参考。%As to the high complexity mechanical-electronic operation system under the motors,it is very important that gives the general control algorithm to control the motors.The study pres-ents fuzzy sliding mode control algorithm based on multi-Lyapunov function method to control the motors speed.The control scheme,first,Lyapunov function method is applied to design speed estimator of the motors;second,Lyapunov function method is applied to structure the sliding mode control er;final y,applying Lyapunov stability condition,the fuzzy sliding mode control er is presented.Integration of fuzzy sliding mode control technology provides effective reference for the motors control ed.

  9. The Gaussian Radial Basis Function Method for Plasma Kinetic Theory

    CERN Document Server

    Hirvijoki, Eero; Belli, Emily; Embréus, Ola

    2015-01-01

    A fundamental macroscopic description of a magnetized plasma is the Vlasov equation supplemented by the nonlinear inverse-square force Fokker-Planck collision operator [Rosenbluth et al., Phys. Rev., 107, 1957]. The Vlasov part describes advection in a six-dimensional phase space whereas the collision operator involves friction and diffusion coefficients that are weighted velocity-space integrals of the particle distribution function. The Fokker-Planck collision operator is an integro-differential, bilinear operator, and numerical discretization of the operator is far from trivial. In this letter, we describe a new approach to discretize the entire kinetic system based on an expansion in Gaussian Radial Basis functions (RBFs). This approach is particularly well-suited to treat the collision operator because the friction and diffusion coefficients can be analytically calculated. Although the RBF method is known to be a powerful scheme for the interpolation of scattered multidimensional data, Gaussian RBFs also...

  10. Function and budget based system architecting

    NARCIS (Netherlands)

    Bonnema, Maarten; Horvath, I.; Duhovnik, J.

    2006-01-01

    The paper presents the principles of a method that integrates functional modelling and requirements modelling to support the system architect in creating and comparing system architectures. Integration is achieved by a coupling matrix that connects functions to key drivers or requirements. Using the

  11. A CLASS OF NONMONOTONE CONJUGATE GRADIENT METHODS FOR NONCONVEX FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    LiuYun; WeiZengxin

    2002-01-01

    This paper discusses the global convergence of a class of nonmonotone conjugate gradient methods (NM methods) for nonconvex object functions. This class of methods includes the nonmonotone counterpart of modified Polak-Ribiere method and modified Hestenes-Stiefel method as special cases.

  12. A method of nonlinear correction of thermocouple based on function%一种基于函数型的热电偶非线性校正方法

    Institute of Scientific and Technical Information of China (English)

    何晓文; 周雪纯

    2016-01-01

    由于热电偶的输出信号只有几十毫伏,并且存在较大的非线性,因此测温时需要进行非线性校正.热电偶的非线性校正方法多种多样,以K型热电偶为例,介绍一种基于函数型的热电偶非线性校正方法,可将热电偶1%左右的非线性误差降至0.2%以内,具有校准精度高、实时性好等特点,该方法可广泛应用于各种类型热电偶的非线性校正电路中.%The output signal of the thermocouple was only a few tens of millivolts, due to its large nonlinear, so the result must be corrected. There are various corrected methods of thermocouple, K type as an example, the method based on the function is introduced, the nonlinearity error from 1% down to 0.2% or less, it has high precision, good real-time, and it is also applicable to correction method of other types of thermocouples nonlinear. The method can be widely used in various types of the thermocouple non-linear correction circuit.

  13. Machine function based control code algebras

    NARCIS (Netherlands)

    Bergstra, J.A.

    2008-01-01

    Machine functions have been introduced by Earley and Sturgis in [6] in order to provide a mathematical foundation of the use of the T-diagrams proposed by Bratman in [5]. Machine functions describe the operation of a machine at a very abstract level. A theory of hardware and software based on machin

  14. Transfer Function Modeling Method of Bed Temperature Based on Swarm Intelligence Algorithm in Circulating Fluidized Bed Boiler%循环流化床锅炉床温的传递函数智能建模方法

    Institute of Scientific and Technical Information of China (English)

    王利杰; 孙明; 程希; 殷立国; 孙剑

    2013-01-01

    通过研究循环流化床锅炉燃烧系统的机理和非参数建模方法,基于对循环流化态燃烧机理的认知,给出模型辨识的数据选择标准;挖掘机组运行的历史数据,提出了利用群体智能寻优算法进行燃料量与床温之间传递函数的参数辨识方法,并给出了快速仿真的公式以及一类单输入单输出系统的辨识结果和验证方法。所建立的传递函数模型完全能够表征具体某台循环流化床锅炉热工特性,为后续的控制逻辑和控制器的优化提供了数学依据。%This paper summarized two methods which include mechanism and non-parametric modeling in the cir-culating fluidized bed ( CFB) boiler's combustion system. Based on the understanding of combustion principle of circulating fluidized state, the criterion of data selection was given. By mining the historical datas of unit operation, a method of identifying undetermined parameters of the transfer function between fuel and bed temperature using the swarm intelligence optimizing algorithms was presented. Then, the rapid simulation formulas of thermal process and identification result and validation method of a class of single-input single-output system were given. Transfer func-tion which was established by this method can entirely represent the thermal characteristics of CFB boiler and pro-vide a mathematical basis for subsequent control logic or parameter's optimization of controller.

  15. A valuation method on physiological functionality of food materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-15

    This reports is about valuation method on physiological functionality of food materials. It includes ten reports: maintenance condition of functional foods in Korea by Kim, Byeong Tae, management plan and classification of functional foods by Jung, Myeong Seop, measurement method vitality of functional foods for preventing diabetes, measurement way of aging delayed activation by Lee, Jae Yong, improvement on effectiveness of anti hypertension by functional foods by Park, Jeon Hong, and practice case for the method of test on anti gastritis antiulcer by Lee, Eun Bang.

  16. Digital functions and data reconstruction digital-discrete methods

    CERN Document Server

    Chen, Li M

    2012-01-01

    Digital Functions and Data Reconstruction: Digital-Discrete Methods provides a solid foundation to the theory of digital functions and its applications to image data analysis, digital object deformation, and data reconstruction. This new method has a unique feature in that it is mainly built on discrete mathematics with connections to classical methods in mathematics and computer sciences. Digitally continuous functions and gradually varied functions were developed in the late 1980s. A. Rosenfeld (1986) proposed digitally continuous functions for digital image analysis, especially to describe

  17. Digital Autofocusing Method Based on Contourlet Transform

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The autofocusing technique based on contourlet transform is discussed in this paper and an autofocusing method is proposed for images with much information in certain directions. The experimental results show that theproposed method can focus accurately and the sensitivity ratio is higher than that of the other autofocusing methods based on conventional image processing

  18. Stabilization of discrete nonlinear systems based on control Lyapunov functions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The stabilization of discrete nonlinear systems is studied.Based on control Lyapunov functions,asufficient and necessary condition for a quadratic function to be a control Lyapunov function is given.From this condition,a continuous state feedback law is constructed explicitly.It can globally asymptotically stabilize the equilibrium of the closed-loop system.A simulation example shows the effectiveness of the proposed method.

  19. Determination of acoustical transfer functions using an impulse method

    Science.gov (United States)

    MacPherson, J.

    1985-02-01

    The Transfer Function of a system may be defined as the relationship of the output response to the input of a system. Whilst recent advances in digital processing systems have enabled Impulse Transfer Functions to be determined by computation of the Fast Fourier Transform, there has been little work done in applying these techniques to room acoustics. Acoustical Transfer Functions have been determined for auditoria, using an impulse method. The technique is based on the computation of the Fast Fourier Transform (FFT) of a non-ideal impulsive source, both at the source and at the receiver point. The Impulse Transfer Function (ITF) is obtained by dividing the FFT at the receiver position by the FFT of the source. This quantity is presented both as linear frequency scale plots and also as synthesized one-third octave band data. The technique enables a considerable quantity of data to be obtained from a small number of impulsive signals recorded in the field, thereby minimizing the time and effort required on site. As the characteristics of the source are taken into account in the calculation, the choice of impulsive source is non-critical. The digital analysis equipment required for the analysis is readily available commercially.

  20. GOMA: functional enrichment analysis tool based on GO modules

    Institute of Scientific and Technical Information of China (English)

    Qiang Huang; Ling-Yun Wu; Yong Wang; Xiang-Sun Zhang

    2013-01-01

    Analyzing the function of gene sets is a critical step in interpreting the results of high-throughput experiments in systems biology.A variety of enrichment analysis tools have been developed in recent years,but most output a long list of significantly enriched terms that are often redundant,making it difficult to extract the most meaningful functions.In this paper,we present GOMA,a novel enrichment analysis method based on the new concept of enriched functional Gene Ontology (GO) modules.With this method,we systematically revealed functional GO modules,i.e.,groups of functionally similar GO terms,via an optimization model and then ranked them by enrichment scores.Our new method simplifies enrichment analysis results by reducing redundancy,thereby preventing inconsistent enrichment results among functionally similar terms and providing more biologically meaningful results.

  1. GOMA: functional enrichment analysis tool based on GO modules

    Science.gov (United States)

    Huang, Qiang; Wu, Ling-Yun; Wang, Yong; Zhang, Xiang-Sun

    2013-01-01

    Analyzing the function of gene sets is a critical step in interpreting the results of high-throughput experiments in systems biology. A variety of enrichment analysis tools have been developed in recent years, but most output a long list of significantly enriched terms that are often redundant, making it difficult to extract the most meaningful functions. In this paper, we present GOMA, a novel enrichment analysis method based on the new concept of enriched functional Gene Ontology (GO) modules. With this method, we systematically revealed functional GO modules, i.e., groups of functionally similar GO terms, via an optimization model and then ranked them by enrichment scores. Our new method simplifies enrichment analysis results by reducing redundancy, thereby preventing inconsistent enrichment results among functionally similar terms and providing more biologically meaningful results. PMID:23237213

  2. Fuzzy Control Method with Application for Functional Neuromuscular Stimulation System

    Institute of Scientific and Technical Information of China (English)

    吴怀宇; 周兆英; 熊沈蜀

    2001-01-01

    A fuzzy control technique is applied to a functional neuromuscular stimulation (FNS) physicalmultiarticular muscle control system. The FNS multiarticular muscle control system based on the fuzzy controllerwas developed with the fuzzy control rule base. Simulation experiments were then conducted for the joint angletrajectories of both the elbow flexion and the wrist flexion using the proposed fuzzy control algorithm and aconventional PID control algorithm with the FNS physical multiarticular muscle control system. The simulationresults demonstrated that the proposed fuzzy control method is more suitable for the physiologicalcharacteristics than conventional PID control. In particular, both the trajectory-following and the stability of theFNS multiarticular muscle control system were greatly improved. Furthermore, the stimulating pulse trainsgenerated by the fuzzy controller were stable and smooth.``

  3. History-Based Verification of Functional Behaviour of Concurrent Programs

    NARCIS (Netherlands)

    Blom, Stefan; Huisman, Marieke; Zaharieva, M.; Calinescu, Radu; Rumpe, Bernhard

    2015-01-01

    We extend permission-based separation logic with a history-based mechanism to simplify the verification of functional properties in concurrent programs. This allows one to specify the local behaviour of a method intuitively in terms of actions added to a local history; local histories can be combine

  4. Inversed estimation of critical factors for controlling over-prediction of summertime tropospheric O3 over East Asia based of the combination of DDM sensitivity analysis and modeled Green's function method

    Science.gov (United States)

    Itahashi, S.; Yumimoto, K.; Uno, I.; Kim, S.

    2012-12-01

    Air quality studies based on the chemical transport model have been provided many important results for promoting our knowledge of air pollution phenomena, however, discrepancies between modeling results and observation data are still important issue to overcome. One of the concerning issue would be an over-prediction of summertime tropospheric ozone in remote area of Japan. This problem has been pointed out in the model comparison study of both regional scale (e.g., MICS-Asia) and global scale model (e.g., TH-FTAP). Several reasons for this issue can be listed as, (i) the modeled reproducibility on the penetration of clean oceanic air mass, (ii) correct estimation of the anthropogenic NOx / VOC emissions over East Asia, (iii) the chemical reaction scheme used in model simulation. In this study, we attempt to inverse estimation of some important chemical reactions based on the combining system of DDM (decoupled direct method) sensitivity analysis and modeled Green's function approach. The decoupled direct method (DDM) is an efficient and accurate way of performing sensitivity analysis to model inputs, calculates sensitivity coefficients representing the responsiveness of atmospheric chemical concentrations to perturbations in a model input or parameter. The inverse solutions with the Green's functions are given by a linear, least-squares method but are still robust against nonlinearities, To construct the response matrix (i.e., Green's functions), we can directly use the results of DDM sensitivity analysis. The solution of chemical reaction constants which have relatively large uncertainties are determined with constraints of observed ozone concentration data over the remote area in Japan. Our inversed estimation demonstrated that the underestimation of reaction constant to produce HNO3 (NO2 + OH + M → HNO3 + M) in SAPRC99 chemical scheme, and the inversed results indicated the +29.0 % increment to this reaction. This estimation has good agreement when compared

  5. Changing Detection Method of Land Use Functions Based on Geographical Grid%基于栅格的土地利用功能变化监测方法

    Institute of Scientific and Technical Information of China (English)

    李德一; 张树文; 吕学军; 董立峰

    2011-01-01

    选择黑龙江省哈大齐地区(哈尔滨一大庆一齐齐哈尔)为研究区,把土地利用功能划分为资源功能、生态功能、经济功能和社会功能四项主功能,并进一步细分成资源供给、景观维护、生态防护、环境净化、经济增长、人口承载、居住生活和文化休闲等8项子功能;然后从土地利用、生态环境和社会经济三方面选择指标,研究了1976年和2005年两个时段各指标的空间化方法,并采用层次分析法进行了各土地利用功能的识别,在千米格网尺度上对土地利用功能变化热点进行了监测,采用相关分析研究了不同土地利用功能之间的消涨关系,实现了土地利用功能的空间化%Based on land use and land cover research, land system, which is composed of land use, land cover and ecosystem, now is focusing on the study of human vulnerability and sustain- ability under global environmental change with an integrated perspective, and becoming the core of present land change science. Land system is interested in the functional changes caused by structural changes, and emphasizes comprehensive assessments and simulations of the coupled hu- man - environmental system. Detailed investigations of land system can combine region and city as a whole and contribute to urban ecological safety and regional sustainability. This paper takes Harbin - Daqing - Qiqihaer region in Heilongjiang Province of Northeast China as study area, on the basis of defining land use functions conception and classification, this paper selects several in- dices from land use, environment and socio-economic development, and utilizes Analytical Hier- archy Process (AHP) method to identify land use functions distribution of the year 1976 and 2005 on geographical grid scale. There are four main functions (resources function, ecological func- tion, economic function and social function) and eight sub-functions, such as resources provi

  6. Numerical methods for high-dimensional probability density function equations

    Science.gov (United States)

    Cho, H.; Venturi, D.; Karniadakis, G. E.

    2016-01-01

    In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker-Planck and Dostupov-Pugachev equations), random wave theory (Malakhov-Saichev equations) and coarse-grained stochastic systems (Mori-Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.

  7. Numerical methods for high-dimensional probability density function equations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H. [Department of Mathematics, University of Maryland College Park, College Park, MD 20742 (United States); Venturi, D. [Department of Applied Mathematics and Statistics, University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Karniadakis, G.E., E-mail: gk@dam.brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2016-01-15

    In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker–Planck and Dostupov–Pugachev equations), random wave theory (Malakhov–Saichev equations) and coarse-grained stochastic systems (Mori–Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables.

  8. 一种基于启发式奖赏函数的分层强化学习方法%A Hierarchical Reinforcement Learning Method Based on Heuristic Reward Function

    Institute of Scientific and Technical Information of China (English)

    刘全; 闫其粹; 伏玉琛; 胡道京; 龚声蓉

    2011-01-01

    针对强化学习在应用中经常出现的“维数灾”问题,即状态空间的大小随着特征数量的增加而发生指数级的增长,以及收敛速度过慢的问题,提出了一种基于启发式奖赏函数的分层强化学习方法.该方法不仅能够大幅度减少环境状态空间,还能加快学习的收敛速度.将此算法应用到俄罗斯方块的仿真平台中,通过对实验中的参数进行设置及对算法性能进行分析,结果表明:采用启发式奖赏函数的分层强化学习方法能在一定程度上解决“维数灾”问题,并具有很好的收敛速度.%Reinforcement learning is about controlling an autonomous agent in an unknown enviroment-often called the state space. The agent has no prior knowledge about the environment and can only obtain some knowledge by acting in the environment. Reinforcement learning, and Q-learning particularly, encounters a major problem. Learning the Q-function in tablular form may be infeasible because the amount of memory needed to store the table is excessive, and the Q-f unction converges only after each state being visited a lot of times. So "curse of dimensionality" is inevitably produced by large state spaces. A hierarchical reinforcement learning method based on heuristic reward function is proposed to solve the problem of "curse of dimensionality", which make the states space grow exponentially by the number of features and slow down the convergence speed. The method can reduce state spaces greatly and quicken the speed of the study. Actions are chosen with favorable purpose and efficiency so as to optimize the reward function and quicken the convergence speed. The Tetris game is applied in the method. Analysis of algorithms and the experiment result show that the method can partly solve the "curse of dimensionality" and quicken the convergence speed prominently.

  9. A Non-Functional Requirements Modeling Aided Method Based on Domain Knowledge%一种基于领域知识的非功能需求建模辅助方法

    Institute of Scientific and Technical Information of China (English)

    邵飞; 彭蓉

    2013-01-01

    随着信息化的普及,人们对软件系统质量要求越来越高,由于体现涉众对软件质量要求的非功能需求具有抽象、主观、不确定等特性,纯粹依赖人工方式对非功能需求建模是一项十分困难的任务.利用领域工程具有的内聚性和稳定性,提出一种基于领域知识的非功能需求建模辅助方法,通过挖掘隐含领域知识,层次化地组织领域知识,能够弥补个人知识的不足,更准确、完整地建模非功能需求.该方法包含两个部分:(1)基于不确定性理论的领域知识获取及分析模块;(2)基于NFR(Non-Functional Requirements)框架的非功能需求辅助建模模块.通过建立非功能属性分解树、设计基于三角模糊数的评价语言值量化机制和传递依赖关系计算方法,实现了对领域知识的准备;建立了非功能属性及非功能需求间依赖关系的形式化定义和推理规则,提出了基于RE-Tools的NFR扩展,实现了对领域知识的应用.案例研究表明,文中方法具有良好的可操作性,能够辅助建模需求关联,减轻需求工程师的工作负荷;同时,交叉实验结果表明,该方法可提升传统NFR框架方法的效率和准确度.%With the popularization of information technology, more and more attentions have been paid to the quality of software systems. The demands on the quality of a software system are named as NFRs (Non-Functional Requirements). Abstractness, subjectivity and uncertainty are the remarkable characteristics of NFRs, which brings huge obstacles to requirements engineers to model NFRs manually. Utilizing the cohesion and stability of domain engineering, a NFRs modeling aided method based on domain knowledge is proposed. It mainly contains two parts: (1) Uncertainty theory based domain knowledge acquisition and analysis module; and (2) the NFRs modeling aided module based on NFR framework. In the first part, the NFADT (Non-Functional Attributes Decomposition Tree

  10. Construction of Lyapunov functions by the localization method

    Science.gov (United States)

    Krishchenko, A. P.; Kanatnikov, A. N.

    2017-07-01

    In this paper, we examine the problem of construction of Lyapunov functions for asymptotically stable equilibrium points. We exploit conditions of asymptotic stability in terms of compact invariant sets and positively invariant sets. Our results are methods of verification of these conditions and construction of Lyapunov functions by the localization method of compact invariant sets. These results are illustrated by an example.

  11. Optimal Design Based on Taguchi Method for Optical Directional Full Couplers of Sin-Square Function%田口稳健设计优化之绝热式光方向完全耦合器

    Institute of Scientific and Technical Information of China (English)

    陈奇夆; 古昀生; 颜嘉禾; 黄山福

    2008-01-01

    Optimal design based on Taguchi method for optical directional full couplers of sin-square func-tion is investigated. L9 experimental tests based on Taguchi method are performed, and beam propagation method is used to simulate design conditions. The objective of the work includes in the new design of opti-cal directional full couplers can obtain respectively low crosstalk and short couplers. In accordance with this simulation process, the working time of simulation and optimization experimentally can be greatly re-duced. For the sin-square function, we try and find the best sets of coupling waveguide structure parame-ters of adiabatic directional couplers with larger structure tolerance and shorter coupler length, the results can obtain 95% of the trust ranges. The optimal design conditions determined by Taguchi's method for re-ducing the low crosstalk and short couplers were verified experimentally in this work.%本研究利用田口实验优化法配合光束传播法设计优化光方向完全耦合器 sin-square 函数,能夠达到低串扰与短耦合器长度的目标,在田口实验优化法中我们选择直交表 L9 做为我们的实验平台.研究结果显示,使用 BPM 辅助设计方式配合田口方法可有效的减少设计优化光方向完全耦合器的实验数.在实验过程中我们尝试去找出并设定符合低串扰与短耦合器长度的绝热式光方向耦合器 sin-square 函数的结构参数范围,并且在田口实验优化法中的确认实验可以达到95%的信心指数.在这份研究中,我们证实利用田口实验优化法配合 BPM 辅助设计优化光方向完全耦合器 sin-square 函数是确实可行的.

  12. HMM-Based Gene Annotation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Haussler, David; Hughey, Richard; Karplus, Keven

    1999-09-20

    Development of new statistical methods and computational tools to identify genes in human genomic DNA, and to provide clues to their functions by identifying features such as transcription factor binding sites, tissue, specific expression and splicing patterns, and remove homologies at the protein level with genes of known function.

  13. Functional group based Ligand binding affinity scoring function at atomic environmental level

    Science.gov (United States)

    Varadwaj, Pritish Kumar; Lahiri, Tapobrata

    2009-01-01

    Use of knowledge based scoring function (KBSF) for virtual screening and molecular docking has become an established method for drug discovery. Lack of a precise and reliable free energy function that describes several interactions including water-mediated atomic interaction between amino-acid residues and ligand makes distance based statistical measure as the only alternative. Till now all the distance based scoring functions in KBSF arena use atom singularity concept, which neglects the environmental effect of the atom under consideration. We have developed a novel knowledge-based statistical energy function for protein-ligand complexes which takes atomic environment in to account hence functional group as a singular entity. The proposed knowledge based scoring function is fast, simple to construct, easy to use and moreover it tackle the existing problem of handling molecular orientation in active site pocket. We have designed and used Functional group based Ligand retrieval (FBLR) system which can identify and detect the orientation of functional groups in ligand. This decoy searching was used to build the above KBSF to quantify the activity and affinity of high resolution protein-ligand complexes. We have proposed the probable use of these decoys in molecular build-up as a de-novo drug designing approach. We have also discussed the possible use of the said KSBF in pharmacophore fragment detection and pseudo center based fragment alignment procedure. PMID:19255647

  14. A New Color-based Lawn Weed Detection Method and Its Integration with Texture-based Methods: A Hybrid Approach

    Science.gov (United States)

    Watchareeruetai, Ukrit; Ohnishi, Noboru

    We propose a color-based weed detection method specifically designed for detecting lawn weeds in winter. The proposed method exploits fuzzy logic to make inference from color information. Genetic algorithm is adopted to search for the optimal combination of color information, fuzzy membership functions, as well as fuzzy rules used in the method. Experimental results show that the proposed color-based method outperforms the conventional texture-based methods when testing with a winter dataset. In addition, we propose a hybrid system that incorporates both texture-based and color-based weed detection methods. It can automatically select a better method to perform weed detection, depending on an input image. The results show that the use of the hybrid system can significantly improve weed control performances for the overall datasets.

  15. 基于随机振动响应互相关函数的结构损伤识别试验分析%Structural damage detection method based on correlation function analysis of vibration measurement data

    Institute of Scientific and Technical Information of China (English)

    雷家艳; 姚谦峰; 雷鹰; 刘朝

    2011-01-01

    提出了基于结构振动响应互相关函数分析的损伤识别方法.通过八层剪切型钢框架结构模型在模拟白噪声随机激励作用下的试验,利用相邻测点响应的互相关函数幅值向量变化,构造损伤识别因子进行结构损伤判定、定位及程度量化,结果表明该方法对结构损伤识别的简易性及有效性,并为结构在线监测和分散式检测提供方法参考.%A structural damage identification technique based on correlation function analysis of vibration measurement data was proposed. An 8-storey steel shear building model was chosen as example in the case verification. The results demonstrate that accident magnitude change of correlation function can be used to locate the damage by comparing the shape changes between damaged and undamaged samples. The value of CVAC is effective to determinate whether the damage has happened or not, and it can be used as a reference method even for on-line structural health monitoring. The parameter K, defined to detect damage severity, corresponds to the theoretical damage level in different cases.

  16. Research on BOM based composable modeling method

    NARCIS (Netherlands)

    Zhang, M.; He, Q.; Gong, J.

    2013-01-01

    Composable modeling method has been a research hotpot in the area of Modeling and Simulation for a long time. In order to increase the reuse and interoperability of BOM based model, this paper put forward a composable modeling method based on BOM, studied on the basic theory of composable modeling m

  17. A Hybrid Positioning Method Based on Hypothesis Testing

    DEFF Research Database (Denmark)

    Amiot, Nicolas; Pedersen, Troels; Laaraiedh, Mohamed

    2012-01-01

    maxima. We propose to first estimate the support region of the two peaks of the likelihood function using a set membership method, and then decide between the two regions using a rule based on the less reliable observations. Monte Carlo simulations show that the performance of the proposed method...

  18. Functional Bethe ansatz methods for the open XXX chain

    Energy Technology Data Exchange (ETDEWEB)

    Frahm, Holger; Grelik, Jan H; Seel, Alexander; Wirth, Tobias, E-mail: Holger.Frahm@itp.uni-hannover.d, E-mail: Jan.Grelik@itp.uni-hannover.d, E-mail: Alexander.Seel@itp.uni-hannover.d [Institut fuer Theoretische Physik, Leibniz Universitaet Hannover, Appelstr. 2, 30167 Hannover (Germany)

    2011-01-07

    We study the spectrum of the integrable open XXX Heisenberg spin chain subject to non-diagonal boundary magnetic fields. The spectral problem for this model can be formulated in terms of functional equations obtained by separation of variables or, equivalently, from the fusion of transfer matrices. For generic boundary conditions the eigenvalues cannot be obtained from the solution of finitely many algebraic Bethe equations. Based on careful finite size studies of the analytic properties of the underlying hierarchy of transfer matrices we devise two approaches to analyze the functional equations. First we introduce a truncation method leading to Bethe-type equations determining the energy spectrum of the spin chain. In a second approach, the hierarchy of functional equations is mapped to an infinite system of nonlinear integral equations of TBA type. The two schemes have complementary ranges of applicability and facilitate an efficient numerical analysis for a wide range of boundary parameters. Some data are presented on the finite-size corrections to the energy of the state which evolves into the antiferromagnetic ground state in the limit of parallel boundary fields.

  19. Functional Bethe ansatz methods for the open XXX chain

    Science.gov (United States)

    Frahm, Holger; Grelik, Jan H.; Seel, Alexander; Wirth, Tobias

    2011-01-01

    We study the spectrum of the integrable open XXX Heisenberg spin chain subject to non-diagonal boundary magnetic fields. The spectral problem for this model can be formulated in terms of functional equations obtained by separation of variables or, equivalently, from the fusion of transfer matrices. For generic boundary conditions the eigenvalues cannot be obtained from the solution of finitely many algebraic Bethe equations. Based on careful finite size studies of the analytic properties of the underlying hierarchy of transfer matrices we devise two approaches to analyze the functional equations. First we introduce a truncation method leading to Bethe-type equations determining the energy spectrum of the spin chain. In a second approach, the hierarchy of functional equations is mapped to an infinite system of nonlinear integral equations of TBA type. The two schemes have complementary ranges of applicability and facilitate an efficient numerical analysis for a wide range of boundary parameters. Some data are presented on the finite-size corrections to the energy of the state which evolves into the antiferromagnetic ground state in the limit of parallel boundary fields.

  20. A Statistical Method to Distinguish Functional Brain Networks

    Science.gov (United States)

    Fujita, André; Vidal, Maciel C.; Takahashi, Daniel Y.

    2017-01-01

    One major problem in neuroscience is the comparison of functional brain networks of different populations, e.g., distinguishing the networks of controls and patients. Traditional algorithms are based on search for isomorphism between networks, assuming that they are deterministic. However, biological networks present randomness that cannot be well modeled by those algorithms. For instance, functional brain networks of distinct subjects of the same population can be different due to individual characteristics. Moreover, networks of subjects from different populations can be generated through the same stochastic process. Thus, a better hypothesis is that networks are generated by random processes. In this case, subjects from the same group are samples from the same random process, whereas subjects from different groups are generated by distinct processes. Using this idea, we developed a statistical test called ANOGVA to test whether two or more populations of graphs are generated by the same random graph model. Our simulations' results demonstrate that we can precisely control the rate of false positives and that the test is powerful to discriminate random graphs generated by different models and parameters. The method also showed to be robust for unbalanced data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional sub-network as statistically different between controls and autism (p < 0.001). PMID:28261045

  1. Hash function based secret sharing scheme designs

    CERN Document Server

    Chum, Chi Sing

    2011-01-01

    Secret sharing schemes create an effective method to safeguard a secret by dividing it among several participants. By using hash functions and the herding hashes technique, we first set up a (t+1, n) threshold scheme which is perfect and ideal, and then extend it to schemes for any general access structure. The schemes can be further set up as proactive or verifiable if necessary. The setup and recovery of the secret is efficient due to the fast calculation of the hash function. The proposed scheme is flexible because of the use of existing hash functions.

  2. On Functional and Holographic Renormalization Group Methods in Stochastic Theory of Turbulence

    CERN Document Server

    Ogarkov, S L

    2016-01-01

    A nonlocal quantum-field model is constructed for the system of hydrodynamic equations for incompressible viscous fluid (the stochastic Navier--Stokes (NS) equation and the continuity equation). This model is studied by the following two mutually parallel methods: the Wilson--Polchinski functional renormalization group method (FRG), which is based on the exact functional equation for the generating functional of amputated connected Green's functions (ACGF), and the Heemskerk--Polchinski holographic renormalization group method (HRG), which is based on the functional Hamilton--Jacobi (HJ) equation for the holographic boundary action. Both functional equations are equivalent to infinite hierarchies of integro-differential equations (coupled in the FRG case) for the corresponding families of Green's functions (GF). The RG-flow equations can be derived explicitly for two-particle functions. Because the HRG-flow equation is closed (contains only a two-particle GF), the explicit analytic solutions are obtained for ...

  3. Assessment of density functional theory based ΔSCF (self-consistent field) and linear response methods for longest wavelength excited states of extended π-conjugated molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Michael, E-mail: mike.filatov@gmail.com [Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstr. 4, D-53115 Bonn (Germany); Huix-Rotllant, Miquel, E-mail: miquel.huix@gmail.com [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main (Germany)

    2014-07-14

    Computational investigation of the longest wavelength excitations in a series of cyanines and linear n-acenes is undertaken with the use of standard spin-conserving linear response time-dependent density functional theory (TD-DFT) as well as its spin-flip variant and a ΔSCF method based on the ensemble DFT. The spin-conserving linear response TD-DFT fails to accurately reproduce the lowest excitation energy in these π-conjugated systems by strongly overestimating the excitation energies of cyanines and underestimating the excitation energies of n-acenes. The spin-flip TD-DFT is capable of correcting the underestimation of excitation energies of n-acenes by bringing in the non-dynamic electron correlation into the ground state; however, it does not fully correct for the overestimation of the excitation energies of cyanines, for which the non-dynamic correlation does not seem to play a role. The ensemble DFT method employed in this work is capable of correcting for the effect of missing non-dynamic correlation in the ground state of n-acenes and for the deficient description of differential correlation effects between the ground and excited states of cyanines and yields the excitation energies of both types of extended π-conjugated systems with the accuracy matching high-level ab initio multireference calculations.

  4. Assessment of density functional theory based Î'SCF (self-consistent field) and linear response methods for longest wavelength excited states of extended π-conjugated molecular systems

    Science.gov (United States)

    Filatov, Michael; Huix-Rotllant, Miquel

    2014-07-01

    Computational investigation of the longest wavelength excitations in a series of cyanines and linear n-acenes is undertaken with the use of standard spin-conserving linear response time-dependent density functional theory (TD-DFT) as well as its spin-flip variant and a ΔSCF method based on the ensemble DFT. The spin-conserving linear response TD-DFT fails to accurately reproduce the lowest excitation energy in these π-conjugated systems by strongly overestimating the excitation energies of cyanines and underestimating the excitation energies of n-acenes. The spin-flip TD-DFT is capable of correcting the underestimation of excitation energies of n-acenes by bringing in the non-dynamic electron correlation into the ground state; however, it does not fully correct for the overestimation of the excitation energies of cyanines, for which the non-dynamic correlation does not seem to play a role. The ensemble DFT method employed in this work is capable of correcting for the effect of missing non-dynamic correlation in the ground state of n-acenes and for the deficient description of differential correlation effects between the ground and excited states of cyanines and yields the excitation energies of both types of extended π-conjugated systems with the accuracy matching high-level ab initio multireference calculations.

  5. Assessment of density functional theory based ΔSCF (self-consistent field) and linear response methods for longest wavelength excited states of extended π-conjugated molecular systems.

    Science.gov (United States)

    Filatov, Michael; Huix-Rotllant, Miquel

    2014-07-14

    Computational investigation of the longest wavelength excitations in a series of cyanines and linear n-acenes is undertaken with the use of standard spin-conserving linear response time-dependent density functional theory (TD-DFT) as well as its spin-flip variant and a ΔSCF method based on the ensemble DFT. The spin-conserving linear response TD-DFT fails to accurately reproduce the lowest excitation energy in these π-conjugated systems by strongly overestimating the excitation energies of cyanines and underestimating the excitation energies of n-acenes. The spin-flip TD-DFT is capable of correcting the underestimation of excitation energies of n-acenes by bringing in the non-dynamic electron correlation into the ground state; however, it does not fully correct for the overestimation of the excitation energies of cyanines, for which the non-dynamic correlation does not seem to play a role. The ensemble DFT method employed in this work is capable of correcting for the effect of missing non-dynamic correlation in the ground state of n-acenes and for the deficient description of differential correlation effects between the ground and excited states of cyanines and yields the excitation energies of both types of extended π-conjugated systems with the accuracy matching high-level ab initio multireference calculations.

  6. A Localization Method for Multistatic SAR Based on Convex Optimization.

    Directory of Open Access Journals (Sweden)

    Xuqi Zhong

    Full Text Available In traditional localization methods for Synthetic Aperture Radar (SAR, the bistatic range sum (BRS estimation and Doppler centroid estimation (DCE are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment.

  7. A Localization Method for Multistatic SAR Based on Convex Optimization.

    Science.gov (United States)

    Zhong, Xuqi; Wu, Junjie; Yang, Jianyu; Sun, Zhichao; Huang, Yuling; Li, Zhongyu

    2015-01-01

    In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment.

  8. Estimation of Functional Failure Probability of Passive Systems Based on Subset Simulation Method%基于子集模拟法非能动系统功能故障概率评估

    Institute of Scientific and Technical Information of China (English)

    王冬青; 王宝生; 姜晶; 张建民

    2012-01-01

    In order to solve the problem of multi-dimensional epistemic uncertainties and small functional failure probability of passive systems, an innovative reliability analysis algorithm called subset simulation based on Markov chain Monte Carlo was presented. The method is found on the idea that a small failure probability can be expressed as a product of larger conditional failure probabilities by introducing a proper choice of intermediate failure events. Markov chain Monte Carlo simulation was implemented to efficiently generate conditional samples for estimating the conditional failure probabilities. Taking the AP1000 passive residual heat removal system, for example, the uncertainties related to the model of a passive system and the numerical values of its input parameters were considered in this paper. And then the probability of functional failure was estimated with subset simulation method. The numerical results demonstrate that subset simulation method has the high computing efficiency and excellent computing accuracy compared with traditional probability analysis methods.%针对非能动系统多维不确定性参数和小功能故障概率问题,提出基于马尔可夫链蒙特卡罗子集模拟的可靠性分析方法.该方法通过引入适当的中间失效事件,将小功能故障概率表达为一系列较大的中间失效事件条件概率乘积的形式,进而利用马尔可夫链模拟的条件样本点来计算条件失效概率.以AP1000非能动余热排出系统为研究对象,考虑热工水力学模型和输入参数的不确定性,对其进行功能故障概率评估.结果表明:与其它概率评估方法相比,子集模拟法具有较高的计算效率,同时又能保证很高的计算精度;对非能动安全系统非线性功能函数有很强的适应性.

  9. Hierarchical Identity-Based Lossy Trapdoor Functions

    CERN Document Server

    Escala, Alex; Libert, Benoit; Rafols, Carla

    2012-01-01

    Lossy trapdoor functions, introduced by Peikert and Waters (STOC'08), have received a lot of attention in the last years, because of their wide range of applications in theoretical cryptography. The notion has been recently extended to the identity-based scenario by Bellare et al. (Eurocrypt'12). We provide one more step in this direction, by considering the notion of hierarchical identity-based lossy trapdoor functions (HIB-LTDFs). Hierarchical identity-based cryptography generalizes identitybased cryptography in the sense that identities are organized in a hierarchical way; a parent identity has more power than its descendants, because it can generate valid secret keys for them. Hierarchical identity-based cryptography has been proved very useful both for practical applications and to establish theoretical relations with other cryptographic primitives. In order to realize HIB-LTDFs, we first build a weakly secure hierarchical predicate encryption scheme. This scheme, which may be of independent interest, is...

  10. Stabilization of nonlinear systems based on robust control Lyapunov function

    Institute of Scientific and Technical Information of China (English)

    CAI Xiu-shan; HAN Zheng-zhi; LU Gan-yun

    2007-01-01

    This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunov function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.

  11. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-05-25

    The number of available protein sequences in public databases is increasing exponentially. However, a significant fraction of these sequences lack functional annotation which is essential to our understanding of how biological systems and processes operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching these predicted models, using global and local similarities, through three independent enzyme commission (EC) and gene ontology (GO) function libraries. The method was tested on 250 “hard” proteins, which lack homologous templates in both structure and function libraries. The results show that this method outperforms the conventional prediction methods based on sequence similarity or threading. Additionally, our method could be improved even further by incorporating protein-protein interaction information. Overall, the method we use provides an efficient approach for automated functional annotation of non-homologous proteins, starting from their sequence.

  12. Instance Based Methods --- A Brief Overview

    CERN Document Server

    Baumgartner, Peter; 10.1007/s13218-010-0002-x

    2012-01-01

    Instance-based methods are a specific class of methods for automated proof search in first-order logic. This article provides an overview of the major methods in the area and discusses their properties and relations to the more established resolution methods. It also discusses some recent trends on refinements and applications. This overview is rather brief and informal, but we provide a comprehensive literature list to follow-up on the details.

  13. 基于样条函数拟合的全局齿形误差的测量评定方法%Assessing Method of Complete Tooth Form Error Based on Spline Function

    Institute of Scientific and Technical Information of China (English)

    黄富贵

    2011-01-01

    分析了现行渐开线圆柱齿轮齿形误差测量方法的缺点和误差产生原因后,提出了渐开线圆柱齿轮的全局齿形误差测量原理,推导了实际齿形曲线三次样条函数拟合的数学模型并给出了边界条件的确定方法.给出了在三坐标测冒机上全局齿形误差测量与评定的实现方法.理论与比较测量表明:本文提出的全局齿形误差测量与评定方法精度与3204型齿形齿向测量仪的测量精度相当,测量占机时间只需原来的一半.%Having analyzed the shortcoming of current measurement method of involute cylinder gear wheel tooth form error and the reason of error, measurement theory and implementation method of the complete tooth form error of the involute cylindrical gear have been proposed. Mathematical model of fitting actual tooh curve based on cubic spline function has been derived and the determination of boundary condition has been given. Feasibility of measurement and evaluation method for complete tooth form error has been verified by experiment.

  14. PPA BASED PREDICTION-CORRECTION METHODS FOR MONOTONE VARIATIONAL INEQUALITIES

    Institute of Scientific and Technical Information of China (English)

    He Bingsheng; Jiang Jianlin; Qian Maijian; Xu Ya

    2005-01-01

    In this paper we study the proximal point algorithm (PPA) based predictioncorrection (PC) methods for monotone variational inequalities. Each iteration of these methods consists of a prediction and a correction. The predictors are produced by inexact PPA steps. The new iterates are then updated by a correction using the PPA formula. We present two profit functions which serve two purposes: First we show that the profit functions are tight lower bounds of the improvements obtained in each iteration. Based on this conclusion we obtain the convergence inexactness restrictions for the prediction step. Second we show that the profit functions are quadratically dependent upon the step lengths, thus the optimal step lengths are obtained in the correction step. In the last part of the paper we compare the strengths of different methods based on their inexactness restrictions.

  15. Reliability-based concurrent subspace optimization method

    Institute of Scientific and Technical Information of China (English)

    FAN Hui; LI Wei-ji

    2008-01-01

    To avoid the high computational cost and much modification in the process of applying traditional re-liability-based design optimization method, a new reliability-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing muhidisciplinary optimization techniques and reli-ability assessment methods. It is shown through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current de-terministic optimization process.

  16. PEXSI-$\\Sigma$: A Green's function embedding method for Kohn-Sham density functional theory

    CERN Document Server

    Li, Xiantao; Lu, Jianfeng

    2016-01-01

    As Kohn-Sham density functional theory (KSDFT) being applied to increasingly more complex materials, the periodic boundary condition associated with supercell approaches also becomes unsuitable for a number of important scenarios. Green's function embedding methods allow a more versatile treatment of complex boundary conditions, and hence provide an attractive alternative to describe complex systems that cannot be easily treated in supercell approaches. In this paper, we first revisit the literature of Green's function embedding methods from a numerical linear algebra perspective. We then propose a new Green's function embedding method called PEXSI-$\\Sigma$. The PEXSI-$\\Sigma$ method approximates the density matrix using a set of nearly optimally chosen Green's functions evaluated at complex frequencies. For each Green's function, the complex boundary conditions are described by a self energy matrix $\\Sigma$ constructed from a physical reference Green's function, which can be computed relatively easily. In th...

  17. Inexact proximal Newton methods for self-concordant functions

    DEFF Research Database (Denmark)

    Li, Jinchao; Andersen, Martin Skovgaard; Vandenberghe, Lieven

    2016-01-01

    with an application to L1-regularized covariance selection, in which prior constraints on the sparsity pattern of the inverse covariance matrix are imposed. In the numerical experiments the proximal Newton steps are computed by an accelerated proximal gradient method, and multifrontal algorithms for positive definite......We analyze the proximal Newton method for minimizing a sum of a self-concordant function and a convex function with an inexpensive proximal operator. We present new results on the global and local convergence of the method when inexact search directions are used. The method is illustrated...

  18. XML-based product information processing method for product design

    Science.gov (United States)

    Zhang, Zhen Yu

    2012-01-01

    Design knowledge of modern mechatronics product is based on information processing as the center of the knowledge-intensive engineering, thus product design innovation is essentially the knowledge and information processing innovation. Analysis of the role of mechatronics product design knowledge and information management features, a unified model of XML-based product information processing method is proposed. Information processing model of product design includes functional knowledge, structural knowledge and their relationships. For the expression of product function element, product structure element, product mapping relationship between function and structure based on the XML model are proposed. The information processing of a parallel friction roller is given as an example, which demonstrates that this method is obviously helpful for knowledge-based design system and product innovation.

  19. Application Of the Situation And Function Teaching Method

    Institute of Scientific and Technical Information of China (English)

    杨雪玲

    2011-01-01

    @@ 一、The Situation And Function Teaching Method And The ways To Carry It Out The situation and Function Teaching Method tends to make studends take an part in the leading activities with their brains,ears ,eyes,mouths and hands working together.Thus their abilities to distinguish,to teach themselves,to settle problems are trained and their brains,feelings,intelligence,characters,good thinking ways and the views of the world are developed.

  20. Series Expansion of Functions with He's Homotopy Perturbation Method

    Science.gov (United States)

    Khattri, Sanjay Kumar

    2012-01-01

    Finding a series expansion, such as Taylor series, of functions is an important mathematical concept with many applications. Homotopy perturbation method (HPM) is a new, easy to use and effective tool for solving a variety of mathematical problems. In this study, we present how to apply HPM to obtain a series expansion of functions. Consequently,…

  1. A hybrid method for the parallel computation of Green's functions

    DEFF Research Database (Denmark)

    Petersen, Dan Erik; Li, Song; Stokbro, Kurt;

    2009-01-01

    Quantum transport models for nanodevices using the non-equilibrium Green's function method require the repeated calculation of the block tridiagonal part of the Green's and lesser Green's function matrices. This problem is related to the calculation of the inverse of a sparse matrix. Because...

  2. Comparison between methods of analytical continuation for bosonic functions

    Science.gov (United States)

    Schött, J.; van Loon, E. G. C. P.; Locht, I. L. M.; Katsnelson, M. I.; Di Marco, I.

    2016-12-01

    In this paper we perform a critical assessment of different known methods for the analytical continuation of bosonic functions, namely, the maximum entropy method, the non-negative least-squares method, the non-negative Tikhonov method, the Padé approximant method, and a stochastic sampling method. Four functions of different shape are investigated, corresponding to four physically relevant scenarios. They include a simple two-pole model function; two flavors of the tight-binding model on a square lattice, i.e., a single-orbital metallic system and a two-orbital insulating system; and the Hubbard dimer. The effect of numerical noise in the input data on the analytical continuation is discussed in detail. Overall, the stochastic method by A. S. Mishchenko et al. [Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317] is shown to be the most reliable tool for input data whose numerical precision is not known. For high-precision input data, this approach is slightly outperformed by the Padé approximant method, which combines a good-resolution power with a good numerical stability. Although none of the methods retrieves all features in the spectra in the presence of noise, our analysis provides a useful guideline for obtaining reliable information of the spectral function in cases of practical interest.

  3. Information encryption systems based on Boolean functions

    Directory of Open Access Journals (Sweden)

    Aureliu Zgureanu

    2011-02-01

    Full Text Available An information encryption system based on Boolean functions is proposed. Information processing is done using multidimensional matrices, performing logical operations with these matrices. At the basis of ensuring high level security of the system the complexity of solving the problem of building systems of Boolean functions that depend on many variables (tens and hundreds is set. Such systems represent the private key. It varies both during the encryption and decryption of information, and during the transition from one message to another.

  4. Regression-based estimates of observed functional status in centenarians.

    Science.gov (United States)

    Mitchell, Meghan B; Miller, L Stephen; Woodard, John L; Davey, Adam; Martin, Peter; Burgess, Molly; Poon, Leonard W

    2011-04-01

    There is lack of consensus on the best method of functional assessment, and there is a paucity of studies on daily functioning in centenarians. We sought to compare associations between performance-based, self-report, and proxy report of functional status in centenarians. We expected the strongest relationships between proxy reports and observed performance of basic activities of daily living (BADLs) and instrumental activities of daily living (IADLs). We hypothesized that the discrepancy between self-report and observed daily functioning would be modified by cognitive status. We additionally sought to provide clinicians with estimates of centenarians' observed daily functioning based on their mental status in combination with subjective measures of activities of daily living (ADLs). Two hundred and forty-four centenarians from the Georgia Centenarian Study were included in this cross-sectional population-based study. Measures included the Direct Assessment of Functional Status, self-report and proxy report of functional status, and the Mini-Mental State Examination (MMSE). Associations between observed and proxy reports were stronger than between observed and self-report across BADL and IADL measures. A significant MMSE by type of report interaction was found, indicating that lower MMSE performance is associated with a greater discrepancy between subjective and objective ADL measures. Results demonstrate associations between 3 methods of assessing functional status and suggest proxy reports are generally more accurate than self-report measures. Cognitive status accounted for some of the discrepancy between observed and self-reports, and we provide clinicians with tables to estimate centenarians' performance on observed functional measures based on MMSE and subjective report of functional status.

  5. Efficient algorithm for level set method preserving distance function.

    Science.gov (United States)

    Estellers, Virginia; Zosso, Dominique; Lai, Rongjie; Osher, Stanley; Thiran, Jean-Philippe; Bresson, Xavier

    2012-12-01

    The level set method is a popular technique for tracking moving interfaces in several disciplines, including computer vision and fluid dynamics. However, despite its high flexibility, the original level set method is limited by two important numerical issues. First, the level set method does not implicitly preserve the level set function as a distance function, which is necessary to estimate accurately geometric features, s.a. the curvature or the contour normal. Second, the level set algorithm is slow because the time step is limited by the standard Courant-Friedrichs-Lewy (CFL) condition, which is also essential to the numerical stability of the iterative scheme. Recent advances with graph cut methods and continuous convex relaxation methods provide powerful alternatives to the level set method for image processing problems because they are fast, accurate, and guaranteed to find the global minimizer independently to the initialization. These recent techniques use binary functions to represent the contour rather than distance functions, which are usually considered for the level set method. However, the binary function cannot provide the distance information, which can be essential for some applications, s.a. the surface reconstruction problem from scattered points and the cortex segmentation problem in medical imaging. In this paper, we propose a fast algorithm to preserve distance functions in level set methods. Our algorithm is inspired by recent efficient l(1) optimization techniques, which will provide an efficient and easy to implement algorithm. It is interesting to note that our algorithm is not limited by the CFL condition and it naturally preserves the level set function as a distance function during the evolution, which avoids the classical re-distancing problem in level set methods. We apply the proposed algorithm to carry out image segmentation, where our methods prove to be 5-6 times faster than standard distance preserving level set techniques. We

  6. A fast autofocus sharpness function of microvision system based on the Robert function and Gauss fitting.

    Science.gov (United States)

    Sha, Xiaopeng; Wang, Pu; Shan, Peng; Li, Huiguang; Li, Zhiquan

    2017-06-29

    For the microvision system, a new autofocus evaluation function based on the Robert function is proposed by increasing the threshold value. Compared with the traditional evaluation function, the new focus function reduces the local extreme value and increases the steepness of the focusing curve. According to the characteristics of the focusing evaluation function, the focus curve can be divided into two stages: the gentle area and the steep area. In the gentle area, there will be set a large step-length to realize the fast search. In the steep area, the data will be fitted by Gauss method, and on the basis of the fitting results, the motor of microvision system was directly driven to achieve the focal plane and this method has been improved in real-time and accuracy. © 2017 Wiley Periodicals, Inc.

  7. Continuous Control Artificial Potential Function Methods and Optimal Control

    Science.gov (United States)

    2014-03-27

    Method, namely r̈VDSVAPF = −K̇SKR∇φ−KSK̇R∇φ−KSKRH(φ)ṙ −KD (KSKR∇φ+ ṙ) . The above dynamics are very nonlinear due to the trigonometric functions (inside...constraints (on KS and θ) and the deletion of trigonometric functions . The suspected reasons for the larger computa- tional expense are twofold. First, this...Continuous Control Artificial Potential Function Methods and Optimal Control THESIS R. Andrew Fields, Civ, USAF AFIT-ENY-14-M-20 DEPARTMENT OF THE

  8. ESTIMATION METHOD FOR SOLUTIONS TO GENERAL LINEAR SYSTEM OF VOLTERRAINTEGRAL INEQUALITIES INVOLVING ITERATED INTEGRAL FUNCTIONALS

    Institute of Scientific and Technical Information of China (English)

    MA Qinghua; YANG Enhao

    2000-01-01

    An estimation method for solutions to the general linear system of Volterratype integral inequalities containing several iterated integral functionals is obtained. This method is based on a result proved by the present second author in Journ. Math. Anal. Appl.(1984). A certain two-dimensional system of nonlinear ordinary differential equations is also discussed to demonstrate the usefulness of our method.

  9. Detection of Mycobacterium tuberculosis based on H37R(v) binding peptides using surface functionalized magnetic microspheres coupled with quantum dots – a nano detection method for Mycobacterium tuberculosis.

    Science.gov (United States)

    Yang, Hua; Qin, Lianhua; Wang, Yilong; Zhang, Bingbo; Liu, Zhonghua; Ma, Hui; Lu, Junmei; Huang, Xiaochen; Shi, Donglu; Hu, Zhongyi

    2015-01-01

    Despite suffering from the major disadvantage of low sensitivity, microscopy of direct smear with the Ziehl-Neelsen stain is still broadly used for detection of acid-fast bacilli and diagnosis of tuberculosis. Here, we present a unique detection method of Mycobacterium tuberculosis (MTB) using surface functionalized magnetic microspheres (MMSs) coupled with quantum dots (QDs), conjugated with various antibodies and phage display-derived peptides. The principle is based upon the conformation of the sandwich complex composed of bacterial cells, MMSs, and QDs. The complex system is tagged with QDs for providing the fluorescent signal as part of the detection while magnetic separation is achieved by MMSs. The peptide ligand H8 derived from the phage display library Ph.D.-7 is developed for MTB cells. Using the combinations of MMS-polyclonal antibody+QD-H8 and MMS-H8+QD-H8, a strong signal of 10(3) colony forming units (CFU)/mL H37R(v) was obtained with improved specificity. MS-H8+QD-H8 combination was further optimized by adjusting the concentrations of MMSs, QDs, and incubation time for the maximum detection signal. The limit of detection for MTB was found to reach 10(3) CFU/mL even for the sputum matrices. Positive sputum samples could be distinguished from control. Thus, this novel method is shown to improve the detection limit and specificity of MTB from the sputum samples, and to reduce the testing time for accurate diagnosis of tuberculosis, which needs further confirmation of more clinical samples.

  10. Kernel based eigenvalue-decomposition methods for analysing ham

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Nielsen, Allan Aasbjerg; Møller, Flemming

    2010-01-01

    conditions and finding useful additives to hinder the color to change rapidly. To be able to prove which methods of storing and additives work, Danisco wants to monitor the development of the color of meat in a slice of ham as a function of time, environment and ingredients. We have chosen to use multi...... methods, such as PCA, MAF or MNF. We therefore investigated the applicability of kernel based versions of these transformation. This meant implementing the kernel based methods and developing new theory, since kernel based MAF and MNF is not described in the literature yet. The traditional methods only...... have two factors that are useful for segmentation and none of them can be used to segment the two types of meat. The kernel based methods have a lot of useful factors and they are able to capture the subtle differences in the images. This is illustrated in Figure 1. You can see a comparison of the most...

  11. Bundled-Optode Method in Functional Near-Infrared Spectroscopy

    Science.gov (United States)

    Nguyen, Hoang-Dung; Hong, Keum-Shik; Shin, Yong-Il

    2016-01-01

    In this paper, a theory for detection of the absolute concentrations of oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) from hemodynamic responses using a bundled-optode configuration in functional near-infrared spectroscopy (fNIRS) is proposed. The proposed method is then applied to the identification of two fingers (i.e., little and thumb) during their flexion and extension. This experiment involves a continuous-wave-type dual-wavelength (760 and 830 nm) fNIRS and five healthy male subjects. The active brain locations of two finger movements are identified based on the analysis of the t- and p-values of the averaged HbOs, which are quite distinctive. Our experimental results, furthermore, revealed that the hemodynamic responses of two-finger movements are different: The mean, peak, and time-to-peak of little finger movements are higher than those of thumb movements. It is noteworthy that the developed method can be extended to 3-dimensional fNIRS imaging. PMID:27788178

  12. NETWORK INTRUSION DETECTION METHOD BASED ON RS-MSVM

    Institute of Scientific and Technical Information of China (English)

    Xiao Yun; Han Chongzhao; Zheng Qinghua; Zhang Junjie

    2006-01-01

    A new method called RS-MSVM (Rough Set and Multi-class Support Vector Machine) is proposed for network intrusion detection. This method is based on rough set followed by MSVM for attribute reduction and classification respectively. The number of attributes of the network data used in this paper is reduced from 41 to 30 using rough set theory. The kernel function of HVDM-RBF (Heterogeneous Value Difference Metric Radial Basis Function), based on the heterogeneous value difference metric of heterogeneous datasets, is constructed for the heterogeneous network data. HVDM-RBF and one-against-one method are applied to build MSVM. DARPA (Defense Advanced Research Projects Agency) intrusion detection evaluating data were used in the experiment. The testing results show that our method outperforms other methods mentioned in this paper on six aspects: detection accuracy, number of support vectors, false positive rate, false negative rate, training time and testing time.

  13. Decision making based on data analysis methods

    OpenAIRE

    Sirola, Miki; Sulkava, Mika

    2016-01-01

    This technical report is based on four our recent articles:"Data fusion of pre-election gallups and polls for improved support estimates", "Analyzing parliamentary elections based on voting advice application data", "The Finnish car rejection reasons shown in an interactive SOM visualization tool", and "Network visualization of car inspection data using graph layout". Neural methods are applied in political and technical decision making. We introduce decision support schemes based on Self-Org...

  14. Method of lines for temperature field of functionally graded materials

    Institute of Scientific and Technical Information of China (English)

    DAI Yao; SUN Qi; HAO Gui-xiang; YAN Xiu-fa; LI Yong-dong

    2005-01-01

    The finite element method (FEM) and the boundary element method (BEM) are often adopted. Howev er, they are not convenient to spatially vary thermal properties of functionally graded material (FGM). Therefore, the method of lines (MOL) is introduced to solve the temperature field of FGM. The basic idea of the method is to semi-discretize the governing equation into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs. The functions of thermal properties are directly embodied in these equations and these properties are not discretized in the domain. Thus, difficulty of FEM and BEM is overcome by the method. As a numerical example, the temperature field of a plane problem is analyzed for FGMs through varying thermal conductivity coefficient by the MOL.

  15. Green's function based density estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kovesarki, Peter; Brock, Ian C.; Nuncio Quiroz, Adriana Elizabeth [Physikalisches Institut, Universitaet Bonn (Germany)

    2012-07-01

    A method was developed based on Green's function identities to estimate probability densities. This can be used for likelihood estimations and for binary classifications. It offers several advantages over neural networks, boosted decision trees and other, regression based classifiers. For example, it is less prone to overtraining, and it is much easier to combine several samples. Some capabilities are demonstrated using ATLAS data.

  16. Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function

    Institute of Scientific and Technical Information of China (English)

    N.Ghahramany; G.R.Boroun

    2003-01-01

    A calculation of the proton structure function F2(x,Q2) is reported with an approximation method that relates the reduced cross section derivative and the F2(x, Q2) scaling violation at low x by using quadratic form for the structure function. This quadratic form approximation method can be used to determine the structure function F2 (x, Q2) from the HERA reduced cross section data taken at low x. This new approach can determine the structure functions F2(x,Q2) with reasonable precision even for low x values which have not been investigated. We observe that the Q2 dependence is quadratic over the full kinematic covered range. To test the validity of our new determined structure functions, we find the gluon distribution function in the leading order approximation with our new calculation for the structure functions and compare them with the QCD parton distribution functions.

  17. Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function

    Institute of Scientific and Technical Information of China (English)

    N. Ghahramany; G.R. Boroun

    2003-01-01

    A calculation of the proton structure function F2(x,Q2) is reported with an approximation method that relates the reduced cross section derivative and the F2(x, Q2) scaling violation at low x by using quadratic form for the structure function. This quadratic form approximation method can be used to determine the structure function F2 (x, Q2)from the HERA reduced cross section data taken at low x. This new approach can determine the structure functions F2(x,Q2) with reasonable precision even for low x values which have not been investigated. We observe that the Q2 dependence is quadratic over the full kinematic covered range. To test the validity of our new determined structure functions, wefind the gluon distribution function in the leading order approximation with our new calculation for the structure functions and compare them with the QCD parton distribution functions.

  18. Inferring biological functions of guanylyl cyclases with computational methods

    KAUST Repository

    Alquraishi, May Majed

    2013-09-03

    A number of studies have shown that functionally related genes are often co-expressed and that computational based co-expression analysis can be used to accurately identify functional relationships between genes and by inference, their encoded proteins. Here we describe how a computational based co-expression analysis can be used to link the function of a specific gene of interest to a defined cellular response. Using a worked example we demonstrate how this methodology is used to link the function of the Arabidopsis Wall-Associated Kinase-Like 10 gene, which encodes a functional guanylyl cyclase, to host responses to pathogens. © Springer Science+Business Media New York 2013.

  19. Control of acrobot based on Lyapunov function

    Institute of Scientific and Technical Information of China (English)

    赖旭芝; 吴敏; 佘锦华

    2004-01-01

    Fuzzy control based on Lyapunov function was employed to control the posture and the energy of an acrobot to make the transition from upswing control to balance control smoothly and stably. First, a control law based on Lyapunov function was used to control the angle and the angular velocity of the second link towards zero when the energy of the acrobot reaches the potential energy at the unstable straight-up equilibrium position in the upswing process. The controller based on Lyapunov function makes the second link straighten nature relatively to the first link. At the same time, a fuzzy controller was designed to regulate the parameters of the upper control law to keep the change of the energy of the acrobot to a minimum, so that the switching from upswing to balance can be properly carried out and the acrobot can enter the balance quickly. The results of simulation show that the switching from upswing to balance can be completed smoothly, and the control effect of the acrobot is improved greatly.

  20. Modeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative Methods along the Modeling Path

    Science.gov (United States)

    Cheng, Bastian; Messé, Arnaud; Thomalla, Götz; Gerloff, Christian; König, Peter

    2016-01-01

    In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomical skeleton and if simple computational models informed by structural connectivity can help further to explain missing links in the structure-function relationship. We use diffusion tensor imaging data and alpha band-limited EEG signal recorded in a group of healthy individuals. Our results show that about 23.4% of the variance in empirical networks of resting-state functional connectivity is explained by the underlying white matter architecture. Simulating functional connectivity using a simple computational model based on the structural connectivity can increase the match to 45.4%. In a second step, we use our modeling framework to explore several technical alternatives along the modeling path. First, we find that an augmentation of homotopic connections in the structural connectivity matrix improves the link to functional connectivity while a correction for fiber distance slightly decreases the performance of the model. Second, a more complex computational model based on Kuramoto oscillators leads to a slight improvement of the model fit. Third, we show that the comparison of modeled and empirical functional connectivity at source level is much more specific for the underlying structural connectivity. However, different source reconstruction algorithms gave comparable results. Of note, as the fourth finding, the model fit was much better if zero-phase lag components were preserved in the empirical functional connectome, indicating a considerable amount of functionally relevant synchrony taking place with near zero or zero-phase lag. The combination of the best performing alternatives at each stage in the pipeline results in a model that explains 54.4% of the variance in the empirical EEG functional connectivity. Our study shows that large-scale brain circuits of fast neural network synchrony strongly rely upon the structural connectome and simple computational

  1. [Cognitive functions, their development and modern diagnostic methods].

    Science.gov (United States)

    Klasik, Adam; Janas-Kozik, Małgorzata; Krupka-Matuszczyk, Irena; Augustyniak, Ewa

    2006-01-01

    provided a theory. The psychometric approach concentrates on studying the differences in intelligence. The aim of this approach is to test intelligence by means of standardized tests (e.g. WISC-R, WAIS-R) used to show the individual differences among humans. Human cognitive functions determine individuals' adaptation capabilities and disturbances in this area indicate a number of psychopathological changes and are a symptom enabling to differentiate or diagnose one with a disorder. That is why the psychological assessment of cognitive functions is an important part of patients' diagnosis. Contemporary neuropsychological studies are to a great extent based computer tests. The use of computer methods has a number of measurement-related advantages. It allows for standardized testing environment, increasing therefore its reliability and standardizes the patient assessment process. Special attention should be paid to the neuropsychological tests included in the Vienna Test System (Cognitron, SIGNAL, RT, VIGIL, DAUF), which are used to assess the operational memory span, learning processes, reaction time, attention selective function, attention continuity as well as attention interference resistance. It also seems justified to present the CPT id test (Continuous Performance Test) as well as Free Recall. CPT is a diagnostic tool used to assess the attention selective function, attention continuity of attention, attention interference resistance as well as attention alertness. The Free Recall test is used in the memory processes diagnostics to assess patients' operational memory as well as the information organization degree in operational memory. The above mentioned neuropsychological tests are tools used in clinical assessment of cognitive function disorders.

  2. Hollow system with fin. Transient Green function method combination for two hollow cylinders

    Directory of Open Access Journals (Sweden)

    Buikis Andris

    2017-01-01

    Full Text Available In this paper we develop mathematical model for three dimensional heat equation for the system with hollow wall and fin and construct its analytical solution for two hollow cylindrical sample. The method of solution is based on Green function method for one hollow cylinder. On the conjugation conditions between both hollow cylinders we construct solution for system wall with fin. As result we come to integral equation on the surface between both hollow cylinders. Solution is obtained in the form of second kind Fredholm integral equation. The generalizing of Green function method allows us to use Green function method for regular non-canonical domains.

  3. Software Testing Method Based on Model Comparison

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-dong; LU Yan-sheng; MAO Cheng-yin

    2008-01-01

    A model comparison based software testing method (MCST) is proposed. In this method, the requirements and programs of software under test are transformed into the ones in the same form, and described by the same model describe language (MDL).Then, the requirements are transformed into a specification model and the programs into an implementation model. Thus, the elements and structures of the two models are compared, and the differences between them are obtained. Based on the diffrences, a test suite is generated. Different MDLs can be chosen for the software under test. The usages of two classical MDLs in MCST, the equivalence classes model and the extended finite state machine (EFSM) model, are described with example applications. The results show that the test suites generated by MCST are more efficient and smaller than some other testing methods, such as the path-coverage testing method, the object state diagram testing method, etc.

  4. 基于分布质量的Riccati传递矩阵法模型与 轴系频响函数计算方法研究%The Model Based on Continuous Mass Riccati Transfer Matrix Method and Research of the Calculation Method of Frequency Response Function about the Spindle System

    Institute of Scientific and Technical Information of China (English)

    毛海军; 孙庆鸿; 陈南; 陈新; 何杰

    2000-01-01

    Based on the model of the continuous mass Riccati transfer matrix method, the calculation formulae of frequency response function are deduced. The method shows that it has some advantages of calculation simplicity, higher accuracy and independent of selected element number through analyzing and numerical value comparison of some examples. This method is more reasonable than any other calculation methods of frequency response function.%基于分布质量模型的Riccati传递矩阵法,导出了轴系频响函数的计算公 式.通过理论分析及具体算例的数值比较,表明该法应用于轴系频响函数的计算,具 有计算简便、精度高、与划分单元数目无关等优点,是一种较为理想的计算轴系频响 函数的新方法.

  5. Improving compact gravity inversion based on new weighting functions

    Science.gov (United States)

    Ghalehnoee, Mohammad Hossein; Ansari, Abdolhamid; Ghorbani, Ahmad

    2016-11-01

    We have developed a method to estimate the geometry, location and densities of anomalies coming from two-dimensional gravity data based on compact gravity inversion technique. Compact gravity inversion is simple, fast and user friendly but severely depends on the number of model parameters, i.e. by increasing the model parameters, the anomalies tend to concentrate near the surface. To overcome this ambiguity new weighting functions based on density contrast, depth, and compactness models have been introduced. Variable compactness factors have been defined here to get either a sharp or a smooth model based on the depth of the source or existence of prior information. Depth weighting derived from one station of gravity data whereas the effect of gravity data is two- and three-dimensional. To compensate this limitation an innovating weighting function namely kernel function has been introduced which multiplies with weight and compactness matrixes to yield a general model weighting function. The method is tested using three different sets of synthetic examples: a body at various depths (20, 40, 80 and 140 m), two bodies at the same depth but various distances to estimate lateral resolution and three bodies with negative and positive density contrast in different depths. The method is also applied to three real gravity data of Woodlawn massive sulfide body, sulfides mineralization of British Colombia and iron ore body of Missouri. The method produces solutions consistent with the known geologic attributes of the gravity sources, illustrating its potential practicality.

  6. Couple of the Variational Iteration Method and Fractional-Order Legendre Functions Method for Fractional Differential Equations

    Science.gov (United States)

    Song, Junqiang; Leng, Hongze; Lu, Fengshun

    2014-01-01

    We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique. PMID:24511303

  7. Mindfulness-Based Cognitive Therapy for severe Functional Disorders

    DEFF Research Database (Denmark)

    Fjorback, Lone Overby

    MINDFULNESS-BASED COGNITIVE THERAPY FOR FUNCTIONAL DISORDERS- A RANDOMISED CONTROLLED TRIAL   Background: Mindfulness-Based Stress Reduction (MBSR) is a group skills-training program developed by Kabat-Zinn. It is designed to teach patients to become more aware of and relate differently...... to their thoughts, feelings, and bodily sensations. Randomised controlled studies of MBSR have shown mitigation of stress, anxiety, and dysphoria in general population and reduction in total mood disturbance and stress symptoms in a medical population. In Mindfulness Based Cognitive Therapy MBSR is recombined...... with cognitive therapy. Aim: To examine the efficacy of Mindfulness-Based Cognitive Therapy in severe Functional disorders, defined as severe Bodily Distress Disorder. Method: 120 patients are randomised to either Mindfulness Based Cognitive Therapy: a manualized programme with eight weekly 3 ½ hour group...

  8. Mindfulness-Based Cognitive Therapy for severe Functional Disorders

    DEFF Research Database (Denmark)

    Fjorback, Lone Overby

      MINDFULNESS-BASED COGNITIVE THERAPY FOR FUNCTIONAL DISORDERS- A RANDOMISED CONTROLLED TRIAL Background: Mindfulness-Based Stress Reduction (MBSR) is a group skills-training program developed by Kabat-Zinn. It is designed to teach patients to become more aware of and relate differently...... to their thoughts, feelings, and bodily sensations. Randomised controlled studies of MBSR have shown mitigation of stress, anxiety, and dysphoria in general population and reduction in total mood disturbance and stress symptoms in a medical population. In Mindfulness Based Cognitive Therapy MBSR is recombined...... with cognitive therapy. Aim: To examine the efficacy of Mindfulness-Based Cognitive Therapy in severe Functional disorders, defined as severe Bodily Distress Disorder. Method: 120 patients are randomised to either Mindfulness Based Cognitive Therapy: a manualized programme with eight weekly 3 ½ hour group...

  9. Point Set Denoising Using Bootstrap-Based Radial Basis Function

    Science.gov (United States)

    Ramli, Ahmad; Abd. Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study. PMID:27315105

  10. WAVELET BASED SPECTRAL CORRELATION METHOD FOR DPSK CHIP RATE ESTIMATION

    Institute of Scientific and Technical Information of China (English)

    Li Yingxiang; Xiao Xianci; Tai Hengming

    2004-01-01

    A wavelet-based spectral correlation algorithm to detect and estimate BPSK signal chip rate is proposed. Simulation results show that the proposed method can correctly estimate the BPSK signal chip rate, which may be corrupted by the quadratic characteristics of the spectral correlation function, in a low SNR environment.

  11. Wavelet-based Multiresolution Particle Methods

    Science.gov (United States)

    Bergdorf, Michael; Koumoutsakos, Petros

    2006-03-01

    Particle methods offer a robust numerical tool for solving transport problems across disciplines, such as fluid dynamics, quantitative biology or computer graphics. Their strength lies in their stability, as they do not discretize the convection operator, and appealing numerical properties, such as small dissipation and dispersion errors. Many problems of interest are inherently multiscale, and their efficient solution requires either multiscale modeling approaches or spatially adaptive numerical schemes. We present a hybrid particle method that employs a multiresolution analysis to identify and adapt to small scales in the solution. The method combines the versatility and efficiency of grid-based Wavelet collocation methods while retaining the numerical properties and stability of particle methods. The accuracy and efficiency of this method is then assessed for transport and interface capturing problems in two and three dimensions, illustrating the capabilities and limitations of our approach.

  12. Fibonacci collocation method with a residual error Function to solve linear Volterra integro differential equations

    Directory of Open Access Journals (Sweden)

    Salih Yalcinbas

    2016-01-01

    Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.

  13. Information filtering via a scaling-based function.

    Science.gov (United States)

    Qiu, Tian; Zhang, Zi-Ke; Chen, Guang

    2013-01-01

    Finding a universal description of the algorithm optimization is one of the key challenges in personalized recommendation. In this article, for the first time, we introduce a scaling-based algorithm (SCL) independent of recommendation list length based on a hybrid algorithm of heat conduction and mass diffusion, by finding out the scaling function for the tunable parameter and object average degree. The optimal value of the tunable parameter can be abstracted from the scaling function, which is heterogeneous for the individual object. Experimental results obtained from three real datasets, Netflix, MovieLens and RYM, show that the SCL is highly accurate in recommendation. More importantly, compared with a number of excellent algorithms, including the mass diffusion method, the original hybrid method, and even an improved version of the hybrid method, the SCL algorithm remarkably promotes the personalized recommendation in three other aspects: solving the accuracy-diversity dilemma, presenting a high novelty, and solving the key challenge of cold start problem.

  14. Approximation methods for the partition functions of anharmonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lew, P.; Ishida, T.

    1979-07-01

    The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations.

  15. Novel synthetic methods to produce functionalized conducting polymers. 1. Polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, C.; Salavagione, H.J.; Acevedo, D.F.; Garay, F.; Planes, G.A.; Miras, M.C. [Universidad Nacional de Rio Cuarto (Argentina). Dpto. de Quimica; Grumelli, D.E. [INQUIMAE, Buenos Aires (Argentina). Dpto. de Quimica Inorganica; Morales, G.M. [University of Chicago (United States). Dept. of Chemistry

    2004-09-15

    Recent results, part of an ongoing research programme aimed to develop synthetic methods which could be used to functionalise conducting polymers, are described. Among those methods are the copolymerization of aniline with substituted anilines and post-modification reactions of polyaniline, such as: electrophilic substitution, nucleophilic addition and coupling with diazonium salts. Some of those methods could be chemically or electrochemically controlled allowing a quantitative tailoring of the modification. The effect of the added functionalities on the electrochemical properties of the polymers is investigated using spectroscopic and electrochemical techniques. The extension of the synthetic methods to combinatorial modification of conductive polymers is also discussed. (author)

  16. Recent advances in radial basis function collocation methods

    CERN Document Server

    Chen, Wen; Chen, C S

    2014-01-01

    This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s ...

  17. Recommendation advertising method based on behavior retargeting

    Science.gov (United States)

    Zhao, Yao; YIN, Xin-Chun; CHEN, Zhi-Min

    2011-10-01

    Online advertising has become an important business in e-commerce. Ad recommended algorithms are the most critical part in recommendation systems. We propose a recommendation advertising method based on behavior retargeting which can avoid leakage click of advertising due to objective reasons and can observe the changes of the user's interest in time. Experiments show that our new method can have a significant effect and can be further to apply to online system.

  18. Cloud Based Development Issues: A Methodical Analysis

    Directory of Open Access Journals (Sweden)

    Sukhpal Singh

    2012-11-01

    Full Text Available Cloud based development is a challenging task for various software engineering projects, especifically for those which demand extraordinary quality, reusability and security along with general architecture. In this paper we present a report on a methodical analysis of cloud based development problems published in major computer science and software engineering journals and conferences organized by various researchers. Research papers were collected from different scholarly databases using search engines within a particular period of time. A total of 89 research papers were analyzed in this methodical study and we categorized into four classes according to the problems addressed by them. The majority of the research papers focused on quality (24 papers associated with cloud based development and 16 papers focused on analysis and design. By considering the areas focused by existing authors and their gaps, untouched areas of cloud based development can be discovered for future research works.

  19. Personnel Selection Based on Fuzzy Methods

    Directory of Open Access Journals (Sweden)

    Lourdes Cañós

    2011-03-01

    Full Text Available The decisions of managers regarding the selection of staff strongly determine the success of the company. A correct choice of employees is a source of competitive advantage. We propose a fuzzy method for staff selection, based on competence management and the comparison with the valuation that the company considers the best in each competence (ideal candidate. Our method is based on the Hamming distance and a Matching Level Index. The algorithms, implemented in the software StaffDesigner, allow us to rank the candidates, even when the competences of the ideal candidate have been evaluated only in part. Our approach is applied in a numerical example.

  20. Function combined method for design innovation of children's bike

    Science.gov (United States)

    Wu, Xiaoli; Qiu, Tingting; Chen, Huijuan

    2013-03-01

    As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children's tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children's bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.

  1. [Portable lung function parameters testing system based on DSP].

    Science.gov (United States)

    Guo, Zhanshe; Yuan, Minzhong; Zhou, Hui

    2012-11-01

    Lung function monitoring is a critical technique for clinical medicine. Currently, the lung function testing devices used in our domestic hospitals are both expensive and bulky. A portable and accurate lung function parameters testing system is highly desired and is proposed in this paper. The hardware of the system is based on DSP technology. The breathing passage is designed with an aim suitable for the breathe and signal detection. We use the direct detection method to detect the gas flow, the breathing passage pressure and the breathing time. Thanks to the powerful data processing ability and the high operation speed of the DSP, breathing signals can be easily analyzed. Thus, several lung function parameters of clinical significance can be obtained. Experiments show that the accuracy of the system is better than 3%, and could meet the demand of the lung function testing.

  2. An improved method for estimating the frequency correlation function

    KAUST Repository

    Chelli, Ali

    2012-04-01

    For time-invariant frequency-selective channels, the transfer function is a superposition of waves having different propagation delays and path gains. In order to estimate the frequency correlation function (FCF) of such channels, the frequency averaging technique can be utilized. The obtained FCF can be expressed as a sum of auto-terms (ATs) and cross-terms (CTs). The ATs are caused by the autocorrelation of individual path components. The CTs are due to the cross-correlation of different path components. These CTs have no physical meaning and leads to an estimation error. We propose a new estimation method aiming to improve the estimation accuracy of the FCF of a band-limited transfer function. The basic idea behind the proposed method is to introduce a kernel function aiming to reduce the CT effect, while preserving the ATs. In this way, we can improve the estimation of the FCF. The performance of the proposed method and the frequency averaging technique is analyzed using a synthetically generated transfer function. We show that the proposed method is more accurate than the frequency averaging technique. The accurate estimation of the FCF is crucial for the system design. In fact, we can determine the coherence bandwidth from the FCF. The exact knowledge of the coherence bandwidth is beneficial in both the design as well as optimization of frequency interleaving and pilot arrangement schemes. © 2012 IEEE.

  3. Platelet function testing: methods of assessment and clinical utility.

    LENUS (Irish Health Repository)

    Mylotte, Darren

    2012-02-01

    Platelets play a central role in the regulation of both thrombosis and haemostasis yet tests of platelet function have, until recently, been exclusively used in the diagnosis and management of bleeding disorders. Recent advances have demonstrated the clinical utility of platelet function testing in patients with cardiovascular disease. The ex vivo measurement of response to antiplatelet therapies (aspirin and clopidogrel), by an ever-increasing array of platelet function tests, is with some assays, predictive of adverse clinical events and thus, represents an emerging area of interest for both the clinician and basic scientist. This review article will describe the advantages and disadvantages of the currently available methods of measuring platelet function and discuss both the limitations and emerging data supporting the role of platelet function studies in clinical practice.

  4. Platelet function testing: methods of assessment and clinical utility.

    LENUS (Irish Health Repository)

    Mylotte, Darren

    2011-01-01

    Platelets play a central role in the regulation of both thrombosis and haemostasis yet tests of platelet function have, until recently, been exclusively used in the diagnosis and management of bleeding disorders. Recent advances have demonstrated the clinical utility of platelet function testing in patients with cardiovascular disease. The ex vivo measurement of response to antiplatelet therapies (aspirin and clopidogrel), by an ever-increasing array of platelet function tests, is with some assays, predictive of adverse clinical events and thus, represents an emerging area of interest for both the clinician and basic scientist. This review article will describe the advantages and disadvantages of the currently available methods of measuring platelet function and discuss both the limitations and emerging data supporting the role of platelet function studies in clinical practice.

  5. New ITF measure method based on fringes

    Science.gov (United States)

    Fang, Qiaoran; Liu, Shijie; Gao, Wanrong; Zhou, You; Liu, HuanHuan

    2016-01-01

    With the unprecedented developments of the intense laser and aerospace projects', the interferometer is widely used in detecting middle frequency indicators of the optical elements, which put forward very high request towards the interferometer system transfer function (ITF). Conventionally, the ITF is measured by comparing the power spectra of known phase objects such as high-quality phase step. However, the fabrication of phase step is complex and high-cost, especially in the measurement of large-aperture interferometer. In this paper, a new fringe method is proposed to measure the ITF without additional objects. The frequency was changed by adjusting the number of fringes, and the normalized transfer function value was measured at different frequencies. The ITF value measured by fringe method was consistent with the traditional phase step method, which confirms the feasibility of proposed method. Moreover, the measurement error caused by defocus was analyzed. The proposed method does not require the preparation of a step artifact, which greatly reduces the test cost, and is of great significance to the ITF measurement of large aperture interferometer.

  6. KNOWLEDGE BASED METHODS FOR VIDEO DATA RETRIEVAL

    OpenAIRE

    S.Thanga Ramya; P. Rangarajan

    2011-01-01

    Large collections of publicly available video data grow day by day, the need to query this dataefficiently becomes significant. Consequently, content-based retrieval of video data turns out to be achallenging and important problem. This paper addresses the specific aspect of inferring semanticsautomatically from raw video data using different knowledge-based methods. In particular, this paperfocuses on three techniques namely, rules, Hidden Markov Models (HMMs), and Dynamic BayesianNetworks (...

  7. External Source Method for Kubo-Transformed Quantum Correlation Functions

    CERN Document Server

    Horikoshi, Atsushi

    2014-01-01

    We revisit the external source method for Kubo-transformed quantum correlation functions recently proposed by Krishna and Voth. We derive an exact formula and show that the Krishna-Voth formula can be derived as an approximation of our formula. Some properties of this approximation are clarified through a model calculation of the position autocorrelation function for a one-dimensional harmonic oscillator. A key observation is that the Krishna-Voth correlation function has a term which behaves as the secular term in perturbation theory.

  8. Method of guiding functions in problems of nonlinear analysis

    CERN Document Server

    Obukhovskii, Valeri; Van Loi, Nguyen; Kornev, Sergei

    2013-01-01

    This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.

  9. An Improved Tool Point Frequency Response Function Prediction Method Based on RCSA%一种改进的基于响应耦合子结构法的刀尖点频响函数预测方法

    Institute of Scientific and Technical Information of China (English)

    朱坚民; 王健; 张统超; 李孝茹

    2015-01-01

    on RCSA needed to identify the joint parameters of the spindle-holder and holder-tool joints and to The present predicting methods of tool point frequency response function (FRF)based manufacture the artificial tool-holder model,which will result in predicting errors and complexity,ai-ming at these problems,this paper presented an improved tool point FRF predicting method based on the RCSA.This method firstly improved the present substructure separating methods,and separated the machine-spindle-holder-tool structure into three parts:the machine-spindle-holder-partial tool bar,the remaining toolbar and the tool tooth;then improved the method for calculating the rotating FRFs of the machine-spindle-holder-partial tool bar through inverse RCSA and finite difference meth-od by applying modal impact test on the toolbar,and calculated the FRFs of the remaining toolbar and tool tooth using Euler beam theory;finally the tool point FRF was predicted by coupling the three parts’FRFs.Experiments conducted on a machining center show that the predicted and measured y to carry out,it can compute the spindle-holder’s rotating FRFs directly based on the tool modal ex-the predicted and measured FRFs are within 6.9%,the proposed method is feasible,effective and eas-tool point FRFs are in good agreement,the error between the first three order natural frequencies of p e r i m e n t s , a v o i d i n g t h e i d e n t i f i c a t i o n o f t h e j o i n t p a r a m e t e r s a n d t h e m a n u f a c t u r i n g o f t h e h o l d e r m o d e l .%针对现有的基于响应耦合子结构法(RCSA)的刀尖点频响函数预测方法需要辨识主轴刀柄、刀柄刀具结合面参数以及需要自制刀柄模型等引起的预测误差和预测过程复杂等问题,提出一种改进的基于 RCSA 的铣刀刀尖点频响函数预测方法。该方法首先改进已有的子结构划分方法,将机床主轴刀柄刀具系统划分为机床主轴刀柄部分刀杆、剩余

  10. New Methods of Fitting the Membership Function of Oceanic Water Masses

    Institute of Scientific and Technical Information of China (English)

    LI Fengqi; XIE Jun; LI Yao

    2004-01-01

    After reviewing the analytical theories of T-S curve, some methods of T-S relationship, and fuzzy sets for studying water masses, new methods of fitting the membership function of oceanic water masses are presented based on the characteristics of T-S curve family of oceanic water masses. The membership functions of oceanic Subsurface Water Mass with high salinity and Intermediate Water Mass with low salinity are fitted and discussed using the new methods. The proposed methods are useful in analyzing the mixing and modifying processes of these water masses, especially in tracing their sources.The principles and formulae of the new methods and examples are given.

  11. A Novel Fabrication Method for Functionally Graded Materials under Centrifugal Force: The Centrifugal Mixed-Powder Method

    Directory of Open Access Journals (Sweden)

    Eri Miura-Fujiwara

    2009-12-01

    Full Text Available One of the fabrication methods for functionally graded materials (FGMs is a centrifugal solid-particle method, which is an application of the centrifugal casting technique. However, it is the difficult to fabricate FGMs containing nano-particles by the centrifugal solid-particle method. Recently, we proposed a novel fabrication method, which we have named the centrifugal mixed-powder method, by which we can obtain FGMs containing nano-particles. Using this processing method, Cu-based FGMs containing SiC particles and Al-based FGMs containing TiO2 nano-particles on their surfaces have been fabricated. In this article, the microstructure and mechanical property of Cu/SiC and Al/TiO2 FGMs, fabricated by the centrifugal mixed-powder method are reviewed.

  12. The characteristic function, a method-specific alternative to the Horwitz function.

    Science.gov (United States)

    Thompson, Michael

    2012-01-01

    The Horwitz function is compared with the characteristic function as a descriptor of the precision of individual analytical methods. The Horwitz function describes the trend of reproducibility SDs observed in collaborative trials in the food sector over a wide range of concentrations of the analyte. However, it is imperfectly adaptable for describing the precision of individual methods, which is the role of the characteristic function. An essential difference between the two functions is that the characteristic function can accommodate a detection limit. This makes it a useful alternative when the precision of a method down to a detection limit is of interest. Many characteristic functions have a simple mathematical form, the parameters of which can be estimated with the usual resources. The Horwitz function serves an additional role as a fitness-for-purpose criterion in the form of the Horwitz ratio (HorRat). This use also has some shortcomings. The functional form of the characteristic function (with suitable prescribed parameters) is better adapted to this task.

  13. Oil monitoring methods based on information theory

    Institute of Scientific and Technical Information of China (English)

    XIA Yan-chun; HUO Hua

    2009-01-01

    To evaluate the Wear condition of machines accurately,oil spectrographic entropy,mutual information and ICA analysis methods based on information theory are presented.A full-scale diagnosis utilizing all channels of spectrographic analysis can be obtained.By measuring the complexity and correlativity,the characteristics of wear condition of machines can be shown clearly.The diagnostic quality is improved.The analysis processes of these monitoring methods are given through the explanation of examples.The availability of these methods is validated and further research fields are demonstrated.

  14. Double Solvent Sensing Method for Improving Sensitivity and Accuracy of Hg(II) Detection Based on Different Signal Transduction of a Tetrazine-Functionalized Pillared Metal-Organic Framework.

    Science.gov (United States)

    Razavi, Sayed Ali Akbar; Masoomi, Mohammad Yaser; Morsali, Ali

    2017-08-21

    To design a robust, π-conjugated, low-cost, and easy to synthesize metal-organic framework (MOF) for cation sensing by the photoluminescence (PL) method, 4,4'-oxybis(benzoic acid) (H2OBA) has been used in combination with 3,6-di(pyridin-4-yl)-1,2,4,5-tetrazine (DPT) as a tetrazine-functionalized spacer to construct [Zn(OBA)(DPT)0.5]·DMF (TMU-34(-2H)). The tetrazine motif is a π-conjugated, water-soluble/stable fluorophore with relatively weak σ-donating Lewis basic sites. These characteristics of tetrazine make TMU-34(-2H) a good candidate for cation sensing. Because of hydrogen bonding between tetrazine moieties and water molecules, TMU-34(-2H) shows different PL emissions in water and acetonitrile. Cation sensing in these two solvents revealed that TMU-34(-2H) can selectively detect Hg(2+) in water (by 243% enhancement) and in acetonitrile (by 90% quenching). The contribution of electron-donating/accepting characteristics along with solvation effects on secondary interactions of the tetrazine motifs inside the TMU-34(-2H) framework results in different signal transductions. Improved sensitivity and accuracy of detection were obtained using the double solvent sensing method (DSSM), in which different signal transductions of TMU-34(-2H) in water and acetonitrile were combined simultaneously to construct a double solvent sensing curve and formulate a sensitivity factor. Calculation of sensitivity factors for all of the tested cations demonstrated that it is possible to detect Hg(2+) by DSSM with ultrahigh sensitivity. Such a tremendous distinction in the Hg(2+) sensitivity factor is visualizable in the double solvent sensing curve. Thus, by application of DSSM instead of one-dimensional sensing, the interfering effects of other cations are completely eliminated and the sensitivity toward Hg(II) is highly improved. Strong interactions between Hg(2+) and the nitrogen atoms of the tetrazine groups along with easy accessibility of Hg(2+) to the tetrazine groups lead

  15. Assessment of soil microbial diversity with functional multi-endpoint methods

    DEFF Research Database (Denmark)

    Winding, Anne; Creamer, R. E.; Rutgers, M.

    Soil microbial diversity provides the cornerstone for support of soil ecosystem services by key roles in soil organic matter turnover, carbon sequestration and water infiltration. However, standardized methods to quantify the multitude of microbial functions in soils are lacking. Methods based......-substrates. These methods have been proposed to fill the gap. The techniques vary in how close they are to in situ functions; dependency on growth during incubation; and whether it is only bacteria or also fungi and /or extracellular enzymes. Also they vary in the functions tested and the number of functions. In addition...... techniques of assessing soil microbial functional diversity in a European transect consisting of 81 soil samples covering five Biogeograhical Zones and three land-uses and compare with the vast amount of data delivered in other projects (BISQ, RMQS-bioindicateur). Based on experimental results...

  16. Rough set-based feature selection method

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yanmei; ZENG Xiangyang; SUN Jincai

    2005-01-01

    A new feature selection method is proposed based on the discern matrix in rough set in this paper. The main idea of this method is that the most effective feature, if used for classification, can distinguish the most number of samples belonging to different classes. Experiments are performed using this method to select relevant features for artificial datasets and real-world datasets. Results show that the selection method proposed can correctly select all the relevant features of artificial datasets and drastically reduce the number of features at the same time. In addition, when this method is used for the selection of classification features of real-world underwater targets,the number of classification features after selection drops to 20% of the original feature set, and the classification accuracy increases about 6% using dataset after feature selection.

  17. Multi-electron systems in strong magnetic fields II: A fixed-phase diffusion quantum Monte Carlo application based on trial functions from a Hartree-Fock-Roothaan method

    Science.gov (United States)

    Boblest, S.; Meyer, D.; Wunner, G.

    2014-11-01

    We present a quantum Monte Carlo application for the computation of energy eigenvalues for atoms and ions in strong magnetic fields. The required guiding wave functions are obtained with the Hartree-Fock-Roothaan code described in the accompanying publication (Schimeczek and Wunner, 2014). Our method yields highly accurate results for the binding energies of symmetry subspace ground states and at the same time provides a means for quantifying the quality of the results obtained with the above-mentioned Hartree-Fock-Roothaan method. Catalogue identifier: AETV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 72 284 No. of bytes in distributed program, including test data, etc.: 604 948 Distribution format: tar.gz Programming language: C++. Computer: Cluster of 1-˜500 HP Compaq dc5750. Operating system: Linux. Has the code been vectorized or parallelized?: Yes. Code includes MPI directives. RAM: 500 MB per node Classification: 2.1. External routines: Boost::Serialization, Boost::MPI, LAPACK BLAS Nature of problem: Quantitative modelings of features observed in the X-ray spectra of isolated neutron stars are hampered by the lack of sufficiently large and accurate databases for atoms and ions up to the last fusion product iron, at high magnetic field strengths. The predominant amount of line data in the literature has been calculated with Hartree-Fock methods, which are intrinsically restricted in precision. Our code is intended to provide a powerful tool for calculating very accurate energy values from, and thereby improving the quality of, existing Hartree-Fock results. Solution method: The Fixed-phase quantum Monte Carlo method is used in combination with guiding functions obtained in Hartree

  18. Wavelet-based LASSO in functional linear regression.

    Science.gov (United States)

    Zhao, Yihong; Ogden, R Todd; Reiss, Philip T

    2012-07-01

    In linear regression with functional predictors and scalar responses, it may be advantageous, particularly if the function is thought to contain features at many scales, to restrict the coefficient function to the span of a wavelet basis, thereby converting the problem into one of variable selection. If the coefficient function is sparsely represented in the wavelet domain, we may employ the well-known LASSO to select a relatively small number of nonzero wavelet coefficients. This is a natural approach to take but to date, the properties of such an estimator have not been studied. In this paper we describe the wavelet-based LASSO approach to regressing scalars on functions and investigate both its asymptotic convergence and its finite-sample performance through both simulation and real-data application. We compare the performance of this approach with existing methods and find that the wavelet-based LASSO performs relatively well, particularly when the true coefficient function is spiky. Source code to implement the method and data sets used in the study are provided as supplemental materials available online.

  19. Note on the Solution of Transport Equation by Tau Method and Walsh Functions

    Directory of Open Access Journals (Sweden)

    Abdelouahab Kadem

    2010-01-01

    Full Text Available We consider the combined Walsh function for the three-dimensional case. A method for the solution of the neutron transport equation in three-dimensional case by using the Walsh function, Chebyshev polynomials, and the Legendre polynomials are considered. We also present Tau method, and it was proved that it is a good approximate to exact solutions. This method is based on expansion of the angular flux in a truncated series of Walsh function in the angular variable. The main characteristic of this technique is that it reduces the problems to those of solving a system of algebraic equations; thus, it is greatly simplifying the problem.

  20. Hyperbolic function method for solving nonlinear differential-different equations

    Institute of Scientific and Technical Information of China (English)

    Zhu Jia-Min

    2005-01-01

    An algorithm is devised to obtained exact travelling wave solutions of differential-different equations by means of hyperbolic function. For illustration, we apply the method to solve the discrete nonlinear (2+1)-dimensional Toda lattice equation and the discretized nonlinear mKdV lattice equation, and successfully constructed some explicit and exact travelling wave solutions.

  1. Using Mixed Methods to Interpret Differential Item Functioning

    Science.gov (United States)

    Benítez, Isabel; Padilla, José-Luis; Hidalgo Montesinos, María Dolores; Sireci, Stephen G.

    2016-01-01

    Analysis of differential item functioning (DIF) is often used to determine if cross-lingual assessments are equivalent across languages. However, evidence on the causes of cross-lingual DIF is still evasive. Expert appraisal is a qualitative method useful for obtaining detailed information about problematic elements in the different linguistic…

  2. Improved Green's function parabolic equation method for atmospheric sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.

    1998-01-01

    The numerical implementation of the Green's function parabolic equation (GFPE) method for atmospheric sound propagation is discussed. Four types of numerical errors are distinguished: (i) errors in the forward Fourier transform; (ii) errors in the inverse Fourier transform; (iii) errors in the refra

  3. Benchmarking ortholog identification methods using functional genomics data.

    NARCIS (Netherlands)

    Hulsen, T.; Huynen, M.A.; Vlieg, J. de; Groenen, P.M.

    2006-01-01

    BACKGROUND: The transfer of functional annotations from model organism proteins to human proteins is one of the main applications of comparative genomics. Various methods are used to analyze cross-species orthologous relationships according to an operational definition of orthology. Often the defini

  4. Method for the electro-addressable functionalization of electrode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harper, Jason C.; Polsky, Ronen; Dirk, Shawn M.; Wheeler, David R.; Arango, Dulce C.; Brozik, Susan M.

    2015-12-15

    A method for preparing an electrochemical biosensor uses bias-assisted assembly of unreactive -onium molecules on an electrode array followed by post-assembly electro-addressable conversion of the unreactive group to a chemical or biological recognition group. Electro-addressable functionalization of electrode arrays enables the multi-target electrochemical sensing of biological and chemical analytes.

  5. The Functions and Methods of Mental Training on Competitive Sports

    Science.gov (United States)

    Xiong, Jianshe

    Mental training is the major training method of the competitive sports and the main factor of athletes skill and tactics level.By combining the psychological factor with the current competitive sports characteristics, this paper presents the function of mental training forward athletes, and how to improve the comprehensive psychological quality by using mental training.

  6. Benchmarking ortholog identification methods using functional genomics data.

    NARCIS (Netherlands)

    Hulsen, T.; Huynen, M.A.; Vlieg, J. de; Groenen, P.M.

    2006-01-01

    BACKGROUND: The transfer of functional annotations from model organism proteins to human proteins is one of the main applications of comparative genomics. Various methods are used to analyze cross-species orthologous relationships according to an operational definition of orthology. Often the defini

  7. Universal triple I fuzzy reasoning algorithm of function model based on quotient space

    Institute of Scientific and Technical Information of China (English)

    Lu Qiang; Shen Guanting; and Liu Xiaoping

    2012-01-01

    Aiming at the deficiencies of analysis capacity from different levels and fuzzy treating method in product function modeling of conceptual design, the theory of quotient space and universal triple I fuzzy reasoning method are introduced, and then the function modeling algorithm based on the universal triple I fuzzy reasoning method is proposed. Firstly, the product function granular model based on the quotient space theory is built, with its function granular representation and computing rules defined at the same time. Secondly, in order to quickly achieve function granular model from function requirement, the function modeling method based on universal triple I fuzzy reasoning is put forward. Within the fuzzy reasoning of universal triple I method, the small-distance-activating method is proposed as the kernel of fuzzy reasoning; how to change function requirements to fuzzy ones, fuzzy computing methods, and strategy of fuzzy reasoning are respectively investigated as well; the function modeling algorithm based on the universal triple I fuzzy reasoning method is achieved. Lastly, the validity of the function granular model and function modeling algorithm is validated. Through our method, the reasonable function granular model can be quickly achieved from function requirements, and the fuzzy character of conceptual design can be well handled, which greatly improves conceptual design.

  8. Adaptive Deployment Method for Virtualized Network Function Based on Viterbi Algorithm%一种基于Viterbi算法的虚拟网络功能自适应部署方法

    Institute of Scientific and Technical Information of China (English)

    刘彩霞; 卢干强; 汤红波; 王晓雷; 赵宇

    2016-01-01

    In order to deal with the explosive growth of mobile data traffic, a novel design of network architecture will be adopted in 5G. Software Defined Network (SDN) and Network Function Virtualization (NFV) are the key technologies for network transformation, which will drive the innovation of mobile communication network architecture. The deployment of Virtualized Network Function (VNF) in service chain is a critical issue in network virtualization. To overcome the ignorance of VNF sequence constraints in service chain and the characteristics of mobile business in existing literatures, an adaptive deployment method of VNF based on Viterbi algorithm is proposed. With real-time perception of the resources change of underlying nodes, the topology structure will be adjusted dynamically. Hidden Markov model is used to describe the topology information of available nodes with resources constraints in underlying network, and the service path with shortest delay is selected based on Viterbi algorithm in candidate service node. Experimental results show that the process time of service chain can be lower compared with existing algorithm. In addition, the acceptance rates of service chain requests and cost efficiency of underlying resources are also raised.%为了应对移动数据流量的爆炸性增长,5G移动通信网将引入新型的架构设计.软件定义网络和网络功能虚拟化是网络转型的关键技术,将驱动移动通信网络架构的创新,服务链虚拟网络功能的部署是网络虚拟化研究中亟待解决的问题.该文针对已有部署方法未考虑服务链中虚拟网络功能间顺序约束和移动业务特点的问题,提出一种基于Viterbi算法的虚拟网络功能自适应部署方法.该方法实时感知底层节点的资源变化并动态调整拓扑结构,采用隐马尔科夫模型描述满足资源约束的可用的底层网络节点拓扑信息,基于Viterbi算法在候选节点中选择时延最短的服务路径.

  9. A method to manage the model base in DSS

    Institute of Scientific and Technical Information of China (English)

    孙成双; 李桂君

    2004-01-01

    How to manage and use models in DSS is a most important subject. Generally, it costs a lot of money and time to develop the model base management system in the development of DSS and most are simple in function or cannot be used efficiently in practice. It is a very effective, applicable, and economical choice to make use of the interfaces of professional computer software to develop a model base management system. This paper presents the method of using MATLAB, a well-known statistics software, as the development platform of a model base management system. The main functional framework of a MATLAB-based model base managementsystem is discussed. Finally, in this paper, its feasible application is illustrated in the field of construction projects.

  10. Computer Animation Based on Particle Methods

    Directory of Open Access Journals (Sweden)

    Rafal Wcislo

    1999-01-01

    Full Text Available The paper presents the main issues of a computer animation of a set of elastic macroscopic objects based on the particle method. The main assumption of the generated animations is to achieve very realistic movements in a scene observed on the computer display. The objects (solid bodies interact mechanically with each other, The movements and deformations of solids are calculated using the particle method. Phenomena connected with the behaviour of solids in the gravitational field, their defomtations caused by collisions and interactions with the optional liquid medium are simulated. The simulation ofthe liquid is performed using the cellular automata method. The paper presents both simulation schemes (particle method and cellular automata rules an the method of combining them in the single animation program. ln order to speed up the execution of the program the parallel version based on the network of workstation was developed. The paper describes the methods of the parallelization and it considers problems of load-balancing, collision detection, process synchronization and distributed control of the animation.

  11. Invasive and noninvasive methods for studying pulmonary function in mice

    Directory of Open Access Journals (Sweden)

    Braun Armin

    2007-09-01

    Full Text Available Abstract The widespread use of genetically altered mouse models of experimental asthma has stimulated the development of lung function techniques in vivo to characterize the functional results of genetic manipulations. Here, we describe various classical and recent methods of measuring airway responsiveness in vivo including both invasive methodologies in anesthetized, intubated mice (repetitive/non-repetitive assessment of pulmonary resistance (RL and dynamic compliance (Cdyn; measurement of low-frequency forced oscillations (LFOT and noninvasive technologies in conscious animals (head-out body plethysmography; barometric whole-body plethysmography. Outlined are the technical principles, validation and applications as well as the strengths and weaknesses of each methodology. Reviewed is the current set of invasive and noninvasive methods of measuring murine pulmonary function, with particular emphasis on practical considerations that should be considered when applying them for phenotyping in the laboratory mouse.

  12. Fast methods for spatially correlated multilevel functional data

    KAUST Repository

    Staicu, A.-M.

    2010-01-19

    We propose a new methodological framework for the analysis of hierarchical functional data when the functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where the object of inference are functions or images that remain dependent even after conditioning on the subject on which they are measured. Supplementary materials are available at Biostatistics online.

  13. Global GPP based on Plant Functional Types

    Science.gov (United States)

    Veroustraete, Frank; Balzarolo, Manuela

    2016-04-01

    Vegetation variables like Gross Primary productivity (GPP) and the Normalized Difference Vegetation Index (NDVI) are key variables in vegetation carbon exchange studies. Field measurements of the NDVI are time consuming due to landscape heterogeneity across time. Typically a sampling protocol adopted during field campaigns is based on the VALERI protocol in that case toe estimate LAI. Field campaign GPP or NDVI measurements can be scaled up to using in-situ FLUXNET radiation raster maps. Regression analysis can then be applied to construct transfer functions for the determination of GPP raster maps raster imagery from Normalized Difference Vegetation Index (NDVI) raster maps derived from in-situ FLUXNET radiation raster maps. Subsequently, in the VALERI approach the scaling up of raster maps is performed by aggregation of high resolution in-situ FLUXNET radiation raster maps data into high resolution raster maps and subsequently aggregating these to 1x1 km MODIS NDVI raster maps by calculating average NDVI values for the low resolution data. The up-scaled 1x1 km pixels are then used to validate the MODIS GPP and NVI products. Hence up scaling based on in-situ FLUXNET radiation measurements are not a luxury for large and heterogeneous sites. Therefore this paper tackles the problem of up scaling using in-situ FLUXNET radiation measurements. Key Words: FLUXNET, GPP, Plant Functional Types, Up-scaling

  14. A new earthquake location method based on the waveform inversion

    CERN Document Server

    Wu, Hao; Huang, Xueyuan; Yang, Dinghui

    2016-01-01

    In this paper, a new earthquake location method based on the waveform inversion is proposed. As is known to all, the waveform misfit function is very sensitive to the phase shift between the synthetic waveform signal and the real waveform signal. Thus, the convergence domain of the conventional waveform based earthquake location methods is very small. In present study, by introducing and solving a simple sub-optimization problem, we greatly expand the convergence domain of the waveform based earthquake location method. According to a large number of numerical experiments, the new method expands the range of convergence by several tens of times. This allows us to locate the earthquake accurately even from some relatively bad initial values.

  15. A Survey of Functional Behavior Assessment Methods Used by Behavior Analysts in Practice

    Science.gov (United States)

    Oliver, Anthony C.; Pratt, Leigh A.; Normand, Matthew P.

    2015-01-01

    To gather information about the functional behavior assessment (FBA) methods behavior analysts use in practice, we sent a web-based survey to 12,431 behavior analysts certified by the Behavior Analyst Certification Board. Ultimately, 724 surveys were returned, with the results suggesting that most respondents regularly use FBA methods, especially…

  16. Exact density functional and wave function embedding schemes based on orbital localization

    Science.gov (United States)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  17. Method of Preventing Buffer Overflow Attacks by Intercepting DLL Functions

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The way of intercepting Windows DLL functions against buffer overflow attacks is evaluated. It's produced at the expense of hooking vulnerable DLL functions by addition of check code. If the return address in the stack belongs to a heap or stack page, the call is from illicit code and the program is terminated. The signature of malicious code is recorded, so it is possible for the next attack to be filtered out. The return-into-libc attacks are detected by comparing the entry address of DLL functions with the overwritten return address in the stack. The presented method interrupts the execution of malicious code and prevents the system from being hijacked when these intercepted DLL functions are invoked in the context of buffer overflow.

  18. Methods of theme presentation "The Fourier transform of impulse functions"

    Directory of Open Access Journals (Sweden)

    Faniya Ahmetova

    2016-09-01

    Full Text Available The paper considers the Fourier transform of impulse functions, which is the mathematical basis of the tasks associated with the theory of reception and signal conversion in optoelectronic system. The method of calculating of two functions convolution, its Fourier image and the image of the Fourier-Bessel axisymmetric functions are demonstrated in details. A table, which summarizes the analytical expression for the shifted impulse functions and records their Fourier transforms, is provided. A wide range of examples of solving tasks, containing the graphic illustration, is analyzed. A structured approach to the presentation of the material, which combines basic theoretical information and analysis of typical tasks, will help second-year students of optoelectronic specialty in their independent work and homework.

  19. Linear density response function in the projector augmented wave method

    DEFF Research Database (Denmark)

    Yan, Jun; Mortensen, Jens Jørgen; Jacobsen, Karsten Wedel;

    2011-01-01

    We present an implementation of the linear density response function within the projector-augmented wave method with applications to the linear optical and dielectric properties of both solids, surfaces, and interfaces. The response function is represented in plane waves while the single......-particle eigenstates can be expanded on a real space grid or in atomic-orbital basis for increased efficiency. The exchange-correlation kernel is treated at the level of the adiabatic local density approximation (ALDA) and crystal local field effects are included. The calculated static and dynamical dielectric...... functions of Si, C, SiC, AlP, and GaAs compare well with previous calculations. While optical properties of semiconductors, in particular excitonic effects, are generally not well described by ALDA, we obtain excellent agreement with experiments for the surface loss function of graphene and the Mg(0001...

  20. Geometric Method of Determining Hazard for the Continuous Survival Function

    Directory of Open Access Journals (Sweden)

    Bieszk-Stolorz Beata

    2015-06-01

    Full Text Available A basic assumption in proportional intensity models is the proportionality, that each covariate has a multiplicative effect on the intensity. The proportionality assumption is a strong assumption which is not always necessarily reasonable and thus needs to be checked. The survival analysis often employs graphic methods to study hazard proportionality. In this paper a geometrical method for determining the value of the hazard function on the basis of the continuous survival function was proposed. This method can be used to compare the intensity of the event for objects belonging to two subgroups of the analysed population. If we have graphs of survival function, then an analysis of the tangents at a specific time and their roots enables us to find the intensity and to study the relationship between them for different subgroups. This method can also be useful when studying the proportionality of hazard. It is a condition for the use of the Cox proportional hazards model. The above method was used to evaluate the effect of unemployment benefit and gender on unemployment and on the intensity of finding a job.

  1. Solving functional flow equations with pseudo-spectral methods

    CERN Document Server

    Borchardt, Julia

    2016-01-01

    We apply pseudo-spectral methods to integrate functional flow equations with high accuracy, extending earlier work on functional fixed point equations \\cite{Borchardt:2015rxa}. The advantages of our method are illustrated with the help of two classes of models: first, to make contact with literature, we investigate flows of the O$(N)$-model in 3 dimensions, for $N=1, 4$ and in the large $N$ limit. For the case of a fractal dimension, $d=2.4$, and $N=1$, we follow the flow along a separatrix from a multicritical fixed point to the Wilson-Fisher fixed point over almost 13 orders of magnitude. As a second example, we consider flows of bounded quantum-mechanical potentials, which can be considered as a toy model for Higgs inflation. Such flows pose substantial numerical difficulties, and represent a perfect test bed to exemplify the power of pseudo-spectral methods.

  2. A novel chaotic encryption scheme based on generalized threshold function

    CERN Document Server

    Ahadpour, Sodeif; arasteh-Fard, Zahra

    2011-01-01

    In this paper, after reviewing the main points of random number generators and threshold function, we introduce two new methods of pseudorandom number generators(PRNGs) based on generalized threshold function (segmentation and self-similarity). These methods decrease periodic effect of the ergodic dynamical systems in randomness of the pseudorandom number generators(PRNGs). The essential idea of this paper is that given threshold functions of the ergodic dynamical systems to use in pseudorandom number generation. To evaluate the randomness of the bit sequences generated by the PRNGs, the NIST suite tests were performed. We find that the PRNGs pass these tests satisfactorily. The proposed PRNGs can be used in many applications requiring random bit sequences and also in the design of secure cryptosystems.

  3. NONLINEAR DATA RECONCILIATION METHOD BASED ON KERNEL PRINCIPAL COMPONENT ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In the industrial process situation, principal component analysis (PCA) is a general method in data reconciliation.However, PCA sometime is unfeasible to nonlinear feature analysis and limited in application to nonlinear industrial process.Kernel PCA (KPCA) is extension of PCA and can be used for nonlinear feature analysis.A nonlinear data reconciliation method based on KPCA is proposed.The basic idea of this method is that firstly original data are mapped to high dimensional feature space by nonlinear function, and PCA is implemented in the feature space.Then nonlinear feature analysis is implemented and data are reconstructed by using the kernel.The data reconciliation method based on KPCA is applied to ternary distillation column.Simulation results show that this method can filter the noise in measurements of nonlinear process and reconciliated data can represent the true information of nonlinear process.

  4. AgBase: a functional genomics resource for agriculture

    Directory of Open Access Journals (Sweden)

    Hill David P

    2006-09-01

    functionally characterize gene products. AgBase is also directly relevant for researchers in fields as diverse as agricultural production, cancer biology, biopharmaceuticals, human health and evolutionary biology. Moreover, the experimental methods and bioinformatics tools we provide are widely applicable to many other species including model organisms.

  5. Mindfulness-Based Cognitive Therapy for severe Functional Disorders

    DEFF Research Database (Denmark)

    Fjorback, Lone Overby

      MINDFULNESS-BASED COGNITIVE THERAPY FOR FUNCTIONAL DISORDERS- A RANDOMISED CONTROLLED TRIAL Background: Mindfulness-Based Stress Reduction (MBSR) is a group skills-training program developed by Kabat-Zinn. It is designed to teach patients to become more aware of and relate differently to their ......  MINDFULNESS-BASED COGNITIVE THERAPY FOR FUNCTIONAL DISORDERS- A RANDOMISED CONTROLLED TRIAL Background: Mindfulness-Based Stress Reduction (MBSR) is a group skills-training program developed by Kabat-Zinn. It is designed to teach patients to become more aware of and relate differently...... to their thoughts, feelings, and bodily sensations. Randomised controlled studies of MBSR have shown mitigation of stress, anxiety, and dysphoria in general population and reduction in total mood disturbance and stress symptoms in a medical population. In Mindfulness Based Cognitive Therapy MBSR is recombined...... with cognitive therapy. Aim: To examine the efficacy of Mindfulness-Based Cognitive Therapy in severe Functional disorders, defined as severe Bodily Distress Disorder. Method: 120 patients are randomised to either Mindfulness Based Cognitive Therapy: a manualized programme with eight weekly 3 ½ hour group...

  6. Mindfulness-Based Cognitive Therapy for severe Functional Disorders

    DEFF Research Database (Denmark)

    Fjorback, Lone Overby

    MINDFULNESS-BASED COGNITIVE THERAPY FOR FUNCTIONAL DISORDERS- A RANDOMISED CONTROLLED TRIAL   Background: Mindfulness-Based Stress Reduction (MBSR) is a group skills-training program developed by Kabat-Zinn. It is designed to teach patients to become more aware of and relate differently to their ......MINDFULNESS-BASED COGNITIVE THERAPY FOR FUNCTIONAL DISORDERS- A RANDOMISED CONTROLLED TRIAL   Background: Mindfulness-Based Stress Reduction (MBSR) is a group skills-training program developed by Kabat-Zinn. It is designed to teach patients to become more aware of and relate differently...... to their thoughts, feelings, and bodily sensations. Randomised controlled studies of MBSR have shown mitigation of stress, anxiety, and dysphoria in general population and reduction in total mood disturbance and stress symptoms in a medical population. In Mindfulness Based Cognitive Therapy MBSR is recombined...... with cognitive therapy. Aim: To examine the efficacy of Mindfulness-Based Cognitive Therapy in severe Functional disorders, defined as severe Bodily Distress Disorder. Method: 120 patients are randomised to either Mindfulness Based Cognitive Therapy: a manualized programme with eight weekly 3 ½ hour group...

  7. Research of Stamp Forming Simulation Based on Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    SU Xaio-ping; XU Lian

    2008-01-01

    We point out that the finite element method offers a greta functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh,and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.

  8. Method of infrared image enhancement based on histogram

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; YAN Jie

    2011-01-01

    Aiming at the problem in infrared image enhancement, a new method is given based on histogram. Using the gray character- istics of target, the upper-bouod threshold is selected adaptively and the histogram is processed by the threshold. After choosing the gray transform function based on the gray level distribution of image, the gray transformation is done during histogram equalization. Finally, the enhanced image is obtained. Compared with histogram equalization (HE), histogram double equalization (HDE) and plateau histogram equalization (PE), the simulation results demonstrate that the image enhancement effect of this method has obvious superiority. At the same time, its operation speed is fast and real-time ability is excellent.

  9. Improving protein function prediction methods with integrated literature data

    Directory of Open Access Journals (Sweden)

    Gabow Aaron P

    2008-04-01

    Full Text Available Abstract Background Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity. Results We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder

  10. Steganography based on wavelet transform and modulus function

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to provide larger capacity of the hidden secret data while maintaining a good visual quality of stego-image,in accordance with the visual property that human eyes are less sensitive to strong texture,a novel steganographic method based on wavelet and modulus function is presented.First,an image is divided into blocks of prescribed size,and every block is decomposed into one-level wavelet.Then,the capacity of the hidden secret data is decided with the number of wavelet coefficients of larger magnitude.Finall,secret information is embedded by steganography based on modulus function. From the experimental results,the proposed method hides much more information and maintains a good visual quality of stego-image.Besides,the embedded data can be extracted from the stego-image without referencing the original image.

  11. 基于三角模糊数确定住宅功能折旧度的探讨%Research on Determining Residential Functional Depreciation Degree Based on Triangle Fuzzy Number Method

    Institute of Scientific and Technical Information of China (English)

    荀志远; 王少华; 肖骏一

    2013-01-01

      This research is conducted for considering the physical depreciation more than functional depreciation as determining residential depreciation degree in China. Through investigation and analysis,the paper proposes the residential functional depreciation index system which includes security function,living function and environmental function three first indexes,fourteen second indexes. It applied the triangular fuzzy number to establish residential functional depreciation evaluation set quantization table and fuzzy comprehensive evaluation model to determine the functional depreciation degree and get a triangular fuzzy number. To analyze the result,it uses the triangular fuzzy number to transform the goal and each evaluation layer of triangular fuzzy number to membership function and the fuzzy integral theory to calculate overlap size of the goal fuzzy integral with each evaluation layer fuzzy integral in the x-axis by comparing the overlap size to determine the residential functional depreciation degree. An example is proved this method feasible.%  针对我国住宅折旧度确定时考虑实体折旧较多,考虑功能折旧较少问题,通过调查分析提出了住宅的功能折旧评价指标体系,该体系包括安全功能、居住功能和环境功能3个一级指标,14个二级指标。利用三角模糊数方法建立了住宅功能折旧评语集量化表,运用模糊综合评价模型对住宅功能折旧程度进行评价,评价结果为目标三角模糊数。运用三角模糊数理论确定该目标住宅的功能折旧程度。通过实例分析证明该方法具有可行性。

  12. The Efficacy Evaluation of Venture Investment Project Based on Efficacy Function Method%基于功效函数法的风险投资项目功效评价

    Institute of Scientific and Technical Information of China (English)

    张北平; 汪泳

    2014-01-01

    文中利用数理统计手段中的变异系数法,计算交易中心风险投资项目的功效和风险监控指标的权重,并采用功效函数法将各种指标统一为无量纲的单一指标,根据这些指标计算出总的功效函数值的大小,来评价交易中心风险投资项目的功效。案例表明,功效函数法可以直观评价功效和风险的高低。%The variable coefficient method in mathematical statistics has been introduced to calculate the weight of efficacy and risk of the venture investment project in trading center.The efficacy and risk serve as monitor control indexes and are unified as a single dimensionless index using efficacy function method.According to these indexes,the value of efficacy function can be worked out to evaluate the efficacy of the whole project.It will be demonstrated that the efficacy and risk can be directly appraised by efficacy function in the following cases.

  13. Method for functional study of mitochondria in rat hypothalamus.

    Science.gov (United States)

    Benani, Alexandre; Barquissau, Valentin; Carneiro, Lionel; Salin, Bénédicte; Colombani, Anne-Laure; Leloup, Corinne; Casteilla, Louis; Rigoulet, Michel; Pénicaud, Luc

    2009-04-15

    Different roles of mitochondria in brain function according to brain area are now clearly emerging. Unfortunately, no technique is yet described to investigate mitochondria function in specific brain area. In this article, we provide a complete description of a procedure to analyze the mitochondrial function in rat brain biopsies. Our two-step method consists in a saponin permeabilization of fresh brain tissues in combination with high-resolution respirometry to acquire the integrated respiratory rate of the biopsy. In the first part, we carefully checked the mitochondria integrity after permeabilization, defined experimental conditions to determine the respiratory control ratio (RCR), and tested the reproducibility of this technique. In the second part, we applied our method to test its sensitivity. As a result, this method was sensitive enough to reveal region specificity of mitochondrial respiration within the brain. Moreover, we detected physiopathological modulation of the mitochondrial function in the hypothalamus. Thus this new technique that takes all cell types into account, and does not discard or select any mitochondria sub-population is very suitable to analyze the integrated mitochondrial respiration of brain biopsies.

  14. Wavelet Variance Analysis of EEG Based on Window Function

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yuan-zhuang; YOU Rong-yi

    2014-01-01

    A new wavelet variance analysis method based on window function is proposed to investigate the dynamical features of electroencephalogram (EEG).The ex-prienmental results show that the wavelet energy of epileptic EEGs are more discrete than normal EEGs, and the variation of wavelet variance is different between epileptic and normal EEGs with the increase of time-window width. Furthermore, it is found that the wavelet subband entropy (WSE) of the epileptic EEGs are lower than the normal EEGs.

  15. Optimising Job-Shop Functions Utilising the Score-Function Method

    DEFF Research Database (Denmark)

    Nielsen, Erland Hejn

    2000-01-01

    During the last 1-2 decades, simulation optimisation of discrete event dynamic systems (DEDS) has made considerable theoretical progress with respect to computational efficiency. The score-function (SF) method and the infinitesimal perturbation analysis (IPA) are two candidates belonging to this ......During the last 1-2 decades, simulation optimisation of discrete event dynamic systems (DEDS) has made considerable theoretical progress with respect to computational efficiency. The score-function (SF) method and the infinitesimal perturbation analysis (IPA) are two candidates belonging...... if the gradients are unbiased, the SA-algorithm will be known as a Robbins-Monro-algorithm. The present work will focus on the SF method and show how to migrate it to general types of discrete event simulation systems, in this case represented by SIMNET II, and discuss how the optimisation of the functioning...... of a Job-Shop can be handled by the SF method....

  16. Study of data analysis methods in functional connectivity photoacoustic tomography (fcPAT)

    Science.gov (United States)

    Khodaee, Afsoon; Nasiriavanaki, Mohammadreza

    2017-03-01

    Resting-state functional connectivity (RSFC) is a method to monitor the health of the brain and find out abnormalities in brain networks. Recently functional connectivity photoacoustic tomography (fcPAT) has been used to study RSFC in the mouse brain. The current method of RSFC data analysis is called "seed-based". This method is not data-driven, and involves user intervention. Alternative signal processing approaches, such as singular value decomposition (SVD) and independent component analysis (ICA), will be explored to complement and cross validate the seed-based approach, possibly substituting them for the seed-based method. The methods are implemented and applied on the fcPAT data of a mouse brain.

  17. Optimal Route Selection Method Based on Vague Sets

    Institute of Scientific and Technical Information of China (English)

    GUO Rui; DU Li min; WANG Chun

    2015-01-01

    Optimal route selection is an important function of vehicle trac flow guidance system. Its core is to determine the index weight for measuring the route merits and to determine the evaluation method for selecting route. In this paper, subjective weighting method which relies on driver preference is used to determine the weight and the paper proposes the multi-criteria weighted decision method based on vague sets for selecting the optimal route. Examples show that, the usage of vague sets to describe route index value can provide more decision-making information for route selection.

  18. A Design Method of Business Application Framework Based on

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper discusses design and implementation method of BusinessAppl ication Framework based on software patterns, and then presents MVC pattern of a rchitecture and the method of dynamical update promulgation for Business Applica tion Framework. We discuss adaptation of Abstract Factory for the kern el functionality of Business Application Framework, such as data creation, manip ulation, composition, etc. It also presents class model and its class st ructure of Abstract Factory pattern. Finally, we briefly discuss the update, mod ification, and reconstruction method of Business Application Framework.

  19. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  20. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center.

    Science.gov (United States)

    Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-01

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  1. Based on the Wavelet Function of Power Network Fault Location

    Directory of Open Access Journals (Sweden)

    Fan YU

    2013-04-01

    Full Text Available In order to improve the measurement accuracy, in the traditional measuring method based on, by avoiding wave speed influence on fault location of transmission line method, and compares it with the combination of wavelet transform. This article selects dBN wavelet and three B spline wavelet contrast, compared them with new methods, through the Xi'an City Power Supply Bureau of the actual fault data validation. The results show that, with3 B spline wavelet and the new method combined with the location results are closer to the actual distance, its accuracy is higher than that of db3wavelet transform and a new method derived from the results, the error is far less than the db3 wavelet function, location is satisfactory.

  2. AN SVAD ALGORITHM BASED ON FNNKD METHOD

    Institute of Scientific and Technical Information of China (English)

    Chen Dong; Zhang Yan; Kuang Jingming

    2002-01-01

    The capacity of mobile communication system is improved by using Voice Activity Detection (VAD) technology. In this letter, a novel VAD algorithm, SVAD algorithm based on Fuzzy Neural Network Knowledge Discovery (FNNKD) method is proposed. The performance of SVAD algorithm is discussed and compared with traditional algorithm recommended by ITU G.729B in different situations. The simulation results show that the SVAD algorithm performs better.

  3. Airworthiness Compliance Verification Method Based on Simulation of Complex System

    Institute of Scientific and Technical Information of China (English)

    XU Haojun; LIU Dongliang; XUE Yuan; ZHOU Li; MIN Guilong

    2012-01-01

    A study is conducted on a new airworthiness compliance verification method based on pilot-aircraft-environment complex system simulation.Verification scenarios are established by “block diagram” method based on airworthiness criteria..A pilot-aircraft-environment complex model is set up and a virtual flight testing method based on connection of MATLAB/Simulink and Flightgear is proposed.Special researches are conducted on the modeling of pilot manipulation stochastic parameters and manipulation in critical situation.Unfavorable flight factors of certain scenario are analyzed,and reliability modeling of important system is researched.A distribution function of small probability event and the theory on risk probability measurement are studied.Nonlinear function is used to depict the relationship between the cumulative probability and the extremum of the critical parameter.A synthetic evaluation model is set up,modified genetic algorithm (MGA) is applied to ascertaining the distribution parameter in the model,and amore reasonable result is obtained.A clause about vehicle control functions (VCFs) verification in MIL-HDBK-516B is selected as an example to validate the practicability of the method.

  4. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  5. Treecode-Based Generalized Born Method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenli [Shanghai Jiao Tong University, Shanghai; Cheng, Xiaolin [ORNL; Yang, Shihui [ORNL

    2011-01-01

    We have developed a treecode-based O(Nlog N) algorithm for the generalized Born (GB) implicit solvation model. Our treecode-based GB (tGB) is based on the GBr6 [J. Phys. Chem. B 111, 3055 (2007)], an analytical GB method with a pairwise descreening approximation for the R6 volume integral expression. The algorithm is composed of a cutoff scheme for the effective Born radii calculation, and a treecode implementation of the GB charge charge pair interactions. Test results demonstrate that the tGB algorithm can reproduce the vdW surface based Poisson solvation energy with an average relative error less than 0.6% while providing an almost linear-scaling calculation for a representative set of 25 proteins with different sizes (from 2815 atoms to 65456 atoms). For a typical system of 10k atoms, the tGB calculation is three times faster than the direct summation as implemented in the original GBr6 model. Thus, our tGB method provides an efficient way for performing implicit solvent GB simulations of larger biomolecular systems at longer time scales.

  6. 基于角色-功能的Web应用系统访问控制方法%Access Control Method for Web Application System Based on Role-function

    Institute of Scientific and Technical Information of China (English)

    庞希愚; 王成; 仝春玲

    2014-01-01

    The access control requirements of Web application system and the shortcomings in Web application system with Role-based Access Control(RBAC) model are analyzed, a fundamental idea of access control based on role-function model is proposed and its implementation details are discussed. Based on naturally formed Web page organization structure according to the business function requirements of the system and access control requirements of users, business functions of pages are partitioned in bottom menu in order to form the basic unit of permissions configuration. Through configuring the relation between user, role, page, menu, function to control user access to system resources such as Web page, the html element and operation in the page. Through the practical application of scientific research management system in Shandong Jiaotong University, application shows that implementation of access control in the page and menu to achieve business function, can well meet the enterprise requirements for user access control of Web system. It has the advantages of simple operation, strong versatility, and effectively reduces the workload of Web system development.%分析现有基于角色的访问控制模型在Web应用系统中的不足,提出一种基于角色-功能模型的用户访问控制方法,并对其具体的实现进行讨论。以系统业务功能需求自然形成的Web页面组织结构和用户访问控制需求为基础,划分最底层菜单中页面实现的业务功能,以业务功能作为权限配置的基本单位,通过配置用户、角色、页面、菜单、功能之间的关系,控制用户对页面、页面中所包含的html元素及其操作等Web系统资源的访问。在山东交通学院科研管理系统中的实际应用结果表明,该方法在菜单及页面实现的业务功能上实施访问控制,可使Web系统用户访问控制较好地满足用户要求,有效降低Web系统开发的工作量。

  7. Cognitive-graphic method for constructing of hierarchical forms of basic functions of biquadratic finite element

    Science.gov (United States)

    Astionenko, I. O.; Litvinenko, O. I.; Osipova, N. V.; Tuluchenko, G. Ya.; Khomchenko, A. N.

    2016-10-01

    Recently the interpolation bases of the hierarchical type have been used for the problem solving of the approximation of multiple arguments functions (such as in the finite-element method). In this work the cognitive graphical method of constructing of the hierarchical form bases on the serendipity finite elements is suggested, which allowed to get the alternative bases on a biquadratic finite element from the serendipity family without internal knots' inclusion. The cognitive-graphic method allowed to improve the known interpolation procedure of Taylor and to get the modified elements with irregular arrangement of knots. The proposed procedures are universal and are spread in the area of finite-elements.

  8. An overview of modal-based damage identification methods

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Doebling, S.W. [Los Alamos National Lab., NM (United States). Engineering Analysis Group

    1997-09-01

    This paper provides an overview of methods that examine changes in measured vibration response to detect, locate, and characterize damage in structural and mechanical systems. The basic idea behind this technology is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause detectable changes in the modal properties. The motivation for the development of this technology is first provided. The methods are then categorized according to various criteria such as the level of damage detection provided, model-based vs. non-model-based methods and linear vs. nonlinear methods. This overview is limited to methods that can be adapted to a wide range of structures (i.e., are not dependent on a particular assumed model form for the system such as beam-bending behavior and methods and that are not based on updating finite element models). Next, the methods are described in general terms including difficulties associated with their implementation and their fidelity. Past, current and future-planned applications of this technology to actual engineering systems are summarized. The paper concludes with a discussion of critical issues for future research in the area of modal-based damage identification.

  9. Performance analysis, quality function deployment and structured methods

    Science.gov (United States)

    Maier, M. W.

    Quality function deployment, (QFD), an approach to synthesizing several elements of system modeling and design into a single unit, is presented. Behavioral, physical, and performance modeling are usually considered as separate aspects of system design without explicit linkages. Structured methodologies have developed linkages between behavioral and physical models before, but have not considered the integration of performance models. QFD integrates performance models with traditional structured models. In this method, performance requirements such as cost, weight, and detection range are partitioned into matrices. Partitioning is done by developing a performance model, preferably quantitative, for each requirement. The parameters of the model become the engineering objectives in a QFD analysis and the models are embedded in a spreadsheet version of the traditional QFD matrices. The performance model and its parameters are used to derive part of the functional model by recognizing that a given performance model implies some structure to the functionality of the system.

  10. [Methods for the estimation of the renal function].

    Science.gov (United States)

    Fontseré Baldellou, Néstor; Bonal I Bastons, Jordi; Romero González, Ramón

    2007-10-13

    The chronic kidney disease represents one of the pathologies with greater incidence and prevalence in the present sanitary systems. The ambulatory application of different methods that allow a suitable detection, monitoring and stratification of the renal functionalism is of crucial importance. On the basis of the vagueness obtained by means of the application of the serum creatinine, a set of predictive equations for the estimation of the glomerular filtration rate have been developed. Nevertheless, it is essential for the physician to know its limitations, in situations of normal renal function and hyperfiltration, certain associate pathologies and extreme situations of nutritional status and age. In these cases, the application of the isotopic techniques for the calculation of the renal function is more recommendable.

  11. Water hammer prediction and control: the Green's function method

    Institute of Scientific and Technical Information of China (English)

    Li-Jun Xuan; Feng Mao; Jie-Zhi Wu

    2012-01-01

    By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter,with an eddy viscosity depending solely on the space coordinates),and thus its hazardous effect can be rationally controlled and minimized.To this end,we generalize a laminar water hammer equation of Wang et al.(J.Hydrodynamics,B2,51,1995)to include arbitrary initial condition and variable viscosity,and obtain its solution by Green's function method.The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and,by adjusting the eddy viscosity coefficient,experimentally measured turbulent flow data.Optimal WH control principle is thereby constructed and demonstrated.

  12. Application of Patterson-function direct methods to materials characterization

    Directory of Open Access Journals (Sweden)

    Jordi Rius

    2014-09-01

    Full Text Available The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM, from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.

  13. Application of Patterson-function direct methods to materials characterization.

    Science.gov (United States)

    Rius, Jordi

    2014-09-01

    The aim of this article is a general description of the so-called Patterson-function direct methods (PFDM), from their origin to their present state. It covers a 20-year period of methodological contributions to crystal structure solution, most of them published in Acta Crystallographica Section A. The common feature of these variants of direct methods is the introduction of the experimental intensities in the form of the Fourier coefficients of origin-free Patterson-type functions, which allows the active use of both strong and weak reflections. The different optimization algorithms are discussed and their performances compared. This review focuses not only on those PFDM applications related to powder diffraction data but also on some recent results obtained with electron diffraction tomography data.

  14. Robust fractional order differentiators using generalized modulating functions method

    KAUST Repository

    Liu, Dayan

    2015-02-01

    This paper aims at designing a fractional order differentiator for a class of signals satisfying a linear differential equation with unknown parameters. A generalized modulating functions method is proposed first to estimate the unknown parameters, then to derive accurate integral formulae for the left-sided Riemann-Liouville fractional derivatives of the studied signal. Unlike the improper integral in the definition of the left-sided Riemann-Liouville fractional derivative, the integrals in the proposed formulae can be proper and be considered as a low-pass filter by choosing appropriate modulating functions. Hence, digital fractional order differentiators applicable for on-line applications are deduced using a numerical integration method in discrete noisy case. Moreover, some error analysis are given for noise error contributions due to a class of stochastic processes. Finally, numerical examples are given to show the accuracy and robustness of the proposed fractional order differentiators.

  15. Generalization of FEM Using Node-Based Shape Functions

    Directory of Open Access Journals (Sweden)

    Kanok-Nukulchai W.

    2015-12-01

    Full Text Available In standard FEM, the stiffness of an element is exclusively influenced by nodes associated with the element via its element-based shape functions. In this paper, the authors present a method that can be viewed as a generalization of FEM for which the influence of a node is not limited by a hat function around the node. Shape functions over an element can be interpolated over a predefined set of nodes around the element. These node-based shape functions employ Kriging Interpolations commonly found in geostatistical technique. In this study, a set of influencing nodes are covered by surrounding layers of elements defined as its domain of influence (DOI. Thus, the element stiffness is influenced by not only the element nodes, but also satellite nodes outside the element. In a special case with zero satellite nodes, the method is specialized to the conventional FEM. This method is referred to as Node-Based Kriging FEM or K-FEM. The K-FEM has been tested on 2D elastostatic, Reissner-Mindlin’s plate and shell problems. In all cases, exceptionally accurate displacement and stress fields can be achieved with relatively coarse meshes. In addition, the same set of Kringing shape functions can be used to interpolate the mesh geometry. This property is very useful for representing the curved geometry of shells. The distinctive advantage of the K-FEM is its inheritance of the computational procedure of FEM. Any existing FE code can be easily extended to K-FEM; thus, it has a higher chance to be accepted in practice.

  16. Image Inpainting Based on Coherence Transport with Adapted Distance Functions

    KAUST Repository

    März, Thomas

    2011-01-01

    We discuss an extension of our method image inpainting based on coherence transport. For the latter method the pixels of the inpainting domain have to be serialized into an ordered list. Until now, to induce the serialization we have used the distance to boundary map. But there are inpainting problems where the distance to boundary serialization causes unsatisfactory inpainting results. In the present work we demonstrate cases where we can resolve the difficulties by employing other distance functions which better suit the problem at hand. © 2011 Society for Industrial and Applied Mathematics.

  17. Work function measurements by the field emission retarding potential method.

    Science.gov (United States)

    Strayer, R. W.; Mackie, W.; Swanson, L. W.

    1973-01-01

    Description of the theoretical foundation of the field electron retarding potential method, and review of its experimental application to the measurement of single crystal face work functions. The results obtained from several substrates are discussed. An interesting and useful fallout from the experimental approach described is the ability to accurately measure the elastic and inelastic reflection coefficient for impinging electrons to near zero-volt energy.

  18. A method of calculating the Jost function for analytic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rakityansky, S.A. [University of South Africa (UNISA), Pretoria (South Africa). Dept. of Physics; Sofianos, S.A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Amos, K. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1995-05-10

    A combination of the variable-constant and complex coordinate rotation methods is used to solve the two-body Schroedinger equation. The equation is replaced by a system of linear first-order differential equations, which enables one to perform direct calculation of the Jost function for all complex momenta of physical interest including the spectral points corresponding to bound and resonance states. 16 refs., 2 tabs., 2 figs.

  19. A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge-Kutta method

    Science.gov (United States)

    Dehghan, Mehdi; Mohammadi, Vahid

    2017-08-01

    In this research, we investigate the numerical solution of nonlinear Schrödinger equations in two and three dimensions. The numerical meshless method which will be used here is RBF-FD technique. The main advantage of this method is the approximation of the required derivatives based on finite difference technique at each local-support domain as Ωi. At each Ωi, we require to solve a small linear system of algebraic equations with a conditionally positive definite matrix of order 1 (interpolation matrix). This scheme is efficient and its computational cost is same as the moving least squares (MLS) approximation. A challengeable issue is choosing suitable shape parameter for interpolation matrix in this way. In order to overcome this matter, an algorithm which was established by Sarra (2012), will be applied. This algorithm computes the condition number of the local interpolation matrix using the singular value decomposition (SVD) for obtaining the smallest and largest singular values of that matrix. Moreover, an explicit method based on Runge-Kutta formula of fourth-order accuracy will be applied for approximating the time variable. It also decreases the computational costs at each time step since we will not solve a nonlinear system. On the other hand, to compare RBF-FD method with another meshless technique, the moving kriging least squares (MKLS) approximation is considered for the studied model. Our results demonstrate the ability of the present approach for solving the applicable model which is investigated in the current research work.

  20. Non-monotonicity of Lyapunov functions for functional differential equations with enlightenments for related research methods

    Science.gov (United States)

    Zhao, Xueyan; Deng, Feiqi

    2016-07-01

    In this paper, a particular property of Lyapunov functions for functional differential equations (FDEs) is developed, that is the direct dependence of the signs of the derivatives of the Lyapunov functions on the initial data. This property implies that the derivatives of the Lyapunov functions for FDEs cannot be guaranteed to be negative definite generally, and then makes the FDEs differ from the ordinary differential equations constitutionally. With this property, we give some enlightenments for the research methods for establishing stability theorems or criteria for FDEs, which may help us to form a common view about the choice of the investigation methods on the stability of FDEs. The conclusion is stated in both the deterministic and stochastic versions. Two illustrative examples are given to show and verify our conclusion through the paper.

  1. An attribute-based image segmentation method

    Directory of Open Access Journals (Sweden)

    M.C. de Andrade

    1999-07-01

    Full Text Available This work addresses a new image segmentation method founded on Digital Topology and Mathematical Morphology grounds. The ABA (attribute based absorptions transform can be viewed as a region-growing method by flooding simulation working at the scale of the main structures of the image. In this method, the gray level image is treated as a relief flooded from all its local minima, which are progressively detected and merged as the flooding takes place. Each local minimum is exclusively associated to one catchment basin (CB. The CBs merging process is guided by their geometric parameters as depth, area and/or volume. This solution enables the direct segmentation of the original image without the need of a preprocessing step or the explicit marker extraction step, often required by other flooding simulation methods. Some examples of image segmentation, employing the ABA transform, are illustrated for uranium oxide samples. It is shown that the ABA transform presents very good segmentation results even in presence of noisy images. Moreover, it's use is often easier and faster when compared to similar image segmentation methods.

  2. Lagrangian based methods for coherent structure detection

    Energy Technology Data Exchange (ETDEWEB)

    Allshouse, Michael R., E-mail: mallshouse@chaos.utexas.edu [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States); Peacock, Thomas, E-mail: tomp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-09-15

    There has been a proliferation in the development of Lagrangian analytical methods for detecting coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches. We present a review of four approaches and demonstrate the utility of these methods via their application to the same sample analytic model, the canonical double-gyre flow, highlighting the pros and cons of each approach. Two of the methods, the geometric and probabilistic approaches, are well established and require velocity field data over the time interval of interest to identify particularly important material lines and surfaces, and influential regions, respectively. The other two approaches, implementing tools from cluster and braid theory, seek coherent structures based on limited trajectory data, attempting to partition the flow transport into distinct regions. All four of these approaches share the common trait that they are objective methods, meaning that their results do not depend on the frame of reference used. For each method, we also present a number of example applications ranging from blood flow and chemical reactions to ocean and atmospheric flows.

  3. The non-interior continuation methods for solving the P0 function nonlinear complementarity problem

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving the P0 function nonlinear complementarity problem (NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving the P0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP.

  4. The Innovative Bike Conceptual Design by Using Modified Functional Element Design Method

    Directory of Open Access Journals (Sweden)

    Nien-Te Liu

    2016-11-01

    Full Text Available The purpose of the study is to propose a new design process by modifying functional element design approach which can commence a large amount of innovative concepts within a short period of time. Firstly, the original creative functional elements design method is analyzed and the drawbacks are discussed. Then, the modified is proposed and is divided into 6 steps. The creative functional element representations, generalization, specialization, and particularization are used in this method. Every step is described clearly, and users could design by following the process easily. In this paper, a clear and accurate design process is proposed based on the creative functional element design method. By following this method, a lot of innovative bicycles will be created quickly.

  5. Proposed method to construct Boolean functions with maximum possible annihilator immunity

    Science.gov (United States)

    Goyal, Rajni; Panigrahi, Anupama; Bansal, Rohit

    2017-07-01

    Nonlinearity and Algebraic(annihilator) immunity are two core properties of a Boolean function because optimum values of Annihilator Immunity and nonlinearity are required to resist fast algebraic attack and differential cryptanalysis respectively. For a secure cypher system, Boolean function(S-Boxes) should resist maximum number of attacks. It is possible if a Boolean function has optimal trade-off among its properties. Before constructing Boolean functions, we fixed the criteria of our constructions based on its properties. In present work, our construction is based on annihilator immunity and nonlinearity. While keeping above facts in mind,, we have developed a multi-objective evolutionary approach based on NSGA-II and got the optimum value of annihilator immunity with good bound of nonlinearity. We have constructed balanced Boolean functions having the best trade-off among balancedness, Annihilator immunity and nonlinearity for 5, 6 and 7 variables by the proposed method.

  6. A holomorphic version of the Tate-Iwasawa method for unramified L-functions. I

    Science.gov (United States)

    Parshin, A. N.

    2014-10-01

    Using the Tate-Iwasawa method the problem of meromorphic continuation and of the existence of a functional equation can be solved for the zeta and L-functions of one-dimensional arithmetical schemes. A new version of this method is put forward, which looks at the case of curves over a finite field and of unramified L-functions. The proof is based on a reduction of the problem to a Cousin problem on the Riemann sphere which is related to the curve under consideration. Bibliography: 16 titles.

  7. A holomorphic version of the Tate-Iwasawa method for unramified L-functions. I

    Energy Technology Data Exchange (ETDEWEB)

    Parshin, A N [Steklov Mathematical Institute of Russian Academy of Sciences (Russian Federation)

    2014-10-31

    Using the Tate-Iwasawa method the problem of meromorphic continuation and of the existence of a functional equation can be solved for the zeta and L-functions of one-dimensional arithmetical schemes. A new version of this method is put forward, which looks at the case of curves over a finite field and of unramified L-functions. The proof is based on a reduction of the problem to a Cousin problem on the Riemann sphere which is related to the curve under consideration. Bibliography: 16 titles.

  8. Reactor Network Synthesis Based on Instantaneous Objective Function Characteristic Curves

    Institute of Scientific and Technical Information of China (English)

    张治山; 赵文; 王艳丽; 周传光; 袁希钢

    2003-01-01

    It is believed that whether the instantaneous objective function curves of plug-flow-reactor (PFR) and continuous-stirred-tank-reactor (CSTR) overlap or not, they have a consistent changing trend for complex reactions(steady state, isothermal and constant volume). As a result of the relation of the objective functions (selectivity or yield) to the instantaneous objective functions (instantaneous selectivity or instantaneous reaction rate), the optimal reactor network configuration can be determined according to the changing trend of the instantaneous objective function curves. Further, a recent partition strategy for the reactor network synthesis based on the instantaneous objective function characteristic curves is proposed by extending the attainable region partition strategy from the concentration space to the instantaneous objective function-unreacted fraction of key reactant space. In this paper,the instantaneous objective function is closed to be the instantaneous selectivity and several samples axe examined to illustrate the proposed method. The comparison with the previous work indicates it is a very convenient and practical systematic tool of the reactor network synthesis and seems also promising for overcoming the dimension limit of the attainable region partition strategy in the concentration space.

  9. Chapter 11. Community analysis-based methods

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Wu, C.H.; Andersen, G.L.; Holden, P.A.

    2010-05-01

    Microbial communities are each a composite of populations whose presence and relative abundance in water or other environmental samples are a direct manifestation of environmental conditions, including the introduction of microbe-rich fecal material and factors promoting persistence of the microbes therein. As shown by culture-independent methods, different animal-host fecal microbial communities appear distinctive, suggesting that their community profiles can be used to differentiate fecal samples and to potentially reveal the presence of host fecal material in environmental waters. Cross-comparisons of microbial communities from different hosts also reveal relative abundances of genetic groups that can be used to distinguish sources. In increasing order of their information richness, several community analysis methods hold promise for MST applications: phospholipid fatty acid (PLFA) analysis, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP), cloning/sequencing, and PhyloChip. Specific case studies involving TRFLP and PhyloChip approaches demonstrate the ability of community-based analyses of contaminated waters to confirm a diagnosis of water quality based on host-specific marker(s). The success of community-based MST for comprehensively confirming fecal sources relies extensively upon using appropriate multivariate statistical approaches. While community-based MST is still under evaluation and development as a primary diagnostic tool, results presented herein demonstrate its promise. Coupled with its inherently comprehensive ability to capture an unprecedented amount of microbiological data that is relevant to water quality, the tools for microbial community analysis are increasingly accessible, and community-based approaches have unparalleled potential for translation into rapid, perhaps real-time, monitoring platforms.

  10. A Robust Tolerance Design Method Based on Fuzzy Quality Loss

    Institute of Scientific and Technical Information of China (English)

    CAO Yan-long; MAO Jian; YANG Jiang-xin; WU Zhao-tong; WU Li-qun

    2006-01-01

    The traditional tolerance design model ignores the impact of noise factor,so that the design may be infeasible due to variations in design constraints.Based on the analysis of fuzzy factors in tolerance design and the limitations ofthe traditional Taguchi squared quality loss function,a fuzzy quality loss function model utilizing fuzzy theory was introduced.Concepts on fuzzy quality loss and fuzzy quality loss cost were proposed in the model.The characteristics of the new model and the advantages over the traditional Taguchi quality loss function were analyzed.A robust tolerance design model using a fuzzy quality loss function was proposed.An example was given to illustrate the proposed model.Results and comparisons show that the method is suitable and reliable,and makes the conclusions more objective and reasonable.

  11. Effects of nature management on soil functions : development of a method to characterize soil functions and assess the effect of nature management measures

    NARCIS (Netherlands)

    Geissen, V.; Smit, A.; Zwart, K.B.

    2010-01-01

    Assessments on the sustainability of soil use and management are based on the conservation and improvement of soil functions. A major problem in the use of soil functions in those assessments is the fact that no or few quantitative methods exist to characterize soil functions in the field. It is the

  12. Effects of nature management on soil functions : development of a method to characterize soil functions and assess the effect of nature management measures

    NARCIS (Netherlands)

    Geissen, V.; Smit, A.; Zwart, K.B.

    2010-01-01

    Assessments on the sustainability of soil use and management are based on the conservation and improvement of soil functions. A major problem in the use of soil functions in those assessments is the fact that no or few quantitative methods exist to characterize soil functions in the field. It is

  13. Quasiaverages, symmetry breaking and irreducible Green functions method

    Directory of Open Access Journals (Sweden)

    A.L.Kuzemsky

    2010-01-01

    Full Text Available The development and applications of the method of quasiaverages to quantum statistical physics and to quantum solid state theory and, in particular, to quantum theory of magnetism, were considered. It was shown that the role of symmetry (and the breaking of symmetries in combination with the degeneracy of the system was reanalyzed and essentially clarified within the framework of the method of quasiaverages. The problem of finding the ferromagnetic, antiferromagnetic and superconducting "symmetry broken" solutions of the correlated lattice fermion models was discussed within the irreducible Green functions method. A unified scheme for the construction of generalized mean fields (elastic scattering corrections and self-energy (inelastic scattering in terms of the equations of motion and Dyson equation was generalized in order to include the "source fields". This approach complements previous studies of microscopic theory of antiferromagnetism and clarifies the concepts of Neel sublattices for localized and itinerant antiferromagnetism and "spin-aligning fields" of correlated lattice fermions.

  14. Design Support Method Based on Analysis of Shape Impression

    Institute of Scientific and Technical Information of China (English)

    HITOMI Yokoyama; HIDEKI Aoyama

    2011-01-01

    In recent years, aesthetic design is becoming increasingly important in industrial product development due to the growing maturity of product functions. The designer is required to reflect consumer needs in the aesthetic design while giving consideration to the applications and functions of the product. For this reason, effective techniques enabling design creation based on consumer preference and needs are indispensable. The Taguchi method has been effectively used for the robust design of products. In this study, we proposed a design support method applying the Taguchi Method to robust design in respect to the inconsistencies of human kansei(sensitivity), and specifically applied it for quantitatively analyzing the robustness of design solutions created in accordance with the design concept of a digital camera.

  15. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    Science.gov (United States)

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  16. Custom Fusion Methode Based on Borda

    Directory of Open Access Journals (Sweden)

    Issam Abdelbaki

    2016-10-01

    Full Text Available Searching for information on the Internet is not only an activity newly rediscovered, but also a strategic tool to achieve a wide variety of information. Indeed, it’s extremely important to know how to find the information quickly and efficiently. Unfortunately, the Web is so huge and so little structured, that gathering precise, fair and useful information becomes an expensive task. In order to define an information retrieval tool (meta search engine that brings together multiple sources of information search, interest must be credited to the merger phase of search engines results. On the other hand, information search systems tend primarily to model the user with a profile and then to integrate it into the information access chain, to better meet its specific needs. This paper presents a custom fusion method based on Borda method and values retrieved from the user profile. We evaluated our approach on multiple domains and we present some experimental results.

  17. (G'/G)-Expansion Method Equivalent to Extended Tanh Function Method

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-Ping

    2009-01-01

    In a recent article [Physics Letters A 372 (2008) 417], Wang et al. proposed a method, which is called the (G'/G)-expansion method, to look for travelling wave solutions of nonlinear evolution equations. The travelling wave solutions involving parameters of the KdV equation, the mKdV equation, the variant Boussinesq equations, and the Hirota-Satsuma equations are obtained by using this method. They think the (G'/G)-expansion method is a new method and more travelling wave solutions of many nonlinear evolution equations can be obtained. In this paper, we will show that the (G'/G)-expansion method is equivalent to the extended tanh function method.

  18. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

    KAUST Repository

    Piret, Cécile

    2012-05-01

    Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper, we investigate methods to solve PDEs on arbitrary stationary surfaces embedded in . R3 using the RBF method. We present three RBF-based methods that easily discretize surface differential operators. We take advantage of the meshfree character of RBFs, which give us a high accuracy and the flexibility to represent the most complex geometries in any dimension. Two out of the three methods, which we call the orthogonal gradients (OGr) methods are the result of our work and are hereby presented for the first time. © 2012 Elsevier Inc.

  19. Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian space-time and V. Weiss and H. Weiss golden ratio in brain

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari (Italy); School of Advanced International Studies on Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: elio.conte@fastwebnet.it; Khrennikov, Andrei [International Center for Mathematical Modelling in Physics and Cognitive Sciences, M.S.I., University of Vaexjoe, S-35195 (Sweden); Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)

    2009-09-15

    We develop a new method for analysis of fundamental brain waves as recorded by the EEG. To this purpose we introduce a Fractal Variance Function that is based on the calculation of the variogram. The method is completed by using Random Matrix Theory. Some examples are given. We also discuss the link of such formulation with H. Weiss and V. Weiss golden ratio found in the brain, and with El Naschie fractal Cantorian space-time theory.

  20. Trinocular Calibration Method Based on Binocular Calibration

    Directory of Open Access Journals (Sweden)

    CAO Dan-Dan

    2012-10-01

    Full Text Available In order to solve the self-occlusion problem in plane-based multi-camera calibration system and expand the measurement range, a tri-camera vision system based on binocular calibration is proposed. The three cameras are grouped into two pairs, while the public camera is taken as the reference to build the global coordinate. By calibration of the measured absolute distance and the true absolute distance, global calibration is realized. The MRE (mean relative error of the global calibration of the two camera pairs in the experiments can be as low as 0.277% and 0.328% respectively. Experiment results show that this method is feasible, simple and effective, and has high precision.

  1. Kernel method-based fuzzy clustering algorithm

    Institute of Scientific and Technical Information of China (English)

    Wu Zhongdong; Gao Xinbo; Xie Weixin; Yu Jianping

    2005-01-01

    The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.

  2. On Task-based English Learning Method

    Institute of Scientific and Technical Information of China (English)

    朱蕾

    2010-01-01

    @@ Task-Based learning(TBL)is becoming a catchword in English circles.The new national English Curricular Syllabus also recommends the use of the TBL approach in classroom teaching.The purpose of learning a foreign language is the most direct communicative in the target language,and speaking is the most direct communicative method.In recent years,with the publication of the New Curriculum Standard by the State Education Department,the teaching reform in middle and primary schools has been being implemented step by step.

  3. EPC: A Provably Secure Permutation Based Compression Function

    DEFF Research Database (Denmark)

    Bagheri, Nasour; Gauravaram, Praveen; Naderi, Majid;

    2010-01-01

    The security of permutation-based hash functions in the ideal permutation model has been studied when the input-length of compression function is larger than the input-length of the permutation function. In this paper, we consider permutation based compression functions that have input lengths sh...

  4. Automated Functional Testing based on the Navigation of Web Applications

    CERN Document Server

    García, Boni; 10.4204/EPTCS.61.4

    2011-01-01

    Web applications are becoming more and more complex. Testing such applications is an intricate hard and time-consuming activity. Therefore, testing is often poorly performed or skipped by practitioners. Test automation can help to avoid this situation. Hence, this paper presents a novel approach to perform automated software testing for web applications based on its navigation. On the one hand, web navigation is the process of traversing a web application using a browser. On the other hand, functional requirements are actions that an application must do. Therefore, the evaluation of the correct navigation of web applications results in the assessment of the specified functional requirements. The proposed method to perform the automation is done in four levels: test case generation, test data derivation, test case execution, and test case reporting. This method is driven by three kinds of inputs: i) UML models; ii) Selenium scripts; iii) XML files. We have implemented our approach in an open-source testing fra...

  5. Select and Cluster: A Method for Finding Functional Networks of Clustered Voxels in fMRI

    Science.gov (United States)

    DonGiovanni, Danilo

    2016-01-01

    Extracting functional connectivity patterns among cortical regions in fMRI datasets is a challenge stimulating the development of effective data-driven or model based techniques. Here, we present a novel data-driven method for the extraction of significantly connected functional ROIs directly from the preprocessed fMRI data without relying on a priori knowledge of the expected activations. This method finds spatially compact groups of voxels which show a homogeneous pattern of significant connectivity with other regions in the brain. The method, called Select and Cluster (S&C), consists of two steps: first, a dimensionality reduction step based on a blind multiresolution pairwise correlation by which the subset of all cortical voxels with significant mutual correlation is selected and the second step in which the selected voxels are grouped into spatially compact and functionally homogeneous ROIs by means of a Support Vector Clustering (SVC) algorithm. The S&C method is described in detail. Its performance assessed on simulated and experimental fMRI data is compared to other methods commonly used in functional connectivity analyses, such as Independent Component Analysis (ICA) or clustering. S&C method simplifies the extraction of functional networks in fMRI by identifying automatically spatially compact groups of voxels (ROIs) involved in whole brain scale activation networks. PMID:27656202

  6. Optimising Job-Shop Functions Utilising the Score-Function Method

    DEFF Research Database (Denmark)

    Nielsen, Erland Hejn

    2000-01-01

    if the gradients are unbiased, the SA-algorithm will be known as a Robbins-Monro-algorithm. The present work will focus on the SF method and show how to migrate it to general types of discrete event simulation systems, in this case represented by SIMNET II, and discuss how the optimisation of the functioning...

  7. 基于形函数方法快速识别结构动态荷载的试验验证%Experimental validation of a fast dynamic load identification method based on load shape function

    Institute of Scientific and Technical Information of China (English)

    张青霞; 段忠东; Lukasz Jankowski; 王丰

    2011-01-01

    A dynamic load identification method was introduced and complemented, in which the force was approximated by using the shape functions in die finite element theory. The computational work was reduced a lot by calculating the weights of shape functions instead of indentifying the discrete load time history and the performance of the deconvolution method in the condition of long sampling time period or high sampling frequency was improved. Moreover, the ill-conditioning of the inverse problem was corrected, and the robustness to noise was strengthened. The numerical example of a continuous beam verifies that the load can be identified precisely by this method under the influence of 5% Gaussian noise pollution in the signals. In a cantilever beam experiment, via the measured structural responses, the method enables the online load identification which is performed repeatedly in a moving time window.%在动态荷载识别中常常由于矩阵的病态性影响识别的精度,利用有限元理论中的形函数逼近荷载曲线,将识别离散的荷载历程转化为计算有限的形函数权重,从而显著改善反卷积法识别荷载中存在的采样时间长或采样频率高时数值求解困难的问题;并能改善反问题的病态性,提高对噪声的鲁棒性.一个连续梁的数值算例比较验证了该方法在5%的高斯噪声影响下能精确地识别未知荷载.悬臂梁试验中,通过实测的结构动态响应,在移动时间窗内利用荷载形函数方法可以实现激励的在线识别.

  8. Star pattern recognition method based on neural network

    Institute of Scientific and Technical Information of China (English)

    LI Chunyan; LI Ke; ZHANG Longyun; JIN Shengzhen; ZU Jifeng

    2003-01-01

    Star sensor is an avionics instrument used to provide the absolute 3-axis attitude of a spacecraft by utilizing star observations. The key function is to recognize the observed stars by comparing them with the reference catalogue. Autonomous star pattern recognition requires that similar patterns can be distinguished from each other with a small training set. Therefore, a new method based on neural network technology is proposed and a recognition system containing parallel backpropagation (BP) multi-subnets is designed. The simulation results show that the method performs much better than traditional algorithms and the proposed system can achieve both higher recognition accuracy and faster recognition speed.

  9. Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments.

    Science.gov (United States)

    Ridge, Karen M; Shumaker, Dale; Robert, Amélie; Hookway, Caroline; Gelfand, Vladimir I; Janmey, Paul A; Lowery, Jason; Guo, Ming; Weitz, David A; Kuczmarski, Edward; Goldman, Robert D

    2016-01-01

    The type III intermediate filament protein vimentin was once thought to function mainly as a static structural protein in the cytoskeleton of cells of mesenchymal origin. Now, however, vimentin is known to form a dynamic, flexible network that plays an important role in a number of signaling pathways. Here, we describe various methods that have been developed to investigate the cellular functions of the vimentin protein and intermediate filament network, including chemical disruption, photoactivation and photoconversion, biolayer interferometry, soluble bead binding assay, three-dimensional substrate experiments, collagen gel contraction, optical-tweezer active microrheology, and force spectrum microscopy. Using these techniques, the contributions of vimentin to essential cellular processes can be probed in ever further detail.

  10. Convex functions and optimization methods on Riemannian manifolds

    CERN Document Server

    Udrişte, Constantin

    1994-01-01

    This unique monograph discusses the interaction between Riemannian geometry, convex programming, numerical analysis, dynamical systems and mathematical modelling. The book is the first account of the development of this subject as it emerged at the beginning of the 'seventies. A unified theory of convexity of functions, dynamical systems and optimization methods on Riemannian manifolds is also presented. Topics covered include geodesics and completeness of Riemannian manifolds, variations of the p-energy of a curve and Jacobi fields, convex programs on Riemannian manifolds, geometrical constructions of convex functions, flows and energies, applications of convexity, descent algorithms on Riemannian manifolds, TC and TP programs for calculations and plots, all allowing the user to explore and experiment interactively with real life problems in the language of Riemannian geometry. An appendix is devoted to convexity and completeness in Finsler manifolds. For students and researchers in such diverse fields as pu...

  11. Three-dimensional beam propagation method based on the variable transformed Galerkin's method

    Institute of Scientific and Technical Information of China (English)

    XIAO Jinbiao; SUN Xiaohan; ZHANG Mingde

    2004-01-01

    A novel three-dimensional beam propagation method (BPM) based on the variable transformed Galerkin's method is introduced for simulating optical field propagation in three-dimensional dielectric structures. The infinite Cartesian x-y plane is mapped into a unit square by a tangent-type function transformation. Consequently, the infinite region problem is converted into the finite region problem. Thus, the boundary truncation is eliminated and the calculation accuracy is promoted. The three-dimensional BPM basic equation is reduced to a set of first-order ordinary differential equations through sinusoidal basis function, which fits arbitrary cladding optical waveguide, then direct solution of the resulting equations by means of the Runge-Kutta method. In addition,the calculation is efficient due to the small matrix derived from the present technique.Both z-invariant and z-variant examples are considered to test both the accuracy and utility of this approach.

  12. Meshfree local radial basis function collocation method with image nodes

    Science.gov (United States)

    Baek, Seung Ki; Kim, Minjae

    2017-07-01

    We numerically solve two-dimensional heat diffusion problems by using a simple variant of the meshfree local radial-basis function (RBF) collocation method. The main idea is to include an additional set of sample nodes outside the problem domain, similarly to the method of images in electrostatics, to perform collocation on the domain boundaries. We can thereby take into account the temperature profile as well as its gradients specified by boundary conditions at the same time, which holds true even for a node where two or more boundaries meet with different boundary conditions. We argue that the image method is computationally efficient when combined with the local RBF collocation method, whereas the addition of image nodes becomes very costly in case of the global collocation. We apply our modified method to a benchmark test of a boundary value problem, and find that this simple modification reduces the maximum error from the analytic solution significantly. The reduction is small for an initial value problem with simpler boundary conditions. We observe increased numerical instability, which has to be compensated for by a sufficient number of sample nodes and/or more careful parameter choices for time integration.

  13. Validating the JobFit system functional assessment method

    Energy Technology Data Exchange (ETDEWEB)

    Jenny Legge; Robin Burgess-Limerick

    2007-05-15

    Workplace injuries are costing the Australian coal mining industry and its communities $410 Million a year. This ACARP study aims to meet those demands by developing a safe, reliable and valid pre-employment functional assessment tool. All JobFit System Pre-Employment Functional Assessments (PEFAs) consist of a musculoskeletal screen, balance test, aerobic fitness test and job-specific postural tolerances and material handling tasks. The results of each component are compared to the applicant's job demands and an overall PEFA score between 1 and 4 is given with 1 being the better score. The reliability study and validity study were conducted concurrently. The reliability study examined test-retest, intra-tester and inter-tester reliability of the JobFit System Functional Assessment Method. Overall, good to excellent reliability was found, which was sufficient to be used for comparison with injury data for determining the validity of the assessment. The overall assessment score and material handling tasks had the greatest reliability. The validity study compared the assessment results of 336 records from a Queensland underground and open cut coal mine with their injury records. A predictive relationship was found between PEFA score and the risk of a back/trunk/shoulder injury from manual handling. An association was also found between PEFA score of 1 and increased length of employment. Lower aerobic fitness test results had an inverse relationship with injury rates. The study found that underground workers, regardless of PEFA score, were more likely to have an injury when compared to other departments. No relationship was found between age and risk of injury. These results confirm the validity of the JobFit System Functional Assessment method.

  14. Bus Based Synchronization Method for CHIPPER Based NoC

    Directory of Open Access Journals (Sweden)

    D. Muralidharan

    2016-01-01

    Full Text Available Network on Chip (NoC reduces the communication delay of System on Chip (SoC. The main limitation of NoC is power consumption and area overhead. Bufferless NoC reduces the area complexity and power consumption by eliminating buffers in the traditional routers. The bufferless NoC design should include live lock freeness since they use hot potato routing. This increases the complexity of bufferless NoC design. Among the available propositions to reduce this complexity, CHIPPER based bufferless NoC is considered as one of the best options. Live lock freeness is provided in CHIPPER through golden epoch and golden packet. All routers follow some synchronization method to identify a golden packet. Clock based method is intuitively followed for synchronization in CHIPPER based NoCs. It is shown in this work that the worst-case latency of packets is unbearably high when the above synchronization is followed. To alleviate this problem, broadcast bus NoC (BBus NoC approach is proposed in this work. The proposed method decreases the worst-case latency of packets by increasing the golden epoch rate of CHIPPER.

  15. A Novel Method For One-way Hash Function Construction Based on the Couple Map lattices%一种基于改进的CML的Hash函数算法

    Institute of Scientific and Technical Information of China (English)

    杨雪

    2011-01-01

    本文将标准的耦合映象格子模型进行一定改进,提出了一种基于改进的耦合映象格子的Hash函数构造算法。理论分析,仿真试验和对比分析表明此算法也具有很好的统计特性,抗碰撞性和灵活性。%Based on the couple map lattices (CML), a novel scheme for constructing Hash functions is proposed in this paper. Additionally, the algorithm has good statistical properties, excellent one-way, confusion and diffusion strong collision resistance.

  16. Recent Advances in the Korringa-Kohn-Rostoker Green Function Method

    Directory of Open Access Journals (Sweden)

    Zeller Rudolf

    2014-01-01

    Full Text Available The Korringa-Kohn-Rostoker (KKR Green function (GF method is a technique for all-electron full-potential density-functional calculations. Similar to the historical Wigner-Seitz cellular method, the KKR-GF method uses a partitioning of space into atomic Wigner-Seitz cells. However, the numerically demanding wave-function matching at the cell boundaries is avoided by use of an integral equation formalism based on the concept of reference Green functions. The advantage of this formalism will be illustrated by the recent progress made for very large systems with thousands of inequivalent atoms and for very accurate calculations of atomic forces and total energies.

  17. Extensive regularization of the coupled cluster methods based on the generating functional formalism: Application to gas-phase benchmarks and to the SN2 reaction of CHCl3 and OH- in water

    Science.gov (United States)

    Kowalski, Karol; Valiev, Marat

    2009-12-01

    The recently introduced energy expansion based on the use of generating functional (GF) [K. Kowalski and P. D. Fan, J. Chem. Phys. 130, 084112 (2009)] provides a way of constructing size-consistent noniterative coupled cluster (CC) corrections in terms of moments of the CC equations. To take advantage of this expansion in a strongly interacting regime, the regularization of the cluster amplitudes is required in order to counteract the effect of excessive growth of the norm of the CC wave function. Although proven to be efficient, the previously discussed form of the regularization does not lead to rigorously size-consistent corrections. In this paper we address the issue of size-consistent regularization of the GF expansion by redefining the equations for the cluster amplitudes. The performance and basic features of proposed methodology are illustrated on several gas-phase benchmark systems. Moreover, the regularized GF approaches are combined with quantum mechanical molecular mechanics module and applied to describe the SN2 reaction of CHCl3 and OH- in aqueous solution.

  18. IDEF method-based simulation model design and development framework

    Directory of Open Access Journals (Sweden)

    Ki-Young Jeong

    2009-09-01

    Full Text Available The purpose of this study is to provide an IDEF method-based integrated framework for a business process simulation model to reduce the model development time by increasing the communication and knowledge reusability during a simulation project. In this framework, simulation requirements are collected by a function modeling method (IDEF0 and a process modeling method (IDEF3. Based on these requirements, a common data model is constructed using the IDEF1X method. From this reusable data model, multiple simulation models are automatically generated using a database-driven simulation model development approach. The framework is claimed to help both requirement collection and experimentation phases during a simulation project by improving system knowledge, model reusability, and maintainability through the systematic use of three descriptive IDEF methods and the features of the relational database technologies. A complex semiconductor fabrication case study was used as a testbed to evaluate and illustrate the concepts and the framework. Two different simulation software products were used to develop and control the semiconductor model from the same knowledge base. The case study empirically showed that this framework could help improve the simulation project processes by using IDEF-based descriptive models and the relational database technology. Authors also concluded that this framework could be easily applied to other analytical model generation by separating the logic from the data.

  19. Augmented Lagrangian Method for Constrained Nuclear Density Functional Theory

    CERN Document Server

    Staszczak, A; Baran, A; Nazarewicz, W

    2010-01-01

    The augmented Lagrangiam method (ALM), widely used in quantum chemistry constrained optimization problems, is applied in the context of the nuclear Density Functional Theory (DFT) in the self-consistent constrained Skyrme Hartree-Fock-Bogoliubov (CHFB) variant. The ALM allows precise calculations of multidimensional energy surfaces in the space of collective coordinates that are needed to, e.g., determine fission pathways and saddle points; it improves accuracy of computed derivatives with respect to collective variables that are used to determine collective inertia; and is well adapted to supercomputer applications.

  20. Method for seamless unlock function for mobile applications.

    Science.gov (United States)

    Vasyltsov, Ihor; Bak, Changgyu; Vasyltsov, Ihor; Changgyu Bak; Bak, Changgyu; Vasyltsov, Ihor

    2016-08-01

    In this paper there is proposed an approach for seamless unlock security function for mobile application. The method combines the biomedical signals measured from human body and motion signals acquired from the devices. For this purpose a wearable device and a mobile device can be securely synchronized. It is shown that entropy extracted from biomedical ECG signal is comparable to the strength of the PIN-code security, the same time giving the easiness, flexibility, and seamlessness of the usage to the user. Also, it is shown that motion sensors can provide enough precision for the correct detection of the appropriate timing to unlock device.

  1. Parametric Potential Determination by the Canonical Function Method

    CERN Document Server

    Tannous, C; Langlois, J M

    1999-01-01

    The canonical function method (CFM) is a powerful means for solving the Radial Schrodinger Equation. The mathematical difficulty of the RSE lies in the fact it is a singular boundary value problem. The CFM turns it into a regular initial value problem and allows the full determination of the spectrum of the Schrodinger operator without calculating the eigenfunctions. Following the parametrisation suggested by Klapisch and Green, Sellin and Zachor we develop a CFM to optimise the potential parameters in order to reproduce the experimental Quantum Defect results for various Rydberg series of He, Ne and Ar as evaluated from Moore's data.

  2. Methods for transient assay of gene function in floral tissues

    Directory of Open Access Journals (Sweden)

    Pathirana Nilangani N

    2007-01-01

    Full Text Available Abstract Background There is considerable interest in rapid assays or screening systems for assigning gene function. However, analysis of gene function in the flowers of some species is restricted due to the difficulty of producing stably transformed transgenic plants. As a result, experimental approaches based on transient gene expression assays are frequently used. Biolistics has long been used for transient over-expression of genes of interest, but has not been exploited for gene silencing studies. Agrobacterium-infiltration has also been used, but the focus primarily has been on the transient transformation of leaf tissue. Results Two constructs, one expressing an inverted repeat of the Antirrhinum majus (Antirrhinum chalcone synthase gene (CHS and the other an inverted repeat of the Antirrhinum transcription factor gene Rosea1, were shown to effectively induce CHS and Rosea1 gene silencing, respectively, when introduced biolistically into petal tissue of Antirrhinum flowers developing in vitro. A high-throughput vector expressing the Antirrhinum CHS gene attached to an inverted repeat of the nos terminator was also shown to be effective. Silencing spread systemically to create large zones of petal tissue lacking pigmentation, with transmission of the silenced state spreading both laterally within the affected epidermal cell layer and into lower cell layers, including the epidermis of the other petal surface. Transient Agrobacterium-mediated transformation of petal tissue of tobacco and petunia flowers in situ or detached was also achieved, using expression of the reporter genes GUS and GFP to visualise transgene expression. Conclusion We demonstrate the feasibility of using biolistics-based transient RNAi, and transient transformation of petal tissue via Agrobacterium infiltration to study gene function in petals. We have also produced a vector for high throughput gene silencing studies, incorporating the option of using T-A cloning to

  3. Robust digital image watermarking against shearing based on Haar orthogonal function system

    Institute of Scientific and Technical Information of China (English)

    DENG Ming-hui; HAO Yan-ling; SHEN Dong-hui

    2004-01-01

    In this paper, a robust digital watermarking method against shearing based on Haar orthogonal function system was introduced. The proposed method adopted the complete generalized orthogonal properties of Haar orthogonal function system to achieve the piece -based orthogonal transform on the image. The significant middle frequency coefficients in the transformation matrix are picked up, based on characteristics of the image visual system and the Haar orthogonal transform. The watermark is adoptively weighed to the middle frequency matrix. The method improves the validity of watermarking and shows excellent advantage against shearing attack. Experimental results show that the Haar orthogonal function system based watermark approach can provide an excellent protection under geometric attacks.

  4. A decomposition method based on a model of continuous change.

    Science.gov (United States)

    Horiuchi, Shiro; Wilmoth, John R; Pletcher, Scott D

    2008-11-01

    A demographic measure is often expressed as a deterministic or stochastic function of multiple variables (covariates), and a general problem (the decomposition problem) is to assess contributions of individual covariates to a difference in the demographic measure (dependent variable) between two populations. We propose a method of decomposition analysis based on an assumption that covariates change continuously along an actual or hypothetical dimension. This assumption leads to a general model that logically justifies the additivity of covariate effects and the elimination of interaction terms, even if the dependent variable itself is a nonadditive function. A comparison with earlier methods illustrates other practical advantages of the method: in addition to an absence of residuals or interaction terms, the method can easily handle a large number of covariates and does not require a logically meaningful ordering of covariates. Two empirical examples show that the method can be applied flexibly to a wide variety of decomposition problems. This study also suggests that when data are available at multiple time points over a long interval, it is more accurate to compute an aggregated decomposition based on multiple subintervals than to compute a single decomposition for the entire study period.

  5. Affine Riesz bases and the dual function

    Science.gov (United States)

    Terekhin, P. A.

    2016-09-01

    This paper is concerned with systems of functions on the unit interval which are generated by dyadic dilations and integer translations of a given function. Similar systems have a wide range of applications in the theory of wavelets, in nonlinear, and in particular, in greedy approximations, in the representation of functions by series, in problems in numerical analysis, and so on. Conditions, and in some particular cases, criteria for the generating function are given for the system to be Besselian, to form a Riesz basis or to be an orthonormal system, and separately, to be complete. For this purpose, the concept of the dual function of the generating function of a system is introduced and studied. Some of the conditions given below are easy to verify in practice, as is demonstrated by examples. Bibliography: 25 titles.

  6. Accelerometer Method and Apparatus for Integral Display and Control Functions

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1998-01-01

    Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.

  7. Method Design and System Implementation of Function Test Based On Android Smart Terminal%Android 智能终端功能测试方法设计与系统实现

    Institute of Scientific and Technical Information of China (English)

    刘璐

    2014-01-01

    目前,Android 智能终端凭借其平台良好的开放性及易开发性,已占据了很大的市场,随着各种设备的层出不穷,来自各阶层的用户需要一种快速获取设备信息以及测试整机基本功能的方法。本文立足普通用户的需求,首先给出获取整台 Android 设备的基本信息的方法,然后针对 Android 智能终端的各个基本模块(包括耳机、麦克风、听筒、振动器、闪光灯、屏幕、摄像头、通话、WIFI、GPS、蓝牙、传感器)的特点和工作流程,给出相应的快速有效的测试方法,最终进行了测试方法的系统实现与验证。%Nowdays, Android smart terminal has owned a great market due to the operating system's good openess and easy development. With Android devices are becoming more and more, users from all kinds of levels need one method to acquire the device information and test its basic functions quickly. This paper takes user demand into consideration, which provides perfect information for users, and then in terms of all basic modules of terminal including headphones, microphone, vibrator, flash light, LCD, camera, phone, WIFI, GPS, bluetooth, sensors, the paper decribes a quick and effective method. And finally, the paper describes the system implementation and verification of this test method.

  8. Application of Exp-function method to Riccati equation and new exact solutions with three arbitrary functions of Broer-Kaup-Kupershmidt equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Sheng [Department of Mathematics, Bohai University, Jinzhou 121000 (China)], E-mail: zhshaeng@yahoo.com.cn

    2008-03-10

    In this Letter, the Exp-function method is used to seek generalized solitonary solutions of Riccati equation. Based on the Riccati equation and its generalized solitonary solutions, new exact solutions with three arbitrary functions of the (2+1)-dimensional Broer-Kaup-Kupershmidt equations are obtained. It is shown that the Exp-function method provides a straightforward and important mathematical tool for nonlinear evolution equations in mathematical physics.

  9. Comparison of belief functions and voting method for fusion of mine detection sensors

    NARCIS (Netherlands)

    Milisavljevic, N.; Broek, S.P. van den; Bloch, I.; Schwering, P.B.W.; Lensen, H.A.; Acheroy, M.

    2001-01-01

    In this paper, two methods for fusion of mine detection sensors are presented, based on belief functions and on voting procedures, respectively. Their application is illustrated and compared on a real multisensor data set collected at the TNO test facilities under the HOM 2000 project. This set cont

  10. Periodic Solutions of Evolution Variational Inequalities-a Method of Guiding Functions

    Institute of Scientific and Technical Information of China (English)

    Samir ADLY; Daniel GOELEVEN; Michel TH(E)RA

    2009-01-01

    This paper focuses on a part of the presentation given by the third author at the Shanghai Forum on Industrial and Applied Mathematics (Shanghai 2006). It is related to the existence of a periodic solution of evolution variational inequalities. The approach is based on the method of guiding functions.

  11. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies

    Energy Technology Data Exchange (ETDEWEB)

    McKechnie, Scott [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Booth, George H. [Theory and Simulation of Condensed Matter, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Cohen, Aron J. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Cole, Jacqueline M., E-mail: jmc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States)

    2015-05-21

    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.

  12. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies

    Science.gov (United States)

    McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.

    2015-05-01

    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.

  13. About Classification Methods Based on Tensor Modelling for Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Salah Bourennane

    2010-03-01

    Full Text Available Denoising and Dimensionality Reduction (DR are key issue to improve the classifiers efficiency for Hyper spectral images (HSI. The multi-way Wiener filtering recently developed is used, Principal and independent component analysis (PCA; ICA and projection pursuit(PP approaches to DR have been investigated. These matrix algebra methods are applied on vectorized images. Thereof, the spatial rearrangement is lost. To jointly take advantage of the spatial and spectral information, HSI has been recently represented as tensor. Offering multiple ways to decompose data orthogonally, we introduced filtering and DR methods based on multilinear algebra tools. The DR is performed on spectral way using PCA, or PP joint to an orthogonal projection onto a lower subspace dimension of the spatial ways. Weshow the classification improvement using the introduced methods in function to existing methods. This experiment is exemplified using real-world HYDICE data. Multi-way filtering, Dimensionality reduction, matrix and multilinear algebra tools, tensor processing.

  14. Measurement-based method for verifying quantum discord

    Science.gov (United States)

    Rahimi-Keshari, Saleh; Caves, Carlton M.; Ralph, Timothy C.

    2013-01-01

    We introduce a measurement-based method for verifying quantum discord of any bipartite quantum system. We show that by performing an informationally complete positive operator valued measurement (IC-POVM) on one subsystem and checking the commutativity of the conditional states of the other subsystem, quantum discord from the second subsystem to the first can be verified. This is an improvement upon previous methods, which enables us to efficiently apply our method to continuous-variable systems, as IC-POVM's are readily available from homodyne or heterodyne measurements. We show that quantum discord for Gaussian states can be verified by checking whether the peaks of the conditional Wigner functions corresponding to two different outcomes of heterodyne measurement coincide at the same point in the phase space. Using this method, we also prove that the only Gaussian states with zero discord are product states; hence, Gaussian states with Gaussian discord have nonzero quantum discord.

  15. Synthesis Design Method of Reversible Logic Circuit Based on Kronecker Functional Decision Diagram%基于KFDD的可逆逻辑电路综合设计方法

    Institute of Scientific and Technical Information of China (English)

    王友仁; 沈先坤; 周影辉

    2014-01-01

    可逆逻辑作为量子计算,纳米技术,低功耗设计等新兴技术的基础,近年来得到了越来越多的关注和研究。然而,大多数可逆逻辑综合方法对函数真值表表达形式的依赖使得综合电路规模受到了限制。决策图作为一种更加简洁的布尔函数表示方法,其为可逆逻辑综合提供了另一种途径。本文基于Kronecker函数决策图(KFDD )提出了一种适合于综合大规模电路的综合方法。该方法利用KFDD描述功能函数,以局部最优的方式从三种节点分解方法中寻找最优分解方法,并根据Kronecker函数决策图中不同类型的节点构建相应的可逆逻辑电路模块,最后将各节点替换电路模块实现级联得到结果电路。以可逆基准电路为例,对该方法进行了验证。实验结果表明,该方法能以较低的代价实现对较大规模函数的可逆逻辑电路综合。%Reversible logic has obtained more and more attention and research as the basis for several emerging technologies such as quantum computing ,nanotechnologies and low-power design .However ,currently most synthesis algorithms for reversible circuits suffer from being restricted to deal with relatively small functions only ,since they rely on a truth table representation of the function to be synthesized .Decision Diagram serving as a more compact Boolean function description provides anther way to synthe-sis of reversible logic .Here ,a synthesis approach based on Kronecker Functional Decision Diagram (KFDD) is proposed ,that gen-erates KFDD for a logic function by means of choosing the local optimal one from three alternative node decomposition types .Final-ly ,the result circuit can be produced by substituting all nodes of the KFDD with circuit modules and cascading them .Verified by re-versible benchmarks ,experiments show the adaption of the proposed approach to large functions with better results .

  16. Ontology-Based Prediction and Prioritization of Gene Functional Annotations.

    Science.gov (United States)

    Chicco, Davide; Masseroli, Marco

    2016-01-01

    Genes and their protein products are essential molecular units of a living organism. The knowledge of their functions is key for the understanding of physiological and pathological biological processes, as well as in the development of new drugs and therapies. The association of a gene or protein with its functions, described by controlled terms of biomolecular terminologies or ontologies, is named gene functional annotation. Very many and valuable gene annotations expressed through terminologies and ontologies are available. Nevertheless, they might include some erroneous information, since only a subset of annotations are reviewed by curators. Furthermore, they are incomplete by definition, given the rapidly evolving pace of biomolecular knowledge. In this scenario, computational methods that are able to quicken the annotation curation process and reliably suggest new annotations are very important. Here, we first propose a computational pipeline that uses different semantic and machine learning methods to predict novel ontology-based gene functional annotations; then, we introduce a new semantic prioritization rule to categorize the predicted annotations by their likelihood of being correct. Our tests and validations proved the effectiveness of our pipeline and prioritization of predicted annotations, by selecting as most likely manifold predicted annotations that were later confirmed.

  17. Distinguishing Functional DNA Words; A Method for Measuring Clustering Levels

    Science.gov (United States)

    Moghaddasi, Hanieh; Khalifeh, Khosrow; Darooneh, Amir Hossein

    2017-01-01

    Functional DNA sub-sequences and genome elements are spatially clustered through the genome just as keywords in literary texts. Therefore, some of the methods for ranking words in texts can also be used to compare different DNA sub-sequences. In analogy with the literary texts, here we claim that the distribution of distances between the successive sub-sequences (words) is q-exponential which is the distribution function in non-extensive statistical mechanics. Thus the q-parameter can be used as a measure of words clustering levels. Here, we analyzed the distribution of distances between consecutive occurrences of 16 possible dinucleotides in human chromosomes to obtain their corresponding q-parameters. We found that CG as a biologically important two-letter word concerning its methylation, has the highest clustering level. This finding shows the predicting ability of the method in biology. We also proposed that chromosome 18 with the largest value of q-parameter for promoters of genes is more sensitive to dietary and lifestyle. We extended our study to compare the genome of some selected organisms and concluded that the clustering level of CGs increases in higher evolutionary organisms compared to lower ones. PMID:28128320

  18. Functionalization of Carbon Nanofibres Obtained by Floating Catalyst Method

    Directory of Open Access Journals (Sweden)

    Adolfo Fernández

    2015-01-01

    Full Text Available The excellent physicochemical and electrical properties of carbon nanofibres (CNF combined with the possibility of being produced at industrial scale at reasonable costs have promoted the interest in their use in very diverse areas. However, there are still some drawbacks that must be solved in order to optimize their set of properties such as the presence of impurities or the imperfections in the crystalline structure. In this work, different modification treatments of CNFs produced by the floating catalyst method have been studied. Three types of modification processes have been explored that can be grouped as mechanical, thermal, and chemical functionalization processes. Mechanical processing has allowed solving the agglomeration problem related to CNFs produced by floating catalyst method and the resulting modified product ensures the secure handling of carbon nanofibres. Thermal and chemical treatments lead to purer and more crystalline products by removing catalyst impurities and amorphous carbon. Functionalization processes explored in this work open the possibility of customized posttreatment of carbon nanofibres according to the desired requirements.

  19. Distinguishing Functional DNA Words; A Method for Measuring Clustering Levels

    Science.gov (United States)

    Moghaddasi, Hanieh; Khalifeh, Khosrow; Darooneh, Amir Hossein

    2017-01-01

    Functional DNA sub-sequences and genome elements are spatially clustered through the genome just as keywords in literary texts. Therefore, some of the methods for ranking words in texts can also be used to compare different DNA sub-sequences. In analogy with the literary texts, here we claim that the distribution of distances between the successive sub-sequences (words) is q-exponential which is the distribution function in non-extensive statistical mechanics. Thus the q-parameter can be used as a measure of words clustering levels. Here, we analyzed the distribution of distances between consecutive occurrences of 16 possible dinucleotides in human chromosomes to obtain their corresponding q-parameters. We found that CG as a biologically important two-letter word concerning its methylation, has the highest clustering level. This finding shows the predicting ability of the method in biology. We also proposed that chromosome 18 with the largest value of q-parameter for promoters of genes is more sensitive to dietary and lifestyle. We extended our study to compare the genome of some selected organisms and concluded that the clustering level of CGs increases in higher evolutionary organisms compared to lower ones.

  20. Functional Behavioral Assessment: A School Based Model.

    Science.gov (United States)

    Asmus, Jennifer M.; Vollmer, Timothy R.; Borrero, John C.

    2002-01-01

    This article begins by discussing requirements for functional behavioral assessment under the Individuals with Disabilities Education Act and then describes a comprehensive model for the application of behavior analysis in the schools. The model includes descriptive assessment, functional analysis, and intervention and involves the participation…