WorldWideScience

Sample records for function epidermal growth

  1. Epidermal Growth Factor and Intestinal Barrier Function

    Directory of Open Access Journals (Sweden)

    Xiaopeng Tang

    2016-01-01

    Full Text Available Epidermal growth factor (EGF is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.

  2. Epidermal growth factor and insulin-like growth factor I upregulate the expression of the epidermal growth factor system in rat liver

    DEFF Research Database (Denmark)

    Bor, M V; Sørensen, B S; Vinter-Jensen, L

    2000-01-01

    BACKGROUND/AIM: Both epidermal growth factor and insulin-like growth factor I play a role in connection with the liver. In the present study, the possible interaction of these two growth factor systems was studied by investigating the effect of epidermal growth factor or insulin-like growth factor...... I treatment on the expression of the epidermal growth factor receptor, and its activating ligands, transforming growth factor-alpha and epidermal growth factor. METHODS: Fifty-five male rats received no treatment, human recombinant epidermal growth factor or human recombinant insulin-like growth.......8+/-1.6 fmol/mg protein epidermal growth factor and 144+/-22 fmol/mg protein transforming growth factor-alpha. Both epidermal growth factor and insulin-like growth factor I treatment increased the expression of mRNA for transforming growth factor-alpha and epidermal growth factor receptor, as well...

  3. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    International Nuclear Information System (INIS)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    1987-01-01

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2 hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol 125 I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function

  4. Epidermal growth factor in alkali-burned corneal epithelial wound healing.

    Science.gov (United States)

    Singh, G; Foster, C S

    1987-06-15

    We conducted a double-masked study to evaluate the effect of epidermal growth factor on epithelial wound healing and recurrent erosions in alkali-burned rabbit corneas. Epithelial wounds 10 mm in diameter healed completely under the influence of topical epidermal growth factor, whereas the control corneas did not resurface in the center. On reversal of treatment, the previously nonhealing epithelial defects healed when treated with topical epidermal growth factor eyedrops. Conversely, the epidermal growth factor-treated and resurfaced corneas developed epithelial defects when treatment was discontinued. Histopathologic examination disclosed hyperplastic epithelium growing over the damaged stroma laden with polymorphonuclear leukocytes when treated with epidermal growth factor eyedrops, but it did not adhere to the underlying tissue. Hydropic changes were seen intracellularly as well as between the epithelial cells and the stroma.

  5. Epidermal growth factor in the rat prostate

    DEFF Research Database (Denmark)

    Tørring, Niels; Jørgensen, P E; Poulsen, Steen Seier

    1998-01-01

    Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate.......Epidermal growth factor (EGF) induces proliferation in prostate epithelial and stromal cells in primary culture. This investigation was set up to characterize the time and spatial expression of EGF in the rat prostate....

  6. Influence of epidermal growth factor on liver regeneration after partial hepatectomy in rats

    DEFF Research Database (Denmark)

    Olsen, Peter Skov; Boesby, S.; Kirkegaard, P.

    2013-01-01

    The role of epidermal growth factor on liver regeneration after partial hepatectomy in rats was investigated. After a 70% hepatectomy in rats, the concentration of epidermal growth factor in portal venous blood was unchanged compared with unoperated controls. However, small amounts of epidermal...... growth factor could be identified in portal venous blood after intestinal instillation of epidermal growth factor. Brunner's glands and the submandibular glands secrete epidermal growth factor. Extirpation of Brunner's glands decreased liver regeneration, whereas removal of the submandibular glands had...... no effect on liver regeneration. Epidermal growth factor antiserum reduced liver regeneration significantly. Oral or s.c. administration of epidermal growth factor had no effect on liver regeneration, whereas epidermal growth factor enhanced the effect of insulin and glucagon on liver regeneration...

  7. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  8. Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs

    DEFF Research Database (Denmark)

    Mi, Li-Zhi; Grey, Michael J; Nishida, Noritaka

    2008-01-01

    Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase...... differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane...

  9. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    Science.gov (United States)

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  10. Oxygen dependency of epidermal growth factor receptor binding and DNA synthesis of rat hepatocytes

    International Nuclear Information System (INIS)

    Hirose, Tetsuro; Terajima, Hiroaki; Yamauchi, Akira

    1997-01-01

    Background/Aims: Changes in oxygen availability modulate replicative responses in several cell types, but the effects on hepatocyte replication remain unclear. We have studied the effects of transient nonlethal hypoxia on epidermal growth factor receptor binding and epidermal growth factor-induced DNA synthesis of rat hepatocytes. Methods: Lactate dehydrogenase activity in culture supernatant, intracellular adenosine triphosphate content, 125 I-epidermal growth factor specific binding, epidermal growth factor receptor protein expression, and 3 H-thymidine incorporation were compared between hepatocytes cultured in hypoxia and normoxia. Results: Hypoxia up to 3 h caused no significant increase in lactate dehydrogenase activity in the culture supernatant, while intracellular adenosine triphosphate content decreased time-dependently and was restored to normoxic levels by reoxygenation (nonlethal hypoxia). Concomitantly, 125 I-epidermal growth factor specific binding to hepatocytes decreased time-dependently (to 54.1% of normoxia) and was restored to control levels by reoxygenation, although 125 I-insulin specific binding was not affected. The decrease in 125 I-epidermal growth factor specific binding was explained by the decrease in the number or available epidermal growth factor receptors (21.37±3.08 to 12.16±1.42 fmol/10 5 cells), while the dissociation constant of the receptor was not affected. The change in the number of available receptors was not considered to be due to receptor degradation-resynthesis, since immuno-detection of the epidermal growth factor receptor revealed that the receptor protein expression did not change during hypoxia and reoxygenation, and since neither actinomycin D nor cycloheximide affected the recovery of 125 I-epidermal growth factor binding by reoxygenation. Inhibition of epidermal growth factor-induced DNA synthesis after hypoxia (to 75.4% of normoxia by 3 h hypoxia) paralleled the decrease in 125 I-epidermal growth factor binding

  11. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials

    DEFF Research Database (Denmark)

    Voldborg, B R; Damstrup, L; Spang-Thomsen, M

    1997-01-01

    The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase in the intr...... aspects of therapeutic targeting of EGFR....

  12. Role of submandibular saliva and epidermal growth factor in gastric cytoprotection

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1984-01-01

    without submandibular glands. Exogenous EGF and saliva with a high but still physiological concentration of EGF significantly reduced the median area in the stomach displaying ulcers and ulcerations, whereas saliva without EGF had no effect. Although EGF is a known inhibitor of gastric acid secretion......The role of submandibular epidermal growth factor in protection of the gastric mucosa was investigated in rats. Removal of the submandibular glands and thereby submandibular epidermal growth factor (EGF) caused rats to develop gastric lesions (ulcerations and ulcers) after administration......, the dose used in the present study had no effect on gastric acid secretion in chronic gastric fistula rats; removal of the submandibular glands also did not have any such effect. We conclude that exocrine secretion of submandibular EGF has a cytoprotective function in the stomach, an effect that may...

  13. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  14. Epidermal growth factor in mammary glands and milk from rats

    DEFF Research Database (Denmark)

    Thulesen, J; Raaberg, Lasse; Nexø, Ebba

    1993-01-01

    Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF-immunoreact......Epidermal growth factor (EGF) is one of the major growth-promoting agents in milk. Using immunohistochemistry we localized EGF in the mammary glands of lactating rats to the luminal border of the secretory cells. Following proteolytic pretreatment of the histological sections, the EGF...

  15. Expression of PML tumor suppressor in A 431 cells reduces cellular growth by inhibiting the epidermal growth factor receptor expression

    International Nuclear Information System (INIS)

    Vallian, S.; Chang, K.S.

    2004-01-01

    Our previous studies showed that the promyelocytic leukemia, PML, protein functions as a cellular and growth suppressor. Transient expression of PML was also found to repress the activity of the epidermal growth factor receptor gene promoter. In this study we have examined the effects of PML on A431 cells, which express a high level of + protein. The PML gene was introduced into the cells using the adenovirus-mediated gene transfer system. Western blot analysis on the extracts from the cells expressing PML showed a significant repression in the expression of the epidermal growth factor receptor protein. The cells were examined for growth and DNA synthesis. The data showed a marked reduction in both growth and DNA synthesis rate in the cells expressing PML compared with the control cells. Furthermore, in comparison with the controls, the cells expressing PML were found to be more in G1 phase, fewer in S and about the same number in the G2/M phase. This data clearly demonstrated that the repression of epidermal growth factor receptor expression in A 431 cells by PML was associated with inhibition of cell growth and alteration of the cell cycle distribution, suggesting a novel mechanism for the known growth inhibitory effects of PML

  16. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    Science.gov (United States)

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  17. Immunohistochemical localization of epidermal growth factor in rat and man

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1986-01-01

    Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands is...... antisera against human urinary EGF worked in rat as well as man. EGF was found only in cells with an exocrine function.......Epidermal growth factor (EGF) is a peptide which stimulates cell mitotic activity and differentiation, has a cytoprotective effect on the gastroduodenal mucosa, and inhibits gastric acid secretion. The immunohistochemical localization of EGF in the Brunner's glands and the submandibular glands...... is well documented. The localization of EGF in other tissues is still unclarified. In the present study, the immunohistochemical localization of EGF in tissues from rat, man and a 20 week human fetus were investigated. In man and rat, immunoreaction was found in the submandibular glands, the serous glands...

  18. Ticagrelor Improves Endothelial Function by Decreasing Circulating Epidermal Growth Factor (EGF

    Directory of Open Access Journals (Sweden)

    Francesco Vieceli Dalla Sega

    2018-04-01

    Full Text Available Ticagrelor is one of the most powerful P2Y12 inhibitor. We have recently reported that, in patients with concomitant Stable Coronary Artery Disease (SCAD and Chronic Obstructive Pulmonary Disease (COPD undergoing percutaneous coronary intervention (PCI, treatment with ticagrelor, as compared to clopidogrel, is associated with an improvement of the endothelial function (Clinical Trial NCT02519608. In the present study, we showed that, in the same population, after 1 month treatment with ticagrelor, but not with clopidogrel, there is a decrease of the circulating levels of epidermal growth factor (EGF and that these changes in circulating levels of EGF correlate with on-treatment platelet reactivity. Furthermore, in human umbilical vein endothelial cells (HUVEC incubated with sera of the patients treated with ticagrelor, but not with clopidogrel there is an increase of p-eNOS levels. Finally, analyzing the changes in EGF and p-eNOS levels after treatment, we observed an inverse correlation between p-eNOS and EGF changes only in the ticagrelor group. Causality between EGF and eNOS activation was assessed in vitro in HUVEC where we showed that EGF decreases eNOS activity in a dose dependent manner. Taken together our data indicate that ticagrelor improves endothelial function by lowering circulating EGF that results in the activation of eNOS in the vascular endothelium.

  19. Transforming growth factor alpha and epidermal growth factor in laryngeal carcinomas demonstrated by immunohistochemistry

    DEFF Research Database (Denmark)

    Christensen, M E; Therkildsen, M H; Poulsen, Steen Seier

    1993-01-01

    the basal cell layer. The present investigation and our previous results confirm the existence of EGF receptors, TGF-alpha and EGF in laryngeal carcinomas. In addition, we conclude that the conditions do exist for growth factors to act through an autocrine system in poorly differentiated tumours and through......Fifteen laryngeal squamous cell carcinomas were investigated for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) using immunohistochemical methods. In a recent study the same material was characterized for epidermal growth factor receptors (EGF...... receptors) which were confined predominantly to the undifferentiated cells. The expression of this growth factor system in malignant cells may play a role in carcinogenesis and/or tumour growth. All carcinomas were positive for TGF-alpha and 12 were positive for EGF. In moderately-to-well differentiated...

  20. Chronic treatment with epidermal growth factor causes esophageal epithelial hyperplasia in pigs and rats

    DEFF Research Database (Denmark)

    Juhl, C O; Vinter-Jensen, Lars; Poulsen, Steen Seier

    1995-01-01

    Epidermal growth factor (EGF) is an important factor for maintaining the esophageal functional integrity. Goettingen minipigs were treated with either placebo or subcutaneous EGF (30 micrograms/kg/day) for four weeks. Wistar rats were treated with either placebo or subcutaneous EGF (150 microgram...

  1. The influence of tethered epidermal growth factor on connective tissue progenitor colony formation

    OpenAIRE

    Marcantonio, Nicholas A.; Boehm, Cynthia A.; Rozic, Richard J.; Au, Ada; Wells, Alan; Muschler, George F.; Griffith, Linda G.

    2009-01-01

    Strategies to combine aspirated marrow cells with scaffolds to treat connective tissue defects are gaining increasing clinical attention and use. In situations such as large defects where initial survival and proliferation of transplanted connective tissue progenitors (CTPs) are limiting, therapeutic outcomes might be improved by using the scaffold to deliver growth factors that promote the early stages of cell function in the graft. Signaling by the epidermal growth factor receptor (EGFR) pl...

  2. Epidermal growth factor enemas for induction of remission in left-sided ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Hugo Nodarse-Cuní

    2013-03-01

    Full Text Available Introduction: ulcerative colitis is a little known chronic inflammatory disease in colonic mucosa. The positive effect of epidermal growth factor was shown in a previous report, with enema use for treatment of mild to moderate left-sided manifestation of the disease. This evidence provided the basis for evaluating the efficacy and safety profile of a viscous solution of this product. Methods: thirty-one patients were randomized to three groups for daily medications during 14 days. Twelve received one 10 mg enema of epidermal growth factor dissolved in 100 mL of viscous solution whereas nine were treated with placebo enema; both groups also received 1.2 g of oral mesalamine per day. The other group included ten patients with 3 g / 100 mL of mesalamine enema. Primary end point was clinical responses after two weeks of treatment, defined as a decreased of, at least three points from baseline, the Disease Activity Index and endoscopic or histological evidences of improvement. Results: remission of disease was observed in all patients in the epidermal growth factor group, and six in both, mesalamine enema and placebo group. All the comparisons between groups showed statistically significant superiority for epidermal growth factor, the only product with significant reduction in disease activity index as well as the presence and intensity of digestive symptoms in patients after treatment. None adverse event was reported. Conclusions: the results agree with previous molecular and clinical evidences, indicating that the epidermal growth factor is effective to reduce disease activity and to induce remission. A new study involving more patients should be conducted to confirm the efficacy of the epidermal growth factor enemas.

  3. Epidermal growth factor receptor expression in urinary bladder cancer

    Directory of Open Access Journals (Sweden)

    Dayalu S.L. Naik

    2011-01-01

    Full Text Available Objective : To evaluate the expression pattern of epidermal growth factor receptor (EGFR in urinary bladder cancer and its association with human epidermal growth factor receptor 2 (HER2, epidermal growth factor (EGF, interleukin-6 (IL-6, and high risk human papilloma virus (HPV types 16 and 18. Materials and Methods : Thirty cases of urothelial carcinoma were analyzed. EGFR, HER2, EGF, and IL-6 expressions in the tissue were evaluated by immunohistochemical staining. For HPV, DNA from tissue samples was extracted and detection of HPV was done by PCR technique. Furthermore, evaluation of different intracellular molecules associated with EGFR signaling pathways was performed by the western blot method using lysates from various cells and tissues. Results : In this study, the frequencies of immunopositivity for EGFR, HER2, EGF, and IL-6 were 23%, 60%, 47%, and 80%, respectively. No cases were positive for HPV-18, whereas HPV-16 was detected in 10% cases. Overall, expression of EGFR did not show any statistically significant association with the studied parameters. However, among male patients, a significant association was found only between EGFR and HER2. Conclusions : Overexpression of EGFR and/or HER2, two important members of the same family of growth factor receptors, was observed in a considerable proportion of cases. Precise knowledge in this subject would be helpful to formulate a rational treatment strategy in patients with urinary bladder cancer.

  4. Epidermal growth factor receptor: an independent predictor of survival in astrocytic tumors given definitive irradiation

    International Nuclear Information System (INIS)

    An Zhu; Shaeffer, James; Leslie, Susan; Kolm, Paul; El-Mahdi, Anas M.

    1996-01-01

    Purpose: To determine whether the expression of epidermal growth factor receptor (EGFR) protein was predictive of patient survival independently of other prognostic factors in astrocytic tumors. Methods and Materials: Epidermal growth factor receptor protein expression was investigated immunohistochemically in formalin-fixed, paraffin-embedded surgical specimens of 55 glioblastoma multiforme, 14 anaplastic astrocytoma, and 2 astrocytomas given definitive irradiation. We evaluated the relationship of EGFR protein expression and tumor grade, histologic features, age at diagnosis, sex, patient survival, and recurrence-free survival. Results: The percentage of tumor cells which were EGFR positive related to reduced survival by Cox regression analysis in both univariate (p = 0.0424) and multivariate analysis (p = 0.0016). Epidermal growth factor receptor positivity was the only 1 of 11 clinical and histological variables associated with decreased recurrence-free survival by either univariate (p = 0.0353) or multivariate (p = 0.0182) analysis. Epidermal growth factor receptor protein expression was not related to patient age, sex, or histologic features. Conclusion: Epidermal growth factor receptor positivity was a significant and independent prognostic indicator for overall survival and recurrence-free survival for irradiated patients with astrocytic gliomas

  5. Steroid hormone and epidermal growth factor receptors in meningiomas.

    Science.gov (United States)

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  6. Assessment of the Developmental Toxicity of Epidermal Growth ...

    African Journals Online (AJOL)

    Purpose: To determine whether epidermal growth factor (EGF) is involved in reproductive developmental toxicity, using the embryonic stem cell test (EST), as well as ascertain how EGF influences embryonic development. Methods: To predict developmental toxicity on the basis of reducing cell viability and inhibition of ...

  7. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  8. An immunologic approach to induction of epidermal growth factor deficiency

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1995-01-01

    Epidermal growth factor (EGF) in pharmacologic doses is able to induce growth and development in the fetus and the newborn. To investigate the opposite situation, the effects of insufficient amounts of EGF during development, we wanted to establish an in vivo model with a state of EGF deficiency....

  9. Multistep change in epidermal growth factor receptors during spontaneous neoplastic progression in Chinese hamster embryo fibroblasts

    International Nuclear Information System (INIS)

    Wakshull, E.; Kraemer, P.M.; Wharton, W.

    1985-01-01

    Whole Chinese hamster embryo lineages have been shown to undergo multistep spontaneous neoplastic progression during serial passage in culture. The authors have studied the binding, internalization, and degradation of 125 I-labeled epidermal growth factor at four different stages of transformation. The whole Chinese hamster embryo cells lost cell surface epidermal growth factor receptors gradually during the course of neoplastic progression until only 10% of the receptor number present in the early-passage cells (precrisis) were retained in the late-passage cells (tumorigenic). No differences in internalization rates, chloroquine sensitivity, or ability to degrade hormone between the various passage levels were seen. No evidence for the presence in conditioned medium of transforming growth factors which might mask or down-regulate epidermal growth factor receptor was obtained. These results suggest that a reduction in cell surface epidermal growth factor receptor might be an early event during spontaneous transformation in whole Chinese hamster embryo cells

  10. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    International Nuclear Information System (INIS)

    Hicks, B.D.; St Aubin, D.J.; Geraci, J.R.; Brown, W.R.

    1985-01-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciled by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed

  11. Epidermal growth in the bottlenose dolphin, Tursiops truncatus

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, B.D.; St. Aubin, D.J.; Geraci, J.R.; Brown, W.R.

    1985-07-01

    Epidermal growth in two mature female bottlenose dolphins, Tursiops truncatus, was investigated by following the movement of a cohort of tritiated thymidine-labeled epidermal cells for 59 days. The majority of the cells migrated in a cluster which was estimated to reach the skin surface in 73 days. The authors calculate that the outermost cell layer is sloughed 12 times per day. Turnover time and sloughing rate are estimated to be 1.7 times longer and 8.5 times faster than the respective values for epidermal cell kinetics in humans. This apparent inconsistency of slow transit time and rapid sloughing rate is reconciled by the convoluted structure of the stratum germinativum in the dolphin which results in a ratio of germinatival to superficial cells of 876:1. The stratum germinativum of dolphin epidermis appears to lack morphologically distinct, spatially segregated subpopulations of anchoring and stem cells. Dolphin epidermis has a large capacity for cell population, relatively long turnover time, and rapid sloughing rate. The adaptive advantages of these characteristics are discussed.

  12. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    Science.gov (United States)

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  13. Epidermal growth factor and active caspase-3 expression in the levator ani muscle of dogs with and without perineal hernia.

    Science.gov (United States)

    Pérez-Gutiérrez, J F; Argüelles, J C; Iglesias-Núñez, M; Oliveira, K S; De La Muela, M Sánchez

    2011-07-01

    To perform a histological and immunohistochemical study of epidermal growth factor, transforming growth factor-alpha and their receptor, as well as the apoptotic signal active caspase-3 in the levator ani muscle of dogs with and without perineal hernia. Biopsy specimens of the levator ani muscle were obtained from 25 dogs with perineal hernia and 4 non-affected dogs and were processed for Masson and immunohistochemical staining. The affected dogs exhibited myopathological features, internalised nuclei, destruction and abnormal size of muscle fibres, which were replaced by collagen. The immunohistochemical study revealed active caspase-3, epidermal growth factor, transforming growth factor-alpha and epidermal growth factor receptor in the levator ani. Compared to the healthy muscle, transforming growth factor-alpha staining intensity was lower in the affected muscle, whereas epidermal growth factor receptor and active caspase-3 staining were higher. Pelvic diaphragm muscle weakening is the leading cause of perineal hernia in the dog. Survival and death signals expressed in these muscles may contribute to the pathogenesis of this disease. This study reports epidermal growth factor, transforming growth factor-alpha and epidermal growth factor receptor immunohistochemical expression in the skeletal muscle and suggests that perineal hernia in the dog is accompanied by levator ani muscle atrophy, increased expression of epidermal growth factor receptor, caspase-3 activation, and decreased expression of transforming growth factor-alpha. © 2011 British Small Animal Veterinary Association.

  14. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  15. Pattern of hormone receptors and human epidermal growth factor ...

    African Journals Online (AJOL)

    Introduction: Breast cancer is the most common cancer among women globally. With immunohistochemistry (IHC), breast cancer is classified into four groups based on IHC profile of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2/neu) expression, positive (+) and/or ...

  16. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands.

    Directory of Open Access Journals (Sweden)

    Lasse Henriksen

    Full Text Available The epidermal growth factor receptor (EGFR regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF and transforming growth factor-α (TGF-α. For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF or betacellulin (BTC was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown.

  17. Internalization Mechanisms of the Epidermal Growth Factor Receptor after Activation with Different Ligands

    Science.gov (United States)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe; van Deurs, Bo; Grøvdal, Lene Melsæther

    2013-01-01

    The epidermal growth factor receptor (EGFR) regulates normal growth and differentiation, but dysregulation of the receptor or one of the EGFR ligands is involved in the pathogenesis of many cancers. There are eight ligands for EGFR, however most of the research into trafficking of the receptor after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist. Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand-induced endocytosis of the EGFR. We suggest that EGF and TGF-α lead to EGFR endocytosis mainly via the clathrin-mediated pathway. Furthermore, we suggest that HB-EGF and BTC also lead to EGFR endocytosis via a clathrin-mediated pathway, but can additionally use an unidentified internalization pathway or better recruit the small amount of clathrin remaining after clathrin knockdown. PMID:23472148

  18. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  19. Epidermal growth factor pathway substrate 15, Eps15

    DEFF Research Database (Denmark)

    Salcini, A E; Chen, H; Iannolo, G

    1999-01-01

    Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure comprising a NH2-terminal portion, which contains three EH domains, a central putative coiled-coil region, and a COOH-terminal domain containing...... multiple copies of the amino acid triplet Aspartate-Proline-Phenylalanine. A pool of Eps15 is localized at clathrin coated pits where it interacts with the clathrin assembly complex AP-2 and a novel AP-2 binding protein, Epsin. Perturbation of Eps15 and Epsin function inhibits receptor-mediated endocytosis...... of EGF and transferrin, demonstrating that both proteins are components of the endocytic machinery. Since the family of EH-containing proteins is implicated in various aspects of intracellular sorting, biomolecular strategies aimed at interfering with these processes can now be envisioned...

  20. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands

    DEFF Research Database (Denmark)

    Henriksen, Lasse; Grandal, Michael Vibo; Knudsen, Stine Louise Jeppe

    2013-01-01

    after ligand activation focuses on the effect of epidermal growth factor (EGF) and transforming growth factor-α (TGF-α). For a long time it was believed that clathrin-mediated endocytosis was the major pathway for internalization of the receptor, but recent work suggests that different pathways exist....... Here we show that clathrin ablation completely inhibits internalization of EGF- and TGF-α-stimulated receptor, however the inhibition of receptor internalization in cells treated with heparin-binding EGF-like growth factor (HB-EGF) or betacellulin (BTC) was only partial. In contrast, clathrin knockdown...... fully inhibits EGFR degradation after all ligands tested. Furthermore, inhibition of dynamin function blocked EGFR internalization after stimulation with all ligands. Knocking out a number of clathrin-independent dynamin-dependent pathways of internalization had no effect on the ligand...

  1. Chronic treatment with epidermal growth factor induces growth of the rat ventral prostate

    DEFF Research Database (Denmark)

    Tørring, N; Jensen, L V; Wen, J G

    2001-01-01

    the hyperplastic growth phase of the prostate in newborn rats.MATERIAL AND METHODS: Newborn rats were treated for 8 weeks with EGF (150 microg/kg body weight per day), administered as daily subcutaneous injections. Sections of the prostate tissue were examined by a stereological technique to determine tissue......OBJECTIVE: The epidermal growth factor (EGF) system is expressed in the rat prostate, and growth factors from this system induce proliferation in prostate epithelial and stromal cell cultures. The aim of the study was to investigate the possible growth-promoting effects of the system during...... of the prostate epithelium, the stroma and the lumen following EGF treatment, in a pattern resembling physiological growth of the ventral prostate. A significant correlation (r = 0.78, p

  2. Influence of topical human epidermal growth factor on postkeratoplasty re-epithelialisation

    NARCIS (Netherlands)

    M.M. Dellaert; T.A. Casey; S. Wiffen; J. Gordon (Jocelynne); P. Johnson (Jürgen); A.J. Geerards (Annette); W.J. Rijneveld (Wilhelmina); L. Remeijer (Lies); W.H. Beekhuis (Houdijn); P.G.H. Mulder (Paul)

    1997-01-01

    textabstractAIM: To test the efficacy and safety of recombinant human epidermal growth factor (hEGF) on corneal re-epithelialisation following penetrating keratoplasty. METHODS: A prospective, randomised, placebo controlled study was carried out in which patients were

  3. Commonly Employed African Neonatal Skin Care Products Compromise Epidermal Function in Mice.

    Science.gov (United States)

    Man, Mao-Qiang; Sun, Richard; Man, George; Lee, Dale; Hill, Zelee; Elias, Peter M

    2016-09-01

    Neonatal mortality is much higher in the developing world than in developed countries. Infections are a major cause of neonatal death, particularly in preterm infants, in whom defective epidermal permeability barrier function facilitates transcutaneous pathogen invasion. The objective was to determine whether neonatal skin care products commonly used in Africa benefit or compromise epidermal functions in murine skin. After twice-daily treatment of 6- to 8-week-old hairless mice with each skin care product for 3 days, epidermal permeability barrier function, skin surface pH, stratum corneum hydration, and barrier recovery were measured using a multiprobe adapter system physiology monitor. For products showing some benefits in these initial tests, the epidermal permeability barrier homeostasis was assessed 1 and 5 hours after a single application to acutely disrupted skin. All of the skin care products compromised basal permeability barrier function and barrier repair kinetics. Moreover, after 3 days of treatment, most of the products also reduced stratum corneum hydration while elevating skin surface pH to abnormal levels. Some neonatal skin care products that are widely used in Africa perturb important epidermal functions, including permeability barrier homeostasis in mice. Should these products have similar effects on newborn human skin, they could cause a defective epidermal permeability barrier, which can increase body fluid loss, impair thermoregulation, and contribute to the high rates of neonatal morbidity and mortality seen in Africa. Accordingly, alternative products that enhance permeability barrier function should be identified, particularly for use in preterm infants. © 2016 Wiley Periodicals, Inc.

  4. Antibody-induced dimerization activates the epidermal growth factor receptor tyrosine kinase

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; Boonstra, J.; de Laat, S. W.

    1991-01-01

    The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized

  5. The organization of human epidermis: functional epidermal units and phi proportionality.

    Science.gov (United States)

    Hoath, Steven B; Leahy, D G

    2003-12-01

    The concept that mammalian epidermis is structurally organized into functional epidermal units has been proposed on the basis of stratum corneum (SC) architecture, proliferation kinetics, melanocyte:keratinocyte ratios (1:36), and, more recently, Langerhans cell: epidermal cell ratios (1:53). This article examines the concept of functional epidermal units in human skin in which the maintenance of phi (1.618034) proportionality provides a central organizing principle. The following empirical measurements were used: 75,346 nucleated epidermal cells per mm2, 1394 Langerhans cells per mm2, 1999 melanocytes per mm2, 16 (SC) layers, 900-microm2 corneocyte surface area, 17,778 corneocytes per mm2, 14-d (SC) turnover time, and 93,124 per mm2 total epidermal cells. Given these empirical data: (1) the number of corneocytes is a mean proportional between the sum of the Langerhans cell + melanocyte populations and the number of epidermal cells, 3393/17,778-17,778/93,124; (2) the ratio of nucleated epidermal cells over corneocytes is phi proportional, 75,346/17,778 approximately phi3; (3) assuming similar 14-d turnover times for the (SC) and Malpighian epidermis, the number of corneocytes results from subtraction of a cellular fraction equal to approximately 2/phi2 x the number of living cells, 75,436 - (2/phi2 x 75,346) approximately 17,778; and (4) if total epidermal turnover time equals (SC) turnover time x the ratio of living/dead cells, then compartmental turnover times are unequal (14 d for (SC) to 45.3 d for nucleated epidermis approximately 1/2phi) and cellular replacement rates are 52.9 corneocytes/69.3 keratinocytes per mm2 per h approximately 2/phi2. These empirically derived equivalences provide logicomathematical support for the presence of functional epidermal units in human skin. Validation of a phi proportional unit architecture in human epidermis will be important for tissue engineering of skin and the design of instruments for skin measurement.

  6. Effect of vasoactive intestinal polypeptide and somatostatin on secretion of epidermal growth factor and bicarbonate from Brunner's glands

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1984-01-01

    The effect of VIP and somatostatin on secretion of epidermal growth factor and bicarbonate from Brunner's glands was investigated in the rat. Vasoactive intestinal polypeptide infused in doses of 10 and 100 ng/kg/h significantly increased epidermal growth factor and bicarbonate output......, but the concentrations did not change. Somatostatin infused at doses of 1, 10, 100 and 1000 ng/kg/h against a background of VIP 100 ng/kg/h inhibited in dose-dependent fashion the stimulated epidermal growth factor and bicarbonate outputs from rat Brunner's gland pouches. Also basal secretion was inhibited...... growth factor and bicarbonate from Brunner's glands, an effect which is inhibited by somatostatin. A possible role for somatostatin in the control of Brunner's gland secretion is suggested....

  7. Gastric luminal epidermal growth factor is affected by diet | Iputo ...

    African Journals Online (AJOL)

    Objective. Diet is an area of major interest to those investigating the causes of cancer of the oesophagus in the Transkei. This study looked at the associations between intragastric epidermal growth factor level, diet and intragastric pH. Setting and subjects. A dietary survey was co-ordinated with studies of gastric luminal ...

  8. Preparation of epidermal growth factor (EGF) conjugated iron oxide nanoparticles and their internalization into colon cancer cells

    International Nuclear Information System (INIS)

    Creixell, Mar; Herrera, Adriana P.; Ayala, Vanessa; Latorre-Esteves, Magda; Perez-Torres, Marianela; Torres-Lugo, Madeline; Rinaldi, Carlos

    2010-01-01

    Epidermal growth factor (EGF) was conjugated with carboxymethyldextran (CMDx) coated iron oxide magnetic nanoparticles using carbodiimide chemistry to obtain magnetic nanoparticles that target the epidermal growth factor receptor (EGFR). Epidermal growth factor modified magnetic nanoparticles were colloidally stable when suspended in biological buffers such as PBS and cell culture media. Both targeted and non-targeted nanoparticles were incubated with CaCo-2 cancer cells, known to overexpress EGFR. Nanoparticle localization within the cell was visualized by confocal laser scanning microscopy and light microscopy using Prussian blue stain. Results showed that targeted magnetic nanoparticles were rapidly accumulated in both flask-shaped small vesicles and large circular endocytic structures. Internalization patterns suggest that both clathrin-dependent and clathrin-independent receptors mediated endocytosis mechanisms are responsible for nanoparticle internalization.

  9. Combined inhibition of EMMPRIN and epidermal growth factor receptor prevents the growth and migration of head and neck squamous cell carcinoma cells.

    Science.gov (United States)

    Suzuki, Shinsuke; Ishikawa, Kazuo

    2014-03-01

    It has been reported that the epidermal growth factor receptor (EGFR) expression is associated with the extracellular matrix metalloproteinase inducer (EMMPRIN) in some solid tumors; however, the relationship of EMMPRIN with EGFR in head and neck cancers is not fully understood. To determine the relationship between EMMPRIN and EGFR in head and neck squamous cell carcinoma (HNSCC), HNSCC cells were stimulated with epidermal growth factor (EGF), a ligand of EGFR. EMMPRIN expression in HNSCC cells was upregulated by EGF. In addition, EGF stimulation induced HNSCC cell invasion and MMP-9 expression. This increase in invasion and MMP-9 expression was abrogated by downmodulation of EMMPRIN. Furthermore, to determine the effects of combined EMMPRIN and EGFR targeting in HNSCC, HNSCC cells were treated with an EMMPRIN function-blocking antibody and the EGFR inhibitor AG1478. This combined treatment resulted in greater inhibition of HNSCC cell proliferation and migration compared with the individual agents alone. These results suggest that EMMPRIN mediates EGFR-induced tumorigenicity and that combined targeting of EMMPRIN and EGFR may be an efficacious treatment approach.

  10. Amplification of epidermal growth factor receptor gene in renal cell carcinoma

    DEFF Research Database (Denmark)

    El-Hariry, Iman; Powles, Thomas; Lau, Mike R

    2010-01-01

    Expression of epidermal growth factor receptor (EGFR) may be of prognostic value in renal cell cancer (RCC). Gene amplification of EGFR was investigated in a cohort of 315 patients with advanced RCC from a previously reported randomised study. Using fluorescent in situ hybridisation, only 2...

  11. Modulation of Regorafenib effects on HCC cell lines by epidermal growth factor.

    Science.gov (United States)

    D'Alessandro, Rosalba; Refolo, Maria Grazia; Lippolis, Catia; Carella, Nicola; Messa, Caterina; Cavallini, Aldo; Carr, Brian Irving

    2015-06-01

    Blood platelet numbers are correlated to growth and aggressiveness of several tumor types, including hepatocellular carcinoma (HCC). We previously found that platelet lysates (hPLs) also stimulated growth and migration, and antagonized the growth-inhibitory and apoptotic effects of both Sorafenib and Regorafenib, two multikinase inhibitors, on three HCC cell lines. In this study, in vitro function of human epidermal growth factor (EGF) with and without Sorafenib or Regorafenib was investigated. An ELISA kit was used to evaluate the EGF concentrations in hPLs. In vitro function of EGF was assessed with proliferation MTT test. Apoptosis assay, scratch assays, and Transwell assays were performed for apoptosis, invasion, and migration, respectively. MAPK Activation Kit was used to explore MAPK phosphorylation. EGF antagonized the growth inhibition of Regorafenib on three HCC cell lines. Regorafenib-mediated growth inhibition was blocked by 70 % when the cells were pre-treated with EGF. EGF also blocked Regorafenib-induced apoptosis, as well as Regorafenib-induced decreases in cell migration and invasion. The EGF effects were in turn antagonized by concomitant addition to the cultures of EGF receptor antagonist Erlotinib, showing that the EGF receptor was involved in the mechanisms of EGF-mediated blocking of Regorafenib effects. Erlotinib also partially blocked the effects of hPLs in antagonizing Regorafenib-mediated growth inhibition, showing that EGF was an important component of hPL actions. All these results show that EGF antagonized Regorafenib-mediated growth and migration inhibition and apoptosis induction in HCC cells and reinforce the idea that microenvironment can influence cancer drug actions.

  12. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  13. Chronic administration of epidermal growth factor to pigs induces growth, especially of the urinary tract with accumulation of epithelial glycoconjugates

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Juhl, C O; Poulsen, Steen Seier

    1995-01-01

    Epidermal growth factor (EGF) receptor hyperstimulation induced by systemically administered EGF or by the development of transgenic mice overexpressing transforming growth factor alpha (TGF alpha) or other EGF-related ligands is known to induce various effects, such as acceleration of developmen...

  14. Conformational stability of the epidermal growth factor (EGF) receptor as influenced by glycosylation, dimerization and EGF hormone binding.

    Science.gov (United States)

    Taylor, Eric S; Pol-Fachin, Laercio; Lins, Roberto D; Lower, Steven K

    2017-04-01

    The epidermal growth factor receptor (EGFR) is an important transmembrane glycoprotein kinase involved the initiation or perpetuation of signal transduction cascades within cells. These processes occur after EGFR binds to a ligand [epidermal growth factor (EGF)], thus inducing its dimerization and tyrosine autophosphorylation. Previous publications have highlighted the importance of glycosylation and dimerization for promoting proper function of the receptor and conformation in membranes; however, the effects of these associations on the protein conformational stability have not yet been described. Molecular dynamics simulations were performed to characterize the conformational preferences of the monomeric and dimeric forms of the EGFR extracellular domain upon binding to EGF in the presence and absence of N-glycan moieties. Structural stability analyses revealed that EGF provides the most conformational stability to EGFR, followed by glycosylation and dimerization, respectively. The findings also support that EGF-EGFR binding takes place through a large-scale induced-fitting mechanism. Proteins 2017; 85:561-570. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Altered secretion and processing of epidermal growth factor in adrenergic-induced growth of the rat submandibular gland

    DEFF Research Database (Denmark)

    Thulesen, Jesper; Bor, Mustafa Vakur; Thulesen, Stina

    2002-01-01

    The granular convoluted tubule (GCT) cells of the submandibular glands represent a major production site for epidermal growth factor (EGF). This study investigates EGF production in the submandibular glands in relation to beta-adrenergic stimulation. Rats were treated with isoproterenol (beta...

  16. Association of epidermal growth factor and epidermal growth factor receptor polymorphisms with the risk of hepatitis B virus-related hepatocellular carcinoma in the population of North China.

    Science.gov (United States)

    Wu, Jia; Zhang, Wei; Xu, Aiqiang; Zhang, Li; Yan, Tao; Li, Zhuo; Wu, Xiaopan; Zhu, Xilin; Ma, Juan; Li, Ke; Li, Hui; Liu, Ying

    2013-08-01

    Hepatocellular carcinoma (HCC) is a common solid malignant tumor occurring worldwide that leads to the third largest cause of death compared to other cancers. Genetic and environmental factors are involved in the pathogenesis of HCC. Epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) can stimulate the proliferation of epidermal and epithelial cells. The EGF signal pathway has a relationship with the growth of the embryo, tissue repairing, and tumorigenesis. In this study, 416 patients with hepatitis B virus infection (HBV)-related HCC and 645 individuals who had never been infected with HBV of the Chinese Han population were enrolled. Eight single-nucleotide polymorphisms (SNPs), whose minor allele frequency >20% in the EGF and EGFR genes, were genotyped to examine their associations with hepatocarcinogenesis. Genotyping experiments were carried out using TaqMan. There were significant differences in genotype distributions (p=0.005) and allele frequencies (p=0.001, odds ratio [OR]=1.43, 95% confidence interval [CI]=1.15-1.79) of rs11569017 in the EGF gene between the HCC and control groups. After binary logistic regression to determine independent factors for susceptibility to HCC under an additive model, rs11569017 was still independently associated with the susceptibility to HCC (p=0.021, OR=1.48, 95% CI=1.06-2.07), but no significant differences in other SNPs were found. Additionally, the haplotype T-G constructed by rs11569017 and rs4444903 of the EGF gene might increase the risk of HBV-related HCC (p=0.002, OR=1.44, 95% CI=1.15-1.82). The rs11569017 T allele was associated with susceptibility to HBV-related HCC.

  17. Epidermal growth factor and growth in vivo

    International Nuclear Information System (INIS)

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of 3 H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of 3 H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated

  18. Renal origin of rat urinary epidermal growth factor

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1984-01-01

    The origin of rat urinary epidermal growth factor (EGF) has been investigated. Unilateral nephrectomy decreased the concentration, total output of EGF and EGF/creatinine ratio by approximately 50%, while the output of creatinine was unchanged. Removal of the submandibular glands and duodenal...... Brunner's glands, organs known to produce EGF, had no influence on the output of EGF in urine. Renal clearance of EGF exceeded that of creatinine, and after bilateral nephrectomy or bilateral ligation of the ureters, the concentration of creatinine in serum increased, while the concentration of EGF...

  19. [Quantity research on epidermal growth factor in saliva and epidermal growth factor receptor in biopsy samples of recurrent aphthous ulcer patients].

    Science.gov (United States)

    Gu, Yang; Zhang, Gang; Lin, Mei

    2008-02-01

    To examine the change of epidermal growth factor (EGF) concentration in saliva of recurrent aphthous ulcer (RAU) patients during the ulcerous and interval period and epidermal growth factor receptor (EGFR) in ulcer biopsy samples. ECF data of the samples, which were 27 saliva samples from RAU gained not only in the ulcerous period but also in interval period and 33 ones from normal persons, were acquired through enzyme linked immunosorhent assay (ELISA) and EGF standard curve. ECFR-RNA date of RAU biopsies, which were 31 biopsy samples from RAU got during the ulcerous period and 35 ones from normal persons, were surveyed by QF-RT-PCR. All RAU samples were obtained under the same level, which were the whole patients were minor aphthous ulcers and their ulcers occurred not over the first four days. All patients and normal persons were selected seriously under the rule of physical situations without any other diseases and histories of using medicines. The EGF concentration of saliva in RAU group at ulcer occurrence was higher than that in the interval period and the normal control with a significant test (F = 3.24, P ulcer occurrence was higher than the normal control with a significant test (t = 3.15, P ulcer occasion of RAU patients could be related with the decreasing of EGF in saliva during interval period, and that the ulcer sell-cure of RAU patients would be contributed to

  20. Systemic treatment with epidermal growth factor in pigs induces ductal proliferations in the pancreas

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Juhl, C O; Teglbjaerg, P S

    1997-01-01

    Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), and the EGF receptor are often overexpressed in chronic pancreatitis and in malignant pancreatic growth. Transgenic mice overexpressing TGF-alpha develop tissue changes in the pancrease resembling changes found in chronic...... pancreatitis. The effects of systemic treatment with EGF on the porcine pancrease were investigated in this study....

  1. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  2. Immunohistochemical localisation and developmental aspects of epidermal growth factor in the rat

    DEFF Research Database (Denmark)

    Raaberg, L; Nexø, E; Damsgaard Mikkelsen, J

    1988-01-01

    The tissue localisation and time of first appearance of Epidermal Growth Factor (EGF) in the developing rat were investigated by means of immunohistochemistry, radioimmunoassay and radioreceptor assay. In this study we were able to show, that EGF appears prenatally in the lung and the kidney from...

  3. Does epidermal growth factor play a role in the action of sucralfate?

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1987-01-01

    Epidermal growth factor (EGF) is a mitogenic peptide synthesized in the submandibular glands and released in saliva. EGF is able to prevent the development of gastrointestinal ulcers in the rat and to accelerate their healing. The present work was undertaken to examine whether Sucralfate acts via...

  4. Anti-epidermal growth factor receptor skin toxicity: a matter of topical hydration.

    Science.gov (United States)

    Ferrari, Daris; Codecà, Carla; Bocci, Barbara; Crepaldi, Francesca; Violati, Martina; Viale, Giulia; Careri, Carmela; Caldiera, Sarah; Bordin, Veronica; Luciani, Andrea; Zonato, Sabrina; Cassinelli, Gabriela; Foa, Paolo

    2016-02-01

    Skin toxicity is a frequent complication of anti-epidermal growth factor receptor therapy, which can be an obstacle in maintaining the dose intensity and may negatively impact on the clinical outcome of cancer patients. Skin lesions depend on the disruption of the keratinocyte development pathways and no treatment is clearly effective in resolving the cutaneous alterations frequently found during anti-epidermal growth factor receptor therapy. Among systemic treatments, oral tetracycline proved to be useful in preventing skin manifestations. We describe the case of a patient affected by metastatic colorectal cancer, for whom a combination of chemotherapy and cetuximab was used as second-line treatment. The patient developed a symptomatic papulopustular skin rash that disappeared completely after a twice-daily application of a hydrating and moisturizing cream, mainly consisting of a mixture of paraffin, silicone compounds, and macrogol. The marked cutaneous amelioration allowed the patient to continue cetuximab without any further symptoms and was associated with a partial radiological response.

  5. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    International Nuclear Information System (INIS)

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.; Williams, A.C.; Howarth, J.L.; Glover, C.P.; Uney, J.B.; Hague, A.

    2010-01-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  6. Enhancement of intestinal growth in neonatal rats by epidermal growth factor in milk

    International Nuclear Information System (INIS)

    Berseth, C.L.

    1987-01-01

    Breast milk has been shown to enhance neonatal intestinal growth. Because epidermal growth factor (EGF) is present in the milk of various mammalian species, the hypothesis was tested that EGF in rodent milk mediates, in part, the breast milk-enhanced intestinal growth in neonatal rat. Fifty-eight rat pups fed artificial formal that contained 1.2, 3.0, and 6.0 μg/ml EGF for 39 h had greater incorporation of [ 3 H]thymidine into DNA and DNA content of intestine than 29 pups fed unsupplemented formula. Pups fed EGF for 5 days had significantly greater body weight, intestinal weight, length, and DNA content than control pups. Conversely, pups fed pooled rat milk containing rabbit-derived antibody to EGF for 39 h had intestines of lower weight that contained less DNA than animals fed rat milk containing normal rabbit serum. EGF appears to mediate, in part, breast milk-enhanced neonatal intestinal growth

  7. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases......., the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus...

  8. Hierarchical classification strategy for Phenotype extraction from epidermal growth factor receptor endocytosis screening

    NARCIS (Netherlands)

    L. Cao (Lu); M. Graauw (Marjo de); K. Yan (Kuan); L.C.J. Winkel (Leah C.J.); F.J. Verbeek (Fons)

    2016-01-01

    textabstractBackground: Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In

  9. Epidermal growth factor receptor in primary human lung cancer

    International Nuclear Information System (INIS)

    Yu Xueyan; Hu Guoqiang; Tian Keli; Wang Mingyun

    1996-01-01

    Cell membranes were prepared from 12 human lung cancers for the study of the expression of epidermal growth factor receptors (EGFR). EGFR concentration was estimated by ligand binding studies using 125 I-radiolabeled EGF. The dissociation constants of the high affinity sites were identical, 1.48 nmol and 1.1 nmol in cancer and normal lung tissues, the EGFR contents were higher in lung cancer tissues (range: 2.25 to 19.39 pmol·g -1 membrane protein) than that in normal tissues from the same patients (range: 0.72 to 7.43 pmol·g -1 membrane protein). These results suggest that EGF and its receptor may play a role in the regulatory mechanisms in the control of lung cellular growth and tumor promotion

  10. Immobilization of epidermal growth factor on titanium and stainless steel surfaces via dopamine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeonghwa [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Sakuragi, Makoto; Shibata, Aya; Abe, Hiroshi; Kitajima, Takashi; Tada, Seiichi [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Mizutani, Masayoshi; Ohmori, Hitoshi [Material Fabrication Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Ayame, Hirohito [Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Son, Tae Il [Bioscience and Biotechnology, Chung-Ang University, 40-1 San, Nae-Ri, Daeduck-myun, Ansung-si, Kyungki-do, 456-756 (Korea, Republic of); Aigaki, Toshiro [Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo, 192-0397 Japan (Japan); Diagnostic Biochip Laboratory, RIKEN Center for Intellectual Property Strategies, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan)

    2012-12-01

    Titanium and stainless steel were modified with dopamine for the immobilization of biomolecules, epidermal growth factor (EGF). First, the treatment of metal surfaces with a dopamine solution under different pH conditions was investigated. At higher pH, the dopamine solution turned brown and formed precipitates. Treatment of the metals with dopamine at pH 8.5 also resulted in the development of brown color at the surface of the metals. The hydrophobicity of the surfaces increased after treatment with dopamine, independently of pH. X-ray photoelectron spectroscopy revealed the formation of a significant amount of an organic layer on both surfaces at pH 8.5. According to ellipsometry measurements, the organic layer formed at pH 8.5 was about 1000 times as thick as that formed at pH 4.5. The amount of amino groups in the layer formed at pH 8.5 was also higher than that observed in the layer formed at pH 4.5. EGF molecules were immobilized onto the dopamine-treated surfaces via a coupling reaction using carbodiimide. A greater amount of EGF was immobilized on surfaces treated at pH 8.5 compared with pH 4.5. Significantly higher growth of rat fibroblast cells was observed on the two EGF-immobilized surfaces compared with non-immobilized surfaces in the presence of EGF. The present study demonstrated that metals can become bioactive via the surface immobilization of a growth factor and that the effect of the immobilized growth factor on metals was greater than that of soluble growth factor. - Highlights: Black-Right-Pointing-Pointer Epidermal growth factor was covalently immobilized on titan or stainless steel surfaces. Black-Right-Pointing-Pointer Amino groups were formed on the surfaces by the treatment and the growth factor was immobilized through amide bonds. Black-Right-Pointing-Pointer The immobilized epidermal growth factor accelerated cell proliferation more than soluble ones on the surfaces.

  11. Human epidermal growth factor: molecular forms and application of radioimmunoassay and radioreceptor assay

    International Nuclear Information System (INIS)

    Hirata, Y.; Orth, D.N.

    1981-01-01

    Epidermal growth factor (EGF), a 53 amino acid polypeptide, was first isolated by Cohen. EGF's growth-promoting activity is not limited to epidermal cells, but is expressed on a wide variety of tissues derived from a number of different species. Human EGF (hEGF) was isolated and subsequently purified from human urine. Unexpectedly, a close structural relationship was recognized between mEGF and human β-urogastrone. The authors recently developed both an homologous hEGF radioimmunoassay (RIA) and a radioreceptor assay (RRA) using a human placental membrane fraction. Using these assays, the molecular size of hEGF in human body fluids and tissues was evaluated, and partial characterization of a high molecular weight form of hEGF isolated from human urine was carried out. The concentrations of immunoreactive hEGF were also determined in human tissues and plasma after extraction either with cationic exchange chromatography or with immunoaffinity chromatography. (Auth.)

  12. Development of epidermal growth factor receptor targeted therapy in pancreatic cancer.

    Science.gov (United States)

    Qing, Liu; Qing, Wang

    2018-02-01

    The epidermal growth factor receptor (EGFR) family are a series of important cancer therapeutic targets involved in cancer biology. These genes play an important role in tumor biological characteristics including angiogenesis, cell survival, invasion and glucose metabolism. In recent years, progresses have been achieved upon the cellular and molecular biological characteristics of EGFR and its role in cancer development based on the study of tumor specimens and experimental animal model. EGFR(HER1/ErbB) is overexpressed in over sixty percent of triple-negative breast cancers and occurs in pancreatic, bladder, lung and head-and-neck cancers. Up to now, EGFR inhibitors have been applied in various of cancer, such as lung, breast, bladder and head and neck cancers etc., in which the combination of EGFR inhibitors plus chemotherapeutic agents is now seen as the standard of care for advanced/metastatic pancreatic cancer. For these reasons, EGFR inhibitors and their therapeutic effect for pancreatic cancer is becoming the focus in Laboratory and clinical research. In this paper, research progress of the development of epidermal growth factor receptor targeted therapy in pancreatic cancer is introduced.

  13. Effects of epidermal growth factor on neural crest cells in tissue culture

    International Nuclear Information System (INIS)

    Erickson, C.A.; Turley, E.A.

    1987-01-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the 3 H-labeled proteoglycan. Furthermore, EGF stimulates [ 3 H]thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis

  14. Brief study about the distribution of recombinant human Epidermic Growth Factor (rh-EGF)

    International Nuclear Information System (INIS)

    Rodriguez Garcia, J.C.; De Dios D Espaux, R.; Bello Garciga, J.L.

    1997-01-01

    This report describes results of the study about biodistribution of I-125 recombinant human Epidermic Growth Factor (rhEGF). The radiolabelled product was administrated to Sprague Dawley rats in three different ways: intramuscular, subcutaneous and epidermic; the highest concentration of EGF in blood was found 4 hours after rhEGF administration, with a greater distribution in the plasma with regard to cellular pellet. The slowest plasma clearance corresponded to the intramuscular administration. The highest concentration of radiolabelled rhEGF was found in liver, kidney and intestine. It was found that radiolabelled EGF is excreted mainly throughout urine and faeces although other excretion pathways could exist

  15. The under-appreciated promiscuity of the epidermal growth factor receptor family.

    Directory of Open Access Journals (Sweden)

    Sean P Kennedy

    2016-08-01

    Full Text Available Each member of the epidermal growth factor receptor (EGFR family plays a key role in normal development, homeostasis and a variety of pathophysiological conditions, most notably in cancer. According to the prevailing dogma, these four receptor tyrosine kinases (RTKs; EGFR, ERBB2, ERBB3 and ERBB4 function exclusively through the formation of homodimers and heterodimers within the EGFR family. These combinatorial receptor interactions are known to generate increased interactome diversity and therefore influence signalling output, subcellular localization and function of the heterodimer. This molecular plasticity is also thought to play a role in the development of resistance towards targeted cancer therapies aimed at these known oncogenes. Interestingly, many studies now challenge this dogma and suggest that the potential for EGFR family receptors to interact with more distantly related RTKs is much greater than currently appreciated. Here we discuss how the promiscuity of these oncogenic receptors may lead to the formation of many unexpected receptor pairings and the significant implications for the efficiency of many targeted cancer therapies.

  16. 99m Tc-anti-epidermal growth factor receptor nanobody for tumor imaging.

    Science.gov (United States)

    Piramoon, Majid; Hosseinimehr, Seyed Jalal; Omidfar, Kobra; Noaparast, Zohreh; Abedi, Seyed Mohammad

    2017-04-01

    Nanobodies are important biomolecules for tumor targeting. In this study, we synthesized and labeled anti-epidermal growth factor receptor (EGFR) nanobody OA-cb6 with 99m Tc(CO) 3 + and evaluated its characteristics for targeting the EGFR in the A431 human epidermal carcinoma cell line. Nanobody radiolabeling was achieved with high yield and radiochemical purity, and the radioconjugate was stable. Biodistribution results in nude mice exhibited a favorable tumor-to-muscle ratio at 4-hr postinjection, and tumor location was visualized at 4 hr after injection of radiolabeled nanobody. Our result showed that the OA-cb6- 99m Tc-tricarbonyl radiolabeled nanobody is a promising radiolabeled biomolecule for tumor imaging in cancers with high EGFR overexpression. © 2016 John Wiley & Sons A/S.

  17. Immunohistochemical detection of epidermal growth factor receptor in radiation-induced lung tumors in Beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, N A; Haley, P J; Hahn, F F

    1988-12-01

    Increased levels of epidermal growth factor receptor have been reported in a variety of tumors, including pulmonary squamous cell carcinomas in man. The purpose of this study was to determine if increased levels of epidermal growth factor (EGFR) were present in lung tumors from Beagle dogs that had been exposed to {sup 239}PuO{sub 2}- Using immunohistochemical techniques, sections from 17 lung tumors were examined for the presence of EGFR. Seven of the tumors were strongly positive for EGFR; the remainder of the tumors and the normal lung sections were negative. The positive immunostaining could not be correlated with the histologic phenotype of the tumors. Work is in progress to determine the level of EGFR in preneoplastic, proliferative epithelial foci in the Iung. (author)

  18. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    Science.gov (United States)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  19. Interaction of epidermal growth factor receptors with the cytoskeleton is related to receptor clustering

    NARCIS (Netherlands)

    van Belzen, N.; Spaargaren, M.; Verkleij, A. J.; Boonstra, J.

    1990-01-01

    Recently it has been established that cytoskeleton-associated epidermal growth factor (EGF) receptors are predominantly of the high-affinity class and that EGF induces a recruitment of low-affinity receptors to the cytoskeleton. The nature of this EGF-induced receptor-cytoskeleton interaction,

  20. Expression of epidermal growth factor receptors in human endometrial carcinoma

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Ottesen, B

    1993-01-01

    Little data exist on the expression of epidermal growth factor receptors (EGF-Rs) in human endometrial cancer. EGF-R status was studied in 65 patients with endometrial carcinomas and in 26 women with nonmalignant postmenopausal endometria, either inactive/atrophic endometrium or adenomatous...... hyperplasia. EGF-R was identified on frozen tissue sections by means of an indirect immunoperoxidase technique with a monoclonal antibody against the external domain of the EGF-R. Seventy-one percent of the carcinomas expressed positive EGF-R immunoreactivity. In general, staining was most prominent...

  1. Altered [125I]epidermal growth factor binding and receptor distribution in psoriasis

    International Nuclear Information System (INIS)

    Nanney, L.B.; Stoscheck, C.M.; Magid, M.; King, L.E. Jr.

    1986-01-01

    Stimulation of growth and differentiation of human epidermis by epidermal growth factor (EGF) is mediated by its binding to specific receptors. Whether EGF receptors primarily mediate cell division or differentiation in hyperproliferative disease such as psoriasis vulgaris is unclear. To study the pathogenesis of psoriasis, 4-mm2 punch biopsy specimens of normal, uninvolved, and involved psoriatic skin were assayed for EGF receptors by autoradiographic, immunohistochemical, and biochemical methods. Using autoradiographic and immunohistochemical methods, basal keratinocytes were found to contain the greatest number of EGF binding sites and immunoreactive receptors as compared to the upper layers of the epidermis in both normal epidermis and psoriatic skin. No EGF receptor differences between normal and psoriatic epidermis were observed in this layer. In the upper layers of the epidermis, a 2-fold increase in EGF binding capacity was observed in psoriatic skin as compared with normal thin or thick skin. Biochemical methods indicated that [ 125 I]EGF binding was increased in psoriatic epidermis as compared with similar thickness normal epidermis when measured on a protein basis. Epidermal growth factor was shown to increase phosphorylation of the EGF receptor in skin. EGF receptors retained in the nonmitotic stratum spinosum and parakeratotic stratum corneum may reflect the incomplete, abnormal differentiation that occurs in active psoriatic lesions. Alternatively, retained EGF receptors may play a direct role in inhibiting cellular differentiation in the suprabasal layers

  2. Epidermal growth factor receptor-induced activato protein 1 activity controls density-dependent growht inhibition in normal rat kidney fibroblasts.

    NARCIS (Netherlands)

    Hornberg, J.J.; Dekker, H.; Peters, P.H.J.; Langerak, P.; Westerhoff, H.V.; Lankelma, J.; Zoelen, E.J.J.

    2006-01-01

    Density-dependent growth inhibition secures tissue homeostasis. Dysfunction of the mechanisms, which regulate this type of growth control is a major cause of neoplasia. In confluent normal rat kidney (NRK) fibroblasts, epidermal growth factor (EGF) receptor levels decline, ultimately rendering these

  3. Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Young-Su Yi

    2016-01-01

    Full Text Available Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8 is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs.

  4. Immunohistochemical localization of epidermal growth factor in the second-trimester human fetus

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Kryger-Baggesen, N; Nexø, Ebba

    1996-01-01

    Epidermal growth factor (EGF) is considered to be important in mammalian neonatal growth and development. In order to clarify its developmental role, we have investigated, by immunohistochemistry, the localization of EGF and the time of its first appearance in various organs from a series of 25...... midtrimester human fetuses with a gestational age ranging from 13 to 22 weeks. The first detectable EGF immunoreactivity occurred in week 15-16 fetuses in the placenta, the skin, the distal tubules of the kidney, the surface epithelium of the stomach, and the tips of the small intestinal villi, as well...

  5. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...

  6. PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug.

    Science.gov (United States)

    Wang, Congfei; Yang, Aiqin; Zhang, Baoming; Yin, Qiang; Huang, Heguang; Chen, Minghuang; Xie, Jieming

    2014-03-01

    To investigate the inhibition of PANC-1 pancreatic cancer cell growth by cucurmosin (CUS) and its possible mechanism. We observed the inhibition of PANC-1 cell growth by sulforhodamine B and colony-forming experiments in vitro and established nonobese diabetic/severe combined immunodeficiency mouse subcutaneous tumor models in vivo. We used Western blot to analyze protein levels related to apoptosis and epidermal growth factor receptor (EGFR) signaling pathways after drug intervention, whereas the messenger RNA expression of EGFR was analyzed by quantitative real-time polymerase chain reaction. Sulforhodamine B and colony-forming experiments indicated that CUS inhibited PANC-1 cell proliferation in a dose- and time-dependent manner. A stronger inhibitory effect was observed when CUS was combined with gefitinib. The subcutaneous tumor growth was also inhibited. Western blot showed that all the examined proteins decreased, except for 4E-BP1 and the active fragments of caspase 3 and caspase 9 increased. Epidermal growth factor receptor expression did not change significantly in quantitative real-time polymerase chain reaction. Cucurmosin can strongly inhibit the growth of PANC-1 cells in vitro and in vivo. Cucurmosin can down-regulate EGFR protein expression, but not at the messenger RNA level. Cucurmosin can also inhibit the ras/raf and phosphatidylinositol 3-kinase/Akt downstream signaling pathways and enhance the sensitivity of the EGFR-targeted drug gefitinib.

  7. Epidermal growth factor induction of front–rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2

    Science.gov (United States)

    Ho, Ernest; Dagnino, Lina

    2012-01-01

    Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front–rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front–rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front–rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front–rear polarity and forward movement. PMID:22160594

  8. Epidermal growth factor induction of front-rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2.

    Science.gov (United States)

    Ho, Ernest; Dagnino, Lina

    2012-02-01

    Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front-rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front-rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front-rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front-rear polarity and forward movement.

  9. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function

    Directory of Open Access Journals (Sweden)

    Magdalena Boer

    2016-02-01

    Full Text Available The complex structure of human skin and its physicochemical properties turn it into an efficient outermost defence line against exogenous factors, and help maintain homeostasis of the human body. This role is played by the epidermal barrier with its major part – stratum corneum. The condition of the epidermal barrier depends on individual and environmental factors. The most important biophysical parameters characterizing the status of this barrier are the skin pH, epidermal hydration, transepidermal water loss and sebum excretion. The knowledge of biophysical skin processes may be useful for the implementation of prophylactic actions whose aim is to restore the barrier function.

  10. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    International Nuclear Information System (INIS)

    Berasain, Carmen; Latasa, María Ujue; Urtasun, Raquel; Goñi, Saioa; Elizalde, María; Garcia-Irigoyen, Oihane; Azcona, María; Prieto, Jesús; Ávila, Matías A.

    2011-01-01

    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment

  11. Myosin II activity is required for functional leading-edge cells and closure of epidermal sheets in fish skin ex vivo.

    Science.gov (United States)

    Morita, Toshiyuki; Tsuchiya, Akiko; Sugimoto, Masazumi

    2011-09-01

    Re-epithelialization in skin wound healing is a process in which epidermal sheets grow and close the wound. Although the actin-myosin system is thought to have a pivotal role in re-epithelialization, its role is not clear. In fish skin, re-epithelialization occurs around 500 μm/h and is 50 times faster than in mammalian skin. We had previously reported that leading-edge cells of the epidermal outgrowth have both polarized large lamellipodia and "purse string"-like actin filament cables in the scale-skin culture system of medaka fish, Oryzias latipes (Cell Tissue Res, 2007). The actin purse-string (APS) is a supracellular contractile machinery in which adherens junctions (AJs) link intracellular myosin II-including actin cables between neighboring cells. In this study, we developed a modified "face-to-face" scale-skin culture system as an ex vivo model to study epidermal wound healing, and examined the role of the actin-myosin system in the rapid re-epithelialization using a myosin II ATPase inhibitor, blebbistatin. A low level of blebbistatin suppressed the formation of APS and induced the dissociation of keratocytes from the leading edge without attenuating the growth of the epidermal sheet or the migration rate of solitary keratocytes. AJs in the superficial layer showed no obvious changes elicited by blebbistatin. However, two epidermal sheets without APSs did not make a closure with each other, which was confirmed by inhibiting the connecting AJs between the superficial layers. These results suggest that myosin II activity is required for functional leading-edge cells and for epidermal closure.

  12. The DP-1 transcription factor is required for keratinocyte growth and epidermal stratification.

    Science.gov (United States)

    Chang, Wing Y; Bryce, Dawn M; D'Souza, Sudhir J A; Dagnino, Lina

    2004-12-03

    The epidermis is a stratified epithelium constantly replenished through the ability of keratinocytes in its basal layer to proliferate and self-renew. The epidermis arises from a single-cell layer ectoderm during embryogenesis. Large proliferative capacity is central to ectodermal cell and basal keratinocyte function. DP-1, a heterodimeric partner of E2F transcription factors, is highly expressed in the ectoderm and all epidermal layers during embryogenesis. To investigate the role of DP-1 in epidermal morphogenesis, we inhibited DP-1 activity through exogenous expression of a dominant-negative mutant (dnDP-1). Expression of the dnDP-1 mutant interferes with binding of E2F/DP-1 heterodimers to DNA and inhibits DNA replication, as well as cyclin A mRNA and protein expression. Chromatin immunoprecipitation analysis demonstrated that the cyclin A promoter is predominantly bound in proliferating keratinocytes by complexes containing E2F-3 and E2F-4. Thus, the mechanisms of decreased expression of cyclin A in the presence of dnDP-1 seem to involve inactivation of DP-1 complexes containing E2F-3 and E2F-4. To assess the consequences on epidermal morphogenesis of inhibiting DP-1 activity, we expressed dnDP-1 in rat epithelial keratinocytes in organotypic culture and observed that DP-1 inhibition negatively affected stratification of these cells. Likewise, expression of dnDP-1 in embryonic ectoderm explants produced extensive disorganization of subsequently formed epidermal basal and suprabasal layers, interfering with normal epidermal formation. We conclude that DP-1 activity is required for normal epidermal morphogenesis and ectoderm-to-epidermis transition.

  13. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors

    International Nuclear Information System (INIS)

    Ogiwara, Kazutaka; Nagaoka, Masato; Cho, Chong-Su; Akaike, Toshihiro

    2006-01-01

    We constructed photo-reactive epidermal growth factor (EGF) bearing p-azido phenylalanine at the C-terminal (HEGFP) by genetic engineering to investigate the possibility of immobilized EGF as a novel artificial extracellular matrix (ECM). The constructed recombinant protein was immobilized to glass surface by ultraviolet irradiation. A431 cells adhered both to HEGFP-immobilized and collagen-coated surfaces. Interaction between immobilized HEGFP and EGF receptors in the A431 cells was independent of Mg 2+ although integrin-mediated cell adhesion to natural ECMs is dependent on Mg 2+ . Phosphorylation of EGF receptors in A431 cells was induced by immobilized HEGFP as same as soluble EGF. DNA uptake of hepatocytes decreased by immobilized HEGFP whereas it increased by soluble EGF. Liver-specific functions of hepatocytes were maintained for 3 days by immobilized HEGFP whereas they were not maintained by soluble EGF, indicating that immobilized HEGFP follows different signal transduction pathway from soluble EGF

  14. Essential contribution of tumor-derived perlecan to epidermal tumor growth and angiogenesis

    DEFF Research Database (Denmark)

    Jiang, Xinnong; Multhaupt, Hinke; Chan, En

    2004-01-01

    As a major heparan sulfate proteoglycan (PG) in basement membranes, perlecan has been linked to tumor invasion, metastasis, and angiogenesis. Here we produced epidermal tumors in immunocompromised rats by injection of mouse RT101 tumor cells. Tumor sections stained with species-specific perlecan...... factor. In vivo, antisense perlecan-transfected cells generated no tumors, whereas untransfected and vector-transfected cells formed tumors with obvious neovascularization, suggesting that tumor perlecan rather than host perlecan controls tumor growth and angiogenesis....

  15. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization. Contrasting significance of tyrosine 992 in the native and truncated receptors

    DEFF Research Database (Denmark)

    Sorkin, A; Helin, K; Waters, C M

    1992-01-01

    The role of epidermal growth factor (EGF) receptor autophosphorylation sites in the regulation of receptor functions has been studied using cells transfected with mutant EGF receptors. Simultaneous point mutation of 4 tyrosines (Y1068, Y1086, Y1148, Y1173) to phenylalanine, as well as removal of ...

  16. The development of epidermal growth factor receptor molecular imaging in cancer

    International Nuclear Information System (INIS)

    Zhou Xiaoliang; Wang Hao; Shi Peiji; Liu Jianfeng; Meng Aimin

    2013-01-01

    In vivo epidermal growth factor receptor (EGFR) targeted therapy has great potential for cancer diagnosis and the evaluation of curative effects. Enhancement of EGFR-targeted therapy needs a reliable quantitative molecular imaging method which could enable monitoring of receptor drug binding and receptor occupancy in vivo, and identification of the mutation in EGFR. PET or SPECT is the most advanced molecular imaging technology of non-invasively selecting responders, predicting therapeutic outcome and monitoring EGFR-targeted treatment. This review analyzed the present situation and research progress of molecular imaging agents. (authors)

  17. Clinical characteristics and epidermal barrier function of papulopustular rosacea: A comparison study with acne vulgaris.

    Science.gov (United States)

    Zhou, Maosong; Xie, Hongfu; Cheng, Lin; Li, Ji

    2016-01-01

    To evaluate the clinical characteristics and epidermal barrier function of papulopustular rosacea by comparing with acne vulgaris. Four hundred and sixty-three papulopustular rosacea patients and four hundred and twelve acne vulgaris patients were selected for the study in Xiangya Hospital of Central South University from March 2015 to May 2016. They were analyzed for major facial lesions, self-conscious symptoms and epidermal barrier function. Erythema, burning, dryness and itching presented in papulopustular rosacea patients were significantly higher than that in acne vulgaris patients ( P acne vulgaris patients ( P acne vulgaris patients ( P acne vulgaris patients in comparison with that of healthy subjects ( P >0.05, P acne vulgaris patients and healthy subjects ( P acne vulgaris patients than that of healthy subjects ( P acne vulgaris. The epidermal barrier function was damaged in papulopustular rosacea patients while not impaired in that of acne vulgaris patients.

  18. Microneedle fractional radiofrequency increases epidermal hyaluronan and reverses age-related epidermal dysfunction.

    Science.gov (United States)

    Lee, Hee Jung; Seo, Seong Rak; Yoon, Moon Soo; Song, Ji-Ye; Lee, Eun Young; Lee, Sang Eun

    2016-02-01

    Skin aging results in physiological alterations in keratinocyte activities and epidermal function, as well as dermal changes. Yet, the cellular and molecular mechanisms that cause epidermal dysfunction during skin aging are not well understood. Recently, the role of epidermal hyaluronan (HA) as an active regulator of dynamic cellular processes is getting attention and alterations in HA metabolism are thought to be important in age-related epidermal dysfunction. Microneedle fractional radiofrequency (RF) has shown effects for improving cutaneous aging. However, little is known about the effects of fractional RF on the epidermal HA and epidermal function. We investigated the effect of microneedle fractional RF on the expression of epidermal HA in young and aged mice epidermis. We performed fractional RF on the dorsal skin of 30 8-week-old (young) hairless mice and 15 47-week-old (aged) C57BL/6J mice. Skin samples were collected on day 1, 3, and 7. HA content was measured by ELISA. Gene expressions of CD 44, HABP4, and HAS3 were measured using real time RT-PCR. Immunohistochemistry for detection of HA, CD44, PCNA, and filaggrin were performed. HA content and the mRNA levels of HABP4, CD44, and HAS3 were upregulated in the epidermis of both young and aged mice after microneedle fractional RF treatment. The expression was increased from day 1 after treatment and increased expression persisted on day 7. Fractional RF treatment significantly increased PCNA and filaggrin expression only in the aged mice skin. Microneedle fractional RF increased epidermal HA and CD44 expression in both young and aged mice and reversed age-related epidermal dysfunction especially in aged mice, suggesting a new mechanism involved in the skin rejuvenation effect of microneedle fractional RF. © 2015 Wiley Periodicals, Inc.

  19. Is epidermal growth factor involved in development of duodenal polyps in familial polyposis coli?

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1988-01-01

    Duodenal adenomas are a frequent extracolonic manifestation in patients with familial polyposis coli (FPC). Epidermal growth factor (EGF), a polypeptide that stimulates cellular growth and differentiation, is localized in Paneth cells in the small intestine. In two patients with FPC, we found EGF...... immunoreactivity in duodenal adenomas. Numerous EGF immunoreactive Paneth cells were localized, not as usually, in the bottom of the crypts, but scattered along the crypts alone or in clusters. We do not know whether EGF is involved in the development of duodenal polyps in FPC patients, or whether the present...

  20. Topical Human Epidermal Growth Factor in the Treatment of Senile Purpura and the Prevention of Dermatoporosis.

    Science.gov (United States)

    McKnight, Braden; Seidel, Rachel; Moy, Ron

    2015-10-01

    Senile purpura presents itself as a largely unexplored challenge as it has been long thought of as a benign condition without long-term health sequelae. It is becoming increasingly accepted that skin aging not only results in cosmetic disturbances, but as a functional ones. With modern increases in lifespan, skin atrophy associated with solar damage is presenting as a clinically significant inability to mechanically protect patients. This chronic cutaneous insufficiency/fragility syndrome was recently termed dermatoporosis and senile purpura appears to be a visible marker of early stage dysfunction. To examine the effects of topically human epidermal growth factor on the clinical presence of senile purpura and its effect on skin thickness as measured via cutaneous ultrasound. Six subjects applied human epidermal growth factor morning and night for six weeks. Clinical outcomes were evaluated by comparing initial clinical photos to 6-week photos and performing a blinded investigator's global assessment (IGA). Skin thickness was evaluated via cutaneous ultrasound measurement. Ultrasound measurements indicated a mean skin thickening of 195.2 ± 35.7 um (SEM) over 6 weeks. The average number of purpuric lesions decreased from 15 ± 4.6 (SEM) to 2.3 ± 0.7 (SEM) over that same period. Senile purpura presents itself as a cosmetic disturbance posing significant psychological distress and serves as a marker of the severity of skin thinning. In this study, we demonstrate that topical h-EGF diminishes the appearance of senile purpura by thickening skin and may help prevent the development of late stage dermatoporosis.

  1. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation

    International Nuclear Information System (INIS)

    Yarden, Y.; Schlessinger, J.

    1987-01-01

    The membrane receptor for epidermal growth factor (EGF) is a 170,000 dalton glycoprotein composed of an extracellular EGF-binding domain and a cytoplasmic kinase domain connected by a stretch of 23 amino acids traversing the plasma membrane. The binding of EGF to the extracellular domain activates the cytoplasmic kinase function even in highly purified preparations of EGF receptor, suggesting that the activation occurs exclusively within the EGF receptor moiety. Conceivably, kinase activation may require the transfer of a conformational change through the single transmembrane region from the ligand binding domain to the cytoplasmic kinase region. Alternatively, ligand-induced receptor-receptor interactions may activate the kinase and thus bypass this requirement. Both mechanisms were contrasted by employing independent experimental approaches. On the basis of these results, an allosteric aggregation model is formulated for the activation of the cytoplasmic kinase function of the receptor by EGF. This model may be relevant to the mechanism by which the mitogenic signal of EGF is transferred across the membrane

  2. Antibody-induced activation of the epidermal growth factor receptor tyrosine kinase requires the presence of detergent

    NARCIS (Netherlands)

    Spaargaren, M.; Defize, L. H.; de Laat, S. W.; Boonstra, J.

    1990-01-01

    Activation of the epidermal growth factor receptor (EGF-R) tyrosine kinase was investigated in membrane preparations as well as intact A431 cells, using anti-EGF-R antibodies directed against extra- and intracellular receptor domains. In vitro assay conditions were mimicked on whole cells by a mild

  3. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Yi Ma

    2016-01-01

    Full Text Available Human epidermal growth factor (hEGF is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H10. The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  4. High Efficient Expression, Purification, and Functional Characterization of Native Human Epidermal Growth Factor in Escherichia coli.

    Science.gov (United States)

    Ma, Yi; Yu, Jieying; Lin, Jinglian; Wu, Shaomin; Li, Shan; Wang, Jufang

    2016-01-01

    Human epidermal growth factor (hEGF) is a small, mitotic growth polypeptide that promotes the proliferation of various cells and is widely applied in clinical practices. However, high efficient expression of native hEGF in Escherichia coli has not been successful, since three disulfide bonds in monomer hEGF made it unable to fold into correct 3D structure using in vivo system. To tackle this problem, we fused Mxe GyrA intein (Mxe) at the C-terminal of hEGF followed by small ubiquitin-related modifier (SUMO) and 10x His-tag to construct a chimeric protein hEGF-Mxe-SUMO-H 10 . The fusion protein was highly expressed at the concentration of 281 mg/L and up to 59.5% of the total cellular soluble proteins. The fusion protein was purified by affinity chromatography and 29.4 mg/L of native hEGF can be released by thiol induced N-terminal cleavage without any proteases. The mitotic activity in Balb/c 3T3 cells is proliferated by commercial and recombinant hEGF measured with methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay which indicated that recombinant hEGF protein stimulates the cell proliferation similar to commercial protein. This study significantly improved the yield and reduced the cost of hEGF in the recombinant E. coli system and could be a better strategy to produce native hEGF for pharmaceutical development.

  5. Fatty acids are required for epidermal permeability barrier function.

    Science.gov (United States)

    Mao-Qiang, M; Elias, P M; Feingold, K R

    1993-08-01

    The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.

  6. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  7. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent Anti-epidermal growth factor receptor nanobody

    NARCIS (Netherlands)

    Van Driel, P.B.A.A.; Van Der Vorst, J.R.; Verbeek, F.P.R.; Oliveira, S.|info:eu-repo/dai/nl/304841455; Snoeks, T.J.A.; Keereweer, S.; Chan, B.; Boonstra, M.C.; Frangioni, J.V.; Van Bergen En Henegouwen, P.M.P.|info:eu-repo/dai/nl/071919481; Vahrmeijer, A.L.; Lowik, C.W.G.M.

    2014-01-01

    Intraoperative near-infrared (NIR) fluorescence imaging is a technology with high potential to provide the surgeon with real-time visualization of tumors during surgery. Our study explores the feasibility for clinical translation of an epidermal growth factor receptor (EGFR)-targeting nanobody for

  8. Overexpression of Heparin-Binding Epidermal Growth Factor-Like Growth Factor Mediates Liver Fibrosis in Transgenic Mice.

    Science.gov (United States)

    Guo, Yongze; Ding, Qian; Chen, Lei; Ji, Chenguang; Hao, Huiyao; Wang, Jia; Qi, Wei; Xie, Xiaoli; Ma, Junji; Li, Aidi; Jiang, Xiaoyu; Li, Xiaotian; Jiang, Huiqing

    2017-08-01

    The role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver fibrosis is not clear and is sometimes even contradictory. To clarify this role, a HB-EGF transgenic (Tg) mouse model was, for the first time, used to evaluate the functions of HB-EGF in liver fibrosis. For the in vivo study, carbon tetrachloride injection and bile duct ligation treatment were used to induce liver fibrosis in HB-EGF Tg mice and wild-type (WT) mice, respectively. Primary hepatic satellite cells (HSCs) were isolated from HB-EGF Tg and WT mice for the in vitro study. Compared with the WT mice, HB-EGF Tg mice were shown to develop more severe liver fibrosis when treated with carbon tetrachloride or bile duct ligation, with increased matrix metalloproteinases 13 activity and enhanced expression of fibrogenic genes including α-smooth muscle actin and collagen I. HB-EGF gene transfer led to an increase in proliferation and a decrease in apoptosis in primary HSCs. The ERK signaling pathway was more highly activated in primary HSCs from HB-EGF Tg mice than in those from WT mice. Our investigation confirmed the profibrotic effect of HB-EGF on the liver using a Tg mouse model. This result may contribute to the elucidation of HB-EGF as a therapeutic target in liver fibrosis. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  9. Urea uptake enhances barrier function and antimicrobial defense in humans by regulating epidermal gene expression

    Science.gov (United States)

    Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean

    2012-01-01

    Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868

  10. Structure and function of the Juxta membrane domain of the human epidermal growth factor receptor by NMR spectroscopy

    International Nuclear Information System (INIS)

    Choowongkomon, Kiattawee; Carlin, Cathleen; Sonnichsen, Frank D.

    2005-10-01

    The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family involved in the regulation of cellular proliferation and differentiation. Its juxta membrane domain (JX), the region located between the transmembrane and kinase domains, plays important roles in receptor trafficking since both basolateral sorting in polarized epithelial cells and lysosomal sorting signals are identified in this region. In order to understand the regulation of these signals, we characterized the structural properties of recombinant JX domain in dodecyl phosphocholine detergent (DPC) by nuclear magnetic resonance (NMR) spectroscopy. In DPC micelles, structures derived from NMR data showed three amphipathic, helical segments. Two equivalent average structural models on the surface of micelles were obtained that differ only in the relative orientation between the first and second helices. Our data suggests that the activity of sorting signals may be regulated by their membrane association and restricted accessibility in the intact receptor

  11. Using scale and feather traits for module construction provides a functional approach to chicken epidermal development.

    Science.gov (United States)

    Bao, Weier; Greenwold, Matthew J; Sawyer, Roger H

    2017-11-01

    Gene co-expression network analysis has been a research method widely used in systematically exploring gene function and interaction. Using the Weighted Gene Co-expression Network Analysis (WGCNA) approach to construct a gene co-expression network using data from a customized 44K microarray transcriptome of chicken epidermal embryogenesis, we have identified two distinct modules that are highly correlated with scale or feather development traits. Signaling pathways related to feather development were enriched in the traditional KEGG pathway analysis and functional terms relating specifically to embryonic epidermal development were also enriched in the Gene Ontology analysis. Significant enrichment annotations were discovered from customized enrichment tools such as Modular Single-Set Enrichment Test (MSET) and Medical Subject Headings (MeSH). Hub genes in both trait-correlated modules showed strong specific functional enrichment toward epidermal development. Also, regulatory elements, such as transcription factors and miRNAs, were targeted in the significant enrichment result. This work highlights the advantage of this methodology for functional prediction of genes not previously associated with scale- and feather trait-related modules.

  12. Adenovirus E4-ORF1 Dysregulates Epidermal Growth Factor and Insulin/Insulin-Like Growth Factor Receptors To Mediate Constitutive Myc Expression

    OpenAIRE

    Kong, Kathleen; Kumar, Manish; Taruishi, Midori; Javier, Ronald T.

    2015-01-01

    The E4-ORF1 protein encoded by human adenovirus stimulates viral replication in human epithelial cells by binding and activating cellular phosphatidylinositol 3-kinase (PI3K) at the plasma membrane and cellular Myc in the nucleus. In this study, we showed that E4-ORF1 hijacks the tyrosine kinase activities of cellular epidermal growth factor receptor (EGFR) and insulin receptor (InsR)/insulin-like growth factor receptor 1 (IGF1R), as well as the lipid kinase activity of PI3K, to mediate const...

  13. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  14. Stepwise Progress in Epidermal Growth Factor Receptor/Radiation Studies for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Harari, Paul M.

    2007-01-01

    The U.S. Food and Drug Administration approval of four new epidermal growth factor receptor (EGFR) inhibitors for cancer therapy (cetuximab, panitumumab, gefitinib, and erlotinib) over the last 3 years is a remarkable milestone in oncology. Indeed, molecular inhibition of EGFR signaling represents one of the most promising current arenas for the development of molecular-targeted cancer therapies. Epidermal growth factor receptor inhibitors from both the monoclonal antibody and tyrosine kinase inhibitor class have demonstrated clinical activity in the treatment of a broad spectrum of common human malignancies. For the discipline of radiation oncology, the 2006 report of a phase III trial demonstrating a survival advantage for advanced head and neck cancer patients with the addition of weekly cetuximab during a 7-week course of radiation is particularly gratifying. Indeed, this is the first phase III trial to confirm a survival advantage with the addition of a molecular-targeted agent to radiation. Furthermore, this result seems to have been achieved with only a modest increment in overall treatment toxicity and with very high compliance to the prescribed treatment regimen. Nevertheless, much remains to be learned regarding the rational integration of EGFR inhibitors into cancer treatment regimens, as well as methods to optimize the selection of patients most likely to benefit from EGFR inhibitor strategies

  15. Blockade of epidermal growth factor receptors chemosensitizes breast cancer cells through up-regulation of Bnip3L

    NARCIS (Netherlands)

    Real, PJ; Benito, A; Cuevas, J; Berciano, MT; de Juan, A; Coffer, P; Gomez-Roman, J; Lafarga, M; Lopez-Vega, JM; Fernandez-Luna, JL

    2005-01-01

    Epidermal growth factor receptor-1 (EGFR) and EGFR-2 (HER2) have become major targets for cancer treatment. Blocking antibodies and small-molecule inhibitors are being used to silence the activity of these receptors in different tumors with varying efficacy. Thus, a better knowledge on the signaling

  16. Time-dependent effect of orchidectomy on vascular nitric oxide and thromboxane A2 release. Functional implications to control cell proliferation through activation of the epidermal growth factor receptor.

    Directory of Open Access Journals (Sweden)

    Marta del Campo

    Full Text Available This study analyzes whether the release of nitric oxide (NO and thromboxane A2 (TXA2 depends on the time lapsed since gonadal function is lost, and their correlation with the proliferation of vascular smooth muscle cells (VSMC mediated by the epidermal growth factor receptor (EGFR. For this purpose, aortic and mesenteric artery segments from control and 6-weeks or 5-months orchidectomized rats were used to measure NO and TXA2 release. The results showed that the basal and acetylcholine (ACh-induced NO release were decreased 6 weeks post-orchidectomy both in aorta and mesenteric artery, but were recovered 5 months thereafter up to levels similar to those found in arteries from control rats. The basal and ACh-induced TXA2 release increased in aorta and mesenteric artery 6 weeks post-orchidectomy, and was maintained at high levels 5 months thereafter. Since we previously observed that orchidectomy, which decreased testosterone level, enlarged the muscular layer of mesenteric arteries, the effect of testosterone on VSMC proliferation was analyzed. The results showed that treatment of cultured VSMC with testosterone downregulated mitogenic signaling pathways initiated by the ligand-dependent activation of the EGFR. In contrast, the EGFR pathways were constitutively active in mesenteric arteries of long-term orchidectomized rats. Thus, the exposure of mesenteric arteries from control rats to epidermal growth factor (EGF induced the activation of EGFR signaling pathways. However, the addition of EGF to arteries from orchidectomized rats failed to induce a further activation of these pathways. In conclusion, this study shows that the release of NO depends on the time lapsed since the gonadal function is lost, while the release of TXA2 is already increased after short periods post-orchidectomy. The alterations in these signaling molecules could contribute to the constitutive activation of the EGFR and its downstream signaling pathways after long period

  17. Adding a Piece to the Leaf Epidermal Cell Shape Puzzle.

    Science.gov (United States)

    von Wangenheim, Daniel; Wells, Darren M; Bennett, Malcolm J

    2017-11-06

    The jigsaw puzzle-shaped pavement cells in the leaf epidermis collectively function as a load-bearing tissue that controls organ growth. In this issue of Developmental Cell, Majda et al. (2017) shed light on how the jigsaw shape can arise from localized variations in wall stiffness between adjacent epidermal cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Epidermal growth factor and its receptors in human pancreatic carcinoma

    International Nuclear Information System (INIS)

    Chen, Y.F.; Pan, G.Z.; Hou, X.; Liu, T.H.; Chen, J.; Yanaihara, C.; Yanaihara, N.

    1990-01-01

    The role of epidermal growth factor (EGF) in oncogenesis and progression of malignant tumors is a subject of vast interest. In this study, radioimmunoassay and radioreceptor assay of EGF were established. EGF contents in malignant and benign pancreatic tumors, in normal pancreas tissue, and in culture media of a human pancreatic carcinoma cell line were determined. EGF receptor binding studies were performed. It was shown that EGF contents in pancreatic carcinomas were significantly higher than those in normal pancreas or benign pancreatic tumors. EGF was also detected in the culture medium of a pancreatic carcinoma cell line. The binding of 125I-EGF to the pancreatic carcinoma cells was time and temperature dependent, reversible, competitive, and specific. Scatchard analysis showed that the dissociation constant of EGF receptor was 2.1 X 10(-9) M, number of binding sites was 1.3 X 10(5) cell. These results indicate that there is an over-expression of EGF/EGF receptors in pancreatic carcinomas, and that an autocrine regulatory mechanism may exist in the growth-promoting effect of EGF on tumor cells

  19. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  20. Tissue remodeling induced by hypersecreted epidermal growth factor and amphiregulin in the airway after an acute asthma attack.

    Science.gov (United States)

    Enomoto, Yukinori; Orihara, Kanami; Takamasu, Tetsuya; Matsuda, Akio; Gon, Yasuhiro; Saito, Hirohisa; Ra, Chisei; Okayama, Yoshimichi

    2009-11-01

    Epidermal growth factor receptor ligands, such as epidermal growth factor (EGF) and amphiregulin, may play key roles in tissue remodeling in asthma. However, the kinetics of EGF and amphiregulin secretion in the airway after an acute asthma attack and the effect of prolonged airway exposure to these ligands on airway remodeling are unknown. To measure the EGF and amphiregulin concentrations in sputa obtained from patients with asthma under various conditions, and to examine the effects of EGF and amphiregulin on the proliferation or differentiation of airway structural cells. Epidermal growth factor and amphiregulin levels were measured by ELISA in sputum specimens collected from 14 hospitalized children with asthma during an acute asthma attack, 13 stable outpatients with asthma, 8 healthy control children, and 7 children with respiratory tract infections. The effects of EGF and amphiregulin on the proliferation and/or differentiation of normal human bronchial epithelial cells (NHBE), bronchial smooth muscle cells (BSMC), and normal human lung fibroblasts (NHLF) were examined. The sputum levels of EGF were significantly higher for about a week after an acute asthma attack compared with the levels in stable subjects with asthma and control subjects. In contrast, upregulation of amphiregulin in the sputa of patients with asthma was observed only during the acute attack. EGF caused proliferation of NHBE, BSMC, and NHLF, whereas amphiregulin induced proliferation of only NHBE. Prolonged exposure of NHBE to EGF and amphiregulin induced mucous cell metaplasia in an IL-13-independent manner. Acute asthma attacks are associated with hypersecretion of EGF and amphiregulin in the airway. Recurrent acute attacks may aggravate airway remodeling.

  1. Epidermal growth factor and lung development in the offspring of the diabetic rat

    DEFF Research Database (Denmark)

    Thulesen, J; Poulsen, Steen Seier; Nexø, Ebba

    2000-01-01

    Fetuses of diabetic mothers who were exposed to excessive glucose show delayed maturation. Under these conditions, altered growth factor expression or signaling may have important regulatory influences. We examined the role of epidermal growth factor (EGF) in lung development and maternal diabetes...... in the rat. In order to evaluate the possible role of glucose for the expression of EGF and the growth of lung tissue, we performed in vitro studies with organotypic cultures of fetal alveolar cells obtained from control rats. Compared to pups of normal rats, the newborn rats of untreated diabetic rats had...... and was associated with a reduced intensity of surfactant protein A-IR. The only difference observed between pups of treated diabetic rats and controls was a decrease in the lung weight:body weight ratio. In organotypic cultures, the presence of 13 mmol/L glucose in the cell media increased immunoreactive staining...

  2. Urinary transforming growth factors in neoplasia: separation of 125I-labeled transforming growth factor-alpha from epidermal growth factor in human urine

    International Nuclear Information System (INIS)

    Stromberg, K.; Hudgins, W.R.

    1986-01-01

    Purified human epidermal growth factor (hEGF) from urine promotes anchorage-independent cell growth in soft agar medium. This growth is enhanced by transforming growth factor-beta (TGF-beta), and is specifically inhibited by hEGF antiserum. Transforming growth factors of the alpha type (TGF-alpha), potentially present in normal human urine or urine from tumor-bearing patients, also promote anchorage-independent cell growth and compete with EGF for membrane receptor binding. Consequently, TGF-alpha cannot be distinguished from urinary hEGF by these two functional assays. Therefore, a technique for separation of TGF-alpha and related peptides from urinary EGF based on biochemical characteristics would be useful. Radioiodination of characterized growth factors [mouse EGF (mEGF), hEGF, and rat TGF-alpha (rTGF-alpha)], which were then separately added to human urine, was used to evaluate a resolution scheme that separates TGF-alpha from the high level of background hEGF present in human urine. Methyl bonded microparticulate silica efficiently adsorbed the 125 I-labeled mEGF, 125 I-labeled hEGF, and 125 I-labeled rTGF-alpha that were added to 24-h human urine samples. Fractional elution with acetonitrile (MeCN) of the adsorbed silica released approximately 70 to 80% of the 125 I-labeled mEGF and 125 I-labeled hEGF between 25 and 30% MeCN, and over 80% of the 125 I-labeled rTGF-alpha between 15 and 25% MeCN, with retention after dialysis of less than 0.2 and 1.7% of the original urinary protein, respectively. A single-step enrichment of about 400-fold for mEGF and hEGF, and 50-fold for rTGF-alpha were achieved rapidly. 125 I-labeled mEGF and 125 I-labeled hEGF eluted later than would be predicted on the basis of their reported molecular weight of approximately 6000, whereas 125 I-labeled rTGF-alpha eluted from Bio-Gel P-10 at an approximate molecular weight of 8000 to 9000

  3. Adrenergic effects on exocrine secretion of rat submandibular epidermal growth factor

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1984-01-01

    The present study was undertaken to investigate the effect of alpha- and beta-adrenergic agonists on secretion of epidermal growth factor (EGF) from the rat submandibular glands and to test the possibility of intestinal absorption of EGF. Alpha-adrenergic agonists increased the concentration...... of salivary EGF by approximately a hundred times, while the serum concentration of EGF was unchanged. The contents of EGF in the submandibular glands decreased upon administration of the alpha-adrenergic agonist noradrenaline, and this was confirmed on immunohistochemical investigation of the glands. Beta-adrenergic....... This study shows that alpha-adrenergic agonists stimulate exocrine secretion of submandibular EGF and that EGF in physiological amounts are not absorbed in the gastrointestinal tract....

  4. Homologous radioimmunoassay for human epidermal growth factor (urogastrone)

    International Nuclear Information System (INIS)

    Dailey, G.E.; Kraus, J.W.; Orth, D.N.

    1978-01-01

    Epidermal growth factor (EGF), a polypeptide hormone originally discovered in the mouse submaxillary gland, stimulates growth in a variety of tissues in several species. This hormone has recently been identified in human urine. A homologous RIA for human EGF (RIA-hEGF) has been developed. In general, levels were similar to those recently reported using a heterologous RIA system. Twenty-four-hour urinary excretion of RIA-hEGF by normal adult males and females was 63.0 +- 3.0 and 52.0 +- 3.5 (mean +- SE) μg/total vol, or 29.7 +- 1.1 and 39.8 +- 1.7 μg/g creatinine, respectively. Excretion by females taking oral contraceptives was significantly greater (60.1 +- 2.7 μg/g creatinine; P 0.05). Several of those with very low values had histories of alcohol abuse. Excretion by patients with Cushing's syndrome was normal. Patients with psoriasis or recovering from major burns excreted both abnormally high and abnormally low levels of RIA-hEGF, with no obvious correlation to their clinical condition. There was no apparent diurnal or postprandial variation in urinary RIA-hEGF excretion by normal subjects. An excellent linear correlation was observed between RIA-hEGF and creatinine concentrations in each urine sample for each subject, suggesting that RIA-hEGF concentration in a random urine sample provides a valid index of 24-h RIA-hEGF excretion

  5. Neutralization of IL-8 prevents the induction of dermatologic adverse events associated with the inhibition of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Houtkamp, Mischa; Schuurhuis, Danita H

    2012-01-01

    Epidermal growth factor receptor (EGFR) inhibitors are widely used in the treatment of cancer. EGFR-targeted treatment is known to be associated with a high incidence of dermatological adverse reactions, including papulopustular rash, which can be dose-limiting and may affect compliance to treatm......Epidermal growth factor receptor (EGFR) inhibitors are widely used in the treatment of cancer. EGFR-targeted treatment is known to be associated with a high incidence of dermatological adverse reactions, including papulopustular rash, which can be dose-limiting and may affect compliance......, characterized by acute follicular neutrophil-rich hair follicle inflammation, and thus mimicked adverse events induced by systemic administration of EGFR inhibitors. In this model, we tested the hypothesis that neutrophils, attracted by IL-8, play a central role in the observed rash. Indeed, concomitant local...

  6. Association of Polymorphisms in Connective Tissue Growth Factor and Epidermal Growth Factor Receptor Genes With Human Longevity.

    Science.gov (United States)

    Donlon, Timothy A; Morris, Brian J; He, Qimei; Chen, Randi; Masaki, Kamal H; Allsopp, Richard C; Willcox, D Craig; Tranah, Gregory J; Parimi, Neeta; Evans, Daniel S; Flachsbart, Friederike; Nebel, Almut; Kim, Duk-Hwan; Park, Joobae; Willcox, Bradley J

    2017-08-01

    Growth pathways play key roles in longevity. The present study tested single-nucleotide polymorphisms (SNPs) in the connective tissue growth factor gene (CTGF) and the epidermal growth factor receptor gene (EGFR) for association with longevity. Comparison of allele and genotype frequencies of 12 CTGF SNPs and 41 EGFR SNPs between 440 American men of Japanese ancestry aged ≥95 years and 374 men of average life span revealed association with longevity at the p cases, consistent with heterozygote advantage in living to extreme old age. No associations of the most significant SNPs were observed in whites or Koreans. In conclusion, the present findings indicate that genetic variation in CTGF and EGFR may contribute to the attainment of extreme old age in Japanese. More research is needed to confirm that genetic variation in CTGF and EGFR contributes to the attainment of extreme old age across human populations. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Investigation of Epidermal Growth Factor, Tumor Necrosis Factor-alpha and Thioredoxin System in Rats Exposed to Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Erol-Demirbilek Melike

    2016-09-01

    Full Text Available Background: Thioredoxin reductase (TrxR, epidermal growth factor (EGF and tumor necrosis factor-α (TNF-α have neuroprotective/neurotoxic effects in cerebral ischemia. We aimed to investigate the TrxR activity, EGF and TNF-α levels in cerebral ischemic, sham-operated and non-ischemic rat brains.

  8. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  9. Analysis of Epidermal Growth Factor Receptor Related Gene Expression Changes in a Cellular and Animal Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    In-Su Kim

    2017-02-01

    Full Text Available We employed transcriptome analysis of epidermal growth factor receptor related gene expression changes in cellular and animal models of Parkinson’s disease (PD. We used a well-known Parkinsonian toxin 1-methyl-4-phenylpyridine (MPP+ to induce neuronal apoptosis in the human neuroblastoma SH-SY5Y cell line. The MPP+-treatment of SH-SY5Y cells was capable of inducing neuro-apoptosis, but it remains unclear what kinds of transcriptional genes are affected by MPP+ toxicity. Therefore the pathways that were significantly perturbed in MPP+ treated human neuroblastoma SH-SY5Y cells were identified based on genome-wide gene expression data at two time points (24 and 48 h. We found that the Epidermal Growth Factor Receptor (EGFR pathway-related genes showed significantly differential expression at all time points. The EGFR pathway has been linked to diverse cellular events such as proliferation, differentiation, and apoptosis. Further, to evaluate the functional significance of the altered EGFR related gene expression observed in MPP+-treated SH-SY5Y cells, the EGFR related GJB2 (Cx26 gene expression was analyzed in an MPP+-intoxicated animal PD model. Our findings identify that the EGFR signaling pathway and its related genes, such as Cx26, might play a significant role in dopaminergic (DAergic neuronal cell death during the process of neuro-apoptosis and therefore can be focused on as potential targets for therapeutic intervention.

  10. Aptamer-conjugated gold nanorod for photothermal ablation of epidermal growth factor receptor-overexpressed epithelial cancer

    Science.gov (United States)

    Choi, Jihye; Park, Yeonji; Choi, Eun Bi; Kim, Hyun-Ouk; Kim, Dong Joo; Hong, Yoochan; Ryu, Sung-Ho; Lee, Jung Hwan; Suh, Jin-Suck; Yang, Jaemoon; Huh, Yong-Min; Haam, Seungjoo

    2014-05-01

    Biomarker-specific photothermal nanoparticles that can efficiently sense markers that are overexpressed in distinguished adenocarcinomas have attracted much interest in an aspect of efficacy increase of cancer treatment. We demonstrated a promising prospect of a smart photothermal therapy agent employing anti-epidermal growth factor receptor aptamer (AptEGFR)-conjugated polyethylene glycol (PEG) layted gold nanorods (AptEGFR-PGNRs). The cetyltrimethylammonium bromide bilayer on GNRs was replaced with heterobifunctional PEG (COOH-PEG-SH) not only to serve as a biocompatible stabilizer and but also to conjugate Apt. Subsequently, to direct photothermal therapy agent toward epithelial cancer cells, the carboxylated PEGylated GNRs (PGNRs) were further functionalized with Apt using carbodiimide chemistry. Then, to assess the potential as biomarker-specific photothermal therapy agent of synthesized Apt-PGNRs, the optical properties, biocompatibility, colloidal stability, binding affinity, and epicellial cancer cell killing efficacy in vitro/in vivo under near-infrared laser irradiation were investigated. As a result, Apt-PGNRs exhibit excellent tumor targeting ability and feasibility of effective photothermal ablation cancer therapy.

  11. The effect of epidermal growth factor and IGF-I infusion on hepatic and renal expression of the IGF-system in adult female rats

    NARCIS (Netherlands)

    J.W. van Neck (Han); E.M. Berghout; L. Vinter-Jensen; C.A.H. Groffen; V. Cingel-Ristic; N.F. Dits (Natasja); S.L.S. Drop (Stenvert); A. Flyvbjerg (Allan)

    2000-01-01

    textabstractSystemic administration of epidermal growth factor (EGF) in neonatal rats results in reduced body weight gain and decreased circulating levels of IGF-I, suggesting its involvement in EGF-induced growth retardation. We investigated the effect of EGF and/or IGF-I

  12. Wnt signalling via the epidermal growth factor receptor: a role in breast cancer?

    International Nuclear Information System (INIS)

    Musgrove, Elizabeth A

    2004-01-01

    Recent data have suggested the epidermal-growth-factor receptor (EGFR) as a point of convergence for several different classes of receptor. Civenni and colleagues have now demonstrated crosstalk between Wnt signalling and the EGFR, showing that in breast epithelial cells Wnts activate downstream targets of the EGFR, including cyclin D1. Given the role of members of these pathways in the aetiology of breast cancer and as markers of outcome and potential therapeutic targets in breast cancer, this observation has a number of potential implications important for both the basic biology of breast cancer and the clinical management of the disease

  13. Growth performance and gastrointestinal responses of broiler chickens fed corn-soybean meal diet without or with exogenous epidermal growth factor upon challenge with Eimeria.

    Science.gov (United States)

    Kim, E; Leung, H; Akhtar, N; Li, J; Barta, J R; Wang, Y; Yang, C; Kiarie, E

    2017-10-01

    Epidermal growth factor (EGF), a protein known for its mitogenic and anti-apoptotic effects was fed to broiler chickens to evaluate growth performance, gastrointestinal measurements, and apparent retention (AR) of components upon challenge with Eimeria. A total of 216, d old male broiler chicks (Ross 708) were placed in cages (6 birds/cage) and allocated to treatments. The treatments were: 1) control (Lactotobacilli lactis fermentation supernatant without EGF), 2) 80 μg of EGF/kg BW/d, and 3) 160 μg of EGF/kg BW/d. A basal antibiotic-free corn-soybean diet containing TiO2 was used. Birds were offered fresh feed with respective treatments on daily basis and had free access to drinking water for 14 d. On d 5, birds (6 replicates per treatment) were challenged with 1 mL of E. acervulina and E. maxima mixture via oral gavage and the other 6 replicates were given sham. Growth performance was measured in pre- (d 0 to 5) and post- (d 6 to 14) challenge periods. Two birds per cage were necropsied on d 10 for intestinal lesion scores and tissue samples for histomorphology and expression of select intestinal genes. Excreta samples for AR of components and oocyst shedding were taken d 10 to 13 and all birds were necropsied on d 14 for gastrointestinal weight. The EGF linearly (P Eimeria interaction (P > 0.05) on growth performance, AR of GE, and intestinal histomorphology; the main effects were such that Eimeria depressed (P Eimeria (P Eimeria challenged birds whilst no effect in non-challenged control. In conclusion, Eimeria challenge reduced growth performance and impaired gut function; EGF showed beneficial effects on growth pre-challenge and improved indices of gut function upon Eimeria challenge. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  14. Acyl-CoA binding protein and epidermal barrier function

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Neess, Ditte; Færgeman, Nils J

    2014-01-01

    The acyl-CoA binding protein (ACBP) is a 10kDa intracellular protein expressed in all eukaryotic species and mammalian tissues investigated. It binds acyl-CoA esters with high specificity and affinity and is thought to act as an intracellular transporter of acyl-CoA esters between different...... includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced...

  15. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging.

    Science.gov (United States)

    Liu, Heng; Chen, Xiao; Xue, Wei; Chu, Chengchao; Liu, Yu; Tong, Haipeng; Du, Xuesong; Xie, Tian; Liu, Gang; Zhang, Weiguo

    The highly infiltrative and invasive nature of glioma cells often leads to blurred tumor margins, resulting in incomplete tumor resection and tumor recurrence. Accurate detection and precise delineation of glioma help in preoperative delineation, surgical planning and survival prediction. In this study, recombinant epidermal growth factor-like domain-1, derived from human coagulation factor VII, was conjugated to iron oxide nanoparticles (IONPs) for targeted glioma magnetic resonance (MR) imaging. The synthesized EGF1-EGFP-IONPs exhibited excellent targeting ability toward tissue factor (TF)-positive U87MG cells and human umbilical vein endothelial cells in vitro, and demonstrated persistent and efficient MR contrast enhancement up to 12 h for preclinical glioma models with high targeting specificity in vivo. They hold great potential for clinical translation and developing targeted theranostics against brain glioma.

  16. Significance of epidermal growth factor receptor signaling for acquisition of meiotic and developmental competence in mammalian oocytes

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Blaha, Milan; Němcová, Lucie

    2017-01-01

    Roč. 97, č. 4 (2017), s. 537-549 ISSN 0006-3363 R&D Projects: GA MZe(CZ) QJ1510138; GA MŠk EF15_003/0000460 Institutional support: RVO:67985904 Keywords : amphiregulin * cumulus cells * epidermal growth factor receptor Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Reproductive biology (medical aspects to be 3) Impact factor: 3.432, year: 2016

  17. Phase III randomized study comparing docetaxel plus trastuzumab with vinorelbine plus trastuzumab as first-line therapy of metastatic or locally advanced human epidermal growth factor receptor 2-positive breast cancer: the HERNATA study

    DEFF Research Database (Denmark)

    Andersson, Michael; Lidbrink, Elisabeth; Bjerre, Karsten

    2011-01-01

    To evaluate docetaxel or vinorelbine, both with trastuzumab, as first-line therapy of human epidermal growth factor receptor 2-positive advanced breast cancer.......To evaluate docetaxel or vinorelbine, both with trastuzumab, as first-line therapy of human epidermal growth factor receptor 2-positive advanced breast cancer....

  18. Increased Epidermal Growth Factor Receptor (EGFR Associated with Hepatocyte Growth Factor (HGF and Symptom Severity in Children with Autism Spectrum Disorders (ASDs

    Directory of Open Access Journals (Sweden)

    Anthony J. Russo

    2014-01-01

    Full Text Available Background One in 88 children in the US is thought to have one of the autism spectrum disorders (ASDs. ASDs are characterized by social impairments and communication problems. Growth factors and their receptors may play a role in the etiology of ASDs. Research has shown that epidermal growth factor receptor (EGFR activation is associated with nerve cell development and repair. This study was designed to measure plasma levels of EGFR in autistic children and correlate these levels with its ligand, epidermal growth factor, other related putative biomarkers such as hepatocyte growth factor (HGF, the ligand for MET (MNNG HOS transforming gene receptor, as well as the symptom severity of 19 different behavioral symptoms. Subjects and Methods Plasma EGFR concentration was measured in 33 autistic children and 34 age- and gender-similar neurotypical controls, using an enzyme-linked immunosorbent assay. Plasma EGFR levels were compared to putative biomarkers known to be associated with EGFR and MET and severity levels of 19 autism-related symptoms. Results We found plasma EGFR levels significantly higher in autistic children, when compared to neurotypical controls. EGFR levels correlated with HGF and high-mobility group protein B1 (HMGB1 levels, but not other tested putative biomarkers, and EGFR levels correlated significantly with severity of expressive language, conversational language, focus/attention, hyperactivity, eye contact, and sound sensitivity deficiencies. Conclusions These results suggest a relationship between increased plasma EGFR levels and designated symptom severity in autistic children. A strong correlation between plasma EGFR and HGF and HMGB1 suggests that increased EGFR levels may be associated with the HGF/Met signaling pathway, as well as inflammation.

  19. Optical Molecular Imaging of Epidermal Growth Factor Receptor Expression to Improve Detection of Oral Neoplasia

    Directory of Open Access Journals (Sweden)

    Nitin Nitin

    2009-06-01

    Full Text Available Background: The development of noninvasive molecular imaging approaches has the potential to improve management of cancer. Methods: In this study, we demonstrate the potential of noninvasive topical delivery of an epidermal growth factor-Alexa 647 (EGF-Alexa 647 conjugate to image changes in epidermal growth factor receptor expression associated with oral neoplasia. We report a series of preclinical analyses to evaluate the optical contrast achieved after topical delivery of EGF-Alexa 647 in a variety of model systems, including cells, three-dimensional tissue cultures, and intact human tissue specimens using wide-field and high-resolution fluorescence imaging. Data were collected from 17 different oral cancer patients: eight pairs of normal and abnormal biopsies and nine resected tumors were examined. Results: The EGF-dye conjugate can be uniformly delivered throughout the oral epithelium with a penetration depth exceeding 500 µm and incubation time of less than 30 minutes. After EGF-Alexa 647 incubation, the presence of oral neoplasia is associated with a 1.5- to 6.9-fold increase in fluorescence contrast compared with grossly normal mucosa from the same patient with both wide-field and high-resolution fluorescence imaging. Conclusions: Results illustrate the potential of EGF-targeted fluorescent agents for in vivo molecular imaging, a technique that may aid in the diagnosis and characterization of oral neoplasia and allow real-time detection of tumor margins.

  20. UVB-induced epidermal hyperproliferation is modified by a single, topical treatment with a mitosis inhibitory epidermal pentapeptide

    International Nuclear Information System (INIS)

    Olsen, W.M.; Elgjo, K.

    1990-01-01

    A single application of a water-miscible cream base containing the recently identified mitosis inhibitory epidermal pentapeptide pyroGlu-Glu-Asp-Ser-GlyOH (EPP) to hairless mouse skin is followed by a long-lasting period of reduced epidermal cell proliferation. To examine if a similar growth inhibition could be achieved in stimulated and rapidly proliferating epidermis, EPP was applied at two different concentrations, 0.005 or 0.02%, to hairless mouse skin immediately after exposure of the left flank to an erythemic dose of ultraviolet B light (UVB). This dose of UVB alone induces a sustained period of rapid epidermal cell proliferation, starting at about 18 h after the irradiation. Epidermal cell proliferation was followed from 18 to 54 h (0.005% cream) or from 18 to 30 h (0.02% cream) after the treatment by estimating the rate of G2-M cell flux (the mitotic rate) by means of Colcemid, and epidermal DNA synthesis by counting labeled cells after pulse-labeling with 3H-thymidine. The unirradiated side of the mice was used as reference. The results showed that topical treatment with a 0.02% EPP cream partially inhibited UVB-induced epidermal hyperproliferation, while the 0.005% EPP cream inhibited as well as stimulated the UVB-induced hyperproliferation. Thus, EPP is effective even in rapidly proliferating epidermal cell populations, but the outcome is obviously dose-dependent in this test system

  1. Adrenergic effects on secretion of epidermal growth factor from Brunner's glands

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1985-01-01

    The influence of the sympathetic nervous system and adrenergic agonists on flow rate and secretion of epidermal growth factor (EGF) from Brunner's glands has been investigated in the rat. Chemical sympathectomy by administration of 6-hydroxydopamine increased volume secretion and output of EGF from...... Brunner's glands but depleted the glands of EGF. Infusion of noradrenaline, an alpha-adrenergic agonist, inhibited basal and vasoactive intestinal polypeptide (VIP) stimulated flow rate and output of EGF from Brunner's glands and increased the amount of EGF in the tissue. Vasoactive intestinal polypeptide...... also increased the amount of EGF in Brunner's gland tissue and this was unchanged after simultaneous infusion of VIP and noradrenaline as well as VIP and isoproterenol, a beta-adrenergic agonist. Isoproterenol had no effect on basal and VIP stimulated secretion of EGF from Brunner's glands...

  2. Radiolabeled cetuximab: dose optimization for epidermal growth factor receptor imaging in a head-and-neck squamous cell carcinoma model

    NARCIS (Netherlands)

    Hoeben, B.A.W.; Molkenboer-Kuenen, J.D.M.; Oyen, W.J.G.; Peeters, W.J.M.; Kaanders, J.H.A.M.; Bussink, J.; Boerman, O.C.

    2011-01-01

    Noninvasive imaging of the epidermal growth factor receptor (EGFR) in head-and-neck squamous cell carcinoma could be of value to select patients for EGFR-targeted therapy. We assessed dose optimization of (111) Indium-DTPA-cetuximab ((111) In-cetuximab) for EGFR imaging in a head-and-neck squamous

  3. Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.

    Science.gov (United States)

    Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram

    2002-02-01

    We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.

  4. Markers of angiogenesis and epidermal growth factor receptor signalling in patients with pancreatic and gastroesophageal junction cancer

    DEFF Research Database (Denmark)

    Rohrberg, Kristoffer Staal; Skov, Birgit Guldhammer; Lassen, Ulrik

    2010-01-01

    The epidermal growth factor receptor (EGFR) and angiogenesis are well established targets in anti-cancer therapy. Several targeted anti-cancer therapies are in clinical trials in pancreatic and gastroesophageal (GEJ) cancer. However, many patients do not respond to these targeted therapies...... in pancreatic and GEJ cancer patients, and could be investigated further as predictive biomarkers in such patients treated with EGFR or angiogenesis targeted therapies....

  5. Growth performance and gastrointestinal responses of broiler chickens fed corn-soybean meal diet without or with exogenous epidermal growth factor upon challenge with Eimeria1

    Science.gov (United States)

    Kim, E.; Leung, H.; Akhtar, N.; Li, J.; Barta, J. R.; Wang, Y.; Yang, C.; Kiarie, E.

    2017-01-01

    Abstract Epidermal growth factor (EGF), a protein known for its mitogenic and anti-apoptotic effects was fed to broiler chickens to evaluate growth performance, gastrointestinal measurements, and apparent retention (AR) of components upon challenge with Eimeria. A total of 216, d old male broiler chicks (Ross 708) were placed in cages (6 birds/cage) and allocated to treatments. The treatments were: 1) control (Lactotobacilli lactis fermentation supernatant without EGF), 2) 80 μg of EGF/kg BW/d, and 3) 160 μg of EGF/kg BW/d. A basal antibiotic-free corn-soybean diet containing TiO2 was used. Birds were offered fresh feed with respective treatments on daily basis and had free access to drinking water for 14 d. On d 5, birds (6 replicates per treatment) were challenged with 1 mL of E. acervulina and E. maxima mixture via oral gavage and the other 6 replicates were given sham. Growth performance was measured in pre- (d 0 to 5) and post- (d 6 to 14) challenge periods. Two birds per cage were necropsied on d 10 for intestinal lesion scores and tissue samples for histomorphology and expression of select intestinal genes. Excreta samples for AR of components and oocyst shedding were taken d 10 to 13 and all birds were necropsied on d 14 for gastrointestinal weight. The EGF linearly (P Eimeria interaction (P > 0.05) on growth performance, AR of GE, and intestinal histomorphology; the main effects were such that Eimeria depressed (P Eimeria (P Eimeria challenged birds whilst no effect in non-challenged control. In conclusion, Eimeria challenge reduced growth performance and impaired gut function; EGF showed beneficial effects on growth pre-challenge and improved indices of gut function upon Eimeria challenge. PMID:28938785

  6. Limited human epidermal growth factor receptor 2 discordance in metastatic breast cancer patients treated with trastuzumab, a population based study

    NARCIS (Netherlands)

    van Rooijen, J.M.; de Munck, L.; de Graaf, J.C.; Siesling, Sabine; de Vries, Erik G.; Boers, J.E.

    2014-01-01

    Background Accurate assessment of the human epidermal growth factor receptor 2 (HER2) in breast cancer is essential for proper treatment decisions. HER2 positivity confirmation rates in breast cancer trials by central testing pathology laboratories were reported to be approximately 85%. The aim of

  7. Limited human epidermal growth factor receptor 2 discordance in metastatic breast cancer patients treated with trastuzumab, a population based study

    NARCIS (Netherlands)

    van Rooijen, J. M.; de Munck, L.; de Graaf, J. C.; Siesling, S.; de Vries, E. G.; Boers, J. E.

    Background: Accurate assessment of the human epidermal growth factor receptor 2 (HER2) in breast cancer is essential for proper treatment decisions. HER2 positivity confirmation rates in breast cancer trials by central testing pathology laboratories were reported to be approximately 85%. The aim of

  8. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    Science.gov (United States)

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  9. Inhibitors of the epidermal growth factor receptor in apple juice extract.

    Science.gov (United States)

    Kern, Melanie; Tjaden, Zeina; Ngiewih, Yufanyi; Puppel, Nicole; Will, Frank; Dietrich, Helmut; Pahlke, Gudrun; Marko, Doris

    2005-04-01

    The polyphenol-rich extract of a consumer-relevant apple juice blend was found to potently inhibit the growth of the human colon cancer cell line HT29 in vitro. The epidermal growth factor receptor (EGFR) and its subsequent signaling cascade play an important role in the regulation of cell proliferation in HT29 cells. The protein tyrosine kinase activity of an EGFR preparation was effectively inhibited by the polyphenol-rich apple juice extract. Treatment of intact cells with this extract resulted in the suppression of the subsequent mitogen-activated protein kinase cascade. Amongst the so far identified apple juice constituents, the proanthocyanidins B1 and B2 as well as quercetin-3-glc (isoquercitrin) and quercetin-3-gal (hyperoside) were found to possess substantial EGFR-inhibitory properties. However, as to be expected from the final concentration of these potential EGFR inhibitors in the original polyphenol-rich extract, a synthetic mixture of the apple juice constituents identified and available so far, including both proanthocyanidins and the quercetin glycosides, showed only marginal inhibitory effects on the EGFR. These results permit the assumption that yet unknown constituents contribute substantially to the potent EGFR-inhibitory properties of polyphenol-rich apple juice extract. In summary, the polyphenol composition of apple juice possesses promising growth-inhibitory properties, affecting proliferation-associated signaling cascades in colon tumor cells.

  10. Phosphoproteomic fingerprinting of epidermal growth factor signaling and anticancer drug action in human tumor cells.

    Science.gov (United States)

    Lim, Yoon-Pin; Diong, Lang-Shi; Qi, Robert; Druker, Brian J; Epstein, Richard J

    2003-12-01

    Many proteins regulating cancer cell growth are tyrosine phosphorylated. Using antiphosphotyrosine affinity chromatography, thiourea protein solubilization, two-dimensional PAGE, and mass spectrometry, we report here the characterization of the epidermal growth factor (EGF)-induced phosphoproteome in A431 human epidermoid carcinoma cells. Using this approach, more than 50 distinct tyrosine phosphoproteins are identifiable within five main clusters-cytoskeletal proteins, signaling enzymes, SH2-containing adaptors, chaperones, and focal adhesion proteins. Comparison of the phosphoproteomes induced in vitro by transforming growth factor-alpha and platelet-derived growth factor demonstrates the pathway- and cell-specific nature of the phosphoproteomes induced. Elimination of both basal and ligand-dependent phosphoproteins by cell exposure to the EGF receptor catalytic inhibitor gefitinib (Iressa, ZD1839) suggests either an autocrine growth loop or the presence of a second inhibited kinase in A431 cells. By identifying distinct patterns of phosphorylation involving novel signaling substrates, and by clarifying the mechanism of action of anticancer drugs, these findings illustrate the potential of immunoaffinity-based phosphoproteomics for guiding the discovery of new drug targets and the rational utilization of pathway-specific chemotherapies.

  11. 111In-cetuximab-F(ab')2 SPECT imaging for quantification of accessible epidermal growth factor receptors (EGFR) in HNSCC xenografts

    NARCIS (Netherlands)

    Dijk, L.K. van; Hoeben, B.A.W.; Stegeman, H.; Kaanders, J.H.A.M.; Franssen, G.M.; Boerman, O.C.; Bussink, J.

    2013-01-01

    BACKGROUND AND PURPOSE: Immunohistochemical epidermal growth factor receptor (EGFR) expression does not correlate with treatment response in head and neck squamous cell carcinomas (HNSCC). Aim was to apply the tracer (111)In-cetuximab-F(ab')2 for EGFR microSPECT imaging and to investigate if tracer

  12. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    Directory of Open Access Journals (Sweden)

    Delfina Costa

    2018-05-01

    Full Text Available Mesenchymal stromal cells (MSC present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF] can exert immunosuppressive effects on T and natural killer (NK lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16. In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR; thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy.

  13. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts

    Science.gov (United States)

    Costa, Delfina; Venè, Roberta; Benelli, Roberto; Romairone, Emanuele; Scabini, Stefano; Catellani, Silvia; Rebesco, Barbara; Mastracci, Luca; Grillo, Federica; Minghelli, Simona; Loiacono, Fabrizio; Zocchi, Maria Raffaella; Poggi, Alessandro

    2018-01-01

    Mesenchymal stromal cells (MSC) present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF)] can exert immunosuppressive effects on T and natural killer (NK) lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC) and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16). In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR); thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3− NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3− cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF) of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy. PMID:29910806

  14. Emerging role of epidermal growth factor receptor inhibition in therapy for advanced malignancy: focus on NSCLC

    International Nuclear Information System (INIS)

    Langer, Corey J.

    2004-01-01

    Combination chemotherapy regimens have emerged as the standard approach in advanced non-small-cell lung cancer. Meta-analyses have demonstrated a 2-month increase in median survival after platinum-based therapy vs. best supportive care, and an absolute 10% improvement in the 1-year survival rate. Just as importantly, cytotoxic therapy has produced benefits in symptom control and quality of life. Newer agents, including the taxanes, vinorelbine, gemcitabine, and irinotecan, have expanded our therapeutic options in the treatment of advanced non-small-cell lung cancer. Despite their contributions, we have reached a therapeutic plateau, with response rates seldom exceeding 30-40% in cooperative group studies and 1-year survival rates stable between 30% and 40%. It is doubtful that substituting one agent for another in various combinations will lead to any further improvement in these rates. The thrust of current research has focused on targeted therapy, and epidermal growth factor receptor inhibition is one of the most promising clinical strategies. Epidermal growth factor receptor inhibitors currently under investigation include the small molecules gefitinib (Iressa, ZD1839) and erlotinib (Tarceva, OSI-774), as well as monoclonal antibodies such as cetuximab (IMC-225, Erbitux). Agents that have only begun to undergo clinical evaluation include CI-1033, an irreversible pan-erbB tyrosine kinase inhibitor, and PKI166 and GW572016, both examples of dual kinase inhibitors (inhibiting epidermal growth factor receptor and Her2). Preclinical models have demonstrated synergy for all these agents in combination with either chemotherapy or radiotherapy, leading to great enthusiasm regarding their ultimate contribution to lung cancer therapy. However, serious clinical challenges persist. These include the identification of the optimal dose(s); the proper integration of these agents into popular, established cytotoxic regimens; and the selection of the optimal setting(s) in which

  15. A transcription factor active on the epidermal growth factor receptor gene

    International Nuclear Information System (INIS)

    Kageyama, R.; Merlino, G.T.; Pastan, I.

    1988-01-01

    The authors have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. They found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO 4 /polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I footprinting and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR

  16. Epidermal growth factor-mediated effects on equine vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Grosenbaugh, D.A.; Amoss, M.S.; Hood, D.M.; Morgan, S.J.; Williams, J.D.

    1988-01-01

    Epidermal growth factor (EGF) receptor binding kinetics and EGF-mediated stimulation of DNA synthesis and cellular proliferation were studied in cultured vascular smooth muscle cells (VSMC) from the equine thoracic aorta. Binding studies, using murine 125 I-labeled EGF, indicate the presence of a single class of high-affinity binding sites, with an estimated maximal binding capacity of 5,800 sites/cells. EGF stimulated [ 3 H]thymidine uptake in confluent quiescent monolayers in a dose-dependent fashion, half-maximal stimulation occurring at 7.5 x 10 -11 M. Likewise, EGF-mediated cellular proliferation was dose dependent under reduced serum concentrations. Equine VSMC contain specific receptors for EGF, and EGF can stimulate DNA synthesis and proliferation in these cultured cells, which suggests that EGF may participate in the proliferative changes observed in equine distal digital peripheral vascular disease

  17. Epidermal growth factor receptor mutation in gastric cancer.

    Science.gov (United States)

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  18. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  19. The biological activity of the human epidermal growth factor receptor is positively regulated by its C-terminal tyrosines

    DEFF Research Database (Denmark)

    Helin, K; Velu, T; Martin, P

    1991-01-01

    mutants in the full length receptor. EGF-dependent transforming ability of the single point mutants is similar to that of the wild type, while that of double mutants is decreased and an even lower activity is present in the triple mutant. In each bioassay, including EGF-dependent focal transformation...... biologically. The EGF-R kinase activity is affected by tyrosine substitution since in vitro phosphorylation of exogenous substrates is reduced in the double and triple mutants. Autophosphorylation, in vivo and in vitro, is also reduced, but not totally abolished in the triple point mutant and Dc123 indicating......The epidermal growth factor receptor (EGF-R) C-terminus contains three conserved tyrosines (Y-1068, Y-1148, Y-1173) which are phosphorylated upon EGF activation. To clarify the functional role of these tyrosines, each has been mutated to phenylalanine and studied as single, double and triple...

  20. Expression of transforming growth factor alpha and epidermal growth factor receptor in rat lung neoplasms induced by plutonium-239

    International Nuclear Information System (INIS)

    Stegelmeier, B.L.; Gillett, N.A.; Hahn, F.F.; Kelly, G.; Rebar, A.H.

    1994-01-01

    Ninety-two rat lung proliferative lesions and neoplasms induced by inhaled 239 PuO 2 were evaluated for aberrant expression of transforming growth factor alpha (TGF-α) and epidermal growth factor receptor (EGFR). Expression of TGF-α protein, measured by immunohistochemistry, was higher in 94% of the squamous cell carcinomas and 87% of the foci of alveolar epithelial squamous metaplasia than that exhibited by the normal-appearing, adjacent lung parenchyma. In contrast, only 20% of adenocarcinomas and foci of epithelial hyperplasia expressed elevated levels of TGF-α. Many neoplasms expressing TGF-α also expressed excessive levels of EGFR mRNA. Southern and DNA slot blot analyses showed that the elevated EGFR expression was not due to amplification of the EGFR gene. These data suggest that increased amounts of TGF-α were early alterations in the progression of plutonium-induced squamous cell carcinoma, and these increases may occur in parallel with overexpression of the receptor for this growth factor. Together, these alterations create a potential autocrine loop for sustaining clonal expansion of cells initiated by high-LET radiation. 44 refs., 4 figs., 1 tab

  1. Expression of the epidermal growth factor system in human endometrium during the menstrual cycle

    DEFF Research Database (Denmark)

    Ejskjaer, Kirsten; Sørensen, B S; Poulsen, Steen Seier

    2005-01-01

    The epidermal growth factor (EGF) system is ubiquitous in humans and plays fundamental roles in embryogenesis, development, proliferation and differentiation. As the endometrium of fertile women is characterized by proliferation and differentiation, we hypothesize a role for the EGF system....... Fourteen premenopausal women had endometrial samples removed on day 6 +/- 1 and day 6 +/- 1 and 12 +/- 1 after ovulation during one menstrual cycle. RNA was extracted and analysed by real-time PCR, and immunohistochemistry was performed to localize the components of the EGF system. Human EGF Receptor 1...... (HER1) showed highest expression during the proliferative phase, HER2 and HER4 during the early and HER3 during the late secretory phase. Amphiregulin (AR) and transforming growth factor alpha (TGFalpha) expression is highest in proliferative phase. Heparin binding (HB)-EGF and betacellulin (BCL) show...

  2. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice

    Directory of Open Access Journals (Sweden)

    Takamitsu Sasaki

    2007-12-01

    Full Text Available The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR and vascular endothelial growth factor receptor (VEGFR signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α and vascular endothelial growth factor (VEGF but were negative for EGFR, human epidermal growth factor receptor 2 (HER2, VEGFR. Double immunofluorescence staining revealed that tumorassociated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR, phosphorylated VEGFR (pVEGFR. Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01; this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001. AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, increased the level of apoptosis in both tumorassociated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer.

  3. A Premature Termination of Human Epidermal Growth Factor Receptor Transcription in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jihene Elloumi-Mseddi

    2014-01-01

    Full Text Available Our success in producing an active epidermal growth factor receptor (EGFR tyrosine kinase in Escherichia coli encouraged us to express the full-length receptor in the same host. Despite its large size, we were successful at producing the full-length EGFR protein fused to glutathione S-transferase (GST that was detected by Western blot analysis. Moreover, we obtained a majoritarian truncated GST-EGFR form detectable by gel electrophoresis and Western blot. This truncated protein was purified and confirmed by MALDI-TOF/TOF analysis to belong to the N-terminal extracellular region of the EGFR fused to GST. Northern blot analysis showed two transcripts suggesting the occurrence of a transcriptional arrest.

  4. Epidermal Growth Factor-like Domain 7 Predicts Response to First-Line Chemotherapy and Bevacizumab in Patients with Metastatic Colorectal Cancer

    DEFF Research Database (Denmark)

    Hansen, Torben Frøstrup; Nielsen, Boye Schnack; Sørensen, Flemming Brandt

    2014-01-01

    The number of approved antiangiogenic drugs is constantly growing and emphasizes the need for predictive biomarkers. The aim of this study was to analyze the predictive value of epidermal growth factor-like domain 7 (EGFL7) and microRNA-126 (miR126) to first-line chemotherapy combined with bevaci...

  5. The Epidermal Growth Factor Receptor Is a Regulator of Epidermal Complement Component Expression and Complement Activation

    DEFF Research Database (Denmark)

    Abu-Humaidan, Anas H A; Ananthoju, Nageshwar; Mohanty, Tirthankar

    2014-01-01

    The complement system is activated in response to tissue injury. During wound healing, complement activation seems beneficial in acute wounds but may be detrimental in chronic wounds. We found that the epidermal expression of many complement components was only increased to a minor extent in skin...

  6. The intestinotrophic peptide, GLP-2, counteracts the gastrointestinal atrophy in mice induced by the epidermal growth factor receptor inhibitor, erlotinib, and cisplatin

    DEFF Research Database (Denmark)

    Rasmussen, Andreas Rosén; Viby, Niels-Erik; Hare, Kristine Juul

    2010-01-01

    Erlotinib, an epidermal-growth-factor receptor inhibitor, belongs to a new generation of targeted cancer therapeutics. Gastrointestinal side-effects are common and have been markedly aggravated when erlotinib is combined with cytostatics. We examined the effects of erlotinib alone and combined wi...

  7. Vitamin B(12) dependent changes in mouse spinal cord expression of vitamin B(12) related proteins and the epidermal growth factor system

    DEFF Research Database (Denmark)

    Mutti, Elena; Lildballe, Dorte L; Kristensen, Lise

    2013-01-01

    Chronic vitamin B(12) (cobalamin) deficiency in the mammalian central nervous system causes degenerative damage, especially in the spinal cord. Previous studies have shown that cobalamin status alters spinal cord expression of epidermal growth factor (EGF) and its receptor in rats. Employing...

  8. Experimentally Induced Gluten Enteropathy and Protective Effect of Epidermal Growth Factor in Artificially Fed Neonatal Rats

    Czech Academy of Sciences Publication Activity Database

    Štěpánková, Renata; Kofroňová, Olga; Tučková, Ludmila; Kozáková, Hana; Cebra, J. J.; Tlaskalová, Helena

    2003-01-01

    Roč. 36, - (2003), s. 96-104 ISSN 0277-2116 R&D Projects: GA ČR GA303/00/1370; GA ČR GA310/00/1373; GA ČR GA303/01/1380; GA ČR GA310/01/0933; GA AV ČR IAA5020210; GA AV ČR IBS5020203; GA AV ČR IAA5020101 Institutional research plan: CEZ:AV0Z5020903 Keywords : epidermal growth factor * celiac disease Subject RIV: EE - Microbiology, Virology Impact factor: 1.402, year: 2003

  9. Prognostic importance of circulating epidermal growth factor-like domain 7 in patients with metastatic colorectal cancer treated with chemotherapy and bevacizumab

    DEFF Research Database (Denmark)

    Hansen, Torben Frøstrup; Andersen, Rikke Fredslund; Aalund Olsen, Dorte

    2017-01-01

    High tumor expression of epidermal growth factor-like domain 7 (EGFL7) has been associated with a poor prognosis in colorectal cancer. The aim of the current study was to investigate the possible prognostic impact of circulating EGFL7 (cir-EGFL7), combined with single nucleotide polymorphism (SNP...

  10. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    Science.gov (United States)

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  11. Association between the epidermal growth factor gene and intelligence in major depression patients.

    Science.gov (United States)

    Tian, Wen-min; Zhang, Ke-ran; Zhang, Juan; Shen, Yan; Xu, Qi

    2010-06-01

    To study the association between the epidermal growth factor (EGF) gene and intelligence in patients with major depression. Intelligence measurement using Wechsler Adult Intelligence Scale (WAIS) was performed on 120 unrelated patients with major depression and 46 control subjects. Blood was collected from all subjects for extraction of genomic DNA. Four single nucleotide polymorphisms (SNPs) in the EGF gene were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI- TOF-MS). Mean scores of both score lang and score task, two subtests in WAIS, differed significantly between major depression patients and controls (Pintelligence in patients with major depression. Genetic variation in the EGF gene may increase the susceptibility of major depression.

  12. Effects of epidermal growth factor, transferrin, and insulin on lipofection efficiency in human lung carcinoma cells.

    Science.gov (United States)

    Yanagihara, K; Cheng, H; Cheng, P W

    2000-01-01

    Poor transfection efficiency is the major drawback of lipofection. We showed previously that addition of transferrin (TF) to Lipofectin enhanced the expression of a reporter gene in HeLa cells by 120-fold and achieved close to 100% transfection efficiency. The purpose of this study was to determine whether TF and other ligands could improve the efficiency of lipofection in lung carcinoma cells. Confluent A549, Calu3, and H292 cells were transfected for 18 hours with a plasmid DNA (pCMVlacZ) using Lipofectin plus TF, insulin, or epidermal growth factor as the vector. The transfected cells were assessed for transfection efficiency by beta-galactosidase activity (light units/microg protein) and the percentage of blue cells following 5-bromo-4-chloro-3-indolyl beta-D-galactopyranoside staining. Lipofectin supplemented with epidermal growth factor yielded the largest enhancement of lipofection efficiency (lipofection efficiency in A549 and Calu3 cells but not in H292 cells, whereas TF showed significant lipofection efficiency-enhancing effect in Calu3 and H292 cells but not in A549 cells. The transfection efficiency correlated well with the amounts of DNA delivered to the nucleus as well as the amounts of the receptor. These results indicate that the gene delivery strategy employing ligand-facilitated lipofection can achieve high transfection efficiency in human lung carcinoma cells. In addition, enhancement of the expression of the receptor may be a possible strategy for increasing the efficiency of gene targeting.

  13. Protein kinase C is differentially regulated by thrombin, insulin, and epidermal growth factor in human mammary tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.; Tellez-Inon, M.T. (Instituto de Ingenieria Genetica y Biologia Molecular, Buenos Aires (Argentina)); Medrano, E.E.; Cafferatta, E.G.A. (Instituto de Investigaciones Bioquimicas Fundacion Campomar, Buenos Aires (Argentina))

    1988-03-01

    The exposure of serum-deprived mammary tumor cells MCF-7 and T-47D to insulin, thrombin, and epidermal growth factor (EGF) resulted in dramatic modifications in the activity and in the translocation capacity of protein kinase C from cytosol to membrane fractions. Insulin induces a 600% activation of the enzyme after 5 h of exposure to the hormone in MCF-7 cells; thrombin either activates (200% in MCF-7) or down-regulates (in T-47D), and EGF exerts only a moderate effect. Thus, the growth factors studied modulate differentially the protein kinase C activity in human mammary tumor cells. The physiological significance of the results obtained are discussed in terms of the growth response elicited by insulin, thrombin, and EGF.

  14. Integrin-Linked Kinase Is Indispensable for Keratinocyte Differentiation and Epidermal Barrier Function.

    Science.gov (United States)

    Sayedyahossein, Samar; Rudkouskaya, Alena; Leclerc, Valerie; Dagnino, Lina

    2016-02-01

    A functional permeability barrier is essential to prevent the passage of water and electrolytes, macromolecules, and pathogens through the epidermis. This is accomplished in terminally differentiated keratinocytes through formation of a cornified envelope and the assembly of tight intercellular junctions. Integrin-linked kinase (ILK) is a scaffold protein essential for hair follicle morphogenesis and epidermal attachment to the basement membrane. However, the biological functions of ILK in differentiated keratinocytes remain poorly understood. Furthermore, whether ILK is implicated in keratinocyte differentiation and intercellular junction formation has remained an unresolved issue. Here we describe a pivotal role for ILK in keratinocyte differentiation responses to increased extracellular Ca(2+), regulation of adherens and tight junction assembly, and the formation of an outside-in permeability barrier toward macromolecules. In the absence of ILK, the calcium sensing receptor, E-cadherin, and ZO-1 fail to translocate to the cell membrane, through mechanisms that involve abnormalities in microtubules and in RhoA activation. In situ, ILK-deficient epidermis exhibits reduced tight junction formation and increased outside-in permeability to a dextran tracer, indicating reduced barrier properties toward macromolecules. Therefore, ILK is an essential component of keratinocyte differentiation programs that contribute to epidermal integrity and the establishment of its barrier properties. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Improvement of hydration and epidermal barrier function in human skin by a novel compound isosorbide dicaprylate.

    Science.gov (United States)

    Chaudhuri, R K; Bojanowski, K

    2017-10-01

    The study involved the synthesis of a novel derivative of caprylic acid - isosorbide dicaprylate (IDC) - and the evaluation of its potential in improving water homoeostasis and epidermal barrier function in human skin. The effect of IDC on gene expression was assayed in skin organotypic cultures by DNA microarrays. The results were then confirmed for a few key genes by quantitative PCR, immuno- and cytochemistry. Final validation of skin hydration properties was obtained by four separate clinical studies. Level of hydration was measured by corneometer either by using 2% IDC lotion alone vs placebo or in combination with 2% glycerol lotion vs 2% glycerol only. A direct comparison in skin hydration between 2% IDC and 2% glycerol lotions was also carried out. The epidermal barrier function improvement was assessed by determining changes in transepidermal water loss (TEWL) on the arms before and after treatment with 2% IDC lotion versus placebo. IDC was found to upregulate the expression of AQP3, CD44 and proteins involved in keratinocyte differentiation as well as the formation and function of stratum corneum. A direct comparison between 2% IDC versus 2% glycerol lotions revealed a three-fold advantage of IDC in providing skin hydration. Severely dry skin treated with 2% IDC in combination with 2% glycerol showed 133% improvement, whereas 35% improvement was observed with moderately dry human skin. Topical isosorbide dicaprylate favourably modulates genes involved in the maintenance of skin structure and function, resulting in superior clinical outcomes. By improving skin hydration and epidermal permeability barrier, it offers therapeutic applications in skin ageing. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  16. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    International Nuclear Information System (INIS)

    Ahren, B.

    1987-01-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with 125 I and thyroxine; the subsequent release of 125 I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse

  17. Adrenergic effects on renal secretion of epidermal growth factor in the rat

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier; Nexø, Ebba

    1985-01-01

    Urinary epidermal growth factor (EGF) has been demonstrated recently to originate from the kidneys. The present study was undertaken to investigate the adrenergic and cholinergic influence on secretion of renal EGF. beta-Adrenergic agonists increased the level of urinary EGF, while propranolol......, a beta-adrenergic blocking agent, decreased basal and beta-adrenergic stimulated total output of urinary EGF. Acetylcholine and the anticholinergic agent atropine had no effect on the output of EGF in urine. Also chemical sympathectomy induced by 6-hydroxydopamine reduced the urinary output of EGF. None...... of the experimental groups had a median serum concentration above the detection limit of the assay. The present study shows that secretion of renal EGF is under the influence of the sympathetic nervous system and release of EGF is stimulated by activation of beta-adrenergic receptors in the kidneys....

  18. Does epidermal growth factor play a role in the action of sucralfate?

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1987-01-01

    Epidermal growth factor (EGF) is a mitogenic peptide synthesized in the submandibular glands and released in saliva. EGF is able to prevent the development of gastrointestinal ulcers in the rat and to accelerate their healing. The present work was undertaken to examine whether Sucralfate acts via...... the effector system of EGF. We conclude that Sucralfate does not change the binding of EGF to its receptor, but it is able to bind EGF in a pH dependent manner and at pH below 4.5 virtually all EGF is bound to Sucralfate. In vivo studies in rats with acid-induced gastric ulcers show that sucralfate carries EGF...... to the ulcer, and that EGF is available for a longer period of time (3 hours) when EGF and Sucralfate are is given together than when EGF is given alone....

  19. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    OpenAIRE

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-01-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did no...

  20. An evaluation of the effects of epidermal growth factor on irradiation lip mucosa damage in mice

    International Nuclear Information System (INIS)

    Feng Yan

    1994-01-01

    The effect of epidermal growth factor (EGF) on lip mucosa damage by irradiation was explored in mice. EGF was administered in doses of 100 μg/kg/day using different schedules. Mucosal damage was assessed. The metaphase arrest method with vinblastine was used to evaluate the diurnal rhythm of mitosis. EGF in regimens employed did not protect the mouse lip epithelial cells from irradiation induced damage, but it has a demonstrable stimulatory effect on cell proliferation in lip mucosa which is dependent on the schedules of administration. The reasons and mechanisms are discussed

  1. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer

    NARCIS (Netherlands)

    Wolff, Antonio C.; Hammond, M. Elizabeth H.; Schwartz, Jared N.; Hagerty, Karen L.; Allred, D. Craig; Cote, Richard J.; Dowsett, Mitchell; Fitzgibbons, Patrick L.; Hanna, Wedad M.; Langer, Amy; McShane, Lisa M.; Paik, Soonmyung; Pegram, Mark D.; Perez, Edith A.; Press, Michael F.; Rhodes, Anthony; Sturgeon, Catharine; Taube, Sheila E.; Tubbs, Raymond; Vance, Gail H.; van de Vijver, Marc; Wheeler, Thomas M.; Hayes, Daniel F.

    2007-01-01

    PURPOSE: To develop a guideline to improve the accuracy of human epidermal growth factor receptor 2 (HER2) testing in invasive breast cancer and its utility as a predictive marker. METHODS: The American Society of Clinical Oncology and the College of American Pathologists convened an expert panel,

  2. EFFECTS OF EPIDERMAL GROWTH FACTOR (EGF), TRANSFORMING GROWTH FACTOR- (TGF), AND 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN ON FUSION OF EMBRYONIC PALATES IN SERUM-FREE ORGAN CULTURE USING WILD-TYPE, EGF KNOCKOUT, AND TGF KNOCKOUT MOUSE STRAINS

    Science.gov (United States)

    Backround: 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is teratogenic in mice, producing cleft palate (CP). TCDD exposure disrupts expression of epidermal growth factor (EGF) receptor, EGF, and transforming growth factor- (TGF) in the palate and affects proliferation and different...

  3. Abnormalities of lymphocyte function and phenotypic pattern in a case of toxic epidermal necrolysis

    DEFF Research Database (Denmark)

    Hagdrup, H; Tønnesen, E; Clemmensen, O

    1992-01-01

    We examined the blood lymphocyte function and phenotypic pattern in a patient with toxic epidermal necrolysis after taking salazopyrin. We studied cell surface markers, natural killer cell activity and mitogen-induced lymphocyte transformation. Our results point to temporary immunosuppression...... as evidenced by lymphopenia with a large "null cell" population, reduced natural killer cell activity, and impaired lymphocyte response to mitogens....

  4. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions

    NARCIS (Netherlands)

    Nagao, Keisuke; Ginhoux, Florent; Leitner, Wolfgang W.; Motegi, Sei-Ichiro; Bennett, Clare L.; Clausen, Björn E.; Merad, Miriam; Udey, Mark C.

    2009-01-01

    A new langerin(+) DC subset has recently been identified in murine dermis (langerin(+) dDC), but the lineage and functional relationships between these cells and langerin(+) epidermal Langerhans cells (LC) are incompletely characterized. Selective expression of the cell adhesion molecule EpCAM by LC

  5. Development of EMab-51, a Sensitive and Specific Anti-Epidermal Growth Factor Receptor Monoclonal Antibody in Flow Cytometry, Western Blot, and Immunohistochemistry.

    Science.gov (United States)

    Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-10-01

    The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG 1 , kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.

  6. Imaging of Epidermal Growth Factor Receptor Expression in Head and Neck Cancer with SPECT/CT and 111In-Labeled Cetuximab-F(ab')2

    NARCIS (Netherlands)

    Dijk, L.K. van; Hoeben, B.A.W.; Kaanders, J.H.A.M.; Franssen, G.M.; Boerman, O.C.; Bussink, J.

    2013-01-01

    Combined treatment of advanced head and neck squamous cell carcinomas (HNSCC) with radiotherapy and the epidermal growth factor receptor (EGFR) inhibitor cetuximab improves clinical outcome in comparison to radiotherapy alone but is effective only in a few cases. To select those patients most likely

  7. Recycling of epidermal growth factor in a human pancreatic carcinoma cell line

    International Nuclear Information System (INIS)

    Korc, M.; Magun, B.E.

    1985-01-01

    PANC-1 human pancreatic carcinoma cells readily bound and internalized 125 I-labeled epidermal growth factor (EGF). Bound 125 I-labeled EGF was then partially processed to a number of high molecular weight acidic species. Percoll gradient centrifugation of cell homogenates indicated that the majority of 125 I activity localized to several intracellular vesicular compartments. Both intact EGF and its processed species were subsequently released into the incubation medium. A major portion of the released radioactivity was capable of rebinding to the cell. Only a small amount of bound 125 I-labeled EGF was degraded to low molecular weight products, and this degradation was completely blocked by methylamine. These findings suggest that in PANC-1 cells, bound EGF undergoes only limited processing. Both intact EGF and its major processed species bypass the cellular degradative pathways, are slowly released from the cell, and then rebind to the cell

  8. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    International Nuclear Information System (INIS)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-01-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of 125 I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound 125 I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients

  9. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    OpenAIRE

    Boeckx, Carolien; Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against epidermal growth factor receptor (EGFR) is one of the most promising therapeutics for head and neck squamous cell carcinoma, and EGFR is overexpressed in a wide range of malignancies. An improved understanding of the resistance to EGFR inhibitors may provide new treatment options. This review summarizes some mechanisms and decribes strategies to overcome this resistance.

  10. A novel role of RASSF9 in maintaining epidermal homeostasis.

    Directory of Open Access Journals (Sweden)

    Chiou-Mei Lee

    Full Text Available The physiological role of RASSF9, a member of the Ras-association domain family (RASSF, is currently unclear. Here, we report a mouse line in which an Epstein-Barr virus Latent Membrane Protein 1 (LMP1 transgene insertion has created a 7.2-kb chromosomal deletion, which abolished RASSF9 gene expression. The RASSF9-null mice exhibited interesting phenotypes that resembled human ageing, including growth retardation, short lifespan, less subcutaneous adipose layer and alopecia. In the wild-type mice, RASSF9 is predominantly expressed in the epidermal keratinocytes of skin, as determined by quantitative reverse-transcription PCR, immunofluorescence and in situ hybridization. In contrast, RASSF9-/- mice presented a dramatic change in epithelial organization of skin with increased proliferation and aberrant differentiation as detected by bromodeoxyuridine incorporation assays and immunofluorescence analyses. Furthermore, characteristic functions of RASSF9-/- versus wild type (WT mouse primary keratinocytes showed significant proliferation linked to a reduction of p21Cip1 expression under growth or early differentiation conditions. Additionally, in RASSF9-/- keratinocytes there was a drastic down-modulation of terminal differentiation markers, which could be rescued by infection with a recombinant adenovirus, Adv/HA-RASSF9. Our results indicate a novel and significant role of RASSF9 in epidermal homeostasis.

  11. Yorkie regulates epidermal wound healing in Drosophila larvae independently of cell proliferation and apoptosis.

    Science.gov (United States)

    Tsai, Chang-Ru; Anderson, Aimee E; Burra, Sirisha; Jo, Juyeon; Galko, Michael J

    2017-07-01

    Yorkie (Yki), the transcriptional co-activator of the Hippo signaling pathway, has well-characterized roles in balancing apoptosis and cell division during organ growth control. Yki is also required in diverse tissue regenerative contexts. In most cases this requirement reflects its well-characterized roles in balancing apoptosis and cell division. Whether Yki has repair functions outside of the control of cell proliferation, death, and growth is not clear. Here we show that Yki and Scalloped (Sd) are required for epidermal wound closure in the Drosophila larval epidermis. Using a GFP-tagged Yki transgene we show that Yki transiently translocates to some epidermal nuclei upon wounding. Genetic analysis strongly suggests that Yki interacts with the known wound healing pathway, Jun N-terminal kinase (JNK), but not with Platelet Derived Growth Factor/Vascular-Endothelial Growth Factor receptor (Pvr). Yki likely acts downstream of or parallel to JNK signaling and does not appear to regulate either proliferation or apoptosis in the larval epidermis during wound repair. Analysis of actin structures after wounding suggests that Yki and Sd promote wound closure through actin regulation. In sum, we found that Yki regulates an epithelial tissue repair process independently of its previously documented roles in balancing proliferation and apoptosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors

    DEFF Research Database (Denmark)

    Pandey, A; Podtelejnikov, A V; Blagoev, B

    2000-01-01

    Oligomerization of receptor protein tyrosine kinases such as the epidermal growth factor receptor (EGFR) by their cognate ligands leads to activation of the receptor. Transphosphorylation of the receptor subunits is followed by the recruitment of signaling molecules containing src homology 2 (SH2...

  13. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    Science.gov (United States)

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  14. Leptin regulates the pro-inflammatory response in human epidermal keratinocytes.

    Science.gov (United States)

    Lee, Moonyoung; Lee, Eunyoung; Jin, Sun Hee; Ahn, Sungjin; Kim, Sae On; Kim, Jungmin; Choi, Dalwoong; Lim, Kyung-Min; Lee, Seung-Taek; Noh, Minsoo

    2018-05-01

    The role of leptin in cutaneous wound healing process has been suggested in genetically obese mouse studies. However, the molecular and cellular effects of leptin on human epidermal keratinocytes are still unclear. In this study, the whole-genome-scale microarray analysis was performed to elucidate the effect of leptin on epidermal keratinocyte functions. In the leptin-treated normal human keratinocytes (NHKs), we identified the 151 upregulated and 53 downregulated differentially expressed genes (DEGs). The gene ontology (GO) enrichment analysis with the leptin-induced DEGs suggests that leptin regulates NHKs to promote pro-inflammatory responses, extracellular matrix organization, and angiogenesis. Among the DEGs, the protein expression of IL-8, MMP-1, fibronectin, and S100A7, which play roles in which is important in the regulation of cutaneous inflammation, was confirmed in the leptin-treated NHKs. The upregulation of the leptin-induced proteins is mainly regulated by the STAT3 signaling pathway in NHKs. Among the downregulated DEGs, the protein expression of nucleosome assembly-associated centromere protein A (CENPA) and CENPM was confirmed in the leptin-treated NHKs. However, the expression of CENPA and CENPM was not coupled with those of other chromosome passenger complex like Aurora A kinase, INCENP, and survivin. In cell growth kinetics analysis, leptin had no significant effect on the cell growth curves of NHKs in the normal growth factor-enriched condition. Therefore, leptin-dependent downregulation of CENPA and CENPM in NHKs may not be directly associated with mitotic regulation during inflammation.

  15. Differential Downregulation of E-Cadherin and Desmoglein by Epidermal Growth Factor

    Directory of Open Access Journals (Sweden)

    Miquella G. Chavez

    2012-01-01

    Full Text Available Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF receptor disrupts cel : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound reepithelialization model. Dual immunofluorescence staining revealed that neither E-cadherin nor desmoglein-2 internalized with the EGF receptor, or with one another. In response to EGF, desmoglein-2 entered a recycling compartment based on predominant colocalization with the recycling marker Rab11. In contrast, E-cadherin downregulation was accompanied by cleavage of the extracellular domain. A broad-spectrum matrix metalloproteinase inhibitor protected E-cadherin but not the desmosomal cadherin, desmoglein-2, from EGF-stimulated disruption. These findings demonstrate that although activation of the EGF receptor regulates adherens junction and desmosomal components, this stimulus downregulates associated cadherins through different mechanisms.

  16. Phase II trial of epidermal growth factor ointment for patients with Erlotinib-related skin effects.

    Science.gov (United States)

    Hwang, In Gyu; Kang, Jung Hun; Oh, Sung Yong; Lee, Suee; Kim, Sung-Hyun; Song, Ki-Hoon; Son, Choonhee; Park, Min Jae; Kang, Myung Hee; Kim, Hoon Gu; Lee, Jeeyun; Park, Young Suk; Sun, Jong Mu; Kim, Hyun Jung; Kim, Chan Kyu; Yi, Seong Yoon; Jang, Joung-Soon; Park, Keunchil; Kim, Hyo-Jin

    2016-01-01

    The efficacy of erlotinib, the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, has been demonstrated in patients with non-small cell lung cancer (NSCLC) and pancreatic cancer (PC). In the present study, we evaluated the effect of epidermal growth factor (EGF) ointment on erlotinib-related skin effects (ERSEs). This was an open-label, non-comparative, multicenter, phase II trial. The patients included those diagnosed with NSCLC or PC who were treated with erlotinib. The effectiveness of the ointment was defined as follows: (1) grade 2, 3, or 4 ERSEs downgraded to ≤ grade 1 or (2) grade 3 or 4 ERSEs downgraded to grade 2 and persisted for at least 2 weeks. Fifty-two patients from seven institutes in Korea were enrolled with informed consent. The final assessment included 46 patients (30 males, 16 females). According to the definition of effectiveness, the EGF ointment was effective in 36 (69.2%) intention to treat patients. There were no statistically significant differences in the effectiveness of the EGF ointment by gender (p = 0.465), age (p = 0.547), tumor type (p = 0.085), erlotinib dosage (p = 0.117), and number of prior chemotherapy sessions (p = 0.547). The grading for the average National Cancer Institute's Common Terminology Criteria for Adverse Events (NCI-CTCAE) rating of rash/acne and itching improved from 2.02 ± 0.83 to 1.13 ± 0.89 and 1.52 ± 0.84 to 0.67 ± 0.90, respectively (p reason for discontinuing the study was progression of cancer (37%). Based on the results, the EGF ointment is effective for ERSEs, regardless of gender, age, type of tumor, and dosage of erlotinib. The EGF ointment evenly improved all kinds of symptoms of ERSEs. ClinicalTrials.gov identifier: NCT01593995.

  17. Epidermal growth factor treatment decreases mortality and is associated with improved gut integrity in sepsis.

    Science.gov (United States)

    Clark, Jessica A; Clark, Andrew T; Hotchkiss, Richard S; Buchman, Timothy G; Coopersmith, Craig M

    2008-07-01

    Epidermal growth factor (EGF) is a cytoprotective peptide that has healing effects on the intestinal mucosa. We sought to determine whether systemic administration of EGF after the onset of sepsis improved intestinal integrity and decreased mortality. FVB/N mice were subjected to either sham laparotomy or 2 x 23 cecal ligation and puncture (CLP). Septic mice were further randomized to receive injection of either 150 microg kg(-1) d(-1) (i.p.) EGF or 0.9% saline (i.p.). Circulating EGF levels were decreased after CLP compared with sham animals but were unaffected by giving exogenous EGF treatment. In contrast, intestinal EGF levels increased after CLP and were further augmented by exogenous EGF treatment. Intestinal EGF receptor was increased after CLP, whether assayed by immunohistochemistry, real-time polymerase chain reaction, or Western blot, and exogenous EGF treatment decreased intestinal EGF receptor. Villus length decreased 2-fold between sham and septic animals, and EGF treatment resulted in near total restitution of villus length. Sepsis decreased intestinal proliferation and increased intestinal apoptosis. This was accompanied by increased expression of the proapoptotic proteins Bid and Fas-associated death domain, as well as the cyclin-dependent kinase inhibitor p21 cip1/waf Epidermal growth factor treatment after the onset of sepsis restored both proliferation and apoptosis to levels seen in sham animals and normalized expression of Bid, Fas-associated death domain, and p21 cip1/waf . To determine whether improvements in gut homeostasis were associated with a decrease in sepsis-induced mortality, septic mice with or without EGF treatment after CLP were followed 7 days for survival. Mortality decreased from 60% to 30% in mice treated with EGF after the onset of sepsis (P < 0.05). Thus, EGF may be a potential therapeutic agent for the treatment of sepsis in part due to its ability to protect intestinal integrity.

  18. Epidermal growth factor increases LRF/Pokemon expression in human prostate cancer cells.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Agrawal, Devendra K

    2011-10-01

    Leukemia/lymphoma related factor/POK erythroid myeloid ontogenic factor (LRF/Pokemon) is a member of the POK family of proteins that promotes oncogenesis in several forms of cancer. Recently, we found higher LRF expression in human breast and prostate carcinomas compared to the corresponding normal tissues. The aim of this study was to examine the regulation of LRF expression in human prostate cells. Epidermal growth factor (EGF) and its receptors mediate several tumorigenic cascades that regulate cell differentiation, proliferation, migration and survival of prostate cancer cells. There was significantly higher level of LRF expression in the nucleus of LNCaP and PC-3 cells than RWPE-1 cells. A significant increase in LRF expression was observed with increasing doses of EGF in more aggressive and androgen-sensitive prostate cancer cells suggesting that EGF signaling pathway is critical in upregulating the expression of LRF/Pokemon to promote oncogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1.

    Science.gov (United States)

    Lee, S Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W Marston; Bottaro, Donald P; Vasselli, James R

    2008-10-01

    Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-alpha (TGF-alpha), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knock-down cells had escaped shRNA suppression. EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen.

  20. Von Hippel-Lindau Tumor Suppressor Gene Loss in Renal Cell Carcinoma Promotes Oncogenic Epidermal Growth Factor Receptor Signaling via Akt-1 and MEK1

    Science.gov (United States)

    Lee, S. Justin; Lattouf, Jean-Baptiste; Xanthopoulos, Julie; Linehan, W. Marston; Bottaro, Donald P.; Vasselli, James R.

    2008-01-01

    Objectives Clear-cell renal cell carcinoma (RCC) is the most prevalent form of kidney cancer and is frequently associated with loss of von Hippel-Lindau (VHL) gene function, resulting in the aberrant transcriptional activation of genes that contribute to tumor growth and metastasis, including transforming growth factor-α (TGF-α), a ligand of the epidermal growth factor receptor (EGFR) tyrosine kinase. To determine the functional impact of EGFR activation on RCC, we suppressed critical components of this pathway: EGFR, Akt-1, and MEK-1. Methods Stable transfection of RCC cells with plasmids bearing shRNA directed against each of these genes was used to individually suppress their expression. Transfectants were characterized for growth and invasiveness in vitro and tumorigenesis in vivo. Results RCC cell transfectants displayed significantly reduced growth rate and matrix invasion in vitro and RCC tumor xenograft growth rate in vivo. Analysis of tumor cells that emerged after extended periods in each model showed that significant EGFR suppression was sustained, whereas Akt-1 and MEK-1 knockdown cells had escaped shRNA suppression. Conclusions EGFR, Akt-1, and MEK-1 are individually critical for RCC cell invasiveness in vitro and tumorigenicity in vivo, and even partial suppression of each can have a significant impact on tumor progression. The emergence of transfectants that had escaped Akt-1 and MEK-1 suppression during tumorigenicity experiments suggests that these effectors may each be more critical than EGFR for RCC tumorigenesis, consistent with results from clinical trials of EGFR inhibitors for RCC, where durable clinical responses have not been seen. PMID:18243508

  1. The effects of chronic administration of epidermal growth factor (EGF) to rats on the levels of endogenous EGF in the submandibular glands and kidneys

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Jøgensen, P E; Poulsen, Steen Seier

    1996-01-01

    Epidermal growth factor (EGF) is mainly produced in the submandibular glands (SMG) and in the kidneys. It has recently been reported that EGF-related ligands may induce their own biosynthesis (autoinduction) in vitro. In the present paper, we investigated whether chronic systemic treatment with E...

  2. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling.

    Science.gov (United States)

    Mutoh, Shingo; Sobhany, Mack; Moore, Rick; Perera, Lalith; Pedersen, Lee; Sueyoshi, Tatsuya; Negishi, Masahiko

    2013-05-07

    Phenobarbital is a central nervous system depressant that also indirectly activates nuclear receptor constitutive active androstane receptor (CAR), which promotes drug and energy metabolism, as well as cell growth (and death), in the liver. We found that phenobarbital activated CAR by inhibiting epidermal growth factor receptor (EGFR) signaling. Phenobarbital bound to EGFR and potently inhibited the binding of EGF, which prevented the activation of EGFR. This abrogation of EGFR signaling induced the dephosphorylation of receptor for activated C kinase 1 (RACK1) at Tyr(52), which then promoted the dephosphorylation of CAR at Thr(38) by the catalytic core subunit of protein phosphatase 2A. The findings demonstrated that the phenobarbital-induced mechanism of CAR dephosphorylation and activation is mediated through its direct interaction with and inhibition of EGFR.

  3. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Diego; Klein, Daryl E.; Lemmon, Mark A.; (UPENN-MED)

    2009-09-25

    The orphan receptor tyrosine kinase ErbB2 (also known as HER2 or Neu) transforms cells when overexpressed, and it is an important therapeutic target in human cancer. Structural studies have suggested that the oncogenic (and ligand-independent) signalling properties of ErbB2 result from the absence of a key intramolecular 'tether' in the extracellular region that autoinhibits other human ErbB receptors, including the epidermal growth factor (EGF) receptor. Although ErbB2 is unique among the four human ErbB receptors, here we show that it is the closest structural relative of the single EGF receptor family member in Drosophila melanogaster (dEGFR). Genetic and biochemical data show that dEGFR is tightly regulated by growth factor ligands, yet a crystal structure shows that it, too, lacks the intramolecular tether seen in human EGFR, ErbB3 and ErbB4. Instead, a distinct set of autoinhibitory interdomain interactions hold unliganded dEGFR in an inactive state. All of these interactions are maintained (and even extended) in ErbB2, arguing against the suggestion that ErbB2 lacks autoinhibition. We therefore suggest that normal and pathogenic ErbB2 signalling may be regulated by ligands in the same way as dEGFR. Our findings have important implications for ErbB2 regulation in human cancer, and for developing therapeutic approaches that target novel aspects of this orphan receptor.

  4. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression

    Directory of Open Access Journals (Sweden)

    Ahnen Dennis

    2005-01-01

    Full Text Available Abstract Background Regular use of nonsteroidal anti-inflammatory drugs (NSAIDs is associated with a decreased mortality from colorectal cancer (CRC. NSAIDs induce apoptotic cell death in colon cancer cells in vitro and inhibit growth of neoplastic colonic mucosa in vivo however, the biochemical mechanisms required for these growth inhibitory effects are not well defined. We previously reported that metabolites of the NSAID sulindac downregulate extracellular-signal regulated kinase 1/2 (ERK1/2 signaling and that this effect is both necessary and sufficient for the apoptotic effects of these drugs. The goal of this project was to specifically test the hypothesis that sulindac metabolites block activation and/or expression of the epidermal growth factor (EGF receptor (EGFR. Methods HT29 human colon cancer cells were treated with EGF, alone, or in the presence of sulindac sulfide or sulindac sulfone. Cells lysates were assayed by immunoblotting for phosphorylated EGFR (pEGFR, pY1068, total EGFR, phosphorylated ERK1/2 (pERK1/2, total ERK1/2, activated caspase-3, and α-tubulin. Results EGF treatment rapidly induced phosphorylation of both EGFR and ERK1/2 in HT29 colon cancer cells. Pretreatment with sulindac metabolites for 24 h blocked EGF-induced phosphorylation of both EGFR and ERK1/2 and decreased total EGFR protein expression. Under basal conditions, downregulation of pEGFR and total EGFR was detected as early as 12 h following sulindac sulfide treatment and persisted through at least 48 h. Sulindac sulfone induced downregulation of pEGFR and total EGFR was detected as early as 1 h and 24 h, respectively, following drug treatment, and persisted through at least 72 h. EGFR downregulation by sulindac metabolites was observed in three different CRC cell lines, occurred prior to the observed downregulation of pERK1/2 and induction of apoptosis by these drugs, and was not dependent of caspase activation. Conclusion These results suggest that

  5. Inhibitory effects of omega-3 fatty acids on injury-induced epidermal growth factor receptor transactivation contribute to delayed wound healing

    OpenAIRE

    Turk, Harmony F.; Monk, Jennifer M.; Fan, Yang-Yi; Callaway, Evelyn S.; Weeks, Brad; Chapkin, Robert S.

    2013-01-01

    Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its m...

  6. Possible autocrine loop of the epidermal growth factor system in patients with benign prostatic hyperplasia treated with finasteride: a placebo-controlled randomized study

    DEFF Research Database (Denmark)

    Tørring, N.; Møller-Ernst Jensen, K.; Lund, L.

    2002-01-01

    To analyse the expression of the epidermal growth factor (EGF) system in prostate tissue and secretions obtained from patients with benign prostatic hyperplasia (BPH) treated with or without finasteride (which primarily targets the androgen-sensitive secretory epithelial cells in the prostate......, with little effect on basal epithelial and stromal cells)....

  7. A sensitive electrochemiluminescence cytosensor for quantitative evaluation of epidermal growth factor receptor expressed on cell surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanjuan; Zhang, Shaolian; Wen, Qingqing; Huang, Hongxing; Yang, Peihui, E-mail: typh@jnu.edu.cn

    2015-06-30

    Highlights: • EGF-cytosensor was used for evaluating EGFR expression level on cell surfaces. • CdSQDs and EGF were coated on magnetic beads (MBs) for ECL-probe. • Good sensitivity was achieved due to the signal amplification of ECL-probe. - Abstract: A sensitive electrochemiluminescence (ECL) strategy for evaluating the epidermal growth factor receptor (EGFR) expression level on cell surfaces was designed by integrating the specific recognition of EGFR expressed on MCF-7 cell surfaces with an epidermal growth factor (EGF)-funtionalized CdS quantum dots (CdSQDs)-capped magnetic bead (MB) probe. The high sensitivity of ECL probe of EGF-funtionalized CdSQD-capped-MB was used for competitive recognition with EGFR expressed on cell surfaces with recombinant EGFR protein. The changes of ECL intensity depended on both the cell number and the expression level of EGFR receptor on cell surfaces. A wide linear response to cells ranging from 80 to 4 × 10{sup 6} cells mL{sup −1} with a detection limit of 40 cells mL{sup −1} was obtained. The EGF-cytosensor was used to evaluate EGFR expression levels on MCF-7 cells, and the average number of EGFR receptor on single MCF-7 cells was 1.35 × 10{sup 5} with the relative standard deviation of 4.3%. This strategy was further used for in-situ and real-time evaluating EGFR receptor expressed on cell surfaces in response to drugs stimulation at different concentration and incubation time. The proposed method provided potential applications in the detection of receptors on cancer cells and anticancer drugs screening.

  8. Stimulation of chondrocytes in vitro by gene transfer with plasmids coding for epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF)

    DEFF Research Database (Denmark)

    Schmal, H; Mehlhorn, A T; Zwingmann, J

    2005-01-01

    Human epidermal growth factor (hEGF) and basic fibroblast growth factor (bFGF) influence critical characteristics of chondrocytes. The effects on metabolism and differentiation were evaluated following transfection using specific plasmids coding for both cytokines. Chondrocytes were isolated from...... of recombinant hEGF and bFGF resulted in a significant increase in cell proliferation and glucosaminoglycan production. Chondrocytes were transfected with vectors coding for either hEGF or bFGF and the production of these proteins was measured in supernatants by ELISA. Expression kinetics showed different...... patterns: hEGF was detectable 2.5 days following transfection and peaked at day 5.5, whereas bFGF-production reached its maximum 1.5 days after transfection, declining thereafter. Chondrocytes endogenously produced significant amounts of bFGF within 5 days following isolation. Proliferation of h...

  9. Carboxy terminal peptide of type I procollagen and epidermal growth factor in patients with different viral hepatitis

    International Nuclear Information System (INIS)

    Han Lihong; Gong Shoujun; Li Guangming; Li Yebing; Xu Bin

    2001-01-01

    The author observed the serum levels of carboxy terminal peptide of type I procollagen (PICP) and epidermal growth factor (EGF) in the patients with viral hepatitis and cirrhosis. The serum PICP and EGF were detected in 164 cases by RIA. The results indicated that two indexes increased significantly in patients with severe chronic hepatitis, chronic persistent hepatitis and post hepatitis cirrhosis compared with normal control (P 0.05). The results showed that detection of serum PICP and EGF may be valuable diagnostic markers to assess the degree of liver inflammation and fibrosis in viral liver diseases

  10. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    International Nuclear Information System (INIS)

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-01-01

    The specific binding of iodinated epidermal growth factor ([ 125 I]iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites [dissociation constant (Kd) = 0.7-1.8 nM]. Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status

  11. Fetal antigen 1, a member of the epidermal growth factor superfamily, in neurofibromas and serum from patients with neurofibromatosis type 1

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Schroder, H D; Teisner, B

    1999-01-01

    Fetal antigen 1 (FA1) is a 26-32 kDa glycoprotein containing six epidermal growth factor-like repeats closely related to the delta/notch/serrate proteins in Drosophila. FA1 has been shown to be involved in cell differentiation in a juxtacrine/paracrine manner. As neurofibromatosis type 1 (NF-1......), also called von Recklinghausen disease, involves aberrant growth of tissues derived from the neural crest, the expression of FA1 was examined in neurofibroma skin biopsies and serum from patients with NF-1. FA1 was found in the spindle cells of all (n = 10) skin tumour specimens from adult NF-1...

  12. Epidermal growth factor induces HCCR expression via PI3K/Akt/mTOR signaling in PANC-1 pancreatic cancer cells

    International Nuclear Information System (INIS)

    Xu, Zekuan; Zhang, Guoxin; Zhang, Yi; Jiang, Jiakai; Yang, Yang; Shi, Ruihua; Hao, Bo; Zhang, Zhihong; Huang, Zuhu; Kim, Jin W

    2010-01-01

    Human cervical cancer oncoprotein 1 (HCCR-1), reported as a negative regulator of p53, is over-expressed in a variety of human cancers. However, it is yet unknown whether HCCR-1 plays any role in pancreatic cancer development. The aim of this study was to investigate the effect of epidermal growth factor on the expression of HCCR in pancreatic cancer cells, and to explore if PI3K/Akt/mTOR signaling pathway mediated this expression. A polyclonal antibody against HCCR protein was raised by immunizing Balb/c mice with the purified recombinant protein pMBPc-HCCR. Tissue samples were constructed on a tissue chip, and the expression of HCCR was investigated by immunohistochemistry assay and Western blotting. Pancreatic cell line, PANC-1 cells were stably transfected with plasmids containing sense-HCCR-1 fragment and HCCR siRNA fragment. MTT and transwell assay were used to investigate the proliferation and invasion of stable tansfectants. The specific inhibitor of PI3K and mTOR was used to see if PI3K/mTOR signal transduction was involved in the induction of HCCR gene expression. A Luciferase assay was used to see if Akt can enhance the HCCR promoter activity. HCCR was up-regulated in pancreatic tumor tissues (mean Allred score 4.51 ± 1.549 vs. 2.87 ± 2.193, P < 0.01), especially with high expression in poorly differentiated pancreatic cancer. The growth of cells decreased in HCCR-1 siRNA transfected cells compared with vector transfectants. The number of invasion cells was significantly lower in HCCR-1 siRNA transfected cells (24.4 ± 9.9) than that in vector transfectants (49.1 ± 15.4). Treatment of PANC-1 cells with epidermal growth factor increased HCCR protein level in a dose- and time-dependent manner. However, application of LY294002 and rapamycin caused a dramatic reduction of epidermal growth factor-induced HCCR expression. Over-expression of exogenous constitutively active Akt increased the HCCR promoter activity; in contrast, dominant negative Akt decreased

  13. Experimental radioimmunotherapy of a xenografted human glioma using [sup 131]I-labeled monoclonal antibody to epidermal growth factor receptor

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Nakazawa, Shozo [Nippon Medical School, Tokyo (Japan); Herlyn, D

    1993-09-01

    [sup 131]I-labeled F (ab')[sub 2] fragments of murine monoclonal antibodies (MAb) 425 specific to the epidermal growth factor receptor expressed on human gliomas were used in experimental human malignant glioma immunotherapy. Two injections of 150 [mu]Ci [sup 131]I-labeled 425 F(ab')[sub 2] achieved growth inhibition of U-87MG human malignant glioma xenografts in nude mice. This radiolabeled specific MAb F(ab')[sub 2] was significantly superior to radiolabeled fragments of an anti-hepatitis virus control MAb A5C3 in influencing tumor growth. However, similar treatment of established human malignant glioma xenografts did not inhibit progressive tumor growth significantly. No clear tumor inhibition was produced by unlabeled MAb 425F(ab')[sub 2]. These studies suggest that [sup 131]I-labeled MAbs have a significant antitumor effect where unmodified antibody is ineffective. Multiple doses of antibody may achieve an increase in labeled MAb concentration in tumors. (author).

  14. Serum Heparin-binding Epidermal Growth Factor-like Growth Factor (HB-EGF) as a Biomarker for Primary Ovarian Cancer.

    Science.gov (United States)

    Miyata, Kohei; Yotsumoto, Fusanori; Fukagawa, Satoshi; Kiyoshima, Chihiro; Ouk, Nam Sung; Urushiyama, Daichi; Ito, Tomohiro; Katsuda, Takahiro; Kurakazu, Masamitsu; Araki, Ryota; Sanui, Ayako; Miyahara, Daisuke; Murata, Masaharu; Shirota, Kyoko; Yagi, Hiroshi; Takono, Tadao; Kato, Kiyoko; Yaegashi, Nobuo; Akazawa, Kohei; Kuroki, Masahide; Yasunaga, Shin'ichiro; Miyamoto, Shingo

    2017-07-01

    Ovarian cancer is the most lethal malignancy among gynaecological cancers. Although many anticancer agents have been developed for the treatment of ovarian cancer, it continues to have an extremely poor prognosis. Heparin-binding epidermal growth factor-like grown factor (HB-EGF) has been reported to be a rational therapeutic target for ovarian cancer. Here, we evaluated the clinical significance of serum HB-EGF by examining the association between prognosis and serum HB-EGF levels in patients with primary ovarian cancer. We found that high serum HB-EGF concentrations were significantly associated with poor prognosis in a combined cohort of patients with all stages of ovarian cancer, as well as in a subset of patients with advanced disease. In addition, serum HB-EGF levels increased as the cancer advanced. These data suggest that serum HB-EGF may be a target for the design of novel therapies for ovarian cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. Epidermal growth factor treatment of A431 cells alters the binding capacity and electrophoretic mobility of the cytoskeletally associated epidermal growth factor receptor

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1991-01-01

    Epidermal growth factor receptor interacts with structural elements of A431 cells and remains associated with the cytoskeleton following extraction with nonionic detergents. Extraction of cells with 0.15% Triton X-100 resulted in detection of only approximately 40% of the EGF binding sites on the cytoskeleton. If the cells were exposed to EGF prior to extraction, approximately twofold higher levels of low-affinity EGF binding sites were detected. The difference in number of EGF binding sites was not a consequence of differences in numbers of EGF receptors associated with the cytoskeleton; equal amounts of 35S-labeled receptor were immunoprecipitated from the cytoskeletons of both control and EGF-treated cells. The effect of EGF pretreatment on binding activity was coincident with a change in the mobility of the receptor from a doublet of Mr approximately 160-180 kDa to a single sharp band at 180 kDa. The alteration in receptor mobility was not a simple consequence of receptor phosphorylation in that the alteration was not reversed by alkaline phosphatase treatment, nor was the shift produced by treatment of the cells with phorbol ester. The two EGF receptor species demonstrated differential susceptibility to V8 proteinase digestion. The EGF-induced 180 kDa species was preferentially digested by the proteinase relative to the 160 kDa species, indicating that EGF binding results in a conformational change in the receptor. The EGF-mediated preservation of binding activity and altered conformation may be related to receptor oligomerization

  16. Evolution of the clonogenic potential of human epidermal stem/progenitor cells with age

    Directory of Open Access Journals (Sweden)

    Zobiri O

    2012-02-01

    Full Text Available Olivia Zobiri, Nathalie Deshayes, Michelle Rathman-JosserandDepartment of Biological Research, L'Oréal Advanced Research, Clichy Cedex, FranceAbstract: A number of clinical observations have indicated that the regenerative potential and overall function of the epidermis is modified with age. The epidermis becomes thinner, repairs itself less efficiently after wounding, and presents modified barrier function recovery. In addition, the dermal papillae flatten out with increasing age, suggesting a modification in the interaction between epidermal and dermal compartments. As the epidermal regenerative capacity is dependent upon stem and progenitor cell function, it is naturally of interest to identify and understand age-related changes in these particular keratinocyte populations. Previous studies have indicated that the number of stem cells does not decrease with age in mouse models but little solid evidence is currently available concerning human skin. The objective of this study was to evaluate the clonogenic potential of keratinocyte populations isolated from the epidermis of over 50 human donors ranging from 18 to 71 years old. The data indicate that the number of epidermal cells presenting high regenerative potential does not dramatically decline with age in human skin. The authors believe that changes in the microenvironment controlling epidermal basal cell activity are more likely to explain the differences in epidermal function observed with increasing age.Keywords: skin, epidermal stem cells, aging, colony-forming efficiency test

  17. 125I-human epidermal growth factor specific binding to placentas and fetal membranes from varoius pregnancy states

    International Nuclear Information System (INIS)

    Hofmann, G.E.; Siddiqi, T.A.; Rao, Ch. V.; Carman, F.R.

    1988-01-01

    Specific binding of 125 I-human epidermal growth factor (hEGF) to homogenates of term human placentas and fetal membranes from normal and appropriate for gestational age (N = 20), intrauterine growth retarded (N = 9), twin (N = 11), White class A/B diabetic (N = 12), and large for gestational age (N = 13) pregnancies was measured. In all pregnancy states, placentas bound approximately four times more 125 I-hEGF than did fetal membranes (P 125 I-hEGF binding to fetal membranes from the various pregnancy states (P 125 I-hEGF specific binding to placentas from intrauterine growth retarded or twin pregnancies was significantly greater compared with placentas from normal and appropriate for gestational age pregnancies (P 125 I-hEGF specific binding did not differ between placentas from intrauterine growth retarded or twin pregnancies (P 125 I-hEGF binding did not vary with fetal sex, maternal race, placental weight, or gestational age between 37 to 42 weeks (P 125 I-hEGF binding increased with increasing infant weight when appropriate for gestational age and large for gestational age infants were included (P<0.05, r = 0.38, N = 32) but not for intrauterine growth retarded, appropriate for gestational age, or large for gestational age infants alone. (author)

  18. Histamine and epidermal growth factor in women with fibrocystic changes of the breast.

    Science.gov (United States)

    Sieja, K; Stanosz, S; Glowińska, N

    2003-04-01

    In this study, the blood serum concentrations of histamine (HA) and epidermal growth factor (EGF) of women with fibrocystic changes (FCCs) of the breast were estimated. The control group comprised 32 women (mean age 44.9+/-4.4 years) without any pathologic changes in their breasts. The study group was made up of 81 women (mean age 44.5+/-3.5 years) with FCCs. The changes were divided into three subtypes: fibrous, cystic, and fibrocystic. In women with FCCs the concentrations of HA (Pbreasts (control group). The concentration of EGF in blood serum was significantly higher in women with the fibrocystic subtype of FCC (P<0.001) than in healthy women. No correlations between the blood serum concentrations of HA and of EGF were found in either the control group or the study group. The significantly higher blood serum concentrations of HA and EGF women with FCCs than in healthy women suggest that HA and EGF have a role in the development of this disease.

  19. Personalized Radiation Oncology: Epidermal Growth Factor Receptor and Other Receptor Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Higgins, Geoff S; Krause, Mechthild; McKenna, W Gillies; Baumann, Michael

    Molecular biomarkers are currently evaluated in preclinical and clinical studies in order to establish predictors for treatment decisions in radiation oncology. The receptor tyrosine kinases (RTK) are described in the following text. Among them, the most data are available for the epidermal growth factor receptor (EGFR) that plays a major role for prognosis of patients after radiotherapy, but seems also to be involved in mechanisms of radioresistance, specifically in repopulation of tumour cells between radiotherapy fractions. Monoclonal antibodies against the EGFR improve locoregional tumour control and survival when applied during radiotherapy, however, the effects are heterogeneous and biomarkers for patient selection are warranted. Also other RTK´s such as c-Met and IGF-1R seem to play important roles in tumour radioresistance. Beside the potential to select patients for molecular targeting approaches combined with radiotherapy, studies are also needed to evluate radiotherapy adaptation approaches for selected patients, i.e. adaptation of radiation dose, or, more sophisticated, of target volumes.

  20. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    Science.gov (United States)

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  1. Eps15 is recruited to the plasma membrane upon epidermal growth factor receptor activation and localizes to components of the endocytic pathway during receptor internalization

    DEFF Research Database (Denmark)

    Torrisi, M R; Lotti, L V; Belleudi, F

    1999-01-01

    Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential...

  2. Clinical Studies on conformal radiotherapy combined with epidermal ...

    African Journals Online (AJOL)

    Purpose: To study the effect of conformal radiotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) in the second-line treatment of non-small cell lung cancer (NSCLC). Methods: A total of 316 patients attending Shanghai Pulmonary Hospital affiliated to Tongji University, were divided ...

  3. Catalase reverses tumorigenicity in a malignant cell line by an epidermal growth factor receptor pathway.

    Science.gov (United States)

    Finch, Joanne S; Tome, Margaret E; Kwei, Kevin A; Bowden, G Tim

    2006-03-01

    We have used a keratinocyte in vivo/in vitro cell model to test the hypothesis that hydrogen peroxide acts as a signaling molecule, contributing to proliferation and tumorigenesis. A cell line, 6M90, that produces squamous cell carcinoma (SCC), has high levels of ROS and low levels of catalase. A new cell line, MTOC2, generated from parental 6M90 cells by introduction of a Tet-responsive catalase transgene, effectively expressed higher peroxisomal catalase. Increased catalase expression diminished constitutive ROS and enhanced viability after treatment with hydrogen peroxide. Protein tyrosine phosphatase activity was higher in the MTOC2 cells with high catalase, consistent with detection of a lower level of phosphorylation at tyrosine 1068 of the epidermal growth factor receptor (EGF-R). Transcription of downstream c-fos, AP-1 transactivation and cell proliferation were higher in the low catalase cells. An EGF-R inhibitor, AG1478, blocks the higher AP-1 transactivation and cell proliferation of the low catalase 6M90 cells. Tumorigenesis in SCID mice was greatly diminished in the high catalase cells. Our data suggest that hydrogen peroxide functions as a signaling molecule that can modulate activity of a protein tyrosine phosphatase/(s) resulting in phosphorylation of tryrosine/(s) on the EGF-R. Therefore, catalase acts as a tumor-suppressor gene in part by decreasing EGF-R signaling.

  4. Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer

    Directory of Open Access Journals (Sweden)

    Zhang H

    2016-11-01

    Full Text Available Haijun Zhang Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, People’s Republic of China Abstract: Lung cancer, ~80%–85% of which is non-small-cell lung cancer (NSCLC, is the leading cause of cancer-related mortality worldwide. Sensitizing mutations in epidermal growth factor receptor (EGFR gene (EGFRm+, such as exon 19 deletions and exon 21 L858R point mutations, are the most important drivers in NSCLC patients. In this respect, small-molecule EGFR tyrosine kinase inhibitors (TKIs have been designed and developed, which launched the era of targeted, personalized and precise medicine for lung cancer. Patients with EGFRm+ could achieve good responses to the treatment with the first-generation EGFR TKIs, such as erlotinib and gefitinib. However, most patients develop acquired drug resistance mostly driven by the T790M mutation occurring within exon 20. Although the second-generation EGFR TKIs, such as afatinib, dacomitinib and neratinib, demonstrated promising activity against T790M in preclinical models, they have failed to overcome resistance in patients due to dose-limiting toxicity. Recently, the third-generation EGFR TKIs have shown to be effective against cell lines and murine models harboring T790M mutations while sparing wild-type EGFR, which represents a promising breakthrough approach in overcoming T790M-mediated resistance in NSCLC patients. This article provides a comprehensive review of the therapy revolution for NSCLC with three generations of EGFR TKIs. Keywords: lung cancer, epidermal growth factor receptor, tyrosine kinase inhibitors, T790M mutation

  5. A nomogram for predicting pathological complete response in patients with human epidermal growth factor receptor 2 negative breast cancer

    International Nuclear Information System (INIS)

    Jin, Xi; Jiang, Yi-Zhou; Chen, Sheng; Yu, Ke-Da; Ma, Ding; Sun, Wei; Shao, Zhi-Min; Di, Gen-Hong

    2016-01-01

    The response to neoadjuvant chemotherapy has been proven to predict long-term clinical benefits for patients. Our research is to construct a nomogram to predict pathological complete response of human epidermal growth factor receptor 2 negative breast cancer patients. We enrolled 815 patients who received neoadjuvant chemotherapy from 2003 to 2015 and divided them into a training set and a validation set. Univariate logistic regression was performed to screen for predictors and construct the nomogram; multivariate logistic regression was performed to identify independent predictors. After performing the univariate logistic regression analysis in the training set, tumor size, hormone receptor status, regimens of neoadjuvant chemotherapy and cycles of neoadjuvant chemotherapy were the final predictors for the construction of the nomogram. The multivariate logistic regression analysis demonstrated that T4 status, hormone receptor status and receiving regimen of paclitaxel and carboplatin were independent predictors of pathological complete response. The area under the receiver operating characteristic curve of the training set and the validation set was 0.779 and 0.701, respectively. We constructed and validated a nomogram to predict pathological complete response in human epidermal growth factor receptor 2 negative breast cancer patients. We also identified tumor size, hormone receptor status and paclitaxel and carboplatin regimen as independent predictors of pathological complete response. The online version of this article (doi:10.1186/s12885-016-2652-z) contains supplementary material, which is available to authorized users

  6. Human Epidermal Growth Factor Receptor 2 Overexpression in Micropapillary and Other Variants of Urothelial Carcinoma.

    Science.gov (United States)

    Behzatoğlu, Kemal; Yörükoğlu, Kutsal; Demir, Hale; Bal, Nebil

    2016-06-21

    Human epidermal growth factor receptor 2 (HER2) protein overexpression or gene amplification has been shown in urothelial bladder cancer. This could be helpful when using targeted anti-HER2 therapy on these tumors. To evaluate HER2 immunohistochemical expression in conventional urothelial carcinoma (UC), in situ UC, and UC variants primarily in micropapillary urothelial carcinoma (MPUC). The study evaluated 60 MPUC cases; 25 invasive, 20 low-grade noninvasive, and 10 high-grade noninvasive UC cases; 8 in situ UC cases; and 69 UC variant cases. The immunohistochemistry staining was scored according to recommendations of the American Society of Clinical Oncology/College of American Pathologists 2013 HER2 test guideline established for breast cancer and only 3+ staining was considered HER2 overexpression. HER2 overexpression was determined by 3+ staining. 34 of 60 MPUC cases (56%) showed HER2 overexpression (3+ staining). We observed 3+ staining HER2 overexpression in nine of 25 conventional invasive UC cases (36%), four of eight in situ UC cases (50%), and three of six lipid cell variant cases (50%). 3+ staining HER2 overexpression was not seen in eight glandular, six small cell, and five sarcomatoid variant cases. HER2 overexpression was negative in the 20 low-grade noninvasive UC cases but positive in two of the 10 high-grade noninvasive UC cases (20%). We observed HER2 overexpression most commonly in MPUC cases. We also found HER2 overexpression in conventional invasive and in situ UC cases. Pure in situ UC and conventional invasive UC, especially MPUC, could be candidate tumors for treatment with anti-HER2 antibody (trastuzumab therapy). Targeted therapy has a limited place in treatment of bladder cancer. In this study, human epidermal growth factor receptor 2 (HER2) overexpression in bladder carcinomas was evaluated in a large number of cases. Anti-HER2 therapy could be used in bladder cancers, as in breast and gastric cancers. Copyright © 2016 European

  7. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Directory of Open Access Journals (Sweden)

    David Judah

    Full Text Available Integrin-linked kinase (ILK is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  8. Multiple roles of integrin-linked kinase in epidermal development, maturation and pigmentation revealed by molecular profiling.

    Science.gov (United States)

    Judah, David; Rudkouskaya, Alena; Wilson, Ryan; Carter, David E; Dagnino, Lina

    2012-01-01

    Integrin-linked kinase (ILK) is an important scaffold protein that mediates a variety of cellular responses to integrin stimulation by extracellular matrix proteins. Mice with epidermis-restricted inactivation of the Ilk gene exhibit pleiotropic phenotypic defects, including impaired hair follicle morphogenesis, reduced epidermal adhesion to the basement membrane, compromised epidermal integrity, as well as wasting and failure to thrive leading to perinatal death. To better understand the underlying molecular mechanisms that cause such a broad range of alterations, we investigated the impact of Ilk gene inactivation on the epidermis transcriptome. Microarray analysis showed over 700 differentially regulated mRNAs encoding proteins involved in multiple aspects of epidermal function, including keratinocyte differentiation and barrier formation, inflammation, regeneration after injury, and fundamental epidermal developmental pathways. These studies also revealed potential effects on genes not previously implicated in ILK functions, including those important for melanocyte and melanoblast development and function, regulation of cytoskeletal dynamics, and homeobox genes. This study shows that ILK is a critical regulator of multiple aspects of epidermal function and homeostasis, and reveals the previously unreported involvement of ILK not only in epidermal differentiation and barrier formation, but also in melanocyte genesis and function.

  9. Regulation of epidermal growth factor receptor signaling and erlotinib sensitivity in head and neck cancer cells by miR-7.

    Directory of Open Access Journals (Sweden)

    Felicity C Kalinowski

    Full Text Available Elevated expression and activity of the epidermal growth factor receptor (EGFR/protein kinase B (Akt signaling pathway is associated with development, progression and treatment resistance of head and neck cancer (HNC. Several studies have demonstrated that microRNA-7 (miR-7 regulates EGFR expression and Akt activity in a range of cancer cell types via its specific interaction with the EGFR mRNA 3'-untranslated region (3'-UTR. In the present study, we found that miR-7 regulated EGFR expression and Akt activity in HNC cell lines, and that this was associated with reduced growth in vitro and in vivo of cells (HN5 that were sensitive to the EGFR tyrosine kinase inhibitor (TKI erlotinib (Tarceva. miR-7 acted synergistically with erlotinib to inhibit growth of erlotinib-resistant FaDu cells, an effect associated with increased inhibition of Akt activity. Microarray analysis of HN5 and FaDu cell lines transfected with miR-7 identified a common set of downregulated miR-7 target genes, providing insight into the tumor suppressor function of miR-7. Furthermore, we identified several target miR-7 mRNAs with a putative role in the sensitization of FaDu cells to erlotinib. Together, these data support the coordinate regulation of Akt signaling by miR-7 in HNC cells and suggest the therapeutic potential of miR-7 alone or in combination with EGFR TKIs in this disease.

  10. An evaluation of the choice of feeder cell growth arrest for the production of cultured epidermis.

    Science.gov (United States)

    Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar

    2015-12-01

    Growth arrested 3T3 cells have been used as feeder cells in human epidermal keratinocyte cultures to produce cultured epidermal autografts for the treatment of burns. The feeder cells were ideally growth-arrested by gamma-irradiation. Alternatively, growth arrest by mitomycin C treatment is a cost effective option. We compared the functional efficacy of these two approaches in keratinocyte cultures by colony forming efficiency, the net growth area of colonies, BrdU labeling and histological features of cultured epidermal sheets. The growth area estimation involved a semi-automated digital technique using the Adobe Photoshop and comprised of isolation and enumeration of red pixels in Rhodamine B-stained keratinocyte colonies. A further refinement of the technique led to the identification of critical steps to increasing the degree of accuracy and enabling its application as an extension of colony formation assay. The results on feeder cell functionality revealed that the gamma irradiated feeders influenced significantly higher colony forming efficiency and larger growth area than the mitomycin C treated feeders. The BrdU labeling study indicated significant stimulation of the overall keratinocyte proliferation by the gamma irradiated feeders. The cultured epidermal sheets produced by gamma feeders were relatively thicker than those produced by mitomycin C feeders. We discussed the clinical utility of mitomycin C feeders from the viewpoint of cost-effective burn care in developing countries. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  11. Effect of placental factors on growth and function of the human fetal adrenal in vitro.

    Science.gov (United States)

    Riopel, L; Branchaud, C L; Goodyer, C G; Zweig, M; Lipowski, L; Adkar, V; Lefebvre, Y

    1989-11-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: 1) maximal response to PM was 2-5 times greater; 2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; 3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland.

  12. Effect of placental factors on growth and function of the human fetal adrenal in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Riopel, L.; Branchaud, C.L.; Goodyer, C.G.; Zweig, M.; Lipowski, L.; Adkar, V.; Lefebvre, Y. (McGill Univ.-Montreal Children' s Hospital Research Institute, Quebec (Canada))

    1989-11-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: (1) maximal response to PM was 2-5 times greater; (2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; (3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland.

  13. Effect of placental factors on growth and function of the human fetal adrenal in vitro

    International Nuclear Information System (INIS)

    Riopel, L.; Branchaud, C.L.; Goodyer, C.G.; Zweig, M.; Lipowski, L.; Adkar, V.; Lefebvre, Y.

    1989-01-01

    Conditioned medium from human placental monolayer cultures (PM) had a marked stimulatory effect on proliferation (3H-thymidine uptake) of human fetal zone adrenal cells in primary monolayer culture, even in the absence of serum. Epidermal growth factor (EGF) and fibroblast growth factor (FGF) also significantly stimulated fetal adrenal cell growth. However, the effects of PM differed from those of EGF and FGF in several respects: (1) maximal response to PM was 2-5 times greater; (2) mitogenic effects of EGF and FGF were suppressed by adrenocorticotropic hormone (ACTH), whereas that of 50% PM was not; (3) PM inhibited ACTH-stimulated steroidogenesis (dehydroepiandrosterone sulfate and cortisol), but EGF and FGF did not. Preliminary characterization studies have indicated that approximately half of the placental growth-promoting activity is heat resistant and sensitive to bacterial proteases, and that 50-60% of the activity is lost after dialysis with membranes having a molecular weight cutoff of 3500. These findings suggest a role for the placenta in the growth and differentiated function of the human fetal adrenal gland

  14. Genetic analysis of Ras genes in epidermal development and tumorigenesis

    Science.gov (United States)

    Drosten, Matthias; Lechuga, Carmen G; Barbacid, Mariano

    2013-01-01

    Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation. PMID:24150175

  15. Spatiotemporal Expression of p63 in Mouse Epidermal Commitment

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2015-12-01

    Full Text Available The embryonic surface ectoderm is a simple flat epithelium consisting of cells that express the cytokeratins K8/K18. Before stratification, K5/K14 expression substitutes K8/K18 expression, marking the event called epidermal commitment. Previous studies show that the transcription factor p63 plays an essential role in epidermal commitment. However, detailed expression information of p63 during early epidermal development in mice is still unclear. We systematically studied the expression pattern of p63 in mouse epidermal commitment, together with K8 and K5. We show that p63 expression could be detected as early as E8.5 in mouse embryos preceding epidermal commitment. p63 expression first appears near the newly formed somites and the posterior part of the embryo, further expanding to the whole embryonic surface with particular enrichment in the first branchial arches and the limb buds. ΔNp63 is the major class of isoforms expressed in this period. Relative expression intensity of p63 depends on the embryonic position. In summary, there is a sequential and regular expression pattern of K8, p63 and K5 in mouse epidermal commitment. Our study not only contributes to understanding the early events during epidermal development but also provides a basal tool to study the function of p63 in mammals.

  16. Strong association of epidermal growth factor receptor status with breast cancer FDG uptake

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joohee; Moon, Seung Hwan; Hyun, Seung Hyup; Cho, Young Seok; Choi, Joon Young; Kim, Byung-Tae; Lee, Kyung-Han [Sungkyunkwan University School of Medicine, Department of Nuclear Medicine, Samsung Medical Center, Seoul (Korea, Republic of); Lee, Eun Jeong [Seoul Medical Center, Department of Nuclear Medicine, Seoul (Korea, Republic of); Kim, Seokhwi [Sungkyunkwan University School of Medicine, Department of Pathology, Samsung Medical Center, Seoul (Korea, Republic of)

    2017-08-15

    Imaging tumor FDG uptake could complement breast cancer biomarkers of risk and treatment response. Although breast cancer FDG uptake is reputedly influenced by major biomarker states, the role of epidermal growth factor receptor (EGFR) expression remains largely unexplored. This is a retrospective study that included 499 patients with primary breast cancer at initial presentation. Tumor FDG uptake was measured on pretreatment PET/CT as maximum standardized uptake value (SUVmax), and biomarkers were assessed by immunohistochemistry of tumor tissue. Regression analysis was performed for predictors of high tumor FDG uptake (SUVmax ≥ 8.6). SUVmax was higher in ER- (36.5%; 11.2 ± 6.0 vs. 8.3 ± 5.3), PR- (42.3%; 10.9 ± 6.0 vs. 8.2 ± 5.2), and triple-negative tumors (19.8%; 12.0 ± 6.9 vs. 8.7 ± 5.2; all p < 0.0001). EGFR expression (28.5%) was more frequent in ER-, PR-, triple-negative, cytokeratin 5/6 (CK5/6) + and mutant P53 (mP53) + tumors (all p < 0.0001). EGFR+ was associated with higher SUVmax among all tumors (11.9 ± 6.0 vs. 8.3 ± 5.3), ER- tumors (p < 0.0001), PR- and + tumors (p < 0.0001 and 0.027), hormone receptor- and + tumors (p < 0.0001 and 0.004), human epidermal growth factor receptor 2 (HER2)- and + tumors (p < 0.0001 and 0.006), non-triple negative tumors (p < 0.0001), CK5/6- and + tumors (p = 0.021 and <0.0001), and mP53- and + tumors (p < 0.0001 and 0.008). Tumors had high FDG uptake in 73.2% of EGFR+ and 40.6% of EGFR- tumors. On regression analysis, significant multivariate predictors of high tumor FDG uptake were large size, EGFR+ and CK5/6+ for the entire subjects, and EGFR+ and CK5/6+ for ER- and hormone receptor negative subgroups. High FDG uptake was able to sub-stratify EGFR+ tumors that were more likely to be ER- and CK5/6+, and EGFR- tumors more likely to be mP53 +. Primary breast tumor FDG uptake is strongly influenced by EGFR status beyond that by other major biomarkers including hormone receptor and HER2 status, and EGFR

  17. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis.

    Science.gov (United States)

    Phuc, Le Thi Minh; Taniguchi, Akiyoshi

    2017-06-19

    The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF) on the uptake efficiency of polystyrene nanoparticles (PS NPs) by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs) indicated that cellular uptake of PS NPs is related to the binding of EGF-EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  18. Epidermal Growth Factor Enhances Cellular Uptake of Polystyrene Nanoparticles by Clathrin-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Le Thi Minh Phuc

    2017-06-01

    Full Text Available The interaction between nanoparticles and cells has been studied extensively, but most research has focused on the effect of various nanoparticle characteristics, such as size, morphology, and surface charge, on the cellular uptake of nanoparticles. In contrast, there have been very few studies to assess the influence of cellular factors, such as growth factor responses, on the cellular uptake efficiency of nanoparticles. The aim of this study was to clarify the effects of epidermal growth factor (EGF on the uptake efficiency of polystyrene nanoparticles (PS NPs by A431 cells, a human carcinoma epithelial cell line. The results showed that EGF enhanced the uptake efficiency of A431 cells for PS NPs. In addition, inhibition and localization studies of PS NPs and EGF receptors (EGFRs indicated that cellular uptake of PS NPs is related to the binding of EGF–EGFR complex and PS NPs. Different pathways are used to enter the cells depending on the presence or absence of EGF. In the presence of EGF, cellular uptake of PS NPs is via clathrin-mediated endocytosis, whereas, in the absence of EGF, uptake of PS NPs does not involve clathrin-mediated endocytosis. Our findings indicate that EGF enhances cellular uptake of PS NPs by clathrin-mediated endocytosis. This result could be important for developing safe nanoparticles and their safe use in medical applications.

  19. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Directory of Open Access Journals (Sweden)

    Béatrice Marquèze-Pouey

    Full Text Available Signaling mediated by the epidermal growth factor (EGF is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer. In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  20. Physiological epidermal growth factor concentrations activate high affinity receptors to elicit calcium oscillations.

    Science.gov (United States)

    Marquèze-Pouey, Béatrice; Mailfert, Sébastien; Rouger, Vincent; Goaillard, Jean-Marc; Marguet, Didier

    2014-01-01

    Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels.

  1. Radiotherapy and receptor of epidermal growth factor; Radiotherapie et recepteur de l'Epidermal Growth Factor

    Energy Technology Data Exchange (ETDEWEB)

    Deberne, M. [Institut Gustave-Roussy, 94 - Villejuif (France)

    2009-10-15

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  2. Epidermal growth factor receptor signaling promotes metastatic prostate cancer through microRNA-96-mediated downregulation of the tumor suppressor ETV6.

    Science.gov (United States)

    Tsai, Yuan-Chin; Chen, Wei-Yu; Siu, Man Kit; Tsai, Hong-Yuan; Yin, Juan Juan; Huang, Jiaoti; Liu, Yen-Nien

    2017-01-01

    It has been suggested that ETV6 serves as a tumor suppressor; however, its molecular regulation and cellular functions remain unclear. We used prostate cancer as a model system and demonstrated a molecular mechanism in which ETV6 can be regulated by epidermal growth factor receptor (EGFR) signaling through microRNA-96 (miR-96)-mediated downregulation. In addition, EGFR acts as a transcriptional coactivator that binds to the promoter of primary miR-96 and transcriptionally regulates miR-96 levels. We analyzed two sets of clinical prostate cancer samples, confirmed association patterns that were consistent with the EGFR-miR-96-ETV6 signaling model and demonstrated that the reduced ETV6 levels were associated with malignant prostate cancer. Based on results derived from multiple approaches, we identified the biological functions of ETV6 as a tumor suppressor that inhibits proliferation and metastasis in prostate cancer. We present a molecular mechanism in which EGFR activation leads to the induction of miR-96 expression and suppression of ETV6, which contributes to prostate cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    Science.gov (United States)

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  4. Human epidermal growth factor receptor 2/neu overexpression in urothelial carcinoma of the bladder and its prognostic significance: Is it worth hype?

    Directory of Open Access Journals (Sweden)

    Santosh Kumar

    2015-01-01

    Full Text Available Aims: In urothelial tumors of the urinary bladder, human epidermal growth factor receptor 2 (HER-2/neu expression has been reported over 10 years, but there is no clear correlation between prognosis and recurrence rate. The present study evaluates prognostic implication of HER-2/neu expression. Subjects and Methods: In this study, 100 formalin-fixed paraffin-embedded specimens of primary transitional cell carcinoma of the bladder were processed. HER-2/neu monoclonal antibody immunohistochemistry staining procedure used for the study. Results: A total of 70 (70% patients were positive for overexpression of HER-2/neu. HER-2/neu was positive in patients with 42 (70% superficial tumor, 28 (70% muscle invasive tumor, 41 (75.9% high-grade tumor, 29 (63% low grade tumor, 31 (68.9% recurrent tumor, and 6 (66.6% had positive lymph nodes. Conclusions: Human epidermal growth factor receptor 2/neu over expression was not correlated with the tumor stage, lymphnode metastasis or recurrence of the disease. HER-2/neu overexpression was statistically insignificantly correlated with the differentiation grade (P < 0.161 as compared to previous studies. Future studies on HER-2 expression with chemo-sensitivity and efficacy of HER-2-targeted therapies in urothelial carcinomas is needed.

  5. Polymeric membranes modulate human keratinocyte differentiation in specific epidermal layers.

    Science.gov (United States)

    Salerno, Simona; Morelli, Sabrina; Giordano, Francesca; Gordano, Amalia; Bartolo, Loredana De

    2016-10-01

    In vitro models of human bioengineered skin substitutes are an alternative to animal experimentation for testing the effects and toxicity of drugs, cosmetics and pollutants. For the first time specific and distinct human epidermal strata were engineered by using membranes and keratinocytes. To this purpose, biodegradable membranes of chitosan (CHT), polycaprolactone (PCL) and a polymeric blend of CHT-PCL were prepared by phase-inversion technique and characterized in order to evaluate their morphological, physico-chemical and mechanical properties. The capability of membranes to modulate keratinocyte differentiation inducing specific interactions in epidermal membrane systems was investigated. The overall results demonstrated that the membrane properties strongly influence the cell morpho-functional behaviour of human keratinocytes, modulating their terminal differentiation, with the creation of specific epidermal strata or a fully proliferative epidermal multilayer system. In particular, human keratinocytes adhered on CHT and CHT-PCL membranes, forming the structure of the epidermal top layers, such as the corneum and granulosum strata, characterized by withdrawal or reduction from the cell cycle and cell proliferation. On the PCL membrane, keratinocytes developed an epidermal basal lamina, with high proliferating cells that stratified and migrated over time to form a complete differentiating epidermal multilayer system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Signal interaction of Hedgehog/GLI and epidermal growth factor receptor signaling in cancer development

    International Nuclear Information System (INIS)

    Eberl, M.

    2012-01-01

    The subject of this PhD thesis is based on the cooperation of Hedgehog (HH)/GLI with epidermal growth factor receptor (EGFR) signaling synergistically promoting oncogenic transformation and cancer growth. In previous studies we have demonstrated that the HH/GLI and EGFR signaling pathways interact synergistically resulting not only in selective induction of HH/GLI-EGFR target genes, but also in the onset of oncogenic transformation and tumor formation (Kasper, Schnidar et al. 2006; Schnidar, Eberl et al. 2009). However, the molecular key mediators acting downstream of HH/GLI and EGFR signal cooperation were largely unknown and the in vivo evidence for the therapeutic relevance of HH/GLI and EGFR signal cooperation in HH-associated cancers was lacking. During my PhD thesis I could demonstrate that the integration of EGFR and HH/GLI signaling involves activation of RAS/MEK/ERK and JUN/AP1 signaling in response to EGFR activation. Furthermore I succeeded in identifying genes, including stem cell- (SOX2, SOX9), tumor growth- (JUN, TGFA, FGF19) and metastasis-associated genes (SPP1/osteopontin, CXCR4) that showed synergistic transcriptional activation by HH/GLI-EGFR signal integration. Importantly, I could demonstrate that these genes arrange themselves within a stable interdependent signaling network, which is required for in vivo growth of basal cell carcinoma (BCC) and tumor-initiating pancreatic cancer cells. These data validate EGFR signaling as additional drug target in HH/GLI driven cancers and provide new therapeutic strategies based on combined targeting of cooperative HH/GLI-EGFR signaling and selected downstream target genes (Eberl, Klingler et al. 2012). (author) [de

  7. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Sanders

    Full Text Available The epidermal growth factor receptor (EGFR is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of

  8. Evaluation of 4-[(18)F]fluorobenzoyl-FALGEA-NH(2) as a positron emission tomography tracer for epidermal growth factor receptor mutation variant III imaging in cancer

    DEFF Research Database (Denmark)

    Denholt, Charlotte Lund; Binderup, Tina; Stockhausen, Marie-Thérése

    2011-01-01

    This study describes the radiosynthesis, in vitro and in vivo evaluation of the novel small peptide radioligand, 4-[(18)F]fluorobenzoyl-Phe-Ala-Leu-Gly-Glu-Ala-NH(2,) ([(18)F]FBA-FALGEA-NH(2)) as a positron emission tomography (PET) tracer for imaging of the cancer specific epidermal growth facto...

  9. Reliability of using circulating tumor cells for detecting epidermal growth factor receptor mutation status in advanced non-small-cell lung cancer patients: a meta-analysis and systematic review

    Directory of Open Access Journals (Sweden)

    Hu F

    2018-03-01

    Full Text Available Fang Hu,* Xiaowei Mao,* Yujun Zhang, Xiaoxuan Zheng, Ping Gu, Huimin Wang, Xueyan ZhangDepartment of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this workPurpose: To evaluate the clinical value of circulating tumor cells as a surrogate to detect epidermal growth factor receptor mutation in advanced non-small-cell lung cancer (NSCLC patients.Methods: We searched the electronic databases, and all articles meeting predetermined selection criteria were included in this study. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. The evaluation indexes of the diagnostic performance were the summary receiver operating characteristic curve and area under the summary receiver operating characteristic curve.Results: Eight eligible publications with 255 advanced NSCLC patients were included in this meta-analysis. Taking tumor tissues as reference, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio of circulating tumor cells for detecting the epidermal growth factor receptor mutation status were found to be 0.82 (95% confidence interval [CI]: 0.50–0.95, 0.95 (95% CI: 0.24–1.00, 16.81 (95% CI: 0.33–848.62, 0.19 (95% CI: 0.06–0.64, and 86.81 (95% CI: 1.22–6,154.15, respectively. The area under the summary receiver operating characteristic curve was 0.92 (95% CI: 0.89–0.94. The subgroup analysis showed that the factors of blood volume, histological type, EGFR-tyrosine kinase inhibitor therapy, and circulating tumor cell and tissue test methods for EGFR accounted for the significant difference of the pooled specificity. No significant difference was found between the pooled sensitivity of the subgroup.Conclusion: Our meta-analysis confirmed that circulating tumor cells are a good surrogate for

  10. Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus–oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10...... with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P

  11. A single amino acid substitution is sufficient to modify the mitogenic properties of the epidermal growth factor receptor to resemble that of gp185erbB-2

    DEFF Research Database (Denmark)

    Di Fiore, P P; Helin, K; Kraus, M H

    1992-01-01

    The epidermal growth factor (EGF) receptor (EGFR) and the erbB-2 gene product, gp185erbB-2, exhibit distinct abilities to stimulate mitogenesis in different target cells. By using chimeric molecules between these two receptors, we have previously shown that their intracellular juxtamembrane regio...

  12. Renal content and output of epidermal growth factor in long-term adrenergic agonist-treated rats

    DEFF Research Database (Denmark)

    Thulesen, J; Nexø, Ebba; Poulsen, Steen Seier

    2000-01-01

    This study investigates the renal and urinary levels of epidermal growth factor (EGF) in rats under long-term treatment with alpha- or beta-adrenergic agonists. Urine samples were obtained on days 7, 14 and 21, and renal tissue samples on day 21. EGF was quantified by ELISA and tissue sections were...... material in the distal tubules. Concomitantly, reduced levels of EGF and EGF mRNA were observed, and also the urinary levels of EGF were reduced. Together, these observations indicate alpha-adrenergic treatment to affect the distal tubules. Treatment with the beta-adrenergic agonist did not change...... fractional kidney weight, but initially the urinary excretion of EGF was reduced. The data add further evidence to the suggestion that activity of the sympathetic nervous system influences renal homeostasis of EGF, either directly or indirectly through renal histopathological changes....

  13. Possible physiological role of milk epidermal growth factor in neonatal eyelid opening

    International Nuclear Information System (INIS)

    Tsutsumi, O.; Tsutsumi, A.; Oka, T.

    1987-01-01

    The eyelid opening of newborn mice occurs normally on day 13.9 +/- 1.8 after birth. When newborn mice were injected with anti-epidermal growth factor (EGF) antibody every other day starting on day 1 after birth, the eyelid opening was delayed by ∼ 3 days. The effect of anti-EGF became less prominent as the treatment was started at later times: when it was give from day 7, no delay in eyelid opening was observed. On the other hand, eyelid opening was enhanced by ∼ 3 days by EGF injection given on day 3 for every other day. This effect of EGF was antagonized by simultaneous administration of anti-EGF antibody. EGF was present at a concentration of 6.6 ng/ml in the plasma of 1-wk-old pups nursed by their mother, but it was not detectable in the plasma of 3-wk-old weaned pups. EGF concentration in the submandibular glands, however, was 17 times greater in 3- than in 1-wk-old pups. EGF was measured by radioimmunoassay. These results suggest that milk EGF may play a physiological role in eyelid opening during the neonatal period

  14. Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats

    International Nuclear Information System (INIS)

    Lee, Sang-wook; Jung, Kwon Il; Kim, Yeun Wha B.S.; Jung, Heun Don; Kim, Hyun Sook; Hong, Joon Pio

    2007-01-01

    Purpose: We tested the efficacy of oral recombinant human epidermal growth factor (rhEGF) against radiation-induced oral mucositis in a rat model. Methods and Materials: Each of 35 Sprague-Dawley rats, 7 to 8 weeks of age and weighing 178 ± 5 grams, was irradiated once in the head region with 25 Gy, using a 4-MV therapeutic linear accelerator at a rate of 2 Gy/min. The irradiated rats were randomly divided into four groups: those receiving no treatment (Group 1), those treated with vehicle only three times per day (Group 2), and those treated with 50 μg/mL (Group 3), or 100 μg/mL (Group 4) rhEGF three times per day. Results: Rats were monitored for survival rate and daily activity, including hair loss, sensitivity, and anorexia. We found that survival rate and oral intake were significantly increased and histologic changes were significantly decreased in the rhEGF-treated rats. There was no difference, however, between rats treated with 50 μg/mL or 100 μg/mL rhEGF. Conclusion: These findings suggest that orally administered rhEGF decreased radiation-induced oral mucositis in rats

  15. Intra-tumoural vessel area estimated by expression of epidermal growth factor-like domain 7 and microRNA-126 in primary tumours and metastases of patients with colorectal cancer

    DEFF Research Database (Denmark)

    Hansen, T. F.; Nielsen, Boye Schnack; Jakobsen, Anders

    2015-01-01

    Background: Understanding the biological properties of potential drug targets are important. This is especially true for anti-angiogenic therapies in the search for potential biomarkers. The aim of the present descriptive study was to analyse the intra-tumoural expressions of epidermal growth...

  16. The Epidermal Growth Factor Receptor Responsive miR-125a Represses Mesenchymal Morphology in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Karen D. Cowden Dahl

    2009-11-01

    Full Text Available The epithelial-to-mesenchymal transition (EMT that occurs during embryonic development is recapitulated during tumor metastasis. Important regulators of this process include growth factors, transcription factors, and adhesion molecules. New evidence suggests that microRNA (miRNA activity contributes to metastatic progression and EMT; however, the mechanisms leading to altered miRNA expression during cancer progression remain poorly understood. Importantly, overexpression of the epidermal growth factor receptor (EGFR in ovarian cancer correlates with poor disease outcome and induces EMT in ovarian cancer cells. We report that EGFR signaling leads to transcriptional repression of the miRNA miR-125a through the ETS family transcription factor PEA3. Overexpression of miR-125a induces conversion of highly invasive ovarian cancer cells from a mesenchymal to an epithelial morphology, suggesting miR-125a is a negative regulator of EMT. We identify AT-rich interactive domain 3B (ARID3B as a target of miR-125a and demonstrate that ARID3B is overexpressed in human ovarian cancer. Repression of miR-125a through growth factor signaling represents a novel mechanism for regulating ovarian cancer invasive behavior.

  17. [Enhanced lymphocyte proliferation in the presence of epidermal cells of HIV-infected patients in vitro].

    Science.gov (United States)

    Kappus, R P; Berger, S; Thomas, C A; Ottmann, O G; Ganser, A; Stille, W; Shah, P M

    1992-07-01

    Clinical observations show that the HIV infection is often associated with affections of the skin. In order to examine the involvement of the epidermal immune system in the HIV infection, we determined accessory cell function of epidermal cells from HIV-1-infected patients. For this we measured the proliferative response of enriched CD(4+)-T-lymphocytes from HIV-infected patients and noninfected controls to stimulation with anti-CD3 and IL-2 in the presence of epidermal cells; the enhancement of the response is dependent on the presence of functionally intact accessory cells. The capacity of epidermal cells to increase the anti-CD3-stimulated T-cell proliferative response was significantly enhanced in HIV patients (CDC III/IVA) as compared with noninfected donors. It is discussed, whether the increased activity of epidermal cells from HIV-infected patients may be responsible for several of the dermal lesions in the course of an HIV infection as due to an enhanced production and release of epidermal cell-derived cytokines.

  18. Demonstration of epidermal growth factor binding sites in the adult rat pancreas by light microscopic autoradiography

    International Nuclear Information System (INIS)

    Chabot, J.G.; Walker, P.; Pelletier, G.

    1987-01-01

    The distribution of epidermal growth factor (EGF) receptors was studied in the pancreas using light microscopic autoradiography, which was performed at different time intervals (2-60 min) after injecting 125 I-labeled EGF intravenously into the adult rat. In the exocrine pancreas, a labeling was found to occur over the pyramidal cells of the acini and cells lining the intercalated ducts. Moreover, substantial binding of EGF to cells of the islets of Langerhans was also revealed. At the 2-min time interval, most silver grains were found at the periphery of the target cells. The localization, as well as the diminution of silver grains over the cytoplasm of these cells, between 7 and 60 min, suggested the internalization and degradation of 125 I-labeled EGF. Control experiments indicated that the autoradiography reaction was due to specific interaction of 125 I-labeled EGF with its receptor. These results clearly indicate that EGF receptors are present in the acinar cells and the cells of intercalated ducts of the exocrine pancreas, as well as the cells of the endocrine pancreas. Finding that there are EGF binding sites in pancreatic acinar cells supports the physiological role of EGF in the regulation of pancreatic exocrine function. The presence of EGF receptors in cells of the islets of Langerhans suggests that EGF may play a role in the regulation of the endocrine pancreas

  19. Dialkoxyquinazolines: Screening Epidermal Growth Factor ReceptorTyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    Energy Technology Data Exchange (ETDEWEB)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom,Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor,Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-09-01

    The epidermal growth factor receptor (EGFR), a long-standingdrug development target, is also a desirable target for imaging. Sixteendialkoxyquinazoline analogs, suitable for labeling with positron-emittingisotopes, have been synthesized and evaluated in a battery of in vitroassays to ascertain their chemical and biological properties. Thesecharacteristics provided the basis for the adoption of a selection schemato identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of thecompounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFRtyrosine kinase. All of the analogs inhibited ligand-induced EGFRtyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimatedoctanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline aswell as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the bestcombination of characteristics that warrant radioisotope labeling andfurther evaluation in tumor-bearing mice.

  20. The membrane fraction of homogenized rat kidney contains an enzyme that releases epidermal growth factor from the kidney membranes

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1991-01-01

    shows that the membrane fraction of homogenized rat kidney contains an enzyme that releases immuno and receptor reactive EGF from the kidney membranes when incubated at 37 degrees C. Gel filtration shows that the EGF reactivity released from the membranes is similar to the EGF reactivity in rat urine......High levels of epidermal growth factor (EGF) are excreted in the urine and high levels of mRNA for the EGF-precursor have been demonstrated in the kidney. The EGF-precursor is a membrane bound peptide in the kidney, but little is known about the renal processing of the precursor. The present study...

  1. Hybrid Enhanced Epidermal SpaceSuit Design Approaches

    Science.gov (United States)

    Jessup, Joseph M.

    A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.

  2. Napsin A and Thyroid Transcription Factor-1-Positive Cerebellar Tumor with Epidermal Growth Factor Receptor Mutation

    Directory of Open Access Journals (Sweden)

    Taiji Kuwata

    2011-12-01

    Full Text Available We present a very rare case of cerebellar metastasis of unknown origin, in which a primary lung adenocarcinoma was diagnosed by pathological examination of a cerebellar metastatic tumor, using immunohistochemical markers and epidermal growth factor receptor (EGFR mutation of primary lung cancer. A 69-year-old woman was admitted to our hospital because of a hemorrhagic cerebellar tumor and multiple small brain tumors. She underwent cerebellar tumor resection. On pathological examination, the tumor was diagnosed as adenocarcinoma. However, the primary tumor site was unidentifiable even with several imaging inspections. On immunohistochemical analysis, the resected tumor was positive for napsin A and thyroid transcription factor-1. In addition, an EGFR mutation was detected in the tumor. Therefore, primary lung cancer was diagnosed and the patient was started on gefitinib (250 mg/day therapy.

  3. 15-Deoxy-Δ12,14-prostaglandin J2 and thiazolidinediones transactivate epidermal growth factor and platelet-derived growth factor receptors in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Ichiki, Toshihiro; Tokunou, Tomotake; Fukuyama, Kae; Iino, Naoko; Masuda, Satoko; Takeshita, Akira

    2004-01-01

    Proliferation of vascular smooth muscle cells (VSMCs) is induced by various mitogens through activation of extracellular signal-regulated protein kinase (ERK) pathway. We recently reported that peroxisome proliferator-activated receptor (PPAR)γ activators such as 15-deoxy-Δ 12,14 -prostaglandin J2 (15-d-PGJ2) and thiazolidinediones (TZDs) activated MEK/ERK pathway through phosphatidylinositol 3-kinase (PI3-K) and induced proliferation of VSMCs. However, the precise mechanisms of PPARγ activators-induced activation of PI3-K/ERK pathway have not been determined. We examined whether transactivation of growth factor receptor is involved in this process. Stimulation of VSMCs with 15-d-PGJ2 or TZDs for 15 min induced phosphorylation of ERK1/2 and Akt. 15-d-PGJ2- or TZDs-induced phosphorylation of ERK1/2 and Akt was inhibited by AG1478, an inhibitor of epidermal growth factor receptor (EGF-R) as well as AG1295, an inhibitor of platelet derived growth factor receptor (PDGF-R). 15-d-PGJ2-induced phosphorylation of both EGF-R and PDGF-R. GM6001, a matrix metalloproteinase inhibitor, and PP2, a Src family protein kinase inhibitor, suppressed 15-d-PGJ2- and TZDs-induced phosphorylation of EGF-R and PDGFβ-R as well as activation of ERK1/2 and Akt. PDGFβ-R was co-immunoprecipitated with EGF-R, regardless of the presence or absence of 15-d-PGJ2. These data suggest that 15-d-PGJ2 and TZDs activate PI3-K/ERK pathway through Src family kinase- and matrix metalloproteinase-dependent transactivation of EGF-R and PDGF-R. Both receptors seemed to associate constitutively. This novel signaling mechanisms may contribute to diverse biological functions of PPARγ activators

  4. Higher Expression of Epidermal Growth Factor Receptor Is Associated with Extracellular Matrix Metalloprotease Inducer in Colorectal Adenocarcinoma: Tissue Microarray Analysis of Immunostaining Score with Clinicopathological Parameters

    Directory of Open Access Journals (Sweden)

    Jong-Shiaw Jin

    2006-01-01

    Full Text Available Aim: Extracellular matrix metalloprotease inducer (EMMPRIN expression was demonstrated in several cancers, but its expression profile in colorectal cancers remains unclear. Epidermal growth factor receptor (EGFR was reported to regulate EMMPRIN expression in human epithelial cancers. Our purpose was to determine EMMPRIN expression and its relationship with EGFR in colorectal cancers.

  5. [Progress in epidermal stem cells].

    Science.gov (United States)

    Wang, Li-Juan; Wang, You-Liang; Yang, Xiao

    2010-03-01

    Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.

  6. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury.

    Science.gov (United States)

    Ozturk, Anil Murat; Sozbilen, Murat Celal; Sevgili, Elvin; Dagci, Taner; Özyalcin, Halit; Armagan, Guliz

    2018-03-22

    Spinal cord injury (SCI) leads to vascular damage and disruption of blood-spinal cord barrier which participates in secondary nerve injury. Epidermal growth factor (EGF) is an endogenous protein which regulates cell proliferation, growth and differention. Previous studies reported that EGF exerts neuroprotective effect in spinal cord after SCI. However, the molecular mechanisms underlying EGF-mediated protection in different regions of nervous system have not shown yet. In this study, we aimed to examine possible anti-apoptotic and protective roles of EGF not only in spinal cord but also in brain following SCI. Twenty-eight adult rats were divided into four groups of seven animals each as follows: sham, trauma (SCI), SCI + EGF and SCI + methylprednisolone (MP) groups. The functional neurological deficits due to the SCI were assessed by behavioral analysis using the Basso, Beattie and Bresnahan (BBB) open-field locomotor test. The alterations in pro-/anti-apoptotic protein levels and antioxidant enzyme activities were measured in spinal cord and frontal cortex. In our study, EGF promoted locomotor recovery and motor neuron survival of SCI rats. EGF treatment significantly decreased Bax and increased Bcl-2 protein expressions both in spinal cord and brain when compared to SCI group. Moreover, antioxidant enzyme activities including catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) were increased following EGF treatment similar to MP treatment. Our experiment also suggests that alteration of the ratio of Bcl-2 to Bax may result from decreased apoptosis following EGF treatment. As a conclusion, these results show, for the first time, that administration of EGF exerts its protection via regulating apoptotic and oxidative pathways in response to spinal cord injury in different regions of central nervous system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. A novel small peptide as an epidermal growth factor receptor targeting ligand for nanodelivery in vitro

    Directory of Open Access Journals (Sweden)

    Han CY

    2013-04-01

    Full Text Available Cui-yan Han,1,2 Li-ling Yue,2 Ling-yu Tai,1 Li Zhou,2 Xue-yan Li,2 Gui-hua Xing,2 Xing-gang Yang,1 Ming-shuang Sun,1 Wei-san Pan1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Qiqihar Medical University, Qiqihar, People’s Republic of China Abstract: The epidermal growth factor receptor (EGFR serves an important function in the proliferation of tumors in humans and is an effective target for the treatment of cancer. In this paper, we studied the targeting characteristics of small peptides (AEYLR, EYINQ, and PDYQQD that were derived from three major autophosphorylation sites of the EGFR C-terminus domain in vitro. These small peptides were labeled with fluorescein isothiocyanate (FITC and used the peptide LARLLT as a positive control, which bound to putative EGFR selected from a virtual peptide library by computer-aided design, and the independent peptide RALEL as a negative control. Analyses with flow cytometry and an internalization assay using NCI-H1299 and K562 with high EGFR and no EGFR expression, respectively, indicated that FITC-AEYLR had high EGFR targeting activity. Biotin-AEYLR that was specifically bound to human EGFR proteins demonstrated a high affinity for human non-small-cell lung tumors. We found that AEYLR peptide-conjugated, nanostructured lipid carriers enhanced specific cellular uptake in vitro during a process that was apparently mediated by tumor cells with high-expression EGFR. Analysis of the MTT assay indicated that the AEYLR peptide did not significantly stimulate or inhibit the growth activity of the cells. These findings suggest that, when mediated by EGFR, AEYLR may be a potentially safe and efficient delivery ligand for targeted chemotherapy, radiotherapy, and gene therapy. Keywords: EGFR, small peptide, tumor targeting, lung cancer, NLC

  8. Sendai viroplexes for epidermal growth factor receptor-directed delivery of interleukin-12 and salmosin genes to cancer cells.

    Science.gov (United States)

    Kim, Jung Seok; Kim, Min Woo; Jeong, Hwa Yeon; Kang, Seong Jae; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-07-01

    The effective delivery of therapeutic genes to target cells has been a fundamental goal in cancer gene therapy because of its advantages with respect to both safety and transfection efficiency. In the present, study we describe a tumor-directed gene delivery system that demonstrates remarkable efficacy in gene delivery and minimizes the off-target effects of gene transfection. The system consists of a well-verified cationic O,O'-dimyristyl-N-lysyl glutamate (DMKE), Sendai virus fusion (F) protein and hemagglutinin-neuraminidase (HN) protein, referred to as cationic Sendai F/HN virosomes. To achieve tumor-specific recognition, anti-epidermal growth factor (EGF) receptor antibody was coupled to the surface of the virosomes containing interleukin-12 (IL-12) and/or salmosin genes that have potent anti-angiogenetic functions. Among the virosomal formulations, the anti-EGF receptor (EGFR) viroplexes, prepared via complexation of plasmid DNA (pDNA) with cationic DMKE lipid, exhibited more efficient gene transfection to tumor cells over-expressing EGF receptors compared to the neutrally-charged anti-EGFR virosomes encapsulating pDNA. In addition, the anti-EGFR viroplexes with IL-12 and salmosin genes exhibited the most effective therapeutic efficacy in a mouse tumor model. Especially when combined with doxorubicin, transfection of the two genes via the anti-EGFR viroplexes exhibited an enhanced inhibitory effect on tumor growth and metastasis in lungs. The results of the present study suggest that anti-EGFR viroplexes can be utilized as an effective strategy for tumor-directed gene delivery. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. EFFICACY EVALUATION OF A MONOCLONAL ANTIBODY AGAINST THE EPIDERMAL GROWTH FACTORS RECEPTOR IN THE MODEL OF SUBCUTANEOUS XENOGRAFT IN IMMUNODEFICIENT MICE

    Directory of Open Access Journals (Sweden)

    Ya. Yu. Ustyugov

    2015-01-01

    Full Text Available This article presents the results of the comparative antitumor efficacy study of two test articles of therapeutic humanized monoclonal antibodies against epidermal growth factor receptor (EGFR manufactured by Russian biopharmaceutical company CJSC “Biocad” and the commercial drug “Erbitux®” (Merck, Germany in subcutaneous xenografts model using human epidermoid carcinoma A431NS cell line. EGFR overexpression in epithelial tumor cells is a commonly known fact that determines use of this receptor as a target for therapeutic monoclonal antibodies. The basic mechanism of action of such drugs is blocking of epithelial cells proliferation through competitive binding to EGFR. Evaluation of tumor growth dynamics in immunodeficient (Nu/Nu mice was performed during in vivo experiment using two parameters: tumor growth index and tumor growth inhibition (TGI, %. The results received with used study design show that antitumor effects of the test articles manufactured by CJSC “Biocad” and the commercial comparator drug “Erbitux®” estimated by values of TGI and tumor growth index are comparable.

  10. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    M. Westwood (Marie); M.A. Joore (Manuela); P. Whiting (Penny); T. van Asselt (Thea); B.L.T. Ramaekers (Bram); N. Armstrong (Nigel); K. Misso (Kate); J.L. Severens (Hans); J. Kleijnen (Jos)

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment

  11. Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1984-01-01

    on the binding distribution of [125I]EGF, representing the tissue localization of available EGF receptors, during embryonic rat skin development including hair follicle formation and the adult hair growth cycle. At 16 days embryonic development a relatively low receptor density is seen over all the epidermal...... condensates marking the first stage of hair follicle development. This restricted and temporary loss of EGF receptors above these specialized mesenchymal condensates implies a role for the EGF receptor and possibly EGF or an EGF-like ligand in stimulating the epithelial downgrowth required for hair follicle...... development. In the anagen hair bulb, receptors for EGF are detected over the outer root sheath and the epithelial cell layers at the base of the follicle and show a correlation with the areas of epithelial proliferation in the hair bulb. During the catagen and telogen phases of the hair cycle, receptors...

  12. Functional Role of Cyclin-Dependent Kinase 5 in the Regulation of Melanogenesis and Epidermal Structure.

    Science.gov (United States)

    Dong, Changsheng; Yang, Shanshan; Fan, Ruiwen; Ji, Kaiyuan; Zhang, Junzhen; Liu, Xuexian; Hu, Shuaipeng; Xie, Jianshan; Liu, Yu; Gao, Wenjun; Wang, Haidong; Yao, Jianbo; Smith, George W; Herrid, Muren

    2017-10-23

    The mammalian integumentary system plays important roles in body homeostasis, and dysfunction of melanogenesis or epidermal development may lead to a variety of skin diseases, including melanoma. Skin pigmentation in humans and coat color in fleece-producing animals are regulated by many genes. Among them, microphthalmia-associated transcription factor (MITF) and paired-box 3 (PAX3) are at the top of the cascade and regulate activities of many important melanogenic enzymes. Here, we report for the first time that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of MITF and PAX3. Cdk5 knockdown in mice causes a lightened coat color, a polarized distribution of melanin and hyperproliferation of basal keratinocytes. Reduced expression of Keratin 10 (K10) resulting from Cdk5 knockdown may be responsible for an abnormal epidermal structure. In contrast, overexpression of Cdk5 in sheep (Ovis aries) only produces brown patches on a white background, with no other observable abnormalities. Collectively, our findings show that Cdk5 has an important functional role in the regulation of melanin production and transportation and in normal development of the integumentary system.

  13. Direct astatination of a tumour-binding protein, human epidermal growth factor, using nido-carborane as a prosthetic group

    International Nuclear Information System (INIS)

    Sjoestroem, A.; Carlsson, J.; Lundqvist, H.; Koziorowski, J.

    2003-01-01

    A method for direct astatine labeling of proteins has been investigated. Binding sites for astatine were created by coupling of a nido-carborane derivative to a protein, the human epidermal growth factor (hEGF), using two different conjugation methods - by glutaraldehyde cross-linking or by introduction of sulfohydryl groups by Traut's reagent with subsequent linking of ANC-1 with m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester. The conjugates were astatinated using the Chloramine-T method in high yield. The best labeling was obtained by the glutaraldehyde conjugate with an average yield of 68 ± 9%. In vitro stability tests indicated that the glutaraldehyde conjugated label was as stable as hEGF labeled with astatobenzoate. (author)

  14. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer : a systematic review and cost-effectiveness analysis

    NARCIS (Netherlands)

    Westwood, Marie; Joore, Manuela; Whiting, Penny; van Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Johan; Kleijnen, Jos

    BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy.

  15. Effects of two droplet-based dissolving microneedle manufacturing methods on the activity of encapsulated epidermal growth factor and ascorbic acid.

    Science.gov (United States)

    Huh, Inyoung; Kim, Suyong; Yang, Huisuk; Jang, Mingyu; Kang, Geonwoo; Jung, Hyungil

    2018-03-01

    Dissolving microneedle (DMN) is an attractive, minimally invasive transdermal drug delivery technology. The drugs encapsulated in the DMNs are exposed to a series of thermal, chemical, and physical stresses during the fabrication process, decreasing their therapeutic activity. Current DMN fabrication methods, such as micro-molding, drawing lithography, droplet-born air blowing, and centrifugal lithography, undergo different manufacturing processes involving differing stress conditions. Among the methods, we compared the effects of two droplet-based methods, droplet-born air blowing and centrifugal lithography, on the activity of encapsulated drugs using epidermal growth factor and ascorbic acid as model drugs. Although the appearance and physical properties of DMNs fabricated by the two methods were similar, the immunoreactivity of encapsulated epidermal growth factor in centrifugal lithography and droplet-born air blowing was 92.08±2.86% and 80.67±8.00%, respectively, at baseline, and decreased to 75.32±19.40% and 41.75±16.17%, respectively, 24h after drug-loading. The free-radical scavenging activity of ascorbic acid was maintained at 88.24±0.78% in DMNs fabricated by centrifugal lithography, but decreased over time to 67.02±1.11% in DMNs fabricated by droplet-born air blowing. These findings indicate that the manufacturing conditions of centrifugal lithography exert less stress on the drug-loaded DMNs, minimizing activity loss over time, and therefore that centrifugal lithography is suitable for fabricating DMNs loaded with fragile biological drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Morphology and dynamics of tumor cell colonies propagating in epidermal growth factor supplemented media

    Science.gov (United States)

    Muzzio, N. E.; Carballido, M.; Pasquale, M. A.; González, P. H.; Azzaroni, O.; Arvia, A. J.

    2018-07-01

    The epidermal growth factor (EGF) plays a key role in physiological and pathological processes. This work reports on the influence of EGF concentration (c EGF) on the modulation of individual cell phenotype and cell colony kinetics with the aim of perturbing the colony front roughness fluctuations. For this purpose, HeLa cell colonies that remain confluent along the whole expansion process with initial quasi-radial geometry and different initial cell populations, as well as colonies with initial quasi-linear geometry and large cell population, are employed. Cell size and morphology as well as its adhesive characteristics depend on c EGF. Quasi-radial colonies (QRC) expansion kinetics in EGF-containing medium exhibits a complex behavior. Namely, at the first stages of growth, the average QRC radius evolution can be described by a t 1/2 diffusion term coupled with exponential growth kinetics up to a critical time, and afterwards a growth regime approaching constant velocity. The extension of each regime depends on c EGF and colony history. In the presence of EGF, the initial expansion of quasi-linear colonies (QLCs) also exhibits morphological changes at both the cell and the colony levels. In these cases, the cell density at the colony border region becomes smaller than in the absence of EGF and consequently, the extension of the effective rim where cell duplication and motility contribute to the colony expansion increases. QLC front displacement velocity increases with c EGF up to a maximum value in the 2–10 ng ml‑1 range. Individual cell velocity is increased by EGF, and an enhancement in both the persistence and the ballistic characteristics of cell trajectories can be distinguished. For an intermediate c EGF, collective cell displacements contribute to the roughening of the colony contours. This global dynamics becomes compatible with the standard Kardar–Parisi–Zhang growth model, although a faster colony roughness saturation in EGF-containing medium

  17. Flipped script for gefitinib: A reapproved tyrosine kinase inhibitor for first-line treatment of epidermal growth factor receptor mutation positive metastatic nonsmall cell lung cancer.

    Science.gov (United States)

    Bogdanowicz, Brian S; Hoch, Matthew A; Hartranft, Megan E

    2017-04-01

    Purpose The approval history, pharmacology, pharmacokinetics, clinical trials, efficacy, dosing recommendations, drug interactions, safety, place in therapy, and economic considerations of gefitinib are reviewed. Summary Lung cancer is one of the most commonly diagnosed cancers and is the leading cause of cancer death. Platinum-based chemotherapy and tyrosine kinase inhibitors, such as erlotinib and afatinib, are recommended therapies for nonsmall cell lung cancer. The European Medicines Association based their approval of gefitinib on the randomized, multicenter Iressa Pan-Asia Study (IPASS, NCT00322452) and a single-arm study showing effectiveness in Caucasians (IFUM, NCT01203917). Both studies were recently referenced by the United States Food & Drug Administration to reapprove gefitinib for the first-line treatment of advanced nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions or exon 21 substitution. Diarrhea, acneiform rash, and interstitial lung disease are known side effects of gefitinib. Conclusion Use of gefitinib for the first-line therapy of metastatic nonsmall cell lung cancer with epidermal growth factor receptor exon 19 deletions (residues 747-750) or exon 21 substitution mutation (L858R) is well-documented and supported.

  18. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  19. Breast cancer oestrogen independence mediated by BCAR1 or BCAR3 genes is transmitted through mechanisms distinct from the oestrogen receptor signalling pathway or the epidermal growth factor receptor signalling pathway

    International Nuclear Information System (INIS)

    Dorssers, Lambert CJ; Agthoven, Ton van; Brinkman, Arend; Veldscholte, Jos; Smid, Marcel; Dechering, Koen J

    2005-01-01

    Tamoxifen is effective for endocrine treatment of oestrogen receptor-positive breast cancers but ultimately fails due to the development of resistance. A functional screen in human breast cancer cells identified two BCAR genes causing oestrogen-independent proliferation. The BCAR1 and BCAR3 genes both encode components of intracellular signal transduction, but their direct effect on breast cancer cell proliferation is not known. The aim of this study was to investigate the growth control mediated by these BCAR genes by gene expression profiling. We have measured the expression changes induced by overexpression of the BCAR1 or BCAR3 gene in ZR-75-1 cells and have made direct comparisons with the expression changes after cell stimulation with oestrogen or epidermal growth factor (EGF). A comparison with published gene expression data of cell models and breast tumours is made. Relatively few changes in gene expression were detected in the BCAR-transfected cells, in comparison with the extensive and distinct differences in gene expression induced by oestrogen or EGF. Both BCAR1 and BCAR3 regulate discrete sets of genes in these ZR-75-1-derived cells, indicating that the proliferation signalling proceeds along distinct pathways. Oestrogen-regulated genes in our cell model showed general concordance with reported data of cell models and gene expression association with oestrogen receptor status of breast tumours. The direct comparison of the expression profiles of BCAR transfectants and oestrogen or EGF-stimulated cells strongly suggests that anti-oestrogen-resistant cell proliferation is not caused by alternative activation of the oestrogen receptor or by the epidermal growth factor receptor signalling pathway

  20. Epidermal growth factor receptor expression in different subtypes of oral lichenoid disease.

    Science.gov (United States)

    Cortés-Ramírez, Dionisio-Alejandro; Rodríguez-Tojo, María-Jose; Coca-Meneses, Juan-Carlos; Marichalar-Mendia, Xabier; Aguirre-Urizar, José-Manuel

    2014-09-01

    The oral lichenoid disease (OLD) includes different chronic inflammatory processes such as oral lichen planus (OLP) and oral lichenoid lesions (OLL), both entities with controversial diagnosis and malignant potential. Epidermal growth factor receptor (EFGR) is an important oral carcinogenesis biomarker and overexpressed in several oral potentially malignant disorders. To analyze the EGFR expression in the OLD to find differences between OLP and OLL, and to correlate it with the main clinical and pathological features. Forty-four OLD cases were studied and classified according to their clinical (Group C1: only papular lesions / Group C2: papular and other lesions) and histopathological features (Group HT: OLP-typical / Group HC: OLP-compatible) based in previous published criteria. Standard immunohistochemical identification of EGFR protein was performed. Comparative and descriptive statistical analyses were performed. Thirty-five cases (79.5%) showed EGFR overexpression without significant differences between clinical and histopathological groups (p<0.05). Histological groups showed significant differences in the EGFR expression pattern (p=0.016). Conlusions: All OLD samples showed high EGFR expression. The type of clinical lesion was not related with EGFR expression; however, there are differences in the EGFR expression pattern between histological groups that may be related with a different biological profile and malignant risk.

  1. Histological transformation after acquired resistance to epidermal growth factor tyrosine kinase inhibitors.

    Science.gov (United States)

    Shao, Yi; Zhong, Dian-Sheng

    2018-04-01

    Non-small-cell lung cancer patients with sensitive epidermal growth factor receptor mutations generally respond well to tyrosine kinase inhibitors (TKIs). However, acquired resistance will eventually develop place after 8-16 months. Several mechanisms contribute to the resistance including T790M mutation, c-Met amplification, epithelial mesenchymal transformation and PIK3CA mutation; however, histological transformation is a rare mechanism. The patterns and mechanisms underlying histological transformation need to be explored. We searched PubMed, EMBASE and search engines Google Scholar, Medical Matrix for literature related to histological transformation. Case reports, cases series, and clinical and basic medical research articles were reviewed. Sixty-one articles were included in this review. Cases of transformation to small-cell lung cancer, squamous cell carcinoma, large-cell neuroendocrine carcinoma and sarcoma after TKI resistance have all been reported. As the clinical course differed dramatically between cases, a new treatment scheme needs to be recruited. The mechanisms underlying histological transformation have not been fully elucidated and probably relate to cancer stem cells, driver genetic alterations under selective pressure or the heterogeneity of the tumor. When TKI resistance develops, we recommend that patients undergo a second biopsy to determine the reason, guide the next treatment and predict the prognosis.

  2. Effects of epidermal growth factor on bone formation and resorption in vivo

    International Nuclear Information System (INIS)

    Marie, P.J.; Hott, M.; Perheentupa, J.

    1990-01-01

    The effects of mouse epidermal growth factor (EGF) on bone formation and resorption were examined in male mice. EGF administration (2-200 ng.g-1.day-1 ip for 7 days) induced a dose-dependent rise in plasma EGF levels that remained within physiological range. Histomorphometric analysis of caudal vertebrae showed that EGF (20 and 200 ng.g-1.day-1) reduced the endosteal matrix and mineral appositional rates after 5 days of treatment as measured by double [3H]proline labeling and double tetracycline labeling, respectively. This effect was transitory and was not observed after 7 days of EGF administration. EGF administered for 7 days induced a dose-dependent increase in the periosteal osteoblastic and tetracycline double-labeled surfaces. At high dosage (200 ng.g-1.day-1) EGF administration increased the osteoclastic surface and the number of acid phosphatase-stained osteoclasts, although plasma calcium remained normal. The results show that EGF administration at physiological doses induces distinct effects on endosteal and periosteal bone formation and that the effects are dependent on EGF dosage and duration of treatment. This study indicates that EGF at physiological dosage stimulates periosteal bone formation and increases endosteal bone resorption in the growing mouse

  3. Polyethylene Glycol Mediated Colorectal Cancer Chemoprevention: Roles of Epidermal Growth Factor Receptor and Snail

    Science.gov (United States)

    Wali, Ramesh K.; Kunte, Dhananjay P.; Koetsier, Jennifer L.; Bissonnette, Marc; Roy, Hemant K.

    2008-01-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We previously reported that Snail/β-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overepressed in ~80% of human colorectal cancers (CRC), on PEG-mediated anti-proliferative and hence anti-neoplastic effects in azoxymethane (AOM)-rats and HT-29 colon cancer cells. AOM-rats were randomized to either standard diet or one with 10% PEG 3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (pPEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pre-treating cells with gefitinib or stably transfecting with EGFR-shRNA and measured the effect of PEG on proliferation. In either case PEG effect was blunted suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-shRNA cells, besides having reduced membrane EGFR also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/β-catenin pathway playing the central intermediary function. PMID:18790788

  4. Polyethylene glycol-mediated colorectal cancer chemoprevention: roles of epidermal growth factor receptor and Snail.

    Science.gov (United States)

    Wali, Ramesh K; Kunte, Dhananjay P; Koetsier, Jennifer L; Bissonnette, Marc; Roy, Hemant K

    2008-09-01

    Polyethylene glycol (PEG) is a clinically widely used agent with profound chemopreventive properties in experimental colon carcinogenesis. We reported previously that Snail/beta-catenin signaling may mediate the suppression of epithelial proliferation by PEG, although the upstream events remain unclear. We report herein the role of epidermal growth factor receptor (EGFR), a known mediator of Snail and overexpressed in approximately 80% of human colorectal cancers, on PEG-mediated antiproliferative and hence antineoplastic effects in azoxymethane (AOM) rats and HT-29 colon cancer cells. AOM rats were randomized to either standard diet or one with 10% PEG-3350 and euthanized 8 weeks later. The colonic samples were subjected to immunohistochemical or Western blot analyses. PEG decreased mucosal EGFR by 60% (P PEG effects were obtained in HT-29 cells. PEG suppressed EGFR protein via lysosmal degradation with no change in mRNA levels. To show that EGFR antagonism per se was responsible for the antiproliferative effect, we inhibited EGFR by either pretreating cells with gefitinib or stably transfecting with EGFR-short hairpin RNA and measured the effect of PEG on proliferation. In either case, PEG effect was blunted, suggesting a vital role of EGFR. Flow cytometric analysis revealed that EGFR-short hairpin RNA cells, besides having reduced membrane EGFR, also expressed low Snail levels (40%), corroborating a strong association. Furthermore, in EGFR silenced cells, PEG effect on EGFR or Snail was muted, similar to that on proliferation. In conclusion, we show that EGFR is the proximate membrane signaling molecule through which PEG initiates antiproliferative activity with Snail/beta-catenin pathway playing the central intermediary function.

  5. The prognostic value of epidermal growth factor receptor is related to tumor differentiation and the overall treatment time of radiotherapy in squamous cell carcinomas of the head and neck

    DEFF Research Database (Denmark)

    Eriksen, Jesper Grau; Steiniche, Torben; Askaa, Jon

    2004-01-01

    Accelerated repopulation in head-and-neck carcinomas might be related to the expression of proliferative factors such as epidermal growth factor receptor (EGFr). The present study focuses on the prognostic value of EGFr for T-site control and the relation to tumor cell differentiation and overall...

  6. Targeted delivery of polyamidoamine-paclitaxel conjugate functionalized with anti-human epidermal growth factor receptor 2 trastuzumab

    Directory of Open Access Journals (Sweden)

    Ma P

    2015-03-01

    Full Text Available Pengkai Ma,1 Xuemei Zhang,1 Ling Ni,2 Jinming Li,2 Fengpu Zhang,1 Zheng Wang,1 Shengnan Lian,1 Kaoxiang Sun1 1School of Pharmacy, Yantai University, Yantai, Shandong Province, People’s Republic of China; 2State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, Shandong Province, People’s Republic of China Background: Antibody-dendrimer conjugates have the potential to improve the targeting and release of chemotherapeutic drugs at the tumor site while reducing adverse side effects caused by drug accumulation in healthy tissues. In this study, trastuzumab (TMAB, which binds to human epidermal growth factor receptor 2 (HER2, was used as a targeting agent in a TMAB-polyamidoamine (PAMAM conjugate carrying paclitaxel (PTX specifically to cells overexpressing HER2. Methods: TMAB was covalently linked to a PAMAM dendrimer via bifunctional polyethylene glycol (PEG. PTX was conjugated to PAMAM using succinic anhydride as a cross-linker, yielding TMAB-PEG-PAMAM-PTX. Dynamic light scattering and transmission electron microscopy were used to characterize the conjugates. The cellular uptake and in vivo biodistribution were studied by fluorescence microscopy, flow cytometry, and Carestream In Vivo FX, respectively. Results: Nuclear magnetic resonance spectroscopy demonstrated that PEG, PTX, fluorescein isothiocyanate, and cyanine7 were conjugated to PAMAM. Ultraviolet-visible spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis demonstrated that TMAB was conjugated to PEG-PAMAM. Dynamic light scattering and transmission electron microscopy measurements revealed that the different conjugates ranged in size between 10 and 35 nm and had a spherical shape. In vitro cellular uptake demonstrated that the TMAB-conjugated PAMAM was taken up by HER2-overexpressing BT474 cells more efficiently than MCF-7 cells that expressed lower levels of HER2. Co-localization experiments indicated that TMAB-conjugated PAMAM was

  7. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  8. Rho A Regulates Epidermal Growth Factor-Induced Human Osteosarcoma MG63 Cell Migration

    Directory of Open Access Journals (Sweden)

    Jinyang Wang

    2018-05-01

    Full Text Available Osteosarcoma, the most common primary bone tumor, occurs most frequently in children and adolescents and has a 5-year survival rate, which is unsatisfactory. As epidermal growth factor receptor (EGFR positively correlates with TNM (tumor-node-metastasis stage in osteosarcoma, EGFR may play an important role in its progression. The purpose of this study was to explore potential mechanisms underlying this correlation. We found that EGF promotes MG63 cell migration and invasion as well as stress fiber formation via Rho A activation and that these effects can be reversed by inhibiting Rho A expression. In addition, molecules downstream of Rho A, including ROCK1, LIMK2, and Cofilin, are activated by EGF in MG63 cells, leading to actin stress fiber formation and cell migration. Moreover, inhibition of ROCK1, LIMK2, or Cofilin in MG63 cells using known inhibitors or short hairpin RNA (shRNA prevents actin stress fiber formation and cell migration. Thus, we conclude that Rho A/ROCK1/LIMK2/Cofilin signaling mediates actin microfilament formation in MG63 cells upon EGFR activation. This novel pathway provides a promising target for preventing osteosarcoma progression and for treating this cancer.

  9. Frequency of Epidermal Growth Factor Receptor Mutation in Smokers with Lung Cancer Without Pulmonary Emphysema.

    Science.gov (United States)

    Takeda, Kenichi; Yamasaki, Akira; Igishi, Tadashi; Kawasaki, Yuji; Ito-Nishii, Shizuka; Izumi, Hiroki; Sakamoto, Tomohiro; Touge, Hirokazu; Kodani, Masahiro; Makino, Haruhiko; Yanai, Masaaki; Tanaka, Natsumi; Matsumoto, Shingo; Araki, Kunio; Nakamura, Hiroshige; Shimizu, Eiji

    2017-02-01

    Chronic obstructive pulmonary disease is a smoking-related disease, and is categorized into the emphysema and airway dominant phenotypes. We examined the relationship between emphysematous changes and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma. The medical records for 250 patients with lung adenocarcinoma were retrospectively reviewed. All patients were categorized into the emphysema or non-emphysema group. Wild-type EGFR was detected in 136 (54%) and mutant EGFR in 48 (19%). Emphysematous changes were observed in 87 (36%) patients. EGFR mutation was highly frequent in the non-emphysema group (p=0.0014). Multivariate logistic regression analysis showed that emphysema was an independent risk factor for reduced frequency of EGFR mutation (Odds Ratio=3.47, p=0.005). Our data showed a relationship between emphysematous changes and EGFR mutation status. There might be mutually exclusive genetic risk factors for carcinogenesis and development of emphysematous changes. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  11. Distribution of epidermal growth factor binding sites in the adult rat anterior pituitary gland

    International Nuclear Information System (INIS)

    Chabot, J.G.; Walker, P.; Pelletier, G.

    1986-01-01

    The distribution of epidermal growth (EGF) binding sites was studied in the pituitary gland using light and electron microscope autoradiography which was performed at different time intervals (2 to 60 min) after intravenous (IV) injection of [ 125 I]EGF into adult rats. At the light microscopic level, the labeling was found over cells of the anterior pituitary gland. The time-course study performed by light microscope autoradiography showed that the maximal values were reached at the 2 min time interval. At this time interval, most silver grains were found at the periphery of the target cells. After, the number of silver grains decreased progressively and the localization of silver grains in the cytoplasm indicated the internalization of [ 125 I]EGF. Electron microscope autoradiography showed that labeling was mostly restricted to mammotrophs and somatotrophs. Control experiments indicated that the autoradiographic labeling was due specific interaction of [ 125 I]EGF with its binding site. These results indicate that EGF binding sites are present in at least two anterior pituitary cell types and suggest that EGF can exert a physiological role in the pituitary gland

  12. Molecular Imaging of Hepatocellular Carcinoma Xenografts with Epidermal Growth Factor Receptor Targeted Affibody Probes

    Directory of Open Access Journals (Sweden)

    Ping Zhao

    2013-01-01

    Full Text Available Hepatocellular carcinoma (HCC is a highly aggressive and lethal cancer. It is typically asymptomatic at the early stage, with only 10%–20% of HCC patients being diagnosed early enough for appropriate surgical treatment. The delayed diagnosis of HCC is associated with limited treatment options and much lower survival rates. Therefore, the early and accurate detection of HCC is crucial to improve its currently dismal prognosis. The epidermal growth factor receptor (EGFR has been reported to be involved in HCC tumorigenesis and to represent an attractive target for HCC imaging and therapy. In this study, an affibody molecule, Ac-Cys-ZEGFR:1907, targeting the extracellular domain of EGFR, was used for the first time to assess its potential to detect HCC xenografts. By evaluating radio- or fluorescent-labeled Ac-Cys-ZEGFR:1907 as a probe for positron emission tomography (PET or optical imaging of HCC, subcutaneous EGFR-positive HCC xenografts were found to be successfully imaged by the PET probe. Thus, affibody-based PET imaging of EGFR provides a promising approach for detecting HCC in vivo.

  13. Dialkoxyquinazolines: Screening Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Potential Tumor Imaging Probes

    International Nuclear Information System (INIS)

    VanBrocklin, Henry F.; Lim, John K.; Coffing, Stephanie L.; Hom, Darren L.; Negash, Kitaw; Ono, Michele Y.; Hanrahan, Stephen M.; Taylor, Scott E.; Vanderpoel, Jennifer L.; Slavik, Sarah M.; Morris, Andrew B.; Riese II, David J.

    2005-01-01

    The epidermal growth factor receptor (EGFR), a long-standing drug development target, is also a desirable target for imaging. Sixteen dialkoxyquinazoline analogs, suitable for labeling with positron-emitting isotopes, have been synthesized and evaluated in a battery of in vitro assays to ascertain their chemical and biological properties. These characteristics provided the basis for the adoption of a selection schema to identify lead molecules for labeling and in vivo evaluation. A newEGFR tyrosine kinase radiometric binding assay revealed that all of the compounds possessed suitable affinity (IC50 = 0.4 - 51 nM) for the EGFR tyrosine kinase. All of the analogs inhibited ligand-induced EGFR tyrosine phosphorylation (IC50 = 0.8 - 20 nM). The HPLC-estimated octanol/water partition coefficients ranged from 2.0-5.5. Four compounds,4-(2'-fluoroanilino)- and 4-(3'-fluoroanilino)-6,7-diethoxyquinazoline as well as 4-(3'-chloroanilino)- and4-(3'-bromoanilino)-6,7-dimethoxyquinazoline, possess the best combination of characteristics that warrant radioisotope labeling and further evaluation in tumor-bearing mice

  14. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate.

    Science.gov (United States)

    Chermnykh, Elina; Kalabusheva, Ekaterina; Vorotelyak, Ekaterina

    2018-03-27

    Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.

  15. A synthetic C16 omega-hydroxyphytoceramide improves skin barrier functions from diversely perturbed epidermal conditions.

    Science.gov (United States)

    Oh, Myoung Jin; Nam, Jin Ju; Lee, Eun Ok; Kim, Jin Wook; Park, Chang Seo

    2016-10-01

    Omega-hydroxyceramides (ω-OH-Cer) play a crucial role in maintaining the integrity of skin barrier. ω-OH-Cer are the primary lipid constituents of the corneocyte lipid envelope (CLE) covalently attached to the outer surface of the cornified envelope linked to involucrin to become bound form lipids in stratum corneum (SC). CLE becomes a hydrophobic impermeable layer of matured corneocyte preventing loss of natural moisturizing factor inside the corneocytes. More importantly, CLE may also play an important role in the formation of proper orientation of intercellular lipid lamellar structure by interdigitating with the intercellular lipids in a comb-like fashion. Abnormal barrier conditions associated with atopic dermatitis but also UVB-irradiated skins are known to have lowered level of bound lipids, especially ω-OH-Cer, which indicate that ω-OH-Cer play an important role in maintaining the integrity of skin barrier. In this study, protective effects of a novel synthetic C16 omega-hydroxyphytoceramides (ω-OH-phytoceramide) on skin barrier function were investigated. Epidermal barrier disruption was induced by UVB irradiation, tape-stripping in hairless mouse and human skin. Protective effect of damaged epidermis was evaluated using the measurement of transepidermal water loss and cohesion of SC. Increased keratinocyte differentiation was verified using cultured keratinocyte through western blot. Results clearly demonstrated that a synthetic C16 ω-OH-phytoceramide enhanced the integrity of SC and accelerated the recovery of damaged skin barrier function by stimulating differentiation process. In a conclusion, a synthetic C16 ω-OH-phytoceramide treatment improved epidermal homeostasis in several disrupted conditions.

  16. A cyclic peptide derived from alpha-fetoprotein inhibits the proliferative effects of the epidermal growth factor and estradiol in MCF7 cells.

    Science.gov (United States)

    Torres, Cristian; Antileo, Elmer; Epuñán, Maráa José; Pino, Ana María; Valladares, Luis Emilio; Sierralta, Walter Daniel

    2008-06-01

    A cyclic peptide derived from the active domain of alpha-fetoprotein (AFP) significantly inhibited the proliferation of MCF7 cells stimulated with the epidermal growth factor (EGF) or estradiol (E2). The action of these three agents on cell growth was independent of the presence of calf serum in the culture medium. Our results demonstrated that the cyclic peptide interfered markedly with the regulation of MAPK by activated c-erbB2. The cyclic peptide showed no effect on the E2-stimulated release of matrix metalloproteinases 2 and 9 nor on the shedding of heparin-binding EGF into the culture medium. We propose that the AFP-derived cyclic peptide represents a valuable novel antiproliferative agent for treating breast cancer.

  17. Combined Stimulation with the Tumor Necrosis Factor α and the Epidermal Growth Factor Promotes the Proliferation of Hepatocytes in Rat Liver Cultured Slices

    Directory of Open Access Journals (Sweden)

    Francis Finot

    2012-01-01

    Full Text Available The culture liver slices are mainly used to investigate drug metabolism and xenobiotic-mediated liver injuries while apoptosis and proliferation remain unexplored in this culture model. Here, we show a transient increase in LDH release and caspase activities indicating an ischemic injury during the slicing procedure. Then, caspase activities decrease and remain low in cultured slices demonstrating a low level of apoptosis. The slicing procedure is also associated with the G0/G1 transition of hepatocytes demonstrated by the activation of stress and proliferation signalling pathways including the ERK1/2 and JNK1/2/3 MAPKinases and the transient upregulation of c-fos. The cells further progress up to mid-G1 phase as indicated by the sequential induction of c-myc and p53 mRNA levels after the slicing procedure and at 24 h of culture, respectively. The stimulation by epidermal growth factor induces the ERK1/2 phosphorylation but fails to activate expression of late G1 and S phase markers such as cyclin D1 and Cdk1 indicating that hepatocytes are arrested in mid-G1 phase of the cell cycle. However, we found that combined stimulation by the proinflammatory cytokine tumor necrosis factor α and the epidermal growth factor promotes the commitment to DNA replication as observed in vivo during the liver regeneration.

  18. Maturational steps of bone marrow-derived dendritic murine epidermal cells. Phenotypic and functional studies on Langerhans cells and Thy-1+ dendritic epidermal cells in the perinatal period.

    Science.gov (United States)

    Elbe, A; Tschachler, E; Steiner, G; Binder, A; Wolff, K; Stingl, G

    1989-10-15

    The adult murine epidermis harbors two separate CD45+ bone marrow (BM)-derived dendritic cell systems, i.e., Ia+, ADPase+, Thy-1-, CD3- Langerhans cells (LC) and Ia-, ADPase-, Thy-1+, CD3+ dendritic epidermal T cells (DETC). To clarify whether the maturation of these cells from their ill-defined precursors is already accomplished before their entry into the epidermis or, alternatively, whether a specific epidermal milieu is required for the expression of their antigenic determinants, we studied the ontogeny of CD45+ epidermal cells (EC). In the fetal life, there exists a considerable number of CD45+, Ia-, ADPase+ dendritic epidermal cells. When cultured, these cells become Ia+ and, in parallel, acquire the potential of stimulating allogeneic T cell proliferation. These results imply that CD45+, Ia-, ADPase+ fetal dendritic epidermal cells are immature LC precursors and suggest that the epidermis plays a decisive role in LC maturation. The day 17 fetal epidermis also contains a small population of CD45+, Thy-1+, ADPase-, CD3- round cells. Over the course of 2 to 3 wk, they are slowly replaced by an ever increasing number of round and, finally, dendritic CD45+, Thy-1+, CD3+ EC. Thus, CD45+, Thy-1+, ADPase-, CD3- fetal EC may either be DETC precursors or, alternatively, may represent a distinctive cell system of unknown maturation potential. According to this latter theory, these cells would be eventually outnumbered by newly immigrating CD45+, Thy-1+, CD3+ T cells--the actual DETC.

  19. Diagnostic values of vascular endothelial growth factor and epidermal growth factor receptor for benign and malignant hydrothorax.

    Science.gov (United States)

    Gu, Yan; Zhang, Min; Li, Guo-Hua; Gao, Jun-Zhen; Guo, Liping; Qiao, Xiao-Juan; Wang, Li-Hong; He, Lan; Wang, Mei-Ling; Yan, Li; Fu, Xiu-Hua

    2015-02-05

    Hydrothorax, as one of the common complications of malignant tumors, still cannot be sensitively detected in clinical practice, thus requiring a sensitive, specific method for diagnosis. The aim of this study was to analyze the correlation between levels of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in patients with benign and malignant hydrothorax. The contents of VEGF in the pleural effusion and serum of the patients with malignant pleural effusion (n = 35) and benign pleural effusion (n = 30) were detected by double antibody sandwich enzyme linked immunosorbent assay. The gene copy number level of EGFR in pleural effusion was detected by fluorescence in situ hybridization (FISH). The points with the highest sensitivity and specificity were selected as the critical values to calculate the diagnostic value of the VEGF in pleural effusion and serum, and EGFR gene copy number in pleural effusion. The contents of VEGF in pleural effusion and serum of patients with malignant hydrothorax were (384.91 ± 120.18), and (129.62 ± 46.35) ng/L, respectively, which were significantly higher than those of the patients with benign hydrothorax (207.97 ± 64.04), (63.49 ± 24.58) ng/L (P benign and malignant hydrothorax. The sensitivity and specificity of serum were 74.3% and 96.7%, respectively (the boundary value was 99.21 ng/L) for diagnosing benign and malignant hydrothorax. The diagnostic efficiencies of EGFR and VEGF in hydrothorax were similar. There was a significant correlation between EGFR and VEGF in hydrothorax (P benign and malignant pleural effusions, which contributed to differential diagnosis results of benign and malignant pleural effusions. It is feasible to detect the gene copy number of the pleural effusion cell mass EGFR by FISH technique. Joint detection can improve the diagnostic sensitivity.

  20. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor.

    Directory of Open Access Journals (Sweden)

    Fanny Kortüm

    Full Text Available Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR. We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow.

  1. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  2. The role of sialoadenectomy and epıdermal growth factor (EGF) in ...

    African Journals Online (AJOL)

    USER

    2010-05-17

    May 17, 2010 ... result, epidermal growth factor was concluded to have an important role in skin development. Key words: Epidermal growth factor, ... sialoadenectomy on epiderm and the role of EGF and antiserum EGF in prevention of .... remarkable finding in skin healing of sialoadenectomy and normal rats. According to ...

  3. Skin care products can aggravate epidermal function: studies in a murine model suggest a pathogenic role in sensitive skin.

    Science.gov (United States)

    Li, Zhengxiao; Hu, Lizhi; Elias, Peter M; Man, Mao-Qiang

    2018-02-01

    Sensitive skin is defined as a spectrum of unpleasant sensations in response to a variety of stimuli. However, only some skin care products provoke cutaneous symptoms in individuals with sensitive skin. Hence, it would be useful to identify products that could provoke cutaneous symptoms in individuals with sensitive skin. To assess whether vehicles, as well as certain branded skin care products, can alter epidermal function following topical applications to normal mouse skin. Following topical applications of individual vehicle or skin care product to C57BL/6J mice twice daily for 4 days, transepidermal water loss (TEWL) rates, stratum corneum (SC) hydration and skin surface pH were measured on treated versus untreated mouse skin with an MPA5 device and pH 900 pH meter. Our results show that all tested products induced abnormalities in epidermal functions of varying severity, including elevations in TEWL and skin surface pH, and reduced SC hydration. Our results suggest that mice can serve as a predictive model that could be used to evaluate the potential safety of skin care products in humans with sensitive skin. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Myeloid-Epithelial-Reproductive Receptor Tyrosine Kinase and Milk Fat Globule Epidermal Growth Factor 8 Coordinately Improve Remodeling After Myocardial Infarction via Local Delivery of Vascular Endothelial Growth Factor.

    Science.gov (United States)

    Howangyin, Kiave-Yune; Zlatanova, Ivana; Pinto, Cristina; Ngkelo, Anta; Cochain, Clément; Rouanet, Marie; Vilar, José; Lemitre, Mathilde; Stockmann, Christian; Fleischmann, Bernd K; Mallat, Ziad; Silvestre, Jean-Sébastien

    2016-03-01

    In infarcted heart, improper clearance of dying cells by activated neighboring phagocytes may precipitate the transition to heart failure. We analyzed the coordinated role of 2 major mediators of efferocytosis, the myeloid-epithelial-reproductive protein tyrosine kinase (Mertk) and the milk fat globule epidermal growth factor (Mfge8), in directing cardiac remodeling by skewing the inflammatory response after myocardial infarction. We generated double-deficient mice for Mertk and Mfge8 (Mertk(-/-)/Mfge8(-/-)) and challenged them with acute coronary ligature. Compared with wild-type, Mertk-deficient (Mertk(-/-)), or Mfge8-deficient (Mfge8(-/-)) animals, Mertk(-/-)/Mfge8(-/-) mice displayed greater alteration in cardiac function and remodeling. Mertk and Mfge8 were expressed mainly by cardiac Ly6C(High and Low) monocytes and macrophages. In parallel, Mertk(-/-)/Mfge8(-/-) bone marrow chimeras manifested increased accumulation of apoptotic cells, enhanced fibrotic area, and larger infarct size, as well as reduced angiogenesis. We found that the abrogation of efferocytosis affected neither the ability of circulating monocytes to infiltrate cardiac tissue nor the number of resident Ly6C(High) and Ly6C(How) monocytes/macrophages populating the infarcted milieu. In contrast, combined Mertk and Mfge8 deficiency in Ly6C(High)/Ly6C(Low) monocytes/macrophages either obtained from in vitro differentiation of bone marrow cells or isolated from infarcted hearts altered their capacity of efferocytosis and subsequently blunted vascular endothelial growth factor A (VEGFA) release. Using LysMCre(+)/VEGFA(fl/fl) mice, we further identified an important role for myeloid-derived VEGFA in improving cardiac function and angiogenesis. After myocardial infarction, Mertk- and Mfge8-expressing monocyte/macrophages synergistically engage the clearance of injured cardiomyocytes, favoring the secretion of VEGFA to locally repair the dysfunctional heart. © 2016 The Authors.

  5. Cellular uptake of radioiodine delivered by trastuzumab can be modified by the addition of epidermal growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Erika; Steffen, Ann-Charlott; Sundberg, Aasa L.; Carlsson, Joergen [Uppsala University, Division of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Persson, Mikael [Uppsala University, Division of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Uppsala University, Division of Experimental Urology, Department of Surgical Sciences, Rudbeck Laboratory, Uppsala (Sweden); Glimelius, Bengt [Uppsala University, Division of Oncology, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden)

    2005-07-01

    The purpose of this study was to analyse whether non-radiolabelled epidermal growth factor (EGF) can modify the cellular uptake of {sup 125}I when delivered as [{sup 125}I]trastuzumab. {sup 125}I was used as a marker for the diagnostically and therapeutically more interesting isotopes {sup 123}I (SPECT), {sup 124}I (PET) and {sup 131}I (therapy). The cell-associated radioactivity was measured in squamous carcinoma A431 cells following addition of [{sup 125}I]trastuzumab. Different concentrations of [{sup 125}I]trastuzumab and unlabelled EGF were used, and the total, membrane-bound and internalised radioactivity was measured. We also analysed how EGF and trastuzumab affected the cell growth. It was generally found that the cellular {sup 125}I uptake was decreased by the addition of EGF when [{sup 125}I]trastuzumab was added for short incubation times. However, if the incubation times were longer, EGF increased the {sup 125}I uptake. This shift came earlier when higher [{sup 125}I]trastuzumab concentrations were applied. The addition of EGF also influenced cell proliferation, and concentrations above 10 ng/ml reduced cell growth by approximately 20% after 24 h of incubation. By adding unlabelled EGF, it was possible to modify the cellular uptake of [{sup 125}I]trastuzumab. This points towards new approaches for the modification of radionuclide uptake in EGFR- and HER2-positive tumours. (orig.)

  6. Diabetic Foot Ulcers and Epidermal Growth Factor: Revisiting the Local Delivery Route for a Successful Outcome

    Directory of Open Access Journals (Sweden)

    Jorge Berlanga-Acosta

    2017-01-01

    Full Text Available Soon after epidermal growth factor (EGF discovery, some in vivo models appeared demonstrating its property to enhance cutaneous wound healing. EGF was the first growth factor (GF introduced in the clinical arena as a healing enhancer, exerting its mitogenic effects on epithelial, fibroblastoid, and endothelial cells via a tyrosine kinase membrane receptor. Compelling evidences from the 90s documented that, for EGF, locally prolonged bioavailability and hourly interaction with the receptor were necessary for a successful tissue response. Eventually, the enthusiasm on the clinical use of EGF to steer the healing process was wiped out as the topical route to deliver proteins started to be questioned. The simultaneous in vivo experiments, emphasizing the impact of the parenterally administered EGF on epithelial and nonepithelial organs in terms of mitogenesis and cytoprotection, rendered the theoretical fundamentals for the injectable use of EGF and shaped the hypothesis that locally infiltrating the diabetic ulcers would lead to an effective healing. Although the diabetic chronic wounds microenvironment is hostile for local GFs bioavailability, EGF local infiltration circumvented the limitations of its topical application, thus expanding its therapeutic prospect. Our clinical pharmacovigilance and basic studies attest the significance of the GF local infiltration for chronic wounds healing.

  7. Effect of maturation on gastrointestinal absorption of epidermal growth factor in rats

    International Nuclear Information System (INIS)

    Thornburg, W.; Rao, R.K.; Matrisian, L.M.; Magun, B.E.; Koldovsky, O.

    1987-01-01

    Epidermal growth factor (EGF) was iodinated and administered orally to 13- to 15-day-old suckling rats and 29- to 31-day-old weanling rats. After 30 min, stomach, small intestine, plasma, liver, lung, and skin were removed. The tissues were homogenized and 125 I radioactivity was extracted. Compared with suckling rats, the delivery of total radioactivity into peripheral tissues was enhanced in skin of weanling rats and tended to be higher in plasma and liver. In contrast, there was a 3.3-fold reduction in radioactivity remaining in the intestinal wall. Sephadex G-25 chromatography of most samples, especially liver and intestinal wall, revealed a decrease in the proportion of intact 125 I-EGF eluting in the void volume. As a result, because the amount of total radioactivity also differed, the overall recovery of radioactivity of void volume 125 I-EGF was similar in both age groups except for an increase in skin and a decrease in the intestinal of weanling rats. Extracts of all tissues of weanling rats examined contained immunoreactive 125 I-EGF. Samples obtained from tissues and content of the gastrointestinal tract of both age groups bound specifically to A431 cell surface receptors. These results thus indicate that EGF is absorbed and delivered to various tissues of weanling rats. Nevertheless, quantitative and qualitative changes in these processes occur during the postnatal period

  8. Epidermal growth factor gene is a newly identified candidate gene for gout.

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-08-10

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67-0.88, Padjusted = 6.42 × 10(-3)). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations.

  9. Characterization of the epidermal growth factor receptor associated with cytoskeletons of A431 cells

    International Nuclear Information System (INIS)

    Roy, L.M.; Gittinger, C.K.; Landreth, G.E.

    1989-01-01

    Epidermal growth factor receptors (EGF-R) have been shown to be associated with the detergent-insoluble cytoskeleton of A431 cells, where they retained both a functional ligand-binding domain and tyrosine kinase activity. In the present study we have characterized the tyrosine kinase and ligand binding activities of this cytoskeletally associated EGF-R. The tyrosine kinase activity of the cytoskeletally associated EGF-R was stimulated by EGF treatment of intact cells as evidenced by increased autophosphorylation and phosphorylation of the exogenous substrate angiotensin II (AII). The kinetic behavior of the EGF-R associated with cytoskeletons of EGF-treated cells was similar to that of purified receptors. The stimulation of the receptor kinase activity required EGF treatment of intact cells prior to Triton extraction. If cytoskeletons were prepared from untreated cells and then incubated with EGF, there was no stimulation of the detergent-insoluble receptor kinase activity, indicating that the immobilized receptor was unable to undergo EGF-stimulated activation. Comparison of peptide maps from soluble and cytoskeletally associated EGF-R revealed qualitatively similar patterns; however, they are distinguished by a prominent 46 kD band in digests of the cytoskeletal EGF-R. Saturable binding of 125I-EGF to A431 cytoskeletons prepared from adherent and suspended cells demonstrated the presence of specific receptors on the cytoskeleton. High-affinity EGF-R were preferentially retained upon detergent extraction of adherent cells, whereas both low- and high-affinity receptors were solubilized from the cytoskeletons of suspended cells. Suspension of cells resulted in the solubilization of an additional 15% of the EGF-R to that solubilized in adherent cells, indicating that EGF-R can reversibly associate with the structural elements of the cell

  10. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae

    Directory of Open Access Journals (Sweden)

    René Hans-Jürgen Heim

    2015-12-01

    Full Text Available Epidermal structures (ES of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA based on the spectral data. Subsequently, variable importance (VIP was calculated to identify spectral regions relevant for discriminating our functional types (classes. Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.

  11. Radiotherapy and receptor of epidermal growth factor

    International Nuclear Information System (INIS)

    Deberne, M.

    2009-01-01

    The expression level of the receptor of the epidermal growth factor is in correlation with the tumor cells radiosensitivity. An overexpression of the E.G.F.R. is often present in the bronchi cancer, epidermoid carcinomas of the O.R.L. sphere, esophagus, uterine cervix, and anal duct but also in the rectum cancers and glioblastomas. At the clinical level, the E.G.F.R. expression is in correlation with an unfavourable prognosis after radiotherapy in numerous tumoral localizations. In the rectum cancers it is an independent prognosis factor found in multifactorial analysis: increase of the rate of nodes and local recurrence when the E.G.F.R. is over expressed. In the uterine cervix cancers, the survival is is negatively affected in multifactorial analysis by the E.G.F.R. membranes expression level. At the therapy level, the development of anti E.G.F.R. targeted therapies (tyrosine kinase inhibitors and monoclonal antibodies) opens a new therapy field at radio-sensitivity potentiality. The irradiation makes an activation of the E.G.F.R. way that would be partially responsible of the post irradiation tumoral repopulation. This activation leads the phosphorylation of the PI3 kinase ways and M.A.P. kinase ones, then the Akt protein one that acts an apoptotic modulator part. It has been shown that blocking the E.G.F.R. way acts on three levels: accumulation of ells in phase G1, reduction of the cell repair and increasing of apoptosis. he inhibition of post irradiation action of the E.G.F.R. signal way is a factor explaining the ionizing radiation - anti E.G.F.R. synergy. The preclinical data suggest that the E.G.F.R. blocking by the monoclonal antibodies is more important than the use of tyrosine kinase inhibitors. A first positive randomized study with the cetuximab, published in 2006 in the epidermoid carcinomas of the O.R.L. sphere lead to its authorization on the market with the radiotherapy for this localization. The use of cetuximab in other indication with or in

  12. Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate and a-linolenate

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.

    1985-01-01

    sphingolipids. These rats showed increased evaporation which was comparable to that of essential fatty acid-deficient rats. We interpret these results as strong evidence for a very specific and essential function of linoleic acid in maintaining the integrity of the epidermal water permeability barrier......Essential fatty acid-deficient rats were supplemented with 300 mg per day of pure fatty acid esters: oleate (O), linoleate (L), arachidonate (A), and columbinate (C) for 10 days. During this period, the rats in groups L, A, and C all showed a decrease in their initially high trans-epidermal water...... loss, a classical essential fatty acid-deficiency symptom, to a level seen in non-deficient rats (group N). The trans-epidermal water loss in rats of group O was unaffected by the supplementation. Fatty acid composition of two epidermal sphingolipids, acylglucosylceramide and acylceramide, from...

  13. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T.

    2018-01-01

    Introduction Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted. PMID:28271910

  14. Complete remission of liver metastasis in a lung cancer patient with epidermal growth factor mutation achieved with Icotinib.

    Science.gov (United States)

    Zhu, Zhouyu; Chai, Ying

    2016-11-01

    A 65-year-old Chinese male was referred to our hospital for epidermal growth factor receptor (EGFR)-mutated advanced non-small cell lung cancer (NSCLC). Aggressive combined therapy with surgical resection of the right upper lung lesion and chemotherapy was performed. One month later, continued Icotinib treatment was used as magnetic resonance imaging revealed liver metastasis (LM). Interestingly, complete remission of the patient's LM lesions was achieved in six months. To our knowledge, this is the first report documenting a successful case of an NSCLC patient with LM treated with Icotinib after receiving a radical resection for pulmonary carcinoma. Our experience could provide a treatment strategy for patients with similar disease. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  15. Brain metastasis in human epidermal growth factor receptor 2-positive breast cancer: from biology to treatment

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Tae Ryool [Dept. of Radiation Oncology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon (Korea, Republic of); Kim, In Ah [Dept. of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2016-03-15

    Overexpression of human epidermal growth factor receptor 2 (HER2) is found in about 20% of breast cancer patients. With treatment using trastuzumab, an anti-HER2 monoclonal antibody, systemic control is improved. Nonetheless, the incidence of brain metastasis does not be improved, rather seems to be increased in HER2-positive breast cancer. The mainstay treatment for brain metastases is radiotherapy. According to the number of metastatic lesions and performance status of patients, radiosurgery or whole brain radiotherapy can be performed. The concurrent use of a radiosensitizer further improves intracranial control. Due to its large molecular weight, trastuzumab has a limited ability to cross the blood-brain barrier. However, small tyrosine kinase inhibitors such as lapatinib, has been noted to be a promising agent that can be used as a radiosensitizer to affect HER2-positive breast cancer. This review will outline general management of brain metastases and will focus on preclinical findings regarding the radiosensitizing effect of small molecule HER2 targeting agents.

  16. Epidermal Inclusion Cysts of The Breast

    Directory of Open Access Journals (Sweden)

    Amir R. Motabar

    2009-02-01

    Full Text Available Epidermal inclusion cysts are uncommon in the breast, but the consequences can besevere when these cysts occur in the breast parenchyma. Here,we report two suchcases. The patient in case 1 was an 37-year-old woman with a 3-cm palpable mass inthe right breast. Mammography revealed a round and smoothly outlined mass, whichindicated a benign tumor, and sonography showed an irregularly shaped and heterogeneoushypoechoic mass, fibroadenoma was suspected on the basis of clinical andimage findings, but excisional biopsy revealed an epidermal inclusion cyst. The patientin case 2 was a 50-year-old woman with a 2.5-cm lesion in the left breast. Mammographyrevealed a round, dense, smoothly outlined mass, and sonography showeda well-defined, central hyperechoic mass. . Breast cancer was suspected on the basisof the sonographic findings and the age of the patient, but the resected specimen revealedan epidermal inclusion cyst. Although epidermal inclusion cysts are benign,occasionally they may play a role in the origin of squamous carcinoma of the breast. .Mammographic and sonographic features of an epidermal cyst may mimic a malignantlesion. Malignant change appears to occur more frequently in epidermal inclusioncysts in the mammary gland, compared to common epidermal inclusion cysts,and this may be associated with origination of mammary epidermal inclusion cystsfrom squamous metaplasia of the mammary duct epithelium.Epidermmoid inclusion cyst of the breast is potentially serious, although such cystsare rare, and differentiation from a malignant or benign breast tumor is required. Excisionis probably the most appropriate treatment, and can eliminate the possible riskof malignant transformation.

  17. Chimeric Monoclonal Antibody Cetuximab Targeting Epidermal Growth Factor-Receptor in Advanced Non-Melanoma Skin Cancer.

    Science.gov (United States)

    Wollina, Uwe; Tchernev, Georgi; Lotti, Torello

    2018-01-25

    Non-melanoma skin cancer (NMSC) is the most common malignancy in humans. Targeted therapy with monoclonal antibody cetuximab is an option in case of advanced tumor or metastasis. We present and update of the use of cetuximab in NMSC searching PUBMED 2011-2017. The monoclonal antibody cetuximab against epidermal growth factor receptor (EGFR) has been investigated for its use in NMSC during the years 2011 to 2017 by a PUBMED research using the following items: "Non-melanoma skin cancer AND cetuximab," "cutaneous squamous cell carcinoma AND cetuximab," and "basal cell carcinoma AND cetuximab", and "cetuximab AND skin toxicity". Available data were analyzed including case reports. Current evidence of cetuximab efficacy in NMSC was mainly obtained in cutaneous SCC and to a lesser extend in BCC. Response rates vary for neoadjuvant, adjuvant, mono- and combined therapy with cetuximab. Management of cutaneous toxicities is necessary. Guidelines are available. Cetuximab is an option for recurrent or advanced NMSC of the skin. It seems to be justified particularly in very high-risk tumors. There is a need for phase III trials.

  18. Anti-epidermal or anti-vascular endothelial growth factor as first-line metastatic colorectal cancer in modified Glasgow prognostic score 2' patients

    Science.gov (United States)

    Dréanic, Johann; Dhooge, Marion; Barret, Maximilien; Brezault, Catherine; Mir, Olivier; Chaussade, Stanislas; Coriat, Romain

    2015-01-01

    Background In metastatic colorectal cancer, the modified Glasgow prognostic score (mGPS) has been approved as an independent prognostic indicator of survival. No data existed on poor prognosis patients treated with molecular-targeted agents. Methods From January 2007 to February 2012, patients with metastatic colorectal cancer and poor predictive survival score (mGPS = 2), treated with 5-fluorouracil-based chemotherapy in addition to an anti-epidermal growth factor receptor (EGFR) or anti-vascular epidermal growth factor (VEGF) therapy, were included to assess the interest of targeted therapy within mGPS = 2' patients. Results A total of 27 mGPS = 2' patients were included and received a 5-fluorouracil-based systemic chemotherapy in addition to an anti-EGFR treatment (cetuximab; n = 18) or an anti-VEGF treatment (bevacizumab; n = 9). Median follow-up was 12.1 months (interquartile range 4.9–22). Patients were Eastern Cooperative Oncology Group (ECOG) Performance Status 1, 2, and 3 in 66% (n = 18), 26% (n = 7), and 8% (n = 2), respectively. Comparing anti-EGFR and anti-VEGF groups, median progression-free survival was 3.9 and 15.4 months, respectively, and was significantly different (P = 0.046). Conversely, the median overall survival was not significantly different between the two groups (P = 0.15). Conclusion Our study confirmed the poor survival of patients with mGPS = 2 despite the use of targeted therapy and identified the superiority of an anti-VEGF treatment in progression-free survival, without a significant benefit in the overall survival compared with the anti-EGFR therapy. Our results deserved confirmation by a prospective clinical trial. PMID:26401469

  19. Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation.

    Science.gov (United States)

    Acquaviva, Jaime; Jun, Hyun Jung; Lessard, Julie; Ruiz, Rolando; Zhu, Haihao; Donovan, Melissa; Woolfenden, Steve; Boskovitz, Abraham; Raval, Ami; Bronson, Roderick T; Pfannl, Rolf; Whittaker, Charles A; Housman, David E; Charest, Al

    2011-12-01

    Glioblastoma multiforme (GBM) is characterized by overexpression of epidermal growth factor receptor (EGFR) and loss of the tumor suppressors Ink4a/Arf. Efforts at modeling GBM using wild-type EGFR in mice have proven unsuccessful. Here, we present a unique mouse model of wild-type EGFR-driven gliomagenesis. We used a combination of somatic conditional overexpression and ligand-mediated chronic activation of EGFR in cooperation with Ink4a/Arf loss in the central nervous system of adult mice to generate tumors with the histopathologic and molecular characteristics of human GBMs. Sustained, ligand-mediated activation of EGFR was necessary for gliomagenesis, functionally substantiating the clinical observation that EGFR-positive GBMs from patients express EGFR ligands. To gain a better understanding of the clinically disappointing EGFR-targeted therapies for GBM, we investigated the molecular responses to EGFR tyrosine kinase inhibitor (TKI) treatment in this model. Gefitinib treatment of primary GBM cells resulted in a robust apoptotic response, partially conveyed by mitogen-activated protein kinase (MAPK) signaling attenuation and accompanied by BIM(EL) expression. In human GBMs, loss-of-function mutations in the tumor suppressor PTEN are a common occurrence. Elimination of PTEN expression in GBM cells posttumor formation did not confer resistance to TKI treatment, showing that PTEN status in our model is not predictive. Together, these findings offer important mechanistic insights into the genetic determinants of EGFR gliomagenesis and sensitivity to TKIs and provide a robust discovery platform to better understand the molecular events that are associated with predictive markers of TKI therapy.

  20. Epidermal growth factor receptor antibody plus recombinant human endostatin in treatment of hepatic metastases after remnant gastric cancer resection

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We report a 55-year-old male who developed advanced hepatic metastasis and peritoneal carcinomatosis after resection of remnant gastric cancer resection 3 mo ago. The patient only received epidermal growth factor (EGF) receptor antibody (Cetuximab) plus recombinant human endostatin (Endostar).Anti-tumor activity was assessed by 18F-fluorodeoxyglucose (18F-FDG)positron emission tomography/computer tomography (PET/CT) at baseline and then every 4 wk. The case illustrates that 18FDG-PET/CT could make an early prediction of the response to Cetuximab plus Endostar in such clinical situations. 18FDG-PET/CT is a useful molecular imaging modality to evaluate the biological response advanced hepatic metastasis and peritoneal carcinomatosis to Cetuximab plus Endostar in patients after remnant gastric cancer resection.

  1. Rapid and Simple Detection of Hot Spot Point Mutations of Epidermal Growth Factor Receptor, BRAF, and NRAS in Cancers Using the Loop-Hybrid Mobility Shift Assay

    Science.gov (United States)

    Matsukuma, Shoichi; Yoshihara, Mitsuyo; Kasai, Fumio; Kato, Akinori; Yoshida, Akira; Akaike, Makoto; Kobayashi, Osamu; Nakayama, Haruhiko; Sakuma, Yuji; Yoshida, Tsutomu; Kameda, Yoichi; Tsuchiya, Eiju; Miyagi, Yohei

    2006-01-01

    A simple and rapid method to detect the epidermal growth factor receptor hot spot mutation L858R in lung adenocarcinoma was developed based on principles similar to the universal heteroduplex generator technology. A single-stranded oligonucleotide with an internal deletion was used to generate heteroduplexes (loop-hybrids) bearing a loop in the complementary strand derived from the polymerase chain reaction product of the normal or mutant allele. By placing deletion in the oligonucleotide adjacent to the mutational site, difference in electrophoretic mobility between loop-hybrids with normal and mutated DNA was distinguishable in a native polyacrylamide gel. The method was also modified to detect in-frame deletion mutations of epidermal growth factor receptor in lung adenocarcinomas. In addition, the method was adapted to detect hot spot mutations in the B-type Raf kinase (BRAF) at V600 and in a Ras-oncogene (NRAS) at Q61, the mutations commonly found in thyroid carcinomas. Our mutation detection system, designated the loop-hybrid mobility shift assay was sensitive enough to detect mutant DNA comprising 7.5% of the total DNA. As a simple and straightforward mutation detection technique, loop-hybrid mobility shift assay may be useful for the molecular diagnosis of certain types of clinical cancers. Other applications are also discussed. PMID:16931592

  2. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  3. Effects of recombinant human epidermal growth factor (rhEGF) on experimental radiation-induced oral mucositis in rats

    International Nuclear Information System (INIS)

    Jung, Kwon Il; Kim, Sun Hee; Moon, Soo Young; Kim, Yeon Wha; Hong, Joon Pio; Lee, Sang Wook; Kim, Hyun Sook

    2006-01-01

    Oral mucositis is a common toxicity of radiation or chemotherapy, which is used a treatment for head and neck cancer. We investigated effects of recombinant human epidermal growth factor (rhEGF) on radiation-induced oral mucositis in rat model. Spraque-Dawley rats (7 per group) exposed to a single dose of 25 Gy (day 0) on their head, except for one group, were randomly divided into un-treated, vehicle-treated, and two rhEGF-treated groups. Rats were topically applied with rhEGF (15 or 30 μ g/oral cavity/day) or vehicle to their oral mucosa. Survival rate of rats, weight changes, and food intakes were examined from day 0 to 18 after radiation. Histology study was performed from oral mucosa of rats at day 7 and 18 after radiation. rhEGF-treated groups (15 or 30 μ g/day) showed all survival rate 33%, whereas un-treated and vehicle-treated groups showed all survival rate 0% at the end of experiment. rhEGF-treated groups statistically had less weight loss compared to vehicle-treated group from day 2 to 7 after radiation. Food intake of rats with rhEGF treatment turned to increase at day 14 after radiation. At 7 day after radiation, un-treated and vehicle-treated groups showed severe pseudomembraneous of ulcerative oral mucositis. On the other hand, rhEGF-treated groups had no more than cellular swelling and degeneration of epidermal cells in oral mucosa of rats. These results suggest that rhEGF has significantly positive effects on radiation-induced oral mucositis in rats. rhEGF display a therapeutic potential on a clinical level

  4. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    Science.gov (United States)

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  5. AST1306, a novel irreversible inhibitor of the epidermal growth factor receptor 1 and 2, exhibits antitumor activity both in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hua Xie

    Full Text Available Despite the initial response to the reversible, ATP-competitive quinazoline inhibitors that target ErbB-family, such a subset of cancer patients almost invariably develop resistance. Recent studies have provided compelling evidence that irreversible ErbB inhibitors have the potential to override this resistance. Here, we found that AST1306, a novel anilino-quinazoline compound, inhibited the enzymatic activities of wild-type epidermal growth factor receptor (EGFR and ErbB2 as well as EGFR resistant mutant in both cell-free and cell-based systems. Importantly, AST1306 functions as an irreversible inhibitor, most likely through covalent interaction with Cys797 and Cys805 in the catalytic domains of EGFR and ErbB2, respectively. Further studies showed that AST1306 inactivated pathways downstream of these receptors and thereby inhibited the proliferation of a panel of cancer cell lines. Although the activities of EGFR and ErbB2 were similarly sensitive to AST1306, ErbB2-overexpressing cell lines consistently exhibited more sensitivity to AST1306 antiproliferative effects. Consistent with this, knockdown of ErbB2, but not EGFR, decreased the sensitivity of SK-OV-3 cells to AST1306. In vivo, AST1306 potently suppressed tumor growth in ErbB2-overexpressing adenocarcinoma xenograft and FVB-2/N(neu transgenic breast cancer mouse models, but weakly inhibited the growth of EGFR-overexpressing tumor xenografts. Tumor growth inhibition induced by a single dose of AST1306 in the SK-OV-3 xenograft model was accompanied by a rapid (within 2 h and sustained (≥24 h inhibition of both EGFR and ErbB2, consistent with an irreversible inhibition mechanism. Taken together, these results establish AST1306 as a selective, irreversible ErbB2 and EGFR inhibitor whose growth-inhibitory effects are more potent in ErbB2-overexpressing cells.

  6. Skin care products can aggravate epidermal function: studies in a murine model suggest a pathogenic role in sensitive skin

    OpenAIRE

    Li, Z; Hu, L; Elias, PM; Man, M-Q

    2018-01-01

    Sensitive skin is defined as a spectrum of unpleasant sensations in response to a variety of stimuli. However, only some skin care products provoke cutaneous symptoms in individuals with sensitive skin. Hence, it would be useful to identify products that could provoke cutaneous symptoms in individuals with sensitive skin.To assess whether vehicles, as well as certain branded skin care products, can alter epidermal function following topical applications to normal mouse skin.Following topical ...

  7. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation.

    LENUS (Irish Health Repository)

    Walsh, Marie-Therese

    2011-11-01

    Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1\\/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.

  8. Epidermal growth factor gene is a newly identified candidate gene for gout

    Science.gov (United States)

    Han, Lin; Cao, Chunwei; Jia, Zhaotong; Liu, Shiguo; Liu, Zhen; Xin, Ruosai; Wang, Can; Li, Xinde; Ren, Wei; Wang, Xuefeng; Li, Changgui

    2016-01-01

    Chromosome 4q25 has been identified as a genomic region associated with gout. However, the associations of gout with the genes in this region have not yet been confirmed. Here, we performed two-stage analysis to determine whether variations in candidate genes in the 4q25 region are associated with gout in a male Chinese Han population. We first evaluated 96 tag single nucleotide polymorphisms (SNPs) in eight inflammatory/immune pathway- or glucose/lipid metabolism-related genes in the 4q25 region in 480 male gout patients and 480 controls. The SNP rs12504538, located in the elongation of very-long-chain-fatty-acid-like family member 6 gene (Elovl6), was found to be associated with gout susceptibility (Padjusted = 0.00595). In the second stage of analysis, we performed fine mapping analysis of 93 tag SNPs in Elovl6 and in the epidermal growth factor gene (EGF) and its flanking regions in 1017 male patients gout and 1897 healthy male controls. We observed a significant association between the T allele of EGF rs2298999 and gout (odds ratio = 0.77, 95% confidence interval = 0.67–0.88, Padjusted = 6.42 × 10−3). These results provide the first evidence for an association between the EGF rs2298999 C/T polymorphism and gout. Our findings should be validated in additional populations. PMID:27506295

  9. Epidermal growth factor receptor signaling mediates aldosterone-induced profibrotic responses in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Lili; Yang, Min; Ding, Wei [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Zhang, Minmin [Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China); Niu, Jianying [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Qiao, Zhongdong [School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240 (China); Gu, Yong, E-mail: yonggu@vip.163.com [Department of Nephrology, Shanghai Fifth People' s Hospital, Fudan University, Shanghai 200240 (China); Department of Nephrology, Shanghai Huashan Hospital, Fudan University, Shanghai 200240 (China)

    2016-08-01

    Aldosterone has been recognized as a risk factor for the development of chronic kidney disease (CKD). Studies have indicated that enhanced activation of epidermal growth factor receptor (EGFR) is associated with the development and progression of renal fibrosis. But if EGFR is involved in aldosterone-induced renal fibrosis is less investigated. In the present study, we examined the effect of erlotinib, an inhibitor of EGFR tyrosine kinase activity, on the progression of aldosterone-induced renal profibrotic responses in a murine model underwent uninephrectomy. Erlotinib-treated rats exhibited relieved structural lesion comparing with rats treated with aldosterone alone, as characterized by glomerular hypertrophy, mesangial cell proliferation and expansion. Also, erlotinib inhibited the expression of TGF-β, α-SMA and mesangial matrix proteins such as collagen Ⅳ and fibronectin. In cultured mesangial cells, inhibition of EGFR also abrogated aldosterone-induced expression of extracellular matrix proteins, cell proliferation and migration. We also demonstrated that aldosterone induced the phosphorylation of EGFR through generation of ROS. And the activation of EGFR resulted in the phosphorylation of ERK1/2, leading to the activation of profibrotic pathways. Taken together, we concluded that aldosterone-mediated tissue fibrosis relies on ROS induced EGFR/ERK activation, highlighting EGFR as a potential therapeutic target for modulating renal fibrosis. - Highlights: • EGFR was involved in aldosterone-induced renal profibrotic responses. • Aldosterone-induced EGFR activation was mediated by MR-dependent ROS generation. • EGFR activated the MAPK/ERK1/2 signaling to promote renal fibrosis.

  10. Localization and distribution of neurons that co-express xeroderma pigmentosum-A and epidermal growth factor receptor within Rosenthal's canal.

    Science.gov (United States)

    Guthrie, O'neil W

    2015-10-01

    Xeroderma pigmentosum-A (XPA) is a C4-type zinc-finger scaffolding protein that regulates the removal of bulky-helix distorting DNA damage products from the genome. Phosphorylation of serine residues within the XPA protein is associated with improved protection of genomic DNA and cell death resistance. Therefore, kinase signaling is one important mechanism for regulating the protective function of XPA. Previous experiments have shown that spiral ganglion neurons (SGNs) may mobilize XPA as a general stress response to chemical and physical ototoxicants. Therapeutic optimization of XPA via kinase signaling could serve as a means to improve DNA repair capacity within neurons following injury. The kinase signaling activity of the epidermal growth factor receptor (EGFR) has been shown in tumor cell lines to increase the repair of DNA damage products that are primarily repaired by XPA. Such observations suggest that EGFR may regulate the protective function of XPA. However, it is not known whether SGNs in particular or neurons in general could co-express XPA and EGFR. In the current study gene and protein expression of XPA and EGFR were determined from cochlear homogenates. Immunofluorescence assays were then employed to localize neurons expressing both EGFR and XPA within the ganglion. This work was then confirmed with double-immunohistochemistry. Rosenthal's canal served as the reference space in these experiments and design-based stereology was employed in first-order stereology quantification of immunoreactive neurons. The results confirmed that a population of SGNs that constitutively express XPA may also express the EGFR. These results provide the basis for future experiments designed to therapeutically manipulate the EGFR in order to regulate XPA activity and restore gene function in neurons following DNA damage. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Epidermal growth factor regulation of glutathione S-transferase gene expression in the rat is mediated by class Pi glutathione S-transferase enhancer I.

    Science.gov (United States)

    Matsumoto, M; Imagawa, M; Aoki, Y

    2000-07-01

    Using chloramphenicol acetyltransferase assays we showed that epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), and 3,3',4,4',5-pentachlorobiphenyl (PenCB) induce class Pi glutathione S-transferase (GSTP1) in primary cultured rat liver parenchymal cells. GSTP1 enhancer I (GPEI), which is required for the stimulation of GSTP1 expression by PenCB, also mediates EGF and TGF alpha stimulation of GSTP1 gene expression. However, hepatocyte growth factor and insulin did not stimulate GPEI-mediated gene expression. On the other hand, the antioxidant reagents butylhydroxyanisole and t-butylhydroquinone, stimulated GPEI-mediated gene expression, but the level of GSTP1 mRNA was not elevated. Our observations suggest that EGF and TGF alpha induce GSTP1 by the same signal transduction pathway as PenCB. Since the sequence of GPEI is similar to that of the antioxidant responsive element (ARE), some factors which bind to ARE might play a role in GPEI-mediated gene expression.

  12. Effect and Mechanism of EGFL7 Downregulation in Human Osteosarcoma Cells on the Biological Function of Co-cultured HUVEC

    Directory of Open Access Journals (Sweden)

    Xia Li

    2018-03-01

    Full Text Available Background: Even though epidermal growth factor-like domain 7 is known to be overexpressed in osteosarcoma and is associated with poor clinical outcome, few reports are available regarding its mechanism. Aims: The objective of this study was to explore the effect and mechanism of downregulating epidermal growth factor-like domain 7 expression in a human osteosarcoma cell line on the biological function of co-cultured human umbilical vein endothelial cells. Study Design: Cell study. Methods: In the present study, human osteosarcoma cell lines U2OS, Saos-2, HOS, and MG63, and normal human osteoblasts were cultured in Dulbecco’s Modified Eagle Medium containing 10% fetal bovine serum and 1x antibiotics at 37 °C and 5% CO2 in an incubator. Of the four osteosarcoma cell lines, U2OS expresses the highest level of epidermal growth factor-like domain 7 mRNA as determined using quantitative reverse transcription polymerase chain reaction. With the knockdown of epidermal growth factor-like domain 7 in U2OS and human umbilical vein endothelial cells by lentivirus, the proliferation and apoptosis of U2OS and human umbilical vein endothelial cells were investigated using MTT and flow cytometry assays. After the co-culture of human umbilical vein endothelial cells and epidermal growth factor-like domain 7-knockdown U2OS, the in vitro effects on cell proliferation, apoptosis, adhesion, migration, and the angiogenic ability of human umbilical vein endothelial cells were detected using MTT, flow cytometry, Transwell, and tube formation assays, respectively. The expressions of phosphoinositide 3-kinase, phospho-Akt, total Akt, and vascular endothelial growth factor in human umbilical vein endothelial cells were detected using western blot assay. Results: Lentivirus with epidermal growth factor-like domain 7 shRNA could not significantly affect the proliferation and apoptosis of both U2OS and human umbilical vein endothelial cells, whereas the knockdown of

  13. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation.

    Directory of Open Access Journals (Sweden)

    Ching Chang Cho

    Full Text Available The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs.

  14. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  15. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    International Nuclear Information System (INIS)

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-01-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  16. A FRET-based probe for epidermal growth factor receptor bound non-covalently to a pair of synthetic amphipathic helixes

    International Nuclear Information System (INIS)

    Itoh, Reina E.; Kurokawa, Kazuo; Fujioka, Aki; Sharma, Alok; Mayer, Bruce J.; Matsuda, Michiyuki

    2005-01-01

    Epidermal growth factor (EGF) receptor plays a pivotal role in a variety of cellular functions, such as proliferation, differentiation, and migration. To monitor the EGF receptor (EGFR) activity in living cells, we developed a probe for EGFR activity based on the principle of fluorescence resonance energy transfer (FRET). Previously, we developed a probe designated as Picchu (Phosphorylation indicator of the CrkII chimeric unit), which detects the tyrosine phosphorylation of the CrkII adaptor protein. We used a pair of synthetic amphipathic helixes, WinZipA2 and WinZipB1, to bind Picchu non-covalently to the carboxyl-terminus of the EGFR. Using this modified probe named Picchu-Z, the activity of EGFR was followed in EGF-stimulated Cos7 cells. We found that a high level of tyrosine phosphorylation of Picchu-Z probe remained after endocytosis until the point when the EGFR was translocated to the perinuclear region. These findings are in agreement with the previously reported 'signaling endosome' model. Furthermore, by pulse stimulation with EGF and by acute ablation of EGFR activity with AG1478, it was suggested that the phosphorylation of Picchu-Z probe, and probably the phosphorylation of EGFR also, underwent a rapid equilibrium (τ 1/2 < 2 min) between the phosphorylated and dephosphorylated states in the presence of EGF

  17. /sup 125/I-human epidermal growth factor specific binding to placentas and fetal membranes from varoius pregnancy states

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, G.E.; Siddiqi, T.A.; Rao, Ch. V.; Carman, F.R.

    1988-01-01

    Specific binding of /sup 125/I-human epidermal growth factor (hEGF) to homogenates of term human placentas and fetal membranes from normal and appropriate for gestational age (N = 20), intrauterine growth retarded (N = 9), twin (N = 11), White class AB diabetic (N = 12), and large for gestational age (N = 13) pregnancies was measured. In all pregnancy states, placentas bound approximately four times more /sup 125/I-hEGF than did fetal membranes (P<0.0001). There was no significant differnce in /sup 125/I-hEGF binding to fetal membranes from the various pregnancy states (P<0.05). /sup 125/I-hEGF specific binding to placentas from intrauterine growth retarded or twin pregnancies was significantly greater compared with placentas from normal and appropriate for gestational age pregnancies (P<0.05). The binding to placentas from pregnancies complicated by White class AB diabetes or large for gestational age infants, on the other hand, was not significantly different from that to placentas from normal and appropriate for gestational age pregnancies. /sup 125/I-hEGF specific binding did not differ between placentas from intrauterine growth retarded or twin pregnancies (P<0.05). Placental and fetal membrane /sup 125/I-hEGF binding did not vary with fetal sex, maternal race, placental weight, or gestational age between 37 to 42 weeks (P<0.05). Placental but not fetal membrane /sup 125/I-hEGF binding increased with increasing infant weight when appropriate for gestational age and large for gestational age infants were included (P<0.05, r = 0.38, N = 32) but not for intrauterine growth retarded, appropriate for gestational age, or large for gestational age infants alone.

  18. Functional Development of the Human Gastrointestinal Tract: Hormone- and Growth Factor-Mediated Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Daniel Ménard

    2004-01-01

    Full Text Available The present review focuses on the control of gastrointestinal (GI tract development. The first section addresses the differences in general mechanisms of GI development in humans versus rodents, highlighting that morphogenesis of specific digestive organs and the differentiation of digestive epithelia occur not only at different stages of ontogeny but also at different rates. The second section provides an overview of studies from the author's laboratory at the Université de Sherbrooke pertaining to the development of the human fetal small intestine and colon. While both segments share similar morphological and functional characteristics, they are nevertheless modulated by distinct regulatory mechanisms. Using the organ culture approach, the author and colleagues were able to establish that hormones and growth factors, such as glucocorticoids, epidermal growth factor, insulin and keratinocyte growth factor, not only exert differential effects within these two segments, they can also trigger opposite responses in comparison with animal models. In the third section, emphasis is placed on the functional development of human fetal stomach and its various epithelial cell types; in particular, the glandular chief cells responsible for the synthesis and secretion of gastric enzymes such as pepsinogen-5 and gastric lipase. Bearing in mind that limitations of available cell models have, until now, greatly impeded the comprehension of molecular mechanisms regulating human gastric epithelial cell functions, the last section focuses on new human gastric epithelial cell models recently developed in the author's laboratory. These models comprise a novel primary culture system of human fetal gastric epithelium including, for the first time, functional chief cells, and human gastric epithelium cell lines cloned from the parental NCI-N87 strain. These new cells lines could serve important applications in the study of pathogenic action and epithelial

  19. Human Papilloma Viral DNA Replicates as a Stable Episome in Cultured Epidermal Keratinocytes

    Science.gov (United States)

    Laporta, Robert F.; Taichman, Lorne B.

    1982-06-01

    Human papilloma virus (HPV) is poorly understood because systems for its growth in tissue culture have not been developed. We report here that cultured human epidermal keratinocytes could be infected with HPV from plantar warts and that the viral DNA persisted and replicated as a stable episome. There were 50-200 copies of viral DNA per cell and there was no evidence to indicate integration of viral DNA into the cellular genome. There was also no evidence to suggest that viral DNA underwent productive replication. We conclude that cultured human epidermal keratinocytes may be a model for the study of certain aspects of HPV biology.

  20. Gemcitabine Plus Docetaxel Versus Docetaxel in Patients With Predominantly Human Epidermal Growth Factor Receptor 2-Negative Locally Advanced or Metastatic Breast Cancer: A Randomized, Phase III Study by the Danish Breast Cancer Cooperative Group

    DEFF Research Database (Denmark)

    Nielsen, Dorte L; Bjerre, Karsten D; Jakobsen, Erik H

    2011-01-01

    PURPOSE The objective of this phase III study was to compare the efficacy of gemcitabine plus docetaxel (GD) versus docetaxel in patients with advanced breast cancer. PATIENTS AND METHODS Predominantly human epidermal growth factor receptor 2 (HER2) -negative patients were randomly assigned...

  1. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Directory of Open Access Journals (Sweden)

    Yira Bermudez

    Full Text Available Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells.Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional.The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  2. Epidermal growth factor receptor mutations in lung adenocarcinoma in Malaysian patients.

    Science.gov (United States)

    Liam, Chong-Kin; Wahid, Mohamed Ibrahim A; Rajadurai, Pathmanathan; Cheah, Yoke-Kqueen; Ng, Tiffany Shi-Yeen

    2013-06-01

    Despite available data from other Asian countries, the prevalence of epidermal growth factor receptor (EGFR) mutations among lung adenocarcinoma patients has not been reported in Malaysia. This study sought to determine the frequency of EGFR mutations among multiethnic Malaysian patients diagnosed with lung adenocarcinoma. Demographic and clinical information of patients whose lung adenocarcinoma biopsy specimens were submitted for EGFR mutation testing at Sime Darby Medical Center from 2009 to 2011 were analyzed. EGFR mutations at exons 18, 19, 20, and 21 were detected either through bidirectional sequencing or real-time polymerase chain reaction. Among 812 patients in the study, 49% were female, 63.7% were ethnic Chinese, 29.4% Malay, 4.8% Indian, and 2.1% other ethnic groups. Mutations were present in the tumors of 321 patients (39.5%), with mutations at exons 19 (23.5%) and 21 (14.9%) being the most common. Mutations were significantly more frequent among women than in men (52.5% versus 27.8%, p < 0.001). Although mutations were more common among Chinese (40.8%) compared with Malay (37.2%) or Indian (33.3%) patients, the difference was not statistically significant (p = 0.591). Of 211 patients with smoking history records, never-smokers had a higher mutation rate compared with ever-smokers (54.8% versus 20.7%, p < 0.001). EGFR mutations were present in 39.5% of patients. Mutations were more common in women and never-smokers with no differences in mutation frequency between different ethnicities. Because of the high mutation rates, reflex testing for EGFR mutation should be a routine practice for advanced lung adenocarcinoma patients in Malaysia.

  3. Degradation of Epidermal Growth Factor Receptor Mediates Dasatinib-Induced Apoptosis in Head and Neck Squamous Cell Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chin Lin

    2012-06-01

    Full Text Available Epidermal growth factor receptor (EGFR is an important oncoprotein that promotes cell growth and proliferation. Dasatinib, a bcr-abl inhibitor, has been approved clinically for the treatment of chronic myeloid leukemia and demonstrated to be effective against solid tumors in vitro through Src inhibition. Here, we disclose that EGFR degradation mediated dasatinib-induced apoptosis in head and neck squamous cell carcinoma (HNSCC cells. HNSCC cells, including Ca9-22, FaDu, HSC3, SAS, SCC-25, and UMSCC1, were treated with dasatinib, and cell viability, apoptosis, and underlying signal transduction were evaluated. Dasatinib exhibited differential sensitivities against HNSCC cells. Growth inhibition and apoptosis were correlated with its inhibition on Akt, Erk, and Bcl-2, irrespective of Src inhibition. Accordingly, we found that down-regulation of EGFR was a determinant of dasatinib sensitivity. Lysosome inhibitor reversed dasatinib-induced EGFR down-regulation, and c-cbl activity was increased by dasatinib, indicating that dasatinib-induced EGFR down-regulation might be through c-cbl-mediated lysosome degradation. Increased EGFR activation by ligand administration rescued cells from dasatinib-induced apoptosis, whereas inhibition of EGFR enhanced its apoptotic effect. Estrogen receptor α (ERα was demonstrated to play a role in Bcl-2 expression, and dasatinib inhibited ERα at the pretranslational level. ERα was associated with EGFR in dasatinib-treated HNSCC cells. Furthermore, the xenograft model showed that dasatinib inhibited HSC3 tumor growth through in vivo down-regulation of EGFR and ERα. In conclusion, degradation of EGFR is a novel mechanism responsible for dasatinib-induced apoptosis in HNSCC cells.

  4. Therapies based on inhibitors of the epidermal growth factor receptor: enclosing the future

    International Nuclear Information System (INIS)

    Diaz, Arlhee; Lage, Agustin

    2007-01-01

    The Epidermal Growth Factor Receptor (EGFR) is considered an important target for rational drug design due to its key role in numerous tumors. Potential contribution of EGFR-related signaling pathways to promote tumorigenic processes, including cell proliferation, angiogenesis, and resistance to apoptosis has been well established. Two classes of anti-EGFR agents in late-stage clinical testing include monoclonal antibodies against extracellular EGFR domain (Cetuximab, Nimotuzumab) and small molecules tyrosine kinase inhibitors, which inhibit the receptor enzyme activity (Gefitinib, Erlotinib). A considerable body of evidence has emerged since its introduction in the treatment of cancer patients. However, important questions such as reliable surrogate markers to predict response to the treatment, or optimal sequence and combination of these agents with conventional therapies remain to be addressed. Identify and validate predictive factors to select patients likely to respond to EGFR inhibitors, such as mutations that confer resistance versus those associated with sensitivity is required. A better understanding of molecular mechanisms associated with antitumor activity will useful to predict the interaction of these agents with other therapies in order to avoid antagonisms or overlapping effects resulting in no adding effects. Finally, the benefits derived from EGFR inhibitors as first-line therapy in selected populations, and the optimal doses and ways to delivery to the tumor site resulting in optimal target modulation should be established by the ongoing investigation. (Author)

  5. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. [Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology/Oncology, Boston, MA (United States)

    2014-09-05

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  6. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    International Nuclear Information System (INIS)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B.

    2014-01-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC

  7. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop.

    Science.gov (United States)

    Carroll, Molly J; Kapur, Arvinder; Felder, Mildred; Patankar, Manish S; Kreeger, Pamela K

    2016-12-27

    In ovarian cancer, a high ratio of anti-inflammatory M2 to pro-inflammatory M1 macrophages correlates with poor patient prognosis. The mechanisms driving poor tumor outcome as a result of the presence of M2 macrophages in the tumor microenvironment remain unclear and are challenging to study with current techniques. Therefore, in this study we utilized a micro-culture device previously developed by our lab to model concentrated paracrine signaling in order to address our hypothesis that interactions between M2 macrophages and ovarian cancer cells induce tumor cell proliferation. Using the micro-culture device, we determined that co-culture with M2-differentiated primary macrophages or THP-1 increased OVCA433 proliferation by 10-12%. This effect was eliminated with epidermal growth factor receptor (EGFR) or heparin-bound epidermal growth factor (HB-EGF) neutralizing antibodies and HBEGF expression in peripheral blood mononuclear cells from ovarian cancer patients was 9-fold higher than healthy individuals, suggesting a role for HB-EGF in tumor progression. However, addition of HB-EGF at levels secreted by macrophages or macrophage-conditioned media did not induce proliferation to the same extent, indicating a role for other factors in this process. Matrix metalloproteinase-9, MMP-9, which cleaves membrane-bound HB-EGF, was elevated in co-culture and its inhibition decreased proliferation. Utilizing inhibitors and siRNA against MMP9 in each population, we determined that macrophage-secreted MMP-9 released HB-EGF from macrophages, which increased MMP9 in OVCA433, resulting in a positive feedback loop to drive HB-EGF release and increase proliferation in co-culture. Identification of multi-cellular interactions such as this may provide insight into how to most effectively control ovarian cancer progression.

  8. Epidermal growth factor enemas for induction of remission in left-sided ulcerative colitis Enemas de factor de crecimiento epidérmico para inducir la remisión de la colitis ulcerosa izquierda

    Directory of Open Access Journals (Sweden)

    Hugo Nodarse-Cuní

    2013-03-01

    Full Text Available Introduction: ulcerative colitis is a little known chronic inflammatory disease in colonic mucosa. The positive effect of epidermal growth factor was shown in a previous report, with enema use for treatment of mild to moderate left-sided manifestation of the disease. This evidence provided the basis for evaluating the efficacy and safety profile of a viscous solution of this product. Methods: thirty-one patients were randomized to three groups for daily medications during 14 days. Twelve received one 10 mg enema of epidermal growth factor dissolved in 100 mL of viscous solution whereas nine were treated with placebo enema; both groups also received 1.2 g of oral mesalamine per day. The other group included ten patients with 3 g / 100 mL of mesalamine enema. Primary end point was clinical responses after two weeks of treatment, defined as a decreased of, at least three points from baseline, the Disease Activity Index and endoscopic or histological evidences of improvement. Results: remission of disease was observed in all patients in the epidermal growth factor group, and six in both, mesalamine enema and placebo group. All the comparisons between groups showed statistically significant superiority for epidermal growth factor, the only product with significant reduction in disease activity index as well as the presence and intensity of digestive symptoms in patients after treatment. None adverse event was reported. Conclusions: the results agree with previous molecular and clinical evidences, indicating that the epidermal growth factor is effective to reduce disease activity and to induce remission. A new study involving more patients should be conducted to confirm the efficacy of the epidermal growth factor enemas.Introducción: la colitis ulcerosa es una enfermedad inflamatoria crónica de etiología poco conocida, que afecta la mucosa del colon. El efecto positivo del factor de crecimiento epidérmico fue reportado en estudio previo con uso de

  9. Epigenetic Regulation of Epidermal Stem Cell Biomarkers and Their Role in Wound Healing

    Directory of Open Access Journals (Sweden)

    Sabita N. Saldanha

    2015-12-01

    Full Text Available As an actively renewable tissue, changes in skin architecture are subjected to the regulation of stem cells that maintain the population of cells responsible for the formation of epidermal layers. Stems cells retain their self-renewal property and express biomarkers that are unique to this population. However, differential regulation of the biomarkers can initiate the pathway of terminal cell differentiation. Although, pockets of non-clarity in stem cell maintenance and differentiation in skin still exist, the influence of epigenetics in epidermal stem cell functions and differentiation in skin homeostasis and wound healing is clearly evident. The focus of this review is to discuss the epigenetic regulation of confirmed and probable epidermal stem cell biomarkers in epidermal stratification of normal skin and in diseased states. The role of epigenetics in wound healing, especially in diseased states of diabetes and cancer, will also be conveyed.

  10. Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data.

    Directory of Open Access Journals (Sweden)

    Katrina M Waters

    Full Text Available To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  11. Network Analysis of Epidermal Growth Factor Signaling using Integrated Genomic, Proteomic and Phosphorylation Data

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. S.; Thrall, Brian D.

    2012-03-29

    To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  12. Humanized versus murine anti-human epidermal growth factor receptor monoclonal antibodies for immunoscintigraphic studies

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alejo A. Morales; Duconge, Jorge; Alvarez-Ruiz, Daniel; Becquer-Viart, Maria de Los Angeles; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Caballero-Torres, Idania; Iznaga-Escobar, Normando

    2000-02-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized antibody h-R3 (IgG{sub 1}), which binds to an extracellular domain of EGF-R, was used to evaluate the biodistribution on nude mice xenografted with A431 epidermoid carcinoma cell line. Results are compared with its murine version ior egf/r3 monoclonal antibody (mAb). Twenty-one athymic female 4NMRI nu/nu mice were injected intravenously with 10 {mu}g/100 {mu}Ci of {sup 99m}Tc-labeled mAbs. The mAb ior C5 that recognizes an antigen expressed preferentially on the surface of malignant and cytoplasm of normal colorectal cells was used as negative control. Immunoreactivity of {sup 99m}Tc-labeled mAbs was measured by enzyme linked immunosorbent assay on A431 cell line and the immunoreactive fractions determined by Lindmo method. Among all organs significant accumulation was found in tumor (6.14{+-}2.50 %ID/g, 5.06{+-}2.61 %ID/g for murine and humanized mAbs, respectively) 4 h after injection. The immunoreactive fractions were found to be 0.88 and 0.81 for murine and humanized mAb, respectively. Thus, we expect better results using the humanized mAb h-R3 for diagnostic immunoscintigraphy.

  13. Humanized versus murine anti-human epidermal growth factor receptor monoclonal antibodies for immunoscintigraphic studies

    International Nuclear Information System (INIS)

    Morales, Alejo A. Morales; Duconge, Jorge; Alvarez-Ruiz, Daniel; Becquer-Viart, Maria de Los Angeles; Nunez-Gandolff, Gilda; Fernandez, Eduardo; Caballero-Torres, Idania; Iznaga-Escobar, Normando

    2000-01-01

    The anti-human epidermal growth factor receptor (EGF-R) humanized antibody h-R3 (IgG 1 ), which binds to an extracellular domain of EGF-R, was used to evaluate the biodistribution on nude mice xenografted with A431 epidermoid carcinoma cell line. Results are compared with its murine version ior egf/r3 monoclonal antibody (mAb). Twenty-one athymic female 4NMRI nu/nu mice were injected intravenously with 10 μg/100 μCi of 99m Tc-labeled mAbs. The mAb ior C5 that recognizes an antigen expressed preferentially on the surface of malignant and cytoplasm of normal colorectal cells was used as negative control. Immunoreactivity of 99m Tc-labeled mAbs was measured by enzyme linked immunosorbent assay on A431 cell line and the immunoreactive fractions determined by Lindmo method. Among all organs significant accumulation was found in tumor (6.14±2.50 %ID/g, 5.06±2.61 %ID/g for murine and humanized mAbs, respectively) 4 h after injection. The immunoreactive fractions were found to be 0.88 and 0.81 for murine and humanized mAb, respectively. Thus, we expect better results using the humanized mAb h-R3 for diagnostic immunoscintigraphy

  14. Oral mucosa: an alternative epidermic cell source to develop autologous dermal-epidermal substitutes from diabetic subjects

    Directory of Open Access Journals (Sweden)

    Daniela GUZMÁN-URIBE

    Full Text Available Abstract Oral mucosa has been highlighted as a suitable source of epidermal cells due to its intrinsic characteristics such as its higher proliferation rate and its obtainability. Diabetic ulcers have a worldwide prevalence that is variable (1%-11%, meanwhile treatment of this has been proven ineffective. Tissue-engineered skin plays an important role in wound care focusing on strategies such autologous dermal-epidermal substitutes. Objective The aim of this study was to obtain autologous dermal-epidermal skin substitutes from oral mucosa from diabetic subjects as a first step towards a possible clinical application for cases of diabetic foot. Material and Methods Oral mucosa was obtained from diabetic and healthy subjects (n=20 per group. Epidermal cells were isolated and cultured using autologous fibrin to develop dermal-epidermal in vitro substitutes by the air-liquid technique with autologous human serum as a supplement media. Substitutes were immunocharacterized with collagen IV and cytokeratin 5-14 as specific markers. A Student´s t- test was performed to assess the differences between both groups. Results It was possible to isolate epidermal cells from the oral mucosa of diabetic and healthy subjects and develop autologous dermal-epidermal skin substitutes using autologous serum as a supplement. Differences in the expression of specific markers were observed and the cytokeratin 5-14 expression was lower in the diabetic substitutes, and the collagen IV expression was higher in the diabetic substitutes when compared with the healthy group, showing a significant difference. Conclusion Cells from oral mucosa could be an alternative and less invasive source for skin substitutes and wound healing. A difference in collagen production of diabetic cells suggests diabetic substitutes could improve diabetic wound healing. More research is needed to determine the crosstalk between components of these skin substitutes and damaged tissues.

  15. Scaffolding proteins in the development and maintenance of the epidermal permeability barrier.

    Science.gov (United States)

    Crawford, Melissa; Dagnino, Lina

    2017-10-02

    The skin of mammals and other terrestrial vertebrates protects the organism against the external environment, preventing heat, water and electrolyte loss, as well as entry of chemicals and pathogens. Impairments in the epidermal permeability barrier function are associated with the genesis and/or progression of a variety of pathological conditions, including genetic inflammatory diseases, microbial and viral infections, and photodamage induced by UV radiation. In mammals, the outside-in epidermal permeability barrier is provided by the joint action of the outermost cornified layer, together with assembled tight junctions in granular keratinocytes found in the layers underneath. Tight junctions serve as both outside-in and inside-out barriers, and impede paracellular movements of ions, water, macromolecules and microorganisms. At the molecular level, tight junctions consist of integral membrane proteins that form an extracellular seal between adjacent cells, and associate with cytoplasmic scaffold proteins that serve as links with the actin cytoskeleton. In this review, we address the roles that scaffold proteins play specifically in the establishment and maintenance of the epidermal permeability barrier, and how various pathologies alter or impair their functions.

  16. Harnessing Integrative Omics to Facilitate Molecular Imaging of the Human Epidermal Growth Factor Receptor Family for Precision Medicine.

    Science.gov (United States)

    Pool, Martin; de Boer, H Rudolf; Hooge, Marjolijn N Lub-de; van Vugt, Marcel A T M; de Vries, Elisabeth G E

    2017-01-01

    Cancer is a growing problem worldwide. The cause of death in cancer patients is often due to treatment-resistant metastatic disease. Many molecularly targeted anticancer drugs have been developed against 'oncogenic driver' pathways. However, these treatments are usually only effective in properly selected patients. Resistance to molecularly targeted drugs through selective pressure on acquired mutations or molecular rewiring can hinder their effectiveness. This review summarizes how molecular imaging techniques can potentially facilitate the optimal implementation of targeted agents. Using the human epidermal growth factor receptor (HER) family as a model in (pre)clinical studies, we illustrate how molecular imaging may be employed to characterize whole body target expression as well as monitor drug effectiveness and the emergence of tumor resistance. We further discuss how an integrative omics discovery platform could guide the selection of 'effect sensors' - new molecular imaging targets - which are dynamic markers that indicate treatment effectiveness or resistance.

  17. Role of Pin1 in UVA-induced cell proliferation and malignant transformation in epidermal cells

    International Nuclear Information System (INIS)

    Han, Chang Yeob; Hien, Tran Thi; Lim, Sung Chul; Kang, Keon Wook

    2011-01-01

    Highlights: → Pin1 expression is enhanced by low energy UVA irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. → UVA irradiation increases activator protein-1 activity and cyclin D1 in a Pin1-dependent manner. → UVA potentiates EGF-inducible, anchorage-independent growth of epidermal cells, and this is suppressed by Pin1 inhibition or by anti-oxidant. -- Abstract: Ultraviolet A (UVA) radiation (λ = 320-400 nm) is considered a major cause of human skin cancer. Pin1, a peptidyl prolyl isomerase, is overexpressed in most types of cancer tissues and plays an important role in cell proliferation and transformation. Here, we demonstrated that Pin1 expression was enhanced by low energy UVA (300-900 mJ/cm 2 ) irradiation in both skin tissues of hairless mice and JB6 C141 epidermal cells. Exposure of epidermal cells to UVA radiation increased cell proliferation and cyclin D1 expression, and these changes were blocked by Pin1 inhibition. UVA irradiation also increased activator protein-1 (AP-1) minimal reporter activity and nuclear levels of c-Jun, but not c-Fos, in a Pin1-dependent manner. The increases in Pin1 expression and in AP-1 reporter activity in response to UVA were abolished by N-acetylcysteine (NAC) treatment. Finally, we found that pre-exposure of JB6 C141 cells to UVA potentiated EGF-inducible, anchorage-independent growth, and this effect was significantly suppressed by Pin1inhibition or by NAC.

  18. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  19. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  20. Linking γ-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer.

    Science.gov (United States)

    Wu, Weijuan; Yang, Qing; Fung, Kar-Ming; Humphreys, Mitchell R; Brame, Lacy S; Cao, Amy; Fang, Yu-Ting; Shih, Pin-Tsen; Kropp, Bradley P; Lin, Hsueh-Kung

    2014-03-05

    Neuroendocrine (NE) differentiation has been attributed to the progression of castration-resistant prostate cancer (CRPC). Growth factor pathways including the epidermal growth factor receptor (EGFR) signaling have been implicated in the development of NE features and progression to a castration-resistant phenotype. However, upstream molecules that regulate the growth factor pathway remain largely unknown. Using androgen-insensitive bone metastasis PC-3 cells and androgen-sensitive lymph node metastasis LNCaP cells derived from human prostate cancer (PCa) patients, we demonstrated that γ-aminobutyric acid A receptor (GABA(A)R) ligand (GABA) and agonist (isoguvacine) stimulate cell proliferation, enhance EGF family members expression, and activate EGFR and a downstream signaling molecule, Src, in both PC-3 and LNCaP cells. Inclusion of a GABA(A)R antagonist, picrotoxin, or an EGFR tyrosine kinase inhibitor, Gefitinib (ZD1839 or Iressa), blocked isoguvacine and GABA-stimulated cell growth, trans-phospohorylation of EGFR, and tyrosyl phosphorylation of Src in both PCa cell lines. Spatial distributions of GABAAR α₁ and phosphorylated Src (Tyr416) were studied in human prostate tissues by immunohistochemistry. In contrast to extremely low or absence of GABA(A)R α₁-positive immunoreactivity in normal prostate epithelium, elevated GABA(A)R α₁ immunoreactivity was detected in prostate carcinomatous glands. Similarly, immunoreactivity of phospho-Src (Tyr416) was specifically localized and limited to the nucleoli of all invasive prostate carcinoma cells, but negative in normal tissues. Strong GABAAR α₁ immunoreactivity was spatially adjacent to the neoplastic glands where strong phospho-Src (Tyr416)-positive immunoreactivity was demonstrated, but not in adjacent to normal glands. These results suggest that the GABA signaling is linked to the EGFR pathway and may work through autocrine or paracine mechanism to promote CRPC progression. Copyright © 2013 Elsevier

  1. Bioengineering a human plasma-based epidermal substitute with efficient grafting capacity and high content in clonogenic cells.

    Science.gov (United States)

    Alexaline, Maia M; Trouillas, Marina; Nivet, Muriel; Bourreau, Emilie; Leclerc, Thomas; Duhamel, Patrick; Martin, Michele T; Doucet, Christelle; Fortunel, Nicolas O; Lataillade, Jean-Jacques

    2015-06-01

    Cultured epithelial autografts (CEAs) produced from a small, healthy skin biopsy represent a lifesaving surgical technique in cases of full-thickness skin burn covering >50% of total body surface area. CEAs also present numerous drawbacks, among them the use of animal proteins and cells, the high fragility of keratinocyte sheets, and the immaturity of the dermal-epidermal junction, leading to heavy cosmetic and functional sequelae. To overcome these weaknesses, we developed a human plasma-based epidermal substitute (hPBES) for epidermal coverage in cases of massive burn, as an alternative to traditional CEA, and set up critical quality controls for preclinical and clinical studies. In this study, phenotypical analyses in conjunction with functional assays (clonal analysis, long-term culture, or in vivo graft) showed that our new substitute fulfills the biological requirements for epidermal regeneration. hPBES keratinocytes showed high potential for cell proliferation and subsequent differentiation similar to healthy skin compared with a well-known reference material, as ascertained by a combination of quality controls. This work highlights the importance of integrating relevant multiparameter quality controls into the bioengineering of new skin substitutes before they reach clinical development. This work involves the development of a new bioengineered epidermal substitute with pertinent functional quality controls. The novelty of this work is based on this quality approach. ©AlphaMed Press.

  2. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells

    Science.gov (United States)

    Tan, Y; Chiow, KH; Huang, D; Wong, SH

    2010-01-01

    Background and purpose: Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. Experimental approach: We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. Key results: Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. Conclusion and implications: This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death. PMID:20233216

  3. Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains.

    Science.gov (United States)

    Chigira, Yuko; Oka, Takuji; Okajima, Tetsuya; Jigami, Yoshifumi

    2008-04-01

    Development of a heterologous system for the production of homogeneous sugar structures has the potential to elucidate structure-function relationships of glycoproteins. In the current study, we used an artificial O-glycosylation pathway to produce an O-fucosylated epidermal growth factor (EGF) domain in Saccharomyces cerevisiae. The in vivo O-fucosylation system was constructed via expression of genes that encode protein O-fucosyltransferase 1 and the EGF domain, along with genes whose protein products convert cytoplasmic GDP-mannose to GDP-fucose. This system allowed identification of an endogenous ability of S. cerevisiae to transport GDP-fucose. Moreover, expression of EGF domain mutants in this system revealed the different contribution of three disulfide bonds to in vivo O-fucosylation. In addition, lectin blotting revealed differences in the ability of fucose-specific lectin to bind the O-fucosylated structure of EGF domains from human factors VII and IX. Further introduction of the human fringe gene into yeast equipped with the in vivo O-fucosylation system facilitated the addition of N-acetylglucosamine to the EGF domain from factor IX but not from factor VII. The results suggest that engineering of an O-fucosylation system in yeast provides a powerful tool for producing proteins with homogenous carbohydrate chains. Such proteins can be used for the analysis of substrate specificity and the production of antibodies that recognize O-glycosylated EGF domains.

  4. Assessment of Epidermal Growth Factor Receptor (EGFR expression in human meningioma

    Directory of Open Access Journals (Sweden)

    Perry Arie

    2010-05-01

    Full Text Available Abstract Purpose This study explores whether meningioma expresses epidermal growth factor receptor (EGFR and determines if there is a correlation between the WHO grade of this tumor and the degree of EGFR expression. Methods Following institutional review board approval, 113 meningioma specimens from 89 patients were chosen. Of these, 85 were used for final analysis. After a blinded review, immunohistochemical stains for EGFR were performed. Staining intensity (SI was scored on a scale 0-3 (from no staining to strong staining. Staining percentage of immunoreactive cells (SP was scored 1-5 (from the least to the maximum percent of the specimen staining. Immunohistochemical score (IHS was calculated as the product of SI and SP. Results Eighty-five samples of meningioma were classified in accordance with World Health Organization (WHO criteria: benign 57/85 (67%, atypical 23/85 (27%, and malignant 5/85 (6%. The majority of samples demonstrated a moderate SI for EGFR. IHS for EGFR demonstrated a significant association between SI and histopathologic subtype. Also, there was a correlation between the SP and histopathologic subtype (p = 0.029. A significant association was determined when the benign and the atypical samples were compared to the malignant with respect to the SP (p = 0.009. While there was a range of the IHS for the benign and the atypical histologic subtypes, malignant tumors exhibited the lowest score and were statistically different from the benign and the atypical specimens (p Conclusions To our knowledge, this represents the largest series of meningioma samples analyzed for EGFR expression reported in the literature. EGFR expression is greatest in benign meningiomas and may serve a potential target for therapeutic intervention with selective EGFR inhibitors.

  5. A peptide antagonist of the ErbB1 receptor inhibits receptor activation, tumor cell growth and migration in vitro and xenograft tumor growth in vivo

    DEFF Research Database (Denmark)

    Xu, Ruodan; Povlsen, Gro Klitgaard; Soroka, Vladislav

    2010-01-01

    The epidermal growth factor family of receptor tyrosine kinases (ErbBs) plays essential roles in tumorigenesis and cancer disease progression, and therefore has become an attractive target for structure-based drug design. ErbB receptors are activated by ligand-induced homo- and heterodimerization...... constitutes part of the dimerization arm of ErbB3. Inherbin3 binds to the extracellular domains of all four ErbB receptors, with the lowest peptide binding affinity for ErbB4. Inherbin3 functions as an antagonist of epidermal growth factor (EGF)-ErbB1 signaling. We show that Inherbin3 inhibits EGF-induced Erb....... Structural studies have revealed that ErbB receptor dimers are stabilized by receptor-receptor interactions, primarily mediated by a region in the second extracellular domain, termed the "dimerization arm". The present study is the first biological characterization of a peptide, termed Inherbin3, which...

  6. Epidermal growth factor stimulating reparation of γ-ray-induced single-strand breaks predominantly in untranscribed DNA of HeLa cells

    International Nuclear Information System (INIS)

    Igusheva, O.A.; Bil'din, V.N.; Zhestyanikov, V.D.

    1994-01-01

    Considerable evidence suggest that genomic DNA undergoes reparation unevenly because of different transcription activities of its particular sequence. It is highly probably that transcriptional factors are necessary for postion stages of excision reparation and for reparation of single-strand DNA breaks caused by ionizing radiation. There is evidence suggesting that DNA lesions inflicted by γ-radiation is preferentially initiated in transcribed rather than in untranscribed DNA species. This paper looks at the relationship between stimulatory effect of epidermal growth factor (EGF) on reparation of single-strand DNA breaks and reparation of the damage done to active and inert fragments of chromatin. The results show that EGF stimulates reparation of single-strand DNA breaks induced by γ-radiation more effectively in untranscribed than in transcribed DNA. 13 refs., 1 fig., 1 tab

  7. Epidermal nevus syndrome associated with unusual neurological, ocular, and skeletal features

    Directory of Open Access Journals (Sweden)

    Reena Sharma

    2012-01-01

    Full Text Available Epidermal nevus syndrome (ENS is a rare disease, the pathogenesis of which is largely elusive. We, hereby, report an exclusive case of a 20-year-old man with verrucous ENS presented with dark colored papules and plaques along the Blaschko′s lines present over the head and neck area along with fleshy growth in both eyes since birth. Limb length discrepancy and kyphoscoliosis were remarkable. Skin biopsy was compatible with verrucous epidermal nevus while the biopsy of the ocular lesion confirmed complex choristoma. MRI brain revealed calcification in the right temporal lobe. Bilateral arachnoid cyst in the middle cranial fossa, scleral osteoma in the posterior part of the right eyeball, and deformed calvarium were evident on CECT skull and orbit. The present illustration emphasizes the importance of a punctilious work up of the case.

  8. Effect of epidermal growth factor receptor gene polymorphisms on prognosis in glioma patients

    Science.gov (United States)

    Li, Jingjie; Yan, Mengdan; Xie, Zhilan; Zhu, Yuanyuan; Chen, Chao; Jin, Tianbo

    2016-01-01

    Previous studies suggested that single nucleotide polymorphisms (SNPs) in epidermal growth factor receptor (EGFR) are associated with risk of glioma. However, the associations between these SNPs and glioma patient prognosis have not yet been fully investigated. Therefore, the present study was aimed to evaluate the effects of EGFR polymorphisms on the glioma patient prognosis. We retrospectively evaluated 269 glioma patients and investigated associations between EGFR SNPs and patient prognosis using Cox proportional hazard models and Kaplan-Meier curves. Univariate analysis revealed that age, gross-total resection and chemotherapy were associated with the prognosis of glioma patients (p < 0.05). In addition, four EGFR SNPs (rs11506105, rs3752651, rs1468727 and rs845552) correlated with overall survival (OS) (Log-rank p = 0.011, 0.020, 0.008, and 0.009, respectively) and progression-free survival PFS (Log-rank p = 0.026, 0.024, 0.019 and 0.009, respectively). Multivariate analysis indicated that the rs11506105 G/G genotype, the rs3752651 and rs1468727 C/C genotype and the rs845552 A/A genotype correlated inversely with OS and PFS. In addition, OS among patients with the rs730437 C/C genotype (p = 0.030) was significantly lower OS than among patients with A/A genotype. These data suggest that five EGFR SNPs (rs11506105, rs3752651, rs1468727, rs845552 and rs730437) correlated with glioma patient prognosis, and should be furthered validated in studies of ethnically diverse patients. PMID:27437777

  9. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    Science.gov (United States)

    Papiorek, Sarah; Junker, Robert R; Lunau, Klaus

    2014-01-01

    Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of flower-visitors.

  10. Gloss, colour and grip: multifunctional epidermal cell shapes in bee- and bird-pollinated flowers.

    Directory of Open Access Journals (Sweden)

    Sarah Papiorek

    Full Text Available Flowers bear the function of filters supporting the attraction of pollinators as well as the deterrence of floral antagonists. The effect of epidermal cell shape on the visual display and tactile properties of flowers has been evaluated only recently. In this study we quantitatively measured epidermal cell shape, gloss and spectral reflectance of flowers pollinated by either bees or birds testing three hypotheses: The first two hypotheses imply that bee-pollinated flowers might benefit from rough surfaces on visually-active parts produced by conical epidermal cells, as they may enhance the colour signal of flowers as well as the grip on flowers for bees. In contrast, bird-pollinated flowers might benefit from flat surfaces produced by flat epidermal cells, by avoiding frequent visitation from non-pollinating bees due to a reduced colour signal, as birds do not rely on specific colour parameters while foraging. Moreover, flat petal surfaces in bird-pollinated flowers may hamper grip for bees that do not touch anthers and stigmas while consuming nectar and thus, are considered as nectar thieves. Beside this, the third hypothesis implies that those flower parts which are vulnerable to nectar robbing of bee- as well as bird-pollinated flowers benefit from flat epidermal cells, hampering grip for nectar robbing bees. Our comparative data show in fact that conical epidermal cells are restricted to visually-active parts of bee-pollinated flowers, whereas robbing-sensitive parts of bee-pollinated as well as the entire floral surface of bird-pollinated flowers possess on average flat epidermal cells. However, direct correlations between epidermal cell shape and colour parameters have not been found. Our results together with published experimental studies show that epidermal cell shape as a largely neglected flower trait might act as an important feature in pollinator attraction and avoidance of antagonists, and thus may contribute to the partitioning of

  11. Epidermal growth factor inhibits rat pancreatic cell proliferation, causes acinar cell hypertrophy, and prevents caerulein-induced desensitization of amylase release.

    Science.gov (United States)

    Morisset, J; Larose, L; Korc, M

    1989-06-01

    The in vivo effects of epidermal growth factor (EGF) on pancreatic growth and digestive enzyme concentrations were compared with the actions of the pancreatic secretagogue caerulein in the adult rat. EGF (10 micrograms/kg BW) did not alter pancreatic weight or protein content. However, this concentration of EGF inhibited [3H]thymidine incorporation into DNA by 44%, decreased DNA content by 20%, and increased the concentrations of amylase, chymotrypsinogen, and protein by 106%, 232%, and 42%, respectively. Pancreatic acini prepared from EGF-treated rats exhibited a characteristic secretory response to caerulein that was superimposable to that obtained in acini from saline-treated rats. In both groups of acini half-maximal and maximal stimulation of amylase release occurred at approximately 5 pM and 50 pM caerulein, respectively. In contrast to EGF, caerulein (1 microgram/kg BW) increased pancreatic weight by 29% and protein content by 59%, and enhanced [3H]thymidine incorporation into DNA by 70%. Although caerulein increased the concentrations of pancreatic amylase and chymotrypsinogen by 38% and 297%, respectively, pancreatic acini prepared from caerulein-treated rats were less sensitive to the actions of caerulein in vitro when compared with acini from control rats. Indeed, the EC50 was shift from 4.8 pM to 9.8 pM after 4 days of treatment. EGF potentiated the actions of caerulein on pancreatic weight, protein content, and chymotrypsinogen concentration, and prevented the caerulein-induced alteration in the secretory responsiveness of the acinar cell. Conversely, caerulein reversed the inhibitory effect of EGF on thymidine incorporation. These findings suggest that EGF may modulate the trophic effects of certain gastrointestinal hormones, and may participate in the regulation of pancreatic exocrine function in vivo.

  12. Human eccrine sweat gland cells turn into melanin-uptaking keratinocytes in dermo-epidermal skin substitutes.

    Science.gov (United States)

    Böttcher-Haberzeth, Sophie; Biedermann, Thomas; Pontiggia, Luca; Braziulis, Erik; Schiestl, Clemens; Hendriks, Bart; Eichhoff, Ossia M; Widmer, Daniel S; Meuli-Simmen, Claudia; Meuli, Martin; Reichmann, Ernst

    2013-02-01

    Recently, Biedermann et al. (2010) have demonstrated that human eccrine sweat gland cells can develop a multilayered epidermis. The question still remains whether these cells can fulfill exclusive and very specific functional properties of epidermal keratinocytes, such as the incorporation of melanin, a feature absent in sweat gland cells. We added human melanocytes to eccrine sweat gland cells to let them develop into an epidermal analog in vivo. The interaction between melanocytes and sweat gland-derived keratinocytes was investigated. The following results were gained: (1) macroscopically, a pigmentation of the substitutes was seen 2-3 weeks after transplantation; (2) we confirmed the development of a multilayered, stratified epidermis with melanocytes distributed evenly throughout the basal layer; (3) melanocytic dendrites projected to suprabasal layers; and (4) melanin was observed to be integrated into former eccrine sweat gland cells. These skin substitutes were similar or equal to skin substitutes cultured from human epidermal keratinocytes. The only differences observed were a delay in pigmentation and less melanin uptake. These data suggest that eccrine sweat gland cells can form a functional epidermal melanin unit, thereby providing striking evidence that they can assume one of the most characteristic keratinocyte properties.

  13. Epidermal growth factor improves survival and prevents intestinal injury in a murine model of pseudomonas aeruginosa pneumonia.

    Science.gov (United States)

    Dominguez, Jessica A; Vithayathil, Paul J; Khailova, Ludmila; Lawrance, Christopher P; Samocha, Alexandr J; Jung, Enjae; Leathersich, Ann M; Dunne, W Michael; Coopersmith, Craig M

    2011-10-01

    Mortality from pneumonia is mediated, in part, through extrapulmonary causes. Epidermal growth factor (EGF) has broad cytoprotective effects, including potent restorative properties in the injured intestine. The purpose of this study was to determine the efficacy of EGF treatment following Pseudomonas aeruginosa pneumonia. FVB/N mice underwent intratracheal injection of either P. aeruginosa or saline and were then randomized to receive either systemic EGF or vehicle beginning immediately or 24 h after the onset of pneumonia. Systemic EGF decreased 7-day mortality from 65% to 10% when initiated immediately after the onset of pneumonia and to 27% when initiated 24 h after the onset of pneumonia. Even though injury in pneumonia is initiated in the lungs, the survival advantage conferred by EGF was not associated with improvements in pulmonary pathology. In contrast, EGF prevented intestinal injury by reversing pneumonia-induced increases in intestinal epithelial apoptosis and decreases in intestinal proliferation and villus length. Systemic cytokines and kidney and liver function were unaffected by EGF therapy, although EGF decreased pneumonia-induced splenocyte apoptosis. To determine whether the intestine was sufficient to account for extrapulmonary effects induced by EGF, a separate set of experiments was done using transgenic mice with enterocyte-specific overexpression of EGF (IFABP-EGF [intestinal fatty acid-binding protein linked to mouse EGF] mice), which were compared with wild-type mice subjected to pneumonia. IFABP-EGF mice had improved survival compared with wild-type mice following pneumonia (50% vs. 28%, respectively, P < 0.05) and were protected from pneumonia-induced intestinal injury. Thus, EGF may be a potential adjunctive therapy for pneumonia, mediated in part by its effects on the intestine.

  14. Epidermal Growth Factor Receptor Is Related to Poor Survival in Glioblastomas: Single-Institution Experience

    Science.gov (United States)

    Choi, Youngmin; Lee, Hyung-Sik; Hur, Won-Joo; Sung, Ki-Han; Kim, Ki-Uk; Choi, Sun-Seob; Kim, Su-Jin; Kim, Dae-Cheol

    2013-01-01

    Purpose There are conflicting results surrounding the prognostic significance of epidermal growth factor receptor (EGFR) status in glioblastoma (GBM) patients. Accordingly, we attempted to assess the influence of EGFR expression on the survival of GBM patients receiving postoperative radiotherapy. Materials and Methods Thirty three GBM patients who had received surgery and postoperative radiotherapy at our institute, between March 1997 and February 2006, were included. The evaluation of EGFR expression with immunohistochemistry was available for 30 patients. Kaplan-Meier survival analysis and Cox regression were used for statistical analysis. Results EGFR was expressed in 23 patients (76.7%), and not expressed in seven (23.3%). Survival in EGFR expressing GBM patients was significantly less than that in non-expressing patients (median survival: 12.5 versus 17.5 months, p=0.013). Patients who received more than 60 Gy showed improved survival over those who received up to 60 Gy (median survival: 17.0 versus 9.0 months, p=0.000). Negative EGFR expression and a higher radiation dose were significantly correlated with improved survival on multivariate analysis. Survival rates showed no differences according to age, sex, and surgical extent. Conclusion The expression of EGFR demonstrated a significantly deleterious effect on the survival of GBM patients. Therefore, approaches targeting EGFR should be considered in potential treatment methods for GBM patients, in addition to current management strategies. PMID:23225805

  15. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity.

    Science.gov (United States)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-10-31

    Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher's attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with Kd 56±7.3nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Correlation of human epidermal growth factor receptor protein expression and colorectal cancer.

    Science.gov (United States)

    Yang, Wen-Juan; Shen, Xing-Jie; Ma, Xiao-Xia; Tan, Zhi-Gang; Song, Yan; Guo, Yi-Tong; Yuan, Mei

    2015-07-28

    To investigate the correlation between human epidermal growth factor receptor (HER-2) protein expression and colorectal cancer (CRC) using a case-control study and meta-analysis. Tumor tissue specimens from 162 CRC patients were selected for the case group. Fifty cases were randomly selected, and normal CRC tissue at least 10 cm away from the tumor margins of these cases was used to generate the control group. The expression of the HER-2 protein in the 162 CRC tissue samples and the 50 adjacent normal mucosa tissue samples was detected via immunohistochemistry. The experimental data were analyzed using SPSS 18.0 software, and R software version 3.1.0 was utilized for further verification. The expression of HER-2 protein in the 162 CRC tissue samples was significantly higher than in the normal tissue specimens. The data showed that the expression of HER-2 in CRC was related to the Dukes' stage, the depth of invasion and lymph node metastasis. The HER-2-positive patients had lower 3- and 5-year OS rates than the HER-2-negative patients, but there was no significant difference. However, there was a statistically significant difference in the 3- and 5-year disease-free survival (DFS) rates of HER-2-positive and HER-2-negative patients. The results of the meta-analysis showed that the expression of HER-2 in CRC patients was statistically significantly increased over that of healthy people. The 3-year DFS rate in HER-2-positive patients was markedly lower than that in HER-2-negative patients. Down-regulation of HER-2 expression might be a dependable strategy for CRC therapy.

  17. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    Science.gov (United States)

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  18. Epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutation testing in adults with locally advanced or metastatic non-small cell lung cancer: A systematic review and cost-effectiveness analysis

    OpenAIRE

    Westwood, Marie; Joore, Manuela; Whiting, Penny; Asselt, Thea; Ramaekers, Bram; Armstrong, Nigel; Misso, Kate; Severens, Hans; Kleijnen, Jos

    2014-01-01

    markdownabstract__Abstract__ Background: Non-small cell lung cancer (NSCLC) is the most common form of lung cancer. Some epidermal growth factor receptor tyrosine kinase (EGFR-TK) mutations make tumours responsive to treatment with EGFR-TK inhibitors (EGFR-TKIs) but less responsive to treatment with standard chemotherapy. Patients with NSCLC are therefore tested for EGFR-TK tumour gene mutations to inform treatment decisions. There are a variety of tests available to detect these mutations. T...

  19. Epidermal growth factor receptor signaling pathway is frequently altered in ampullary carcinoma at protein and genetic levels.

    Science.gov (United States)

    Mikhitarian, Kaidi; Pollen, Maressa; Zhao, Zhiguo; Shyr, Yu; Merchant, Nipun B; Parikh, Alexander; Revetta, Frank; Washington, M Kay; Vnencak-Jones, Cindy; Shi, Chanjuan

    2014-05-01

    Our objective was to explore alteration of the epidermal growth factor receptor (EGFR) signaling pathway in ampullary carcinoma. Immunohistochemical studies were employed to evaluate expression of amphiregulin as well as expression and activation of EGFR. A lab-developed assay was used to identify mutations in the EGFR pathway genes, including KRAS, BRAF, PIK3CA, PTEN, and AKT1. A total of 52 ampullary carcinomas were identified, including 25 intestinal-type and 24 pancreatobiliary-type tumors, with the intestinal type being associated with a younger age at diagnosis (P=0.03) and a better prognosis (PSMAD4 and BRAF. KRAS mutations at codons 12 and 13 did not adversely affect overall survival. In conclusion, EGFR expression and activation were different between intestinal- and pancreatobiliary-type ampullary carcinoma. KRAS mutation was common in both histologic types; however, the incidence appeared to be lower in the pancreatobiliary type compared with its pancreatic counterpart, pancreatic ductal adenocarcinoma. Mutational analysis of the EGFR pathway genes may provide important insights into personalized treatment for patients with ampullary carcinoma.

  20. Stimulation of prostaglandin E2 production by phorbol esters and epidermal growth factor in porcine thyroid cells

    International Nuclear Information System (INIS)

    Kasai, K.; Hiraiwa, M.; Emoto, T.; Akimoto, K.; Takaoka, T.; Shimoda, S.I.

    1987-01-01

    Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E 2 production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E 2 production by the cells in dose related fashion. PMA stimulated prostaglandin E 2 production over fifty-fold with the dose of 10 -7 M compared with control. EGF (10 -7 M) also stimulated it about ten-fold. The ED 50 values of PMA and EGF were respectively around 1 x 10 -9 M and 5 x 10 -10 M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E 2 production from 1 to 24-h incubation. The release of radioactivity from [ 3 H]-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E 2 production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells. 36 references, 2 figures, 1 table

  1. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....... that transferrin is the only obligatory factor whereas growth hormone, epidermal growth factor, fibroblast growth factor, and TRH had modulating effects. A heat-labile heparin binding serum factor which stimulated thymidine incorporation but not cell proliferation was demonstrated in human serum. Measurements...

  2. Ichthyosis hystrix disease or verrucous epidermal nevus (a retrospective analysis of 20-year observation

    Directory of Open Access Journals (Sweden)

    V. D. El'kin

    2017-01-01

    Full Text Available We present a  clinical case of ichthyosis hystrix, a rare genetic ichthyosiform dermatosis. Specifics of the disease are related to the complexity of differential diagnosis and verification of the diagnosis, because clinical manifestation of ichthyosis hystrix is similar with that of verrucous epidermal nevus. Clinical particulars of both nosologies are characterized by bizarre and widespread skin lesions of spicular hyperkeratotic growth, located along Blaschko lines. The exclusive feature of the clinical case described is a  long-term (20 years clinical and laboratory monitoring of the patient. The literature review provides brief information on etiology, pathogenesis, clinical features, differential diagnosis, and pathomorphology of ichthyosis hystrix and verrucous epidermal nevus.

  3. Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1985-01-01

    , the eccrine sweat glands, capillary system, and the hair follicle outer root sheath, generally similar in pattern to that previously reported for full-thickness rat skin and human epidermis. The same areas also bound EGF-R1 but in addition the monoclonal antibody recognized a cone of melanin containing......Two methods have been used to examine epidermal growth factor (EGF) receptor distribution in human scalp and foreskin. The first employed [125I]EGF viable explants and autoradiography to determine the EGF binding pattern while the second used a monoclonal antibody to the human EGF receptor to map...... whether EGF-R1 could recognize molecules unrelated to the EGF receptor, the EGF binding and EGF-R1 recognition profiles were compared on cultures of SVK14 cells, a SV40 transformed human keratinocyte cell line. EGF binding and EGF-R1 monoclonal antibody distribution on these cells was found to be similar...

  4. Value function in economic growth model

    Science.gov (United States)

    Bagno, Alexander; Tarasyev, Alexandr A.; Tarasyev, Alexander M.

    2017-11-01

    Properties of the value function are examined in an infinite horizon optimal control problem with an unlimited integrand index appearing in the quality functional with a discount factor. Optimal control problems of such type describe solutions in models of economic growth. Necessary and sufficient conditions are derived to ensure that the value function satisfies the infinitesimal stability properties. It is proved that value function coincides with the minimax solution of the Hamilton-Jacobi equation. Description of the growth asymptotic behavior for the value function is provided for the logarithmic, power and exponential quality functionals and an example is given to illustrate construction of the value function in economic growth models.

  5. Prognostic significance of epidermal growth factor receptor (EGFR) over expression in urothelial carcinoma of urinary bladder.

    Science.gov (United States)

    Hashmi, Atif Ali; Hussain, Zubaida Fida; Irfan, Muhammad; Khan, Erum Yousuf; Faridi, Naveen; Naqvi, Hanna; Khan, Amir; Edhi, Muhammad Muzzammil

    2018-06-07

    Epidermal growth factor receptor (EGFR) has been shown to have abnormal expression in many human cancers and is considered as a marker of poor prognosis. Frequency of over expression in bladder cancer has not been studied in our population; therefore we aimed to evaluate the frequency and prognostic significance of EGFR immunohistochemical expression in locoregional population. We performed EGFR immunohistochemistry on 126 cases of bladder cancer and association of EGFR expression with tumor grade, lamina propria invasion, deep muscle invasion and recurrence of disease was evaluated. High EGFR expression was noted in 26.2% (33 cases), 15.1% (19 cases) and 58.7% (74 cases) revealed low and no EGFR expression respectively. Significant association of EGFR expression was noted with tumor grade, lamina propria invasion, deep muscle invasion and recurrence status while no significant association was seen with age, gender and overall survival. Kaplan- Meier curves revealed significant association of EGFR expression with recurrence while no significant association was seen with overall survival. Significant association of EGFR overexpression with tumor grade, muscularis propria invasion and recurrence signifies its prognostic value; therefore EGFR can be used as a prognostic biomarker in Urothelial bladder carcinoma.

  6. Effects of in Utero Exposure of C57BL/6J Mice to 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Epidermal Permeability Barrier Development and Function

    Science.gov (United States)

    Muenyi, Clarisse S.; Carrion, Sandra Leon; Jones, Lynn A.; Kennedy, Lawrence H.; Slominski, Andrzej T.

    2014-01-01

    Background: Development of the epidermal permeability barrier (EPB) is essential for neonatal life. Defects in this barrier are found in many skin diseases such as atopic dermatitis. Objective: We investigated the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the development and function of the EPB. Methods: Timed-pregnant C57BL/6J mice were gavaged with corn oil or TCDD (10 μg/kg body weight) on gestation day 12. Embryos were harvested on embryonic day (E) 15, E16, E17, and postnatal day (PND) 1. Results: A skin permeability assay showed that TCDD accelerated the development of the EPB, beginning at E15. This was accompanied by a significant decrease in transepidermal water loss (TEWL), enhanced stratification, and formation of the stratum corneum (SC). The levels of several ceramides were significantly increased at E15 and E16. PND1 histology revealed TCDD-induced acanthosis and epidermal hyperkeratosis. This was accompanied by disrupted epidermal tight junction (TJ) function, with increased dye leakage at the terminal claudin-1–staining TJs of the stratum granulosum. Because the animals did not have enhanced rates of TEWL, a commonly observed phenotype in animals with TJ defects, we performed tape-stripping. Removal of most of the SC resulted in a significant increase in TEWL in TCDD-exposed PND1 pups compared with their control group. Conclusions: These findings demonstrate that in utero exposure to TCDD accelerates the formation of an abnormal EPB with leaky TJs, warranting further study of environmental exposures, epithelial TJ integrity, and atopic disease. Citation: Muenyi CS, Leon Carrion S, Jones LA, Kennedy LH, Slominski AT, Sutter CH, Sutter TR. 2014. Effects of in utero exposure of C57BL/6J mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin on epidermal permeability barrier development and function. Environ Health Perspect 122:1052–1058; http://dx.doi.org/10.1289/ehp.1308045 PMID:24904982

  7. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  8. Systemic administration of insulin-like growth factor I (IGF-I) causes growth of the rat prostate

    DEFF Research Database (Denmark)

    Tørring, N; Vinter-Jensen, L; Pedersen, S B

    1997-01-01

    PURPOSE: To investigate the effects of insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) on the rat prostate. In addition, we investigated the effect of ornithine decarboxylase (ODC) inhibition with alpha-diflouromethylornitine (DFMO) on the expected growth of the prostate.MA...

  9. Effects of icotinib on early-stage non-small-cell lung cancer as neoadjuvant treatment with different epidermal growth factor receptor phenotypes

    Directory of Open Access Journals (Sweden)

    Wang T

    2016-03-01

    Full Text Available Tao Wang,1 Yang Liu,1 Bin Zhou,1 Zhi Wang,1 Naichao Liang,1 Yundong Zhang,1 Zhouhuan Dong,2 Jie Li2 1Department of Thoracic Surgery, 2Department of Pathology, People’s Liberation Army General Hospital, Beijing, People’s Republic of China Purpose: Epidermal growth factor receptor–tyrosine kinase inhibitors (EGFR–TKIs have demonstrated efficacy in treating advanced non-small-cell lung cancer (NSCLC. Preliminary findings suggested that EGFR–TKIs might also be beneficial in neoadjuvant therapy in treating NSCLC. Therefore, this study aimed to evaluate the efficacy and safety of neoadjuvant therapy with icotinib in patients with early-stage NSCLC.Patients and methods: We retrospectively reviewed the medical history of patients who were initially diagnosed with stage IA–IIIA NSCLC and were under icotinib administration before surgery between December 2011 and December 2014. Tumor assessment was conducted between the second and fourth week from initial icotinib treatment. The association between personal characteristics, smoking status, disease stage, EGFR mutation status, and clinical outcomes were investigated using multivariate logistic regression analysis.Results: A total of 67 patients with NSCLC were reviewed, and approximately half (38/67 of them were identified as having EGFR-mutant tumors. The overall response rate of all patients was 26.7% at 2–4 weeks’ assessment. Multivariate analysis showed that female sex (38.5% versus 10.7% in males, P=0.028 and EGFR mutation status (42.1% versus 6.9% in EGFR wild type, P=0.011 were independent predictive factors. The analysis also showed that the most common adverse effects were rash (43.3% and dry skin (34.4%, which were tolerable.Conclusion: Icotinib induced clinical response with minimal toxicity as neoadjuvant treatment in early NSCLC, especially in patients with common EGFR mutations. Further studies are warranted to confirm our findings. Keywords: non-small-cell lung cancer

  10. Structure-based pharmacophore design and virtual screening for novel potential inhibitors of epidermal growth factor receptor as an approach to breast cancer chemotherapy.

    Science.gov (United States)

    Mahernia, Shabnam; Hassanzadeh, Malihe; Sharifi, Niusha; Mehravi, Bita; Paytam, Fariba; Adib, Mehdi; Amanlou, Massoud

    2018-02-01

    Cancer cells are described with features of uncontrolled growth, invasion and metastasis. The epidermal growth factor receptor subfamily of tyrosine kinases (EGFR-TK) plays a crucial regulatory role in the control of cellular proliferation and progression of various cancers. Therefore, its inhibition might lead to the discovery of a new generation of anticancer drugs. In the present study, structure-based pharmacophore modeling, molecular docking and molecular dynamics simulations were applied to identify potential hits, which exhibited good inhibition on the proliferation of MCF-7 breast cancer cell line and favorable binding interactions on EGFR-TK. Selected compounds were examined for their anticancer activity against the Michigan Cancer Foundation-7 (MCF-7) breast cancer cell line which overexpresses EGFR using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay. Compounds 1 and 2, with an isoindoline-1-one core, induced significant inhibition of breast cancer cells proliferation with IC[Formula: see text] values 327 and 370 nM, respectively.

  11. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling

    DEFF Research Database (Denmark)

    Blagoev, B.; Kratchmarova, I.; Ong, S.E.

    2003-01-01

    Mass spectrometry-based proteomics can reveal protein-protein interactions on a large scale, but it has been difficult to separate background binding from functionally important interactions and still preserve weak binders. To investigate the epidermal growth factor receptor (EGFR) pathway, we em...

  12. Epidermal growth factor upregulates serotonin transporter and its association with visceral hypersensitivity in irritable bowel syndrome.

    Science.gov (United States)

    Cui, Xiu-Fang; Zhou, Wei-Mei; Yang, Yan; Zhou, Jun; Li, Xue-Liang; Lin, Lin; Zhang, Hong-Jie

    2014-10-07

    To investigate the role of epidermal growth factor (EGF) in visceral hypersensitivity and its effect on the serotonin transporter (SERT). A rat model for visceral hypersensitivity was established by intra-colonic infusion of 0.5% acetic acid in 10-d-old Sprague-Dawley rats. The visceral sensitivity was assessed by observing the abdominal withdrawal reflex and recording electromyographic activity of the external oblique muscle in response to colorectal distension. An enzyme-linked immunosorbent assay was used to measure the EGF levels in plasma and colonic tissues. SERT mRNA expression was detected by real-time PCR while protein level was determined by Western blot. The correlation between EGF and SERT levels in colon tissues was analyzed by Pearson's correlation analysis. SERT function was examined by tritiated serotonin (5-HT) uptake experiments. Rat intestinal epithelial cells (IEC-6) were used to examine the EGF regulatory effect on SERT expression and function via the EGF receptor (EGFR). EGF levels were significantly lower in the rats with visceral hypersensitivity as measured in plasma (2.639 ± 0.107 ng/mL vs 4.066 ± 0.573 ng/mL, P < 0.01) and in colonic tissue (3.244 ± 0.135 ng/100 mg vs 3.582 ± 0.197 ng/100 mg colon tissue, P < 0.01) compared with controls. Moreover, the EGF levels were positively correlated with SERT levels (r = 0.820, P < 0.01). EGF displayed dose- and time-dependent increased SERT gene expressions in IEC-6 cells. An EGFR kinase inhibitor inhibited the effect of EGF on SERT gene upregulation. SERT activity was enhanced following treatment with EGF (592.908 ± 31.515 fmol/min per milligram vs 316.789 ± 85.652 fmol/min per milligram protein, P < 0.05) and blocked by the EGFR kinase inhibitor in IEC-6 cells (590.274 ± 25.954 fmol/min per milligram vs 367.834 ± 120.307 fmol/min per milligram protein, P < 0.05). A decrease in EGF levels may contribute to the formation of visceral hypersensitivity through downregulation of SERT

  13. Immunoautoradiographic analysis of epidermal growth factor receptors: a sensitive method for the in situ identification of receptor proteins and for studying receptor specificity

    International Nuclear Information System (INIS)

    Fernandez-Pol, J.A.

    1982-01-01

    The use of an immunoautoradiographic system for the detection and analysis of epidermal growth factor (EGF) receptors in human epidermoid carcinoma A-431 cells is reported. By utilizing this technique, the interaction between EGF and its membrane receptor in A-431 cells can be rapidly visualized. The procedure is simple, rapid, and very sensitive, and it provides conclusive evidence that the 150K dalton protein is the receptor fo EGF in A-431 cells. In summary, the immunoautoradiographic procedure brings to the analysis of hormone rceptor proteins the power that the radioimmunoassay technique has brought to the analysis of hormones. Thus, this assay system is potentially applicable in a wide spectrum in many fields of nuclear medicine and biology

  14. Intralesional epidermal growth factor for diabetic foot wounds: the first cases in Turkey

    Directory of Open Access Journals (Sweden)

    Bulent M. Ertugrul

    2015-08-01

    Full Text Available Background: Intralesional recombinant epidermal growth factor (EGF was produced in the Centre for Genetic Engineering and Biotechnology (CIGB, Cuba, in 1988 and licensed in 2006. Because it may accelerate wound healing, it is a potential new treatment option in patients with a diabetic foot wound (whether infected or not as an adjunct to standard treatment (i.e. debridement, antibiotics. We conducted the initial evaluation of EGF for diabetic foot wounds in Turkey. Methods: We enrolled 17 patients who were hospitalized in various medical centers for a foot ulcer and/or infection and for whom below the knee amputation was suggested to all except one. All patients received 75 μg intralesional EGF three times per week on alternate days. Results: The appearance of new granulation tissue on the wound site (≥75% was observed in 13 patients (76%, and complete wound closure was observed in 3 patients (18%, yielding a ‘complete recovery’ rate of 94%. The most common side effects were tremor (n=10, 59% and nausea (n=6, 35%. In only one case,a serious side effect requiring cessation of EGF treatment was noted. That patient experienced severe hypotension at the 16th application session, and treatment was discontinued. At baseline, a total of 21 causative bacteria were isolated from 15 patients, whereascultures were sterile in two patients. The most frequently isolated species was Pseudomonas aeruginosa. Conclusion: Thus, this preliminary study suggests that EGF seems to be a potential adjunctive treatment option in patients with limb-threatening diabetic foot wounds.

  15. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal

    2016-02-01

    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  16. A homolog of Drosophila grainy head is essential for epidermal integrity in mice.

    Science.gov (United States)

    Ting, Stephen B; Caddy, Jacinta; Hislop, Nikki; Wilanowski, Tomasz; Auden, Alana; Zhao, Lin-Lin; Ellis, Sarah; Kaur, Pritinder; Uchida, Yoshikazu; Holleran, Walter M; Elias, Peter M; Cunningham, John M; Jane, Stephen M

    2005-04-15

    The Drosophila cuticle is essential for maintaining the surface barrier defenses of the fly. Integral to cuticle resilience is the transcription factor grainy head, which regulates production of the enzyme required for covalent cross-linking of the cuticular structural components. We report that formation and maintenance of the epidermal barrier in mice are dependent on a mammalian homolog of grainy head, Grainy head-like 3. Mice lacking this factor display defective skin barrier function and deficient wound repair, accompanied by reduced expression of transglutaminase 1, the key enzyme involved in cross-linking the structural components of the superficial epidermis. These findings suggest that the functional mechanisms involving protein cross-linking that maintain the epidermal barrier and induce tissue repair are conserved across 700 million years of evolution.

  17. Epidermal stem cells: location, potential and contribution to cancer.

    Science.gov (United States)

    Ambler, C A; Määttä, A

    2009-01-01

    Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.

  18. Development of an affinity-matured humanized anti-epidermal growth factor receptor antibody for cancer immunotherapy.

    Science.gov (United States)

    Nakanishi, Takeshi; Maru, Takamitsu; Tahara, Kazuhiro; Sanada, Hideaki; Umetsu, Mitsuo; Asano, Ryutaro; Kumagai, Izumi

    2013-02-01

    We showed previously that humanization of 528, a murine anti-epidermal growth factor receptor (EGFR) antibody, causes reduced affinity for its target. Here, to improve the affinity of the humanized antibody for use in cancer immunotherapy, we constructed phage display libraries focused on the complementarity-determining regions (CDRs) of the antibody and carried out affinity selection. Two-step selections using libraries constructed in a stepwise manner enabled a 32-fold affinity enhancement of humanized 528 (h528). Thermodynamic analysis of the interactions between the variable domain fragment of h528 (h528Fv) mutants and the soluble extracellular domain of EGFR indicated that the h528Fv mutants obtained from the first selection showed a large increase in negative enthalpy change due to binding, resulting in affinity enhancement. Furthermore, mutants from the second selection showed a decrease in entropy loss, which led to further affinity maturation. These results suggest that a single mutation in the heavy chain variable domain (i.e. Tyr(52) to Trp) enthalpically contributed for overcoming the energetic barrier to the antigen-antibody interaction, which was a major hurdle for the in vitro affinity maturation of h528. We reported previously that the humanized bispecific diabody hEx3 Db, which targets EGFR and CD3, shows strong anti-tumor activity. hEx3 Db mutants, in which the variable domains of h528 were replaced with those of the affinity-enhanced mutants, were prepared and characterized. In a growth inhibition assay of tumor cells, the hEx3 Db mutants showed stronger anti-tumor activity than that of hEx3 Db, suggesting that affinity enhancement of h528Fv enhances the anti-tumor activity of the bispecific diabody.

  19. Epidermal growth factor receptor inhibition by anti-CD147 therapy in cutaneous squamous cell carcinoma.

    Science.gov (United States)

    Frederick, John W; Sweeny, Larissa; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L

    2016-02-01

    Advanced cutaneous squamous cell carcinoma (SCC) is an uncommon and aggressive malignancy. As a result, there is limited understanding of its biology and pathogenesis. CD147 and epidermal growth factor receptor (EGFR) have been identified as oncologically important targets, but their relationship remains undefined in cutaneous SCC. Multiple cutaneous SCC cell lines (Colo-16, SRB-1, and SRB-12), were treated in vitro with a range of chimeric anti-CD147 monoclonal antibody (mAb) (0, 50, 100, and 200 µg/mL) or transfected with a small interfering RNA against CD147 (SiCD147). Cell proliferation, migration (scratch wound healing assay), and protein expression was then assessed. In vivo, Colo-16 flank xenografts were treated anti-CD147 mAb (150 µg i.p. triweekly). After treatment with anti-CD147 (200 µg/mL), there was a significant decrease in proliferation for all cell lines relative to controls (p CD147 (200 µg/mL) resulted in decreased cell migration for all cell lines, with an average of 43% reduction in closure compared to controls (p CD147 antibody therapy and siRNA mediated reduction in CD147 expression were both found to decrease protein expression of EGFR, which correlated with a reduction in downstream total and phosphorylated protein kinase B (pAKT). Tumor growth in vivo was reduced for both the anti-CD147 treatment group and the SiCD147 group relative to controls. Inhibition and downregulation of CD147 in cutaneous SCC resulted in suppression of the malignant phenotype in vitro and in vivo, which may be mediated in part by an alteration in EGFR expression. As a result, CD147 may serve as a potential therapeutic target for advanced cutaneous SCC. © 2014 Wiley Periodicals, Inc.

  20. Fetal effects of epidermal growth factor deficiency induced in rats by autoantibodies against epidermal growth factor

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Jørgensen, P E

    1995-01-01

    , the amount of surfactant protein-A was decreased, suggesting a delayed lung maturation. The offspring of EGF-immunized rats had dry and wrinkled skin. The skin was thin and the hair follicles were immature. This suggests a role for EGF in the growth and development of the skin. The liver/body weight ratio...

  1. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2012-09-01

    Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal separation of 4 mm human skin biopsies

    DEFF Research Database (Denmark)

    Clemmensen, Anders; Thomassen, Mads; Clemmensen, Ole

    2009-01-01

    To obtain a separation of the epidermal and dermal compartments to examine compartment specific biological mechanisms in the skin, we incubated 4 mm human skin punch biopsies in ammonium thiocyanate. We wanted to test (i) the histological quality of the dermo-epidermal separation obtained...... by different incubation times; (ii) the amount and quality of extractable epidermal RNA and (iii) its impact on sample RNA expression profiles assessed by large-scale gene expression microarray analysis in both normal and inflamed skin. At 30-min incubation, the split between dermis and epidermis...... and almost completely separated from the dermis of 4 mm skin biopsies by 30 min incubation in 3.8% ammonium thiocyanate combined with curettage of the dermal surface, producing high-quality RNA suitable for transcriptional analysis. Our refined method of dermo-epidermal separation will undoubtedly prove...

  3. Grhl3 and Lmo4 play coordinate roles in epidermal migration.

    Science.gov (United States)

    Hislop, Nikki R; Caddy, Jacinta; Ting, Stephen B; Auden, Alana; Vasudevan, Sumitha; King, Sarah L; Lindeman, Geoffrey J; Visvader, Jane E; Cunningham, John M; Jane, Stephen M

    2008-09-01

    In addition to its role in formation of the epidermal barrier, the mammalian transcription factor Grainy head-like 3 (Grhl3) is also essential for neural tube closure and wound repair, processes that are dependent in part on epidermal migration. Here, we demonstrate that the LIM-only domain protein, LMO4 serves as a functional partner of GRHL3 in its established roles, and define a new cooperative role for these factors in another developmental epidermal migration event, eyelid fusion. GRHL3 and LMO4 interact biochemically and genetically, with mutant mice exhibiting fully penetrant exencephaly, thoraco-lumbo-sacral spina bifida, defective skin barrier formation, and a co-incident eyes-open-at-birth (EOB) phenotype, which is not observed in the original individual null lines. The two genes are co-expressed in the surface ectoderm of the migrating eyelid root, and electron microscopy of Grhl3/Lmo4-null eyes reveals a failure in epithelial extension and a lack of peridermal clump formation at the eyelid margins. Accumulation of actin fibers is also absent in the circumference of these eyelids, and ERK1/2 phosphorylation is lost in the epidermis and eyelids of Grhl3(-/-)/Lmo4(-/-) embryos. Keratinocytes from mutant mice fail to "heal" in in vitro scratch assays, consistent with a general epidermal migratory defect that is dependent on ERK activation and actin cable formation.

  4. Secretion of human epidermal growth factor (EGF) in autotrophic culture by a recombinant hydrogen-utilizing bacterium, Pseudomonas pseudoflava, carrying broad-host-range EGF secretion vector pKSEGF2.

    OpenAIRE

    Hayase, N; Ishiyama, A; Niwano, M

    1994-01-01

    We constructed the broad-host-range human epidermal growth factor (EGF) secretion plasmid pKSEGF2 by inserting the Escherichia coli tac promoter, the signal sequence of Pseudomonas stutzeri amylase, and the synthesized EGF gene into the broad-host-range vector pKT230. E. coli JM109 carrying pKSEGF2 secreted EGF into the periplasm and the culture medium under the control of the tac promoter. Pseudomonas aeruginosa PAO1161 carrying pKSEGF2 and Pseudomonas putida AC10 carrying pKSEGF2 secreted E...

  5. Growth functions for some uniformly amenable groups

    Directory of Open Access Journals (Sweden)

    Dronka Janusz

    2017-04-01

    Full Text Available We present a simple constructive proof of the fact that every abelian discrete group is uniformly amenable. We improve the growth function obtained earlier and find the optimal growth function in a particular case. We also compute a growth function for some non-abelian uniformly amenable group.

  6. The epidermal biosynthesis of cholecalciferol (vitamin D3)

    International Nuclear Information System (INIS)

    Beadle, P.C.

    1977-01-01

    An attempt has been made to calculate the rate of ultraviolet absorption by 7-dehydrocholesterol, provitamin D 3 , in the epidermis as a function of latitude, season and skin type, in the hope that it will provide an upper-limit estimate of the epidermal vitamin production. The results indicate that a significant fraction of the total epidermal production may occur in the stratum corneum with figures of 15 and 31% being found for non-pigmented and pigmented epidermises, respectively. Total production in negroid epidermis is predicted to be about 40% of that in the caucasian one and the latitudinal variation is greater than the seasonal variation, in agreement with the behaviour of the available solar ultraviolet. Overall production rates were sufficiently high for it to be unnecessary to invoke an enhanced absorption mechanism for the provitamin, although the results do indicate that there may be a risk of deficient production above about 40 0 N. (author)

  7. Epidermal cell death in frogs with chytridiomycosis

    Directory of Open Access Journals (Sweden)

    Laura A. Brannelly

    2017-02-01

    Full Text Available Background Amphibians are declining at an alarming rate, and one of the major causes of decline is the infectious disease chytridiomycosis. Parasitic fungal sporangia occur within epidermal cells causing epidermal disruption, but these changes have not been well characterised. Apoptosis (planned cell death can be a damaging response to the host but may alternatively be a mechanism of pathogen removal for some intracellular infections. Methods In this study we experimentally infected two endangered amphibian species Pseudophryne corroboree and Litoria verreauxii alpina with the causal agent of chytridiomycosis. We quantified cell death in the epidermis through two assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL and caspase 3/7. Results Cell death was positively associated with infection load and morbidity of clinically infected animals. In infected amphibians, TUNEL positive cells were concentrated in epidermal layers, correlating to the localisation of infection within the skin. Caspase activity was stable and low in early infection, where pathogen loads were light but increasing. In animals that recovered from infection, caspase activity gradually returned to normal as the infection cleared. Whereas, in amphibians that did not recover, caspase activity increased dramatically when infection loads peaked. Discussion Increased cell death may be a pathology of the fungal parasite, likely contributing to loss of skin homeostatic functions, but it is also possible that apoptosis suppression may be used initially by the pathogen to help establish infection. Further research should explore the specific mechanisms of cell death and more specifically apoptosis regulation during fungal infection.

  8. Genistein-mediated inhibition of glycosaminoglycan synthesis, which corrects storage in cells of patients suffering from mucopolysaccharidoses, acts by influencing an epidermal growth factor-dependent pathway

    Directory of Open Access Journals (Sweden)

    Barańska Sylwia

    2009-03-01

    Full Text Available Abstract Background Mucopolysaccharidoses (MPS are inherited metabolic disorders caused by mutations leading to dysfunction of one of enzymes involved in degradation of glycosaminoglycans (GAGs. Due to their impaired degradation, GAGs accumulate in cells of patients, which results in dysfunction of tissues and organs. Substrate reduction therapy is one of potential treatment of these diseases. It was demonstrated previously that genistein (4', 5, 7-trihydroxyisoflavone inhibits synthesis and reduces levels of GAGs in cultures of fibroblasts of MPS patients. Recent pilot clinical study indicated that such a therapy may be effective in MPS III (Sanfilippo syndrome. Methods To learn on details of the molecular mechanism of genistein-mediated inhibition of GAG synthesis, efficiency of this process was studied by measuring of incorporation of labeled sulfate, storage of GAGs in lysosomes was estimated by using electron microscopic techniques, and efficiency of phosphorylation of epidermal growth factor (EGF receptor was determined by using an ELISA-based assay with fluorogenic substrates. Results Effects of genistein on inhibition of GAG synthesis and accumulation in fibroblasts from patients suffering from various MPS types were abolished in the presence of an excess of EGF, and were partially reversed by an increased concentration of genistein. No such effects were observed when an excess of 17β-estradiol was used instead of EGF. Moreover, EGF-mediated stimulation of phsophorylation of the EGF receptor was impaired in the presence of genistein in both wild-type and MPS fibroblasts. Conclusion The results presented in this report indicate that the mechanism of genistein-mediated inhibition of GAG synthesis operates through epidermal growth factor (EGF-dependent pathway.

  9. Targeting the epidermal growth factor receptor in radiotherapy: radiobiological mechanisms, preclinical and clinical results

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild

    2004-01-01

    Background and purpose: Inhibition of the epidermal growth factor receptor (EGFR) is a fastly developing field in preclinical and clinical cancer research. This review presents the current status of knowledge and discusses radiobiological mechanisms which may underly the efficacy of EGFR inhibitors combined with irradiation. Materials and methods: Preclinical and clinical results on combined targeting of the EGFR and irradiation from the literature and from this laboratory are reviewed. Focus is given to the radiobiological rationale of this approach and to endpoints of experimental radiotherapy. Results: Overexpression of the EGFR is associated with decreased local tumour control after radiotherapy, especially when the overall treatment time is long. Inhibition of the EGFR either alone or in combination with irradiation decreases the growth rate of tumours expressing this receptor. Preclinical data provide proof-of-principle that local tumour control may be improved by combining irradiation with C225 mAb. In a randomised phase III clinical trial, simultaneous irradiation and treatment with the EGFR antibody Cetuximab (Erbitux[reg]; C225) in head and neck cancer patients resulted in significantly improved locoregional tumour control and survival compared to curative irradiation alone. Acute skin reactions increased in the experimental arm. The underlying mechanisms of enhanced radiation effects of combined EGFR inhibition with irradiation and of the partly conflicting results in different studies are poorly understood. There is increasing evidence, that important intertumoral heterogeneity in the response to EGFR inhibition alone and combined with irradiation exists, which appears to be at least partly dependent on specific mutations of the receptor as well as of molecules that are involved in the intracellular signal transduction pathway. Conclusions and outlook: Further investigations at all levels of the translational research chain exploring the mechanisms of

  10. Epidermal growth factor-like domain 7 is a marker of the endothelial lineage and active angiogenesis.

    Science.gov (United States)

    Bambino, Kathryn; Lacko, Lauretta A; Hajjar, Katherine A; Stuhlmann, Heidi

    2014-07-01

    Epidermal growth factor-like domain 7 (Egfl7) expression in the developing embryo is largely restricted to sites of mesodermal progenitors of angioblasts/hemangioblasts and the vascular endothelium. We hypothesize that Egfl7 marks the endothelial lineage during embryonic development, and can be used to define the emergence of endothelial progenitor cells, as well as to visualize newly-forming vasculature in the embryo and during the processes of physiologic and pathologic angiogenesis in the adult. We have generated a transgenic mouse strain that expresses enhanced green fluorescent protein (eGFP) under the control of a minimal Egfl7 regulatory sequence (Egfl7:eGFP). Expression of the transgene recapitulated that of endogenous Egfl7 at sites of vasculogenesis and angiogenesis in the allantois, yolk sac, and in the embryo proper. The transgene was not expressed in the quiescent endothelium of most adult organs. However, the uterus and ovary, which undergo vascular growth and remodeling throughout the estrus cycle, expressed high levels of Egfl7:eGFP. Importantly, expression of the Egfl7:eGFP transgene was induced in adult neovasculature. We also found that increased Egfl7 expression contributed to pathologic revascularization in the mouse retina. To our knowledge, this is the first mouse model that enables monitoring of endothelial cells at sites of active vasculogenesis and angiogenesis. This model also facilitated the isolation and characterization of EGFL7(+) endothelial cell populations by fluorescence activated cell sorting (FACS). Together, our results demonstrate that the Egfl7:eGFP reporter mouse is a valuable tool that can be used to elucidate the mechanisms by which blood vessels form during development and under pathologic circumstances. © 2014 Wiley Periodicals, Inc.

  11. Ethacrynic acid improves the antitumor effects of irreversible epidermal growth factor receptor tyrosine kinase inhibitors in breast cancer.

    Science.gov (United States)

    Liu, Bing; Huang, XinPing; Hu, YunLong; Chen, TingTing; Peng, BoYa; Gao, NingNing; Jin, ZhenChao; Jia, TieLiu; Zhang, Na; Wang, ZhuLin; Jin, GuangYi

    2016-09-06

    Prolonged treatment of breast cancer with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) often results in acquired resistance and a narrow therapeutic index. One strategy to improve the therapeutic effects of EGFR TKIs is to combine them with drugs used for other clinical indications. Ethacrynic acid (EA) is an FDA approved drug that may have antitumor effects and may enhance the cytotoxicity of chemotherapeutic agents by binding to glutathione and inhibiting WNT signaling. While the α,β-unsaturated-keto structure of EA is similar to that of irreversible TKIs, the mechanism of action of EA when combined with irreversible EGFR TKIs in breast cancer remains unknown. We therefore investigated the combination of irreversible EGFR TKIs and EA. We found that irreversible EGFR TKIs and EA synergistically inhibit breast cancer both in vitro and in vivo. The combination of EGFR TKIs and EA induces necrosis and cell cycle arrest and represses WNT/β-catenin signaling as well as MAPK-ERK1/2 signaling. We conclude that EA synergistically enhances the antitumor effects of irreversible EGFR TKIs in breast cancer.

  12. Epidermal Growth Factor Receptor targeting in non-small cell lung cancer: revisiting different strategies against the same target.

    Science.gov (United States)

    Castañón, Eduardo; Martín, Patricia; Rolfo, Christian; Fusco, Juan P; Ceniceros, Lucía; Legaspi, Jairo; Santisteban, Marta; Gil-Bazo, Ignacio

    2014-01-01

    Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) have changed the paradigm of treatment in non-small cell lung cancer (NSCLC). The molecular biology study of EGFR has led to clinical trials that select patients more accurately, regarding the presence of EGFR activating mutations. Nonetheless, a lack of response or a temporary condition of the response has been detected in patients on EGFR TKIs. This has urged to study potential resistance mechanisms underneath. The most important ones are the presence of secondary mutations in EGFR, such as T790M, or the overexpression of mesenchymal-epithelial transition factor (MET) that may explain why patients who initially respond to EGFR TKIs, may ultimately become refractory. Several approaches have been taken and new drugs both targeting EGFR resistance-mutation or MET are currently being developed. Here we review and update the EGFR biological pathway as well as the clinical data leading to approval of the EGFR TKIs currently in the market. New compounds under investigation targeting resistance mutations or dually targeting EGFR and other relevant receptors are also reviewed and discussed.

  13. Simultaneous screening of four epidermal growth factor receptor antagonists from Curcuma longa via cell membrane chromatography online coupled with HPLC-MS.

    Science.gov (United States)

    Sun, Meng; Ma, Wei-na; Guo, Ying; Hu, Zhi-gang; He, Lang-chong

    2013-07-01

    The epidermal growth factor receptors (EGFRs) are significant targets for screening active compounds. In this work, an analytical method was established for rapid screening, separation, and identification of EGFRs antagonists from Curcuma longa. Human embryonic kidney 293 cells with a steadily high expression of EGFRs were used to prepare the cell membrane stationary phase in a cell membrane chromatography model for screening active compounds. Separation and identification of the retention chromatographic peaks was achieved by HPLC-MS. The active sites, docking extents and inhibitory effects of the active compounds were also demonstrated. The screening result found that ar-turmerone, curcumin, demethoxycurcumin, and bisdemethoxycurcumin from Curcuma longa could be active components in a similar manner to gefitinib. Biological trials showed that all of four compounds can inhibit EGFRs protein secretion and cell growth in a dose-dependent manner, and downregulate the phosphorylation of EGFRs. This analytical method demonstrated fast and effective characteristics for screening, separation and identification of the active compounds from a complex system and should be useful for drug discovery with natural medicinal herbs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The cell-penetrating peptide domain from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) has anti-inflammatory activity in vitro and in vivo

    International Nuclear Information System (INIS)

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung; Park, Yoon-Jeong; Chung, Chong-Pyoung

    2012-01-01

    Highlights: ► HBP sequence identified from HB-EGF has cell penetration activity. ► HBP inhibits the NF-κB dependent inflammatory responses. ► HBP directly blocks phosphorylation and degradation of IκBα. ► HBP inhibits nuclear translocation of NF-κB p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cytokines (TNF-α and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-α and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-κB-dependent inflammatory responses by directly blocking the phosphorylation and degradation of IκBα and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-κB. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.

  15. Human epidermal growth factor receptor2 expression in unresectable gastric cancers: Relationship with CT characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Sub [Dept. of Radiology, Jeju National University Hospital, Jeju (Korea, Republic of); Kim, Se Hyung; Im, Seock Ah; Kim, Min A; Han, Joon Koo [Seoul National University Hospital, Seoul (Korea, Republic of)

    2017-09-15

    To retrospectively analyze the qualitative CT features that correlate with human epidermal growth factor receptor 2 (HER2)-expression in pathologically-proven gastric cancers. A total of 181 patients with pathologically-proven unresectable gastric cancers with HER2-expression (HER2-positive [n = 32] and negative [n = 149]) were included. CT features of primary gastric and metastatic tumors were reviewed. The prevalence of each CT finding was compared in both groups. Thereafter, binary logistic regression determined the most significant differential CT features. Clinical outcomes were compared using Kaplan-Meier method. HER2-postive cancers showed lower clinical T stage (21.9% vs. 8.1%; p = 0.015), hyperattenuation on portal phase (62.5% vs. 30.9%; p = 0.003), and was more frequently metastasized to the liver (62.5% vs. 32.2%; p = 0.001), than HER2-negative cancers. On binary regression analysis, hyperattenuation of the tumor (odds ratio [OR], 4.68; p < 0.001) and hepatic metastasis (OR, 4.43; p = 0.001) were significant independent factors that predict HER2-positive cancers. Median survival of HER2-positive cancers (13.7 months) was significantly longer than HER2-negative cancers (9.6 months) (p = 0.035). HER2-positive gastric cancers show less-advanced T stage, hyperattenuation on the portal phase, and frequently metastasize to the liver, as compared to HER2-negative cancers.

  16. Human epidermal growth factor receptor2 expression in unresectable gastric cancers: Relationship with CT characteristics

    International Nuclear Information System (INIS)

    Lee, Jeong Sub; Kim, Se Hyung; Im, Seock Ah; Kim, Min A; Han, Joon Koo

    2017-01-01

    To retrospectively analyze the qualitative CT features that correlate with human epidermal growth factor receptor 2 (HER2)-expression in pathologically-proven gastric cancers. A total of 181 patients with pathologically-proven unresectable gastric cancers with HER2-expression (HER2-positive [n = 32] and negative [n = 149]) were included. CT features of primary gastric and metastatic tumors were reviewed. The prevalence of each CT finding was compared in both groups. Thereafter, binary logistic regression determined the most significant differential CT features. Clinical outcomes were compared using Kaplan-Meier method. HER2-postive cancers showed lower clinical T stage (21.9% vs. 8.1%; p = 0.015), hyperattenuation on portal phase (62.5% vs. 30.9%; p = 0.003), and was more frequently metastasized to the liver (62.5% vs. 32.2%; p = 0.001), than HER2-negative cancers. On binary regression analysis, hyperattenuation of the tumor (odds ratio [OR], 4.68; p < 0.001) and hepatic metastasis (OR, 4.43; p = 0.001) were significant independent factors that predict HER2-positive cancers. Median survival of HER2-positive cancers (13.7 months) was significantly longer than HER2-negative cancers (9.6 months) (p = 0.035). HER2-positive gastric cancers show less-advanced T stage, hyperattenuation on the portal phase, and frequently metastasize to the liver, as compared to HER2-negative cancers

  17. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    International Nuclear Information System (INIS)

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-01-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 μM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure

  18. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells

    Directory of Open Access Journals (Sweden)

    Manpreet S. Chahal

    2010-07-01

    Full Text Available Phospholipase D2 (PLD2 generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  19. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells.

    Science.gov (United States)

    Chahal, Manpreet S; Brauner, Daniel J; Meier, Kathryn E

    2010-07-02

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  20. Toxic epidermal necrolysis successfully treated with etanercept.

    Science.gov (United States)

    Gubinelli, Emanuela; Canzona, Flora; Tonanzi, Tiziano; Raskovic, Desanka; Didona, Biagio

    2009-03-01

    Toxic epidermal necrolysis (TEN) is a rare and acute severe adverse reaction to drugs, characterised by massive apoptosis and widespread epidermal and mucosal detachment. Although no gold standard therapy exists, human i.v. immunoglobulins have recently been described as an effective treatment for this disease. We report a case of phenobarbital-induced TEN in a 59-year-old white woman where the epidermal detachment stopped 48 h after beginning the etanercept treatment with complete healing after 20 days. To the best of our knowledge, this is only the second reported case of TEN successfully treated with etanercept.

  1. The epidermal growth factor receptor (EGFr) as a target for in situ radiation therapy

    International Nuclear Information System (INIS)

    Vallis, K.A.; Reilly, R.M.

    2003-01-01

    In situ radiation therapy traditionally involves the use of a monoclonal antibody (mAb) directed against a specific tumor-associated antigen and labeled with α-particle emitter such as 131-I. An alternative strategy is to use a low molecular weight peptide rather than a mAb as the carrier molecule. Also, recent evidence shows that radioactive elements that emit Auger electrons may be useful for inducing receptor/cell-specific cytotoxicity. Auger electrons provide low energy emissions (<10-20 keV). Although they have a short range in tissue (a few mm), Auger electrons have a high rate of energy deposition that is comparable to high linear energy transfer radiation such as -particles. Human epidermal growth factor (hEGF) is a natural peptide ligand for EGFr, which is frequently overexpressed in breast cancer. EGF is rapidly internalized and translocated to the cell nucleus following binding to EGFr. We are developing a strategy of EGF conjugated to an Auger electron-emitting radionuclide, 111-In, as a treatment for EGFr-overexpressing breast cancers. This strategy has several advantages over the mAb approach, as EGF is an endogenous peptide and should not be immunogenic. Also, its small molecular size should facilitate extravasation and tumor penetration. We have shown that 111In-hEGF is highly and selectively radiotoxic to MDA-MB-468 human breast cancer cells overexpressing EGFr but was not radiotoxic to MCF-7 breast cancer cells with a 100-fold lower level of EGFr expression. We have also demonstrated that 111-In-hEGF was greater than 80-fold more potent on a molar concentration basis at inhibiting the growth of MDA-MB-468 breast cancer cells than paclitaxel (IC50 70 pM vs. 6 nM respectively) and greater than 400-fold more potent than doxorubicin (IC50 20 nM). We have evaluated the therapeutic efficacy of 111-In-hEGF in athymic mice implanted subcutaneously with MDA-MB-468 breast cancer xenografts. Tumour growth was strongly inhibited following administration of

  2. Differential regulation of type I interferon and epidermal growth factor pathways by a human Respirovirus virulence factor.

    Directory of Open Access Journals (Sweden)

    Grégory Caignard

    2009-09-01

    Full Text Available A number of paramyxoviruses are responsible for acute respiratory infections in children, elderly and immuno-compromised individuals, resulting in airway inflammation and exacerbation of chronic diseases like asthma. To understand the molecular pathogenesis of these infections, we searched for cellular targets of the virulence protein C of human parainfluenza virus type 3 (hPIV3-C. We found that hPIV3-C interacts directly through its C-terminal domain with STAT1 and GRB2, whereas C proteins from measles or Nipah viruses failed to do so. Binding to STAT1 explains the previously reported capacity of hPIV3-C to block type I interferon signaling, but the interaction with GRB2 was unexpected. This adaptor protein bridges Epidermal Growth Factor (EGF receptor to MAPK/ERK pathway, a signaling cascade recently found to be involved in airway inflammatory response. We report that either hPIV3 infection or transient expression of hPIV3-C both increase cellular response to EGF, as assessed by Elk1 transactivation and phosphorylation levels of ERK1/2, 40S ribosomal subunit protein S6 and translation initiation factor 4E (eIF4E. Furthermore, inhibition of MAPK/ERK pathway with U0126 prevented viral protein expression in infected cells. Altogether, our data provide molecular basis to explain the role of hPIV3-C as a virulence factor and determinant of pathogenesis and demonstrate that Paramyxoviridae have evolved a single virulence factor to block type I interferon signaling and to boost simultaneous cellular response to growth factors.

  3. BLIMP1 Is Required for Postnatal Epidermal Homeostasis but Does Not Define a Sebaceous Gland Progenitor under Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Kai Kretzschmar

    2014-10-01

    Full Text Available B-lymphocyte-induced nuclear maturation protein 1 (BLIMP1 was previously reported to define a sebaceous gland (SG progenitor population in the epidermis. However, the recent identification of multiple stem cell populations in the hair follicle junctional zone has led us to re-evaluate its function. We show, in agreement with previous studies, that BLIMP1 is expressed by postmitotic, terminally differentiated epidermal cells within the SG, interfollicular epidermis, and hair follicle. Epidermal overexpression of c-Myc results in loss of BLIMP1+ cells, an effect modulated by androgen signaling. Epidermal-specific deletion of Blimp1 causes multiple differentiation defects in the epidermis in addition to SG enlargement. In culture, BLIMP1+ sebocytes have no greater clonogenic potential than BLIMP1− sebocytes. Finally, lineage-tracing experiments reveal that, under steady-state conditions, BLIMP1-expressing cells do not divide. Thus, rather than defining a sebocyte progenitor population, BLIMP1 functions in terminally differentiated cells to maintain homeostasis in multiple epidermal compartments.

  4. A Novel NHE1-Centered Signaling Cassette Drives Epidermal Growth Factor Receptor–Dependent Pancreatic Tumor Metastasis and Is a Target for Combination Therapy

    Directory of Open Access Journals (Sweden)

    Rosa Angela Cardone

    2015-02-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers principally because of early invasion and metastasis. The epidermal growth factor receptor (EGFR is essential for PDAC development even in the presence of Kras, but its inhibition with erlotinib gives only a modest clinical response, making the discovery of novel EGFR targets of critical interest. Here, we revealed by mining a human pancreatic gene expression database that the metastasis promoter Na+/H+ exchanger (NHE1 associates with the EGFR in PDAC. In human PDAC cell lines, we confirmed that NHE1 drives both basal and EGF-stimulated three-dimensional growth and early invasion via invadopodial extracellular matrix digestion. EGF promoted the complexing of EGFR with NHE1 via the scaffolding protein Na+/H+ exchanger regulatory factor 1, engaging EGFR in a negative transregulatory loop that controls the extent and duration of EGFR oncogenic signaling and stimulates NHE1. The specificity of NHE1 for growth or invasion depends on the segregation of the transient EGFR/Na+/H+ exchanger regulatory factor 1/NHE1 signaling complex into dimeric subcomplexes in different lipid raftlike membrane domains. This signaling complex was also found in tumors developed in orthotopic mice. Importantly, the specific NHE1 inhibitor cariporide reduced both three-dimensional growth and invasion independently of PDAC subtype and synergistically sensitized these behaviors to low doses of erlotinib.

  5. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. © 2016 International Federation for Cell Biology.

  6. Synergistic Induction of Cyclooxygenase-2 by Transforming Growth Factor-β1 and Epidermal Growth Factor Inhibits Apoptosis in Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Debabrata Saha

    1999-12-01

    Full Text Available Increased expression of cyclooxygenase-2 (COX-2 expression has been observed in several human tumor types and in selected animal and cell culture models of carcinogenesis, including lung cancer. Increased expression of COX-2 and production of prostaglandins appear to provide a survival advantage to transformed cells through the inhibition of apoptosis, increased attachment to extracellular matrix, increased invasiveness, the stimulation of angiogenesis. In the present studies, we found that transforming growth factor β1 (TGF-β1 and epidermal growth factor (EGF synergistically induced the expression of COX-2 and prostaglandin E2 (PGE2 production in mink lung epithelial (Mvi Lu cells. EGF, but not PDGF or IGF-1, was able to inhibit TGF-β1-induced apoptosis in Mvi Lu cells and this effect was blocked by NS-398, a selective inhibitor of COX-2 activity, suggesting a possible role for COX-2 in the anti-apoptosic effect of EGF receptor ligands. The combination of TGF-β1 and EGF also significantly induced COX-2 expression in rat intestinal epithelial (RIE-1 cells and completely prevented sodium butyrate (NaBu-induced apoptosis. The synergistic induction of COX-2 by TGF-β1 and EGF was not observed in R1B-L17 cells, a line derived from Mvi Lu cells that lacks the TGF-β type-I receptor. AG1478, a selective inhibitor of EGF receptor tyrosine kinase activity, completely suppressed the induction of COX-2 expression by either EGF or TGF-β1+EGF. Also, PD98059, a specific inhibitor of MEK/ERK pathway, SB203580, a specific inhibitor of p38 MAPK activity, significantly inhibited the induction of COX-2 in response to combined EGF and TGF-β1. These results suggest an important collaborative interaction of TGF-β1 and EGF signaling in the induction of COX-2 and prostaglandin production in Mv1Lu cells.

  7. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    Directory of Open Access Journals (Sweden)

    Christley Scott

    2010-08-01

    Full Text Available Abstract Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a

  8. Epidermal stem cells response to radiative genotoxic stress

    International Nuclear Information System (INIS)

    Marie, Melanie

    2013-01-01

    Human skin is the first organ exposed to various environmental stresses, which requires the development by skin stem cells of specific mechanisms to protect themselves and to ensure tissue homeostasis. As stem cells are responsible for the maintenance of epidermis during individual lifetime, the preservation of genomic integrity in these cells is essential. My PhD aimed at exploring the mechanisms set up by epidermal stem cells in order to protect themselves from two genotoxic stresses, ionizing radiation (Gamma Rays) and ultraviolet radiation (UVB). To begin my PhD, I have taken part of the demonstration of protective mechanisms used by keratinocyte stem cells after ionizing radiation. It has been shown that these cells are able to rapidly repair most types of radiation-induced DNA damage. Furthermore, we demonstrated that this repair is activated by the fibroblast growth factor 2 (FGF2). In order to know if this protective mechanism is also operating in cutaneous carcinoma stem cells, we investigated the response to gamma Rays of carcinoma stem cells isolated from a human carcinoma cell line. As in normal keratinocyte stem cells, we demonstrated that cancer stem cells could rapidly repair radio-induced DNA damage. Furthermore, fibroblast growth factor 2 also mediates this repair, notably thanks to its nuclear isoforms. The second project of my PhD was to study human epidermal stem cells and progenitors responses to UVB radiation. Once cytometry and irradiation conditions were set up, the toxicity of UVB radiation has been evaluate in the primary cell model. We then characterized UVB photons effects on cell viability, proliferation and repair of DNA damage. This study allowed us to bring out that responses of stem cells and their progeny to UVB are different, notably at the level of part of their repair activity of DNA damage. Moreover, progenitors and stem cells transcriptomic responses after UVB irradiation have been study in order to analyze the global

  9. Epidermal growth factor receptor and B7-H3 expression in esophageal squamous tissues correlate to patient prognosis

    Directory of Open Access Journals (Sweden)

    Song J

    2016-10-01

    Full Text Available Jianxiang Song,1,2,* Woda Shi,1,2,* Yajun Zhang,2 Mingzhong Sun,3 Xiaodong Liang,3,4 Shiying Zheng1 1Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, People’s Republic of China; 2Department of Cardiothoracic Surgery, 3Department of Clinical Laboratory, 4Department of Pathology, The Third People’s Hospital of Yancheng City, Yancheng, Jiangsu Province, People’s Republic of China *These authors contributed equally to this work Abstract: Biomarkers that can serve as diagnostic and prognostic indicators of esophageal squamous cell carcinoma (ESCC are urgently needed to help improve patient outcomes. Here, the expression of epidermal growth factor receptor (EGFR and costimulatory molecule B7-H3, both of which have been implicated in tumor onset and progression in certain tumors, was investigated in relation to the clinical characteristics and survival outcomes of patients with ESCC. ESCC tissue samples were analyzed for 100 patients. Tumor and patient characteristics were recorded. Tissues were investigated for EGFR and B7-H3 staining by immunohistochemistry. Patients were followed for up to 96 months to determine overall survival (OS and progression-free survival (PFS. High expression for EGFR (68.0% and B7-H3 (66.0% was observed in the majority of cases. High expression of either EGFR or B7-H3 was correlated with tumor invasion depth and clinical stage (P<0.05. Further, high expression of either EGFR or B7-H3 was correlated with worse survival outcomes. The estimated OS (38.1 months and PFS (13.4 months of patients with high expression of EGFR were lower than those of patients with low expression (69.3 and 68.1 months, P<0.05. The estimated OS (31.1 months and PFS (13.1 months of patients with high expression of B7-H3 were also lower than those of patients with low expression (69.3 and 66.6 months, P<0.05. Indeed, Cox multiple regression showed that OS and PFS were

  10. Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function

    Science.gov (United States)

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara

    2013-01-01

    Accumulating evidence has implicated Rho GTPases, including Rac1, in many aspects of cancer development. Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that Rac1 T108 within the 106PNTP109 motif is likely an extracellular signal-regulated kinase (ERK) phosphorylation site and that Rac1 also has an ERK docking site, 183KKRKRKCLLL192 (D site), at the C terminus. Indeed, we show here that both transfected and endogenous Rac1 interacts with ERK and that this interaction is mediated by its D site. Green fluorescent protein (GFP)-Rac1 is threonine (T) phosphorylated in response to epidermal growth factor (EGF), and EGF-induced Rac1 threonine phosphorylation is dependent on the activation of ERK. Moreover, mutant Rac1 with the mutation of T108 to alanine (A) is not threonine phosphorylated in response to EGF. In vitro ERK kinase assay further shows that pure active ERK phosphorylates purified Rac1 but not mutant Rac1 T108A. We also show that Rac1 T108 phosphorylation decreases Rac1 activity, partially due to inhibiting its interaction with phospholipase C-γ1 (PLC-γ1). T108 phosphorylation targets Rac1 to the nucleus, which isolates Rac1 from other guanine nucleotide exchange factors (GEFs) and hinders Rac1's role in cell migration. We conclude that Rac1 T108 is phosphorylated by ERK in response to EGF, which plays an important role in regulating Rac1. PMID:24043306

  11. Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using (64)Cu-DOTA-trastuzumab PET.

    Science.gov (United States)

    Mortimer, Joanne E; Bading, James R; Colcher, David M; Conti, Peter S; Frankel, Paul H; Carroll, Mary I; Tong, Shan; Poku, Erasmus; Miles, Joshua K; Shively, John E; Raubitschek, Andrew A

    2014-01-01

    Women with human epidermal growth factor receptor 2 (HER2)-positive breast cancer are candidates for treatment with the anti-HER2 antibody trastuzumab. Assessment of HER2 status in recurrent disease is usually made by core needle biopsy of a single lesion, which may not represent the larger tumor mass or other sites of disease. Our long-range goal is to develop PET of radiolabeled trastuzumab for systemically assessing tumor HER2 expression and identifying appropriate use of anti-HER2 therapies. The purpose of this study was to evaluate PET/CT of (64)Cu-DOTA-trastuzumab for detecting and measuring tumor uptake of trastuzumab in patients with HER2-positive metastatic breast cancer. Eight women with biopsy-confirmed HER2-positive metastatic breast cancer and no anti-HER2 therapy for 4 mo or longer underwent complete staging, including (18)F-FDG PET/CT. For 6 of the 8 patients, (64)Cu-DOTA-trastuzumab injection (364-512 MBq, 5 mg of trastuzumab) was preceded by trastuzumab infusion (45 mg). PET/CT (PET scan duration 1 h) was performed 21-25 (day 1) and 47-49 (day 2) h after (64)Cu-DOTA-trastuzumab injection. Scan fields of view were chosen on the basis of (18)F-FDG PET/CT. Tumor detection sensitivity and uptake analyses were limited to lesions identifiable on CT; lesions visualized relative to adjacent tissue on PET were considered PET-positive. Radiolabel uptake in prominent lesions was measured as maximum single-voxel standardized uptake value (SUVmax). Liver uptake of (64)Cu was reduced approximately 75% with the 45-mg trastuzumab predose, without significant effect on tumor uptake. The study included 89 CT-positive lesions. Detection sensitivity was 77%, 89%, and 93% for day 1, day 2, and (18)F-FDG, respectively. On average, tumor uptake was similar for (64)Cu-DOTA-trastuzumab and (18)F-FDG (SUVmax and range, 8.1 and 3.0-22.5 for day 1 [n = 48]; 8.9 and 0.9-28.9 for day 2 [n = 38]; 9.7 and 3.3-25.4 for (18)F-FDG [n = 56]), but same-lesion SUVmax was not correlated

  12. Tight junction regulates epidermal calcium ion gradient and differentiation

    International Nuclear Information System (INIS)

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-01-01

    Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.

  13. Real-time visualization of macromolecule uptake by epidermal Langerhans cells in living animals.

    Science.gov (United States)

    Frugé, Rachel E; Krout, Colleen; Lu, Ran; Matsushima, Hironori; Takashima, Akira

    2012-03-01

    As a skin-resident member of the dendritic cell family, Langerhans cells (LCs) are generally regarded to function as professional antigen-presenting cells. Here we report a simple method to visualize the endocytotic activity of LCs in living animals. BALB/c mice received subcutaneous injection of FITC-conjugated dextran (DX) probes into the ear skin and were then examined under confocal microscopy. Large numbers of FITC(+) epidermal cells became detectable 12-24 hours after injection as background fluorescence signals began to disappear. Most (>90%) of the FITC(+) epidermal cells expressed Langerin, and >95% of Langerin(+) epidermal cells exhibited significant FITC signals. To assess intracellular localization, Alexa Fluor 546-conjugated DX probes were locally injected into IAβ-enhanced green fluorescent protein (EGFP) knock-in mice and Langerin-EGFP-diphtheria toxin receptor mice--three dimensional rotation images showed close association of most of the internalized DX probes with major histocompatibility complex (MHC) class II molecules, but not with Langerin molecules. These observations support the current view that LCs constantly sample surrounding materials, including harmful and innocuous antigens, at the environmental interface. Our data also validate the potential utility of the newly developed imaging approach to monitor LC function in wild-type animals.

  14. Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor

    International Nuclear Information System (INIS)

    Matsumoto, K.; Hashimoto, K.; Yoshikawa, K.; Nakamura, T.

    1991-01-01

    Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes

  15. Location of Primary Tumor and Benefit From Anti-Epidermal Growth Factor Receptor Monoclonal Antibodies in Patients With RAS and BRAF Wild-Type Metastatic Colorectal Cancer

    Science.gov (United States)

    Moretto, Roberto; Cremolini, Chiara; Rossini, Daniele; Pietrantonio, Filippo; Battaglin, Francesca; Mennitto, Alessia; Bergamo, Francesca; Loupakis, Fotios; Marmorino, Federica; Berenato, Rosa; Marsico, Valentina Angela; Caporale, Marta; Antoniotti, Carlotta; Masi, Gianluca; Salvatore, Lisa; Borelli, Beatrice; Fontanini, Gabriella; Lonardi, Sara; De Braud, Filippo

    2016-01-01

    Introduction. Right- and left-sided colorectal cancers (CRCs) differ in clinical and molecular characteristics. Some retrospective analyses suggested that patients with right-sided tumors derive less benefit from anti-epidermal growth factor receptor (EGFR) antibodies; however, molecular selection in those studies was not extensive. Patients and Methods. Patients with RAS and BRAF wild-type metastatic CRC (mCRC) who were treated with single-agent anti-EGFRs or with cetuximab-irinotecan (if refractory to previous irinotecan) were included in the study. Differences in outcome between patients with right- and left-sided tumors were investigated. Results. Of 75 patients, 14 and 61 had right- and left-sided tumors, respectively. None of the right-sided tumors responded according to RECIST, compared with 24 left-sided tumors (overall response rate: 0% vs. 41%; p = .0032), and only 2 patients with right-sided tumors (15%) versus 47 patients with left-sided tumors (80%) achieved disease control (p < .0001). The median duration of progression-free survival was 2.3 and 6.6 months in patients with right-sided and left-sided tumors, respectively (hazard ratio: 3.97; 95% confidence interval: 2.09–7.53; p < .0001). Conclusion. Patients with right-sided RAS and BRAF wild-type mCRC seemed to derive no benefit from single-agent anti-EGFRs. Implications for Practice: Right- and left-sided colorectal tumors have peculiar epidemiological and clinicopathological characteristics, distinct gene expression profiles and genetic alterations, and different prognoses. This study assessed the potential predictive impact of primary tumor site with regard to anti-epidermal growth factor receptor (EGFR) monoclonal antibody treatment in patients with RAS and BRAF wild-type metastatic colorectal cancer. The results demonstrated the lack of activity of anti-EGFRs in RAS and BRAF wild-type, right-sided tumors, thus suggesting a potential role for primary tumor location in driving treatment choices

  16. Human papillomavirus E6/E7 oncogenes promote mouse ear regeneration by increasing the rate of wound re-epithelization and epidermal growth.

    Science.gov (United States)

    Valencia, Concepción; Bonilla-Delgado, José; Oktaba, Katarzyna; Ocádiz-Delgado, Rodolfo; Gariglio, Patricio; Covarrubias, Luis

    2008-12-01

    Mammals have limited regeneration capacity. We report here that, in transgenic mice (Tg(bK6-E6/E7)), the expression of the E6/E7 oncogenes of human papilloma virus type 16 (HPV16) under the control of the bovine keratin 6 promoter markedly improves the mouse's capacity to repair portions of the ear after being wounded. Increased repair capacity correlates with an increased number of epidermal proliferating cells. In concordance with the expected effects of the E6 and E7 oncogenes, levels of p53 decreased and those of p16 in epidermal cells increased. In addition, we observed that wound re-epithelization proceeded faster in transgenic than in wild-type animals. After the initial re-epithelization, epidermal cell migration from the intact surrounding tissue appears to be a major contributor to the growing epidermis, especially in the repairing tissue of transgenic mice. We also found that there is a significantly higher number of putative epidermal stem cells in Tg(bK6-E6/E7) than in wild-type mice. Remarkably, hair follicles and cartilage regenerated within the repaired ear tissue, without evidence of tumor formation. We propose that the ability to regenerate ear portions is limited by the capacity of the epidermis to repair itself and grow.

  17. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  18. Effects of growth-promoting factors on proliferation of mouse ...

    African Journals Online (AJOL)

    SSCs) in vitro are critical to our understanding of male infertility, genetic resources and endangered species conservation. To investigate the effects of growth-promoting factors, epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and ...

  19. Expression of the epidermal growth factor system in eutopic endometrium from women with endometriosis differs from that in endometrium from healthy women

    DEFF Research Database (Denmark)

    Ejskjaer, Kirsten; Sorensen, Boe Sandahl; Poulsen, Steen Seier

    2008-01-01

    BACKGROUND: The epidermal growth factor (EGF) system comprises four receptors, HER1-4, and several ligands, and is cyclically expressed in endometrium from healthy fertile women. Our aim is to identify differences in expression of the EGF system between endometriotic and normal endometrium. METHODS......: We previously examined the EGF system in endometrial samples from healthy women (n = 14). Here we examine samples from endometrium (n = 23), endometriomas (n = 10) and peritoneal endometriosis (n = 9) from women with endometriosis (n = 23). mRNA expression of receptors and ligands from the EGF system...... was analyzed by real-time PCR, and proteins were localized by immunohistochemistry. RESULTS: Endometrial mRNA for HER1-3 was high compared with our previous findings in healthy endometrium, whereas HER4 and the ligands were unchanged. Endometriomas show lower expression of HER1-3 and no HER4 expression...

  20. Impact of Deferring Radiation Therapy in Patients With Epidermal Growth Factor Receptor-Mutant Non-Small Cell Lung Cancer Who Develop Brain Metastases.

    Science.gov (United States)

    Magnuson, William J; Yeung, Jacky T; Guillod, Paul D; Gettinger, Scott N; Yu, James B; Chiang, Veronica L

    2016-06-01

    To perform a retrospective analysis of patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma who developed brain metastases (BM) to evaluate our hypothesis that the use of upfront EGFR-tyrosine kinase inhibitors (TKIs), and deferral of radiation therapy (RT), would result in inferior intracranial progression-free survival but similar overall survival (OS). Of 202 patients diagnosed with EGFR-mutant NSCLC between July 1, 2008, and December 31, 2014, 71 developed BM. Twenty-one patients were excluded owing to prior EGFR-TKI use, EGFR-TKI resistance mutation, failure to receive EGFR-TKI after whole-brain radiation therapy (WBRT)/stereotactic radiosurgery (SRS) or develop brain metastases. A prospective, multi-institutional, randomized trial of upfront EGFR-TKI with RT at intracranial progression versus upfront RT followed by EGFR-TKI is urgently needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Epidermal Overexpression of Xenobiotic Receptor PXR Impairs the Epidermal Barrier and Triggers Th2 Immune Response.

    Science.gov (United States)

    Elentner, Andreas; Schmuth, Matthias; Yannoutsos, Nikolaos; Eichmann, Thomas O; Gruber, Robert; Radner, Franz P W; Hermann, Martin; Del Frari, Barbara; Dubrac, Sandrine

    2018-01-01

    The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    International Nuclear Information System (INIS)

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed

  3. Antibody guided irradiation of brain glioma by arterial infusion of radioactive monoclonal antibody against epidermal growth factor receptor and blood group A antigen

    Energy Technology Data Exchange (ETDEWEB)

    Epenetos, A.A.; Courtenay-Luck, N.; Pickering, D.; Hooker, G.; Lavender, J.P.; McKenzie, C.G. (Hammersmith Hospital, London (UK)); Durbin, H. (Imperial Cancer Research Fund, London (UK). Labs.)

    1985-05-18

    In a patient with recurrent grade IV glioma of the brain resistant to conventional treatment an antibody guided isotopic scan showed uptake by the tumour of a monoclonal antibody (9A) that was developed against epidermal growth factor receptor but cross reacted with blood group A antigen. As a therapeutic attempt antibody labelled with 1665 MBq (45.0 mCi) iodine-131 was delivered to the tumour area by infusion into the internal carotid artery. Computed tomography showed regression of the tumour after treatment, and an appreciable and sustained clinical improvement was noted without any toxicity. Delivery of irradiation guided by monoclonal antibody delivered by arterial infusion of the tumour area may be of clinical value in the treatment of brain gliomas resistant to conventional forms of treatment.

  4. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  5. Divergent epidermal growth factor receptor mutation patterns between smokers and non-smokers with lung adenocarcinoma.

    Science.gov (United States)

    Tseng, Jeng-Sen; Wang, Chih-Liang; Yang, Tsung-Ying; Chen, Chih-Yi; Yang, Cheng-Ta; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tsai, Chi-Ren; Chang, Gee-Chen

    2015-12-01

    Smoking status is an important determinant of the prevalence of epidermal growth factor receptor (EGFR) mutations in lung cancer patients. However, it is unclear whether smoking status could also influence the spectrum of EGFR mutations. We enrolled patients with lung adenocarcinoma from three medical centers in Taiwan. EGFR mutations were assessed by Sanger direct sequencing. The objective of this study was to evaluate the influence of smoking status on both the frequency and patterns of EGFR mutations. From 2001 to 2013, a total of 1175 patients with lung adenocarcinoma were enrolled for EGFR mutation analysis. The overall EGFR mutation rate was 59.6%, which was significantly higher in females than males (69.1% vs. 49.8%) and in non-smokers than current/former smokers (73.8% vs. 29.8%) (both Psmokers expressed L858R mutation less frequently (35.2% vs. 50.2%, P=0.005) and exon 19 deletions more frequently (52.8% vs 38.8%, P=0.008) than non-smokers. Smokers and non-smokers also had divergent exon 19 deletions subtypes (Del E746-A750 82.5% vs. 57.6%, respectively, Psmokers were associated with a higher rate of complex mutations than non-smokers (34.2% vs. 8.4%, P<0.001). Our results suggested that smoking status could influence not only the frequency but also the spectrum of EGFR mutations. These findings provide a clue for further investigation of EGFR mutagenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Combination treatment with ionising radiation and gefitinib ('Iressa', ZD1839), an epidermal growth factor receptor (EGFR) inhibitor, significantly inhibits bladder cancer cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Colquhoun, AJ; Mchugh, LA; Tulchinsky, E.; Kriajevska, M.; Mellon, JK

    2007-01-01

    External beam radiotherapy (EBRT) is the principal bladder-preserving monotherapy for muscle-invasive bladder cancer. Seventy percent of muscle-invasive bladder cancers express epidermal growth factor receptor (EGFR), which is associated with poor prognosis. Ionising radiation (IR) stimulates EGFR causing activation of cytoprotective signalling cascades and thus may be an underlying cause of radioresistance in bladder tumours. We assessed the ability of IR to activate EGFR in bladder cancer cells and the effect of the anti-EGFR therapy, gefitinib on potential radiation-induced activation. Subsequently we assessed the effect of IR on signalling pathways downstream of EGFR. Finally we assessed the activity of gefitinib as a monotherapy, and in combination with IR, using clonogenic assay in vitro, and a murine model in vivo. IR activated EGFR and gefitinib partially inhibited this activation. Radiation-induced activation of EGFR activated the MAPK and Akt pathways. Gefitinib partially inhibited activation of the MAPK pathway but not the Akt pathway. Treatment with combined gefitinib and IR significantly inhibited bladder cancer cell colony formation more than treatment with gefitinib alone (p=0.001-0.03). J82 xenograft tumours treated with combined gefitinib and IR showed significantly greater growth inhibition than tumours treated with IR alone (p=0.04). Combining gefitinib and IR results in significantly greater inhibition of invasive bladder cancer cell colony formation in vitro and significantly greater tumour growth inhibition in vivo. Given the high frequency of EGFR expression by bladder tumours and the low toxicity of gefitinib there is justification to translate this work into a clinical trial. (author)

  7. Bio-imaging of colorectal cancer models using near infrared labeled epidermal growth factor.

    Directory of Open Access Journals (Sweden)

    Gadi Cohen

    Full Text Available Novel strategies that target the epidermal growth factor receptor (EGFR have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues.

  8. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor.

    Science.gov (United States)

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Incidental Squamous Cell Carcinoma in an Epidermal Inclusion Cyst: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Ethan Frank

    2018-03-01

    Full Text Available Epidermal inclusion cysts are common lesions that rarely develop into squamous cell carcinoma (SCC. Neoplastic change in these cysts can be associated with prominent symptoms such as pain, rapid growth, or ulceration. This study describes the case of a 64-year-old woman with a 4-year history of a largely asymptomatic neck mass, which after routine excision was found to be an epidermal inclusion cyst harboring well-differentiated SCC. The diagnosis was made incidentally after routine cyst bisection and hematoxylin and eosin staining. Given the potential for variable presentation and low cost of hematoxylin and eosin analysis, we recommend a low threshold for a comprehensive pathological search for malignancy in excised cysts when appropriate.

  10. Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells.

    Science.gov (United States)

    Mantovani, Fernanda B; Morrison, Jodi A; Mutsaers, Anthony J

    2016-05-31

    Radiation therapy is a palliative treatment modality for canine osteosarcoma, with transient improvement in analgesia observed in many cases. However there is room for improvement in outcome for these patients. It is possible that the addition of sensitizing agents may increase tumor response to radiation therapy and prolong quality of life. Epidermal growth factor receptor (EGFR) expression has been documented in canine osteosarcoma and higher EGFR levels have been correlated to a worse prognosis. However, effects of EGFR inhibition on radiation responsiveness in canine osteosarcoma have not been previously characterized. This study examined the effects of the small molecule EGFR inhibitor erlotinib on canine osteosarcoma radiation responses, target and downstream protein expression in vitro. Additionally, to assess the potential impact of treatment on tumor angiogenesis, vascular endothelial growth factor (VEGF) levels in conditioned media were measured. Erlotinib as a single agent reduced clonogenic survival in two canine osteosarcoma cell lines and enhanced the impact of radiation in one out of three cell lines investigated. In cell viability assays, erlotinib enhanced radiation effects and demonstrated single agent effects. Erlotinib did not alter total levels of EGFR, nor inhibit downstream protein kinase B (PKB/Akt) activation. On the contrary, erlotinib treatment increased phosphorylated Akt in these osteosarcoma cell lines. VEGF levels in conditioned media increased after erlotinib treatment as a single agent and in combination with radiation in two out of three cell lines investigated. However, VEGF levels decreased with erlotinib treatment in the third cell line. Erlotinib treatment promoted modest enhancement of radiation effects in canine osteosarcoma cells, and possessed activity as a single agent in some cell lines, indicating a potential role for EGFR inhibition in the treatment of a subset of osteosarcoma patients. The relative radioresistance of

  11. Epidermal and dermal integumentary structures of ankylosaurian dinosaurs.

    Science.gov (United States)

    Arbour, Victoria M; Burns, Michael E; Bell, Phil R; Currie, Philip J

    2014-01-01

    Ankylosaurian dinosaurs are most notable for their abundant and morphologically diverse osteoderms, which would have given them a spiky appearance in life. Isolated osteoderms are relatively common and provide important information about the structure of the ankylosaur dermis, but fossilized impressions of the soft-tissue epidermis of ankylosaurs are rare. Nevertheless, well-preserved integument exists on several ankylosaur fossils that shows osteoderms were covered by a single epidermal scale, but one or many millimeter-sized ossicles may be present under polygonal, basement epidermal scales. Evidence for the taxonomic utility of ankylosaurid epidermal scale architecture is presented for the first time. This study builds on previous osteological work that argues for a greater diversity of ankylosaurids in the Dinosaur Park Formation of Alberta than has been traditionally recognized and adds to the hypothesis that epidermal skin impressions are taxonomically relevant across diverse dinosaur clades. Copyright © 2013 Wiley Periodicals, Inc.

  12. Co-inhibition of epidermal growth factor receptor and insulin-like growth factor receptor 1 enhances radiosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Li, Ping; Veldwijk, Marlon R; Zhang, Qing; Li, Zhao-bin; Xu, Wen-cai; Fu, Shen

    2013-01-01

    Over-expression of epidermal growth factor receptor (EGFR) or insulin-like growth factor-1 receptor (IGF-1R) have been shown to closely correlate with radioresistance of breast cancer cells. This study aimed to investigate the impact of co-inhibition of EGFR and IGF-1R on the radiosensitivity of two breast cancer cells with different profiles of EGFR and IGF-1R expression. The MCF-7 (EGFR +/−, IGF-1R +++) and MDA-MB-468 (EGFR +++, IGF-1R +++) breast cancer cell lines were used. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle distribution were measured by flow cytometry. Phospho-Akt and phospho-Erk1/2 were quantified by western blot. In vivo studies were conducted using MDA-MB-468 cells xenografted in nu/nu mice. In MDA-MB-468 cells, the inhibition of IGF-1R upregulated the p-EGFR expression. Either EGFR (AG1478) or IGF-1R inhibitor (AG1024) radiosensitized MDA-MB-468 cells. In MCF-7 cells, radiosensitivity was enhanced by AG1024, but not by AG1478. Synergistical radiosensitizing effect was observed by co-inhibition of EGFR and IGF-1R only in MDA-MB-468 cells with a DMF 10% of 1.90. The co-inhibition plus irradiation significantly induced more apoptosis and arrested the cells at G0/G1 phase in MDA-MB-468 cells. Only co-inhibition of EGFR and IGF-1R synergistically diminished the expression of p-Akt and p-Erk1/2 in MDA-MB-468 cells. In vivo studies further verified the radiosensitizing effects by co-inhibition of both pathways in a MDA-MB-468 xenograft model. Our data suggested that co-inhibition of EGFR and IGF-1R synergistically radiosensitized breast cancer cells with both EGFR and IGF-1R high expression. The approach may have an important therapeutic implication in the treatment of breast cancer patients with high expression of EGFR and IGF-1R

  13. The epidermal growth factor receptor as a target for gastrointestinal cancer therapy.

    Science.gov (United States)

    Tedesco, Karen L; Lockhart, A Craig; Berlin, Jordan D

    2004-10-01

    The epidermal growth factor receptor (EGFR) is a member of the family of transmembrane protein kinase receptors known as the erbB or HER receptor family. When activated, EGFR phosphorylates and activates other intracellular proteins that affect cell signaling pathways, cellular proliferation, control of apoptosis and angiogenesis. EGFR signaling is best thought of as a network of activating and inactivating proteins with EGFR as the entry point into the network. EGFR overexpression occurs in most GI malignancies and while data are not entirely consistent, EGFR overexpression often confers a poor prognosis in those GI malignancies that have been studied. It often correlates with poorly differentiated histology, more advanced stage and other known poor prognostic markers. The EGFR is a tempting target because of its presence and overexpression on so many tumor types. However, downstream of the EGFR are several proteins that may be activated without EGFR thus allowing blockade to be overcome. Therefore, while blocking the activity of the EGFR protein appears to be a promising anticancer strategy, a simplistic strategy of blocking only EGFR is likely to only impact a minority of patients. It is time for the laboratory and clinical researchers to work closely together to develop this treatment strategy, moving back and forth from clinical to laboratory to best understand how to block this network effectively enough to produce a broader antitumor effect. While multiple methods of targeting the EGFR pathway are under development, including the inhibition of downstream proteins, only two modalities have entered clinical trials in GI malignancies: small molecule inhibitors of the intracellular kinase domain of EGFR and antibodies designed to block the extracellular ligand-binding domain of EGFR. EGFR inhibitors are still experimental in every GI malignancy with the notable exception of cetuximab that is approved for second or third-line therapy of metastatic colorectal

  14. Epidermal growth factor (EGF) as a potential targeting agent for delivery of boron to malignant gliomas

    International Nuclear Information System (INIS)

    Capala, J.; Barth, R.F.; Adams, D.M.; Bailey, M.Q.; Soloway, A.H.; Carlsson, J.

    1994-01-01

    The majority of high grade gliomas express an amplified epidermal growth factor receptor (EGFR) gene, and this often is associated with an increase in cell surface receptor expression. The rapid internalization and degradation of EGF-EGFR complexes, as well as their high affinity make EGF a potential targeting agent for delivery of 10 B to tumor cells with an amplified number of EGFR. Human glioma cells can expresses as many as 10 5 -10 6 EGF receptors per cell, and if these could be saturated with boronated EGF, then > 10 8 boron atoms would be delivered per cell. Since EGF has a comparatively low molecular weight (∼ 6 kD), this has allowed us to construct relatively small bioconjugates containing ∼ 900 boron atoms per EGF molecule 3 , which also had high affinity for EGFR on tumor cells. In the present study, the feasibility of using EGF receptors as a potential target for therapy of gliomas was investigated by in vivo scintigraphic studies using 131 I- or 99m T c -labeled EGF in a rat brain tumor model. Our results indicate that intratumorally delivered boron- EGF conjugates might be useful for targeting EGFR on glioma cells if the boron containing moiety of the conjugates persisted intracellularly. Further studies are required, however, to determine if this approach can be used for BNCT of the rat glioma

  15. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Su Jin [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Kim, Tae Jung [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Samsung Medical Center, Department of Radiology, Seoul (Korea, Republic of); Choi, Yo Won [Hanyang University, Department of Radiology, School of Medicine, Seoul (Korea, Republic of); Park, Jeong-Soo [Dankook Universicity, Department of Biochemistry, College of Medicine, Cheonan (Korea, Republic of); Chung, Jin-Haeng [Seoul National University Bundang Hospital, Department of Pathology, Seongnam-si, Gyeonggi-do (Korea, Republic of); Lee, Kyung Won [Seoul National University Bundang Hospital, Department of Radiology, Seongnam-si, Gyeonggi-do (Korea, Republic of)

    2016-10-15

    To correlate imaging features of resected lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutation and the IASLC/ATS/ERS classification histological subtypes. In 250 consecutive patients with resected lung adenocarcinoma, EGFR mutation status was correlated with demographics, imaging features including ground-glass opacity (GGO) proportion and the IASLC/ATS/ERS classification histological subtypes. EGFR mutations were significantly more frequent in women (54.5 % vs. 38.1 %, p = 0.011) and in never-smokers (54.7 % vs. 35.3 %, p = 0.003). GGO proportion was significantly higher in tumours with EGFR mutation than in those without (30.3 ± 33.8 % vs. 19.0 ± 29.3 %, p = 0.005). EGFR mutation was significantly more frequent in tumours with GGO ≥ 50 % and tumours with any GGO (p = 0.026 and 0.008, respectively). Adenocarcinomas with exon 19 or 21 mutation showed significantly higher GGO proportion than that in EGFR wild-type tumours (p = 0.009 and 0.029, respectively). Absence of GGO was an independent predictor of negative EGFR mutation (odds ratio, 1.81; 95 % confidence interval, 1.16-3.04; p = 0.018). GGO proportion in adenocarcinomas with EGFR mutation was significantly higher than that in EGFR wild-type tumours, and the absence of GGO on CT was an independent predictor of negative EGFR mutation. (orig.)

  16. Noise Stress Induces an Epidermal Growth Factor Receptor/Xeroderma Pigmentosum-A Response in the Auditory Nerve.

    Science.gov (United States)

    Guthrie, O'neil W

    2017-03-01

    In response to toxic stressors, cancer cells defend themselves by mobilizing one or more epidermal growth factor receptor (EGFR) cascades that employ xeroderma pigmentosum-A (XPA) to repair damaged genes. Recent experiments discovered that neurons within the auditory nerve exhibit basal levels of EGFR+XPA co-expression. This finding implied that auditory neurons in particular or neurons in general have the capacity to mobilize an EGFR+XPA defense. Therefore, the current study tested the hypothesis that noise stress would alter the expression pattern of EGFR/XPA within the auditory nerve. Design-based stereology was used to quantify the proportion of neurons that expressed EGFR, XPA, and EGFR+XPA with and without noise stress. The results revealed an intricate neuronal response that is suggestive of alterations to both co-expression and individual expression of EGFR and XPA. In both the apical and middle cochlear coils, the noise stress depleted EGFR+XPA expression. Furthermore, there was a reduction in the proportion of neurons that expressed XPA-alone in the middle coils. However, the noise stress caused a significant increase in the proportion of neurons that expressed EGFR-alone in the middle coils. The basal cochlear coils failed to mobilize a significant response to the noise stress. These results suggest that EGFR and XPA might be part of the molecular defense repertoire of the auditory nerve.

  17. Noise Stress Induces an Epidermal Growth Factor Receptor/Xeroderma Pigmentosum–A Response in the Auditory Nerve

    Science.gov (United States)

    Guthrie, O’neil W.

    2017-01-01

    In response to toxic stressors, cancer cells defend themselves by mobilizing one or more epidermal growth factor receptor (EGFR) cascades that employ xeroderma pigmentosum–A (XPA) to repair damaged genes. Recent experiments discovered that neurons within the auditory nerve exhibit basal levels of EGFR+XPA co-expression. This finding implied that auditory neurons in particular or neurons in general have the capacity to mobilize an EGFR+XPA defense. Therefore, the current study tested the hypothesis that noise stress would alter the expression pattern of EGFR/XPA within the auditory nerve. Design-based stereology was used to quantify the proportion of neurons that expressed EGFR, XPA, and EGFR+XPA with and without noise stress. The results revealed an intricate neuronal response that is suggestive of alterations to both co-expression and individual expression of EGFR and XPA. In both the apical and middle cochlear coils, the noise stress depleted EGFR+XPA expression. Furthermore, there was a reduction in the proportion of neurons that expressed XPA-alone in the middle coils. However, the noise stress caused a significant increase in the proportion of neurons that expressed EGFR-alone in the middle coils. The basal cochlear coils failed to mobilize a significant response to the noise stress. These results suggest that EGFR and XPA might be part of the molecular defense repertoire of the auditory nerve. PMID:28056182

  18. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells.

    Science.gov (United States)

    Alper, O; De Santis, M L; Stromberg, K; Hacker, N F; Cho-Chung, Y S; Salomon, D S

    2000-11-15

    Over-expression of epidermal growth factor receptor (EGFR) in ovarian cancer has been well documented. Human NIH:OVCAR-8 ovarian carcinoma cells were transfected with an expression vector containing the anti-sense orientation of truncated human EGFR cDNA. EGFR anti-sense over-expression resulted in decreased EGFR protein and mRNA expression, cell proliferation and tumor formation in nude mice. In accordance with the reduced levels of EGFR in EGFR anti-sense-expressing cells, tyrosine phosphorylation of EGFR was decreased compared to untransfected parental cells treated with EGF. In EGFR anti-sense-transfected cells, expression of erbB-3, but not erbB-2, was increased. In addition, basal and heregulin-beta 1-stimulated tyrosine phosphorylation of erbB-3 was higher in EGFR anti-sense vector-transfected cells. A morphological alteration in EGFR anti-sense gene-expressing cells was correlated with a decrease in the expression of E-cadherin, alpha-catenin and, to a lesser extent, beta-catenin. Changes in the expression of these proteins were associated with a reduction in complex formation among E-cadherin, beta-catenin and alpha-catenin and between beta-catenin and EGFR in EGFR anti-sense-expressing cells compared to sense-transfected control cells. These results demonstrate that EGFR expression in ovarian carcinoma cells regulates expression of cell adhesion proteins that may enhance cell growth and invasiveness. Copyright 2000 Wiley-Liss, Inc.

  19. Effects of epidermal growth factor in artificial tear on vitamin C levels of corneal wounded eye tissues.

    Science.gov (United States)

    Gönül, B; Kaplan, B; Bilgihan, K; Budak, M T

    2001-04-01

    To investigate the effect of artificial tear (AT) solution and epidermal growth factor (EGF) treatment on the cornea and aqueous humour ascorbic acid (AA) levels of full-thickness corneal wounded eyes. The effect of EGF on the AA levels of aqueous humour and corneal wound tissue was determined in full-thickness corneal wounded rabbit eyes on the seventh post-operative day. There were three groups: untreated controls, AT-treated controls and an EGF+AT-treated experimental group (n = 6 in each group). Corneal wounded eyes were topically treated with 5 microl AT or 5 microl EGF in AT (1 mg/l EGF in AT prepaaration which contained 3.0% carbopol 940) twice daily for 6 days after operation. The wound strengths were also measured on the seventh post-operative day as a measure of wound healing. Statistical analysis was carried out using the Mann-Whitney U-test by Statview program. The wound strengths of corneas, and AA levels of wound tissues and aqueous humour, increased significantly following AT and EGF treatment (p < 0.05). In the corneal wounded eye, aqueous humour serves as a source of vitamin C and there may be a relation between EGF treatment in AT and AA levels of corneal wounded eye tissues.

  20. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation

    International Nuclear Information System (INIS)

    Moerkens, Marja; Zhang, Yinghui; Wester, Lynn; Water, Bob van de; Meerman, John HN

    2014-01-01

    Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical data suggests that increased expression of receptor tyrosine kinases is involved. Here, we studied the estrogen and anti-estrogen sensitivity of human breast cancer MCF7 cells that have a moderate, retroviral-mediated, ectopic expression of epidermal growth factor receptor (MCF7-EGFR). Proliferation of MCF7-EGFR and parental cells was induced by 17β-estradiol (E2), epidermal growth factor (EGF) or a combination of these. Inhibition of proliferation under these conditions was investigated with 4-hydroxy-tamoxifen (TAM) or fulvestrant at 10 -12 to 10 -6 M. Cells were lysed at different time points to determine the phosphorylation status of EGFR, MAPK 1/3 , AKT and the expression of ERα. Knockdown of target genes was established using smartpool siRNAs. Transcriptomics analysis was done 6 hr after stimulation with growth factors using Affymetrix HG-U133 PM array plates. While proliferation of parental MCF7 cells could only be induced by E2, proliferation of MCF7-EGFR cells could be induced by either E2 or EGF. Treatment with TAM or fulvestrant did significantly inhibit proliferation of MCF7-EGFR cells stimulated with E2 alone. EGF treatment of E2/TAM treated cells led to a marked cell proliferation thereby overruling the anti-estrogen-mediated inhibition of cell proliferation. Under these conditions, TAM however did still inhibit ERα- mediated transcription. While siRNA-mediated knock-down of EGFR inhibited the EGF- driven proliferation under TAM/E2/EGF condition, knock down of ERα did not. The TAM resistant cell proliferation mediated by the conditional EGFR-signaling may be dependent on the PI3K/Akt pathway but not the MEK/MAPK pathway, since a MEK inhibitor (U0126), did not block the proliferation. Transcriptomic analysis under the various E2/TAM

  1. Gene and protein expression of epidermal growth factor measured on the kidney 24 hours after irradiation correlates to late radiation damage

    International Nuclear Information System (INIS)

    Otsuka, Makoto; Hatakenaka, Masamitsu

    2001-01-01

    This study was designed to evaluate the proliferative response of epidermal growth factor (EGF) gene expression as an early indicator of late renal radiation damage. EGF gene expression was measured in the irradiated left kidney of C3H/HeSlc mice using RT-PCR 24 hours after radiation doses of 9, 12, or 15 Gy. In a second experiment, the same radiation doses were administered to the right kidney plus the lower half of the left kidney. The partly irradiated left kidneys were harvested and EGF gene expression was measured. The irradiated whole right kidneys were subjected to immunohistochemical staining for EGF protein. In a third experiment, 12 Gy was administered to the right kidney plus the lower half of the left kidney. The mice underwent left nephrectomy 24 hours after radiation, and the EGF gene expression in the kidney was correlated with the blood urea nitrogen (BUN) level representing late renal functional damage. EGF expression increased in 1 of 10 control mice and in 9 of 10 mice that received 15 Gy. The extent of increase of EGF was dependent on radiation dose. In mice having an increased BUN level after irradiation, 7 of 10 had EGF positive irradiated kidneys. All six mice whose BUN levels were unchanged had EGF-negative irradiated kidneys. EGF protein staining was observed in tubule cells only, not in glomerular cells. The amount of EGF protein staining correlated with radiation dose to some extent. EGF gene expression seems to be a very early indicator of late radiation damage to the kidney. (author)

  2. Anti-Epidermal Growth Factor Receptor Therapy in Head and Neck Squamous Cell Carcinoma: Focus on Potential Molecular Mechanisms of Drug Resistance

    Science.gov (United States)

    Baay, Marc; Wouters, An; Specenier, Pol; Vermorken, Jan B.; Peeters, Marc; Lardon, Filip

    2013-01-01

    Targeted therapy against the epidermal growth factor receptor (EGFR) is one of the most promising molecular therapeutics for head and neck squamous cell carcinoma (HNSCC). EGFR is overexpressed in a wide range of malignancies, including HNSCC, and initiates important signal transduction pathways in HNSCC carcinogenesis. However, primary and acquired resistance are serious problems and are responsible for low single-agent response rate and tumor recurrence. Therefore, an improved understanding of the molecular mechanisms of resistance to EGFR inhibitors may provide valuable indications to identify biomarkers that can be used clinically to predict response to EGFR blockade and to establish new treatment options to overcome resistance. To date, no predictive biomarker for HNSCC is available in the clinic. Therapeutic resistance to anti-EGFR therapy may arise from mechanisms that can compensate for reduced EGFR signaling and/or mechanisms that can modulate EGFR-dependent signaling. In this review, we will summarize some of these molecular mechanisms and describe strategies to overcome that resistance. PMID:23821327

  3. Baseline and Trend of Lymphocyte-to-Monocyte Ratio as Prognostic Factors in Epidermal Growth Factor Receptor Mutant Non-Small Cell Lung Cancer Patients Treated with First-Line Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors.

    Directory of Open Access Journals (Sweden)

    Yu-Mu Chen

    Full Text Available Patients with early-stage lung cancer who have a high baseline lymphocyte-to-monocyte ratio (LMR have a favorable prognosis. However, the prognostic significance of LMR in patients with advanced-stage EGFR-mutant non-small cell lung cancer (NSCLC receiving first-line epidermal growth factor receptor (EGFR-tyrosine kinase inhibitors (TKIs has not been established. We conducted a retrospective analysis to investigate the influence of LMR on clinical outcomes including progression-free survival (PFS and overall survival (OS in EGFR-mutant patients with NSCLC.Of 1310 lung cancer patients diagnosed between January 2011 and October 2013, 253 patients receiving first-line EGFR-TKIs for EGFR-mutant NSCLC were included. The cut-off values for baseline and the 1-month-to-baseline ratio of LMR (MBR, determined by using receiver operating characteristic curves, were 3.29 and 0.63, respectively. Patients were divided into 3 prognostic groups: high LMR and MBR, high LMR or MBR, and low LMR and MBR.The mean patient age was 65.2 years, and 41% were men. The median PFS and OS were 10.3 and 22.0 months, respectively. The PFS in patients with high LMR and MBR, high LMR or MBR, and low LMR and MBR were 15.4, 7.1, and 2.0 months, respectively (p < 0.001, whereas the OS were 32.6, 13.7, and 5.1 months, respectively (p < 0.001.A combination of baseline and trend of LMR can be used to identify patients with a high mortality risk in EGFR-mutant NSCLC patients receiving first-line EGFR-TKIs.

  4. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states.

    Directory of Open Access Journals (Sweden)

    Rachel Herndon Klein

    2017-04-01

    Full Text Available Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.

  5. AZD9291 in epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2016-02-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in advanced EGFR mutant non-small cell lung cancer have an objective response rate (ORR) of approximately 60-70% and a median progression free-survival (PFS) of approximately 10-13 months. Studies of tumor biopsies performed after progression on EGFR TKI revealed that 50-60% of EGFR mutant NSCLC developed an EGFR exon 20 T790M mutation as a mechanism of acquired resistance. AZD9291 is a third generation irreversible EGFR TKI with activity against the activating EGFR mutation, the T790M acquired resistance mutation, and relative sparing of the wild-type EGFR. AZD9291 was investigated in a phase I trial with expansion cohorts in patients with disease progression after EGFR TKI. Patients with and without detectable T790M mutations were enrolled in the trial. The ORR in patients with centrally confirmed and without detectable T790M mutations was 61% (95% CI, 52-70%) and 21% (95% CI, 12-34%), respectively. The PFS observed in patients with centrally confirmed and without detectable T790M mutations was 9.6 months (95% CI, 8.3 to not reached) and 2.8 months (95% CI, 2.1-4.3 months), respectively. At the dose for further investigation, 80 mg daily, the rate of all grade 3-5 drug related adverse events was 11%, and the rates of grade 3 diarrhea and rash were 1% and 0%, respectively. The identification of the T790M resistance mutation and the subsequent development of an agent against the mechanism of resistance provide a template for future drug development for acquired resistance to targeted therapy.

  6. Glucocorticoid receptor, but not mineralocorticoid receptor, mediates cortisol regulation of epidermal ionocyte development and ion transport in zebrafish (danio rerio.

    Directory of Open Access Journals (Sweden)

    Shelly Abad Cruz

    Full Text Available Cortisol is the major endogenous glucocorticoid (GC both in human and fish, mediated by corticosteroid receptors. Due to the absence of aldosterone production in teleost fish, cortisol is also traditionally accepted to function as mineralocorticoid (MC; but whether it acts through the glucocorticoid receptor (GR or the mineralocorticoid receptor (MR remains a subject of debate. Here, we used loss-of-function and rescue assays to determine whether cortisol affects zebrafish epidermal ionocyte development and function via the GR and/or the MR. GR knockdown morphants displayed a significant decrease in the major ionocytes, namely Na(+-K(+-ATPase-rich cells (NaRCs and H(+-ATPase-rich cells (HRCs, as well as other cells, including epidermal stem cells (ESCs, keratinocytes, and mucus cells; conversely, cell numbers were unaffected in MR knockdown morphants. In agreement, GR morphants, but not MR morphants, exhibited decreased NaRC-mediated Ca(2+ uptake and HRC-mediated H(+ secretion. Rescue via GR capped mRNA injection or exogenous cortisol incubation normalized the number of epidermal ionocytes in GR morphants. We also provide evidence for GR localization in epidermal cells. At the transcript level, GR mRNA is ubiquitously expressed in gill sections and present in both NaRCs and HRCs, supporting the knockdown and functional assay results in embryo. Altogether, we have provided solid molecular evidence that GR is indeed present on ionocytes, where it mediates the effects of cortisol on ionocyte development and function. Hence, cortisol-GR axis performs the roles of both GC and MC in zebrafish skin and gills.

  7. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    Science.gov (United States)

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  8. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Lee

    Full Text Available The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP-induced radicals on the epidermal growth factor receptor (EGFR, which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  9. Selective Killing Effects of Cold Atmospheric Pressure Plasma with NO Induced Dysfunction of Epidermal Growth Factor Receptor in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Lee, Jung-Hwan; Om, Ji-Yeon; Kim, Yong-Hee; Kim, Kwang-Mahn; Choi, Eun-Ha; Kim, Kyoung-Nam

    2016-01-01

    The aim of this study is to investigate the effects of cold atmospheric pressure plasma (CAP)-induced radicals on the epidermal growth factor receptor (EGFR), which is overexpressed by oral squamous cell carcinoma, to determine the underlying mechanism of selective killing. CAP-induced highly reactive radicals were observed in both plasma plume and cell culture media. The selective killing effect was observed in oral squamous cell carcinoma compared with normal human gingival fibroblast. Degradation and dysfunction of EGFRs were observed only in the EGFR-overexpressing oral squamous cell carcinoma and not in the normal cell. Nitric oxide scavenger pretreatment in cell culture media before CAP treatment rescued above degradation and dysfunction of the EGFR as well as the killing effect in oral squamous cell carcinoma. CAP may be a promising cancer treatment method by inducing EGFR dysfunction in EGFR-overexpressing oral squamous cell carcinoma via nitric oxide radicals.

  10. Reptured Epidermal Inclusion Cyst in the Axilla: A Case Report

    International Nuclear Information System (INIS)

    Kim, Kyu Soon; Kim, Hak Hee; Shin, Hee Jeong; Yang, Hye Rin; Sohn, Jeong Hee; Kwon, Gui Young; Gong, Gyung Yub

    2006-01-01

    Epidermal inclusion cysts, the most common type of simple epithelial cyst, are typically well-encapsulated, subepidermal and mobile nodules. They may occur anywhere, but are mostly found on the scalp, face, neck, trunk, and back. Less than 10% of epidermal inclusion cysts occur on the extremities, and even fewer are found on the palms, soles, and breasts. If epidermal inclusion cysts rupture, foreign body reaction, granulomatous reaction or abscess formation could follow. We described here the sonographic findings of ruptured epidermal inclusion cyst of the right axilla in a 33-year-old woman who presented with a palpable axillary mass forming an inflammatory abscess

  11. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Debashis; Mukhopadhyay, Debabrata, E-mail: mukhopadhyay.debabrata@mayo.edu [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Guggenheim 1321C, Rochester, MN 55905 (United States)

    2011-02-24

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  12. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    International Nuclear Information System (INIS)

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed

  13. Herceptin Enhances the Antitumor Effect of Natural Killer Cells on Breast Cancer Cells Expressing Human Epidermal Growth Factor Receptor-2

    Directory of Open Access Journals (Sweden)

    Xiao Tian

    2017-10-01

    Full Text Available Optimal adoptive cell therapy (ACT should contribute to effective cancer treatment. The unique ability of natural killer (NK cells to kill cancer cells independent of major histocompatibility requirement makes them suitable as ACT tools. Herceptin, an antihuman epidermal growth factor receptor-2 (anti-HER2 monoclonal antibody, is used to treat HER2+ breast cancer. However, it has limited effectiveness and possible severe cardiotoxicity. Given that Herceptin may increase the cytotoxicity of lymphocytes, we explored the possible augmentation of NK cell cytotoxicity against HER2+ breast cancer cells by Herceptin. We demonstrated that Herceptin could interact with CD16 on NK cells to expand the cytotoxic NK (specifically, CD56dim cell population. Additionally, Herceptin increased NK cell migration and cytotoxicity against HER2+ breast cancer cells. In a pilot study, Herceptin-treated NK cells shrunk lung nodular metastasis in a woman with HER2+ breast cancer who could not tolerate the cardiotoxic side effects of Herceptin. Our findings support the therapeutic potential of Herceptin-treated NK cells in patients with HER2+ and Herceptin-intolerant breast cancer.

  14. Immune sensitization against epidermal antigens in polymorphous light eruption

    International Nuclear Information System (INIS)

    Gonzalez-Amaro, R.; Baranda, L.; Salazar-Gonzalez, J.F.; Abud-Mendoza, C.; Moncada, B.

    1991-01-01

    To get further insight into the pathogenesis of polymorphous light eruption, we studied nine patients with polymorphous light eruption and six healthy persons. Two skin biopsy specimens were obtained from each person, one from previously ultraviolet light-irradiated skin and another one from unirradiated skin. An epidermal cell suspension, skin homogenate, or both were prepared from each specimen. Autologous cultures were made with peripheral blood mononuclear cells combined with irradiated or unirradiated skin homogenate and peripheral blood mononuclear cells combined with irradiated or unirradiated epidermal cell suspension. Cell proliferation was assessed by 3H-thymidine incorporation assay. The response of peripheral blood mononuclear cells to unirradiated epidermal cells or unirradiated skin homogenate was similar in both patients and controls. However, peripheral blood mononuclear cells from patients with polymorphous light eruption showed a significantly increased proliferative response to both irradiated epidermal cells and irradiated skin homogenate. Our results indicate that ultraviolet light increases the stimulatory capability of polymorphous light eruption epidermal cells in a unidirectional mixed culture with autologous peripheral blood mononuclear cells. This suggests that an immune sensitization against autologous ultraviolet light-modified skin antigens occurs in polymorphous light eruption

  15. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation

    International Nuclear Information System (INIS)

    Yang, Ruiguo; Chen, Jennifer Y.; Xi, Ning; Lai, King Wai Chiu; Qu, Chengeng; Fung, Carmen Kar Man; Penn, Lynn S.; Xi, Jun

    2012-01-01

    Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling. -- Highlights: ► The EGF-induced cellular mechanical response is regionally specific. ► The EGF-induced cellular mechanical response is time and dose dependent. ► A combination of AFM and QCM-D provides a more complete mechanical profile of cells.

  16. Cutaneous side-effects in patients on long-term treatment with epidermal growth factor receptor inhibitors.

    Science.gov (United States)

    Osio, A; Mateus, C; Soria, J-C; Massard, C; Malka, D; Boige, V; Besse, B; Robert, C

    2009-09-01

    Acute and subacute cutaneous side-effects of epidermal growth factor receptor inhibitors (EGFRIs) are very frequent and well known. Much less is known about the chronic cutaneous effects of these drugs and about their potential psychosocial impact on patients. We performed a retrospective study of patients treated with EGFRIs for more than 6 months. All patients had a detailed dermatological examination. The primary cancer, associated chemotherapies, skin treatment, evolution of skin symptoms and their impact on quality of life (QoL) as evaluated by the Dermatology Life Quality Index (DLQI) were noted. Seven men and nine women were identified. The mean length of EGFRI treatment was 10 months (range 6-27). At the time of examination, all patients (100%) had cutaneous side-effects. Grade I or II folliculitis was found in 37.5% of the patients. Additional skin manifestations were xerosis (100%), mucositis (69%), hair abnormalities (87.5%), eyelash trichomegaly (62.5%), facial hypertrichosis (56%), painful paronychia (56%) and onycholysis (44%). Dose reduction or EGFRI discontinuation for skin toxicity were needed in six patients (37.5%). DLQI evaluation showed a moderate to strong impact on QoL in four patients (25%). Cutaneous side-effects are found in 100% of patients treated with EGFRIs for more than 6 months and have a significant effect on patients' QoL. The clinical spectrum of skin manifestation varies over time. As the use of EGFRIs rapidly increases, it is critical for us to improve our knowledge in the understanding and managment of these skin manifestations.

  17. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is increased in osteoarthritis and regulates chondrocyte catabolic and anabolic activities

    Science.gov (United States)

    Long, D.L.; Ulici, V.; Chubinskaya, S.; Loeser, R.F.

    2015-01-01

    Objective We determined if the epidermal growth factor receptor ligand HB-EGF is produced in cartilage and if it regulates chondrocyte anabolic or catabolic activity. Methods HB-EGF expression was measured by quantitative PCR using RNA isolated from mouse knee joint tissues and from normal and OA human chondrocytes. Immunohistochemistry was performed on normal and OA human cartilage and meniscus sections. Cultured chondrocytes were treated with fibronectin fragments (FN-f) as a catabolic stimulus and osteogenic protein 1 (OP-1) as an anabolic stimulus. Effects of HB-EGF on cell signaling were analyzed by immunoblotting of selected signaling proteins. MMP-13 was measured in conditioned media, proteoglycan synthesis was measured by sulfate incorporation, and matrix gene expression by quantitative PCR. Results HB-EGF expression was increased in 12-month old mice at 8 weeks after surgery to induce OA and increased amounts of HB-EGF were noted in human articular cartilage from OA knees. FN-f stimulated chondrocyte HB-EGF expression and HB-EGF stimulated chondrocyte MMP-13 production. However, HB-EGF was not required for FN-f stimulation of MMP-13 production. HB-EGF activated the ERK and p38 MAP kinases and stimulated phosphorylation of Smad1 at an inhibitory serine site which was associated with inhibition of OP-1 mediated proteoglycan synthesis and reduced aggrecan (ACAN) but not COL2A1 expression. Conclusion HB-EGF is a new factor identified in OA cartilage that promotes chondrocyte catabolic activity while inhibiting anabolic activity suggesting it could contribute to the catabolic-anabolic imbalance seen in OA cartilage. PMID:25937027

  18. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr-encoded oncoprotein latent membrane protein 1

    International Nuclear Information System (INIS)

    Tao Yongguang; Song Xing; Deng Xiyun; Xie Daxin; Lee, Leo M.; Liu Yiping; Li Wei; Li Lili; Deng Lin; Wu Qiao; Gong Jianping; Cao Ya

    2005-01-01

    Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV-encoded proteins and has always been the core of the oncogenic mechanism of EBV. Advanced studies on nuclear translocation of the epidermal growth factor receptor (EGFR) family have greatly improved our knowledge of the biological function of cell surface receptors. In this study, we used the Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1-integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 which could be regulated by the Tet system. We found that LMP1 could regulate the nuclear accumulation of EGFR in a dose-dependent manner quantitatively and qualitatively. We also demonstrated that the nuclear localization sequence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation and EGFR in the nucleus could bind to the promoters of cyclinD1 and cyclinE, respectively. We further demonstrated that EGFR is involved in the acceleration of the G1/S phase transition by LMP1 through binding to cyclinD1 and cyclinE directly. These findings provided a novel view that the acceleration of LMP1 on the G1/S transition via the nuclear accumulation of EGFR was critical in the process of nasopharyngeal carcinoma

  19. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    Science.gov (United States)

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  20. Signalling in the epidermis: the E2F cell cycle regulatory pathway in epidermal morphogenesis, regeneration and transformation.

    Science.gov (United States)

    Ivanova, Iordanka A; D'Souza, Sudhir J A; Dagnino, Lina

    2005-01-01

    The epidermis is the outermost layer in the skin, and it is the first line of defence against the environment. The epidermis also provides a barrier against loss of fluids and electrolytes, which is crucial for life. Essential in the maintenance of this tissue is its ability to continually self-renew and regenerate after injury. These two characteristics are critically dependent on the ability of the principal epidermal cell type, the keratinocyte, to proliferate and to respond to differentiation cues. Indeed, the epidermis is a multilayered tissue composed of keratinocyte stem cells and their differentiated progeny. Central for the control of cell proliferation is the E2F transcription factor regulatory network. This signaling network also includes cyclins, cdk, cdk inhibitors and the retinoblastoma (pRb) family of proteins. The biological importance of the E2F/pRb pathway is emphasized by the fact that a majority of human tumours exhibit alterations that disrupt the ability of pRb proteins to inhibit E2F, leading to permanent activation of the latter. Further, E2F is essential for normal epidermal regeneration after injury. Other member of the E2F signaling pathway are also involved in epidermal development and pathophysiology. Thus, whereas the pRb family of proteins is essential for epidermal morphogenesis, abnormal regulation of cyclins and E2F proteins results in tumorgenesis in this tissue. In this review, we discuss the role of each member of this important growth regulatory network in epidermal formation, homeostasis and carcinogenesis.

  1. Post-female-circumcision clitoral epidermal inclusion cyst: a case ...

    African Journals Online (AJOL)

    Keywords: complication, epidermal inclusion cyst, female circumcision. Pediatric Urology Division, Department of Urology, ... transplantation of the epidermis into the subcutaneous tissue with subsequent proliferation of epidermal ... The evolution of the practice of FGM, from being performed by traditional birth attendants to.

  2. Epidermal Growth Factor Receptor (EGFR) and its Cross-Talks with Topoisomerases: Challenges and Opportunities for Multi-Target Anticancer Drugs.

    Science.gov (United States)

    Chauhan, Monika; Sharma, Gourav; Joshi, Gaurav; Kumar, Raj

    2016-01-01

    The interactions of Epidermal Growth Factor Receptor (EGFR) and topoisomerases have been seen in various cancer including brain, breast, ovarian, colorectal, gastric, etc. The studies in adenocarcinoma patients, chromogenic in situ hybridization, western blotting, receptor binding assay and electromobility shift assays, etc. threw light on the biophysical and biochemical features of EGFR and Topoisomerase cross-talks. It has been revealed that both the isomers of topoisomerase (Topo I and Topo II) interact via different mechanisms with EGFR. Topo II and HER2 share the same location i.e. 17q12-21 regions which could be a possible cause of predominant interactions seen between them. Topo I and EGFR interactions are mechanically related to the nucleolar translocation of heparenase by EGF and c-Jun. We compiled literature findings including the mechanistic interventions, signaling pathways, patents, in vitro and in vivo data of tested inhibitors and combinations in clinical trials, which provide convincing confirmations for the interactions of EGFR and topoisomerases. These interactions may be used for deriving a consistent route of mechanism, design and development of standard drug combinations and dual or multi inhibitors.

  3. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 expression and regulation in uterine leiomyoma.

    Science.gov (United States)

    Marsh, Erica E; Chibber, Shani; Wu, Ju; Siegersma, Kendra; Kim, Julie; Bulun, Serdar

    2016-04-01

    To determine the presence, differential expression, and regulation of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) in uterine leiomyomas. Laboratory in vivo and in vitro study with the use of human leiomyoma and myometrial tissue and primary cells. Academic medical center. Leiomyoma and myometrial tissue samples and cultured cells. 5-Aza-2'-deoxycytidine (5-aza-dC) treatment. Fold-change difference between EFEMP1 and fibulin-3 expression in leiomyoma tissue and cells compared with matched myometrial samples, and fold-change difference in EFEMP1 expression with 5-Aza-dC treatment. In vivo, EFEMP1 expression was 3.19-fold higher in myometrial tissue than in leiomyoma tissue. EFEMP1 expression in vitro was 5.03-fold higher in myometrial cells than in leiomyoma cells. Western blot and immunohistochemistry staining of tissue and cells confirmed similar findings in protein expression. Treatment of leiomyoma cells with 5-Aza-dC resulted in increased expression of EFEMP1 in vitro. The EFEMP1 gene and its protein product, fibulin-3, are both significantly down-regulated in leiomyoma compared with myometrium when studied both in vivo and in vitro. The increase in EFEMP1 expression in leiomyoma cells with 5-Aza-dC treatment suggest that differential methylation is responsible, in part, for the differences seen in gene expression. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Kinetics of growth and differentiation of cultured human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Albers, K.M.

    1985-01-01

    A study was made of the interrelationship between replication and differentiation in cultures of human epidermal keratinocytes. Measures of both parameters were made using newly developed methods to quantify the rate at which keratinocytes replicate and the rate at which they withdraw from the cell cycle. Keratinocyte replication was measured by determining the cell doubling time, labeling index, and cell cycle duration. Cell cycle length was measured using a double label assay that determines the length of time between two successive phases of DNA synthesis. The first DNA synthesis phase was marked by labeling keratinocytes with 14 C-thymidine. At the next round of DNA synthesis, cells were labeled with bromodeoxyuridine, a heavy analog of thymidine. The cell cycle length is given by the time required for the 14 C-labeled DNA to become double labeled. To measure keratinocyte differentiation, the rate at which cells withdraw from the cell cycle was determined. To measure withdrawal, the percentage of cells labeled by a pulse of 14 C-thymidine that failed to undergo a second cycle of DNA synthesis, as measured by bromodeoxyuridine incorporation, was determined. Cells which failed to undergo a second cycle of synthesis were considered to have differentiated and withdrawn from the cell cycle

  5. "Cut-and-paste" manufacture of multiparametric epidermal electronic systems

    Science.gov (United States)

    Lu, Nanshu; Yang, Shixuan; Wang, Pulin

    2016-05-01

    Epidermal electronics is a class of noninvasive and unobstructive skin-mounted, tattoo-like sensors and electronics capable of vital sign monitoring and establishing human-machine interface. The high cost of manpower, materials, vacuum equipment, and photolithographic facilities associated with its manufacture greatly hinders the widespread use of disposable epidermal electronics. Here we report a cost and time effective, completely dry, benchtop "cut-and-paste" method for the freeform and portable manufacture of multiparametric epidermal sensor systems (ESS) within minutes. This versatile method works for all types of thin metal and polymeric sheets and is compatible with any tattoo adhesives or medical tapes. The resulting ESS are multimaterial and multifunctional and have been demonstrated to noninvasively but accurately measure electrophysiological signals, skin temperature, skin hydration, as well as respiratory rate. In addition, planar stretchable coils exploiting double-stranded serpentine design have been successfully applied as wireless, passive epidermal strain sensors.

  6. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    Directory of Open Access Journals (Sweden)

    John G Koland

    2014-01-01

    Full Text Available Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR, the intrinsic protein tyrosine kinase (PTK activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites in either of the two C-terminal (CT domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in

  7. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    Energy Technology Data Exchange (ETDEWEB)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Makboul, Rania [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Pathology Department, Assiut University, Assiut (Egypt); Chadalawada, Gita; Chen, Ying [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Crawford, Susan E. [Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd, Saint Louis, MO 63104 (United States); Savkovic, Suzana D., E-mail: ssavkovi@tulane.edu [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States)

    2016-01-15

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  8. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    International Nuclear Information System (INIS)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe; Makboul, Rania; Chadalawada, Gita; Chen, Ying; Crawford, Susan E.; Savkovic, Suzana D.

    2016-01-01

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  9. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR AND HUMAN PAPILLOMAVIRUS (HPV L1 CAPSID PROTEIN IN CERVICAL SQUAMOUS INTRAEPITHELIAL LESIONS

    Directory of Open Access Journals (Sweden)

    Balan Raluca

    2010-09-01

    Full Text Available We analyzed the immunohistochemical pattern of epidermal growth factor receptor (EGFR in cervical squamous intraepithelial lesions (SILs in correlation with L1 HPV capsid protein, in order to determine the relationship between EGFR expression and the infection status of human papillomavirus (HPV. The study included 40 cases, 24 LSIL (low grade SIL (CIN1, cervical intraepithelial neoplasia and 16 HSIL (high grade SIL (6 cases of CIN2 and 10 cases of CIN3. The immunoexpression of L1 HPV protein was assessed on conventional cervico-vaginal smears and EGFR was immunohistochemically evaluated on the corresponding cervical biopsies. The HPV L1 capsid protein was expressed in 45.83% of LSIL and 25% of HSIL. EGFR was overexpressed in 62,4% of HSIL (58,4% CIN2 and 41,6% CIN3 and 37,6% LSIL. The immunoexpression of L1 HPV has clinical application in the progression assessment of the cervical precancerous lesions without a correlation to the grade of the cervical SIL. EGFR is expressed by all proliferating squamous epithelial cells, thus corresponding with the grade of SIL. The evaluation of EGFR status, correlated with L1 HPV protein expression, can provide useful data of progression risk of cervical squamous intraepithelial lesions

  10. Nonmuscle Myosin II Is Required for Internalization of the Epidermal Growth Factor Receptor and Modulation of Downstream Signaling*

    Science.gov (United States)

    Kim, Jong Hyun; Wang, Aibing; Conti, Mary Anne; Adelstein, Robert S.

    2012-01-01

    Ligand-induced internalization of the epidermal growth factor receptor (EGFR) is an important process for regulating signal transduction, cellular dynamics, and cell-cell communication. Here, we demonstrate that nonmuscle myosin II (NM II) is required for the internalization of the EGFR and to trigger the EGFR-dependent activation of ERK and AKT. The EGFR was identified as a protein that interacts with NM II by co-immunoprecipitation and mass spectrometry analysis. This interaction requires both the regulatory light chain 20 (RLC20) of NM II and the kinase domain of the EGFR. Two paralogs of NM II, NM II-A, and NM II-B can act to internalize the EGFR, depending on the cell type and paralog content of the cell line. Loss (siRNA) or inhibition (25 μm blebbistatin) of NM II attenuates the internalization of the EGFR and impairs EGFR-dependent activation of ERK and AKT. Both internalization of the EGFR and downstream signaling to ERK and AKT can be partially restored in siRNA-treated cells by introduction of wild type (WT) GFP-NM II, but cannot be restored by motor mutant NM II. Taken together, these results suggest that NM II plays a role in the internalization of the EGFR and EGFR-mediated signaling pathways. PMID:22718763

  11. Epidermal growth factor receptor gene copy number in 101 advanced colorectal cancer patients treated with chemotherapy plus cetuximab

    Directory of Open Access Journals (Sweden)

    Zeuli Massimo

    2010-04-01

    Full Text Available Abstract Background Responsiveness to Cetuximab alone can be mediated by an increase of Epidermal Growth factor Receptor (EGFR Gene Copy Number (GCN. Aim of this study was to assess the role of EGFR-GCN in advanced colorectal cancer (CRC patients receiving chemotherapy plus Cetuximab. Methods One hundred and one advanced CRC patients (43 untreated- and 58 pre-treated were retrospectively studied by fluorescence in situ hybridization (FISH to assess EGFR-GCN and by immunohistochemistry (IHC to determine EGFR expression. Sixty-one out of 101 patients were evaluated also for k-ras status by direct sequencing. Clinical end-points were response rate (RR, progression-free survival (PFS and overall survival (OS. Results Increased EGFR-GCN was found in 60/101 (59% tumor samples. There was no correlation between intensity of EGFR-IHC and EGFR-GCN (p = 0.43. Patients receiving chemotherapy plus Cetuximab as first line treatment had a RR of 70% (30/43 while it was 18% (10/56 in the group with previous lines of therapy (p Conclusion In metastatic CRC patients treated with chemotherapy plus Cetuximab number of chemotherapy lines and increased EGFR-GCN were significantly associated with a better clinical outcome, independent of k-ras status.

  12. Response to Therapy and Outcomes in Oropharyngeal Cancer Are Associated With Biomarkers Including Human Papillomavirus, Epidermal Growth Factor Receptor, Gender, and Smoking

    International Nuclear Information System (INIS)

    Kumar, Bhavna; Cordell, Kitrina G.; Lee, Julia S.; Prince, Mark E.; Tran, Huong H.; Wolf, Gregory T.; Urba, Susan G.; Worden, Francis P.; Chepeha, Douglas B.; Teknos, Theodoros N.; Eisbruch, Avraham; Tsien, Christina I.; Taylor, Jeremy; D'Silva, Nisha J.; Yang, Kun; Kurnit, David M.; Bradford, Carol R.

    2007-01-01

    Induction chemotherapy and concurrent chemoradiation for responders or immediate surgery for non-responders is an effective treatment strategy head and neck squamous cell carcinoma (HNSCC) of the larynx and oropharynx. Biomarkers that predict outcome would be valuable in selecting patients for therapy. In this study, the presence and titer of high risk human papilloma virus (HPV) and expression of epidermal growth factor receptor (EGFR) in pre-treatment biopsies, as well as smoking and gender were examined in oropharynx cancer patients enrolled in an organ sparing trial. HPV16 copy number was positively associated with response to therapy and with overall and disease specific survival, whereas EGFR expression, current or former smoking behavior, and female gender (in this cohort) were associated with poor response and poor survival in multivariate analysis. Smoking cessation and strategies to target EGFR may be useful adjuncts for therapy to improve outcome in the cases with the poorest biomarker profile

  13. Foliar Epidermal Studies of Plants in Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    H. A. Thakur

    2014-03-01

    Full Text Available This paper describes foliar epidermal structure in 17 species belonging to 17 genera of the family Euphoprbiaceae. Anomocytic stomata is predominant, rarely they are anisocytic, paracytic on the same foliar surface with different combinations. Leaves are hypostomatic and rarely amphistomatic. The foliar surface is smooth, rarely striated. The foliar epidermal cell walls are straight or undulate. Distribution of stomata, stomatal index, stomatal frequency, stomatal size and other cell wall contours are described in detail.

  14. Retinoic Acid-Induced Epidermal Transdifferentiation in Skin

    Directory of Open Access Journals (Sweden)

    Yoshihiro Akimoto

    2014-06-01

    Full Text Available Retinoids function as important regulatory signaling molecules during development, acting in cellular growth and differentiation both during embryogenesis and in the adult animal. In 1953, Fell and Mellanby first found that excess vitamin A can induce transdifferentiation of chick embryonic epidermis to a mucous epithelium (Fell, H.B.; Mellanby, E. Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol. 1953, 119, 470–488. However, the molecular mechanism of this transdifferentiation process was unknown for a long time. Recent studies demonstrated that Gbx1, a divergent homeobox gene, is one of the target genes of all-trans retinoic acid (ATRA for this transdifferentiation. Furthermore, it was found that ATRA can induce the epidermal transdifferentiation into a mucosal epithelium in mammalian embryonic skin, as well as in chick embryonic skin. In the mammalian embryonic skin, the co-expression of Tgm2 and Gbx1 in the epidermis and an increase in TGF-β2 expression elicited by ATRA in the dermis are required for the mucosal transdifferentiation, which occurs through epithelial-mesenchymal interaction. Not only does retinoic acid (RA play an important role in mucosal transdifferentiation, periderm desquamation, and barrier formation in the developing mammalian skin, but it is also involved in hair follicle downgrowth and bending by its effect on the Wnt/β-catenin pathway and on members of the Runx, Fox, and Sox transcription factor families.

  15. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deng-Liang [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Yang, Hai-Tao; Wang, Jiang-Jie [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yao, Pei-Sen [Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China); Pan, Ru-Jun [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Yang, Chaoyong James, E-mail: cyyang@xmu.edu.cn [State Key Laboratory for Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Key Laboratory of Analytical Chemistry, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Kang, De-Zhi, E-mail: kdzy99988@163.com [The First Clinical Medical College of Fujian Medical University, Fuzhou (China); Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou (China)

    2014-10-31

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K{sub d} 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K{sub d} 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy.

  16. Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity

    International Nuclear Information System (INIS)

    Wang, Deng-Liang; Song, Yan-Ling; Zhu, Zhi; Li, Xi-Lan; Zou, Yuan; Yang, Hai-Tao; Wang, Jiang-Jie; Yao, Pei-Sen; Pan, Ru-Jun; Yang, Chaoyong James; Kang, De-Zhi

    2014-01-01

    Highlights: • This is the first report of DNA aptamer against EGFR in vitro. • Aptamer can bind targets with high affinity and selectivity. • DNA aptamers are more stable, cheap and efficient than RNA aptamers. • Our selected DNA aptamer against EGFR has high affinity with K d 56 ± 7.3 nM. • Our selected DNA aptamer against EGFR has high selectivity. - Abstract: Epidermal growth factor receptor (EGFR/HER1/c-ErbB1), is overexpressed in many solid cancers, such as epidermoid carcinomas, malignant gliomas, etc. EGFR plays roles in proliferation, invasion, angiogenesis and metastasis of malignant cancer cells and is the ideal antigen for clinical applications in cancer detection, imaging and therapy. Aptamers, the output of the systematic evolution of ligands by exponential enrichment (SELEX), are DNA/RNA oligonucleotides which can bind protein and other substances with specificity. RNA aptamers are undesirable due to their instability and high cost of production. Conversely, DNA aptamers have aroused researcher’s attention because they are easily synthesized, stable, selective, have high binding affinity and are cost-effective to produce. In this study, we have successfully identified DNA aptamers with high binding affinity and selectivity to EGFR. The aptamer named TuTu22 with K d 56 ± 7.3 nM was chosen from the identified DNA aptamers for further study. Flow cytometry analysis results indicated that the TuTu22 aptamer was able to specifically recognize a variety of cancer cells expressing EGFR but did not bind to the EGFR-negative cells. With all of the aforementioned advantages, the DNA aptamers reported here against cancer biomarker EGFR will facilitate the development of novel targeted cancer detection, imaging and therapy

  17. Enterocyte-specific epidermal growth factor prevents barrier dysfunction and improves mortality in murine peritonitis.

    Science.gov (United States)

    Clark, Jessica A; Gan, Heng; Samocha, Alexandr J; Fox, Amy C; Buchman, Timothy G; Coopersmith, Craig M

    2009-09-01

    Systemic administration of epidermal growth factor (EGF) decreases mortality in a murine model of septic peritonitis. Although EGF can have direct healing effects on the intestinal mucosa, it is unknown whether the benefits of systemic EGF in peritonitis are mediated through the intestine. Here, we demonstrate that enterocyte-specific overexpression of EGF is sufficient to prevent intestinal barrier dysfunction and improve survival in peritonitis. Transgenic FVB/N mice that overexpress EGF exclusively in enterocytes (IFABP-EGF) and wild-type (WT) mice were subjected to either sham laparotomy or cecal ligation and puncture (CLP). Intestinal permeability, expression of the tight junction proteins claudins-1, -2, -3, -4, -5, -7, and -8, occludin, and zonula occludens-1; villus length; intestinal epithelial proliferation; and epithelial apoptosis were evaluated. A separate cohort of mice was followed for survival. Peritonitis induced a threefold increase in intestinal permeability in WT mice. This was associated with increased claudin-2 expression and a change in subcellular localization. Permeability decreased to basal levels in IFABP-EGF septic mice, and claudin-2 expression and localization were similar to those of sham animals. Claudin-4 expression was decreased following CLP but was not different between WT septic mice and IFABP-EGF septic mice. Peritonitis-induced decreases in villus length and proliferation and increases in apoptosis seen in WT septic mice did not occur in IFABP-EGF septic mice. IFABP-EGF mice had improved 7-day mortality compared with WT septic mice (6% vs. 64%). Since enterocyte-specific overexpression of EGF is sufficient to prevent peritonitis-induced intestinal barrier dysfunction and confers a survival advantage, the protective effects of systemic EGF in septic peritonitis appear to be mediated in an intestine-specific fashion.

  18. Lack of upregulation of epidermal fatty acid binding protein in dithranol induced irritation.

    NARCIS (Netherlands)

    Kucharekova, M.; Vissers, W.H.P.M.; Schalkwijk, J.; Kerkhof, P.C.M. van de; Valk, P.G.M. van der

    2003-01-01

    The exact role of epidermal fatty acid binding protein (E-FABP) in skin is unknown. A restoration of the barrier function may be associated with an upregulation of E-FABP. Moreover, E-FABP is upregulated in a variety of cells in response to oxidative stress. A recent observation that dithranol

  19. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Ok-Nam [College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung [College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Eun-Sun [College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791 (Korea, Republic of); Jeong, Tae Cheon [College of Pharmacy, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Chun, Young-Jin [College of Pharmacy, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Ai-Young, E-mail: leeay@duih.org [Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 410-773 (Korea, Republic of); Noh, Minsoo, E-mail: minsoo@alum.mit.edu [College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-03-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human

  20. Chemical allergens stimulate human epidermal keratinocytes to produce lymphangiogenic vascular endothelial growth factor

    International Nuclear Information System (INIS)

    Bae, Ok-Nam; Ahn, Seyeon; Jin, Sun Hee; Hong, Soo Hyun; Lee, Jinyoung; Kim, Eun-Sun; Jeong, Tae Cheon; Chun, Young-Jin; Lee, Ai-Young; Noh, Minsoo

    2015-01-01

    Allergic contact dermatitis (ACD) is a cell-mediated immune response that involves skin sensitization in response to contact with various allergens. Angiogenesis and lymphangiogenesis both play roles in the allergic sensitization process. Epidermal keratinocytes can produce vascular endothelial growth factor (VEGF) in response to UV irradiation and during wound healing. However, the effect of haptenic chemical allergens on the VEGF production of human keratinocytes, which is the primary contact site of toxic allergens, has not been thoroughly researched. We systematically investigated whether immune-regulatory cytokines and chemical allergens would lead to the production of VEGF in normal human keratinocytes (NHKs) in culture. VEGF production significantly increased when NHKs were treated with IFNγ, IL-1α, IL-4, IL-6, IL-17A, IL-22 or TNFα. Among the human sensitizers listed in the OECD Test Guideline (TG) 429, we found that CMI/MI, DNCB, 4-phenylenediamine, cobalt chloride, 2-mercaptobenzothiazole, citral, HCA, cinnamic alcohol, imidazolidinyl urea and nickel chloride all significantly upregulated VEGF production in NHKs. In addition, common human haptenic allergens such as avobenzone, formaldehyde and urushiol, also induced the keratinocyte-derived VEGF production. VEGF upregulation by pro-inflammatory stimuli, IFNγ, DNCB or formaldehyde is preceded by the production of IL-8, an acute inflammatory phase cytokine. Lymphangiogenic VEGF-C gene transcription was significantly increased when NHKs were treated with formaldehyde, DNCB or urushiol, while transcription of VEGF-A and VEGF-B did not change. Therefore, the chemical allergen-induced VEGF upregulation is mainly due to the increase in lymphangiogenic VEGF-C transcription in NHKs. These results suggest that keratinocyte-derived VEGF may regulate the lymphangiogenic process during the skin sensitization process of ACD. - Highlights: • Pro-inflammatory cytokines induced VEGF production in normal human