WorldWideScience

Sample records for function dwef calculations

  1. How Do Calculators Calculate Trigonometric Functions?

    Science.gov (United States)

    Underwood, Jeremy M.; Edwards, Bruce H.

    How does your calculator quickly produce values of trigonometric functions? You might be surprised to learn that it does not use series or polynomial approximations, but rather the so-called CORDIC method. This paper will focus on the geometry of the CORDIC method, as originally developed by Volder in 1959. This algorithm is a wonderful…

  2. Molecular calculations with B functions

    CERN Document Server

    Steinborn, E O; Ema, I; López, R; Ramírez, G

    1998-01-01

    A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals, and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules.

  3. Green's function calculations of light nuclei

    Science.gov (United States)

    Sun, ZhongHao; Wu, Qiang; Xu, FuRong

    2016-09-01

    The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.

  4. DFT calculations with the exact functional

    Science.gov (United States)

    Burke, Kieron

    2014-03-01

    I will discuss several works in which we calculate the exact exchange-correlation functional of density functional theory, mostly using the density-matrix renormalization group method invented by Steve White, our collaborator. We demonstrate that a Mott-Hubard insulator is a band metal. We also perform Kohn-Sham DFT calculations with the exact functional and prove that a simple algoritm always converges. But we find convergence becomes harder as correlations get stronger. An example from transport through molecular wires may also be discussed. Work supported by DOE grant DE-SC008696.

  5. Density functional calculations of nanoscale conductance

    Energy Technology Data Exchange (ETDEWEB)

    Koentopp, Max; Chang, Connie [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Burke, Kieron [Department of Chemistry, UC Irvine, 1102 Natural Sciences 2, Irvine, CA 92697 (United States); Car, Roberto [Department of Chemistry and Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, NJ 08544 (United States)

    2008-02-27

    Density functional calculations for the electronic conductance of single molecules are now common. We examine the methodology from a rigorous point of view, discussing where it can be expected to work, and where it should fail. When molecules are weakly coupled to leads, local and gradient-corrected approximations fail, as the Kohn-Sham levels are misaligned. In the weak bias regime, exchange-correlation corrections to the current are missed by the standard methodology. For finite bias, a new methodology for performing calculations can be rigorously derived using an extension of time-dependent current density functional theory from the Schroedinger equation to a master equation. (topical review)

  6. Work Function Calculation For Hafnium- Barium System

    Directory of Open Access Journals (Sweden)

    K.A. Tursunmetov

    2015-08-01

    Full Text Available The adsorption process of barium atoms on hafnium is considered. A structural model of the system is presented and on the basis of calculation of interaction between ions dipole system the dependence of the work function on the coating.

  7. Molecular transport calculations with Wannier Functions

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2005-01-01

    We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane...... is applied to a hydrogen molecule in an infinite Pt wire and a benzene-dithiol (BDT) molecule between Au(111) surfaces. We show that the transmission function of BDT in a wide energy window around the Fermi level can be completely accounted for by only two molecular orbitals. (c) 2005 Elsevier B.V. All...

  8. Pressure Correction in Density Functional Theory Calculations

    CERN Document Server

    Lee, S H

    2008-01-01

    First-principles calculations based on density functional theory have been widely used in studies of the structural, thermoelastic, rheological, and electronic properties of earth-forming materials. The exchange-correlation term, however, is implemented based on various approximations, and this is believed to be the main reason for discrepancies between experiments and theoretical predictions. In this work, by using periclase MgO as a prototype system we examine the discrepancies in pressure and Kohn-Sham energy that are due to the choice of the exchange-correlation functional. For instance, we choose local density approximation and generalized gradient approximation. We perform extensive first-principles calculations at various temperatures and volumes and find that the exchange-correlation-based discrepancies in Kohn-Sham energy and pressure should be independent of temperature. This implies that the physical quantities, such as the equation of states, heat capacity, and the Gr\\"{u}neisen parameter, estimat...

  9. Distributed Function Calculation over Noisy Networks

    Directory of Open Access Journals (Sweden)

    Zhidun Zeng

    2016-01-01

    Full Text Available Considering any connected network with unknown initial states for all nodes, the nearest-neighbor rule is utilized for each node to update its own state at every discrete-time step. Distributed function calculation problem is defined for one node to compute some function of the initial values of all the nodes based on its own observations. In this paper, taking into account uncertainties in the network and observations, an algorithm is proposed to compute and explicitly characterize the value of the function in question when the number of successive observations is large enough. While the number of successive observations is not large enough, we provide an approach to obtain the tightest possible bounds on such function by using linear programing optimization techniques. Simulations are provided to demonstrate the theoretical results.

  10. Towards reliable calculations of the correlation function

    CERN Document Server

    Maj, Radoslaw; 10.1142/S0218301307009221

    2008-01-01

    The correlation function of two identical pions interacting via Coulomb potential is computed for a general case of anisotropic particle's source of finite life time. The effect of halo is taken into account as an additional particle's source of large spatial extension. Due to the Coulomb interaction, the effect of halo is not limited to very small relative momenta but it influences the correlation function in a relatively large domain. The relativistic effects are discussed in detail and it is argued that the calculations have to be performed in the center-of-mass frame of particle's pair where the (nonrelativistic) wave function of particle's relative motion is meaningful. The Bowler-Sinyukov procedure to remove the Coulomb interaction is tested and it is shown to significantly underestimate the source's life time.

  11. Improved algorithm for calculating the Chandrasekhar function

    Science.gov (United States)

    Jablonski, A.

    2013-02-01

    Theoretical models of electron transport in condensed matter require an effective source of the Chandrasekhar H(x,omega) function. A code providing the H(x,omega) function has to be both accurate and very fast. The current revision of the code published earlier [A. Jablonski, Comput. Phys. Commun. 183 (2012) 1773] decreased the running time, averaged over different pairs of arguments x and omega, by a factor of more than 20. The decrease of the running time in the range of small values of the argument x, less than 0.05, is even more pronounced, reaching a factor of 30. The accuracy of the current code is not affected, and is typically better than 12 decimal places. New version program summaryProgram title: CHANDRAS_v2 Catalogue identifier: AEMC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 976 No. of bytes in distributed program, including test data, etc.: 11416 Distribution format: tar.gz Programming language: Fortran 90 Computer: Any computer with a Fortran 90 compiler Operating system: Windows 7, Windows XP, Unix/Linux RAM: 0.7 MB Classification: 2.4, 7.2 Catalogue identifier of previous version: AEMC_v1_0 Journal reference of previous version: Comput. Phys. Commun. 183 (2012) 1773 Does the new version supersede the old program: Yes Nature of problem: An attempt has been made to develop a subroutine that calculates the Chandrasekhar function with high accuracy, of at least 10 decimal places. Simultaneously, this subroutine should be very fast. Both requirements stem from the theory of electron transport in condensed matter. Solution method: Two algorithms were developed, each based on a different integral representation of the Chandrasekhar function. The final algorithm is edited by mixing these two

  12. Wave function calculations in finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, S.C.

    1993-07-01

    One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: (1) specification of the Hamiltonian, and (2) calculation of the ground (or excited) states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependencies. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At Argonne and Urbana, the authors have been following a program of developing realistic NN and NNN interactions and the methods necessary to compute nuclear properties from variational wave functions suitable for these interactions. The wave functions are used to compute energies, density distributions, charge form factors, structure functions, momentum distributions, etc. Most recently they have set up a collaboration with S. Boffi and M. Raduci (University of Pavia) to compute (e,e{prime}p) reactions.

  13. Wave function calculations in finite nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, S.C.

    1993-01-01

    One of the central problems in nuclear physics is the description of nuclei as systems of nucleons interacting via realistic potentials. There are two main aspects of this problem: (1) specification of the Hamiltonian, and (2) calculation of the ground (or excited) states of nuclei with the given interaction. Realistic interactions must contain both two- and three-nucleon potentials and these potentials have a complicated non-central operator structure consisting, for example, of spin, isospin and tensor dependencies. This structure results in formidable many-body problems in the computation of the ground states of nuclei. At Argonne and Urbana, the authors have been following a program of developing realistic NN and NNN interactions and the methods necessary to compute nuclear properties from variational wave functions suitable for these interactions. The wave functions are used to compute energies, density distributions, charge form factors, structure functions, momentum distributions, etc. Most recently they have set up a collaboration with S. Boffi and M. Raduci (University of Pavia) to compute (e,e[prime]p) reactions.

  14. Density functional calculations on hydrocarbon isodesmic reactions

    Science.gov (United States)

    Fortunelli, Alessandro; Selmi, Massimo

    1994-06-01

    Hartree—Fock, Hartree—Fock-plus-correlation and self-consistent Kohn—Sham calculations are performed on a set of hydrocarbon isodesmic reactions, i.e. reactions among hydrocarbons in which the number and type of carbon—carbon and carbon—hydrogen bonds is conserved. It is found that neither Hartree—Fock nor Kohn—Sham methods correctly predict standard enthalpies, Δ Hr(298 K), of these reactions, even though — for reactions involving molecules containing strained double bonds — the agreement between the theoretical estimates and the experimental values of Δ Hr seems to be improved by the self-consistent solution of the Kohn—Sham equations. The remaining discrepancies are attributed to intramolecular dispersion effects, that are not described by ordinary exchange—correlation functionals, and are eliminated by introducing corrections based on a simple semi-empirical model.

  15. Calculation of electron wave functions and refractive index of Ne

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The radial wave functions of inner electron shell and outer electron shell of a Ne atom were obtained by the approximate analytical method and tested by calculating the ground state energy of the Ne atom. The equivalent volume of electron cloud and the refractive index of Ne were calculated. The calculated refractive index agrees well with the experimental result. Relationship between the refractive index and the wave function of Ne was discovered.

  16. Benchmark density functional theory calculations for nanoscale conductance

    DEFF Research Database (Denmark)

    Strange, Mikkel; Bækgaard, Iben Sig Buur; Thygesen, Kristian Sommer;

    2008-01-01

    We present a set of benchmark calculations for the Kohn-Sham elastic transmission function of five representative single-molecule junctions. The transmission functions are calculated using two different density functional theory methods, namely an ultrasoft pseudopotential plane-wave code...... in combination with maximally localized Wannier functions and the norm-conserving pseudopotential code SIESTA which applies an atomic orbital basis set. All calculations have been converged with respect to the supercell size and the number of k(parallel to) points in the surface plane. For all systems we find...

  17. A New Thermodynamic Calculation Method for Binary Alloys: Part I: Statistical Calculation of Excess Functions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.

  18. Localization of the brain calculation function area with MRI

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aim of this study is to define the anatomical localization of corresponding brain function area during calculating. The activating modes in brain during continuous silent calculating subtraction and repeated silent reading multiplication table were compared and investigated. Fourteen volunteers of right-handedness were enrolled in this experiment. The quite difference of reaction modes in brain area during the two modes of calculation reveal that there are different processing pathways in brain during these two operating actions. During continuous silent calculating, the function area is localized on the posterior portion of superior and middle gyrus of frontal lobe and the Iobule of posterior parietal lobe (P < 0.01, T = 5.41). It demonstrates that these function areas play an important role in the performance of calculation and working memory. Whereas the activating of visual cortex shows that even in mental arithmetic processing the brain action is having the aid of vision and visual space association.

  19. Efficient wave-function matching approach for quantum transport calculations

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, Dan Erik;

    2009-01-01

    The wave-function matching (WFM) technique has recently been developed for the calculation of electronic transport in quantum two-probe systems. In terms of efficiency it is comparable to the widely used Green's function approach. The WFM formalism presented so far requires the evaluation of all ...

  20. Kohn-Sham calculations with the exact functional

    CERN Document Server

    Wagner, Lucas O; Stoudenmire, E M; Burke, Kieron; White, Steven R

    2014-01-01

    As a proof of principle, self-consistent Kohn-Sham calculations are performed with the exact exchange-correlation functional. The systems calculated are one-dimensional real-space interacting fermions with more than two electrons. To find the exact functional for trial densities requires solving the interacting Schroedinger equation multiple times, a much more demanding task than direct solution of the Schr\\"odinger equation. The density matrix renormalization group method makes this possible. We illustrate and explore the convergence properties of the exact KS scheme for both weakly and strongly correlated systems. We also explore the spin-dependent generalization and densities for which the functional is ill defined.

  1. MODY - calculation of ordered structures by symmetry-adapted functions

    Science.gov (United States)

    Białas, Franciszek; Pytlik, Lucjan; Sikora, Wiesława

    2016-01-01

    In this paper we focus on the new version of computer program MODY for calculations of symmetryadapted functions based on the theory of groups and representations. The choice of such a functional frame of coordinates for description of ordered structures leads to a minimal number of parameters which must be used for presentation of such structures and investigations of their properties. The aim of this work is to find those parameters, which are coefficients of a linear combination of calculated functions, leading to construction of different types of structure ordering with a given symmetry. A spreadsheet script for simplification of this work has been created and attached to the program.

  2. Density functional calculations of spin-wave dispersion curves.

    Science.gov (United States)

    Kleinman, Leonard; Niu, Qian

    1998-03-01

    Extending the density functional method of Kubler et al( J. Kubler et al, J. Phys. F 18, 469 (1983) and J. Phys. Condens. Matter 1, 8155 (1989). ) for calcuating spin density wave ground states (but not making their atomic sphere approximation which requires a constant spin polarization direction in each WS sphere) we dicuss the calculation of frozen spin-wave eigenfunctions and their total energies. From these and the results of Niu's talk, we describe the calculation of spin-wave frequencies.

  3. Basis functions for electronic structure calculations on spheres

    CERN Document Server

    Gill, Peter M W; Agboola, Davids

    2014-01-01

    We introduce a new basis function (the spherical gaussian) for electronic structure calculations on spheres of any dimension $D$. We find \\alert{general} expressions for the one- and two-electron integrals and propose an efficient computational algorithm incorporating the Cauchy-Schwarz bound. Using numerical calculations for the $D = 2$ case, we show that spherical gaussians are more efficient than spherical harmonics when the electrons are strongly localized.

  4. Linear Scaling Density Functional Calculations with Gaussian Orbitals

    Science.gov (United States)

    Scuseria, Gustavo E.

    1999-01-01

    Recent advances in linear scaling algorithms that circumvent the computational bottlenecks of large-scale electronic structure simulations make it possible to carry out density functional calculations with Gaussian orbitals on molecules containing more than 1000 atoms and 15000 basis functions using current workstations and personal computers. This paper discusses the recent theoretical developments that have led to these advances and demonstrates in a series of benchmark calculations the present capabilities of state-of-the-art computational quantum chemistry programs for the prediction of molecular structure and properties.

  5. Beam spread functions calculated using Feynman path integrals

    Science.gov (United States)

    Kilgo, Paul; Tessendorf, Jerry

    2017-07-01

    A method of solving the radiative transfer equation using Feynman path integrals (FPIs) is discussed. The FPI approach is a mathematical framework for computing multiple scattering in participating media. Its numerical behavior is not well known, and techniques are being developed to solve the FPI approach numerically. A missing numerical technique is detailed and used to calculate beam spread functions (BSFs), a commonly studied experimental property of many types of media. The calculations are compared against measured BSFs of sea ice. Analysis shows differently-shaped BSFs, and suggests the width parameter of the calculated BSF's Gaussian fit approaches a value in the limit of the number of path segments. A projection is attempted, but suggests a larger number of path segments would not increase the width of the calculated BSF. The trial suggests the approach is numerically stable, but requires further testing to ensure scientific accuracy.

  6. Numerical calculation of singularities for Ginzburg-Landau functionals

    Directory of Open Access Journals (Sweden)

    J. W. Neuberger

    1997-06-01

    Full Text Available We give results of numerical calculations of asymptotic behavior of critical points of a Ginzburg-Landau functional. We use both continuous and discrete steepest descent in connection with Sobolev gradients in order to study configurations of singularities.

  7. Excitation function calculations for α + 93Nb nuclear reactions

    Science.gov (United States)

    Yiğit, M.; Tel, E.; Sarpün, İ. H.

    2016-10-01

    In this study, the excitation functions of alpha-induced reactions on the 93Nb target nucleus were calculated by using ALICE-ASH code. The hybrid model, Weisskopf-Ewing model and geometry dependent hybrid model in this code were used to understand the alpha-niobium interaction. The contribution on the nuclear interaction of compound and pre-compound processes, with variation of the incident alpha particle energy, was presented. Furthermore, the reaction cross sections were calculated by using different level density models such as Superfluid nuclear model, Fermi gas model and Kataria-Ramamurthy Fermi gas model. Obtaining a good agreement between the calculated and the measured cross sections, the exciton numbers and the nuclear level density models were varied. Finally, the proper choice of the exciton numbers and the nuclear level density models was found to be quite important in order to obtain the more realistic cross section values.

  8. Calculation of VPP basing on functional analyzing method

    Institute of Scientific and Technical Information of China (English)

    Bai Kaixiang; Wang Dexun; Han Jiurui

    2007-01-01

    The establishment and realization of the VPP calucation's model for the functional analytic theory are discussed in this paper. Functional analyzing method is a theoretical model of the VPP calculation which can eliminate the influence of the sail and board's size skillfully, so it can be regarded as a brief standard of the sailboard's VPP results. As a brief watery dynamical model, resistance on board can be regarded as a direct proportion to the square of the boat-velocity. The boat-velocities at the state of six wind-velocities (3 m/s-8 m/s) with angles of 25°-180° are obtained by calculating, which provides an important gist of the sailing-route's selection in upwind-sailing.

  9. Calculations of Optical Rotation from Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    António Canal Neto; Francisco Elias Jorge

    2007-01-01

    Density function theory calculations of frequency-dependent optical rotations [α]ω for three rigid chiral molecules are reported. Calculations have been carried out at the sodium D line frequency, using the ADZP basis set and a wide variety of functionals. Gauge-invariant atomic orbitals are used to guarantee origin-independent values of [α]D. In addition, study of geometry dependence of [α]D. Is reported. Using the geometries optimized at the B3LYP/ADZP level, the mean absolute deviation of B3LYP/ADZP and experimental [α]D values yields 60.1°/(dm g/cm3). According to our knowledge, this value has not been achieved until now with any other model.

  10. A method of calculating the Jost function for analytic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Rakityansky, S.A. [University of South Africa (UNISA), Pretoria (South Africa). Dept. of Physics; Sofianos, S.A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Amos, K. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1995-05-10

    A combination of the variable-constant and complex coordinate rotation methods is used to solve the two-body Schroedinger equation. The equation is replaced by a system of linear first-order differential equations, which enables one to perform direct calculation of the Jost function for all complex momenta of physical interest including the spectral points corresponding to bound and resonance states. 16 refs., 2 tabs., 2 figs.

  11. An effective algorithm for calculating the Chandrasekhar function

    Science.gov (United States)

    Jablonski, A.

    2012-08-01

    Numerical values of the Chandrasekhar function are needed with high accuracy in evaluations of theoretical models describing electron transport in condensed matter. An algorithm for such calculations should be possibly fast and also accurate, e.g. an accuracy of 10 decimal digits is needed for some applications. Two of the integral representations of the Chandrasekhar function are prospective for constructing such an algorithm, but suitable transformations are needed to obtain a rapidly converging quadrature. A mixed algorithm is proposed in which the Chandrasekhar function is calculated from two algorithms, depending on the value of one of the arguments. Catalogue identifier: AEMC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 567 No. of bytes in distributed program, including test data, etc.: 4444 Distribution format: tar.gz Programming language: Fortran 90 Computer: Any computer with a FORTRAN 90 compiler Operating system: Linux, Windows 7, Windows XP RAM: 0.6 Mb Classification: 2.4, 7.2 Nature of problem: An attempt has been made to develop a subroutine that calculates the Chandrasekhar function with high accuracy, of at least 10 decimal places. Simultaneously, this subroutine should be very fast. Both requirements stem from the theory of electron transport in condensed matter. Solution method: Two algorithms were developed, each based on a different integral representation of the Chandrasekhar function. The final algorithm is edited by mixing these two algorithms and by selecting ranges of the argument ω in which performance is the fastest. Restrictions: Two input parameters for the Chandrasekhar function, x and ω (notation used in the code), are restricted to the range: 0⩽x⩽1 and 0⩽ω⩽1

  12. Infrared Spectroscopy of Functionalized Graphene Sheets from First Principle Calculations

    Science.gov (United States)

    Zhang, Cui; Dabbs, Daniel; Aksay, Ilhan; Car, Roberto; Selloni, Annabella

    2014-03-01

    Detailed characterization of the structure of functionalized graphene sheets (FGSs) is an important and challenging task which could help to improve the performance of FGS materials for technological applications. We present here first principles calculations for the infrared (IR) spectra of different FGS models aimed at identifying the IR signatures of different functional groups and defect sites on FGSs. We found that vacancies and edges have significant effects on the IR frequencies of the functional groups on FGSs. In particular, hydroxyl groups close to vacancies have higher stretching and lower bending frequencies in comparison to hydroxyls in defect free regions of FGSs. More interestingly, the OH vibrations of carboxyl groups at edges exhibit unique features in the high frequency IR bands, which originate from the interactions with neighboring groups and the relative orientation of the carboxyl with respect to the FGS plane. Our results are supported by experimental IR measurements on FGS powders.

  13. Relativistic effects in model calculations of double parton distribution function

    CERN Document Server

    Rinaldi, Matteo

    2016-01-01

    In this paper we consider double parton distribution functions (dPDFs) which are the main non perturbative ingredients appearing in the double parton scattering cross section formula in hadronic collisions. By using recent calculation of dPDFs by means of constituent quark models within the so called Light-Front approach, we investigate the role of relativistic effects on dPDFs. We find, in particular, that the so called Melosh operators, which allow to properly convert the LF spin into the canonical one and incorporate a proper treatment of boosts, produce sizeable effects on dPDFs. We discuss specific partonic correlations induced by these operators in transverse plane which are relevant to the proton structure and study under which conditions these results are stable against variations in the choice of the proton wave function.

  14. Molecular electric moments calculated by using natural orbital functional theory

    CERN Document Server

    Mitxelena, Ion

    2016-01-01

    The molecular electric dipole, quadrupole and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-$\\zeta$ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data, and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles (CCSD) and multi-reference single and double excitation configuration interaction (MRSD-CI) methods.

  15. A simplified approach to calculate atomic partition functions in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    D' Ammando, Giuliano [Dipartimento di Chimica, Universita di Bari, Via Orabona 4, 70125 Bari (Italy); Colonna, Gianpiero [CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy); Capitelli, Mario [Dipartimento di Chimica, Universita di Bari, Via Orabona 4, 70125 Bari (Italy); CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy)

    2013-03-15

    A simplified method to calculate the electronic partition functions and the corresponding thermodynamic properties of atomic species is presented and applied to C(I) up to C(VI) ions. The method consists in reducing the complex structure of an atom to three lumped levels. The ground level of the lumped model describes the ground term of the real atom, while the second lumped level represents the low lying states and the last one groups all the other atomic levels. It is also shown that for the purpose of thermodynamic function calculation, the energy and the statistical weight of the upper lumped level, describing high-lying excited atomic states, can be satisfactorily approximated by an analytic hydrogenlike formula. The results of the simplified method are in good agreement with those obtained by direct summation over a complete set (i.e., including all possible terms and configurations below a given cutoff energy) of atomic energy levels. The method can be generalized to include more lumped levels in order to improve the accuracy.

  16. Automated quantum conductance calculations using maximally-localised Wannier functions

    CERN Document Server

    Shelley, Matthew; Mostofi, Arash A; Marzari, Nicola

    2011-01-01

    A robust, user-friendly, and automated method to determine quantum conductance in disordered quasi-one-dimensional systems is presented. The scheme relies upon an initial density- functional theory calculation in a specific geometry after which the ground-state eigenfunctions are transformed to a maximally-localised Wannier function (MLWF) basis. In this basis, our novel algorithms manipulate and partition the Hamiltonian for the calculation of coherent electronic transport properties within the Landauer-Buttiker formalism. Furthermore, we describe how short- ranged Hamiltonians in the MLWF basis can be combined to build model Hamiltonians of large (>10,000 atom) disordered systems without loss of accuracy. These automated algorithms have been implemented in the Wannier90 code[Mostofi et al, Comput. Phys. Commun. 178, 685 (2008)], which is interfaced to a number of electronic structure codes such as Quantum-ESPRESSO, AbInit, Wien2k, SIESTA and FLEUR. We apply our methods to an Al atomic chain with a Na defect...

  17. Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function

    Institute of Scientific and Technical Information of China (English)

    N.Ghahramany; G.R.Boroun

    2003-01-01

    A calculation of the proton structure function F2(x,Q2) is reported with an approximation method that relates the reduced cross section derivative and the F2(x, Q2) scaling violation at low x by using quadratic form for the structure function. This quadratic form approximation method can be used to determine the structure function F2 (x, Q2) from the HERA reduced cross section data taken at low x. This new approach can determine the structure functions F2(x,Q2) with reasonable precision even for low x values which have not been investigated. We observe that the Q2 dependence is quadratic over the full kinematic covered range. To test the validity of our new determined structure functions, we find the gluon distribution function in the leading order approximation with our new calculation for the structure functions and compare them with the QCD parton distribution functions.

  18. Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function

    Institute of Scientific and Technical Information of China (English)

    N. Ghahramany; G.R. Boroun

    2003-01-01

    A calculation of the proton structure function F2(x,Q2) is reported with an approximation method that relates the reduced cross section derivative and the F2(x, Q2) scaling violation at low x by using quadratic form for the structure function. This quadratic form approximation method can be used to determine the structure function F2 (x, Q2)from the HERA reduced cross section data taken at low x. This new approach can determine the structure functions F2(x,Q2) with reasonable precision even for low x values which have not been investigated. We observe that the Q2 dependence is quadratic over the full kinematic covered range. To test the validity of our new determined structure functions, wefind the gluon distribution function in the leading order approximation with our new calculation for the structure functions and compare them with the QCD parton distribution functions.

  19. High-performance functional Renormalization Group calculations for interacting fermions

    Science.gov (United States)

    Lichtenstein, J.; Sánchez de la Peña, D.; Rohe, D.; Di Napoli, E.; Honerkamp, C.; Maier, S. A.

    2017-04-01

    We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the two-fermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the t ,t‧ Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies.

  20. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies

    Energy Technology Data Exchange (ETDEWEB)

    McKechnie, Scott [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Booth, George H. [Theory and Simulation of Condensed Matter, King’s College London, The Strand, London WC2R 2LS (United Kingdom); Cohen, Aron J. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Cole, Jacqueline M., E-mail: jmc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Argonne National Laboratory, 9700 S Cass Avenue, Argonne, Illinois 60439 (United States)

    2015-05-21

    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.

  1. On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies

    Science.gov (United States)

    McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.

    2015-05-01

    The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.

  2. Accurate ionization potential of semiconductors from efficient density functional calculations

    Science.gov (United States)

    Ye, Lin-Hui

    2016-07-01

    Despite its huge successes in total-energy-related applications, the Kohn-Sham scheme of density functional theory cannot get reliable single-particle excitation energies for solids. In particular, it has not been able to calculate the ionization potential (IP), one of the most important material parameters, for semiconductors. We illustrate that an approximate exact-exchange optimized effective potential (EXX-OEP), the Becke-Johnson exchange, can be used to largely solve this long-standing problem. For a group of 17 semiconductors, we have obtained the IPs to an accuracy similar to that of the much more sophisticated G W approximation (GWA), with the computational cost of only local-density approximation/generalized gradient approximation. The EXX-OEP, therefore, is likely as useful for solids as for finite systems. For solid surfaces, the asymptotic behavior of the vx c has effects similar to those of finite systems which, when neglected, typically cause the semiconductor IPs to be underestimated. This may partially explain why standard GWA systematically underestimates the IPs and why using the same GWA procedures has not been able to get an accurate IP and band gap at the same time.

  3. One Point of View: Choosing a Calculator: Four-Function Foul-ups.

    Science.gov (United States)

    Demana, Franklin; Osborne, Alan

    1988-01-01

    Argues that the type of calculator that is used in mathematics instruction is very important. Suggests that four-function calculators fail to give correct values of mathematical expressions far more often than do scientific calculators. (PK)

  4. Ab-initio Green's Functions Calculations of Atoms

    CERN Document Server

    Barbieri, C

    2009-01-01

    The Faddeev random phase approximation (FRPA) method is applied to calculate the ground state and ionization energies of simple atoms. First ionization energies agree with the experiment at the level of ~10 mH or less. Calculations with similar accuracy are expected to provide information required for developing the proposed quasiparticle-DFT method.

  5. Multiconfiguration Pair-Density Functional Theory Spectral Calculations Are Stable to Adding Diffuse Basis Functions.

    Science.gov (United States)

    Hoyer, Chad E; Gagliardi, Laura; Truhlar, Donald G

    2015-11-05

    Time-dependent Kohn-Sham density functional theory (TD-KS-DFT) is useful for calculating electronic excitation spectra of large systems, but the low-energy spectra are often complicated by artificially lowered higher-energy states. This affects even the lowest energy excited states. Here, by calculating the lowest energy spin-conserving excited state for atoms from H to K and for formaldehyde, we show that this problem does not occur in multiconfiguration pair-density functional theory (MC-PDFT). We use the tPBE on-top density functional, which is a translation of the PBE exchange-correlation functional. We compare to a robust multireference method, namely, complete active space second-order perturbation theory (CASPT2), and to TD-KS-DFT with two popular exchange-correlation functionals, PBE and PBE0. We find for atoms that the mean unsigned error (MUE) of MC-PDFT with the tPBE functional improves from 0.42 to 0.40 eV with a double set of diffuse functions, whereas the MUEs for PBE and PBE0 drastically increase from 0.74 to 2.49 eV and from 0.45 to 1.47 eV, respectively.

  6. Stochastic wave function approach to the calculation of multitime correlation functions of open quantum systems

    CERN Document Server

    Breuer, H P; Petruccione, F; Breuer, Heinz-Peter; Kappler, Bernd; Petruccione, Francesco

    1997-01-01

    Within the framework of probability distributions on projective Hilbert space a scheme for the calculation of multitime correlation functions is developed. The starting point is the Markovian stochastic wave function description of an open quantum system coupled to an environment consisting of an ensemble of harmonic oscillators in arbitrary pure or mixed states. It is shown that matrix elements of reduced Heisenberg picture operators and general time-ordered correlation functions can be expressed by time-symmetric expectation values of extended operators in a doubled Hilbert space. This representation allows the construction of a stochastic process in the doubled Hilbert space which enables the determination of arbitrary matrix elements and correlation functions. The numerical efficiency of the resulting stochastic simulation algorithm is investigated and compared with an alternative Monte Carlo wave function method proposed first by Dalibard et al. [Phys. Rev. Lett. {\\bf 68}, 580 (1992)]. By means of a stan...

  7. Calculation of VPP basing on functional analyzing method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    VPP can be used to deter mine the maxi mumvelocities of a sailboard at various sailing-routes,byestablishing the forces and moments balance-equa-tions on the sail and board in accordance with theprinciple of the maxi mal drive-force.Selectingroute is the most i mportant issue in upwind-sailing,and VPP calculations could provide the basis for de-ter mining the opti mal routes.VPP calculation of the sailboard perfor mance isa complex and difficult research task,and there arefew projects in this research-field...

  8. Kinetic-energy functionals studied by surface calculations

    DEFF Research Database (Denmark)

    Vitos, Levente; Skriver, Hans Lomholt; Kollár, J.

    1998-01-01

    The self-consistent jellium model of metal surfaces is used to study the accuracy of a number of semilocal kinetic-energy functionals for independent particles. It is shown that the poor accuracy exhibited by the gradient expansion approximation and most of the semiempirical functionals in the low...

  9. MEASURING OF COMPLEX STRUCTURE TRANSFER FUNCTION AND CALCULATING OF INNER SOUND FIELD

    Institute of Scientific and Technical Information of China (English)

    Chen Yuan; Huang Qibai; Shi Hanmin

    2005-01-01

    In order to measure complex structure transfer function and calculate inner sound field, transfer function of integration is mentioned. By establishing virtual system, transfer function of integration can be measured and the inner sound field can also be calculated. In the experiment, automobile body transfer function of integration is measured and experimental method of establishing virtual system is very valid.

  10. Density functional theory calculations on dipeptide gallic acid interaction

    Science.gov (United States)

    Madhan, B.; Parthasarathi, R.; Subramanian, V.; Raghava Rao, J.; Nair, Balachandran Unni; Ramasami, T.

    2003-02-01

    In the present investigation, an attempt has been made to study the interaction of dipeptides with gallic acid, using Becke3 parameter Lee Yang Parr (B3LYP) method employing 3-21G*, 6-31G* and 6-31+G* basis sets. The interaction energies of the dipeptide-gallic acid complexes are in the range of -5 to -18 kcal/mol depending on the mode of intermolecular complexation. Calculated molecular electrostatic potential (MESP) for the various intermolecular complexes revealed the electrostatic nature of the interaction. Qualitative estimations based on chemical hardness and chemical potential demonstrated fractional electron transfer from dipeptide to gallic acid.

  11. Orbital-Free Density Functional Theory for Molecular Structure Calculations

    Institute of Scientific and Technical Information of China (English)

    Huajie Chen; Aihui Zhou

    2008-01-01

    We give here an overview of the orbital-free density functional theory that is used for modeling atoms and molecules. We review typical approximations to the kinetic energy, exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials. We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations.

  12. Reproducibility in density functional theory calculations of solids

    DEFF Research Database (Denmark)

    Lejaeghere, Kurt; Bihlmayer, Gustav; Björkman, Torbjörn

    2016-01-01

    The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We r...

  13. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Directory of Open Access Journals (Sweden)

    Sam P. de Visser

    2016-04-01

    Full Text Available In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1. This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  14. Time dependent density functional calculation of plasmon response in clusters

    Institute of Scientific and Technical Information of China (English)

    Wang Feng(王锋); Zhang Feng-Shou(张丰收); Eric Suraud

    2003-01-01

    We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged timedependent local density approximation scheme, which is solved directly in the time domain without any linearization.As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.

  15. Reproducibility in density functional theory calculations of solids

    OpenAIRE

    2016-01-01

    This is the author accepted manuscript.The final version is available from the American Association for the Advancement of Science via http://dx.doi.org/10.1126/science.aad3000 The widespread popularity of density-functional theory has given rise to a vast range of dedicated codes to predict molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions on the reproducibility of such predictions. We report the results of a community-...

  16. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom

    Science.gov (United States)

    Baseden, Kyle A.; Tye, Jesse W.

    2014-01-01

    Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…

  17. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom

    Science.gov (United States)

    Baseden, Kyle A.; Tye, Jesse W.

    2014-01-01

    Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…

  18. Benchmarking density-functional-theory calculations of rotational g tensors and magnetizabilities using accurate coupled-cluster calculations

    Science.gov (United States)

    Lutnæs, Ola B.; Teale, Andrew M.; Helgaker, Trygve; Tozer, David J.; Ruud, Kenneth; Gauss, Jürgen

    2009-10-01

    An accurate set of benchmark rotational g tensors and magnetizabilities are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster single-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the results obtained is established for the rotational g tensors by careful comparison with experimental data, taking into account zero-point vibrational corrections. After an analysis of the basis sets employed, extrapolation techniques are used to provide estimates of the basis-set-limit quantities, thereby establishing an accurate benchmark data set. The utility of the data set is demonstrated by examining a wide variety of density functionals for the calculation of these properties. None of the density-functional methods are competitive with the CCSD or CCSD(T) methods. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of density-functional calculations constrained to give the same electronic density. The importance of current dependence in exchange-correlation functionals is discussed in light of this comparison.

  19. Antisites in III-V semiconductors: Density functional theory calculations

    KAUST Repository

    Chroneos, A.

    2014-07-14

    Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III=Al, Ga, and In and V=P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III V q) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V I I I q) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III V q defects dominate under III-rich conditions and V I I I q under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies. © 2014 AIP Publishing LLC.

  20. Antisites in III-V semiconductors: Density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chroneos, A., E-mail: alex.chroneos@open.ac.uk [Engineering and Innovation, The Open University, Milton Keynes MK7 6AA (United Kingdom); Tahini, H. A. [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom); PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia); Schwingenschlögl, U., E-mail: udo.schwingenschlogl@kaust.edu.sa [PSE Division, KAUST, Thuwal 23955-6900 (Saudi Arabia); Grimes, R. W., E-mail: r.grimes@imperial.ac.uk [Department of Materials, Imperial College London, London SW7 2AZ (United Kingdom)

    2014-07-14

    Density functional based simulation, corrected for finite size effects, is used to investigate systematically the formation of antisite defects in III-V semiconductors (III = Al, Ga, and In and V = P, As, and Sb). Different charge states are modelled as a function of the Fermi level and under different growth conditions. The formation energies of group III antisites (III{sub V}{sup q}) decrease with increasing covalent radius of the group V atom though not group III radius, whereas group V antisites (V{sub III}{sup q}) show a consistent decrease in formation energies with increase in group III and group V covalent radii. In general, III{sub V}{sup q} defects dominate under III-rich conditions and V{sub III}{sup q} under V-rich conditions. Comparison with equivalent vacancy formation energy simulations shows that while antisite concentrations are always dominant under stoichiometric conditions, modest variation in growth or doping conditions can lead to a significantly higher concentration of vacancies.

  1. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  2. Informing saccharide structural NMR studies with density functional theory calculations.

    Science.gov (United States)

    Klepach, Thomas; Zhao, Hongqiu; Hu, Xiaosong; Zhang, Wenhui; Stenutz, Roland; Hadad, Matthew J; Carmichael, Ian; Serianni, Anthony S

    2015-01-01

    Density functional theory (DFT) is a powerful computational tool to enable structural interpretations of NMR spin-spin coupling constants ( J-couplings) in saccharides, including the abundant (1)H-(1)H ( JHH), (13)C-(1)H ( JCH), and (13)C-(13)C ( JCC) values that exist for coupling pathways comprised of 1-4 bonds. The multiple hydroxyl groups in saccharides, with their attendant lone-pair orbitals, exert significant effects on J-couplings that can be difficult to decipher and quantify without input from theory. Oxygen substituent effects are configurational and conformational in origin (e.g., axial/equatorial orientation of an OH group in an aldopyranosyl ring; C-O bond conformation involving an exocyclic OH group). DFT studies shed light on these effects, and if conducted properly, yield quantitative relationships between a specific J-coupling and one or more conformational elements in the target molecule. These relationships assist studies of saccharide structure and conformation in solution, which are often challenged by the presence of conformational averaging. Redundant J-couplings, defined as an ensemble of J-couplings sensitive to the same conformational element, are particularly helpful when the element is flexible in solution (i.e., samples multiple conformational states on the NMR time scale), provided that algorithms are available to convert redundant J-values into meaningful conformational models. If the latter conversion is achievable, the data can serve as a means of testing, validating, and refining theoretical methods like molecular dynamics (MD) simulations, which are currently relied upon heavily to assign conformational models of saccharides in solution despite a paucity of experimental data needed to independently validate the method.

  3. Green's function Monte Carlo calculations of /sup 4/He

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.A.

    1988-01-01

    Green's Function Monte Carlo methods have been developed to study the ground state properties of light nuclei. These methods are shown to reproduce results of Faddeev calculations for A = 3, and are then used to calculate ground state energies, one- and two-body distribution functions, and the D-state probability for the alpha particle. Results are compared to variational Monte Carlo calculations for several nuclear interaction models. 31 refs.

  4. A universal potential energy function and precise calculations on the molecular spectra

    Institute of Scientific and Technical Information of China (English)

    Yu Changfeng; Yan Kun; Liu Daizhi

    2008-01-01

    By using a function with a phase factor, a universal analytic potential energy function applied to the interactions between diatoms or molecules is derived and six kinds of potential curves of common shapes are obtained by adjusting the phase factor. The spectroscopic parameters of ten diatomic molecules are calculated by using the potential energy function; as a consequence, all calculation results are in good agreement with experimental data.

  5. Hybrid density functional theory LCAO calculations on phonons in Ba (Ti,Zr,Hf) O3

    OpenAIRE

    Evaestov, Robert A

    2010-01-01

    Phonon frequencies at {\\Gamma},X,M,R-points of Brilloin zone in cubic phase of Ba(Ti,Zr,Hf)O3 were first time calculated by frozen phonon method using density functional theory (DFT) with hybrid exchange correlation functional PBE0. The calculations use linear combination of atomic orbitals (LCAO) basis functions as implemented in CRYSTAL09 computer code. The Powell algorithm was applied for basis set optimization. In agreement with the experimental observations the structural instability via...

  6. Density-functional calculations for rare-earth atoms and ions

    Science.gov (United States)

    Forstreuter, J.; Steinbeck, L.; Richter, M.; Eschrig, H.

    1997-04-01

    Relativistic local-spin-density (RLSD) and self-interaction-corrected (SIC) RLSD calculations were performed for the whole series of the rare-earth elements. Ionization potentials and radial expectation values with 4f wave functions were calculated. Improvement on nearly all quantities is found for SIC calculations. Comparison with other calculational methods shows that for a description of rare-earth elements SIC-RLSD competes well in accuracy with all of them, including the most accurate quantum-chemical approach. This is important since the SIC calculation has the advantage of being suited for a description of localized f states in solids with a comparatively moderate effort.

  7. Ab Initio Calculation on Self-Assembled Base-Functionalized Single-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    SONG Chen; XIA Yue-Yuan; ZHAO Ming-Wen; LIU Xiang-Dong; LI Ji-Ling; LI Li-Juan; LI Feng; HUANG Bo-Da

    2006-01-01

    @@ We perform ab initio calculations on the self-assembled base-functionalized single-walled carbon nanotubes (SWNTs) which exhibit the quasi-1D ‘ladder’ structure. The optimized configuration in the ab initio calculation is very similar to that obtainedfrom molecular dynamics simulation. We also calculate the electronic structures of the self-assembled base-functionalized SWNTs that exhibit distinct difference from the single-branch base-functionalized SWNT with a localized state lying just below the Fermi level, which may result from the coupling interaction between the bases accompanied by the self-assembly behaviour.

  8. The quasi-Gaussian entropy theory : Free energy calculations based on the potential energy distribution function

    NARCIS (Netherlands)

    Amadei, A; Apol, MEF; DiNola, A; Berendsen, HJC

    1996-01-01

    A new theory is presented for calculating the Helmholtz free energy based on the potential energy distribution function. The usual expressions of free energy, internal energy and entropy involving the partition function are rephrased in terms of the potential energy distribution function, which must

  9. The quasi-Gaussian entropy theory : Free energy calculations based on the potential energy distribution function

    NARCIS (Netherlands)

    Amadei, A; Apol, MEF; DiNola, A; Berendsen, HJC

    1996-01-01

    A new theory is presented for calculating the Helmholtz free energy based on the potential energy distribution function. The usual expressions of free energy, internal energy and entropy involving the partition function are rephrased in terms of the potential energy distribution function, which must

  10. Development of Calculation Module for Intake Retention Functions based on Occupational Intakes of Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Siwan; Kwon, Tae-Eun; Lee, Jai-Ki [Hanyang Univ., Seoul (Korea, Republic of); Lee, Jong-Il; Kim, Jang-Lyul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In internal dosimetry, intake retention and excretion functions are essential to estimate intake activity using bioassay sample such as whole body counter, lung counter, and urine sample. Even though ICRP (International Commission on Radiological Protection)provides the functions in some ICRP publications, it is needed to calculate the functions because the functions from the publications are provided for very limited time. Thus, some computer program are generally used to calculate intake retention and excretion functions and estimate intake activity. OIR (Occupational Intakes of Radionuclides) will be published soon by ICRP, which totally replaces existing internal dosimetry models and relevant data including intake retention and excretion functions. Thus, the calculation tool for the functions is needed based on OIR. In this study, we developed calculation module for intake retention and excretion functions based on OIR using C++ programming language with Intel Math Kernel Library. In this study, we developed the intake retention and excretion function calculation module based on OIR using C++ programing language.

  11. Excitation and ionization energies of substituted anilines calculated with density functional theory

    Directory of Open Access Journals (Sweden)

    Yuji Takahata

    2010-06-01

    Full Text Available Valence electron singlet excitation energies (VEExE, valence electron ionization energies (VEIE, core electron binding energies (CEBE, and non-resonant X-ray emission energies of substituted anilines and related molecules were calculated using density functional theory (DFT. The energy calculations were done with TZP basis set of Slater Type Orbitals. PW86x-PW91c, turned out to be the best XC functional among eight functionals tested for time dependent DFT (TDDFT calculation of the singlet excitation energies of the substituted anilines. Using the XC functional, average absolute deviation (AAD from experiment was 0.223 eV for eighteen cases with maximum absolute deviation of 0.932 eV. The valence electron ionization energies of the substituted benzenes were calculated by ΔSCF method with PW86x-PW91c. AAD from experiment was 0.21 eV. The CEBEs were calculated with the previously established method, named as scheme 2003. ΔCEBE(SMS,, sum of mono substituted (SMS CEBE shift, and mutual interference effect (MIE were defined and their values were calculated. Magnitude of MIE provides the degree of mutual interference between two substituents in a phenyl ring. Average absolute value of MIE was ca. 0.1 eV for the three isomers of phenetidine. Using the calculated valence electron ionization energies and the core electron binding energies of one of the phenetidines, some X-ray emission energies were calculated.

  12. Strain induced changes in phonon band structure of antimony monolayer using density functional theory calculations

    Science.gov (United States)

    Pillai, Sharad Babu; Narayan, Som; Jha, Prafulla K.

    2017-05-01

    The present paper reports the study of phonon properties of a two dimensional antimony nanosheet under the biaxial strain using first principles calculation based on density functional theory. Our calculations shows that the strain turns the quadratic dependence of wave vector on frequency to the linear dependency which can be linked with the removal of rippling in nanosheets.

  13. Calculate Electric Field Gradient of TiO2 Within Density Functional Theory

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>TiO2 electric field gradient has been calculated utilizing WIEN2K program, which is ab initio based on density function theory (DFT). DFT uses the charge density as a variable instead of electronic wave

  14. Calculation of infrared limb emission by ozone in the terrestrial middle atmosphere. I - Source functions. II - Emission calculations

    Science.gov (United States)

    Mlynczak, Martin G.; Drayson, S. Roland

    1990-01-01

    The departure from LTE in the vibration-rotation bands of ozone in the middle atmosphere is analyzed using two statistical equilibrium models: the energy gap model and the simplified single model. The diurnal variations in the fundamental band source functions nu(1) and nu(3) is determined by the diurnal change in the rate of ozone photolysis by the solar radiation. Source functions are presented for the vibration-rotation bands of ozone that emit in the 9-11-micron spectral interval, over an altitude range of 1-110 km. Results are also reported of the evaluation of the radiative transfer equation incorporating these source functions and energy level populations. Using the results of the two statistical equilibrium models, calculations are carried out of the spectrally integrated limb radiance for the limb viewing geometry for daytime conditions. Results indicate that the interpretation of the measurements of spectrally integrated limb radiance from ozone will be greatly complicated by the breakdown of LTE in the vibration-rotational bands of ozone.

  15. Problems and methods of calculating the Legendre functions of arbitrary degree and order

    Science.gov (United States)

    Novikova, Elena; Dmitrenko, Alexander

    2016-12-01

    The known standard recursion methods of computing the full normalized associated Legendre functions do not give the necessary precision due to application of IEEE754-2008 standard, that creates a problems of underflow and overflow. The analysis of the problems of the calculation of the Legendre functions shows that the problem underflow is not dangerous by itself. The main problem that generates the gross errors in its calculations is the problem named the effect of "absolute zero". Once appeared in a forward column recursion, "absolute zero" converts to zero all values which are multiplied by it, regardless of whether a zero result of multiplication is real or not. Three methods of calculating of the Legendre functions, that removed the effect of "absolute zero" from the calculations are discussed here. These methods are also of interest because they almost have no limit for the maximum degree of Legendre functions. It is shown that the numerical accuracy of these three methods is the same. But, the CPU calculation time of the Legendre functions with Fukushima method is minimal. Therefore, the Fukushima method is the best. Its main advantage is computational speed which is an important factor in calculation of such large amount of the Legendre functions as 2 401 336 for EGM2008.

  16. Improving the accuracy of density-functional theory calculation: the genetic algorithm and neural network approach.

    Science.gov (United States)

    Li, Hui; Shi, LiLi; Zhang, Min; Su, Zhongmin; Wang, XiuJun; Hu, LiHong; Chen, GuanHua

    2007-04-14

    The combination of genetic algorithm and neural network approach (GANN) has been developed to improve the calculation accuracy of density functional theory. As a demonstration, this combined quantum mechanical calculation and GANN correction approach has been applied to evaluate the optical absorption energies of 150 organic molecules. The neural network approach reduces the root-mean-square (rms) deviation of the calculated absorption energies of 150 organic molecules from 0.47 to 0.22 eV for the TDDFTB3LYP6-31G(d) calculation, and the newly developed GANN correction approach reduces the rms deviation to 0.16 eV.

  17. Laterality of brain areas associated with arithmetic calculations revealed by functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-ting; ZHANG Quan; ZHANG Jing; LI Wei

    2005-01-01

    Background Asymmetry of bilateral cerebral function, i.e. laterality, is an important phenomenon in many brain actions: arithmetic calculation may be one of these phenomena. In this study, first, laterality of brain areas associated with arithmetic calculations was revealed by functional magnetic resonance imaging (fMRI). Second, the relationship among laterality, handedness, and types of arithmetic task was assessed. Third, we postulate possible reasons for laterality.Methods Using a block-designed experiment, twenty-five right-handed and seven left-handed healthy volunteers carried out simple calculations, complex calculations and proximity judgments. T1WI and GRE-EPI fMRI were performed with a GE 1.5T whole body MRI scanner. Statistical parametric mapping (SPM99) was used to process data and localize functional areas. Numbers of activated voxels were recorded to calculate laterality index for evaluating the laterality of functional brain areas.Results For both groups, the activation of functional areas in the frontal lobe showed a tendency towards the nonpredominant hand side, but the functional areas in the inferior parietal lobule had left laterality. During simple and complex calculations, the laterality indices of the prefrontal cortex and premotor area were higher in the right-handed group than that in the left-handed group, whereas the laterality of the inferior parietal lobule had no such significant difference. In both groups, when the difficulty of the task increased, the laterality of the prefrontal cortex, premotor area, and inferior parietal lobule decreased, but the laterality of posterior part of the inferior frontal gyrus increased.Conclusions The laterality of the functional brain areas associated with arithmetic calculations can be detected with fMRI. The laterality of the functional areas was related to handedness and task difficulty.

  18. Density functional theory approach for calculation of dielectric properties of warm dense matter

    Science.gov (United States)

    Saitov, Ilnur

    2015-06-01

    The reflectivity of shocked xenon was measured in the experiments of Mintsev and Zaporoghets for wavelength 1064 nm. But there is no adequate theoretical explanation of these reflectivity results in the framework of the standard methods of nonideal plasma theory. The assumption of significant width to the shock front gives a good agreement with the experimental data. However, there are no evidences of this effect in the experiment. Reflectivity of shocked compressed xenon plasma is calculated in the framework of the density functional theory approach as in. Dependencies on the frequency of incident radiation and on the plasma density are analyzed. The Fresnel formula for the reflectivity is used. The longitudinal expression in the long wavelength limit is applied for the calculation of the imaginary part of the dielectric function. The real part of the dielectric function is calculated by means of the Kramers-Kronig transformation. The approach for the calculation of plasma frequency is developed.

  19. Shadow wave-function variational calculations of crystalline and liquid phases of 4He

    Science.gov (United States)

    Vitiello, S. A.; Runge, K. J.; Chester, G. V.; Kalos, M. H.

    1990-07-01

    A new class of variational wave functions for boson systems, shadow wave functions, is used to investigate the properties of solid and liquid 4He. The wave function is translationally invariant and symmetric under particle interchange. In principle, the calculations for the crystalline phase do not require the use of any auxiliary lattice. Using the Metropolis Monte Carlo algorithm, we show that the additional variational degrees of freedom in the wave function lower the energy significantly. This wave function also allows the crystalization of an equilibrated liquid phase when a crystalline seed is used. The pair correlation function and structure factor S(k) are determined in the liquid phase. The condensate fraction is calculated as well. Results are given for the single-particle distribution function around the lattice positions in the solid phase.

  20. Automated calculation of anharmonic vibrational contributions to first hyperpolarizabilities: quadratic response functions from vibrational configuration interaction wave functions.

    Science.gov (United States)

    Hansen, Mikkel Bo; Christiansen, Ove; Hättig, Christof

    2009-10-21

    Quadratic response functions are derived and implemented for a vibrational configuration interaction state. Combined electronic and vibrational quadratic response functions are derived using Born-Oppenheimer vibronic product wave functions. Computational tractable expressions are derived for determining the total quadratic response contribution as a sum of contributions involving both electronic and vibrational linear and quadratic response functions. In the general frequency-dependent case this includes a new and more troublesome type of electronic linear response function. Pilot calculations for the FH, H(2)O, CH(2)O, and pyrrole molecules demonstrate the importance of vibrational contributions for accurate comparison to experiment and that the vibrational contributions in some cases can be very large. The calculation of transition properties between vibrational states is combined with sum-over-states expressions for analysis purposes. On the basis of this some simple analysis methods are suggested. Also, a preliminary study of the effect of finite lifetimes on quadratic response functions is presented.

  1. MODY – calculation of ordered structures by symmetry-adapted functions

    Directory of Open Access Journals (Sweden)

    Białas Franciszek

    2016-01-01

    Full Text Available In this paper we focus on the new version of computer program MODY for calculations of symmetryadapted functions based on the theory of groups and representations. The choice of such a functional frame of coordinates for description of ordered structures leads to a minimal number of parameters which must be used for presentation of such structures and investigations of their properties. The aim of this work is to find those parameters, which are coefficients of a linear combination of calculated functions, leading to construction of different types of structure ordering with a given symmetry. A spreadsheet script for simplification of this work has been created and attached to the program.

  2. A Fortran program to calculate the matrix elements of the Coulomb interaction involving hydrogenic wave functions

    Science.gov (United States)

    Sarkadi, L.

    2017-03-01

    The program MTRXCOUL [1] calculates the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψf∗ (r) | R - r | - 1ψi(r) d r. Bound-free transitions are considered, and non-relativistic hydrogenic wave functions are used. In this revised version a bug discovered in the F3Y CPC Program Library (PL) subprogram [2] is fixed. Furthermore, the COULCC CPC PL subprogram [3] applied for the calculations of the radial wave functions of the free states and the Bessel functions is replaced by the CPC PL subprogram DCOUL [4].

  3. Analytic calculations of trial wave functions of the fractional quantum Hall effect on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Souza Batista, C.L. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Dingping Li [Perugia Univ. (Italy). Dipt. di Fisica

    1996-07-01

    We present a framework for the analytic calculations of the hierarchical wave functions and the composite fermion wave functions in the fractional quantum Hall effect on the sphere by using projective coordinates. Then we calculate the overlaps between these two wave functions at various fillings and small numbers of electrons. We find that the overlaps are most equal to one. This gives a further evidence that two theories of the fractional quantum Hall effect, the hierarchical theory, are physically equivalent. (author). 31 refs., 2 tabs.

  4. Calculation of the Electroelastic Green's Function of the Hexagonal Infinite Medium

    CERN Document Server

    Michelitsch, Thomas

    2015-01-01

    The electroelastic 4 $\\times$ 4 Green's function of a piezoelectric hexagonal (transversely isotropic) infinitely extended medium is calculated explicitly in closed compact form (eqs. (73) ff. and (88) ff., respectively) by using residue calculation. The results can also be derived from Fredholm's method [2]. In the case of vanishing piezoelectric coupling the derived Green's function coincides with two well known results: Kr{\\"o}ner 's expressions for the elastic Green's function tensor [4] is reproduced and the electric part then coincides with the electric potential (solution of Poisson equation) which is caused by a unit point charge. The obtained electroelastic Green's function is useful for the calculation of the electroelastic Eshelby tensor [16].

  5. Neural network model for the efficient calculation of Green's functions in layered media

    CERN Document Server

    Soliman, E A; El-Gamal, M A; 10.1002/mmce.10066

    2003-01-01

    In this paper, neural networks are employed for fast and efficient calculation of Green's functions in a layered medium. Radial basis function networks (RBFNs) are effectively trained to estimate the coefficients and the exponents that represent a Green's function in the discrete complex image method (DCIM). Results show very good agreement with the DCIM, and the trained RBFNs are very fast compared with the corresponding DCIM. (23 refs).

  6. Calculation of Calibration Functions and Explosive Aftershock Magnitudes in the Near Field

    Institute of Scientific and Technical Information of China (English)

    Li Xuezheng; Wang Haijun; Lei Jun

    2003-01-01

    The current calibration function used in calculating the magnitude of natural earthquakes within 5km is a constant; a fact that causes several serious difficulties for the calculation of the magnitude of small and shallow-focus earthquakes. According to the attenuation law of explosions and the propagation theory of elastic waves, the calibration function is calculated for near field quakes from 0km to 5km. Magnitudes of two aftershock sequences are calculated.The magnitudes of most explosion earthquakes are small, ranging mainly from magnitude 0.5 to 1.0. The M-t chart of the explosive aftershocks is completely different from that of strong earthquake aftershocks. It not only shows positive columnar lines indicating large magnitudes but also short negative columnar lines indicating small magnitudes.

  7. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  8. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    Science.gov (United States)

    Ringholm, Magnus; Bast, Radovan; Oggioni, Luca; Ekström, Ulf; Ruud, Kenneth

    2014-10-01

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  9. Density-functional calculations for rare-earth atoms and ions

    Energy Technology Data Exchange (ETDEWEB)

    Forstreuter, J.; Steinbeck, L.; Richter, M.; Eschrig, H. [Technische Universitaet Dresden, MPG-Arbeitsgruppe Elektronensysteme, D-01062 Dresden (Germany)

    1997-04-01

    Relativistic local-spin-density (RLSD) and self-interaction-corrected (SIC) RLSD calculations were performed for the whole series of the rare-earth elements. Ionization potentials and radial expectation values with 4f wave functions were calculated. Improvement on nearly all quantities is found for SIC calculations. Comparison with other calculational methods shows that for a description of rare-earth elements SIC-RLSD competes well in accuracy with all of them, including the most accurate quantum-chemical approach. This is important since the SIC calculation has the advantage of being suited for a description of localized f states in solids with a comparatively moderate effort. {copyright} {ital 1997} {ital The American Physical Society}

  10. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory

    Science.gov (United States)

    Liu, Yuan; Ning, Chuangang

    2015-10-01

    Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li-, C-, O-, F-, CH-, OH-, NH2-, O2-, and S2- show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.

  11. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic ammo......-principle quantum mechanical calculations of gas-surface interactions, reactor design, and catalyst selection has been established for the first time....

  12. Green Function Approach to the Calculation of the Local Density of States in the Graphitic Nanocone

    Directory of Open Access Journals (Sweden)

    Smotlacha Jan

    2016-01-01

    Full Text Available Graphene and other nanostructures belong to the center of interest of today’s physics research. The local density of states of the graphitic nanocone influenced by the spin–orbit interaction was calculated. Numerical calculations and the Green function approach were used to solve this problem. It was proven in the second case that the second order approximation is not sufficient for this purpose.

  13. Combining Nuclear Magnetic Resonance Spectroscopy and Density Functional Theory Calculations to Characterize Carvedilol Polymorphs.

    Science.gov (United States)

    Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z

    2016-09-01

    The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations.

  14. A priori mesh grading for the numerical calculation of the head-related transfer functions.

    Science.gov (United States)

    Ziegelwanger, Harald; Kreuzer, Wolfgang; Majdak, Piotr

    2016-12-15

    Head-related transfer functions (HRTFs) describe the directional filtering of the incoming sound caused by the morphology of a listener's head and pinnae. When an accurate model of a listener's morphology exists, HRTFs can be calculated numerically with the boundary element method (BEM). However, the general recommendation to model the head and pinnae with at least six elements per wavelength renders the BEM as a time-consuming procedure when calculating HRTFs for the full audible frequency range. In this study, a mesh preprocessing algorithm is proposed, viz., a priori mesh grading, which reduces the computational costs in the HRTF calculation process significantly. The mesh grading algorithm deliberately violates the recommendation of at least six elements per wavelength in certain regions of the head and pinnae and varies the size of elements gradually according to an a priori defined grading function. The evaluation of the algorithm involved HRTFs calculated for various geometric objects including meshes of three human listeners and various grading functions. The numerical accuracy and the predicted sound-localization performance of calculated HRTFs were analyzed. A-priori mesh grading appeared to be suitable for the numerical calculation of HRTFs in the full audible frequency range and outperformed uniform meshes in terms of numerical errors, perception based predictions of sound-localization performance, and computational costs.

  15. Subtleties in the beta-function calculation of N = 1 supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Cherchiglia, A.L. [ICEx, Universidade Federal de Minas Gerais, Departamento de Fisica, P.O. Box 702, Belo Horizonte, MG (Brazil); Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFPE, Granada (Spain); Sampaio, Marcos [ICEx, Universidade Federal de Minas Gerais, Departamento de Fisica, P.O. Box 702, Belo Horizonte, MG (Brazil); Hiller, B. [CFisUC, Universidade de Coimbra, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Coimbra (Portugal); Scarpelli, A.P.B. [Setor Tecnico-Cientifico, Departamento de Policia Federal, Sao Paulo (Brazil)

    2016-02-15

    We investigate some peculiarities in the calculation of the two-loop beta function of N = 1 supersymmetric models which are intimately related to the so-called ''anomaly puzzle''. There is an apparent paradox when the computation is performed in the framework of the covariant derivative background field method. In this formalism, there is obtained a finite two-loop effective action, although a non-null coefficient for the beta function is achieved by means of the renormalized two-point function in the background field. We show that if the standard background field method is used, this two-point function has a divergent part which allows for the calculation of the beta function via the renormalization constants, as usual. Therefore, we conjecture that this paradox has its origin in the covariant supergraph formalism itself, possibly being an artifact of the rescaling anomaly. (orig.)

  16. New parameterization of Skyrme's interaction for regularized multi-reference energy density functional calculations

    CERN Document Server

    Washiyama, K; Avez, B; Bender, M; Heenen, P -H; Hellemans, V

    2012-01-01

    [Background] Symmetry restoration and configuration mixing in the spirit of the generator coordinate method based on energy density functionals have become widely used techniques in low-energy nuclear structure physics. Recently, it has been pointed out that these techniques are ill-defined for standard Skyrme functionals, and a regularization procedure has been proposed to remove the resulting spuriosities from such calculations. This procedure imposes an integer power of the density for the density dependent terms of the functional. At present, only dated parameterizations of the Skyrme interaction fulfill this condition. [Purpose] To construct a set of parameterizations of the Skyrme energy density functional for multi-reference energy density functional calculations with regularization using the state-of-the-art fitting protocols. [Method] The parameterizations were adjusted to reproduce ground state properties of a selected set of doubly magic nuclei and properties of nuclear matter. Subsequently, these ...

  17. An Improved Calculation of the Non-Gaussian Halo Mass Function

    CERN Document Server

    D'Amico, Guido; Noreña, Jorge; Paranjape, Aseem

    2010-01-01

    The abundance of collapsed objects in the universe, or halo mass function, is an important theoretical tool in studying the effects of primordially generated non-Gaussianities on the large scale structure. The non-Gaussian mass function has been calculated by several authors in different ways, typically by exploiting the smallness of certain parameters which naturally appear in the calculation, to set up a perturbative expansion. We improve upon the existing results for the mass function by combining path integral methods and saddle point techniques (which have been separately applied in previous approaches). Additionally, we carefully account for the various scale dependent combinations of small parameters which appear. Some of these combinations in fact become of order unity for large mass scales and at high redshifts, and must therefore be treated non-perturbatively. Our approach allows us to do this, and to also account for multi-scale density correlations which appear in the calculation. We thus derive a...

  18. Density functional calculations of large systems containing heavy elements by means of the regionalization algorithm

    Institute of Scientific and Technical Information of China (English)

    HU Xiangqian; LI Lemin

    2004-01-01

    The regionalized computational method is extended to the non-relativistic, scalar and 2-component relativistic density functional calculation of large systems containing transition series or heavy main-group metal elements. A large system is divided into several regions which can be considered as relatively independent quantum mechanical subsystems. Taking into account the Coulomb and exchange-correlation potentials as well as the Pauli repulsion exerted by the other subsystems, the Kohn-Sham equation related to subsystem K can be written as: (FK+FKP)CK =SKCKεK K=A,B,C,…,where FK,CK,SK,εK are the Fock matrix, the matrix of combination coefficients of orbitals, the overlap matrix of basis sets and the energy eigenvalue matrix, respectively. The matrix FKP reflects the Pauli repulsion from the other subsystems.FK may be non-relativistic, scalar or 2-component relativistic Fock matrix determined by the theoretical method related to the density functional calculations. The other matrices are mated with FK. Solving the Kohn-Sham equation for every subsystem and combining the results from the subsystem calculations, the electronic structural information of the whole system is derived. The density functional calculation of several molecules containing transition metal Ni or heavy main-group metal Tl or Bi is performed by the afore-mentioned regionalization algorithm. The obtained results for each molecule are compared with those from the density functional calculation of that molecule in its entirety in order to check the feasibility of the regionalization algorithm. It is found that with sufficiently large regional basis set in the subsystem calculation the accuracy of the results calculated by the regionalization algorithm is essentially the same as that from the calculation of the molecule in its entirety. With proper smaller regional basis sets the accuracy of the results calculated with the regionalization algorithm can still match the actual accuracy of the

  19. Structural, Electronic and Dynamical Properties of Curium Monopnictides: Density Functional Calculations

    Science.gov (United States)

    Roondhe, Basant; Upadhyay, Deepak; Som, Narayan; Pillai, Sharad B.; Shinde, Satyam; Jha, Prafulla K.

    2017-03-01

    The structural, electronic, dynamical and thermodynamical properties of CmX (X = N, P, As, Sb, and Bi) compounds are studied using first principles calculations within density functional theory. The Perdew-Burke-Ernzerhof spin polarized generalized gradient approximation and Perdew-Wang (PW) spin polarized local density approximation as the exchange correlational functionals are used in these calculations. There is a good agreement between the present and previously reported data. The calculated electronic density of states suggests that the curium monopnictides are metallic in nature, which is consistent with earlier studies. The significant values of magnetic moment suggest their magnetic nature. The phonon dispersion curves and phonon density of states are also calculated, which depict the dynamical stability of these compounds. There is a significant separation between the optical and acoustical phonon branches. The temperature dependence of the thermodynamical functions are also calculated and discussed. Internal energy and vibrational contribution to the Helmholtz free energy increases and decreases, respectively, with temperature. The entropy increases with temperature. The specific heat at constant volume and Debye temperature obey Debye theory. The temperature variation of the considered thermodynamical functions is in line with those of other crystalline solids.

  20. Evaluation of exchange-correlation functionals for time-dependent density functional theory calculations on metal complexes.

    Science.gov (United States)

    Holland, Jason P; Green, Jennifer C

    2010-04-15

    The electronic absorption spectra of a range of copper and zinc complexes have been simulated by using time-dependent density functional theory (TD-DFT) calculations implemented in Gaussian03. In total, 41 exchange-correlation (XC) functionals including first-, second-, and third-generation (meta-generalized gradient approximation) DFT methods were compared in their ability to predict the experimental electronic absorption spectra. Both pure and hybrid DFT methods were tested and differences between restricted and unrestricted calculations were also investigated by comparison of analogous neutral zinc(II) and copper(II) complexes. TD-DFT calculated spectra were optimized with respect to the experimental electronic absorption spectra by use of a Matlab script. Direct comparison of the performance of each XC functional was achieved both qualitatively and quantitatively by comparison of optimized half-band widths, root-mean-squared errors (RMSE), energy scaling factors (epsilon(SF)), and overall quality-of-fit (Q(F)) parameters. Hybrid DFT methods were found to outperform all pure DFT functionals with B1LYP, B97-2, B97-1, X3LYP, and B98 functionals providing the highest quantitative and qualitative accuracy in both restricted and unrestricted systems. Of the functionals tested, B1LYP gave the most accurate results with both average RMSE and overall Q(F) unity (>0.990) for the copper complexes. The XC functional performance in spin-restricted TD-DFT calculations on the zinc complexes was found to be slightly worse. PBE1PBE, mPW1PW91 and B1LYP gave the most accurate results with typical RMSE and Q(F) values between 5.3 and 7.3%, and epsilon(SF) around 0.930. These studies illustrate the power of modern TD-DFT calculations for exploring excited state transitions of metal complexes.

  1. Density Functional Calculations for the Neutron Star Matter at Subnormal Density

    Science.gov (United States)

    Kashiwaba, Yu; Nakatsukasa, Takashi

    The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.

  2. Density-functional calculation of van der Waals forces for free-electron-like surfaces

    DEFF Research Database (Denmark)

    Hult, E.; Hyldgaard, P.; Rossmeisl, Jan;

    2001-01-01

    A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well as for the in......A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well...... as for the interaction between the surfaces themselves. The densities and static image-plane positions that are needed as input in the van der Waals functional are calculated self-consistently within density-functional theory using the generalized-gradient approximation, pseudopotentials, and plane waves. This study...... shows that the van der Waals density functional is applicable to realistic surfaces. The need for physically correct surface models, especially for open surfaces, is also illustrated. Finally the parameters for the anisotropic interaction of O-2 with Al are calculated....

  3. Using symmetry-adapted optimized sum-of-products basis functions to calculate vibrational spectra

    CERN Document Server

    Leclerc, Arnaud

    2016-01-01

    Vibrational spectra can be computed without storing full-dimensional vectors by using low-rank sum-of-products (SOP) basis functions. We introduce symmetry constraints in the SOP basis functions to make it possible to separately calculate states in different symmetry subgroups. This is done using a power method to compute eigenvalues and an alternating least squares method to optimize basis functions. Owing to the fact that the power method favours the convergence of the lowest states, one must be careful not to exclude basis functions of some symmetries. Exploiting symmetry facilitates making assignments and improves the accuracy. The method is applied to the acetonitrile molecule.

  4. Gaussian continuum basis functions for calculating high-harmonic generation spectra

    CERN Document Server

    Coccia, Emanuele; Labeye, Marie; Caillat, Jérémie; Taieb, Richard; Toulouse, Julien; Luppi, Eleonora

    2016-01-01

    We explore the computation of high-harmonic generation spectra by means of Gaussian basis sets in approaches propagating the time-dependent Schr{\\"o}dinger equation. We investigate the efficiency of Gaussian functions specifically designed for the description of the continuum proposed by Kaufmann et al. [ J. Phys. B 22 , 2223 (1989) ]. We assess the range of applicability of this approach by studying the hydrogen atom , i. e. the simplest atom for which "exact" calculations on a grid can be performed. We notably study the effect of increasing the basis set cardinal number , the number of diffuse basis functions , and the number of Gaussian pseudo-continuum basis functions for various laser parameters. Our results show that the latter significantly improve the description of the low-lying continuum states , and provide a satisfactory agreement with grid calculations for laser wavelengths $\\lambda$0 = 800 and 1064 nm. The Kaufmann continuum functions therefore appear as a promising way of constructing Gaussian ...

  5. Large-scale all-electron density functional theory calculations using an enriched finite element basis

    CERN Document Server

    Kanungo, Bikash

    2016-01-01

    We present a computationally efficient approach to perform large-scale all-electron density functional theory calculations by enriching the classical finite element basis with compactly supported atom-centered numerical basis functions that are constructed from the solution of the Kohn-Sham (KS) problem for single atoms. We term these numerical basis functions as enrichment functions, and the resultant basis as the enriched finite element basis. The enrichment functions are compactly supported through the use of smooth cutoff functions, which enhances the conditioning and maintains the locality of the basis. The integrals involved in the evaluation of the discrete KS Hamiltonian and overlap matrix in the enriched finite element basis are computed using an adaptive quadrature grid based on the characteristics of enrichment functions. Further, we propose an efficient scheme to invert the overlap matrix by using a block-wise matrix inversion in conjunction with special reduced-order quadrature rules to transform...

  6. Does Early Algebraic Reasoning Differ as a Function of Students' Difficulty with Calculations versus Word Problems?

    Science.gov (United States)

    Powell, Sarah R; Fuchs, Lynn S

    2014-08-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2(nd)- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Based on the calculation and word-problem measures, we placed 148 students into 1 of 4 difficulty status categories: typically performing, calculation difficulty, word-problem difficulty, or difficulty with calculations and word problems. Analyses of variance were conducted on the 148 students; path analytic mediation analyses were conducted on the larger sample of 789 students. Across analyses, results corroborated the finding that word-problem difficulty is more strongly associated with difficulty with pre-algebraic reasoning. As an indicator of later algebra difficulty, word-problem difficulty may be a more useful predictor than calculation difficulty, and students with word-problem difficulty may require a different level of algebraic reasoning intervention than students with calculation difficulty.

  7. Calculation of spin-densities within the context of density functional theory. The crucial role of the correlation functional

    NARCIS (Netherlands)

    Filatov, M; Cremer, D

    2005-01-01

    It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of

  8. Polynomial algorithm for exact calculation of partition function for binary spin model on planar graphs

    CERN Document Server

    Karandashev, Yakov M

    2016-01-01

    In this paper we propose and realize (the code is publicly available at https://github.com/Thrawn1985/2D-Partition-Function) an algorithm for exact calculation of partition function for planar graph models with binary spins. The complexity of the algorithm is O(N^2). Test experiments shows good agreement with Onsager's analytical solution for two-dimensional Ising model of infinite size.

  9. Does Early Algebraic Reasoning Differ as a Function of Students’ Difficulty with Calculations versus Word Problems?

    OpenAIRE

    Powell, Sarah R.; Fuchs, Lynn S.

    2014-01-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 2nd- grade students, we administered (a) measures of calculations and word problems in the fall and (b) an assessment of pre-algebraic reasoning, with items that assessed solving equations and functions, in the spring. Ba...

  10. Resonant cavities in metallic single-wall nanotubes: Green's function calculations

    Science.gov (United States)

    Jódar, Esther; Pérez-Garrido, Antonio; Díaz-Sánchez, Anastasio

    2006-05-01

    We study the electronic transport of a metallic single-wall carbon nanotube sandwiched between two equal metallic single-wall nanotubes of different radii. We calculate the transmission function and the density of states using the Green’s function method. This cavity behaves as a resonant box with quasibound states producing resonances and antiresonances in transmission. This behavior is a consequence of the different band structures for nanotubes forming the cavity.

  11. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework.

    Science.gov (United States)

    Berger, Daniel; Logsdail, Andrew J; Oberhofer, Harald; Farrow, Matthew R; Catlow, C Richard A; Sherwood, Paul; Sokol, Alexey A; Blum, Volker; Reuter, Karsten

    2014-07-14

    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).

  12. Calculation of Multisphere Neutron Spectrometer Response Functions in Energy Range up to 20 MeV

    CERN Document Server

    Martinkovic, J

    2005-01-01

    Multisphere neutron spectrometer is a basic instrument of neutron measurements in the scattered radiation field at charged-particles accelerators for radiation protection and dosimetry purposes. The precise calculation of the spectrometer response functions is a necessary condition of the propriety of neutron spectra unfolding. The results of the response functions calculation for the JINR spectrometer with LiI(Eu) detector (a set of 6 homogeneous and 1 heterogeneous moderators, "bare" detector within cadmium cover and without it) at two geometries of the spectrometer irradiation - in uniform monodirectional and uniform isotropic neutron fields - are given. The calculation was carried out by the code MCNP in the neutron energy range 10$^{-8}$-20 MeV.

  13. Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework

    Science.gov (United States)

    Berger, Daniel; Logsdail, Andrew J.; Oberhofer, Harald; Farrow, Matthew R.; Catlow, C. Richard A.; Sherwood, Paul; Sokol, Alexey A.; Blum, Volker; Reuter, Karsten

    2014-07-01

    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding quantum and molecular mechanical (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level density functional theory calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).

  14. Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning

    Science.gov (United States)

    Li, Zhushan

    2014-01-01

    Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…

  15. Calculation Method for Reliability of Agricultural Distribution Power Networks while Applying Functions of Boolean Algebra

    Directory of Open Access Journals (Sweden)

    V. Rusan

    2012-01-01

    Full Text Available The paper considers calculation methods for reliability of  agricultural distribution power networks while using Boolean algebra functions and analytical method. Reliability of 10 kV overhead line circuits with automatic sectionalization points and automatic standby activation has been investigated in the paper.

  16. Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations

    DEFF Research Database (Denmark)

    Abild-Pedersen, Frank; Nørskov, Jens Kehlet; Rostrup-Nielsen, Jens;

    2006-01-01

    Mechanisms and energetics of graphene growth catalyzed by nickel nanoclusters were studied using ab initio density functional theory calculations. It is demonstrated that nickel step-edge sites act as the preferential growth centers for graphene layers on the nickel surface. Carbon is transported...

  17. Density functional calculations of elastic properties of portlandite, Ca(OH)(2)

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund

    2005-01-01

    The elastic constants of portlandite, Ca(OH)(2), are calculated by use of density functional theory. A lattice optimization of an infinite (periodic boundary conditions) lattice is performed on which strains are applied. The elastic constants are extracted by minimizing Hooke's law of linear...

  18. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Skulason, Egill; Siahrostami, Samira;

    2010-01-01

    We study the oxygen reduction reaction (ORR) mechanism on a Pt(1 1 1) surface using density functional theory calculations We find that at low overpotentials the surface is covered with a half dissociated water layer We estimate the barrier for proton transfer to this surface and the barrier for ...

  19. A universal equation for calculating the energy gradient function in the energy gradient theory

    CERN Document Server

    Dou, Hua-Shu

    2016-01-01

    The relationship for the energy variation, work done, and energy dissipation in unit volumetric fluid of incompressible flow is derived. A universal equation for calculating the energy gradient function is presented for situations where both pressure driven flow and shear driven flow are present simultaneously.

  20. On a New Proposal Concerning the Calculation of the Derivatives of a Function Subject to Errors

    NARCIS (Netherlands)

    Ferwerda, H.A.; Hoenders, B.J.

    1974-01-01

    In the theory of object reconstruction one needs the derivatives of an experimentally determined quantity which is a notoriously inaccurate procedure. It shall be shown that the derivatives of an analytic function can be calculated with a prespecified tolerance from its values at a sufficiently larg

  1. Calculation Abilities in Young Children with Different Patterns of Cognitive Functioning.

    Science.gov (United States)

    Jordan, Nancy C.; And Others

    1995-01-01

    This study examined the arithmetic calculation abilities of kindergarten and first-grade children (n=108) with different patterns of cognitive functioning: low language, low spatial ability, general delays, and nonimpaired. Nonverbal, story, and number fact problems were differentially sensitive to variation in cognitive ability. (Author/JDD)

  2. Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning

    Science.gov (United States)

    Li, Zhushan

    2014-01-01

    Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…

  3. Tool use and the development of the function concept: from repeated calculations to functional thinking

    NARCIS (Netherlands)

    Doorman, L.M.; Drijvers, P.H.M.; Gravemeijer, K.P.E.; Boon, P.B.J.; Reed, H.

    2012-01-01

    The concept of function is a central but difficult topic in secondary school mathematics curricula, which encompasses a transition from an operational to a structural view. The question in this paper is how the use of computer tools may foster this transition. With domain-specific pedagogical knowle

  4. Periodic density-functional calculations on work-function change induced by adsorption of halogens on Cu(111).

    Science.gov (United States)

    Roman, Tanglaw; Groß, Axel

    2013-04-12

    Using periodic density-functional theory calculations, we address the work-function change induced by the adsorption of chlorine and iodine on Cu(111) which are shown to change the work function in opposite ways, contrary to what one may expect for these two electron acceptors. In contrast to previous studies, we demonstrate that substrate effects play only a minor role in work-function changes brought about by halogen adsorption on metals. Instead, polarization on the adsorbate not only explains the sign of the work-function change as a contributor to a positive surface dipole moment, but it is also the decisive factor in the dependence of adsorption-induced work-function changes on the coverage of halogens on metal surfaces.

  5. Relativistic time-dependent density functional calculations for the excited states of the cadmium dimer

    Energy Technology Data Exchange (ETDEWEB)

    Kullie, Ossama, E-mail: kullie@uni-kassel.de [Institute de Chimie de Strasbourg, CNRS et Université de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg (France); Theoretical Physics, Institute for Physics, Department of Mathematics and Natural Science, University of Kassel (Germany)

    2013-03-29

    Highlights: ► The achievement of CAMB3LYP functional for excited states in framework of TD-DFT. ► Relativistic 4-components calculations for the excited states of the Cd{sub 2} dimer. ► Relativistic Spin-Free calculations for the excited states of Cd{sub 2} dimer. ► A comparison of the achievements of different types of DFT approximations upon Cd{sub 2}. - Abstract: In this paper we present a time-dependent density functional study for the ground-state as well the 20-lowest laying excited states of the cadmium dimer Cd{sub 2}, we analyze its spectrum obtained from all electrons calculations performed with time-depended density functional for the relativistic Dirac-Coulomb- and relativistic spin-free-Hamiltonian as implemented in DIRAC-PACKAGE. The calculations were obtained with different density functional approximations, and a comparison with the literature is given as far as available. Our result is very encouraging, especially for the lowest excited states of this dimer, and is expected to be enlightened for similar systems. The result shows that only long-range corrected functionals such as CAMB3LYP, gives the correct asymptotic behavior for the higher states. A comparable but less satisfactory results were obtained with B3LYP and PBE0 functionals. Spin-free-Hamiltonian is shown to be very efficient for systems containing heavy elements such as Cd{sub 2} in frameworks of (time-dependent) density functional without introducing large errors.

  6. Subspace accelerated inexact Newton method for large scale wave functions calculations in Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Fattebert, J

    2008-07-29

    We describe an iterative algorithm to solve electronic structure problems in Density Functional Theory. The approach is presented as a Subspace Accelerated Inexact Newton (SAIN) solver for the non-linear Kohn-Sham equations. It is related to a class of iterative algorithms known as RMM-DIIS in the electronic structure community. The method is illustrated with examples of real applications using a finite difference discretization and multigrid preconditioning.

  7. Measurement of human advanced brain function in calculation processing using functional magnetic resonance imaging (fMRI)

    Energy Technology Data Exchange (ETDEWEB)

    Hashida, Masahiro; Yamauchi, Syuichi [Yamaguchi Univ., Ube (Japan). Hospital; Wu, Jing-Long (and others)

    2001-06-01

    Using functional magnetic resonance imaging (fMRI), we investigated the activated areas of the human brain related with calculation processing as an advanced function of the human brain. Furthermore, we investigated differences in activation between visual and auditory calculation processing. The eight subjects (all healthy men) were examined on a clinical MR unit (1.5 tesla) with a gradient echo-type EPI sequence. SPM99 software was used for data processing. Arithmetic problems were used for the visual stimulus (visual image) as well as for the auditory stimulus (audible voice). The stimuli were presented to the subjects as follows: no stimulation, presentation of random figures, and presentation of arithmetic problems. Activated areas of the human brain related with calculation processing were the inferior parietal lobule, middle frontal gyrus, and inferior frontal gyrus. Comparing the arithmetic problems with the presentation of random figures, we found that the activated areas of the human brain were not differently affected by visual and auditory systems. The areas activated in the visual and auditory experiments were observed at nearly the same place in the brain. It is possible to study advanced functions of the human brain such as calculation processing in a general clinical hospital when adequate tasks and methods of presentation are used. (author)

  8. Application of an excited state LDA exchange energy functional for the calculation of transition energy of atoms within time-independent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Md; Harbola, Manoj K, E-mail: sami@iitk.ac.i, E-mail: mkh@iitk.ac.i [Department of Physics, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-14

    Transition energies of a new class of excited states (two-gap systems) of various atoms are calculated in time-independent density functional formalism by using a recently proposed local density approximation exchange energy functional for excited states. It is shown that the excitation energies calculated with this functional compare well with those calculated with exact exchange theories.

  9. Reducing Systematic Errors in Oxide Species with Density Functional Theory Calculations

    DEFF Research Database (Denmark)

    Christensen, Rune; Hummelshøj, Jens S.; Hansen, Heine Anton

    2015-01-01

    Density functional theory calculations can be used to gain valuable insight into the fundamental reaction processes in metal−oxygen systems, e.g., metal−oxygen batteries. Here, the ability of a range of different exchange-correlation functionals to reproduce experimental enthalpies of formation...... for different types of alkali and alkaline earth metal oxide species has been examined. Most examined functionals result in significant overestimation of the stability of superoxide species compared to peroxides and monoxides, which can result in erroneous prediction of reaction pathways. We show that if metal...

  10. Dielectric-dependent Density Functionals for Accurate Electronic Structure Calculations of Molecules and Solids

    Science.gov (United States)

    Skone, Jonathan; Govoni, Marco; Galli, Giulia

    Dielectric-dependent hybrid [DDH] functionals have recently been shown to yield highly accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than standard GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. In the present talk we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using material dependent, non-empirical parameters. Comparing with state of the art GW calculations and experiment, we show that such RS hybrids yield accurate electronic properties of both molecules and solids, including energy gaps, photoelectron spectra and absolute ionization potentials. This work was supported by NSF-CCI Grant Number NSF-CHE-0802907 and DOE-BES.

  11. Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory.

    Science.gov (United States)

    Tran, Fabien; Blaha, Peter

    2017-05-04

    Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.

  12. Density functional calculations of multiphonon capture cross sections at defects in semiconductors

    Science.gov (United States)

    Barmparis, Georgios D.; Puzyrev, Yevgeniy S.; Zhang, X.-G.; Pantelides, Sokrates T.

    2014-03-01

    The theory of electron capture cross sections by multiphonon processes in semiconductors has a long and controversial history. Here we present a comprehensive theory and describe its implementation for realistic calculations. The Born-Oppenheimer and the Frank-Condon approximations are employed. The transition probability of an incoming electron is written as a product of an instantaneous electronic transition in the initial defect configuration and the line shape function (LSF) that describes the multiphonon processes that lead to lattice relaxation. The electronic matrix elements are calculated using the Projector Augmented Wave (PAW) method which yields the true wave functions while still employing a plane-wave basis. The LSF is calculated by employing a Monte Carlo method and the real phonon modes of the defect, calculated using density functional theory in the PAW scheme. Initial results of the capture cross section for a prototype system, namely a triply hydrogenated vacancy in Si are presented. The results are relevant for modeling device degradation by hot electron effects. This work is supported in part by the Samsung Advanced Institute of Technology (SAIT)'s Global Research Outreach (GRO) Program and by the LDRD program at ORNL.

  13. Correlation functions for fully or partially state-resolved reactive scattering calculations

    Science.gov (United States)

    Manthe, Uwe; Welsch, Ralph

    2014-06-01

    Flux correlation functions and the quantum transition state concept are important tools for the accurate description of polyatomic reaction processes. Combined with the multi-configurational time-dependent Hartree approach, they facilitate rigorous full-dimensional calculations of cumulative and initial-state selected reaction probabilities for six atom reactions. In recent work [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)], an approach which allows one to calculate also state-to-state reaction probabilities within the quantum transition state concept has been introduced. This article presents further developments. Alternative generalized flux correlation functions are introduced and discussed. Equations for the calculation of fully state-resolved differential cross section using arbitrary definitions of the body fixed frame are derived. An approach for the efficient calculation of partially state-resolved observables as a function of the collision energy is introduced. Finally, numerical test studying the D + H2 reaction illustrate important aspects of the formalism.

  14. Correlation functions for fully or partially state-resolved reactive scattering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Manthe, Uwe, E-mail: uwe.manthe@uni-bielefeld.de; Welsch, Ralph, E-mail: rwelsch@uni-bielefeld.de [Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld (Germany)

    2014-06-28

    Flux correlation functions and the quantum transition state concept are important tools for the accurate description of polyatomic reaction processes. Combined with the multi-configurational time-dependent Hartree approach, they facilitate rigorous full-dimensional calculations of cumulative and initial-state selected reaction probabilities for six atom reactions. In recent work [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)], an approach which allows one to calculate also state-to-state reaction probabilities within the quantum transition state concept has been introduced. This article presents further developments. Alternative generalized flux correlation functions are introduced and discussed. Equations for the calculation of fully state-resolved differential cross section using arbitrary definitions of the body fixed frame are derived. An approach for the efficient calculation of partially state-resolved observables as a function of the collision energy is introduced. Finally, numerical test studying the D + H{sub 2} reaction illustrate important aspects of the formalism.

  15. Correlation functions for fully or partially state-resolved reactive scattering calculations.

    Science.gov (United States)

    Manthe, Uwe; Welsch, Ralph

    2014-06-28

    Flux correlation functions and the quantum transition state concept are important tools for the accurate description of polyatomic reaction processes. Combined with the multi-configurational time-dependent Hartree approach, they facilitate rigorous full-dimensional calculations of cumulative and initial-state selected reaction probabilities for six atom reactions. In recent work [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)], an approach which allows one to calculate also state-to-state reaction probabilities within the quantum transition state concept has been introduced. This article presents further developments. Alternative generalized flux correlation functions are introduced and discussed. Equations for the calculation of fully state-resolved differential cross section using arbitrary definitions of the body fixed frame are derived. An approach for the efficient calculation of partially state-resolved observables as a function of the collision energy is introduced. Finally, numerical test studying the D + H2 reaction illustrate important aspects of the formalism.

  16. A comparative study of density functional and density functional tight binding calculations of defects in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, Alberto [Laboratoire de Physique des Solides, Univ. Paris Sud, CNRS UMR, Orsay (France); Ivanovskaya, Viktoria; Wagner, Philipp; Yaya, Abu; Ewels, Chris P. [Institut des Materiaux Jean Rouxel (IMN), CNRS UMR, University of Nantes (France); Suarez-Martinez, Irene [Nanochemistry Research Institute, Curtin University of Technology, Perth, Western Australia (Australia)

    2012-02-15

    The density functional tight binding approach (DFTB) is well adapted for the study of point and line defects in graphene based systems. After briefly reviewing the use of DFTB in this area, we present a comparative study of defect structures, energies, and dynamics between DFTB results obtained using the dftb+ code, and density functional results using the localized Gaussian orbital code, AIMPRO. DFTB accurately reproduces structures and energies for a range of point defect structures such as vacancies and Stone-Wales defects in graphene, as well as various unfunctionalized and hydroxylated graphene sheet edges. Migration barriers for the vacancy and Stone-Wales defect formation barriers are accurately reproduced using a nudged elastic band approach. Finally we explore the potential for dynamic defect simulations using DFTB, taking as an example electron irradiation damage in graphene. DFTB-MD derived sputtering energy threshold map for a carbon atom in a graphene plane. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Linear scaling calculation of maximally localized Wannier functions with atomic basis set.

    Science.gov (United States)

    Xiang, H J; Li, Zhenyu; Liang, W Z; Yang, Jinlong; Hou, J G; Zhu, Qingshi

    2006-06-21

    We have developed a linear scaling algorithm for calculating maximally localized Wannier functions (MLWFs) using atomic orbital basis. An O(N) ground state calculation is carried out to get the density matrix (DM). Through a projection of the DM onto atomic orbitals and a subsequent O(N) orthogonalization, we obtain initial orthogonal localized orbitals. These orbitals can be maximally localized in linear scaling by simple Jacobi sweeps. Our O(N) method is validated by applying it to water molecule and wurtzite ZnO. The linear scaling behavior of the new method is demonstrated by computing the MLWFs of boron nitride nanotubes.

  18. Adhesion of oxide layer to metal-doped aluminum hydride surface: Density functional calculations

    Science.gov (United States)

    Takezawa, Tomoki; Itoi, Junichi; Kannan, Takashi

    2017-07-01

    The density functional theory (DFT) calculations were carried out to evaluate the adhesion energy of the oxide layer to the metal-doped surface of hydrogen storage material, aluminum hydride (alane, AlH3). The total energy calculations using slab model revealed that the surface doping of some metals to aluminum hydride weakens the adhesion strength of the oxide layer. The influence of titanium, iron, cobalt, and zirconium doping on adhesion strength were evaluated. Except for iron doping, the adhesion strength becomes weak by the doping.

  19. Improved Accuracy of Density Functional Theory Calculations for CO2 Reduction and Metal-Air Batteries

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    through first principle methods. Ensembles generated using a Bayesian error estimation functional, in this case the BEEF-vdW functional[6], are used for the error identification. The ensembles, which consist of perturbations of the main van der Waals density functional, can be generated at low......Density functional theory (DFT) calculations have greatly contributed to the atomic level understanding of electrochemical reactions. However, in some cases, the accuracy can be prohibitively low for a detailed understanding of, e.g. reaction mechanisms. Two cases are examined here, i...... that the systematic error is due to carbon-oxygen double bonds, as the change in number of carbon-oxygen double bonds in the reaction to methanol is two as compared to one for reaction to formic acid. This is subsequently confirmed by further comparisons of functional dependence and a significant source of systematic...

  20. Non-perturbative calculation of molecular magnetic properties within current-density functional theory.

    Science.gov (United States)

    Tellgren, E I; Teale, A M; Furness, J W; Lange, K K; Ekström, U; Helgaker, T

    2014-01-21

    We present a novel implementation of Kohn-Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals-the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  1. Coefficients calculation of the best linear method for recovery of bounded analytic functions in a circle

    Directory of Open Access Journals (Sweden)

    Ovchintsev Mikhail Petrovich

    2014-04-01

    Full Text Available This paper considers the problem of optimal recovery of bounded analytic functions. Namely, the values of these functions are determined at the point from their values at n given points lying in the unit circle. At first, we recall the necessary basic concepts: error of approximation by some method (which is a complex function of n complex variables, the best approximation method. Some theorems from the works of K.U. Osipenko are discussed: on the existence of a best linear approximation method and on calculating the error of best recovery method. After that we write out the formula for finding the error of best approximation method of bounded analytic functions in a unit circle. The lemma of conformal invariance of optimal recovery problem of these functions follows. We prove that under conformal mapping of the unit circle onto itself the error of the best approximation method before mapping coincides with the error of the best approximation method after mapping. It is also proved that a linear best method after conformal mapping coincides with the linear best restore method before this mapping (wherein the problem of optimal recovery after mapping is considered on the images of n given points lying in the original unit circle. Finally, we consider the problem of optimal recovery of bounded analytic functions in a circle in special case when the given points coincide with the vertices of a regular n-gon, and the point itself coincides with its center (which coincides with the origin. We prove that all the coefficients of the best linear method in this case are identical (wherein we apply the lemma of conformal invariance of optimal recovery problem of bounded analytic functions. The formulas for calculating these coefficients are given (for this purpose we write out an integral. The result is the smart, simple formulas for calculating the coefficients of the best linear approximation method for this particular case.

  2. Combined hybrid functional and DFT+U calculations for metal chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Aras, Mehmet; Kılıç, Çetin, E-mail: cetin-kilic@gyte.edu.tr [Department of Physics, Gebze Institute of Technology, Gebze, Kocaeli 41400 (Turkey)

    2014-07-28

    In the density-functional studies of materials with localized electronic states, the local/semilocal exchange-correlation functionals are often either combined with a Hubbard parameter U as in the LDA+U method or mixed with a fraction of exactly computed (Fock) exchange energy yielding a hybrid functional. Although some inaccuracies of the semilocal density approximations are thus fixed to a certain extent, the improvements are not sufficient to make the predictions agree with the experimental data. Here, we put forward the perspective that the hybrid functional scheme and the LDA+U method should be treated as complementary, and propose to combine the range-separated Heyd-Scuseria-Ernzerhof (HSE) hybrid functional with the Hubbard U. We thus present a variety of HSE+U calculations for a set of II-VI semiconductors, consisting of zinc and cadmium monochalcogenides, along with comparison to the experimental data. Our findings imply that an optimal value U{sup *} of the Hubbard parameter could be determined, which ensures that the HSE+U{sup *} calculation reproduces the experimental band gap. It is shown that an improved description not only of the electronic structure but also of the crystal structure and energetics is obtained by adding the U{sup *} term to the HSE functional, proving the utility of HSE+U{sup *} approach in modeling semiconductors with localized electronic states.

  3. Non-perturbative calculation of molecular magnetic properties within current-density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Tellgren, E. I., E-mail: erik.tellgren@kjemi.uio.no; Lange, K. K.; Ekström, U.; Helgaker, T. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); Teale, A. M., E-mail: andrew.teale@nottingham.ac.uk [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo (Norway); School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); Furness, J. W. [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2014-01-21

    We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the study of both magnetic response properties and the effects of strong fields, using either standard density functionals or current-density functionals—the implementation is the first fully self-consistent implementation of the latter for molecules. Pilot applications are presented for the finite-field calculation of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shielding constants, focusing on the impact of current-density functionals on the accuracy of the results. Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be sensitive to numerical details of their implementation. Furthermore, when appropriately regularized, the resulting magnetic properties show no improvement over standard density-functional results. An advantage of the present implementation is the ability to apply density-functional theory to molecules in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high accuracy full-configuration-interaction results show that the inadequacies of current-density approximations are exacerbated with increasing magnetic field strength. Standard density-functionals remain well behaved but fail to deliver high accuracy. The need for improved current-dependent density-functionals, and how they may be tested using the presented implementation, is discussed in light of our findings.

  4. Using Density Functional Theory (DFT) for the Calculation of Atomization Energies

    Science.gov (United States)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The calculation of atomization energies using density functional theory (DFT), using the B3LYP hybrid functional, is reported. The sensitivity of the atomization energy to basis set is studied and compared with the coupled cluster singles and doubles approach with a perturbational estimate of the triples (CCSD(T)). Merging the B3LYP results with the G2(MP2) approach is also considered. It is found that replacing the geometry optimization and calculation of the zero-point energy by the analogous quantities computed using the B3LYP approach reduces the maximum error in the G2(MP2) approach. In addition to the 55 G2 atomization energies, some results for transition metal containing systems will also be presented.

  5. Calculations of properties of screened He-like systems using correlated wave functions.

    Science.gov (United States)

    Dai, S T; Solovyova, A; Winkler, P

    2001-07-01

    The purpose of the present study is twofold. First, the techniques of correlated wave functions for two-electron systems have been extended to obtain results for P and D states in a screening environment, and in particular for Debye screening. In these calculations, the satisfaction of both the quantum virial theorem and a related sum rule has been enforced and found to provide a high degree of stability of the solutions. Second, in order to facilitate the general use of correlated wave functions in combination with sum rule stability criteria, a rather systematic computational approach to this notoriously cumbersome method has been developed and thoroughly discussed here. Accurate calculations for few-electron systems are of interest to plasma diagnostics; in particular, when inaccuracies in binding energies are drastically magnified as they occur in exponents of Boltzmann factors.

  6. New parametrization of Skyrme's interaction for regularized multireference energy density functional calculations

    Science.gov (United States)

    Washiyama, K.; Bennaceur, K.; Avez, B.; Bender, M.; Heenen, P.-H.; Hellemans, V.

    2012-11-01

    Background: Symmetry restoration and configuration mixing in the spirit of the generator coordinate method based on energy density functionals have become widely used techniques in low-energy nuclear structure physics. Recently, it has been pointed out that these techniques are ill defined for standard Skyrme functionals, and a regularization procedure has been proposed to remove the resulting spuriosities from such calculations. This procedure imposes an integer power of the density for the density-dependent terms of the functional. At present, only dated parametrizations of the Skyrme interaction fulfill this condition.Purpose: To construct a set of parametrizations of the Skyrme energy density functional for multireference energy density functional calculations with regularization using the state-of-the-art fitting protocols.Method: The parametrizations were adjusted to reproduce ground-state properties of a selected set of doubly magic nuclei and properties of nuclear matter. Subsequently, these parameter sets were validated against properties of spherical and deformed nuclei.Results: Our parameter sets successfully reproduce the experimental binding energies and charge radii for a wide range of singly magic nuclei. Compared to the widely used SLy5 and to the SIII parametrization that has integer powers of the density, a significant improvement of the reproduction of the data is observed. Similarly, a good description of the deformation properties at A˜80 was obtained.Conclusions: We have constructed new Skyrme parametrizations with integer powers of the density and validated them against a broad set of experimental data for spherical and deformed nuclei. These parametrizations are tailor-made for regularized multireference energy density functional calculations and can be used to study correlations beyond the mean field in atomic nuclei.

  7. Calculation of photodetachment cross sections and photoelectron angular distributions of negative ions using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Ning, Chuangang, E-mail: ningcg@tsinghua.edu.cn [Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2015-10-14

    Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li{sup −}, C{sup −}, O{sup −}, F{sup −}, CH{sup −}, OH{sup −}, NH{sub 2}{sup −}, O{sub 2}{sup −}, and S{sub 2}{sup −} show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.

  8. Electron transport in a Pt-CO-Pt nanocontact: Density functional theory calculations

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2006-01-01

    We have performed first-principles calculations for the mechanic and electric properties of pure Pt nanocontacts and a Pt contact with a single CO molecule adsorbed. For the pure Pt contacts we see a clear difference between point contacts and short chains in good agreement with experiments. We i...... of the transmission function for the Pt-CO-Pt contact, and show that the conductance is largely determined by the local d band at the Pt apex atoms....

  9. Calculation of the matrix elements of the Coulomb interaction involving relativistic hydrogenic wave functions

    Science.gov (United States)

    Sarkadi, L.

    2017-03-01

    The program MTRDCOUL [1] calculates the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψf∗ (r) ∣ R - r∣-1ψi(r) d r. Bound-free transitions are considered, and relativistic hydrogenic wave functions are used. In this revised version a bug discovered in the F3Y CPC Program Library subprogram [2] is fixed.

  10. Calculation of k factor function for the carbonation process of lime-based plasters

    Science.gov (United States)

    Pavlíková, Milena; Pokorný, Jaroslav; Pavlík, Zbyšek

    2017-07-01

    The carbonation process of prepared lime plaster and lime based plaster with pozzolana active metakaolin is performed in an accelerated test arrangement. The depth of carbonation head is determined using colorimetric method and FTIR spectroscopy. Based on experimental data of carbonation head, time dependent k factor function is calculated that points to the decelerated and retarded propagation of the carbonation process due to metakaolin used in plaster composition.

  11. Functionalized 4-Hydroxy Coumarins: Novel Synthesis, Crystal Structure and DFT Calculations

    Directory of Open Access Journals (Sweden)

    Olga Igglessi-Markopoulou

    2011-01-01

    Full Text Available A novel short-step methodology for the synthesis in good yields of functionalized coumarins has been developed starting from an activated precursor, the N-hydroxysuccinimide ester of O-acetylsalicylic acid. The procedure is based on a tandem C-acylation-cyclization process under mild reaction conditions. The structure of 3-methoxycarbonyl-4-hydroxy coumarin has been established by X-ray diffraction analysis and its geometry was compared with optimized parameters by means of DFT calculations.

  12. Method of calculating retroreflector-array transfer functions. [laser range finders

    Science.gov (United States)

    Arnold, D. A.

    1978-01-01

    Techniques and equations used in calculating the transfer functions to relate the observed return laser pulses to the center of mass of the Lageos satellite retroflector array, and for most of the retroreflector-equipped satellites now in orbit are described. The methods derived include the effects of coherent interference, diffraction, polarization, and dihedral-angle offsets. Particular emphasis is given to deriving expressions for the diffraction pattern and active reflecting area of various cube-corner designs.

  13. Standard hydrogen electrode and potential of zero charge in density functional calculations

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Björketun, Mårten; Skúlason, Egill

    2011-01-01

    Methods to explicitly account for half-cell electrode potentials have recently appeared within the framework of density functional theory. The potential of the electrode relative to the standard hydrogen electrode is typically determined by subtracting the experimental value of the absolute......) the calculated work function strongly depends on the structure of the water film covering the metal surface. In this paper, we first identify the most accurate experimental reference for the ASHEP by revisiting up-to-date literature, and validate the choice of electron reference level in single-electrode density...

  14. A calculation of the three-loop helicity-dependent splitting functions in QCD

    CERN Document Server

    Vogt, A; Vermaseren, J A M

    2014-01-01

    We have calculated the complete matrix of three-loop helicity-difference (`polarized') splitting functions Delta P_ik^(2), i,k = q,g, in massless perturbative QCD. In this note we briefly discuss some properties of the polarized splitting functions and our non-standard determination of the hitherto missing lower-row quantities Delta P_gq^(2) and Delta P_gg^(2). The resulting next-to-next-to-leading order (NNLO) corrections to the evolution of polarized parton distributions are illustrated and found to be small even at rather large values of the strong coupling constant alpha_s.

  15. Zeta Function Regularization in Casimir Effect Calculations and J. S. Dowker's Contribution

    Science.gov (United States)

    Elizalde, Emilio

    2012-07-01

    A summary of relevant contributions, ordered in time, to the subject of operator zeta functions and their application to physical issues is provided. The description ends with the seminal contributions of Stephen Hawking and Stuart Dowker and collaborators, considered by many authors as the actual starting point of the introduction of zeta function regularization methods in theoretical physics, in particular, for quantum vacuum fluctuation and Casimir effect calculations. After recalling a number of the strengths of this powerful and elegant method, some of its limitations are discussed. Finally, recent results of the so called operator regularization procedure are presented.

  16. A modified coupled pair functional approach. [for dipole moment calculation of metal hydride ground states

    Science.gov (United States)

    Chong, D. P.; Langhoff, S. R.

    1986-01-01

    A modified coupled pair functional (CPF) method is presented for the configuration interaction problem that dramatically improves properties for cases where the Hartree-Fock reference configuration is not a good zeroth-order wave function description. It is shown that the tendency for CPF to overestimate the effect of higher excitations arises from the choice of the geometric mean for the partial normalization denominator. The modified method is demonstrated for ground state dipole moment calculations of the NiH, CuH, and ZnH transition metal hydrides, and compared to singles-plus-doubles configuration interaction and the Ahlrichs et al. (1984) CPF method.

  17. Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory.

    Science.gov (United States)

    Krykunov, Mykhaylo; Autschbach, Jochen

    2007-01-14

    We report implementations and results of time-dependent density functional calculations (i) of the frequency-dependent magnetic dipole-magnetic dipole polarizability, (ii) of the (observable) translationally invariant linear magnetic response, and (iii) of a linear intensity differential (LID) which includes the dynamic dipole magnetizability. The density functional calculations utilized density fitting. For achieving gauge-origin independence we have employed time-periodic magnetic-field-dependent basis functions as well as the dipole velocity gauge, and have included explicit density-fit related derivatives of the Coulomb potential. We present the results of calculations of static and dynamic magnetic dipole-magnetic dipole polarizabilities for a set of small molecules, the LID for the SF6 molecule, and dispersion curves for M-hexahelicene of the origin invariant linear magnetic response as well as of three dynamic polarizabilities: magnetic dipole-magnetic dipole, electric dipole-electric dipole, and electric dipole-magnetic dipole. We have also performed comparison of the linear magnetic response and magnetic dipole-magnetic dipole polarizability over a wide range of frequencies for H2O and SF6.

  18. Beyond the Quasi-Particle picture in Nuclear Matter calculations using Green's function techniques

    CERN Document Server

    Köhler, H S

    2006-01-01

    Widths of low-lying states in nuclei are of the order of 30 MeV. These large widths are a consequence of the strong interactions leading to a strongly correlated many body system at the typical densities of nuclear matter. Nevertheless "traditional" Brueckner calculations treat these states as quasiparticles i.e. with spectral functions of zero widths. The width is related to the imaginary part of the selfenergy and is included selfconsistently in an extension of the Brueckner theory using T-matrix and Green's function techniques. A more general formulation applicable also to non-equilibrium systems is contained in the Kadanoff-Baym (KB) equations while still maintaining the basic many-body techniques of Bruecknet theory. In the present work the two-time KB-equations are time-stepped along the imaginary time-axis to calculate the binding energy of nuclear matter as a function of density, including the spectral widths self-consistently. These zero temperature calculations are compared with quasi-particle calcu...

  19. A variational method for density functional theory calculations on metallic systems with thousands of atoms.

    Science.gov (United States)

    Ruiz-Serrano, Álvaro; Skylaris, Chris-Kriton

    2013-08-07

    A new method for finite-temperature density functional theory calculations which significantly increases the number of atoms that can be simulated in metallic systems is presented. A self-consistent, direct minimization technique is used to obtain the Helmholtz free energy of the electronic system, described in terms of a set of non-orthogonal, localized functions which are optimized in situ using a periodic-sinc basis set, equivalent to plane waves. Most parts of the calculation, including the demanding operation of building the Hamiltonian matrix, have a computational cost that scales linearly with the number of atoms in the system. Also, this approach ensures that the Hamiltonian matrix has a minimal size, which reduces the computational overhead due to diagonalization, a cubic-scaling operation that is still required. Large basis set accuracy is retained via the optimization of the localized functions. This method allows accurate simulations of entire metallic nanostructures, demonstrated with calculations on a supercell of bulk copper with 500 atoms and on gold nanoparticles with up to 2057 atoms.

  20. Molecular potentials and wave function mapping by high-resolution electron spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kimberg, Victor, E-mail: victor.kimberg@pks.mpi.de [Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden (Germany); Miron, Catalin, E-mail: miron@synchrotron-soleil.fr [Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex (France)

    2014-08-15

    Highlights: • Some studies related to the vibrational wave functions mapping phenomenon are reviewed. • The core-excited vibrational wave functions were mapped using dissociative and bound final states. • High-resolution experimental data is accompanied by ab initio calculations. • The mapping phenomenon allows one to extract constants of the molecular potentials. • The mapping techniques are general and can be applied for the study of many systems. - Abstract: The recent development of high brightness 3{sup rd} generation soft X-ray sources and high energy resolution electron spectrometers made it possible to accurately trace quantum phenomena associated to the vibrational dynamics in core-excited molecules. The present paper reviews the recent results on mapping of vibrational wave functions and molecular potentials based on electron spectroscopy. We discuss and compare the mapping phenomena in various systems, stressing the advantages of the resonant X-ray scattering for studying of the nuclear dynamics and spectroscopic constants of small molecules. The experimental results discussed in the paper are most often accompanied by state-of-the-art ab initio calculations allowing for a deeper understanding of the quantum effects. Besides its fundamental interest, the vibrational wave function mapping is shown to be useful for the analysis of core- and valence-excited molecular states based on the reflection principle.

  1. Broken-Symmetry Unrestricted Hybrid Density Functional Calculations on Nickel Dimer and Nickel Hydride

    CERN Document Server

    Diaconu, C V; Doll, J D; Freeman, D L; Diaconu, Cristian V.; Cho, Art E.; Freeman, David L.

    2004-01-01

    In the present work we investigate the adequacy of broken-symmetry (BS) unrestricted (U) density functional theory (DFT) for constructing the potential energy curve of nickel dimer and nickel hydride, as model for larger bare and hydrogenated nickel cluster calculations. We use three hybrid functionals: B3LYP, Becke98, and FSLYP (50% Hartree-Fock and 50% Slater exchange and LYP correlation functional) with two basis sets: all-electron (AE) Wachters+f basis set and Stuttgart RSC effective core potential (ECP) and basis set. We find that, overall, B3LYP functional with Wachters+f AE basis set performs best, with only 1.3% root-mean-square (RMS) deviation from experiment, followed by Becke98/AE and B3LYP/ECP, with RMS deviation from experimental value of 2.5% and 2.7%, respectively. We also find that for Ni dimer, the spin-projection for the broken-symmetry unrestricted singlet states changes the ordering of the states, but the splittings are less than 10 meV. All our calculations predict a (delta)(delta)-hole g...

  2. Ab initio density-functional calculations in materials science: from quasicrystals over microporous catalysts to spintronics.

    Science.gov (United States)

    Hafner, Jürgen

    2010-09-29

    During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.

  3. Adjustment of Born-Oppenheimer electronic wave functions to simplify close coupling calculations.

    Science.gov (United States)

    Buenker, Robert J; Liebermann, Heinz-Peter; Zhang, Yu; Wu, Yong; Yan, Lingling; Liu, Chunhua; Qu, Yizhi; Wang, Jianguo

    2013-04-30

    Technical problems connected with use of the Born-Oppenheimer clamped-nuclei approximation to generate electronic wave functions, potential energy surfaces (PES), and associated properties are discussed. A computational procedure for adjusting the phases of the wave functions, as well as their order when potential crossings occur, is presented which is based on the calculation of overlaps between sets of molecular orbitals and configuration interaction eigenfunctions obtained at neighboring nuclear conformations. This approach has significant advantages for theoretical treatments describing atomic collisions and photo-dissociation processes by means of ab initio PES, electronic transition moments, and nonadiabatic radial and rotational coupling matrix elements. It ensures that the electronic wave functions are continuous over the entire range of nuclear conformations considered, thereby greatly simplifying the process of obtaining the above quantities from the results of single-point Born-Oppenheimer calculations. The overlap results are also used to define a diabatic transformation of the wave functions obtained for conical intersections that greatly simplifies the computation of off-diagonal matrix elements by eliminating the need for complex phase factors.

  4. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Laura E., E-mail: lratcliff@anl.gov [Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry [Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France)

    2015-06-21

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.

  5. Hydrogen adsorption and storage on Palladium - functionalized graphene with NH-dopant: A first principles calculation

    Science.gov (United States)

    Faye, Omar; Szpunar, Jerzy A.; Szpunar, Barbara; Beye, Aboubaker Chedikh

    2017-01-01

    We conducted a detailed theoretical investigation of the structural and electronic properties of single and double sided Pd-functionalized graphene and NH-doped Pd-functionalized graphene, which are shown to be efficient materials for hydrogen storage. Nitrene radical dopant was an effective addition required for enhancing the Pd binding on the graphene sheet as well as the storage of hydrogen. We found that up to eight H2 molecules could be adsorbed by double-sided Pd-functionalized graphene at 0 K with an average binding energy in the range 1.315-0.567 eVA gravimetric hydrogen density of 3.622 wt% was reached in the Pd-functionalized graphene on both sides. The binding mechanism of H2 molecules came not only the polarization mechanism between Pd and H atoms but also from the binding of the Pd atoms on the graphene sheet and the orbital hybridization. The most crucial part of our work is measuring the effect of nitrene radical on the H2 adsorption on Pd-functionalized graphene. Our calculations predicted that the addition of NH radicals on Pd-functionalized graphene enhance the binding of H2 molecules, which helps also to avoid the desorption of Pd(H2)n (n = 1-5) complexes from graphene sheet. Our results also predict Pd-functionalized NH-doped graphene is a potential hydrogen storage medium for on-board applications.

  6. Functional renormalization group approach to electronic structure calculations for systems without translational symmetry

    Science.gov (United States)

    Seiler, Christian; Evers, Ferdinand

    2016-10-01

    A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.

  7. Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study

    Directory of Open Access Journals (Sweden)

    Dosch Mengia

    2006-09-01

    Full Text Available Abstract Background Developmental dyscalculia (DD is a specific learning disability affecting the acquisition of mathematical skills in children with otherwise normal general intelligence. The goal of the present study was to examine cerebral mechanisms underlying DD. Methods Eighteen children with DD aged 11.2 ± 1.3 years and twenty age-matched typically achieving schoolchildren were investigated using functional magnetic resonance imaging (fMRI during trials testing approximate and exact mathematical calculation, as well as magnitude comparison. Results Children with DD showed greater inter-individual variability and had weaker activation in almost the entire neuronal network for approximate calculation including the intraparietal sulcus, and the middle and inferior frontal gyrus of both hemispheres. In particular, the left intraparietal sulcus, the left inferior frontal gyrus and the right middle frontal gyrus seem to play crucial roles in correct approximate calculation, since brain activation correlated with accuracy rate in these regions. In contrast, no differences between groups could be found for exact calculation and magnitude comparison. In general, fMRI revealed similar parietal and prefrontal activation patterns in DD children compared to controls for all conditions. Conclusion In conclusion, there is evidence for a deficient recruitment of neural resources in children with DD when processing analog magnitudes of numbers.

  8. Kinetic energies to analyze the experimental auger electron spectra by density functional theory calculations

    Science.gov (United States)

    Endo, Kazunaka

    2016-02-01

    In the Auger electron spectra (AES) simulations, we define theoretical modified kinetic energies of AES in the density functional theory (DFT) calculations. The modified kinetic energies correspond to two final-state holes at the ground state and at the transition-state in DFT calculations, respectively. This method is applied to simulate Auger electron spectra (AES) of 2nd periodic atom (Li, Be, B, C, N, O, F)-involving substances (LiF, beryllium, boron, graphite, GaN, SiO2, PTFE) by deMon DFT calculations using the model molecules of the unit cell. Experimental KVV (valence band electrons can fill K-shell core holes or be emitted during KVV-type transitions) AES of the (Li, O) atoms in the substances agree considerably well with simulation of AES obtained with the maximum kinetic energies of the atoms, while, for AES of LiF, and PTFE substance, the experimental F KVV AES is almost in accordance with the spectra from the transitionstate kinetic energy calculations.

  9. Radial basis function networks applied to DNBR calculation in digital core protection systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyu-Cheon E-mail: gclee@kopec.co.kr; Heung Chang, Soon

    2003-10-01

    The nuclear power plant has to be operated with sufficient margin from the specified DNBR limit for assuring its safety. The digital core protection system calculates on-line real-time DNBR by using a complex subchannel analysis program, and triggers a reliable reactor shutdown if the calculated DNBR approaches the specified limit. However, it takes a relatively long calculation time even for a steady state condition, which may have an adverse effect on the operation flexibility. To overcome the drawback, a new method using a radial basis function network is presented in this paper. Nonparametric training approach is utilized, which shows dramatic reduction of the training time, no tedious heuristic process for optimizing parameters, and no local minima problem during the training. The test results show that the predicted DNBR is within about {+-}2% deviation from the target DNBR for the fixed axial flux shape case. For the variable axial flux case including severely skewed shapes that appeared during accidents, the deviation is within about {+-}10%. The suggested method could be the alternative that can calculate DNBR very quickly while guaranteeing the plant safety.

  10. Strain and Cohesive Energy of TiN Deposit on Al(001) Surface: Density Functional Calculation

    Science.gov (United States)

    Ren, Yuan; Liu, Xuejie

    2016-07-01

    To apply the high hardness of TiN film to soft and hard multilayer composite sheets, we constructed a new type of composite structural material with ultra-high strength. The strain of crystal and cohesive energy between the atoms in the eight structures of N atom, Ti atom, 2N2Ti island and TiN rock salt deposited on the Al(001) surface were calculated with the first-principle ultra-soft pseudopotential approach of the plane wave based on the density functional theory. The calculations of the cohesive energy showed that N atoms could be deposited in the face-centered-cubic vacancy position of the Al(001) surface and results in a cubic structure AlN surface. The TiN film could be deposited on the interface of β-AlN. The calculations of the strains showed that the strain in the TiN film deposited on the Al(001) surface was less than that in the 2N2Ti island deposited on the Al(001) surface. The diffusion behavior of interface atom N was investigated by a nudged elastic band method. Diffusion energy calculation showed that the N atom hardly diffused to the substrate Al layer.

  11. Four-component relativistic density functional theory calculations of NMR shielding tensors for paramagnetic systems.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Malkina, Olga L; Malkin, Vladimir G

    2013-12-27

    A four-component relativistic method for the calculation of NMR shielding constants of paramagnetic doublet systems has been developed and implemented in the ReSpect program package. The method uses a Kramer unrestricted noncollinear formulation of density functional theory (DFT), providing the best DFT framework for property calculations of open-shell species. The evaluation of paramagnetic nuclear magnetic resonance (pNMR) tensors reduces to the calculation of electronic g tensors, hyperfine coupling tensors, and NMR shielding tensors. For all properties, modern four-component formulations were adopted. The use of both restricted kinetically and magnetically balanced basis sets along with gauge-including atomic orbitals ensures rapid basis-set convergence. These approaches are exact in the framework of the Dirac-Coulomb Hamiltonian, thus providing useful reference data for more approximate methods. Benchmark calculations on Ru(III) complexes demonstrate good performance of the method in reproducing experimental data and also its applicability to chemically relevant medium-sized systems. Decomposition of the temperature-dependent part of the pNMR tensor into the traditional contact and pseudocontact terms is proposed.

  12. Torsional electric dipole moment functions calculated for HOOH and ClOOCl

    Science.gov (United States)

    McGrath, Mark P.

    2013-03-01

    The periodic torsional, electric dipole moment (EDM) functions μ(ϕ) = ∑m = 0pmcos (m + 1/2)ϕ, of the atmospherically significant molecules HOOH and ClOOCl, have been derived from calculations at the CCSD(T) (coupled-cluster singles and doubles model, plus a noniterative triples correction) level of electronic-structure theory with augmented, correlation-consistent basis sets extrapolated to the approximate complete basis set limit. The μ(ϕ) of HOOH, defined by {pm} = {3.0979, -0.0301, -0.0058} D, is used to calculate squared transition EDMs that compare well with those previously derived using the experimental torsional line intensities. The μ(ϕ) of ClOOCl, defined by μ(ϕ) = {1.1935, 0.1163, 0.1341, -0.0040, -0.0099} D, requires a longer Fourier expansion because, in the range of dihedral angles from the cis (ϕ = 0) to the trans (ϕ = π) transition structures, three inflection points are found for ClOOCl, but only one for HOOH. The permanent EDM calculated for HOOH, 1.754 D, is in close agreement with the value deduced from experiment. Compared to HOOH, the permanent EDM vector calculated for ClOOCl is directed analogously, but has a significantly smaller magnitude, 0.700 D.

  13. Density functional theory and evolution algorithm calculations of elastic properties of AlON

    Energy Technology Data Exchange (ETDEWEB)

    Batyrev, I. G.; Taylor, D. E.; Gazonas, G. A.; McCauley, J. W. [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2014-01-14

    Different models for aluminum oxynitride (AlON) were calculated using density functional theory and optimized using an evolutionary algorithm. Evolutionary algorithm and density functional theory (DFT) calculations starting from several models of AlON with different Al or O vacancy locations and different positions for the N atoms relative to the vacancy were carried out. The results show that the constant anion model [McCauley et al., J. Eur. Ceram. Soc. 29(2), 223 (2009)] with a random distribution of N atoms not adjacent to the Al vacancy has the lowest energy configuration. The lowest energy structure is in a reasonable agreement with experimental X-ray diffraction spectra. The optimized structure of a 55 atom unit cell was used to construct 220 and 440 atom models for simulation cells using DFT with a Gaussian basis set. Cubic elastic constant predictions were found to approach the experimentally determined AlON single crystal elastic constants as the model size increased from 55 to 440 atoms. The pressure dependence of the elastic constants found from simulated stress-strain relations were in overall agreement with experimental measurements of polycrystalline and single crystal AlON. Calculated IR intensity and Raman spectra are compared with available experimental data.

  14. Direct calculation of the lattice Green function with arbitrary interactions for general crystals.

    Science.gov (United States)

    Yasi, Joseph A; Trinkle, Dallas R

    2012-06-01

    Efficient computation of lattice defect geometries such as point defects, dislocations, disconnections, grain boundaries, interfaces, and free surfaces requires accurate coupling of displacements near the defect to the long-range elastic strain. Flexible boundary condition methods embed a defect in infinite harmonic bulk through the lattice Green function. We demonstrate an efficient and accurate calculation of the lattice Green function from the force-constant matrix for general crystals with an arbitrary basis by extending a method for Bravais lattices. New terms appear due to the presence of optical modes and the possible loss of inversion symmetry. By separately treating poles and discontinuities in reciprocal space, numerical accuracy is controlled at all distances. We compute the lattice Green function for a two-dimensional model with broken symmetry to elucidate the role of different coupling terms. The algorithm is generally applicable in two and three dimensions to crystals with arbitrary number of atoms in the unit cell, symmetry, and interactions.

  15. CppTransport: a platform to automate calculation of inflationary correlation functions

    CERN Document Server

    Seery, David

    2016-01-01

    CppTransport is a numerical platform that can automatically generate and solve the evolution equations for the 2- and 3-point correlation functions (in field space and for the curvature perturbation) for any inflationary model with canonical kinetic terms. It makes no approximations beyond the applicability of tree-level perturbation theory. Given an input Lagrangian, CppTransport performs symbolic calculations to determine the 'Feynman rules' of the model and generates efficient C++ to integrate the correlation functions of interest. It includes a visualization suite that automates extraction of observable quantities from the raw n-point functions and generates high quality plots with minimal manual intervention. It is intended to be used as a collaborative platform, promoting the rapid investigation of models and systematizing their comparison with observation. This guide describes how to install and use the system, and illustrates its use through some simple examples.

  16. A Transport Equation Approach to Green Functions and Self-force Calculations

    CERN Document Server

    Wardell, Barry

    2010-01-01

    In a recent work, we presented the first application of the Poisson-Wiseman-Anderson method of `matched expansions' to compute the self-force acting on a point particle moving in a curved spacetime. The method employs two expansions for the Green function which are respectively valid in the `quasilocal' and `distant past' regimes, and which may be matched together within the normal neighbourhood. In this article, we introduce the method of matched expansions and discuss transport equation methods for the calculation of the Green function in the quasilocal region. These methods allow the Green function to be evaluated throughout the normal neighborhood and are also relevant to a broad range of problems from radiation reaction to quantum field theory in curved spacetime and quantum gravity.

  17. Density functional calculation of many-electron systems in cartesian coordinate grid

    CERN Document Server

    Roy, Amlan K

    2011-01-01

    A recently developed density functional method, within Hohenberg-Kohn-Sham framework, is used for faithful description of atoms, molecules in Cartesian coordinate grid, by using an LCAO-MO ansatz. Classical Coulomb potential is obtained by means of a Fourier convolution technique. All two-body potentials (including exchange-correlation (XC)) are constructed directly on real grid, while their corresponding matrix elements are computed from numerical integration. Detailed systematic investigation is made for a representative set of atoms/molecules through a number of properties like total energies, component energies, ionization energies, orbital energies, etc. Two nonlocal XC functionals (FT97 and PBE) are considered for pseudopotential calculation of 35 species while preliminary all-electron results are reported for 6 atoms using the LDA XC density functional. Comparison with literature results, wherever possible, exhibits near-complete agreement. This offers a simple efficient route towards accurate reliable...

  18. Optimal representation of the bath response function & fast calculation of influence functional coefficients in open quantum systems with BATHFIT 1

    CERN Document Server

    Dattani, Nikesh S; Pollock, Felix A

    2012-01-01

    Today's most popular techniques for accurately calculating the dynamics of the reduced density operator in an open quantum system, either require, or gain great computational benefits, from representing the bath response function a(t) in the form a(t)={\\Sigma}_k^K p_k e^{O_k t} . For some of these techniques, the number of terms in the series K plays the lead role in the computational cost of the calculation, and is therefore often a limiting factor in simulating open quantum system dynamics. We present an open source MATLAB program called BATHFIT 1, whose input is any spectral distribution functions J(w) or bath response function, and whose output attempts to be the set of parameters {p_k,w_k}_k=1^K such that for a given value of K, the series {\\Sigma}_k^k p_k e^{O_k t} is as close as possible to a(t). This should allow the user to represent a(t) as accurately as possible with as few parameters as possible. The program executes non-linear least squares fitting, and for a very wide variety of spectral distrib...

  19. Use of the SLW index to calculate growth function in the sea cucumber Isostichopus badionotus.

    Science.gov (United States)

    Poot-Salazar, Alicia; Hernández-Flores, Álvaro; Ardisson, Pedro-Luis

    2014-06-09

    Age and growth analysis is essential to fisheries management. Indirect methods to calculate growth are widely used; however, length frequency data analysis in sea cucumbers is complicated by high data variability caused by body wall elasticity. Here we calculated Isostichopus badionotus parameters of the von Bertalanffy growth function. In order to address bias produced by body wall elasticity, we compared the performance of four measurements and one compound index that combines different biometric parameters: the square root of the length-width product (SLW). Results showed that variability in length data due to body wall elasticity was controlled by using body length (Le) from the SLW compound index. Growth in I. badionotus follows a negative allometric tendency. Slow or zero growth periods were observed during October and November, when weather conditions were adverse.

  20. Improved Accuracy of Density Functional Theory Calculations for CO2 Reduction and Metal-Air Batteries

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    .e. the electrocatalytic reduction of CO2 and metal-air batteries. In theoretical studies of electrocatalytic CO2 reduction, calculated DFT-level enthalpies of reaction for CO2reduction to various products are significantly different from experimental values[1-3]. In theoretical studies of metal-air battery reactions......, systematic errors compared to experiments have also been found in calculation of enthalpies of formation for bulk metal oxide, peroxide and superoxide species[4,5]. It is here demonstrated how the errors, which depend explicitly on the choice of applied exchange-correlation functional, can be identified....... Errors can be significantly reduced by using metal chlorides as energy reference rather than pure metals. The mean absolute error per oxygen versus experiments for alkali metal peroxide and superoxide species will be 0.03 eV and 0.09 eV, respectively, using metal chlorides as reference, as compared to 0...

  1. Rigorous Calculation of the Partition Function for the Finite Number of Ising Spins

    CERN Document Server

    Peretyatko, Alexey A; Kapitan, Vitaliy Yu; Kirienko, Yury V; Nefedev, Konstantin V; Belokon, Valery I

    2011-01-01

    The high-performance scalable parallel algorithm for rigorous calculation of partition function of lattice systems with finite number Ising spins was developed. The parallel calculations run by C++ code with using of Message Passing Interface and massive parallel instructions. The algorithm can be used for the research of the interacting spin systems in the Ising models of 2D and 3D. The processing power and scalability is analyzed for different parallel and distributed systems. Different methods of the speed up measuring allow obtain the super-linear speeding up for the small number of processes. Program code could be useful also for research by exact method of different Ising spin systems, e.g. system with competition interactions.

  2. Density functional theory calculations of tetracene on low index surfaces of copper crystal

    Institute of Scientific and Technical Information of China (English)

    Dou Wei-Dong; Zhang Han-Jie; Bao Shi-Ning

    2009-01-01

    This paper carries out the density functional theory calculations to study the adsorbate-substrate interaction between tetracene and Cu substrates (Cu (110) and Cu (100) surface). On each of the surfaces, two kinds of geometry are calculated, namely 'flat-lying' mode and 'upright standing' mode. For 'flat-lying' geometry, the molecule is found to be aligned with its longer molecular axis along close-packed direction of the substrata surfaces. For 'upright standing' geometry, the long axis of tetracene is found to be parallel to the surface normal of the substrate on Cu (110) surface. However, tetracene appears as 'tilted' mode on Cu (100) surface. Structures with 'flat-lying' mode have much larger adsorption energy and charge transfer upon adsorption than that with 'upright standing' mode, indicating the preference of 'flat-lying' geometry on both Cu (110) and Cu (100) surface.

  3. Use of the SLW index to calculate growth function in the sea cucumber Isostichopus badionotus

    Science.gov (United States)

    Poot-Salazar, Alicia; Hernández-Flores, Álvaro; Ardisson, Pedro-Luis

    2014-01-01

    Age and growth analysis is essential to fisheries management. Indirect methods to calculate growth are widely used; however, length frequency data analysis in sea cucumbers is complicated by high data variability caused by body wall elasticity. Here we calculated Isostichopus badionotus parameters of the von Bertalanffy growth function. In order to address bias produced by body wall elasticity, we compared the performance of four measurements and one compound index that combines different biometric parameters: the square root of the length-width product (SLW). Results showed that variability in length data due to body wall elasticity was controlled by using body length (Le) from the SLW compound index. Growth in I. badionotus follows a negative allometric tendency. Slow or zero growth periods were observed during October and November, when weather conditions were adverse. PMID:24909262

  4. Green`s function calculation of the satellite spectrum of neon

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, A.S.

    1995-01-01

    The single-hole Green`s function with the lowest-order self-energy part has been used to calculate energies and spectroscopic factors of the neon ion ground and excited states which originated from the removal of the 2s and 2p valence electrons. The simplest two-hole-one-electron ion sates were included explicitly to the self-energy. More complex (m+l)-hole-m-electron states were treated implicitly by using the experimental energy of the two holes in the simplest ion states. The results of the calculation are found to be consistent with experimental satellite line positions and intensities obtained from recent photoionization and electron impact ionization measurements. 20 refs., 5 tabs.

  5. Density functional calculation of equilibrium geometry and electronic structure of pyrite

    Institute of Scientific and Technical Information of China (English)

    邱冠周; 肖奇; 胡岳华; 徐竞

    2001-01-01

    The equilibrium geometry and electronic structure of pyrite has been studied using self-consistent density-functional theory within the local density approximation (LDA). The optimum bulk geometry is in good agreement with crystallographic data. The calculated band structure and density of states in the region around the Fermi energy show that valence-band maximum (VBM) is at X (100), and the conduction-band minimum (CBM) is at G (000). The indirect and direct band gaps are 0.6eV and 0.74eV, respectively. The calculated contour map of difference of charge density shows excess charge in nonbonding d electron states on the Fe sites. The density increases between sulfur nuclei and between iron and sulfur nuclei qualitatively reveal that S-S bond and Fe-S bond are covalent binding.

  6. Crystal and electronic structures of substituted halide perovskites based on density functional calculation and molecular dynamics

    Science.gov (United States)

    Takaba, Hiromitsu; Kimura, Shou; Alam, Md. Khorshed

    2017-03-01

    Durability of organo-lead halide perovskite are important issue for its practical application in a solar cells. In this study, using density functional theory (DFT) and molecular dynamics, we theoretically investigated a crystal structure, electronic structure, and ionic diffusivity of the partially substituted cubic MA0.5X0.5PbI3 (MA = CH3NH3+, X = NH4+ or (NH2)2CH+ or Cs+). Our calculation results indicate that a partial substitution of MA induces a lattice distortion, resulting in preventing MA or X from the diffusion between A sites in the perovskite. DFT calculations show that electronic structures of the investigated partially substituted perovskites were similar with that of MAPbI3, while their bandgaps slightly decrease compared to that of MAPbI3. Our results mean that partial substitution in halide perovskite is effective technique to suppress diffusion of intrinsic ions and tune the band gap.

  7. Next-to-leading Order Calculation for Jets Defined by a Maximized Jet Function

    CERN Document Server

    Kaufmann, Tom; Vogelsang, Werner

    2014-01-01

    We present a next-to-leading order QCD calculation for the single-inclusive production of collimated jets at hadron colliders, when the jet is defined by maximizing a suitable jet function that depends on the momenta of final-state particles in the event. A jet algorithm of this type was initially proposed by Georgi and subsequently further developed into the class of "$J_{E_T}$ algorithms". Our calculation establishes the infrared safety of the algorithms at this perturbative order. We derive analytical results for the relevant partonic cross sections. We discuss similarities and differences with respect to jets defined by cone or (anti-)$k_t$ algorithms and present numerical results for the Tevatron and the LHC.

  8. Vanadium-doped small silicon clusters: Photoelectron spectroscopy and density-functional calculations

    Science.gov (United States)

    Xu, Hong-Guang; Zhang, Zeng-Guang; Feng, Yuan; Yuan, Jinyun; Zhao, Yuchao; Zheng, Weijun

    2010-03-01

    Vanadium-doped small silicon clusters, VSin- and VSin- ( n = 3-6), have been studied by anion photoelectron spectroscopy. The vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) of these clusters were obtained from their photoelectron spectra. We have also conducted density-functional calculations of VSin- and VSin- clusters and determined their structures by comparison of theoretical calculations with experimental results. Our results show that two V atoms in VSin- clusters tend to form a strong V-V bond. VSi6- has D3d symmetry with the six Si atoms forming a chair like six-membered ring similar to the ring in cyclohexane and the two vanadium atoms are joined with a δ bond.

  9. Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations

    Science.gov (United States)

    Chang, Chia-Chen; Rubenstein, Brenda M.; Morales, Miguel A.

    2016-12-01

    Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wave function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.

  10. Effects of d-electrons in pseudopotential screened-exchange density functional calculations

    Science.gov (United States)

    Lee, Byounghak; Wang, Lin-Wang; Canning, Andrew

    2008-06-01

    We report a theoretical study on the role of shallow d states in the screened-exchange local density approximation (sX-LDA) band structure of binary semiconductor systems. We found that inaccurate pseudo-wave functions can lead to (1) an overestimation of the screened-exchange interaction between the localized d states and the delocalized higher energy s and p states, and (2) an underestimation of the screened-exchange interaction between the d states. The resulting sX-LDA band structures have substantially smaller band gaps compared with experiments. We correct the pseudo-wave functions of d states by including the semicore s and p states of the same shell in the valence states. The correction of pseudo-wave functions yields band gaps and d-state binding energies in good agreement with experiments and the full potential linearized augmented plane wave sX-LDA calculations. Compared with the quasiparticle GW method, our sX-LDA results shows not only similar quality on the band gaps but also much better d-state binding energies. Combined with its capability of ground-state structure calculation, the sX-LDA is expected to be a valuable theoretical tool for the II-VI and III-V (especially the III-N) bulk semiconductors and nanostructure studies.

  11. Numerical Toy-Model Calculation of the Nucleon Spin Autocorrelation Function in a Supernova Core

    CERN Document Server

    Raffelt, G G; Raffelt, Georg; Sigl, Guenter

    1999-01-01

    We develop a simple model for the evolution of a nucleon spin in a hot and dense nuclear medium. A given nucleon is limited to one-dimensional motion in a distribution of external, spin-dependent scattering potentials. We calculate the nucleon spin autocorrelation function numerically for a variety of potential densities and distributions which are meant to bracket realistic conditions in a supernova core. For all plausible configurations the width of the spin-density structure function is found to be less than the temperature. This is in contrast with a naive perturbative calculation based on the one-pion exchange potential which overestimates the width and thus suggests a large suppression of the neutrino opacities by nucleon spin fluctuations. Our results suggest that it may be justified to neglect the collisional broadening of the spin-density structure function for the purpose of estimating the neutrino opacities in the deep inner core of a supernova. On the other hand, we find no indication that process...

  12. Improved methods for Feynman path integral calculations and their application to calculate converged vibrational–rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane

    Energy Technology Data Exchange (ETDEWEB)

    Mielke, Steven L., E-mail: slmielke@gmail.com, E-mail: truhlar@umn.edu; Truhlar, Donald G., E-mail: slmielke@gmail.com, E-mail: truhlar@umn.edu [Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455-0431 (United States)

    2015-01-28

    We present an improved version of our “path-by-path” enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P{sup −6}) to O(P{sup −12}), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational–rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan–Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ∼1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300–3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.

  13. Improved methods for Feynman path integral calculations and their application to calculate converged vibrational-rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane.

    Science.gov (United States)

    Mielke, Steven L; Truhlar, Donald G

    2015-01-28

    We present an improved version of our "path-by-path" enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P(-6)) to O(P(-12)), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational-rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan-Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ∼1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300-3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.

  14. Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers

    Science.gov (United States)

    Dimakis, Nicholas; Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin

    2017-08-01

    The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic properties could be well-described by specific DFT functionals paired with high-quality adatom basis sets. For Li, K, and Na adsorbed on graphene, increased adatom surface coverage weakens the adatom-graphene interaction. However, this statement does not apply for Ca adsorbed on graphene. In this case, the Ca adsorption strength, which is stronger at higher coverages, is opposite to increases in the Ca-4s orbital population.

  15. Delocalization error and "functional tuning" in Kohn-Sham calculations of molecular properties.

    Science.gov (United States)

    Autschbach, Jochen; Srebro, Monika

    2014-08-19

    Kohn-Sham theory (KST) is the "workhorse" of numerical quantum chemistry. This is particularly true for first-principles calculations of ground- and excited-state properties for larger systems, including electronic spectra, electronic dynamic and static linear and higher order response properties (including nonlinear optical (NLO) properties), conformational or dynamic averaging of spectra and response properties, or properties that are affected by the coupling of electron and nuclear motion. This Account explores the sometimes dramatic impact of the delocalization error (DE) and possible benefits from the use of long-range corrections (LC) and "tuning" of functionals in KST calculations of molecular ground-state and response properties. Tuning refers to a nonempirical molecule-specific determination of adjustable parameters in functionals to satisfy known exact conditions, for instance, that the energy of the highest occupied molecular orbital (HOMO) should be equal to the negative vertical ionization potential (IP) or that the energy as a function of fractional electron numbers should afford straight-line segments. The presentation is given from the viewpoint of a chemist interested in computations of a variety of molecular optical and spectroscopic properties and of a theoretician developing methods for computing such properties with KST. In recent years, the use of LC functionals, functional tuning, and quantifying the DE explicitly have provided valuable insight regarding the performance of KST for molecular properties. We discuss a number of different molecular properties, with examples from recent studies from our laboratory and related literature. The selected properties probe different aspects of molecular electronic structure. Electric field gradients and hyperfine coupling constants can be exquisitely sensitive to the DE because it affects the ground-state electron density and spin density distributions. For π-conjugated molecules, it is shown how the

  16. Time-dependent density functional calculation of the energy loss of antiprotons colliding with metallic nanoshells

    Energy Technology Data Exchange (ETDEWEB)

    Quijada, M. [Departamento de Fisica de Materiales, Facultad de Quimicas UPV/EHU, Apartado 1072, 20080 San Sebastian (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Borisov, A.G. [Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Universite Paris-Sud, Laboratoire des Collisions Atomiques et Moleculaires (France); CNRS, UMR 8625, Laboratoire des Collisions Atomiques et Moleculaires, LCAM, Batiment 351, UPS-11, Orsay, 91405 Orsay Cedex (France); Muino, R.D. [Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Centro de Fisica de Materiales, Centro Mixto CSIC-UPV/EHU, Edificio Korta, Avenida de Tolosa 72, 20018 San Sebastian (Spain)

    2008-06-15

    Time-dependent density functional theory is used to study the interaction between antiprotons and metallic nanoshells. The ground state electronic properties of the nanoshell are obtained in the jellium approximation. The energy lost by the antiproton during the collision is calculated and compared to that suffered by antiprotons traveling in metal clusters. The resulting energy loss per unit path length of material in thin nanoshells is larger than the corresponding quantity for clusters. It is shown that the collision process can be interpreted as the antiproton crossing of two nearly bi-dimensional independent metallic systems. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Calculation of optical-waveguide grating characteristics using Green's functions and Dyson's equation

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Mortensen, Asger

    2006-01-01

    We present a method for calculating the transmission spectra, dispersion, and time delay characteristics of optical-waveguide gratings based on Green's functions and Dyson's equation. Starting from the wave equation for transverse electric modes we show that the method can solve exactly both...... profile of the grating. Numerically, the method scales as O(N) where N is the number of points used to discretize the grating along the propagation axis. We consider optical fiber gratings although the method applies to all one-dimensional (1D) optical waveguide gratings including high-index contrast...

  18. Density functional theory calculations of the stress of oxidised (110) silicon surfaces

    CERN Document Server

    Melis, C; Colombo, L; Mana, G

    2016-01-01

    The measurement of the lattice-parameter of silicon by x-ray interferometry assumes the use of strain-free crystals. This might not be the case because surface relaxation, reconstruction, and oxidation cause strains without the application of any external force. In a previous work, this intrinsic strain was estimated by a finite element analysis, where the surface stress was modeled by an elastic membrane having a 1 N/m tensile strength. The present paper quantities the surface stress by a density functional theory calculation. We found a value exceeding the nominal value used, which potentially affects the measurement accuracy.

  19. Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels

    2009-01-01

    techniques and tight-binding calculations to illustrate these materials' transmission properties and give physical arguments to interpret the numerical results. Specifically, above the Fermi energy we find a strong reduction in electron transmission due to localized states in certain regions of the structure......Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab initio...

  20. Microscopic Calculation of the Inclusive Electron Scattering Structure Function in 16O

    Science.gov (United States)

    Mihaila, Bogdan; Heisenberg, Jochen H.

    2000-02-01

    We calculate the charge form factor and the longitudinal structure function for 16O and compare with the available experimental data, up to a momentum transfer of 4 fm-1. The ground-state correlations are generated using the coupled-cluster [ exp\\(S\\)] method, together with the realistic v18 NN interaction and the Urbana IX three-nucleon interaction. Center-of-mass corrections are dealt with by adding a center-of-mass Hamiltonian to the usual internal Hamiltonian, and by means of a many-body expansion for the computation of the observables measured in the center-of-mass system.

  1. Microscopic calculation of the inclusive electron scattering structure function in O-16

    CERN Document Server

    Mihaila, B; Mihaila, Bogdan; Heisenberg, Jochen

    2000-01-01

    We calculate the charge form factor and the longitudinal structure function for $^{16}$O and compare with the available experimental data, up to a momentum transfer of 4 fm$^{-1}$. The ground state correlations are generated using the coupled cluster [exp(S}] method, together with the realistic v-18 NN interaction and the Urbana IX three-nucleon interaction. Center-of-mass corrections are dealt with by adding a center-of-mass Hamiltonian to the usual internal Hamiltonian, and by means of a many-body expansion for the computation of the observables measured in the center-of-mass system.

  2. Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations

    DEFF Research Database (Denmark)

    Skulason, Egill; Tripkovic, Vladimir; Björketun, Mårten

    2010-01-01

    Density functional theory calculations have been performed for the three elementary steps―Tafel, Heyrovsky, and Volmer―involved in the hydrogen oxidation reaction (HOR) and its reverse, the hydrogen evolution reaction (HER). For the Pt(111) surface a detailed model consisting of a negatively...... charged Pt(111) slab and solvated protons in up to three water bilayers is considered and reaction energies and activation barriers are determined by using a newly developed computational scheme where the potential can be kept constant during a charge transfer reaction. We determine the rate limiting...

  3. Polyoxomolybdate formation - A thermodynamic analysis from density functional/PCM calculations

    Science.gov (United States)

    Steffler, Fernando; de Lima, Guilherme Ferreira; Duarte, Hélio Anderson

    2017-02-01

    Polyoxomolybdates have been intensely investigated, but their mechanisms of formation are not completely understood. The complex equilibrium of different species is affected by concentration, pH, ionic strength and temperature. It is a challenging system to model using computational chemistry. In the present work, density functional calculations were carried out using the polarizable continuum method to include solvent effects in an effort to provide insight into the mechanism of polyoxomolybdate formation in aqueous solution. We establish a possible sequence of reactions for the formation of small polyoxomolybdates containing up to 8 Mo by addition of the monomeric unit [MoO4]2-.

  4. Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations

    Science.gov (United States)

    Gupta, N. K.; Mehra, R. K.

    1974-01-01

    This paper discusses numerical aspects of computing maximum likelihood estimates for linear dynamical systems in state-vector form. Different gradient-based nonlinear programming methods are discussed in a unified framework and their applicability to maximum likelihood estimation is examined. The problems due to singular Hessian or singular information matrix that are common in practice are discussed in detail and methods for their solution are proposed. New results on the calculation of state sensitivity functions via reduced order models are given. Several methods for speeding convergence and reducing computation time are also discussed.

  5. Calculation method for particle mean diameter and particle size distribution function under dependent model algorithm

    Institute of Scientific and Technical Information of China (English)

    Hong Tang; Xiaogang Sun; Guibin Yuan

    2007-01-01

    In total light scattering particle sizing technique, the relationship among Sauter mean diameter D32, mean extinction efficiency Q, and particle size distribution function is studied in order to inverse the mean diameter and particle size distribution simply. We propose a method which utilizes the mean extinction efficiency ratio at only two selected wavelengths to solve D32 and then to inverse the particle size distribution associated with (Q) and D32. Numerical simulation results show that the particle size distribution is inversed accurately with this method, and the number of wavelengths used is reduced to the greatest extent in the measurement range. The calculation method has the advantages of simplicity and rapidness.

  6. Efficient approximation of the Struve functions Hn occurring in the calculation of sound radiation quantities.

    Science.gov (United States)

    Aarts, Ronald M; Janssen, Augustus J E M

    2016-12-01

    The Struve functions Hn(z), n=0, 1, ...  are approximated in a simple, accurate form that is valid for all z≥0. The authors previously treated the case n = 1 that arises in impedance calculations for the rigid-piston circular radiator mounted in an infinite planar baffle [Aarts and Janssen, J. Acoust. Soc. Am. 113, 2635-2637 (2003)]. The more general Struve functions occur when other acoustical quantities and/or non-rigid pistons are considered. The key step in the paper just cited is to express H1(z) as (2/π)-J0(z)+(2/π) I(z), where J0 is the Bessel function of order zero and the first kind and I(z) is the Fourier cosine transform of [(1-t)/(1+t)](1/2), 0≤t≤1. The square-root function is optimally approximated by a linear function ĉt+d̂, 0≤t≤1, and the resulting approximated Fourier integral is readily computed explicitly in terms of sin z/z and (1-cos z)/z(2). The same approach has been used by Maurel, Pagneux, Barra, and Lund [Phys. Rev. B 75, 224112 (2007)] to approximate H0(z) for all z≥0. In the present paper, the square-root function is optimally approximated by a piecewise linear function consisting of two linear functions supported by [0,t̂0] and [t̂0,1] with t̂0 the optimal take-over point. It is shown that the optimal two-piece linear function is actually continuous at the take-over point, causing a reduction of the additional complexity in the resulting approximations of H0 and H1. Furthermore, this allows analytic computation of the optimal two-piece linear function. By using the two-piece instead of the one-piece linear approximation, the root mean square approximation error is reduced by roughly a factor of 3 while the maximum approximation error is reduced by a factor of 4.5 for H0 and of 2.6 for H1. Recursion relations satisfied by Struve functions, initialized with the approximations of H0 and H1, yield approximations for higher order Struve functions.

  7. Analytical calculation of the Green's function and Drude weight for a correlated fermion-boson system

    Science.gov (United States)

    Alvermann, A.; Edwards, D. M.; Fehske, H.

    2010-04-01

    In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.

  8. Optimal catalyst curves: Connecting density functional theory calculations with industrial reactor design and catalyst selection

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Dahl, Søren; Boisen, A.

    2002-01-01

    For ammonia synthesis catalysts a volcano-type relationship has been found experimentally. We demonstrate that by combining density functional theory calculations with a microkinetic model the position of the maximum of the volcano curve is sensitive to the reaction conditions. The catalytic...... ammonia synthesis activity, to a first approximation, is a function only of the binding energy of nitrogen to the catalyst. Therefore, it is possible to evaluate which nitrogen binding energy is optimal under given reaction conditions. This leads to the concept of optimal catalyst curves, which illustrate...... the nitrogen binding energies of the optimal catalysts at different temperatures, pressures, and synthesis gas compositions. Using this concept together with the ability to prepare catalysts with desired binding energies it is possible to optimize the ammonia process. In this way a link between first...

  9. Spin polarized HSE hybrid functional calculations of VO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Schwingenschloegl, Udo; Wang, Hao [KAUST, PSE Division, Thuwal (Saudi Arabia); Grau-Crespo, Ricardo [University College London, London (United Kingdom)

    2013-07-01

    We study the rutile (R) and monoclinic (M1) phases of the prototypical compound VO{sub 2} by first principles calculations based on density functional theory, employing the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional. Our results show that the HSE lowest-energy solutions for both the low-temperature M1 phase and the high-temperature R phase, which are obtained upon inclusion of spin polarization, are at odds with experimental observations. For the M1 phase the groundstate is (but should not be) magnetic, while the groundstate of the R phase, which is also spin-polarized, is not (but should be) metallic. The energy difference between the low-temperature and high-temperature phases is also in strong discrepancy with the experimental latent heat.

  10. Long-range correlation energy calculated from coupled atomic response functions

    CERN Document Server

    Ambrosetti, Alberto; DiStasio, Robert A; Tkatchenko, Alexandre

    2013-01-01

    An accurate determination of the electron correlation energy is essential for describing the structure, stability, and function in a wide variety of systems, ranging from gas-phase molecular assemblies to condensed matter and organic/inorganic interfaces. Even small errors in the correlation energy can have a large impact on the description of chemical and physical properties in the systems of interest. In this context, the development of efficient approaches for the accurate calculation of the long-range correlation energy (and hence dispersion) is the main challenge. In the last years a number of methods have been developed to augment density functional approximations via dispersion energy corrections, but most of these approaches ignore the intrinsic many-body nature of correlation effects, leading to inconsistent and sometimes even qualitatively incorrect predictions. Here we build upon the recent many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the co...

  11. General theory for calculating disorder-averaged Green's function correlators within the coherent potential approximation

    Science.gov (United States)

    Zhou, Chenyi; Guo, Hong

    2017-01-01

    We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.

  12. DENSITY-FUNCTIONAL CALCULATIONS FOR Ce, Th, AND Pu METALS AND ALLOYS

    Energy Technology Data Exchange (ETDEWEB)

    Landa, A; Soderlind, P

    2004-04-05

    The phase diagrams of Ce, Th, and Pu metals have been studied by means of density-functional theory (DFT). In addition to these metals, the phase stability of Ce-Th and Pu-Am alloys has been also investigated from first-principles calculations. Equation-of-state (EOS) for Ce, Th, and the Ce-Th alloys has been calculated up to 1 Mbar pressure in good comparison to experimental data. Present calculations shows that the Ce-Th alloys adopt a body-centeredtetragonal (bct) structure upon hydrostatic compression that is in excellent agreement with measurements. The ambient pressure phase diagram of Pu is shown to be very poorly described by traditional DFT but rather well modeled when including magnetic interactions. In particular, the anomalous {var_sigma} phase of Pu is shown to be stabilized by magnetic disorder at elevated temperatures. The Pu-Am system has also been studied in a similar fashion and it is shown that this system, for about 25% Am content, becomes antiferromagnetic below about 400 K that corroborate the recent discovery of a Curie-Weiss behavior in this system.

  13. A-centers and isovalent impurities in germanium: Density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk [Department of Materials, Imperial College London, London SW7 2BP (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom); Londos, C.A. [University of Athens, Solid State Physics Section, Panepistimiopolis Zografos, Athens 157 84 (Greece); Bracht, H. [Institute of Materials Physics, University of Muenster, Wilhelm-Klemm-Strasse 10, D-48149 Muenster (Germany)

    2011-03-25

    In the present study density functional theory calculations have been used to calculate the binding energies of clusters formed between lattice vacancies, oxygen and isovalent atoms in germanium. In particular we concentrated on the prediction of binding energies of A-centers or oxygen interstitials that are at nearest and next nearest neighbor sites to isovalent impurities (carbon, silicon and tin) in germanium. The A-center is an oxygen interstitial atom near a lattice vacancy and is an important impurity-defect pair in germanium. In germanium doped with carbon or silicon, we calculated that most of the binding energy of the cluster formed between A-centers and the carbon or silicon atoms is due to the interaction between the oxygen interstitial atom and the carbon or silicon atoms. For tin-doped germanium most of the binding energy is due to the interaction of the oversized tin atom and the lattice vacancy, which essentially provide space for tin to relax. The nearest neighbor carbon-oxygen interstitial and the silicon-oxygen interstitial pairs are significantly bound, whereas the tin-oxygen interstitial pairs are not. The results are discussed in view of analogous investigations in isovalently doped silicon.

  14. DENSITY-FUNCTIONAL CALCULATIONS FOR Ce, Th, AND Pu METALS AND ALLOYS

    Directory of Open Access Journals (Sweden)

    A.Landa

    2004-01-01

    Full Text Available The phase diagrams of Ce, Th, and Pu metals have been studied by means of density-functional theory (DFT. In addition to these metals, the phase stability of Ce-Th and Pu-Am alloys has been also investigated from first-principles calculations. Equation-of-state (EOS for Ce, Th, and the Ce-Th alloys has been calculated up to 1 Mbar pressure in good comparison to experimental data. Present calculations show that the Ce-Th alloys adopt a body-centered-tetragonal (bct structure upon hydrostatic compression which is in excellent agreement with measurements. The ambient pressure phase diagram of Pu is shown to be very poorly described by traditional DFT but rather well modelled when including magnetic interactions. In particular, the anomalous δ phase of Pu is shown to be stabilized by magnetic disorder at elevated temperatures. The Pu-Am system has also been studied in a similar fashion and it is shown that this system, for about 25% Am content, becomes antiferromagnetic below about 400 K which corroborates the recent discovery of a Curie-Weiss behavior in this system.

  15. A functional renormalization group approach to electronic structure calculations for systems without translational symmetry

    CERN Document Server

    Seiler, Christian

    2016-01-01

    A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG-flow is organized in the energy-domain rather than in k-space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band-structure, such as disordered metals or molecules. The energy-domain FRG ({\\epsilon}FRG) presented here accounts for Fermi-liquid corrections to quasi-particle energies and particle-hole excitations. It goes beyond the state of the art GW-BSE, because in {\\epsilon}FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on...

  16. Wavelets as basis functions in electronic structure calculations; Les ondelettes comme fonction de base dans le calcul de structures electroniques

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, C

    2005-11-15

    This thesis is devoted to the definition and the implementation of a multi-resolution method to determine the fundamental state of a system composed of nuclei and electrons. In this work, we are interested in the Density Functional Theory (DFT), which allows to express the Hamiltonian operator with the electronic density only, by a Coulomb potential and a non-linear potential. This operator acts on orbitals, which are solutions of the so-called Kohn-Sham equations. Their resolution needs to express orbitals and density on a set of functions owing both physical and numerical properties, as explained in the second chapter. One can hardly satisfy these two properties simultaneously, that is why we are interested in orthogonal and bi-orthogonal wavelets basis, whose properties of interpolation are presented in the third chapter. We present in the fourth chapter three dimensional solvers for the Coulomb's potential, using not only the preconditioning property of wavelets, but also a multigrid algorithm. Determining this potential allows us to solve the self-consistent Kohn-Sham equations, by an algorithm presented in chapter five. The originality of our method consists in the construction of the stiffness matrix, combining a Galerkin formulation and a collocation scheme. We analyse the approximation properties of this method in case of linear Hamiltonian, such as harmonic oscillator and hydrogen, and present convergence results of the DFT for small electrons. Finally we show how orbital compression reduces considerably the number of coefficients to keep, while preserving a good accuracy of the fundamental energy. (author)

  17. Enhancement of DFT-calculations at petascale: Nuclear Magnetic Resonance, Hybrid Density Functional Theory and Car-Parrinello calculations

    Science.gov (United States)

    Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo

    2013-08-01

    One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.

  18. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  19. A new smoothing function to introduce long-range electrostatic effects in QM/MM calculations

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Dong [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States); Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States); Duke, Robert E.; Andrés Cisneros, G., E-mail: andres@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States)

    2015-07-28

    A new method to account for long range electrostatic contributions is proposed and implemented for quantum mechanics/molecular mechanics long range electrostatic correction (QM/MM-LREC) calculations. This method involves the use of the minimum image convention under periodic boundary conditions and a new smoothing function for energies and forces at the cutoff boundary for the Coulomb interactions. Compared to conventional QM/MM calculations without long-range electrostatic corrections, the new method effectively includes effects on the MM environment in the primary image from its replicas in the neighborhood. QM/MM-LREC offers three useful features including the avoidance of calculations in reciprocal space (k-space), with the concomitant avoidance of having to reproduce (analytically or approximately) the QM charge density in k-space, and the straightforward availability of analytical Hessians. The new method is tested and compared with results from smooth particle mesh Ewald (PME) for three systems including a box of neat water, a double proton transfer reaction, and the geometry optimization of the critical point structures for the rate limiting step of the DNA dealkylase AlkB. As with other smoothing or shifting functions, relatively large cutoffs are necessary to achieve comparable accuracy with PME. For the double-proton transfer reaction, the use of a 22 Å cutoff shows a close reaction energy profile and geometries of stationary structures with QM/MM-LREC compared to conventional QM/MM with no truncation. Geometry optimization of stationary structures for the hydrogen abstraction step by AlkB shows some differences between QM/MM-LREC and the conventional QM/MM. These differences underscore the necessity of the inclusion of the long-range electrostatic contribution.

  20. Application of density functional theory calculations to the statistical mechanics of normal and anomalous melting

    Science.gov (United States)

    Rudin, Sven P.; Bock, Nicolas; Wallace, Duane C.

    2014-11-01

    Density functional theory (DFT) calculations reliably aid in understanding the relative stability of different crystal phases as functions of pressure and temperature. Our purpose here is to employ DFT to analyze the character of the melting process, with an emphasis on comparing normal and anomalous melting. The normal-anomalous distinction is the absence or presence, respectively, of a significant electronic structure change between crystal and liquid. We study the normal melters Na and Cu, which are metallic in both phases, and the anomalous melter Ga, which has a partially covalent crystal and a nearly free-electron liquid. We calculate free energies from lattice dynamics for the crystal and from vibration-transit (V-T) theory for the liquid, where the liquid formulation is similar to that of the crystal but has an additional term representing the diffusive transits. Internal energies U and entropies S calculated for both phases of Na and Cu were previously shown to be in good agreement with experiment; here we find the same agreement for Ga. The dominant theoretical terms in the melting Δ U and Δ S are the structural potential energy, the vibrational entropy, and the purely liquid transit terms in both U and S . The melting changes in structural energy and vibrational entropy are much larger in Ga than in Na and Cu. This behavior arises from the change in electronic structure in Ga, and is the identifying characteristic of anomalous melting. We interpret our DFT results in terms of the physical effects of the relatively few covalent bonds in the otherwise metallic Ga crystal.

  1. First principles calculations for liquids and solids using maximally localized Wannier functions

    Science.gov (United States)

    Swartz, Charles W., VI

    The field of condensed matter computational physics has seen an explosion of applicability over the last 50+ years. Since the very first calculations with ENIAC and MANIAC the field has continued to pushed the boundaries of what is possible; from the first large-scale molecular dynamics simulation, to the implementation of Density Functional Theory and large scale Car-Parrinello molecular dynamics, to million-core turbulence calculations by Standford. These milestones represent not only technological advances but theoretical breakthroughs and algorithmic improvements as well. The work in this thesis was completed in the hopes of furthering such advancement, even by a small fraction. Here we will focus mainly on the calculation of electronic and structural properties of solids and liquids, where we shall implement a wide range of novel approaches that are both computational efficient and physically enlightening. To this end we routinely will work with maximally localized Wannier functions (MLWFs) which have recently seen a revival in mainstream scientific literature. MLWFs present us with interesting opportunity to calculate a localized orbital within the planewave formalism of atomistic simulations. Such a localization will prove to be invaluable in the construction of layer-based superlattice models, linear scaling hybrid functional schemes and model quasiparticle calculations. In the first application of MLWF we will look at modeling functional piezoelectricity in superlattices. Based on the locality principle of insulating superlattices, we apply the method of Wu et al to the piezoelectric strains of individual layers under iifixed displacement field. For a superlattice of arbitrary stacking sequence an accurate model is acquired for predicting piezoelectricity. By applying the model in the superlattices where ferroelectric and antiferrodistortive modes are in competition, functional piezoelectricity can be achieved. A strong nonlinear effect is observed and can

  2. Green's functions technique for calculating the emission spectrum in a quantum dot-cavity system

    Directory of Open Access Journals (Sweden)

    Edgar Arturo Gómez

    2016-12-01

    Full Text Available We introduce the Green's functions technique as an alternative theory to the quantum regression theorem formalism for calculating the two-time correlation functions in open quantum systems at the steady state. In order to investigate the potential of this theoretical approach, we consider a dissipative system composed of a single quantum dot inside a semiconductor cavity and the emission spectrum is computed due to the quantum dot as well as the cavity. We propose an algorithm based on the Green's functions technique for computing the emission spectrum that can easily be adapted to more complex open quantum systems. We found that the numerical results based on the Green's functions technique are in perfect agreement with the quantum regression theorem formalism. Moreover, it allows overcoming the inherent theoretical difficulties associated with the direct application of the quantum regression theorem in open quantum systems. Received: 6 September 2016, Accepted: 5 November 2016; Edited by: J. P. Paz; DOI: http://dx.doi.org/10.4279/PIP.080008 Cite as: E A Gómez, J D Hernández-Rivero, H Vinck-Posada, Papers in Physics 8, 080008 (2016

  3. Calculation of momentum distribution function of a non-thermal fermionic dark matter

    Science.gov (United States)

    Biswas, Anirban; Gupta, Aritra

    2017-03-01

    The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle, then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1)B‑L model. The U(1)B‑L model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y. Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.

  4. Pseudospectral calculation of the wave function of helium and the negative hydrogen ion

    Science.gov (United States)

    Grabowski, Paul E.; Chernoff, David F.

    2010-03-01

    We study the numerical solution of the nonrelativistic Schrödinger equation for two-electron atoms in ground and excited S states using pseudospectral (PS) methods of calculation. The calculation achieves convergence rates for the energy, Cauchy error in the wave function, and variance in local energy that are exponentially fast for all practical purposes. The method requires three separate subdomains to handle the wave function’s cusplike behavior near the two-particle coalescences. The use of three subdomains is essential to maintaining exponential convergence and is more computationally efficient than a single subdomain. A comparison of several different treatments of the cusps suggests that the simplest prescription is sufficient. We investigate two alternate methods for handling the semi-infinite domain, one which involves a sequence of truncated versions of the domain and the other which employs an algebraic mapping of the semi-infinite domain to a finite one and imposes no explicit cutoffs on the wave function. The latter prescription proves superior. For many purposes it proves unnecessary to handle the three-particle coalescence in a special way. The presence of logarithmic terms in the exact solution is expected to limit the convergence to being nonexponential but the only clear evidence of that is the rate of convergence of derivatives near the three-particle coalescence point. Higher resolution than achieved in this work will ultimately be needed to see its limiting effect on other measures of error. As developed and applied here the PS method has many virtues: no explicit assumptions need be made about the asymptotic behavior of the wave function near cusps or at large distances, the local energy (Hψ/ψ) is exactly equal to the calculated global energy at all collocation points, local errors go down everywhere with increasing resolution, the effective basis using Chebyshev polynomials is complete and simple, and the method is easily extensible to

  5. First principles calculation on the structure and electronic properties of BNNTs functionalized with isoniazid drug molecule

    Science.gov (United States)

    Saikia, Nabanita; Pati, Swapan K.; Deka, Ramesh C.

    2012-09-01

    One-dimensional nanostructures such as nanowires and nanotubes are stimulating tremendous research interest due to their structural, electronic and magnetic properties. We perform first principles calculation using density functional theory on the structural, and electronics properties of BNNTs adsorbed with isoniazid (INH) drug via noncovalent functionalization using the GGA/PBE functional and DZP basis set implemented in SIESTA program. The band structure, density of states and projected density of states (PDOS) plots suggest that isoniazid prefers to get adsorbed at the hollow site in case of (5,5) BNNT, whereas in (10,0) BNNT it favours the bridge site. The adsorption energy of INH onto (5,5) BNNT is smaller than in (10,0) BNNT which proposes that (10,0) BNNT with a larger radius compared to (5,5) BNNT is more favourable for INH adsorption as the corresponding distortion energy will also be quite lower. Functionalization of (5,5) and (10,0) BNNTs with isoniazid displays the presence of new impurity states (dispersionless bands) within the HOMO-LUMO energy gap of pristine BNNT leading to an increase in reactivity of the INH/BNNT system and lowering of the energy gap of the BNNTs. The PDOS plots show the major contribution towards the dispersionless impurity states is from INH molecule itself rather than from BNNT near the Fermi energy region. To summarize, noncovalent functionalization of BNNTs with isoniazid drug modulates the electronic properties of the pristine BNNT by lowering its energy gap with respect to the Fermi level, as well as demonstrating the preferential site selectivity for adsorption of isoniazid onto the nanotube sidewalls of varying chirality.

  6. Efficient evaluation of dielectric response functions and calculations of ground and excited state properties beyond local Density Functional approaches

    Science.gov (United States)

    Lu, Deyu; Li, Yan; Rocca, Dario; Viet Nguyen, H.; Gygi, Francois; Galli, Giulia

    2010-03-01

    A recently developed technique to diagonalize iteratively dielectric matrices [1], is used to carry out efficient, ab-initio calculations of dispersion interactions, and excited state properties of nanostructures. In particular, we present results for the binding energies of weakly bonded molecular crystals [2], obtained at the EXX/RPA level of theory, and for absorption spectra of semiconducting clusters, obtained by an iterative solution of the Bethe-Salpeter equations [3]. We show that the ability to obtain the eigenmodes of dielectric matrices from Density Functional perturbation theory, without computing single particle excited states, greatly improves the efficiency of both EXX/RPA and many body perturbation theory [3,4] calculations and opens the way to large scale computations. [1] H. Wilson, F. Gygi and G. Galli, Phys. Rev. B , 78, 113303, 2008; and H. Wilson, D. Lu, F. Gygi and G. Galli, Phys. Rev. B, 79, 245106, 2009. [2] D. Lu, Y. Li, D. Rocca and G. Galli, Phys. Rev. Lett, 102, 206411, 2009; and Y. Li, D. Lu, V. Nguyen and G. Galli, J. Phys. Chem. C (submitted) [3] D. Rocca, D. Lu and G. Galli, submitted. [4] D. Lu, F. Gygi and G. Galli, Phys. Rev. Lett. 100, 147601, 2008. Work was funded by DOE/Scidac DE-FC02-06ER25794 and DOE/BES DE-FG02-06ER46262.

  7. Scaled Quantum Mechanical scale factors for vibrational calculations using alternate polarized and augmented basis sets with the B3LYP density functional calculation model.

    Science.gov (United States)

    Legler, C R; Brown, N R; Dunbar, R A; Harness, M D; Nguyen, K; Oyewole, O; Collier, W B

    2015-06-15

    The Scaled Quantum Mechanical (SQM) method of scaling calculated force constants to predict theoretically calculated vibrational frequencies is expanded to include a broad array of polarized and augmented basis sets based on the split valence 6-31G and 6-311G basis sets with the B3LYP density functional. Pulay's original choice of a single polarized 6-31G(d) basis coupled with a B3LYP functional remains the most computationally economical choice for scaled frequency calculations. But it can be improved upon with additional polarization functions and added diffuse functions for complex molecular systems. The new scale factors for the B3LYP density functional and the 6-31G, 6-31G(d), 6-31G(d,p), 6-31G+(d,p), 6-31G++(d,p), 6-311G, 6-311G(d), 6-311G(d,p), 6-311G+(d,p), 6-311G++(d,p), 6-311G(2d,p), 6-311G++(2d,p), 6-311G++(df,p) basis sets are shown. The double d polarized models did not perform as well and the source of the decreased accuracy was investigated. An alternate system of generating internal coordinates that uses the out-of plane wagging coordinate whenever it is possible; makes vibrational assignments via potential energy distributions more meaningful. Automated software to produce SQM scaled vibrational calculations from different molecular orbital packages is presented.

  8. DGDFT: A massively parallel method for large scale density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei, E-mail: whu@lbl.gov; Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lin, Lin, E-mail: linlin@math.berkeley.edu [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Mathematics, University of California, Berkeley, California 94720 (United States)

    2015-09-28

    We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. By using the pole expansion and selected inversion technique to compute electron density, energy, and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both insulating and metallic systems. We show that for the two-dimensional (2D) phosphorene systems studied here, using 37 basis functions per atom allows us to reach an accuracy level of 1.3 × 10{sup −4} Hartree/atom in terms of the error of energy and 6.2 × 10{sup −4} Hartree/bohr in terms of the error of atomic force, respectively. DGDFT can achieve 80% parallel efficiency on 128,000 high performance computing cores when it is used to study the electronic structure of 2D phosphorene systems with 3500-14 000 atoms. This high parallel efficiency results from a two-level parallelization scheme that we will describe in detail.

  9. Electronic structure and optical properties of TbPO4: Experiment and density functional theory calculations

    Science.gov (United States)

    Khadraoui, Z.; Horchani-Naifer, K.; Ferhi, M.; Ferid, M.

    2015-09-01

    Single crystals of TbPO4 were grown by high temperature solid-state reaction and identified by means of X-ray diffraction, infrared and Raman spectroscopies analysis. The electronic properties of TbPO4 such as the energy band structures, density of states were carried out using density functional theory (DFT). We have employed the LDA+U functional to treat the exchange correlation potential by solving Kohn-Sham equation. The calculated total and partial density of states indicate that the top of valance band is mainly built upon O-2p states and the bottom of the conduction band mostly originates from Tb-5d states. The population analysis indicates that the P-O bond was mainly covalent and Tb-O bond was mainly ionic. The emission spectrum, color coordinates and decay curve were employed to reveal the luminescence properties of TbPO4. Moreover, the optical properties including the dielectric function, absorption spectrum, refractive index, extinction coefficient, reflectivity and energy-loss spectrum are investigated and analyzed. The results are discussed and compared with the available experimental data.

  10. Exchange and crystal field in Sm-based magnets. II. Phenomenological analysis and density functional calculations

    Science.gov (United States)

    Kuz'Min, Michael D.; Steinbeck, Lutz; Richter, Manuel

    2002-02-01

    A technique of determining the exchange field Bex on the 4f shell of Sm atoms in Sm-based magnets is proposed. It makes use of the 4f intermultiplet transition in Sm, observed in inelastic neutron scattering (INS) experiments. The method is used to analyze previously published data for a number of Sm-Fe and Sm-Co intermetallics, for all of which Bex is determined. Additional information on intramultiplet transitions in SmCo5 and Sm2Co17 makes it possible to obtain more accurate Bex values as well as to estimate the leading crystal field parameter (CFP) A02 for these compounds. For the same systems an independent determination of A02 is carried out using published magnetization curves and the Bex values found from the INS spectra. The two ``experimental'' values of A02 (INS and magnetization) agree well. For comparison, theoretical Sm-Co exchange fields and CFP for SmCo5 and Sm2Co17 are obtained from full-potential density-functional calculations. The theoretical A02 are shifted toward more negative values with respect to their experimental counterparts by a few millielectronvolts. The calculated Sm-Co exchange fields are in fair agreement with the experimentally determined values of the total exchange field on Sm, Bex, the weak Sm-Sm exchange interaction being accountable for the remaining small discrepancies.

  11. Coupled-channels calculations of nonelastic cross sections using a density-functional structure model

    CERN Document Server

    Nobre, G P A; Escher, J E; Thompson, I J; Dupuis, M; Terasaki, J; Engel, J

    2010-01-01

    A microscopic calculation of the reaction cross-section for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all particle-hole (p-h) excitation states in the target and to all one-nucleon pickup channels. The p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for 40,48Ca, 58Ni, 90Zr and 144Sm were described in a QRPA framework using a Skyrme functional. Reaction cross sections calculated in this approach were compared to predictions of a fitted optical potential and to experimental data, reaching very good agreement. Couplings between inelastic states were found to be negligible, while the couplings to pickup channels contribute significantly. For the first time observed reaction cross-sections are completely accounted for by explicit channel coupling, for incident energies between 10 and 40 MeV.

  12. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Hanakawa, Takashi; Honda, Manabu; Okada, Tomohisa; Fukuyama, Hidenao; Shibasaki, Hiroshi

    2003-06-01

    Experts of abacus operation demonstrate extraordinary ability in mental calculation. There is psychological evidence that abacus experts utilize a mental image of an abacus to remember and manipulate large numbers in solving problems; however, the neural correlates underlying this expertise are unknown. Using functional magnetic resonance imaging, we compared the neural correlates associated with three mental-operation tasks (numeral, spatial, verbal) among six experts in abacus operations and eight nonexperts. In general, there was more involvement of neural correlates for visuospatial processing (e.g., right premotor and parietal areas) for abacus experts during the numeral mental-operation task. Activity of these areas and the fusiform cortex was correlated with the size of numerals used in the numeral mental-operation task. Particularly, the posterior superior parietal cortex revealed significantly enhanced activity for experts compared with controls during the numeral mental-operation task. Comparison with the other mental-operation tasks indicated that activity in the posterior superior parietal cortex was relatively specific to computation in 2-dimensional space. In conclusion, mental calculation of abacus experts is likely associated with enhanced involvement of the neural resources for visuospatial information processing in 2-dimensional space.

  13. Critical comparison of electrode models in density functional theory based quantum transport calculations.

    Science.gov (United States)

    Jacob, D; Palacios, J J

    2011-01-28

    We study the performance of two different electrode models in quantum transport calculations based on density functional theory: parametrized Bethe lattices and quasi-one-dimensional wires or nanowires. A detailed account of implementation details in both the cases is given. From the systematic study of nanocontacts made of representative metallic elements, we can conclude that the parametrized electrode models represent an excellent compromise between computational cost and electronic structure definition as long as the aim is to compare with experiments where the precise atomic structure of the electrodes is not relevant or defined with precision. The results obtained using parametrized Bethe lattices are essentially similar to the ones obtained with quasi-one-dimensional electrodes for large enough cross-sections of these, adding a natural smearing to the transmission curves that mimics the true nature of polycrystalline electrodes. The latter are more demanding from the computational point of view, but present the advantage of expanding the range of applicability of transport calculations to situations where the electrodes have a well-defined atomic structure, as is the case for carbon nanotubes, graphene nanoribbons, or semiconducting nanowires. All the analysis is done with the help of codes developed by the authors which can be found in the quantum transport toolbox ALACANT and are publicly available.

  14. Insight into carbon formation from acetic acid decomposition over Pd(100) via density functional theory calculations

    Science.gov (United States)

    Yu, Yingzhe; Sun, Xuanyu; Zhang, Minhua

    2017-10-01

    The mechanism of carbon deposition in acetic acid/palladium system is of great research significance in the catalytic field. In order to illustrate the plausible carbon formation routes, a systematic survey on the stepwise decomposition from adsorbed acetic acid to atomic carbon on Pd(100) was conducted via density functional theory calculations. A complex reaction network including Osbnd H bond scission reaction and various Csbnd H and Csbnd C bond scission reactions was built and the relevant structural and energetic properties were calculated. The results show that Osbnd H bond breaking is very possible for CH3COOH, that Csbnd C bond breaking is always more favorable than Csbnd H bond breaking for CHxCOO (x = 1-3), and the dehydrogenation of CHx (x = 1-3) is more likely to proceed than most of other reactions. The most possible pathway for the formation of carbon monomer was proposed based on the analysis of the reaction network and it features the decarbonation of CH3COO to CH3 as the rate-limiting step.

  15. PyTransport: A Python package for the calculation of inflationary correlation functions

    CERN Document Server

    Mulryne, David J

    2016-01-01

    PyTransport constitutes a straightforward code written in C++ together with Python scripts which automatically edit, compile and run the C++ code as a Python module. It has been written for Unix-like systems (OS X and Linux). Primarily the module employs the transport approach to inflationary cosmology to calculate the tree-level power-spectrum and bispectrum of user specified models of multi-field inflation, accounting for all sub and super-horizon effects. The transport method we utilise means only coupled differential equations need to be solved, and the implementation presented here combines the speed of C++ with the functionality and convenience of Python. At present the code is restricted to canonical models. This document details the code and illustrates how to use it with a worked example.

  16. Iron decorated - functionalized MOF for high-capacity hydrogen storage: First-principles calculations

    Science.gov (United States)

    Cha, Moon-Hyun; Ihm, Jisoon

    2011-03-01

    We perform electronic structure calculations for the Fe-decorated, OH-functionalized isoreticular metal organic framework 16 (IRMOF16) to investigate the hydrogen storage capacity. Because of the relatively strong Kubas interaction between Fe and H2 , hydrogen molecule can be adsorbed on the proposed MOF even at room temperature. The reversibly usable storage capacity under ambient conditions reaches 6.0 wt%. Fe has a much lower oxidation tendency than other metals (e.g., Ti, Ca, or Li) used for decorating backbone structures and therefore far more convenient in practical implementation. We also find that the spin flip, which comes from the competition between exchange field splitting and ligand field splitting, plays a significant role in the interaction between Fe and H2 .

  17. Vibrational spectra and density functional theoretical calculations on the anti-neurodegenerative drug: Orphenadrine hydrochloride.

    Science.gov (United States)

    Edwin, Bismi; Hubert Joe, I

    2012-11-01

    Vibrational spectral analysis and quantum chemical computations based on density functional theory have been performed on the anti-neuro-degenerative drug Orphenadrine hydrochloride. The geometry, intermolecular hydrogen bond, and harmonic vibrational frequencies of the title molecule have been investigated with the help of B3LYP method. The calculated molecular geometry has been compared with the experimental data. The various intramolecular interactions have been exposed by natural bond orbital analysis. The distribution of Mulliken atomic charges and bending of natural hybrid orbitals also reflect the presence of intramolecular hydrogen bonding. The analysis of the electron density of HOMO and LUMO gives an idea of the delocalization and low value of energy gap indicates electron transport in the molecule and thereby bioactivity. Effective docking of the drug molecule with NMDA receptor subunit 3A also enhances its bioactive nature. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Density functional theory calculations on graphene/α-SiO2(0001) interface.

    Science.gov (United States)

    Ao, Zhimin; Jiang, Man; Wen, Zi; Li, Sean

    2012-02-28

    In this work, the graphene/α-SiO2(0001) interface is calculated using density functional theory. On the oxygen-terminated SiO2 surface, atomic structure reconstruction occurs at the graphene/SiO2 interface to eliminate the dangling bonds. The interface interaction is 77 meV/C atom, which indicates that van der Waals force dominates the interaction, but it is stronger than the force between the graphene layers in graphite. The distance between graphene and the SiO2 surface is 2.805 Å, which is smaller than the 3.4 Å interlayer distance of graphite. In addition, the SiO2 substrate induces p-type doping in graphene and opens a small gap of 0.13 eV at the Dirac point of graphene, which is desirable for electronic device applications.

  19. Atom probe tomography simulations and density functional theory calculations of bonding energies in Cu3Au

    KAUST Repository

    Boll, Torben

    2012-10-01

    In this article the Cu-Au binding energy in Cu3Au is determined by comparing experimental atom probe tomography (APT) results to simulations. The resulting bonding energy is supported by density functional theory calculations. The APT simulations are based on the Müller-Schottky equation, which is modified to include different atomic neighborhoods and their characteristic bonds. The local environment is considered up to the fifth next nearest neighbors. To compare the experimental with simulated APT data, the AtomVicinity algorithm, which provides statistical information about the positions of the neighboring atoms, is applied. The quality of this information is influenced by the field evaporation behavior of the different species, which is connected to the bonding energies. © Microscopy Society of America 2012.

  20. Time-dependent density functional theory scheme for efficient calculations of dynamic (hyper)polarizabilities

    Science.gov (United States)

    Andrade, Xavier; Botti, Silvana; Marques, Miguel A. L.; Rubio, Angel

    2007-05-01

    The authors present an efficient perturbative method to obtain both static and dynamic polarizabilities and hyperpolarizabilities of complex electronic systems. This approach is based on the solution of a frequency-dependent Sternheimer equation, within the formalism of time-dependent density functional theory, and allows the calculation of the response both in resonance and out of resonance. Furthermore, the excellent scaling with the number of atoms opens the way to the investigation of response properties of very large molecular systems. To demonstrate the capabilities of this method, they implemented it in a real-space (basis-set-free) code and applied it to benchmark molecules, namely, CO, H2O, and para-nitroaniline. Their results are in agreement with experimental and previous theoretical studies and fully validate their approach.

  1. Efficient calculation of nuclear spin-rotation constants from auxiliary density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Gutierrez, Bernardo, E-mail: bzuniga.51@gmail.com [Departamento de Ciencias Computacionales, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C.P. 44430 Guadalajara, Jalisco (Mexico); Camacho-Gonzalez, Monica [Universidad Tecnológica de Tecámac, División A2, Procesos Industriales, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Bendana-Castillo, Alfonso [Universidad Tecnológica de Tecámac, División A3, Tecnologías de la Información y Comunicaciones, Carretera Federal México Pachuca Km 37.5, Col. Sierra Hermosa, C.P. 55740 Tecámac, Estado de México (Mexico); Simon-Bastida, Patricia [Universidad Tecnlógica de Tulancingo, División Electromecánica, Camino a Ahuehuetitla No. 301, Col. Las Presas, C.P. 43642 Tulancingo, Hidalgo (Mexico); Calaminici, Patrizia; Köster, Andreas M. [Departamento de Química, CINVESTAV, Avenida Instituto Politécnico Nacional 2508, A.P. 14-740, México D.F. 07000 (Mexico)

    2015-09-14

    The computation of the spin-rotation tensor within the framework of auxiliary density functional theory (ADFT) in combination with the gauge including atomic orbital (GIAO) scheme, to treat the gauge origin problem, is presented. For the spin-rotation tensor, the calculation of the magnetic shielding tensor represents the most demanding computational task. Employing the ADFT-GIAO methodology, the central processing unit time for the magnetic shielding tensor calculation can be dramatically reduced. In this work, the quality of spin-rotation constants obtained with the ADFT-GIAO methodology is compared with available experimental data as well as with other theoretical results at the Hartree-Fock and coupled-cluster level of theory. It is found that the agreement between the ADFT-GIAO results and the experiment is good and very similar to the ones obtained by the coupled-cluster single-doubles-perturbative triples-GIAO methodology. With the improved computational performance achieved, the computation of the spin-rotation tensors of large systems or along Born-Oppenheimer molecular dynamics trajectories becomes feasible in reasonable times. Three models of carbon fullerenes containing hundreds of atoms and thousands of basis functions are used for benchmarking the performance. Furthermore, a theoretical study of temperature effects on the structure and spin-rotation tensor of the H{sup 12}C–{sup 12}CH–DF complex is presented. Here, the temperature dependency of the spin-rotation tensor of the fluorine nucleus can be used to identify experimentally the so far unknown bent isomer of this complex. To the best of our knowledge this is the first time that temperature effects on the spin-rotation tensor are investigated.

  2. Assessing the performance of self-consistent hybrid functional for band gap calculation in oxide semiconductors.

    Science.gov (United States)

    He, Jiangang; Franchini, Cesare

    2017-08-16

    In this paper we assess the predictive power of the self-consistent hybrid functional scPBE0 in calculating the band gap of oxide semiconductors. The computational procedure is based on the self-consistent evaluation of the mixing parameter α by means of an iterative calculation of the static dielectric constant using the perturbation expansion after discretization (PEAD) method and making use of the relation α = 1/ε. Our materials dataset is formed by 30 compounds covering a wide range of band gaps and dielectric properties, and includes materials with a wide spectrum of application as thermoelectrics, photocatalysis, photovoltaics, transparent conducting oxides, and refractory materials. Our results show that the scPBE0 functional provides better band gaps than the non self-consistent hybrids PBE0 and HSE06, but scPBE0 does not show significant improvement on the description of the static dielectric constants. Overall, the scPBE0 data exhibit a mean absolute percentage error of 14 % (band gaps) and 10 % (α = 1/ε). For materials with weak dielectric screening and large excitonic biding energies scPBE0, unlike PBE0 and HSE06, overestimates the band gaps, but the value of the gap become very close to the experimental value when excitonic effects are included (e.g. for SiO2). However, special caution must be given to the compounds with small band gaps due to the tendency of scPBE0 to overestimate the dielectric constant in proximity of the metallic limit. © 2017 IOP Publishing Ltd.

  3. Development of NRESP98 Monte Carlo codes for the calculation of neutron response functions of neutron detectors. Calculation of the response function of spherical BF{sub 3} proportional counter

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, M.; Saito, K.; Ando, H. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-05-01

    The method to calculate the response function of spherical BF{sub 3} proportional counter, which is commonly used as neutron dose rate meter and neutron spectrometer with multi moderator system, is developed. As the calculation code for evaluating the response function, the existing code series NRESP, the Monte Carlo code for the calculation of response function of neutron detectors, is selected. However, the application scope of the existing NRESP is restricted, the NRESP98 is tuned as generally applicable code, with expansion of the geometrical condition, the applicable element, etc. The NRESP98 is tested with the response function of the spherical BF{sub 3} proportional counter. Including the effect of the distribution of amplification factor, the detailed evaluation of the charged particle transportation and the effect of the statistical distribution, the result of NRESP98 calculation fit the experience within {+-}10%. (author)

  4. A comparison of density functional theory and coupled cluster methods for the calculation of electric dipole polarizability gradients of methane

    DEFF Research Database (Denmark)

    Paidarová, Ivana; Sauer, Stephan P. A.

    2012-01-01

    We have compared the performance of density functional theory (DFT) using five different exchange-correlation functionals with four coupled cluster theory based wave function methods in the calculation of geometrical derivatives of the polarizability tensor of methane. The polarizability gradient...

  5. DFT calculations of electronic and optical properties of SrS with LDA, GGA and mGGA functionals

    Science.gov (United States)

    Sharma, Shatendra; Sharma, Jyotsna; Sharma, Yogita

    2016-05-01

    The theoretical investigations of electronic and optical properties of SrS are made using the first principle DFT calculations. The calculations are performed for the local-density approximation (LDA), generalized gradient approximation (GGA) and for an alternative form of GGA i.e. metaGGA for both rock salt type (B1, Fm3m) and cesium chloride (B2, Pm3m) structures. The band structure, density of states and optical spectra are calculated under various available functional. The calculations with LDA and GGA functional underestimate the values of band gaps with all functional, however the values with mGGA show reasonably good agreement with experimental and those calculated by using other methods.

  6. DGDFT: A Massively Parallel Method for Large Scale Density Functional Theory Calculations

    CERN Document Server

    Hu, Wei; Yang, Chao

    2015-01-01

    We describe a massively parallel implementation of the recently developed discontinuous Galerkin density functional theory (DGDFT) [J. Comput. Phys. 2012, 231, 2140] method, for efficient large-scale Kohn-Sham DFT based electronic structure calculations. The DGDFT method uses adaptive local basis (ALB) functions generated on-the-fly during the self-consistent field (SCF) iteration to represent the solution to the Kohn-Sham equations. The use of the ALB set provides a systematic way to improve the accuracy of the approximation. It minimizes the number of degrees of freedom required to represent the solution to the Kohn-Sham problem for a desired level of accuracy. In particular, DGDFT can reach the planewave accuracy with far fewer numbers of degrees of freedom. By using the pole expansion and selected inversion (PEXSI) technique to compute electron density, energy and atomic forces, we can make the computational complexity of DGDFT scale at most quadratically with respect to the number of electrons for both i...

  7. Density functional calculations for structural, electronic, and magnetic properties of gadolinium-oxide clusters

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, H. K.; Chen, H., E-mail: chenh@swu.edu.cn; Tian, C. L.; Kuang, A. L.; Wang, J. Z. [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China)

    2014-04-21

    Gadolinium-oxide clusters in various sizes and stoichiometries have been systematically studied by employing the density functional theory with the generalized gradient approximation. The clusters in bulk stoichiometry are relatively more stable and their binding energies increase with the increasing size. Stoichiometric (Gd{sub 2}O{sub 3}){sub n} clusters of n = 1–3 prefer cage-like structures, whereas the clusters of n = 4–30 prefer compact structures layered by wedge-like units and exhibit a rough feature toward the bulk-like arrangement with small disorders of atomic positions. The polyhedral-cages analogous to carbon-fullerenes are stable isomers yet not the minimum energy configurations. Their stabilities can be improved by embedding one oxygen atom or a suitable cage to form core-shell configurations. The mostly favored antiferromagnetic couplings between adjacent Gd atoms are nearly degenerated in energy with their ferromagnetic couplings, resulting in super-paramagnetic characters of gadolinium-oxide clusters. The Ruderman-Kittel-Kasuya-Yosida (RKKY)-type mechanism together with the superexchange-type mechanism plays cooperation role for the magnetic interactions in clusters. We present, as a function of n, calculated binding energies, ionization potential, electron affinity, and electronic dipole moment.

  8. Prediction of structural and mechanical properties of atom-decorated porous graphene via density functional calculations

    Science.gov (United States)

    Ansari, Reza; Ajori, Shahram; Malakpour, Sina

    2016-04-01

    The considerable demand for novel materials with specific properties has motivated the researchers to synthesize supramolecular nanostructures through different methods. Porous graphene is the first two-dimensional hydrocarbon synthesized quite recently. This investigation is aimed at studying the mechanical properties of atom-decorated (functionalized) porous graphene by employing density functional theory (DFT) calculation within both local density approximations (LDA) and generalized gradient approximations (GGA). The atoms are selected from period 3 of periodic table as well as Li and O atom from period 2. The results reveal that metallic atoms and noble gases are adsorbed physically on porous graphene and nonmetallic ones form chemical bonds with carbon atom in porous graphene structure. Also, it is shown that, in general, atom decoration reduces the values of mechanical properties such as Young's, bulk and shear moduli as well as Poisson's ratio, and this reduction is more considerable in the case of nonmetallic atoms (chemical adsorption), especially oxygen atoms, as compared to metallic atoms and noble gases (physical adsorption).

  9. Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules

    Science.gov (United States)

    van Gisbergen, S. J. A.; Snijders, J. G.; Baerends, E. J.

    1998-12-01

    In this paper we present time-dependent density functional calculations on frequency-dependent first (β) and second (γ) hyperpolarizabilities for the set of small molecules, N2, CO2, CS2, C2H4, NH3, CO, HF, H2O, and CH4, and compare them to Hartree-Fock and correlated ab initio calculations, as well as to experimental results. Both the static hyperpolarizabilities and the frequency dispersion are studied. Three approximations to the exchange-correlation (xc) potential are used: the widely used Local Density Approximation (LDA), the Becke-Lee-Yang-Parr (BLYP) Generalized Gradient Approximation (GGA), as well as the asymptotically correct Van Leeuwen-Baerends (LB94) potential. For the functional derivatives of the xc potential the Adiabatic Local Density Approximation (ALDA) is used. We have attempted to estimate the intrinsic quality of these methods by using large basis sets, augmented with several diffuse functions, yielding good agreement with recent numerical static LDA results. Contrary to claims which have appeared in the literature on the basis of smaller studies involving basis sets of lesser quality, we find that the static LDA results for β and γ are severely overestimated, and do not improve upon the (underestimated) Hartree-Fock results. No improvement is provided by the BLYP potential which suffers from the same incorrect asymptotic behavior as the LDA potential. The results are however clearly improved upon by the LB94 potential, which leads to underestimated results, slightly improving the Hartree-Fock results. The LDA and BLYP potentials overestimate the frequency dependence as well, which is once again improved by the LB94 potential. Future improvements are expected to come from improved models for asymptotically correct exchange-correlation potentials. Apart from the LB94 potential used in this work, several other asymptotically correct potentials have recently been suggested in the literature and can also be expected to improve considerably

  10. High School Teachers' Use of Graphing Calculators When Teaching Linear and Quadratic Functions: Professed Beliefs and Observed Practice

    Science.gov (United States)

    Molenje, Levi

    2012-01-01

    This study was designed to explore secondary mathematics teachers' beliefs about graphing calculators, their practices with the graphing calculators when teaching linear and quadratic functions, and the relationship between the teachers' beliefs and their practices. The study was conducted in two phases. In the first phase, 81 teachers…

  11. Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations.

    Science.gov (United States)

    Teale, Andrew M; Lutnæs, Ola B; Helgaker, Trygve; Tozer, David J; Gauss, Jürgen

    2013-01-14

    Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.

  12. Volume Transport Stream Function Calculated from World Ocean Atlas 2013 (WOA13-VTSF) and Climatological Wind (NCEI Accession 0138646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of calculated annual and monthly mean ocean volume transport stream function on 1 degree resolution using the WOA13 (T, S) and corresponding...

  13. Multiconfiguration self-consistent-field calculation of the dipole moment function of CO/X 1 sigma +/

    Science.gov (United States)

    Billingsley, F. P., II; Krauss, M.

    1974-01-01

    Using the optimized valence configurations (OVC) multiconfiguration self-consistent-field (MCSCF) method, the dipole moment function for the ground state of CO in the vicinity of the equilibrium internuclear distance has been calculated. The OVC MCSCF calculation results are compared with existing Hartree-Fock and configuration interaction treatments of this molecule at single points and also the dipole moment function deduced from experimental infrared intensities. A general prescription for constructing OVC wavefunctions for diatomic molecules is also presented.

  14. π-Bonded dithiolene complexes: synthesis, molecular structures, electrochemical behavior, and density functional theory calculations.

    Science.gov (United States)

    Damas, Aurélie; Chamoreau, Lise-Marie; Cooksy, Andrew L; Jutand, Anny; Amouri, Hani

    2013-02-04

    The synthesis and X-ray molecular structure of the first metal-stabilized o-dithiobenzoquinone [Cp*Ir-o-(η(4)-C(6)H(4)S(2))] (2) are described. The presence of the metal stabilizes this elusive intermediate by π coordination and increases the nucleophilic character of the sulfur atoms. Indeed, the π-bonded dithiolene complex 2 was found to react with the organometallic solvated species [Cp*M(acetone)(3)][OTf](2) (M = Rh, Ir) to give a unique class of binuclear dithiolene compounds [Cp*Ir(C(6)H(4)S(2))MCp*][OTf](2) [M = Rh (3), Ir (4)] in which the elusive dithiolene η-C(6)H(4)S(2) acts as a bridging ligand toward the two Cp*M moieties. The electrochemical behavior of all complexes was investigated and provided us with valuable information about their redox properties. Density functional theory (DFT) calculations on the π-bonded dithiobenzoquinone ligand and related bimetallic systems show that the presence of Cp*M at the arene system of the dithiolene ligand increases the stability compared to the known monomeric species [Cp*Ir-o-(C(6)H(4)S(2)-κ(2)-S,S)] and enables these complexes Cp*Ir(C(6)H(4)S(2))MCp*][OTf](2) (3 and 4) to act as electron reservoirs. Time-dependent DFT calculations also predict the qualitative trends in the experimental UV-vis spectra and indicate that the strongest transitions arise from ligand-metal charge transfer involving primarily the HOMO-1 and LUMO. All of these compounds were fully characterized and identified by single-crystal X-ray crystallography. These results illustrate the first examples describing the coordination chemistry of the elusive o-dithiobenzoquinone to yield bimetallic complexes with an o-benzodithiolene ligand. These compounds might have important applications in the area of molecular materials.

  15. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter

    2012-01-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations...... with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene...

  16. Monte-Carlo calculation of the response functions for two prototype cosmic neutron metrology instruments

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Chris; Joyce, Malcolm J.; Winsby, Andrew [Lancaster University, Engineering Department, Bailrigg, Lancaster LA1 4YR (United Kingdom); Silvie, Jon [BAE SYSTEMS, Barrow-in-Furness, LA14 1AF (United Kingdom)

    2002-08-01

    The response functions for two cosmic neutron detection systems have been calculated using Monte-Carlo computational methods. The detection systems that form the focus of this research are modified Leake detector designs in which a central thermal neutron detector is surrounded by a sphere of high-density polyethylene. In this arrangement, the surrounding polyethylene moderates the incident fast neutrons that are then detected by the central detector; in this case a {sup 3}He-filled proportional counter. In order to extend the response of these detector systems to cater for cosmic neutron environments, a shell of high-Z material has been included in each to promote (n, xn) reactions in the polyethylene moderator. We have used shells of lead and copper for this purpose to bring the high-energy component of the cosmic field, extending up to several GeV, within the capability of the detector systems. In particular, copper has been used in comparison with lead since the former is easier and safer to machine and handle. The overall diameter of the instruments studies in this work is 208 mm. Calculations of the neutron response have been performed with MCNP4C, for the thermal-20 MeV energy range, and with MCNPX 2.1.5/LA150N neutron libraries for the higher-energy cosmic region of the spectrum beyond 20 MeV. The results of these calculations are compared with experimental data that have been recorded with the instruments at the CERN Cosmic Reference Field Facility (CERF), Geneva, Switzerland. This comparison is discussed in respect of the likely applications of these detector systems to high-energy neutron field measurement on-board aircraft and in the vicinity of high-energy particle accelerators. The former application is gaining considerable research attention following the revised estimates of relative biological effectiveness of cosmic neutron fields and the related recommendation that aircrew be regarded occupationally-exposed radiation workers, on behalf of the

  17. Introducing PROFESS: A new program for orbital-free density functional theory calculations

    Science.gov (United States)

    Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.

    2008-12-01

    We present PROFESS (PRinceton Orbital-Free Electronic Structure Software), a new software package that performs orbital-free density functional theory (OF-DFT) calculations. OF-DFT is a first principles quantum mechanics method primarily for condensed matter that can be made to scale linearly with system size. We describe the implementation of energy, force, and stress functionals and the methods used to optimize the electron density under periodic boundary conditions. All electronic energy and potential terms scale linearly while terms involving the ions exhibit quadratic scaling in our code. Despite the latter scaling, the program can treat tens of thousands of atoms with quantum mechanics on a single processor, as we demonstrate here. Limitations of the method are also outlined, the most serious of which is the accuracy of state-of-the-art kinetic energy functionals, which limits the applicability of the method to main group elements at present. Program summaryProgram title: PROFESS Catalogue identifier: AEBN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 933 No. of bytes in distributed program, including test data, etc.: 329 924 Distribution format: tar.gz Programming language: Fortran 90 Computer: Intel with ifort; AMD Opteron with pathf90 Operating system: Linux RAM: Problem dependent, but 2 GB is sufficient for up to 10,000 ions Classification: 7.3 External routines: FFTW ( http://www.fftw.org), MINPACK-2 Nature of problem: Given a set of coordinates describing the initial ion positions under periodic boundary conditions, recovers the ground state energy, electron density, ion positions, and cell lattice vectors predicted by orbital-free density functional theory. Except for computation of the

  18. A band Lanczos approach for calculation of vibrational coupled cluster response functions: simultaneous calculation of IR and Raman anharmonic spectra for the complex of pyridine and a silver cation.

    Science.gov (United States)

    Godtliebsen, Ian H; Christiansen, Ove

    2013-07-07

    We describe new methods for the calculation of IR and Raman spectra using vibrational response theory. Using damped linear response functions that incorporate a Lorentzian line-shape function from the outset, it is shown how the calculation of Raman spectra can be carried out through the calculation of a set of vibrational response functions in the same manner as described previously for IR spectra. The necessary set of response functions can be calculated for both vibrational coupled cluster (VCC) and vibrational configuration interaction (VCI) anharmonic vibrational wave-functions. For the efficient and simultaneous calculation of the full set of necessary response functions, a non-hermitian band Lanczos algorithm is implemented for VCC, and a hermitian band Lanczos algorithm is implemented for VCI. It is shown that the simultaneous calculation of several response functions is often advantageous. Sample calculations are presented for pyridine and the complex between pyridine and the silver cation.

  19. First-and Second-Order Displacement Transfer Functions for Structural Shape Calculations Using Analytically Predicted Surface Strains

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2012-01-01

    New first- and second-order displacement transfer functions have been developed for deformed shape calculations of nonuniform cross-sectional beam structures such as aircraft wings. The displacement transfer functions are expressed explicitly in terms of beam geometrical parameters and surface strains (uniaxial bending strains) obtained at equally spaced strain stations along the surface of the beam structure. By inputting the measured or analytically calculated surface strains into the displacement transfer functions, one could calculate local slopes, deflections, and cross-sectional twist angles of the nonuniform beam structure for mapping the overall structural deformed shapes for visual display. The accuracy of deformed shape calculations by the first- and second-order displacement transfer functions are determined by comparing these values to the analytically predicted values obtained from finite element analyses. This comparison shows that the new displacement transfer functions could quite accurately calculate the deformed shapes of tapered cantilever tubular beams with different tapered angles. The accuracy of the present displacement transfer functions also are compared to those of the previously developed displacement transfer functions.

  20. Numerical calculation of neoclassical distribution functions and current profiles in low collisionality, axisymmetric plasmas

    Science.gov (United States)

    Lyons, B. C.; Jardin, S. C.; Ramos, J. J.

    2012-08-01

    A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f) in the conventional banana regime for both ions and electrons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h). We work in a 4D phase space in which ψ defines a flux surface, θ is the poloidal angle, v is the magnitude of the velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and λ. The Rosenbluth potentials, Φ and Ψ, which define the integral part of the collision operator, are expanded in Legendre series in cosχ, where χ is the pitch angle, Fourier series in cosθ, and finite elements in v. At each ψ, we solve a block tridiagonal system for hi (independent of fe), then solve another block tridiagonal system for he (dependent on fi). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia et al., J. Comput. Phys. 37, 183-204 (1980)] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D -C1 [S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]).

  1. Numerical calculation of neoclassical distribution functions and current profiles in low collisionality, axisymmetric plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, B. C. [Program in Plasma Physics, Princeton University, Princeton, New Jersey 08543-0451 (United States); Jardin, S. C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Ramos, J. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States)

    2012-08-15

    A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f) in the conventional banana regime for both ions and electrons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h). We work in a 4D phase space in which {psi} defines a flux surface, {theta} is the poloidal angle, v is the magnitude of the velocity referenced to the mean flow velocity, and {lambda} is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and {lambda}. The Rosenbluth potentials, {Phi} and {Psi}, which define the integral part of the collision operator, are expanded in Legendre series in cos{chi}, where {chi} is the pitch angle, Fourier series in cos{theta}, and finite elements in v. At each {psi}, we solve a block tridiagonal system for h{sub i} (independent of f{sub e}), then solve another block tridiagonal system for h{sub e} (dependent on f{sub i}). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia et al., J. Comput. Phys. 37, 183-204 (1980)] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C{sup 1}[S. C. Jardin et al., Comput. Sci. Discovery 5, 014002 (2012)]).

  2. Numerical Calculation of Neoclassical Distribution Functions and Current Profiles in Low Collisionality, Axisymmetric Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    B.C. Lyons, S.C. Jardin, and J.J. Ramos

    2012-06-28

    A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f ) in the conventional banana regime for both ions and elec trons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h ). We work in a 4D phase space in which Ψ defines a flux surface, θ is the poloidal angle, v is the total velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic moment parameter. We expand h in finite elements in both v and λ . The Rosenbluth potentials, φ and ψ, which define the integral part of the collision operator, are expanded in Legendre series in cos χ , where χ is the pitch angle, Fourier series in cos θ , and finite elements in v . At each ψ , we solve a block tridiagonal system for hi (independent of fe ), then solve another block tridiagonal system for he (dependent on fi ). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia, et al., J. Comput. Phys. 37 , pp 183-204 (1980).] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C1 [S.C. Jardin, et al ., Computational Science & Discovery, 4 (2012).]).

  3. Density functional theory calculations of stability and diffusion mechanisms of impurity atoms in Ge crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maeta, Takahiro [Graduate School of System Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); GlobalWafers Japan Co., Ltd., Higashikou, Seirou-machi, Kitakanbara-gun, Niigata 957-0197 (Japan); Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan)

    2014-08-21

    Ge-based substrates are being developed for applications in advanced nano-electronic devices because of their higher intrinsic carrier mobility than Si. The stability and diffusion mechanism of impurity atoms in Ge are not well known in contrast to those of Si. Systematic studies of the stable sites of 2nd to 6th row element impurity atoms in Ge crystal were undertaken with density functional theory (DFT) and compared with those in Si crystal. It was found that most of the impurity atoms in Ge were stable at substitutional sites, while transition metals in Si were stable at interstitial sites and the other impurity atoms in Si were stable at substitutional sites. Furthermore, DFT calculations were carried out to clarify the mechanism responsible for the diffusion of impurity atoms in Ge crystals. The diffusion mechanism for 3d transition metals in Ge was found to be an interstitial-substitutional diffusion mechanism, while in Si this was an interstitial diffusion mechanism. The diffusion barriers in the proposed diffusion mechanisms in Ge and Si were quantitatively verified by comparing them to the experimental values in the literature.

  4. Calculation of point defects in rutile TiO2 by the Screened Exchange Hybrid Functional

    CERN Document Server

    Lee, Hsin-Yi; Robertson, John

    2012-01-01

    The formation energies of the oxygen vacancy and titanium interstitial in rutile TiO2 were calculated by the screened exchange (sX) hybrid density functional method, which gives a band gap of 3.1 eV, close to the experimental value. The O vacancy gives rise to a gap state lying 0.7 eV below the conduction band edge, whose charge density is localised around the two of three Ti atoms next to the vacancy. The Ti interstitial generates four defect states in the gap, whose unpaired electrons lie on the interstitial and the adjacent Ti 3d orbitals. The formation energy for the neutral O vacancy is 1.9 eV for the O-poor chemical potential, and similar to that of the neutral Ti interstitial, and has a lower formation energy for Ti interstitial under O-rich conditions. This indicates that both the O vacancy and Ti interstitial are relevant for oxygen deficiency in rutile TiO2 but the O vacancy will dominate under O-rich conditions. This resolves the questions about defect localisation and defect predominance in the li...

  5. Probing the structural evolution of ruthenium doped germanium clusters: Photoelectron spectroscopy and density functional theory calculations

    Science.gov (United States)

    Jin, Yuanyuan; Lu, Shengjie; Hermann, Andreas; Kuang, Xiaoyu; Zhang, Chuanzhao; Lu, Cheng; Xu, Hongguang; Zheng, Weijun

    2016-07-01

    We present a combined experimental and theoretical study of ruthenium doped germanium clusters, RuGen- (n = 3-12), and their corresponding neutral species. Photoelectron spectra of RuGen- clusters are measured at 266 nm. The vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) are obtained. Unbiased CALYPSO structure searches confirm the low-lying structures of anionic and neutral ruthenium doped germanium clusters in the size range of 3 ≤ n ≤ 12. Subsequent geometry optimizations using density functional theory (DFT) at PW91/LANL2DZ level are carried out to determine the relative stability and electronic properties of ruthenium doped germanium clusters. It is found that most of the anionic and neutral clusters have very similar global features. Although the global minimum structures of the anionic and neutral clusters are different, their respective geometries are observed as the low-lying isomers in either case. In addition, for n > 8, the Ru atom in RuGen-/0 clusters is absorbed endohedrally in the Ge cage. The theoretically predicted vertical and adiabatic detachment energies are in good agreement with the experimental measurements. The excellent agreement between DFT calculations and experiment enables a comprehensive evaluation of the geometrical and electronic structures of ruthenium doped germanium clusters.

  6. Density functional theory calculations of defect and fission gas properties in U-Si fuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-03

    Accident tolerant fuels (ATF) are being developed in response to the Fukushima Daiichi accident in Japan. One of the options being pursued is U-Si fuels, such as the U3Si2 and U3Si5 compounds, which benefit from high thermal conductivity (metallic) compared to the UO2 fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for U-Si fuels are rather limited, in particular for the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap. The present study investigates point defect and fission gas properties in U3Si2, which is one of the main fuel candidates, using density functional theory (DFT) calculations. Based on a few assumption regarding entropy contributions, defect and fission diffusivities are predicted. Even though uranium silicides have been shown to amorphize easily at low temperature, we assume that U3Si2 remains crystalline under the conditions expected in Light Water Reactors (LWRs). The temperature and dose where amorphization occurs has not yet been well established.

  7. 4-Arylflavan-3-ols as Proanthocyanidin Models: Absolute Configuration via Density Functional Calculation of Electronic Circular Dichroism

    Science.gov (United States)

    Density functional theory/B3LYP has been employed to optimize the conformations of selected 4-arylflavan-3-ols and their phenolic methyl ether 3-O-acetates. The electronic circular dichroism spectra of the major conformers have been calculated using time-dependent density functional theory to valida...

  8. Efficient Ab-Initio Electron Transport Calculations for Heterostructures by the Nonequilibrium Green’s Function Method

    Directory of Open Access Journals (Sweden)

    Hirokazu Takaki

    2014-01-01

    Full Text Available We present an efficient computation technique for ab-initio electron transport calculations based on density functional theory and the nonequilibrium Green’s function formalism for application to heterostructures with two-dimensional (2D interfaces. The computational load for constructing the Green’s functions, which depends not only on the energy but also on the 2D Bloch wave vector along the interfaces and is thus catastrophically heavy, is circumvented by parallel computational techniques with the message passing interface, which divides the calculations of the Green’s functions with respect to energy and wave vectors. To demonstrate the computational efficiency of the present code, we perform ab-initio electron transport calculations of Al(100-Si(100-Al(100 heterostructures, one of the most typical metal-semiconductor-metal systems, and show their transmission spectra, density of states (DOSs, and dependence on the thickness of the Si layers.

  9. Thermodynamics of lithium intercalation into graphite studied using density functional theory calculations incorporating van der Waals correlation and uncertainty estimation

    CERN Document Server

    Pande, Vikram

    2016-01-01

    Graphite is the most widely used and among the most widely-studied anode materials for lithium-ion batteries. Lithium intercalation into graphite has been extensively studied theoretically using density functional theory (DFT) calculations, complemented by experimental studies through X-ray diffraction, spectroscopy, optical imaging and other techniques. However, previous theoretical studies have not directly included van der Waals (vdW) interactions in their density functional theory calculations and vdW interactions play a crucial role in determining the stable phases. In this work, we present a first principles based model using DFT calculations, employing Bayesian Error Estimation Functional with van der Waals (BEEF-vdW) as the exchange correlation functional, and statistical thermodynamics to determine the phase transformations and subsequently, the thermodynamic intercalation potential diagram. We explore the entire configurational phase space by determining the important interactions and applying clust...

  10. Calculation of the Doppler broadening function using Fourier analysis;Calculo da funcao de alargamento Doppler utilizando analise de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Alessandro da Cruz

    2010-07-01

    An efficient and precise method for calculation of Doppler broadening function is very important to obtain average group microscopic cross sections, self shielding factors, resonance integrals and others reactor physics parameter. In this thesis two different methods for calculation of Doppler broadening function and interference term will be presented. The main method is based on a new integral form for Doppler broadening function {psi}(x,{zeta}) which gives a mathematical interpretation of the approximation proposed by Bethe and Placzek, as the convolution of the Lorentzian function with a Gaussian function. This interpretation besides leading to a new integral form for {psi}(x,{zeta}), enables to obtain a simple analytic solution for the Doppler broadening function. (author)

  11. Density functional theory calculations on oxygen adsorption on the Cu{sub 2}O surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaohu [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Zhang, Xuemei [College of Physics and Electrical Engineering, Anyang Normal University, Anyang, Henan 455000 (China); Tian, Xinxin [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Wang, Shengguang, E-mail: shengguang.wang@gmail.com [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Synfuels China Co., Ltd., Huairou, Beijing 101407 (China); Feng, Gang, E-mail: fengg.sshy@sinopec.com [State Key laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001 (China); Shanghai Research Institute of Petrochemical Technology SINOPEC, Shanghai 201208 (China)

    2015-01-01

    Graphical abstract: - Highlights: • Atomic oxygen adsorption on Cu{sub 2}O(110) and Cu{sub 2}O(100) induces surface reconstruction. • Atomic O and molecular O{sub 2} adsorption on the Cu{sub 2}O(100) surface is stronger than on the Cu{sub 2}O(111) surface. • Dissociative adsorption was found to be energetically favorable. • Atomic O and molecular O{sub 2} adsorption on the Cu{sub 2}O(111) surface induces magnetism. - Abstract: In order to understand various surface properties such as corrosion and potential catalytic activity of Cu{sub 2}O surfaces in the presence of environmental gases, we report here spin-polarized density functional theory calculations of the adsorptions of atomic and molecular oxygen on three surface Cu{sub 2}O facets. Atomic oxygen adsorbs at the hollow site formed with copper atoms of Cu{sub 2}O(111), while its adsorption on the Cu{sub 2}O(110) and Cu{sub 2}O(100) induces surface reconstruction. Molecular oxygen adsorbs on one coordinated unsaturated surface copper atom and two coordinated saturated copper atoms of Cu{sub 2}O(111), on the top of two surface copper atoms of Cu{sub 2}O(110), and on four surface copper atoms on Cu{sub 2}O(100). It was found that atomic O and molecular O{sub 2} adsorption on the Cu{sub 2}O(100) surface is stronger than on the Cu{sub 2}O(111) surface. Atomic O and molecular O{sub 2} adsorption on the surface of Cu{sub 2}O(111) induces magnetism. This is different from other systems previously known to exhibit point defect ferromagnetism. On all three surfaces, dissociative adsorption was found to be energetically favorable.

  12. Molecular electronegativity in density functional theory (II) --Direct calculation of group electronegativity and the atomic charges in a group

    Institute of Scientific and Technical Information of China (English)

    杨忠志; 沈尔忠

    1996-01-01

    On the basis of a more precise expression of the atomic effective electronegativity deduced from the density functional theory and electronegativity equalization principle, a new scheme for calculating the group electronegativity and the atomic charges in a group is proposed and programed, and various parameters of electronegativity and hardness are given for some common atoms. Through calculation, analysis and comparison of more than one hundred groups, it is shown that the results from this scheme are reasonable and may be extended.

  13. [A new approach to shielding function calculation: radiation dose estimation for a phantome inside space station compartment].

    Science.gov (United States)

    Kartashov, D A; Shurshakov, V A

    2012-01-01

    The article presents a new procedure of calculating the shielding functions for irregular objects formed from a set of nonintersecting (adjacent) triangles covering completely the surface of each object. Calculated and experimentally derived distributions of space ionizing radiation doses in the spherical tissue-equivalent phantom (experiment MATRYOSHKA-R) inside the International space station were in good agreement in the mass of phantom depths with allowance for measurement error (-10%). The procedure can be applied in modeling radiation loads on cosmonauts, calculating effectiveness of secondary protection in spacecraft, and design review of radiation protection for future space exploration missions.

  14. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    Energy Technology Data Exchange (ETDEWEB)

    Hep, J.; Konecna, A.; Krysl, V.; Smutny, V. [Calculation Dept., Skoda JS plc, Orlik 266, 31606 Plzen (Czech Republic)

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV

  15. Conceptual DFT Descriptors of Amino Acids with Potential Corrosion Inhibition Properties Calculated with the Latest Minnesota Density Functionals

    Science.gov (United States)

    Frau, Juan; Glossman-Mitnik, Daniel

    2017-01-01

    Amino acids and peptides have the potential to perform as corrosion inhibitors. The chemical reactivity descriptors that arise from Conceptual DFT for the twenty natural amino acids have been calculated by using the latest Minnesota family of density functionals. In order to verify the validity of the calculation of the descriptors directly from the HOMO and LUMO, a comparison has been performed with those obtained through ΔSCF results. Moreover, the active sites for nucleophilic and electrophilic attacks have been identified through Fukui function indices, the dual descriptor Δf(r) and the electrophilic and nucleophilic Parr functions. The results could be of interest as a starting point for the study of large peptides where the calculation of the radical cation and anion of each system may be computationally harder and costly. PMID:28361050

  16. Electronic and thermoelectric properties of InN studied using ab initio density functional theory and Boltzmann transport calculations

    Energy Technology Data Exchange (ETDEWEB)

    Borges, P. D., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu; Scolfaro, L., E-mail: pdborges@gmail.com, E-mail: lscolfaro@txstate.edu [Department of Physics, Texas State University, San Marcos, Texas 78666 (United States)

    2014-12-14

    The thermoelectric properties of indium nitride in the most stable wurtzite phase (w-InN) as a function of electron and hole concentrations and temperature were studied by solving the semiclassical Boltzmann transport equations in conjunction with ab initio electronic structure calculations, within Density Functional Theory. Based on maximally localized Wannier function basis set and the ab initio band energies, results for the Seebeck coefficient are presented and compared with available experimental data for n-type as well as p-type systems. Also, theoretical results for electric conductivity and power factor are presented. Most cases showed good agreement between the calculated properties and experimental data for w-InN unintentionally and p-type doped with magnesium. Our predictions for temperature and concentration dependences of electrical conductivity and power factor revealed a promising use of InN for intermediate and high temperature thermoelectric applications. The rigid band approach and constant scattering time approximation were utilized in the calculations.

  17. Comparison of different eigensolvers for calculating vibrational spectra using low-rank, sum-of-product basis functions

    CERN Document Server

    Leclerc, Arnaud; Carrington, Tucker

    2016-01-01

    Vibrational spectra and wavefunctions of polyatomic molecules can be calculated at low memory cost using low-rank sum-of-product (SOP) decompositions to represent basis functions generated using an iterative eigensolver. Using a SOP tensor format does not determine the iterative eigensolver. The choice of the interative eigensolver is limited by the need to restrict the rank of the SOP basis functions at every stage of the calculation. We have adapted, implemented and compared different reduced-rank algorithms based on standard iterative methods (block-Davidson algorithm, Chebyshev iteration) to calculate vibrational energy levels and wavefunctions of the 12-dimensional acetonitrile molecule. The effect of using low-rank SOP basis functions on the different methods is analyzed and the numerical results are compared with those obtained with the reduced rank block power method introduced in J. Chem. Phys. 140, 174111 (2014). Relative merits of the different algorithms are presented, showing that the advantage o...

  18. Conceptual DFT Descriptors of Amino Acids with Potential Corrosion Inhibition Properties Calculated with the Latest Minnesota Density Functionals.

    Science.gov (United States)

    Frau, Juan; Glossman-Mitnik, Daniel

    2017-01-01

    Amino acids and peptides have the potential to perform as corrosion inhibitors. The chemical reactivity descriptors that arise from Conceptual DFT for the twenty natural amino acids have been calculated by using the latest Minnesota family of density functionals. In order to verify the validity of the calculation of the descriptors directly from the HOMO and LUMO, a comparison has been performed with those obtained through ΔSCF results. Moreover, the active sites for nucleophilic and electrophilic attacks have been identified through Fukui function indices, the dual descriptor Δf(r) and the electrophilic and nucleophilic Parr functions. The results could be of interest as a starting point for the study of large peptides where the calculation of the radical cation and anion of each system may be computationally harder and costly.

  19. DFT calculation for adatom adsorption on graphene sheet as a prototype of carbon nanotube functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, A; Yamamoto, M; Asano, H; Fujiwara, K [Department of Applied Mathematics and Physics, Tottori University Koyama, Tottori 680-8552 (Japan)], E-mail: ishii@damp.tottori-u.ac.jp

    2008-03-15

    DFT calculation of various atomic species on graphene sheet is investigated as prototypes for formation of nano-structures on carbon nanotube (CNT) wall. We investigate computationally adsorption energies and adsorption sites on graphene sheet for a lot of atomic species including transition metals, noble metals, nitrogen and oxygen, using the DFT calculation as a prototype for CNT. The suitable atomic species can be chosen as each application from those results. The calculated results show us that Mo and Ru are bounded strongly on graphene sheet with large diffusion barrier energy. On the other hand, some atomic species has large binding energies with small diffusion barrier energies.

  20. Linear response calculation using the canonical-basis TDHFB with a schematic pairing functional

    CERN Document Server

    Ebata, Shuichiro; Yabana, Kazuhiro

    2010-01-01

    A canonical-basis formulation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory is obtained with an approximation that the pair potential is assumed to be diagonal in the time-dependent canonical basis. The canonical-basis formulation significantly reduces the computational cost. We apply the method to linear-response calculations for even-even nuclei. E1 strength distributions for proton-rich Mg isotopes are systematically calculated. The calculation suggests strong Landau damping of giant dipole resonance for drip-line nuclei.

  1. Numerical Green's functions in optical potential calculations for positron scattering from argon and neon

    Science.gov (United States)

    Bartschat, K.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    An optical potential method was applied to the calculation of positron scattering from the noble gases in order to determine the effect of open excitation channels on the shape of differential scattering cross sections.

  2. A Generalized Polynomial Form of the Objective Function in Flash Calculations

    Science.gov (United States)

    1992-05-01

    Redlich - Kwong Equation of State , Applications to Gen- eral Physical Data Calculations," paper 15C...G.M., "A Modified Redlich - Kwong Equation of State , Applications to Gen- eral Physical Data Calculations," paper 15C, Proceedings, AIChE National Meeting...acceptance are Soave’s modifications of the Redlich - Kwong (1949) equation of state (SRKEOS) (Soave, 1972) and that presented by Peng and Robinson

  3. "Cloud" functions and templates of engineering calculations for nuclear power plants

    Science.gov (United States)

    Ochkov, V. F.; Orlov, K. A.; Ko, Chzho Ko

    2014-10-01

    The article deals with an important problem of setting up computer-aided design calculations of various circuit configurations and power equipment carried out using the templates and standard computer programs available in the Internet. Information about the developed Internet-based technology for carrying out such calculations using the templates accessible in the Mathcad Prime software package is given. The technology is considered taking as an example the solution of two problems relating to the field of nuclear power engineering.

  4. Density functional theory calculations on the molecular structures and vibration spectra of platinum(II) antitumor drugs.

    Science.gov (United States)

    Gao, Hongwei; Xia, FengYi; Huang, ChangJiang; Lin, Kuangfei

    2011-04-01

    A comparison of six density functional theory (DFT) methods and six basis sets for predicting the molecular structures and vibration spectra of cisplatin is reported. The theoretical results are discussed and compared with the experimental data. It is remarkable that LSDA/SDD level is clearly superior to all the remaining density functional methods (including mPW1PW) in predicting the structures of cisplatin. Mean deviation between the calculated harmonic and observed fundamental vibration frequencies for each method is also calculated. The results indicate that PBE1PBE/SDD is the best method to predict all frequencies on average for cisplatin molecule in DFT methods.

  5. Applications of density functional theory calculations to selected problems in hydrocarbon processing

    Science.gov (United States)

    Nabar, Rahul

    Recent advances in theoretical techniques and computational hardware have made it possible to apply Density Functional Theory (DFT) methods to realistic problems in heterogeneous catalysis. Hydrocarbon processing is economically, and strategically, a very important industrial sector in today's world. In this thesis, we employ DFT methods to examine several important problems in hydrocarbon processing. Fischer Tropsch Synthesis (FTS) is a mature technology to convert synthesis gas derived from coal, natural-gas or biomass into liquid fuels, specifically diesel. Iron is an active FTS catalyst, but the absence of detailed reaction mechanisms make it difficult to maximize activity and optimize product distribution. We evaluate thermochemistry, kinetics and Rate Determining Steps (RDS) for Fischer Tropsch Synthesis on several models of Fe catalysts: Fe(110), Fe(211) and Pt promoted Fe(110). Our studies indicated that CO-dissociation is likely to be the RDS under most reaction conditions, but the DFT-calculated activation energy ( Ea) for direct CO dissociation was too large to explain the observed catalyst activity. Consequently we demonstrate that H-assisted CO-dissociation pathways are competitive with direct CO dissociation on both Co and Fe catalysts and could be responsible for a major fraction of the reaction flux (especially at high CO coverages). We then extend this alternative mechanistic model to closed-packed facets of nine transition metal catalysts (Fe, Co, Ni, Ru, Rh, Pd, Os, Ir and Pt). H-assisted CO dissociation offers a kinetically easier route on each of the metals studied. DFT methods are also applied to another problem from the petroleum industry: discovery of poison-resistant, bimetallic, alloy catalysts (poisons: C, S, CI, P). Our systematic screening studies identify several Near Surface Alloys (NSAs) that are expected to be highly poison-resistant yet stable and avoiding adsorbate induced reconstruction. Adsorption trends are also correlated with

  6. Nonparaxial Fourier propagation tool for aberration analysis and point spread function calculation

    Science.gov (United States)

    Cain, Stephen C.; Watts, Tatsuki

    2016-08-01

    This paper describes a Fourier propagator for computing the impulse response of an optical system, while including terms ignored in Fresnel and Fraunhofer calculations. The propagator includes a Rayleigh-Sommerfeld diffraction formula calculation from a distant point through the optical system to its image point predicted by geometric optics. The propagator then approximates the neighboring field points via the traditional binomial approximation of the Taylor series expansion around that field point. This technique results in a propagator that combines the speed of a Fourier transform operation with the accuracy of the Rayleigh-Sommerfeld diffraction formula calculation and extends Fourier optics to cases that are nonparaxial. The proposed propagator facilitates direct calculation of aberration coefficients, making it more versatile than the angular spectrum propagator. Bounds on the phase error introduced by the approximations are derived, which show that it should be more widely applicable than the Fresnel propagator. Guidance on how to sample the pupil and detector planes of a simulated imaging system is provided. This report concludes by showing examples of diffraction calculations for a laboratory setup and comparing them to measured diffraction patterns to demonstrate the utility of the propagator.

  7. Neural correlates of serial abacus mental calculation in children: a functional MRI study.

    Science.gov (United States)

    Chen, Feiyan; Hu, Zhenghui; Zhao, Xiaohu; Wang, Rui; Yang, Zhenyan; Wang, Xiaolu; Tang, Xiaowei

    2006-07-31

    Abacus experts have demonstrated extraordinary potential of mental calculation by using an imaginary abacus. But the neural correlates of abacus mental calculation and the imaginary abacus still remain unclear. Here, we report, respectively, the analysis of fMRI images of abacus experts and non-experts in response to the performance of simple and complex serial calculation by visual stimuli as well as the images of the abacus experts with performance of the same tasks by auditory stimuli. We found that activated areas were quite different between two groups. In experts, enhanced activations were mainly observed in fronto-temporal circuit (lateral premotor cortex (LPMC) and posterior temporal areas) in simple addition, but in fronto-parietal circuit (lateral premotor cortex (LPMC) and posterior superior parietal lobe (PSPL)) in complex one. By contrast, in controls, the activated areas were almost similar in both simple and complex tasks, including bilateral inferior parietal lobule, prefrontal and premotor cortices. Furthermore, visual and auditory stimuli generated almost similar activations in experts. These observations reveal that (1) abacus mental calculation induces special patterns of brain response, and simple and complex tasks are sustained by dissociated brain circuits between the temporal and parietal cortices, respectively; (2) the abacus mental calculation may rely on neural resources of visuospatial representations with a super-modal form of abacus beads; (3) the posterior temporal areas and PSPL may be recruited for imaginary abacus.

  8. Time correlation function and finite field approaches to the calculation of the fifth order Raman response in liquid xenon.

    Science.gov (United States)

    DeVane, Russell; Space, Brian; Jansen, Thomas L C; Keyes, T

    2006-12-21

    The fifth order, two-dimensional Raman response in liquid xenon is calculated via a time correlation function (TCF) theory and the numerically exact finite field method. Both employ classical molecular dynamics simulations. The results are shown to be in excellent agreement, suggesting the efficacy of the TCF approach, in which the response function is written approximately in terms of a single classical multitime TCF.

  9. Calculation of the vibrational spectra of RDX as a function of pressure using the Grimme DFT potential

    Science.gov (United States)

    Perger, Warren; Flurchick, K. M.; Slough, Wil; Valenzano, Loredana

    2011-06-01

    The density-functional theory (DFT) potential by Grimme has been proposed for describing long-range dispersion corrections. This potential has been implemented into the CRYSTAL09 program and used to calculate the vibrational spectra in RDX at equilibrium and as a function of pressure. The intensities, Born charge tensor, and high-frequency dielectric constant are reported and compared with prior theory and experiment where possible. Supported by ONR-MURI grant N00014-06-1-0459.

  10. Investigation of the diffusion of atomic fission products in UC by density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bévillon, Émile, E-mail: emile.bevillon@yahoo.fr [IRSN, SEMIC, DPAM, LETR, Centre de Cadarache, 13115 Saint Paul Lez Durance (France); Ducher, Roland; Barrachin, Marc; Dubourg, Roland [IRSN, SEMIC, DPAM, LETR, Centre de Cadarache, 13115 Saint Paul Lez Durance (France)

    2013-03-15

    Activation energies of U and C atoms self-diffusion in UC, as well as activation energies of hetero-diffusion of fission products (FPs) are investigated by first-principles calculations. According to a previous study which showed a likely U site occupation was favoured for all the FPs, their diffusion is restricted to the uranium sublattice of UC in the present study. In this framework, long-range displacements are only possible through a concerted mechanism with a surrounding uranium vacancy. Using the apparent formation energies of the uranium vacancy defect calculated in our previous study and the classical approach used in UO{sub 2} by Andersson et al., the activation energies of the main fission products in the various stoichiometric domains have been calculated. The results are compared to those obtained with the five frequency model applied to two representative fission products, Xe and Zr. Interestingly, despite strong differences of formalism, both models provided similar activation energies.

  11. Investigation of the diffusion of atomic fission products in UC by density functional calculations

    Science.gov (United States)

    Bévillon, Émile; Ducher, Roland; Barrachin, Marc; Dubourg, Roland

    2013-03-01

    Activation energies of U and C atoms self-diffusion in UC, as well as activation energies of hetero-diffusion of fission products (FPs) are investigated by first-principles calculations. According to a previous study which showed a likely U site occupation was favoured for all the FPs, their diffusion is restricted to the uranium sublattice of UC in the present study. In this framework, long-range displacements are only possible through a concerted mechanism with a surrounding uranium vacancy. Using the apparent formation energies of the uranium vacancy defect calculated in our previous study and the classical approach used in UO2 by Andersson et al., the activation energies of the main fission products in the various stoichiometric domains have been calculated. The results are compared to those obtained with the five frequency model applied to two representative fission products, Xe and Zr. Interestingly, despite strong differences of formalism, both models provided similar activation energies.

  12. Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations

    Science.gov (United States)

    Cancès, Eric; Pernal, Katarzyna

    2008-04-01

    We present projected gradient algorithms designed for optimizing various functionals defined on the set of N-representable one-electron reduced density matrices. We show that projected gradient algorithms are efficient in minimizing the Hartree-Fock or the Müller-Buijse-Baerends functional. On the other hand, they converge very slowly when applied to the recently proposed BBk (k =1,2,3) functionals [O. Gritsenko et al., J. Chem. Phys. 122, 204102 (2005)]. This is due to the fact that the BBk functionals are not proper functionals of the density matrix.

  13. Open-ended recursive calculation of single residues of response functions for perturbation-dependent basis sets.

    Science.gov (United States)

    Friese, Daniel H; Ringholm, Magnus; Gao, Bin; Ruud, Kenneth

    2015-10-13

    We present theory, implementation, and applications of a recursive scheme for the calculation of single residues of response functions that can treat perturbations that affect the basis set. This scheme enables the calculation of nonlinear light absorption properties to arbitrary order for other perturbations than an electric field. We apply this scheme for the first treatment of two-photon circular dichroism (TPCD) using London orbitals at the Hartree-Fock level of theory. In general, TPCD calculations suffer from the problem of origin dependence, which has so far been solved by using the velocity gauge for the electric dipole operator. This work now enables comparison of results from London orbital and velocity gauge based TPCD calculations. We find that the results from the two approaches both exhibit strong basis set dependence but that they are very similar with respect to their basis set convergence.

  14. A third-generation density-functional-theory-based method for calculating canonical molecular orbitals of large molecules.

    Science.gov (United States)

    Hirano, Toshiyuki; Sato, Fumitoshi

    2014-07-28

    We used grid-free modified Cholesky decomposition (CD) to develop a density-functional-theory (DFT)-based method for calculating the canonical molecular orbitals (CMOs) of large molecules. Our method can be used to calculate standard CMOs, analytically compute exchange-correlation terms, and maximise the capacity of next-generation supercomputers. Cholesky vectors were first analytically downscaled using low-rank pivoted CD and CD with adaptive metric (CDAM). The obtained Cholesky vectors were distributed and stored on each computer node in a parallel computer, and the Coulomb, Fock exchange, and pure exchange-correlation terms were calculated by multiplying the Cholesky vectors without evaluating molecular integrals in self-consistent field iterations. Our method enables DFT and massively distributed memory parallel computers to be used in order to very efficiently calculate the CMOs of large molecules.

  15. Structures and elastic properties of OsN2 investigated via first-principles density functional calculations

    Science.gov (United States)

    Wu, Zhijian; Hao, Xianfeng; Liu, Xiaojuan; Meng, Jian

    2007-02-01

    The structure, elastic, and electronic properties of OsN2 at various space groups: cubic Fm-3m , Pa-3 , and orthorhombic Pnnm were studied by first-principles calculations based on density functional theory. Our calculation indicates that the structure in orthorhombic Pnnm phase is energetically more stable compared with cubic systems. It is metallic, mechanically stable and contains diatomic N-N units with the bond distance 1.418Å . These characters are consistent with experimental facts that OsN2 is orthorhombic and metallic. The calculated bulk modulus 394GPa is also the highest among the considered space groups, slightly larger than previous value 358GPa . The calculated elastic anisotropic factors and directional bulk modulus showed that OsN2 possess high elastic anisotropy.

  16. Nature and strength of bonding in a crystal of semiconducting nanotubes: van der Waals density functional calculations and analytical results

    DEFF Research Database (Denmark)

    Kleis, Jesper; Schröder, Elsebeth; Hyldgaard, Per

    2008-01-01

    The dispersive interaction between nanotubes is investigated through ab initio theory calculations and in an analytical approximation. A van der Waals density functional (vdW-DF) [M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] is used to determine and compare the binding of a pair of nanotubes...... for the nanotube-crystal binding energy can be approximated by a sum of nanotube-pair interactions when these are calculated in vdW-DR This observation suggests a framework for an efficient implementation of quantum-physical modeling of the carbon nanotube bundling in more general nanotube bundles, including...... as well as in a nanotube crystal. To analyze the interaction and determine the importance of morphology, we further compare results of our ab initio calculations to a simple analytical result,that we obtain for a pair of well-separated nanotubes. In contrast to traditional density functional theory...

  17. First-principles calculations of rovibrational energies, dipole transition intensities and partition function for ethylene using MULTIMODE.

    Science.gov (United States)

    Carter, Stuart; Sharma, Amit R; Bowman, Joel M

    2012-10-21

    Large-scale, rovibrational variational calculations are performed for ethylene, using the potential energy surface published by Avila and Carrington [J. Chem. Phys. 135, 064101 (2011)]. Energies for J = 0 are in very good agreement with their benchmark results. Corresponding energies for J = 1 and J = 2 are also given. Calculations with a slightly reduced basis permit energies to J = 40, allowing a reliable determination of the partition function at 296 K. Using a new ab initio dipole moment surface, reported here, the infrared spectra of five dipole-allowed fundamentals are calculated. Both the partition function and infrared spectra are shown to be in excellent agreement with those in the experimental HITRAN database, with the exception of one band, which we believe is partially mis-assigned in HITRAN.

  18. Broken symmetry approach to density functional calculation of magnetic anisotropy or zero field splittings for multinuclear complexes with antiferromagnetic coupling.

    Science.gov (United States)

    van Wüllen, Christoph

    2009-10-29

    Antiferromagnetic coupling in multinuclear transition metal complexes usually leads to electronic ground states that cannot be described by a single Slater determinant and that are therefore difficult to describe by Kohn-Sham density functional methods. Density functional calculations in such cases are usually converged to broken symmetry solutions which break spin and, in many cases, also spatial symmetry. While a procedure exists to extract isotropic Heisenberg (exchange) coupling constants from such calculations, no such approach is yet established for the calculation of magnetic anisotropy energies or zero field splitting parameters. This work proposes such a procedure. The broken symmetry solutions are not only used to extract the exchange couplings but also single-ion D tensors which are then used to construct a (phenomenological) spin Hamiltonian, from which the magnetic anisotropy and the zero-field energy levels can be computed. The procedure is demonstrated for a bi- and a trinuclear Mn(III) model compound.

  19. Time correlation function and finite field approaches to the calculation of the fifth order Raman response in liquid xenon

    NARCIS (Netherlands)

    DeVane, Russell; Space, Brian; Jansen, Thomas L. C.; Keyes, T.

    2006-01-01

    The fifth order, two-dimensional Raman response in liquid xenon is calculated via a time correlation function (TCF) theory and the numerically exact finite field method. Both employ classical molecular dynamics simulations. The results are shown to be in excellent agreement, suggesting the efficacy

  20. The formulation and implementation of analytic energy gradients for periodic density functional calculations with STO/NAO Bloch basis set

    NARCIS (Netherlands)

    Kadantsev, Eugene S.; Klooster, Rob; De Boeij, Paul L.; Ziegler, Tom

    2007-01-01

    Analytic energy gradients with respect to atomic coordinates for systems with translational invariance are formulated within the framework of Kohn-Sham Density Functional Theory. The energy gradients are implemented in the BAND program for periodic DFT calculations which directly employs a Bloch bas

  1. Does Early Algebraic Reasoning Differ as a Function of Students' Difficulty with Calculations versus Word Problems?

    Science.gov (United States)

    Powell, Sarah R.; Fuchs, Lynn S.

    2014-01-01

    According to national mathematics standards, algebra instruction should begin at kindergarten and continue through elementary school. Most often, teachers address algebra in the elementary grades with problems related to solving equations or understanding functions. With 789 second-grade students, we administered: (1) measures of calculations and…

  2. Calculation of the electron density distribution in silicon by the density-functional method. Comparison with X-ray results

    NARCIS (Netherlands)

    Velders, G.J.M.; Feil, D.

    1989-01-01

    Quantum-chemical density-functional theory (DFT) calculations, using the local-density approximation (LDA), have been performed for hydrogen-bounded silicon clusters to determine the electron density distribution of the Si-Si bond. The density distribution in the bonding region is compared with calc

  3. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    Science.gov (United States)

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.

  4. Linear-scaling calculation of Hartree-Fock exchange energy with non-orthogonal generalised Wannier functions.

    Science.gov (United States)

    Dziedzic, J; Hill, Q; Skylaris, C-K

    2013-12-07

    We present a method for the calculation of four-centre two-electron repulsion integrals in terms of localised non-orthogonal generalised Wannier functions (NGWFs). Our method has been implemented in the ONETEP program and is used to compute the Hartree-Fock exchange energy component of Hartree-Fock and Density Functional Theory (DFT) calculations with hybrid exchange-correlation functionals. As the NGWFs are optimised in situ in terms of a systematically improvable basis set which is equivalent to plane waves, it is possible to achieve large basis set accuracy in routine calculations. The spatial localisation of the NGWFs allows us to exploit the exponential decay of the density matrix in systems with a band gap in order to compute the exchange energy with a computational effort that increases linearly with the number of atoms. We describe the implementation of this approach in the ONETEP program for linear-scaling first principles quantum mechanical calculations. We present extensive numerical validation of all the steps in our method. Furthermore, we find excellent agreement in energies and structures for a wide variety of molecules when comparing with other codes. We use our method to perform calculations with the B3LYP exchange-correlation functional for models of myoglobin systems bound with O2 and CO ligands and confirm that the same qualitative behaviour is obtained as when the same myoglobin models are studied with the DFT+U approach which is also available in ONETEP. Finally, we confirm the linear-scaling capability of our method by performing calculations on polyethylene and polyacetylene chains of increasing length.

  5. MONTE CARLO CALCULATION FOR CALIBRATION FUNCTIONS IN TOTAL REFLECTION X—RAY FLUORESCENCE SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    范钦敏; 刘亚雯; 等

    1995-01-01

    Simulation approach includes such processes as photon emissions from X-ray tube with a spectral distribution,total reflection on the sample support,photoelectric effect in thin layer sample,as well as characteristic line absorption and detection,The calculation results are in agreement with experimental ones.

  6. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...

  7. Calculation of the Longitudinal Structure Function from Regge-Like Behaviour of the Gluon Distribution Function in Leading Order Approximation at Low x

    Institute of Scientific and Technical Information of China (English)

    G.R. Boroun; B. Rezaie

    2007-01-01

    We present the calculations of FL longitudinal structure functions from DGLAP evolution equation in leading order (LO) at low-x, assuming the Regge-like behaviour of gluon distribution at this limit. The calculated results are compared with the HI data and QCD fit. It is shown that the obtained results are very close to the mentioned methods. The proposed simple analytical relation for FL provides a t-evolution equation for the determination of the longitudinal structure function at low-x. All the results can consistently be described within the framework of perturbative QCD, which essentially shows increases as x decreases.

  8. First principles calculations of double ionization energy spectra and two-electron distribution function using T-matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Yoshifumi [Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Computational Materials Science Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: NOGUCHI.Yoshifumi@nims.go.jp; Ishii, Soh; Ohno, Kaoru [Department of Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2007-05-15

    Short-range electron correlation plays a very important role in small systems and significantly affects the double ionization energy (DIE) spectra and the two-electron distribution functions of a CO molecule, for example. In our calculations, the local density approximation (LDA) of the density functional theory is chosen as a starting point, the GW approximation (GWA) is performed in a next step, and finally the Bethe-Salpeter equation for the T-matrix, describing the particle-particle ladder diagrams up to the infinite order, is solved via the eigenvalue problem. The calculated DIE spectra, which are directly given by the eigenvalues, reflect the short-range electron correlation and are in good agreement with the experiment. We confirm that the Coulomb hole appears in the two-electron distribution function constructed from the eigenfunction.

  9. Non-perturbative renormalization group calculation of the quasi-particle velocity and the dielectric function of graphene

    Science.gov (United States)

    Sharma, Anand; Bauer, Carsten; Rueckriegel, Andreas; Kopietz, Peter

    We use a nonperturbative functional renormalization group approach to calculate the renormalized quasiparticle velocity v (k) and the static dielectric function ɛ (k) of suspended graphene as function of an external momentum k. We fit our numerical result for v (k) to v (k) /vF = A + Bln (Λ0 / k) , where vF is the bare Fermi velocity, Λ0 is an ultraviolet cutoff, and A = 1 . 37 , B = 0 . 51 for the physically relevant value (e2 /vF = 2 . 2) of the coupling constant. In stark contrast to calculations based on the static random-phase approximation, we find that ɛ (k) approaches unity for k --> 0 . Our result for v (k) agrees very well with a recent measurement by Elias etal. [Nat. Phys. 7, 701 (2011)]. With in the same approximation, we also explore an alternative scheme in order to understand the true nature of the low energy (momentum) behavior in graphene.

  10. Ab initio geometry and bright excitation of carotenoids: Quantum Monte Carlo and Many Body Green's Function Theory calculations on peridinin

    CERN Document Server

    Coccia, Emanuele; Guidoni, Leonardo

    2014-01-01

    In this letter we report the singlet ground state structure of the full carotenoid peridinin by means of variational Monte Carlo (VMC) calculations. The VMC relaxed geometry has an average bond length alternation of 0.1165(10) {\\AA}, larger than the values obtained by DFT (PBE, B3LYP and CAM-B3LYP) and shorter than that calculated at the Hartree-Fock (HF) level. TDDFT and EOM-CCSD calculations on a reduced peridinin model confirm the HOMO-LUMO major contribution of the Bu+-like (S2) bright excited state. Many Body Green's Function Theory (MBGFT) calculations of the vertical excitation energy of the Bu+-like state for the VMC structure (VMC/MBGFT) provide excitation energy of 2.62 eV, in agreement with experimental results in n-hexane (2.72 eV). The dependence of the excitation energy on the bond length alternation in the MBGFT and TDDFT calculations with different functionals is discussed.

  11. Spectroscopic investigations of 2,5-Difluoronitrobenzene using Hartree-Fock (HF) and density functional theory (DFT) calculations

    Science.gov (United States)

    Saravanan, S. P.; Sankar, A.; Parimala, K.

    2017-01-01

    The complete structural and vibrational analysis of the 2,5-Difluoronitrobenzene (DNB) was carried out by Hartree-Fock (HF) and density functional theory (DFT) method (B3LYP) with 6-311++G (d,p) basis set. The fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes calculated with scaled quantum mechanics (SQM) method. Using the time-dependent density functional theory (TD-DFT) method, electronic absorption spectra of the title compound have been predicted and a good agreement with the experimental ones is determined. 13C and 1H NMR spectra were recorded and chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. The hyperconjugative interaction energy (E(2)) and electron densities of donor (i) and acceptor (j) bonds were calculated using natural bond orbital (NBO) analysis. In addition, molecular electrostatic potential (MEP) and atomic charges were calculated using B3LYP/6-311++G (d,p) level of theory. Moreover, thermodynamic properties (heat capacities, entropy, enthalpy and Gibb's free energy) of the title compound at different temperatures were calculated.

  12. A Multireference Density Functional Approach to the Calculation of the Excited States of Uranium Ions

    Science.gov (United States)

    2007-03-01

    by Equation 42 exist, with the most successful based upon numerical fits to quantum mechanical Monte Carlo calculations on the ground state of a...mass with speed. The fifth term is known as the Darwin term, and is a result of zitterbewegung, or trembling motion. It is a result of the Heisenberg ...Benchmark Database. Technical Re- port, August 2005. NIST Standard Reference Database Number 101. 2. Adamo, Carlo and Vincenzo Barone. “Toward reliable

  13. Hybrid functional calculations of potential hydrogen storage material: Complex dimagnesium iron hydride

    KAUST Repository

    Ul Haq, Bakhtiar

    2014-06-01

    By employing the state of art first principles approaches, comprehensive investigations of a very promising hydrogen storage material, Mg 2FeH6 hydride, is presented. To expose its hydrogen storage capabilities, detailed structural, elastic, electronic, optical and dielectric aspects have been deeply analysed. The electronic band structure calculations demonstrate that Mg2FeH6 is semiconducting material. The obtained results of the optical bandgap (4.19 eV) also indicate that it is a transparent material for ultraviolet light, thus demonstrating its potential for optoelectronics application. The calculated elastic properties reveal that Mg2FeH6 is highly stiff and stable hydride. Finally, the calculated hydrogen (H2) storage capacity (5.47 wt.%) within a reasonable formation energy of -78 kJ mol-1, at room temperature, can be easily achievable, thus making Mg2FeH6 as potential material for practical H2 storage applications. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  14. Defect properties of CuCrO2: A density functional theory calculation

    Institute of Scientific and Technical Information of China (English)

    Fang Zhi-Jie; Zhu Ji-Zhen; Zhou Jiang; Mo Man

    2012-01-01

    Using the first-principles methods,we study the formation energetics properties of intrinsic defects,and the charge doping properties of extrinsic defects in transparent conducting oxides CuCrO2.Intrinsic defects,some typical acceptortype,and donor-type extrinsic defects in their relevant charge state are considered.By systematically calculating the formation energies and transition energy,the results of calculation show that,Vcu,Oi,and OCu are the relevant intrinsic defects in CuCrO2; among these intrinsic defects,VCu is the most efficient acceptor in CuCrO2.It is found that all the donor-type extrinsic defects have difficulty in inducing n-conductivity in CuCrO2 because of their deep transition energy level.For all the acceptor-type extrinsic defects,substituting Mg for Cr is the most prominent doping acceptor with relative shallow transition energy levels in CuCrO2.Our calculation results are expected to be a guide for preparing promising n-type and p-type materials in CuCrO2.

  15. Verification of selected relationships for fractally porous solids by using adsorption isotherms calculated from density functional theory

    Science.gov (United States)

    Jaroniec, Mietek; Kruk, Michal; Olivier, James

    1995-11-01

    Methods of calculating the fractal dimension (D) on the basis of single adsorption isotherms were critically tested by using argon composite adsorption isotherms for fractally porous solids. These isotherms were obtained from adsorption data for homogeneous slit-like pores calculated by employing the density functional theory (DFT). The composite adsorption isotherms were used to test the validity of the method based on the Frenkel-Halsey-Hill equation and so called "thermodynamic method" proposed by Neimark. The applicability of these methods was confirmed. However, our studies reveal new aspects of practical usage of both approaches, which need to be taken into consideration in analysis of experimental data.

  16. SCF and CI calculations of the dipole moment function of ozone. [Self-Consistent Field and Configuration-Interaction

    Science.gov (United States)

    Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.

    1979-01-01

    The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.

  17. Numerical modeling calculation for the spatial distribution characteristics of horizontal field transfer functions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Applying 3-dimension finite difference method, the distribution characteristics of horizontal field transfer func-tions for rectangular conductor have been computed, and the law of distribution for Re-part and Im-part has been given. The influences of source field period, the conductivity, the buried depth and the length of the conductor on the transfer functions were studied. The extrema of transfer functions appear at the center, the four corners and around the edges of conductor, and move with the edges. This feature demonstrates that around the edges are best places for transfer functions¢ observation.

  18. Nonperturbative calculation of Green and vertex functions in terms of particle contours

    CERN Document Server

    Stefanis, N G

    1996-01-01

    The infrared regime of fermionic Green and vertex functions is studied analytically within a geometric approach which simulates soft interactions by an {\\it effective} theory of contours. Expanding the particle path integral in terms of dominant contours at large distances, all-order results in the coupling constant are obtained for the renormalized fermion propagator and a universal vertex function with physical characteristics close to those associated with the Isgur-Wise function in the weak decays of heavy mesons. The extension to the ultraviolet regime is scetched.

  19. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter

    2012-01-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations....... The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations...... in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made...

  20. PRELIMINARY STRUCTURAL OPTIMIZATION OF SOME FUMONISIN METABOLITES BY DENSITY FUNCTIONAL THEORY CALCULATION

    Directory of Open Access Journals (Sweden)

    István Bors

    2015-09-01

    Full Text Available Maize (Zea mays L. is often contaminated with Fusarium verticillioides. This harmful fungus produces fumonisins as secondary metabolites. These fumonisins can appear both free and hidden form in planta. The hidden form is usually bound covalently to cereal starch. From the hidden fumonisins, during enzymatic degradation, glycosides are formed, and the fumonisin is further decomposed during a de-esterification step. In this short communication some preliminary DFT calculated structural results which could be useful in the future to help to understand the van der Waals force controlled molecular interactions between these kinds of mycotoxin molecules and enzymes are demonstrated.

  1. Ammonia synthesis over a Ru(0001) surface studied by density functional calculations

    DEFF Research Database (Denmark)

    Logadottir, Ashildur; Nørskov, Jens Kehlet

    2003-01-01

    In this paper we present DFT studies of all the elementary steps in the synthesis of ammonia from gaseous hydrogen and nitrogen over a ruthenium crystal. The stability and configurations of intermediates in the ammonia synthesis over a Ru(0001) surface have been investigated, both over a flat...... surface and over a stepped surface. The calculations show that the step sites on the surface are much more reactive than the terrace sites. The DFT results are then used to study the mechanism of promotion by alkalies over the Ru(0001) and to determine the rate-determining step in the synthesis of ammonia...

  2. Thermally driven hopping and electron transport in amorphous materials from density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Abtew, Tesfaye A; Drabold, D A [Department of Physics and Astronomy, Ohio University, Athens, OH 45701-2979 (United States)

    2004-11-10

    In this paper we study electron dynamics and transport in models of amorphous silicon and amorphous silicon hydride. By integrating the time-dependent Kohn-Sham equation, we compute the time evolution of electron states near the gap, and study the spatial and spectral diffusion of these states due to lattice motion. We perform these calculations with a view to developing ab initio hopping transport methods. The techniques are implemented with the ab initio local basis code SIESTA, and may be applicable to molecular, biomolecular and other condensed matter systems.

  3. Vibrational properties of 2H-PbI{sub 2} semiconductors studied via Density Functional Theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pedesseau, L., E-mail: laurent.pedesseau@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Even, J. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Katan, C. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, 35042 Rennes (France); Raouafi, F. [Laboratoire de Physico-chimie des matériaux polymères, Institut Préparatoire aux Etudes Scientifiques et Techniques, BP51, 2070 La Marsa (Tunisia); Wei, Y.; Deleporte, E. [Laboratoire de Photonique Quantique et Moléculaire, Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94 235 Cachan Cedex (France); Jancu, J.-M. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France)

    2013-08-31

    Density Functional Theory is used to study the vibrational properties of 2H-PbI{sub 2} semiconductor. The Born charge tensors are determined. Calculated phonon frequencies at the Brillouin zone center are compared to Raman scattering and IR absorption measurements. The computed Raman spectra show a good agreement with available experimental data. The simulated phonon dispersion curves are compared with triple-axis neutron scattering measurements. - Highlights: ► Symmetry properties of the optical phonons of the 2H-PbI{sub 2} crystal are analysed. ► Born charges and the dynamical matrix are calculated the Brillouin zone center. ► Raman spectra and Phonon dispersion have been compared with experimental results. ► Dielectric tensors are calculated and compared to measurements.

  4. CALCULATION OF THE FINE STRUCTURE OF OXYGEN-LIKE IONS USING THE POLARIZATION POTENTIAL FUNCTION

    Institute of Scientific and Technical Information of China (English)

    SHENG YONG; WANG RONG; JIANG GANG; ZHU ZHENG-HE

    2001-01-01

    We have calculated the forbidden transition energies and magnetic dipole transition probabilities of 2s22p4(3pl-3P2) and 2s22p4 (3p0-3p1) of oxygen-like isoelectronic sequences (Z=10-32) by a method of polarization potential correction. The transition energies show good agreement with experiment and are much better than the calculations in the literature. These results also illustrate that it is feasible to use the dipole expansion of the polarization potential to deal with some dynamic and non-dynamic effects in the central field approach. The relation of polarizability and cut-off radius with atomic number is discussed. We also give the fitted formula between the polarizability α1 and atomic number Z as c1 =0.73429-9.56644× 10-4Z+7.43016× 10-5Z2 -2.53298×10-6Z3+2.08306× 10-8Z4.

  5. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: density functional theory versus GW calculations.

    Science.gov (United States)

    Jin, Chengjun; Strange, Mikkel; Markussen, Troels; Solomon, Gemma C; Thygesen, Kristian S

    2013-11-14

    We study the effect of functional groups (CH3*4, OCH3, CH3, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.

  6. Calculating the Lifetimes of Metastable States with Complex Density Functional Theory.

    Science.gov (United States)

    Zhou, Yongxi; Ernzerhof, Matthias

    2012-07-19

    Among other applications, complex absorbing potentials (CAPs) have proven to be useful tools in the theory of metastable states. They facilitate the conversion of unbound states of a finite lifetime into normalized bound states with a complex energy. Adding CAPs to a conventional Hamiltonian turns it into a non-Hermitian operator. Recently, we introduced a complex density functional theory (CODFT) that extends the Kohn-Sham method to the realm of non-Hermitian systems. Here, we combine CAPs with CODFT and present the first application of CODFT to metastable systems. In particular, we consider the negative ions of the beryllium atom and the nitrogen molecule. Using conventional exchange-correlation functionals as functionals of a complex density, the resonance positions and the resonance lifetimes are obtained, and they are in line with the findings of other studies.

  7. Approaches to calculate the dielectric function of ZnO around the band gap

    Energy Technology Data Exchange (ETDEWEB)

    Agocs, E., E-mail: agocs.emil@ttk.mta.hu [Institute for Technical Physics and Materials Science (MFA), Research Center for Natural Sciences, Konkoly Thege Rd. 29-33, 1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, 8200 Veszprem (Hungary); Fodor, B. [Institute for Technical Physics and Materials Science (MFA), Research Center for Natural Sciences, Konkoly Thege Rd. 29-33, 1121 Budapest (Hungary); Faculty of Science, University of Pécs, 7624 Pécs, Ifjuság útja 6 (Hungary); Pollakowski, B.; Beckhoff, B.; Nutsch, A. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany); Jank, M. [Fraunhofer Institute for Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen (Germany); Petrik, P. [Institute for Technical Physics and Materials Science (MFA), Research Center for Natural Sciences, Konkoly Thege Rd. 29-33, 1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, Egyetem u. 10, 8200 Veszprem (Hungary)

    2014-11-28

    Being one of the most sensitive methods for optical thin film metrology ellipsometry is widely used for the characterization of zinc oxide (ZnO), a key material for optoelectronics, photovoltaics, and printable electronics and in a range of critical applications. The dielectric function of ZnO has a special feature around the band gap dominated by a relatively sharp absorption feature and an excitonic peak. In this work we summarize and compare direct (point-by-point) and parametric approaches for the description of the dielectric function. We also investigate how the choice of the wavelength range influences the result, the fit quality and the sensitivity. Results on ZnO layers prepared by sputtering are presented. - Highlights: • Dielectric function of zinc oxide thin film measured by spectroscopic ellipsometry • Direct and parametric approaches summarized and compared • Influence of chosen wavelength range on fit results investigated.

  8. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set

    Science.gov (United States)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-01

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( { } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  9. Investigation of structure and hydrogen bonding of superhydrous phase B (HT) under pressure using first-principles density functional calculations

    Science.gov (United States)

    Poswal, H. K.; Sharma, Surinder M.; Sikka, S. K.

    2010-03-01

    High-pressure behaviour of superhydrous phase B (high temperature; HT) of Mg10Si3O14(OH)4 (Shy B) is investigated with the help of density functional theory-based first-principles calculations. In addition to the lattice parameters and equation of state, we use these calculations to determine the positional parameters of atoms as a function of pressure. Our results show that the compression induced structural changes involve cooperative distortions in the full geometry of the hydrogen bonds. The bond-bending mechanism proposed by Hofmeister et al. (Vibrational spectra of dense hydrous magnesium silicates at high pressure: Importance of the hydrogen bond angle, Am. Miner. 84 (1999), pp. 454-464) for hydrogen bonds to relieve the heightened repulsion due to short H- - -H contacts is not found to be effective in Shy B. The calculated O-H bond contraction is consistent with the observed blue shift in the stretching frequency of the hydrogen bond. These results establish that one can use first-principles calculations to obtain reliable insights into the pressure-induced bonding changes of complex minerals.

  10. A First Principles Density-Functional Calculation of the Electronic and Vibrational Structure of the Key Melanin Monomers

    CERN Document Server

    Powell, B J; Bernstein, N; Brake, K; McKenzie, Ross H; Meredith, P; Pederson, M R

    2016-01-01

    We report first principles density functional calculations for hydroquinone (HQ), indolequinone (IQ) and semiquinone (SQ). These molecules are believed to be the basic building blocks of the eumelanins, a class of bio-macromolecules with important biological functions (including photoprotection) and with potential for certain bioengineering applications. We have used the DeltaSCF (difference of self consistent fields) method to study the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), Delta_HL. We show that Delta_HL is similar in IQ and SQ but approximately twice as large in HQ. This may have important implications for our understanding of the observed broad band optical absorption of the eumelanins. The possibility of using this difference in Delta_HL to molecularly engineer the electronic properties of eumelanins is discussed. We calculate the infrared and Raman spectra of the three redox forms from first principles. Each of the molecules ...

  11. 15-digit accuracy calculations of Chandrasekhar's H-function for isotropic scattering by means of the double exponential formula

    Science.gov (United States)

    Kawabata, Kiyoshi

    2016-12-01

    This work shows that it is possible to calculate numerical values of the Chandrasekhar H-function for isotropic scattering at least with 15-digit accuracy by making use of the double exponential formula (DE-formula) of Takahashi and Mori (Publ. RIMS, Kyoto Univ. 9:721, 1974) instead of the Gauss-Legendre quadrature employed in the numerical scheme of Kawabata and Limaye (Astrophys. Space Sci. 332:365, 2011) and simultaneously taking a precautionary measure to minimize the effects due to loss of significant digits particularly in the cases of near-conservative scattering and/or errors involved in returned values of library functions supplied by compilers in use. The results of our calculations are presented for 18 selected values of single scattering albedo π0 and 22 values of an angular variable μ, the cosine of zenith angle θ specifying the direction of radiation incident on or emergent from semi-infinite media.

  12. 15-Digit Accuracy Calculations of Chandrasekhar's $H$-function for Isotropic Scattering by Means of the Double Exponential Formula

    CERN Document Server

    Kawabata, Kiyoshi

    2016-01-01

    This work shows that it is possible to calculate numerical values of the Chandrasekhar $H$-function for isotropic scattering at least with 15-digit accuracy by making use of the double exponential formula (DE-formula) of Takahashi and Mori (Publ. RIMS, Kyoto Univ. Vol. 9, 721, 1974) instead of the Gauss-Legendre quadrature employed in the numerical scheme of Kawabata and Limaye (Astrophys. Space Sci. Vol. 332, 365, 2011) and simultaneously taking a precautionary measure to minimize the effects due to loss of significant digits particularly in the cases of near-conservative scattering and/or errors involved in returned values of library functions supplied by compilers in use. The results of our calculations are presented for 18 selected values of single scattering albedo $\\varpi_0$ and 22 values of an angular variable $\\mu$, the cosine of zenith angle $\\theta$ specifying the direction of radiation incident on or emergent from semi-infinite media.

  13. Reference potential approach to the quantum-mechanical inverse problem: I. Calculation of phase shift and Jost function

    CERN Document Server

    Selg, M

    2005-01-01

    Elegant and mathematically rigorous methods of the quantum inverse theory are difficult to put into practice because there is always some lack of needful input information. In this situation, one may try to construct a reference potential, whose spectral characteristics would be in a reasonable agreement with the available data of the system's properties. Since the reference potential is fixed, it is always possible to calculate all its spectral characteristics, including phase shift for scattering states and Jost function, the main key to solve the inverse problem. Thereafter, one can calculate a Bargmann potential whose Jost function differs from the initial one only by a rational factor. This way it is possible, at least in principle, to construct a more reliable potential for the system. The model system investigated in this paper is diatomic xenon molecule in ground electronic state. Its reference potential is built up of several smoothly joined Morse type components, which enables to solve the related e...

  14. Computer Simulation for Calculating the Second-Order Correlation Function of Classical and Quantum Light

    Science.gov (United States)

    Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.

    2011-01-01

    We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…

  15. Gated blood-pool SPECT automated versus manual left ventricular function calculations

    NARCIS (Netherlands)

    Slart, RHJA; Poot, L; Piers, DA; van Veldhuisen, DJ; Nichols, K; Jager, PL

    2004-01-01

    Planar gated blood-pool imaging (GBPI) is a standard method for non-invasive assessment of left ventricular (LV) function. Gated blood-pool single photon emission computed tomographic (GBPS) data acquisition can be accomplished in the same time as GBPI, with the benefit of enabling visualization of

  16. Insights into the structural and functional aspects of rela by molecular modeling and docking calculations.

    Digital Repository Service at National Institute of Oceanography (India)

    Nath I.V.A.; LokaBharathi, P.A.; Deobagkar, D.D.

    RelA (ppGpp synthetase I) has been reported as an excellent drug target due to its correlation with virulence induction in bacteria. The aim of present investigation is to provide a deeper understanding of the structural and functional aspects...

  17. Calculation of the Composition Profile of a Functionally Graded Material Produced by Centrifugal Casting

    NARCIS (Netherlands)

    Biesheuvel, P. Maarten; Verweij, H.

    2000-01-01

    Functionally graded materials have designed inhomogeneous distributions of different components on the scale of the material. They can be made by suspension processing, in which particles are stacked in a controlled manner. Segregation effects can be used to obtain the required gradient if the parti

  18. On the calculation of x-ray scattering signals from pairwise radial distribution functions

    DEFF Research Database (Denmark)

    Dohn, Asmus Ougaard; Biasin, Elisa; Haldrup, Kristoffer;

    2015-01-01

    We derive a formulation for evaluating (time-resolved) x-ray scattering signals of solvated chemical systems, based on pairwise radial distribution functions, with the aim of this formulation to accompany molecular dynamics simulations. The derivation is described in detail to eliminate any possi...

  19. Adhesion and bonding of Pt/Ni and Pt/Co overlayers: Density functional calculations

    Science.gov (United States)

    Cabeza, Gabriela F.; Castellani, Norberto J.; Légaré, Pierre

    2006-04-01

    The electronic and energetic properties of bimetallic surfaces Pt/Ni(111) and Pt/Co(111) are examined using the FP-LAPW (Full-PotentialLinearized Augmented Plane Wave) method by means of spin-polarized and non-polarized calculations. We present both the results of the shifts in the d-band centers when one metal (Pt) is pseudomorfically deposited on another with smaller lattice constant (Ni, Co) and those corresponding to the surface and adhesion energies. The surface is modeled by a seven layer slab separated in z direction by a vacuum region of six substrate layers. The results obtained for pure Ni, Co and Pt surfaces are presented in order to compare with experimental and theoretical data reported in the literature

  20. Large difference between two methods of calculating the integrated Fermi function in superallowed. beta. -decays

    Energy Technology Data Exchange (ETDEWEB)

    Szybisz, L. (Koeln Univ. (Germany, F.R.). Inst. fuer Theoretische Kernphysik); Silbergleit, V.M. (Buenos Aires Univ. Nacional (Argentina). Dept. de Fisica); Sidelnik, J.I. (Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Reactores)

    1983-03-03

    The integrated statistical rates for superallowed O/sup +/ - O/sup +/ ..beta..-transitions evaluated according to the most widely used methods proposed by Behrens-Jaenecke-Buehring and Towner-Hardy are compared. It is shown that both calculations are in essential agreement up to mass A=38. However, for heavier nuclei there is a discrepancy. The disagreement, which increases with increasing Z, ranges from 0.07% for /sup 42/Sc to as much as 0.13% for /sup 54/Co and is larger than the errors attached for f-values due to uncertainties in W/sub 0/ (these being about 0.03-0.04%). Moreover, such differences are either comparable to or even larger than the uncertainties in t and deltasub(c). The disagreement is attributed to the different evaluations of the second-forbidden nuclear matrix elements. The choice of the parameters used in both methods is also discussed.

  1. Large difference between two methods of calculating the integrated fermi function in superallowed β-decays

    Science.gov (United States)

    Szybisz, L.; Silbergleit, V. M.; Sidelnik, J. I.

    1983-03-01

    The integrated statistical rates for superallowed 0 +-0 + β-transitions evaluated according to the most widely used methods proposed by Behrens-Jänecke-Bühring and Towner-Hardy are compared. It is shown that both calculations are in essential agreement up to mass A=38. However, for heavier nuclei there is a discrepancy. The disagreement, which increases with increasing Z, ranges from 0.07% for 42Sc to as much as 0.13% for 54Co and is larger than the errors attached to f-values due to uncertainties in W0 (these being about 0.03-0.04%). Moreover, such differences are either comparable to or even larger than the uncertainties in t and δc. The disagreement is attributed to the different evaluations of the second-forbidden nuclear matrix elements. The choice of the parameters used in both methods is also discussed.

  2. Self-consistent density functional calculations of the crystal field levels in lanthanide and actinide dioxides

    Science.gov (United States)

    Zhou, Fei; Ozoliņš, Vidvuds

    2012-02-01

    Using a recently developed method combining a nonspherical self-interaction corrected LDA + U scheme and an on-site multibody Hamiltonian [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.085106 83, 085106 (2011)], we calculate the crystal field parameters and crystal field (CF) excitation levels of f-element dioxides in the fluorite structure with fn electronic configurations, including n=1 (PaO2, PrO2), n=2 (UO2), n=3 (NpO2), and n=4 (PuO2). It is shown that good agreement with experimental data (within approximately 10-20 meV) can be obtained in all cases. The properties of the multielectron CF ground states are analyzed.

  3. Electronic Transport in Monolayer Graphene with Extreme Physical Deformation: ab Initio Density Functional Calculation

    CERN Document Server

    Gao, Haiyuan; Li, Meijiao; Guo, Zhendong; Chen, Hongshen; Jin, Zhonghe; Yu, Bin

    2011-01-01

    Electronic transport properties of monolayer graphene with extreme physical bending up to 90o angle are studied using ab Initio first-principle calculations. The importance of key structural parameters including step height, curvature radius and bending angle are discussed how they modify the transport properties of the deformed graphene sheet comparing to the corresponding flat ones. The local density of state reveals that energy state modification caused by the physical bending is highly localized. It is observed that the transport properties of bent graphene with a wide range of geometrical configurations are insensitive to the structural deformation in the low-energy transmission spectra, even in the extreme case of bending. The results support that graphene, with its superb electromechanical robustness, could serve as a viable material platform in a spectrum of applications such as photovoltaics, flexible electronics, OLED, and 3D electronic chips.

  4. Absolute Configuration Assignment of a Paraconic Acid Derivative via Vibrational Circular Dichroism Spectroscopy and Density Functional Theory Calculation.

    Science.gov (United States)

    Meninno, Sara; Rizzo, Paola; Abbate, Sergio; Longhi, Giovanna; Mazzeo, Giuseppe; Monaco, Guglielmo; Lattanzi, Alessandra; Zanasi, Riccardo

    2016-02-01

    Density functional theory calculation of the vibrational circular dichroism spectrum was used to assign the absolute configuration of an all-carbon quaternary β-stereocenter of a γ-butyrolactone recently synthesized through an asymmetric organocatalytic tandem aldol/lactonization sequence. Comparison with the experimental spectrum is satisfactory, on account of the fact that spectroscopic features are weak due to the presence of multiple conformers. As a result, the (R) absolute configuration was assigned to the (+) optical isomer.

  5. Time Dependent Density Functional Theory Calculations of Large Compact PAH Cations: Implications for the Diffuse Interstellar Bands

    Science.gov (United States)

    Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.

  6. Analysis of Vibration Mode for H2+F→HF+H Reaction Mechanism: Density functional Theory Calculation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three density functional theory methods (DFT) have been used to investigate the H2+F?HF+H reaction comparing with the Hartree-Fock method and Moller-Plesset (MP2) perturbation theory method. Through the analysis of the vibrational mode and vibrational frequency in the reaction process, the reaction mechanism has been discussed. The activation energy, the reorganization energy and rate constant of the ET reaction are calculated at semi-quantitative level.

  7. Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions

    Science.gov (United States)

    Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca

    2016-08-01

    Short-period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S waves and ending when the noise prevails), spanning more than 70 per cent of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity), either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2-D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their

  8. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    Science.gov (United States)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  9. Explicit calculation of multi-fold contour integrals of certain ratios of Euler gamma functions. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Ivan [Valparaiso Univ. (Chile). Inst. de Fisica y Astronomia; Kniehl, Bernd A. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Dept. de Ciencias Basicas; Notte-Cuello, Eduardo A. [La Serena Univ. (Chile). Dept. de Matematicas; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica; Rojas-Medar, Marko A. [Univ. de Tarapaca, Arica (Chile). Inst. de Alta Investigacion

    2016-12-15

    In this paper we proceed to study properties of Mellin-Barnes (MB) transforms of Usyukina-Davydychev (UD) functions. In our previous papers [Nuclear Physics B 870 (2013) 243], [Nuclear Physics B 876 (2013) 322] we showed that multi-fold Mellin-Barnes (MB) transforms of Usyukina-Davydychev (UD) functions may be reduced to two-fold MB transforms and that the higher-order UD functions were obtained in terms of a differential operator by applying it to a slightly modified first UD function. The result is valid in d=4 dimensions and its analog in d=4-2ε dimensions exits too [Theoretical and Mathematical Physics 177 (2013) 1515]. In [Nuclear Physics B 870 (2013) 243] the chain of recurrent relations for analytically regularized UD functions was obtained implicitly by comparing the left hand side and the right hand side of the diagrammatic relations between the diagrams with different loop orders. In turn, these diagrammatic relations were obtained due to the method of loop reductions for the triangle ladder diagrams proposed in 1983 by Belokurov and Usyukina. Here we reproduce these recurrent relations by calculating explicitly via Barnes lemmas the contour integrals produced by the left hand sides of the diagrammatic relations. In such a way we explicitly calculate a family of multi-fold contour integrals of certain ratios of Euler gamma functions. We make a conjecture that similar results for the contour integrals are valid for a wider family of smooth functions which includes the MB transforms of UD functions.

  10. On the calculation of x-ray scattering signals from pairwise radial distribution functions

    DEFF Research Database (Denmark)

    Dohn, Asmus Ougaard; Biasin, Elisa; Haldrup, Kristoffer;

    2015-01-01

    We derive a formulation for evaluating (time-resolved) x-ray scattering signals of solvated chemical systems, based on pairwise radial distribution functions, with the aim of this formulation to accompany molecular dynamics simulations. The derivation is described in detail to eliminate any possi...... possible ambiguities, and the result includes a modification to the atom-type formulation which to our knowledge is previously unaccounted for. The formulation is numerically implemented and validated.......We derive a formulation for evaluating (time-resolved) x-ray scattering signals of solvated chemical systems, based on pairwise radial distribution functions, with the aim of this formulation to accompany molecular dynamics simulations. The derivation is described in detail to eliminate any...

  11. Calculation of the Isgur-Wise function from a light-front constituent quark model

    CERN Document Server

    Simula, S

    1996-01-01

    The space-like elastic form factor of heavy-light pseudoscalar mesons is investigated within a light-front constituent quark model in order to evaluate the Isgur-Wise form factor. The relativistic composition of the constituent quark spins is properly taken into account using the Melosh rotations, and various heavy-meson wave function are considered, including the eigenfunctions of an effective light-front mass operator reproducing meson mass spectra. It is shown that in a wide range of values of the recoil the Isgur-Wise form factor exhibits a moderate dependence upon the choice of the heavy-meson wave function and is mainly governed by the effects of the confinement scale.

  12. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  13. Calculation of the Composition Profile of a Functionally Graded Material Produced by Co-sedimentation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A sedimentation method is proposed to fabricate functionally graded materials (FGMs) with the continuous andsmooth variations of composition. The relations between the compositional distribution of deposited body and thepowder characteristics of raw materials as well as settling parameters are derived. Subsequently, the mathematicalmodel of forming FGM based on the co-sedimentation has been established. At last, numerical simulations areconducted to explore the effects of the particle sizes of raw materials and suspension height on the compositionaldistribution of final products.

  14. Pseudopotential Density-Functional Calculations for Structures of Small Carbon Clusters CN (N = 2~8)

    Institute of Scientific and Technical Information of China (English)

    BAI Yu-Lin; CHEN Xiang-Rong; YANG Xiang-Dong; LU Peng-Fei

    2004-01-01

    We introduce a first-principles density-functional theory, i.e. the finite-difference pseudopotential densityfunctional theory in real space and the Langevin molecular dynamics annealing technique, to the descriptions of structures and some properties of small carbon clusters (CN, N = 2 ~ 8). It is shown that the odd-numbered clusters have linear structures and most of the even-numbered clusters prefer cyclic structures.

  15. Green's function Monte Carlo calculations of the electromagnetic and neutral-weak response functions in the quasi-elastic sector

    CERN Document Server

    Lovato, Alessandro

    2016-01-01

    A quantitative understanding of neutrino-nucleus interactions is demanded to achieve precise measurement of neutrino oscillations, and hence the determination of their masses. In addition, next generation detectors will be able to detect supernovae neutrinos, which are likely to shed some light on the open questions on the dynamics of core collapse. In this context, it is crucial to account for two-body meson-exchange currents along within realistic models of nuclear dynamics. We summarize our progresses towards the construction of a consistent framework, based on the Green's function Monte Carlo method, that can be exploited to accurately describe neutrino interactions with atomic nuclei in the quasi-elastic sector.

  16. Calculation of the nonlinear relativistic Thomson scattering fields and Its application to electron distribution function diagnostic

    Science.gov (United States)

    Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.

    2015-02-01

    Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these

  17. Two $\\Lambda(1405)$ states in a chiral unitary approach with a fully-calculated loop function

    CERN Document Server

    Dong, Fang-Yong; Pang, Jing-Long

    2016-01-01

    The Bethe-Salpeter equation is solved in the framework of unitary coupled-channel approximation by using the pseudoscalar meson-baryon octet interaction. The loop function of the intermediate meson and baryon is deduced accurately in a fully dimensional regularization scheme, where the off-shell correction is supplemented. Two $\\Lambda(1405)$ states are generated dynamically in the strangeness $S=-1$ and isospin $I=0$ sector, and their masses, decay widths and couplings to the meson and the baryon are similar to those values obtained in the on-shell factorization. However, the scattering amplitudes at these two poles become weaker than the cases in the on-shell factorization.

  18. Electronic and structural investigation of buckled antimonene using density functional theory calculation

    Science.gov (United States)

    Khan, Md Shahzad; Ratn, Rahul; Srivastava, Anurag

    2017-07-01

    Electronic and structural analysis of buckled antimonene has been performed using density functional theory-based ab-initio approach. Geometrical parameters such as bond length and bond angle are very close to the single ruffle layer of rhombohedral antimony. Phonon dispersion along the high symmetry point of the Brillouin zone does not signify any soft mode. Electronic indirect band gap of 1.61 eV is observed for the single-layer antimonene. However, the occurrence of bilayered quasi-2D sheet consequent to metallic behaviour is due to significant electronic charge dispersion between interlayer region.

  19. Electronic and structural investigation of buckled antimonene using density functional theory calculation

    Indian Academy of Sciences (India)

    MD SHAHZAD KHAN; RAHUL RATN; ANURAG SRIVASTAVA

    2017-07-01

    Electronic and structural analysis of buckled antimonene has been performed using density functional theory-based $\\it{ab-initio}$ approach. Geometrical parameters such as bond length and bond angle are very close to the single ruffle layer of rhombohedral antimony. Phonon dispersion along the high symmetry point of the Brillouin zone does not signify any soft mode. Electronic indirect band gap of 1.61 eV is observed for the single-layer antimonene. However, the occurrence of bilayered quasi-2D sheet consequent to metallic behaviour is due to significant electronic charge dispersion between interlayer region.

  20. A NRESPG Monte Carlo code for the calculation of neutron response functions for gas counters

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, K.; Takeda, N.; Fukuda, A. [Electrotechnical Lab., Tsukuba, Ibaraki (Japan); Torii, T.; Hashimoto, M.; Sugita, T.; Yang, X.; Dietze, G.

    1996-07-01

    In this paper, we show the outline of the NRESPG and some typical results of the response functions and efficiencies of several kinds of gas counters. The cross section data for the several kinds of filled gases and the wall material of stainless steel or aluminum are taken mainly from ENDF/B-IV. The ENDF/B-V for stainless steel is also used to investigate the influence on pulse height spectra of gas counters due to the difference of nuclear data files. (J.P.N.)

  1. A calculation method for finite depth free-surface green function

    Directory of Open Access Journals (Sweden)

    Liu Yingyi

    2015-06-01

    Full Text Available An improved boundary element method is presented for numerical analysis of hydrodynamic behavior of marine structures. A new algorithm for numerical solution of the finite depth free-surface Green function in three dimensions is developed based on multiple series representations. The whole range of the key parameter R/h is divided into four regions, within which different representation is used to achieve fast convergence. The well-known epsilon algorithm is also adopted to accelerate the convergence. The critical convergence criteria for each representation are investigated and provided. The proposed method is validated by several well-documented benchmark problems.

  2. Non-Equilibrium Green's Function Calculation for Electron Transport through Magnetic Tunnel Junction

    Directory of Open Access Journals (Sweden)

    Sara Nobakht

    2014-06-01

    Full Text Available In this paper non-equilibrium Green's function method –dependent electron transport through non magnetic layer (insulator has been studied in one dimension .electron transport in multi-layer (magnetic/non magnetic/ magneticlayers is studied as quantum .the result show increasing the binding strength of the electrical insulator transition probability density case , the electron density , broad levels of disruption increases. Broad band connection increases the levels of disruption to electrical insulation and show non- conductive insulating state to semiconductor stat and even conductor

  3. Robust acceleration of self consistent field calculations for density functional theory.

    Science.gov (United States)

    Baarman, K; Eirola, T; Havu, V

    2011-04-07

    We show that the type 2 Broyden secant method is a robust general purpose mixer for self consistent field problems in density functional theory. The Broyden method gives reliable convergence for a large class of problems and parameter choices. We directly mix the approximation of the electronic density to provide a basis independent mixing scheme. In particular, we show that a single set of parameters can be chosen that give good results for a large range of problems. We also introduce a spin transformation to simplify treatment of spin polarized problems. The spin transformation allows us to treat these systems with the same formalism as regular fixed point iterations.

  4. Benchmark Calculations of Energetic Properties of Groups 4 and 6 Transition Metal Oxide Nanoclusters Including Comparison to Density Functional Theory

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zongtang; Both, Johan; Li, Shenggang; Yue, Shuwen; Aprà, Edoardo; Keçeli, Murat; Wagner, Albert F.; Dixon, David A.

    2016-08-09

    The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T) method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.

  5. Density functional calculations on electronic circular dichroism spectra of chiral transition metal complexes.

    Science.gov (United States)

    Autschbach, Jochen; Jorge, Francisco E; Ziegler, Tom

    2003-05-05

    Time-dependent density functional theory (TD-DFT) has for the first time been applied to the computation of circular dichroism (CD) spectra of transition metal complexes, and a detailed comparison with experimental spectra has been made. Absorption spectra are also reported. Various Co(III) complexes as well as [Rh(en)(3)](3+) are studied in this work. The resulting simulated CD spectra are generally in good agreement with experimental spectra after corrections for systematic errors in a few of the lowest excitation energies are applied. This allows for an interpretation and assignment of the spectra for the whole experimentally accessible energy range (UV/vis). Solvent effects on the excitations are estimated via inclusion of a continuum solvent model. This significantly improves the computed excitation energies for charge-transfer bands for complexes of charge +3, but has only a small effect on those for neutral or singly charged complexes. The energies of the weak d-to-d transitions of the Co complexes are systematically overestimated due to deficiencies of the density functionals. These errors are much smaller for the 4d metal complex. Taking these systematic errors and the effect of a solvent into consideration, TD-DFT computations are demonstrated to be a reliable tool in order to assist with the assignment and interpretation of CD spectra of chiral transition metal complexes.

  6. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies.

    Science.gov (United States)

    Mielke, Steven L; Truhlar, Donald G

    2016-01-21

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function.

  7. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  8. Computational Modeling and Theoretical Calculations on the Interactions between Spermidine and Functional Monomer (Methacrylic Acid in a Molecularly Imprinted Polymer

    Directory of Open Access Journals (Sweden)

    Yujie Huang

    2015-01-01

    Full Text Available This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP. We employed density functional theory (DFT to compute geometry, single-point energy, and binding energy (ΔE of an MIP system, where spermidine (SPD and methacrylic acid (MAA were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d basis set. Furthermore, 6-311++(d, p basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO, and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.

  9. Sr{sub 2}SmNbO{sub 6} perovskite: Synthesis, characterization and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Alo, E-mail: alo_dutta@yahoo.com [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata, 700106 (India); Mukhopadhyay, P.K. [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata, 700106 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata, 700 009 (India); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering, Agency for Science Technology and Research, 3 Research Link, Singapore, 117602 (Singapore); Himanshu, A.K.; Sen, Pintu; Bandyopadhyay, S.K. [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata, 700064 (India)

    2016-08-15

    The density functional theory (DFT) under the generalized gradient approximation (GGA) has been used to investigate the electronic structure of double perovskite oxide Sr{sub 2}SmNbO{sub 6} synthesized by the solid-state reaction technique. The Rietveld refinement of the X-ray diffraction pattern of the sample shows the monoclinic P2{sub 1}/n phase at room temperature. The X-ray photoemission spectrum (XPS) of the material is collected in the energy window of 0–1200 eV. The chemical shift of the constituent elements calculated from the core level XPS spectra is used to analyze the covalency between the O anion and Sm/Nb cations. The valence band (VB) XPS spectrum is compared with the calculated VB spectrum using partial density of states in a standard way. The Raman spectrum is employed to investigate the phonon modes of the material in the monoclinic phase. Lorentzian lines are used to fit the experimental Raman spectrum, which present 24 phonon modes corresponding to the stretching and banding of NbO{sub 6}/SmO{sub 6} octahedra and translational motion of Sr along the Sr−O bond. The discrepancy between the measured and calculated band gap values has been removed by applying modified Becke-Johnson (mBJ) potential in the DFT calculations. The experimental optical band gap obtained from the UV–visible reflectance spectrum is found to be 3.42 eV, which is well matched with the DFT calculated value of 3.2 eV, and suggests the semiconducting nature of the material. The real (ε′) and imaginary (ε″) parts of the optical dielectric constant as a function of energy along the x-, y- and z-polarization directions using mBJ potential are calculated. The collective vibrational modes of the atoms, the Born effective charge of the ions and their effect on the static dielectric constant of the material are studied using DFT. The calculated value of static dielectric constant for SSN is found to be 41.3. - Highlights: • Electronic structure and dynamical

  10. Nonlocal energy density functionals for pairing and beyond-mean-field calculations

    CERN Document Server

    Bennaceur, K; Dobaczewski, J; Dobaczewski, P; Kortelainen, M; Raimondi, F

    2016-01-01

    We propose to use two-body regularized finite-range pseudopotential to generate nuclear energy density functional (EDF) in both particle-hole and particle-particle channels, which makes it free from self-interaction and self-pairing, and also free from singularities when used beyond mean field. We derive a sequence of pseudopotentials regularized up to next-to-leading order (NLO) and next-to-next-to-leading order (N2LO), which fairly well describe infinite-nuclear-matter properties and finite open-shell paired and/or deformed nuclei. Since pure two-body pseudopotentials cannot generate sufficiently large effective mass, the obtained solutions constitute a preliminary step towards future implementations, which will include, e.g., EDF terms generated by three-body pseudopotentials.

  11. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.

    Science.gov (United States)

    Di Valentin, Cristiana; Pacchioni, Gianfranco

    2014-11-18

    CONSPECTUS: Very rarely do researchers use metal oxides in their pure and fully stoichiometric form. In most of the countless applications of these compounds, ranging from catalysis to electronic devices, metal oxides are either doped or defective because the most interesting chemical, electronic, optical, and magnetic properties arise when foreign components or defects are introduced in the lattice. Similarly, many metal oxides are diamagnetic materials and do not show a response to specific spectroscopies such as electron paramagnetic resonance (EPR) spectroscopy. However, doped or defective oxides may exhibit an interesting and informative paramagnetic behavior. Doped and defective metal oxides offer an expanding range of applications in contemporary condensed matter science; therefore researchers have devoted enormous effort to the understanding their physical and chemical properties. The interplay between experiment and computation is particularly useful in this field, and contemporary simulation techniques have achieved high accuracies with these materials. In this Account, we show how the direct comparison between spectroscopic experimental and computational data for some selected and relevant materials provides ways to understand and control these complex systems. We focus on the EPR properties and electronic transitions that arise from the presence of dopants and defects in bulk metal oxide materials. We analyze and compare the effect of nitrogen doping in TiO2 and ZnO (two semiconducting oxides) and MgO (a wide gap insulator) and examine the effect of oxygen deficiency in the semiconducting properties of TiO2-x, ZnO1-x, and WO3-x materials. We chose these systems because of their relevance in applications including photocatalysis, touch screens, electrodes in magnetic random access memories, and smart glasses. Density functional theory (DFT) provides the general computational framework used to illustrate the electronic structure of these systems. However

  12. The Vibrational Spectra of Bactericide molecules: Terahertz Spectroscopy and Density Functional Theory Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaowei; Wang Qiang, E-mail: qiangwang@cjlu.edu.cn [Department of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018 (China)

    2011-02-01

    In the room temperature and nitrogen conditions, we presented well-resolved absorption spectra and indexes of refraction of bactericide molecules in the far infrared radiation (FIR) spectral region recorded by terahertz time-domain spectroscopy (THz-TDS). As illustrative examples we discussed the absorption spectra of captan and folpet in THz region. The absorption coefficient and index of refraction of them were obtained. Meanwhile, density functional theory (DFT) with software package Gaussian 03 using B3LYP theory was employed for optimization and vibration analysis. With the help of Gaussian View 3.09, the distinct absorption peaks of those molecules were assigned with reliable accuracy. They were caused by intermolecular hydrogen-bonding, molecular torsion or vibration modes, absorption of water molecules, etc. As the absorption spectra are highly sensitive to the overall structure and configuration of the molecules, the THz-TDS procedure can provide a direct fingerprint of the molecular structure or conformational state of a compound.

  13. Density functional theory calculations of charge transport properties of ‘plate-like’ coronene topological structures

    Indian Academy of Sciences (India)

    ZIRAN CHEN; ZHANRONG HE; YOUHUI XU; WENHAO YU

    2017-09-01

    Charge transport rate is one of the key parameters determining the performance of organic electronic devices. In this paper, we used density functional theory (DFT) at the M06-2X/6−31+G(d) level to compute the charge transport rates of nine coronene topological structures. The results show that the energy gap of these nine coronene derivatives is in the range 2.90–3.30 eV, falling into the organic semiconductor category. The size of the conjugate ring has a large influence on the charge transport properties. Incorporation of methyl groupson the rigid core of tetrabenzocoronene and hexabenzocoronene is more conducive to the hole transport of the molecule than incorporating methoxyl groups. The derivatisation of a ‘long plate-like’ coronene with methoxylgroups facilitates both hole and electron transport. This class of molecules can thus be used in the design of ambipolar transport semiconductor materials.

  14. Vanillin and isovanillin: Comparative vibrational spectroscopic studies, conformational stability and NLO properties by density functional theory calculations

    Science.gov (United States)

    Balachandran, V.; Parimala, K.

    This study is a comparative analysis of FT-IR and FT-Raman spectra of vanillin (3-methoxy-4-hydroxybenzaldehyde) and isovanillin (3-hydroxy-4-methoxybenzaldehyde). The molecular structure, vibrational wavenumbers, infrared intensities, Raman scattering activities were calculated for both molecules using the B3LYP density functional theory (DFT) with the standard 6-311++G∗∗ basis set. The computed values of frequencies are scaled using multiple scaling factors to yield good coherence with the observed values. The calculated harmonic vibrational frequencies are compared with experimental FT-IR and FT-Raman spectra. The geometrical parameters and total energies of vanillin and isovanillin were obtained for all the eight conformers (a-h) from DFT/B3LYP method with 6-311++G∗∗ basis set. The computational results identified the most stable conformer of vanillin and isovanillin as in the "a" form. Non-linear properties such as electric dipole moment (μ), polarizability (α), and hyperpolarizability (β) values of the investigated molecules have been computed using B3LYP quantum chemical calculation. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules.

  15. Adding glycaemic index and glycaemic load functionality to DietPLUS, a Malaysian food composition database and diet intake calculator.

    Science.gov (United States)

    Shyam, Sangeetha; Wai, Tony Ng Kock; Arshad, Fatimah

    2012-01-01

    This paper outlines the methodology to add glycaemic index (GI) and glycaemic load (GL) functionality to food DietPLUS, a Microsoft Excel-based Malaysian food composition database and diet intake calculator. Locally determined GI values and published international GI databases were used as the source of GI values. Previously published methodology for GI value assignment was modified to add GI and GL calculators to the database. Two popular local low GI foods were added to the DietPLUS database, bringing up the total number of foods in the database to 838 foods. Overall, in relation to the 539 major carbohydrate foods in the Malaysian Food Composition Database, 243 (45%) food items had local Malaysian values or were directly matched to International GI database and another 180 (33%) of the foods were linked to closely-related foods in the GI databases used. The mean ± SD dietary GI and GL of the dietary intake of 63 women with previous gestational diabetes mellitus, calculated using DietPLUS version3 were, 62 ± 6 and 142 ± 45, respectively. These values were comparable to those reported from other local studies. DietPLUS version3, a simple Microsoft Excel-based programme aids calculation of diet GI and GL for Malaysian diets based on food records.

  16. The appropriateness of density-functional theory for the calculation of molecular electronics properties.

    Science.gov (United States)

    Reimers, Jeffrey R; Cai, Zheng-Li; Bilić, Ante; Hush, Noel S

    2003-12-01

    As molecular electronics advances, efficient and reliable computation procedures are required for the simulation of the atomic structures of actual devices, as well as for the prediction of their electronic properties. Density-functional theory (DFT) has had widespread success throughout chemistry and solid-state physics, and it offers the possibility of fulfilling these roles. In its modern form it is an empirically parameterized approach that cannot be extended toward exact solutions in a prescribed way, ab initio. Thus, it is essential that the weaknesses of the method be identified and likely shortcomings anticipated in advance. We consider four known systematic failures of modern DFT: dispersion, charge transfer, extended pi conjugation, and bond cleavage. Their ramifications for molecular electronics applications are outlined and we suggest that great care is required when using modern DFT to partition charge flow across electrode-molecule junctions, screen applied electric fields, position molecular orbitals with respect to electrode Fermi energies, and in evaluating the distance dependence of through-molecule conductivity. The causes of these difficulties are traced to errors inherent in the types of density functionals in common use, associated with their inability to treat very long-range electron correlation effects. Heuristic enhancements of modern DFT designed to eliminate individual problems are outlined, as are three new schemes that each represent significant departures from modern DFT implementations designed to provide a priori improvements in at least one and possible all problem areas. Finally, fully semiempirical schemes based on both Hartree-Fock and Kohn-Sham theory are described that, in the short term, offer the means to avoid the inherent problems of modern DFT and, in the long term, offer competitive accuracy at dramatically reduced computational costs.

  17. Calculation of PDS-XADS core closed-loop transfer function by using feedback with the lumped-model

    Energy Technology Data Exchange (ETDEWEB)

    Moghassem, Alireza; Payirandeh, Ali; Abbaspour, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Nuclear Engineering Dept.

    2016-03-15

    In this paper, the PDS-XADS LBE-cooled core open-loop transfer function was calculated by considering the source importance in point-kinetic equations. For this purpose, the overall-feedback transfer function was calculated considering the lumped-model for 14-steps of subcritical levels. Following effects were considered in three steps: 1. Doppler broadening, fuel expansion, coolant density and structure expansion, 2. Delayed-reactivity and void-worth inserted to prior step, 3. Severe-accident condition, inserted to prior steps. The linear stability analysis was modeled by using the Bode diagrams, Nyquist stability criterion and Nichols chart in MATLAB for each subcritical level and six groups of delayed neutrons. For optimized subcritical level determination, a conservative severe accident was considered. According to calculation results and analysis, the PDS-XADS core is stable and in optimized subcritical level, has the higher safety margin. The results are in good agreement with SIMMER-III code and main neutronic results. The optimized subcritical level by using the lumped-model is 0.97687.

  18. Toward Accurate Reaction Energetics for Molecular Line Growth at Surface: Quantum Monte Carlo and Density Functional Theory Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Y; Takeuchi, N

    2009-10-14

    We revisit the molecular line growth mechanism of styrene on the hydrogenated Si(001) 2x1 surface. In particular, we investigate the energetics of the radical chain reaction mechanism by means of diffusion quantum Monte Carlo (QMC) and density functional theory (DFT) calculations. For the exchange correlation (XC) functional we use the non-empirical generalized-gradient approximation (GGA) and meta-GGA. We find that the QMC result also predicts the intra dimer-row growth of the molecular line over the inter dimer-row growth, supporting the conclusion based on DFT results. However, the absolute magnitudes of the adsorption and reaction energies, and the heights of the energy barriers differ considerably between the QMC and DFT with the GGA/meta-GGA XC functionals.

  19. Self-interaction corrected density functional calculations of Rydberg states of molecular clusters: N,N-dimethylisopropylamine

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsdóttir, Hildur [Science Institute and Faculty of Physical Sciences VR-III, University of Iceland, 107 Reykjavík (Iceland); Zhang, Yao; Weber, Peter M. [Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States); Jónsson, Hannes [Science Institute and Faculty of Physical Sciences VR-III, University of Iceland, 107 Reykjavík (Iceland); Department of Chemistry, Brown University, Providence, Rhode Island 02912 (United States)

    2014-12-21

    Theoretical calculations of Rydberg excited states of molecular clusters consisting of N,N-dimethylisopropylamine molecules using a Perdew-Zunger self-interaction corrected energy functional are presented and compared with results of resonant multiphoton ionization measurements. The binding energy of the Rydberg electron in the monomer is calculated to be 2.79 eV and 2.27 eV in the 3s and 3p state, respectively, which compares well with measured values of 2.88 eV and 2.21 eV. Three different stable configurations of the dimer in the ground state were found using an energy functional that includes van der Waals interaction. The lowest ground state energy conformation has the two N-atoms widely separated, by 6.2 Å, while the Rydberg state energy is lowest for a configuration where the N-atoms of the two molecules come close together, separated by 3.7 Å. This conformational change is found to lower the Rydberg electron binding energy by 0.2 eV. The self-interaction corrected functional gives a highly localized hole on one of the two molecules, unlike results obtained using the PBE functional or the hybrid B3LYP functional which give a delocalized hole. For the trimer, the self-interaction corrected calculation gives a Rydberg electron binding energy lowered further by 0.13 eV as compared with the dimer. The calculated results compare well with trends observed in experimental measurements. The reduction of the Rydberg electron binding energy with cluster size can be ascribed to an effective delocalization of the positive charge of the hole by the induced and permanent dipole moments of the neighboring molecules. A further decrease observed to occur on a time scale of tens of ps can be ascribed to a structural rearrangement of the clusters in the Rydberg state where molecules rotate to orient their dipoles in response to the formation of the localized hole.

  20. Electronic structure and optical properties of Nb-doped Sr2TiO4 by density function theory calculation

    Institute of Scientific and Technical Information of China (English)

    Yun Jiang-Ni; Zhang Zhi-Yong

    2009-01-01

    This paper investigates the effect of Nb doping on the electronic structure and optical properties of by the first-principles calculation of plane wave ultra-soft pseudo-potential based on density functional theory (DFT).The calculated results reveal that due to the electron doping, the Fermi level shifts into conduction bands(CBs) for Sr2NbxTi1-xO4 with x = 0.125 and the system shows n-type degenerate semiconductor features. Sr2TiO4 exhibits optical anisotropy in its main crystal axes, and the c-axis shows the most suitable crystal growth direction for obtaining a wide transparent region. The optical transmittance is higher than 90% in the visible range for Sr2Nb0.125Ti0.875O4.

  1. Adsorption and Reaction of CO on (100) Surface of SrTiO3 by Density Function Theory Calculation

    Institute of Scientific and Technical Information of China (English)

    YUN Jiang-Ni; ZHANG Zhi-Yong; ZHANG Fu-Chun

    2008-01-01

    Adsorption and reaction of CO on two possible terminations of SrTi03 (100) surface are investigated by the first-principles calculation of plane wave ultrasoft pseudopotential based on the density function theory. The adsorption energy, Mulliken population analysis, density of states (DOS) and electronic density difference of CO on SrTi03 (100) surface, which have never been investigated before as far as we know are performed. The calculated results reveal that the Ti-CO orientation is the most stable configuration and the adsorption energy (0.449eV) is quite small. CO molecules adsorb weakly on the SrTiO3 (100) surface, there is predominantly electrostatic attraction between CO and the surface rather than a chemical bonding mechanism.

  2. Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures.

    Science.gov (United States)

    Genovese, Luigi; Ospici, Matthieu; Deutsch, Thierry; Méhaut, Jean-François; Neelov, Alexey; Goedecker, Stefan

    2009-07-21

    We present the implementation of a full electronic structure calculation code on a hybrid parallel architecture with graphic processing units (GPUs). This implementation is performed on a free software code based on Daubechies wavelets. Such code shows very good performances, systematic convergence properties, and an excellent efficiency on parallel computers. Our GPU-based acceleration fully preserves all these properties. In particular, the code is able to run on many cores which may or may not have a GPU associated, and thus on parallel and massive parallel hybrid machines. With double precision calculations, we may achieve considerable speedup, between a factor of 20 for some operations and a factor of 6 for the whole density functional theory code.

  3. QCD sum rule calculation of quark-gluon three-body components in the B-meson wave function

    Science.gov (United States)

    Nishikawa, Tetsuo; Tanaka, Kazuhiro

    2011-10-01

    We discuss the QCD sum rule calculation of the heavy-quark effective theory parameters λE and λH, which represent quark-gluon three-body components in the B-meson wave function. We update the sum rules for λE,H calculating the new higher-order contributions to the operator product expansion for the corresponding correlator, i.e., the order αs radiative corrections to the Wilson coefficients associated with the dimension-5 quark-gluon mixed condensate, and the power corrections due to the dimension-6 vacuum condensates. We find that the new radiative corrections significantly improve stability of the corresponding Borel sum rules, modifying the values of λE,H.

  4. Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Farberow, Carrie A.; Dumesic, James A.; Mavrikakis, Manos

    2014-10-03

    Reaction pathways are explored for low temperature (e.g., 400 K) reduction of nitric oxide by hydrogen on Pt(111). First-principles electronic structure calculations based on periodic, self-consistent density functional theory(DFT-GGA, PW91) are employed to obtain thermodynamic and kinetic parameters for proposed reaction schemes on Pt(111). The surface of Pt(111) during NO reduction by H₂ at low temperatures is predicted to operate at a high NO coverage, and this environment is explicitly taken into account in the DFT calculations. Maximum rate analyses are performed to assess the most likely reaction mechanisms leading to formation of N₂O, the major product observed experimentally at low temperatures. The results of these analyses suggest that the reaction most likely proceeds via the addition of at least two H atoms to adsorbed NO, followed by cleavage of the N-O bond.

  5. Calculation of the thermodynamic properties of a mixture of gases as a function of temperature and pressure

    Science.gov (United States)

    Colon, G.

    1981-01-01

    The evaluation of the thermodynamic properties of a gas mixture can be performed using a generalized correlation which makes use of the second virial coefficient. This coefficient is based on statistical mechanics and is a function of temperature and composition, but not of pressure. The method provides results accurate to within 3 percent for gases which are nonpolar or only slightly polar. When applied to highly polar gases, errors of 5 to 10 percent may result. For gases which associate, even larger errors are possible. The sequences of calculations can be routinely programmed for a digital computer. The thermodynamic properties of a mixture of neon, argon and ethane were calculated by such a program. The result will be used for the design of the gas replenishment system for the Energetic Gamma Ray Experiment Telescope.

  6. Accurate calculation and Matlab based fast realization of merit function's Hesse matrix for the design of multilayer optical coating

    Science.gov (United States)

    Wu, Su-Yong; Long, Xing-Wu; Yang, Kai-Yong

    2009-09-01

    To improve the current status of home multilayer optical coating design with low speed and poor efficiency when a large layer number occurs, the accurate calculation and fast realization of merit function’s gradient and Hesse matrix is pointed out. Based on the matrix method to calculate the spectral properties of multilayer optical coating, an analytic model is established theoretically. And the corresponding accurate and fast computation is successfully achieved by programming with Matlab. Theoretical and simulated results indicate that this model is mathematically strict and accurate, and its maximal precision can reach floating-point operations in the computer, with short time and fast speed. Thus it is very suitable to improve the optimal search speed and efficiency of local optimization methods based on the derivatives of merit function. It has outstanding performance in multilayer optical coating design with a large layer number.

  7. Hierarchical parallelisation of functional renormalisation group calculations - hp-fRG

    Science.gov (United States)

    Rohe, Daniel

    2016-10-01

    The functional renormalisation group (fRG) has evolved into a versatile tool in condensed matter theory for studying important aspects of correlated electron systems. Practical applications of the method often involve a high numerical effort, motivating the question in how far High Performance Computing (HPC) can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the code. Most importantly, we conclude that this vast improvement can actually be accomplished by introducing only moderate changes to the code, such that this strategy may serve as a guideline for other researcher to likewise improve the efficiency of their codes.

  8. [Evaluation of the renal function in type 2 diabetes: clearance calculation or cystatin C?].

    Science.gov (United States)

    Dhia, Rym Ben; Hellara, Ilhem; Harzallah, Olfa; Neffati, Fadoua; Khochtali, Ines; Mahjoub, Sylvia; Najjar, Mohamed Fadhel

    2012-01-01

    Screening for diabetic nephropathy is usually done by albuminuria/24h and the use of creatinine clearance. The objective of this study was to evaluate the renal function in Type 2 diabetes by using different formulas of creatinine clearance and to assess the contribution of cystatin C; 83 adults with type 2 diabetes (23 men and 60 women) and 83 adult controls (40 men and 43 women) were studied. Biochemical parameters were determinated on Coba 6000™ (Roche diagnostics). Diabetics showed a significant increase in blood glucose, cholesterol, triglycerides, LDLc, the ApoB, Lp(a), urea, uric acid, creatinine and cystatin C and lower HDLc. Cystatin was increased in patients with degenerative complications and in hypertensive patients. We found strong correlations of cystatin C with creatinine (r = 0.9454), urea (r = 0.8999) and uric acid (r = 0.8325). We found a significant exponentially increase of creatinine and cystatin C from one stage to another. Cystatin C has a strong association with MDRD (r = 0.8086) and CG (r = 0.7915) and a low one with creatinine clearance (r = 0.1044). In conclusion, the use of cystatin C for screening and early treatment of incipient diabetic nephropathy appears to be adequate. CG and MDRD formulas still hold their place, in regards to the classical determination of creatinine clearance, to monitor patients.

  9. Electronic structure and physical properties of ScN in pressure: density-functional theory calculations

    Institute of Scientific and Technical Information of China (English)

    Guan Peng-Fei; Wang Chong-Yu; Yu Tao

    2008-01-01

    Local density functional is investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method for ScN in the hexagonal structure and the rocksalt structure and for hexagonal structures linking a layered hexagonal phase with wurtzite structure along a homogeneous strain transition path. It is found that the wurtzite ScN is unstable and the layered hexagonal phase, labelled as ho, in which atoms are approximately fivefold coordinated,is metastable, and the rocksalt ScN is stable. The electronic structure, the physical properties of the intermediate structures and the energy band structure along the transition are presented. It is found that the band gaps change from 4.0 to 1.0eV continuously when c/a value varies from 1.68 to 1.26. It is noticeable that the study of ScN provides an opportunity to apply this kind of material (in wurtzite[h]-derived phase).

  10. Calculation of Coupled Vibroacoustics Response Estimates from a Library of Available Uncoupled Transfer Function Sets

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Hunt, Ron; Fulcher, Clay; Towner, Robert; McDonald, Emmett

    2012-01-01

    The design and theoretical basis of a new database tool that quickly generates vibroacoustic response estimates using a library of transfer functions (TFs) is discussed. During the early stages of a launch vehicle development program, these response estimates can be used to provide vibration environment specification to hardware vendors. The tool accesses TFs from a database, combines the TFs, and multiplies these by input excitations to estimate vibration responses. The database is populated with two sets of uncoupled TFs; the first set representing vibration response of a bare panel, designated as H(sup s), and the second set representing the response of the free-free component equipment by itself, designated as H(sup c). For a particular configuration undergoing analysis, the appropriate H(sup s) and H(sup c) are selected and coupled to generate an integrated TF, designated as H(sup s +c). This integrated TF is then used with the appropriate input excitations to estimate vibration responses. This simple yet powerful tool enables a user to estimate vibration responses without directly using finite element models, so long as suitable H(sup s) and H(sup c) sets are defined in the database libraries. The paper discusses the preparation of the database tool and provides the assumptions and methodologies necessary to combine H(sup s) and H(sup c) sets into an integrated H(sup s + c). An experimental validation of the approach is also presented.

  11. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory calculations.

    Science.gov (United States)

    van de Streek, Jacco; Neumann, Marcus A

    2010-10-01

    This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.

  12. Matrix infrared spectra and density functional calculations of transition metal hydrides and dihydrogen complexes.

    Science.gov (United States)

    Andrews, Lester

    2004-02-20

    Metal hydrides are of considerable importance in chemical synthesis as intermediates in catalytic hydrogenation reactions. Transition metal atoms react with dihydrogen to produce metal dihydrides or dihydrogen complexes and these may be trapped in solid matrix samples for infrared spectroscopic study. The MH(2) or M(H(2)) molecules so formed react further to form higher MH(4), (H(2))MH(2), or M(H(2))(2), and MH(6), (H(2))(2)MH(2), or M(H(2))(3) hydrides or complexes depending on the metal. In this critical review these transition metal and dihydrogen reaction products are surveyed for Groups 3 though 12 and the contrasting behaviour in Groups 6 and 10 is discussed. Minimum energy structures and vibrational frequencies predicted by Density Functional Theory agree with the experimental results, strongly supporting the identification of novel binary transition metal hydride species, which the matrix-isolation method is well-suited to investigate. 104 references are cited.

  13. Hierarchical Parallelisation of Functional Renormalisation Group Calculations -- hp-fRG

    CERN Document Server

    Rohe, Daniel

    2015-01-01

    The functional renormalisation group (fRG) has become a powerful and widely used method to study correlated electron systems. This often involves a high numerical effort, motivating the question in how far High Performance Computing (HPC) platforms can leverage the approach. In this work we report on a multi-level parallelisation of the underlying computational machinery and show that this can speed up the code by several orders of magnitude. This in turn can extend the applicability of the method to otherwise inaccessible cases. We exploit three levels of parallelisation: Distributed computing by means of Message Passing (MPI), shared-memory computing using OpenMP, and vectorisation by means of SIMD units (single-instruction-multiple-data). Results are provided for two distinct High Performance Computing (HPC) platforms, namely the IBM-based BlueGene/Q system JUQUEEN and an Intel Sandy-Bridge-based development cluster. We discuss how certain issues and obstacles were overcome in the course of adapting the co...

  14. Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices

    CERN Document Server

    Leclerc, Arnaud

    2014-01-01

    We propose an iterative method for computing vibrational spectra that significantly reduces the memory cost of calculations. It uses a direct product primitive basis, but does not require storing vectors with as many components as there are product basis functions. Wavefunctions are represented in a basis each of whose functions is a sum of products (SOP) and the factorizable structure of the Hamiltonian is exploited. If the factors of the SOP basis functions are properly chosen, wavefunctions are linear combinations of a small number of SOP basis functions. The SOP basis functions are generated using a shifted block power method. The factors are refined with a rank reduction algorithm to cap the number of terms in a SOP basis function. The ideas are tested on a 20-D model Hamiltonian and a realistic CH$_3$CN (12 dimensional) potential. For the 20-D problem, to use a standard direct product iterative approach one would need to store vectors with about $10^{20}$ components and would hence require about $8 \\tim...

  15. Correlation of CT-based regional cardiac function (SQUEEZ) with myocardial strain calculated from tagged MRI: an experimental study.

    Science.gov (United States)

    Pourmorteza, Amir; Chen, Marcus Y; van der Pals, Jesper; Arai, Andrew E; McVeigh, Elliot R

    2016-05-01

    The objective of this study was to investigate the correlation between local myocardial function estimates from CT and myocardial strain from tagged MRI in the same heart. Accurate detection of regional myocardial dysfunction can be an important finding in the diagnosis of functionally significant coronary artery disease. Tagged MRI is currently a reference standard for noninvasive regional myocardial function analysis; however, it has practical drawbacks. We have developed a CT imaging protocol and automated image analysis algorithm for estimating regional cardiac function from a few heartbeats. This method tracks the motion of the left ventricular (LV) endocardial surface to produce local function maps: we call the method Stretch Quantification of Endocardial Engraved Zones (SQUEEZ). Myocardial infarction was created by ligation of the left anterior descending coronary artery for 2 h followed by reperfusion in canine models. Tagged and cine MRI scans were performed during the reperfusion phase and first-pass contrast enhanced CT scans were acquired. The average delay between the CT and MRI scans was myocardial strain (Ecc) was calculated from the tagged MRI data. The agreement between peak systolic Ecc and SQUEEZ was investigated in 162 segments in the 9 hearts. Linear regression and Bland-Altman analysis was used to assess the correlation between the two metrics of local LV function. The results show good agreement between SQUEEZ and Ecc: (r = 0.71, slope = 0.78, p function. The good agreement between the estimates of local myocardial function obtained from CT SQUEEZ and tagged MRI provides encouragement to investigate the use of SQUEEZ for measuring regional cardiac function at a low clinical dose in humans.

  16. A Contrast Transfer Function approach for image calculations in standard and aberration-corrected LEEM and PEEM

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, S.M., E-mail: schramm@physics.leidenuniv.nl [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); Pang, A.B. [School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000 (China); Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Altman, M.S. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Tromp, R.M. [Leiden University, Kamerlingh Onnes Laboratorium, P.O. Box 9504, NL-2300 RA Leiden (Netherlands); IBM T.J. Watson Research Center, 1101 Kitchawan Road, P.O. Box 218, Yorktown Heights, NY 10598 (United States)

    2012-04-15

    We introduce an extended Contrast Transfer Function (CTF) approach for the calculation of image formation in low energy electron microscopy (LEEM) and photo electron emission microscopy (PEEM). This approach considers aberrations up to fifth order, appropriate for image formation in state-of-the-art aberration-corrected LEEM and PEEM. We derive Scherzer defocus values for both weak and strong phase objects, as well as for pure amplitude objects, in non-aberration-corrected and aberration-corrected LEEM. Using the extended CTF formalism, we calculate contrast and resolution of one-dimensional and two-dimensional pure phase, pure amplitude, and mixed phase and amplitude objects. PEEM imaging is treated by adapting this approach to the case of incoherent imaging. Based on these calculations, we show that the ultimate resolution in aberration-corrected LEEM is about 0.5 nm, and in aberration-corrected PEEM about 3.5 nm. The aperture sizes required to achieve these ultimate resolutions are precisely determined with the CTF method. The formalism discussed here is also relevant to imaging with high resolution transmission electron microscopy. -- Highlights: Black-Right-Pointing-Pointer We introduce an extended Contrast Transfer Function (CTF) approach for the calculation of image formation in low energy electron microscopy (LEEM) and photo electron emission microscopy (PEEM). Black-Right-Pointing-Pointer We consider aberrations up to fifth order, appropriate for image formation in state-of-the-art aberration-corrected LEEM and PEEM. Black-Right-Pointing-Pointer We derive Scherzer defocus values for both weak and strong phase objects, as well as for pure amplitude objects, in non-aberration-corrected and aberration-corrected LEEM. Black-Right-Pointing-Pointer We show that the ultimate resolution in aberration-corrected LEEM is about 0.5 nm, and in aberration-corrected PEEM about 3.5 nm.

  17. Accurate bond energies of biodiesel methyl esters from multireference averaged coupled-pair functional calculations.

    Science.gov (United States)

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-09-04

    Accurate bond dissociation energies (BDEs) are important for characterizing combustion chemistry, particularly the initial stages of pyrolysis. Here we contribute to evaluating the thermochemistry of biodiesel methyl ester molecules using ab initio BDEs derived from a multireference averaged coupled-pair functional (MRACPF2)-based scheme. Having previously validated this approach for hydrocarbons and a variety of oxygenates, herein we provide further validation for bonds within carboxylic acids and methyl esters, finding our scheme predicts BDEs within chemical accuracy (i.e., within 1 kcal/mol) for these molecules. Insights into BDE trends with ester size are then analyzed for methyl formate through methyl crotonate. We find that the carbonyl group in the ester moiety has only a local effect on BDEs. C═C double bonds in ester alkyl chains are found to increase the strengths of bonds adjacent to the double bond. An important exception are bonds beta to C═C or C═O bonds, which produce allylic-like radicals upon dissociation. The observed trends arise from different degrees of geometric relaxation and resonance stabilization in the radicals produced. We also compute BDEs in various small alkanes and alkenes as models for the long hydrocarbon chain of actual biodiesel methyl esters. We again show that allylic bonds in the alkenes are much weaker than those in the small methyl esters, indicating that hydrogen abstractions are more likely at the allylic site and even more likely at bis-allylic sites of alkyl chains due to more electrons involved in π-resonance in the latter. Lastly, we use the BDEs in small surrogates to estimate heretofore unknown BDEs in large methyl esters of biodiesel fuels.

  18. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Sabine, E-mail: sabine.braun@iap.c [Institute for Applied Plant Biology, Sangrubenstrasse 25, CH-4124 Schoenenbuch (Switzerland); Schindler, Christian [Swiss Tropical and Public Health Institute, University of Basel, Socinstrasse 57, CH-4051 Basel (Switzerland); Leuzinger, Sebastian [Forest Ecology, Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstr. 16, 8092 Zuerich (Switzerland)

    2010-09-15

    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO{sub 3}SE model. - A method was developed to derive stomatal functions and ozone uptake calculation from sap flow.

  19. Thermoelectric properties of layered calcium cobaltite Ca3Co4O9 from hybrid functional first-principles calculations

    Science.gov (United States)

    Lemal, Sébastien; Varignon, Julien; Bilc, Daniel I.; Ghosez, Philippe

    2017-02-01

    Using a combination of first-principles calculations based on density functional theory and Boltzmann semiclassical transport theory, we compute and study the properties of pristine layered calcium cobaltite Ca3Co4O9 . We model the system with the B1WC hybrid functional. Two supercells of increasing size which approximate the incommensurate crystallographic structure of the compound are studied and we determine their structural, magnetic, and electronic properties. It is found that the B1WC hybrid functional is appropriate to reproduce the structural, electronic, and magnetic properties, which are then extensively discussed. From the electronic band structure, the Seebeck (S ) and electrical resistivity (ρ ) tensors are computed using Boltzmann transport theory within the constant relaxation-time approximation. The differences between the diagonal components are detailed and reveal a strong in-plane anisotropy of the properties. The qualitative behavior of the averaged in-plane properties, S// and ρ//, is consistent with the measurements reported in the literature. Our calculation clarifies and provides a broad picture of the evolution of the thermoelectric properties with both carrier density and temperature, and suggests that the change in S// and ρ// around 100 K is not necessarily related to the magnetic transitions occurring around 100 K.

  20. Intrinsic acidity of aluminum, chromium (III) and iron (III) μ 3-hydroxo functional groups from ab initio electronic structure calculations

    Science.gov (United States)

    Rustad, James R.; Dixon, David A.; Felmy, Andrew R.

    2000-05-01

    Density functional calculations are performed on M 3(OH) 7(H 2O) 62+ and M 3O(OH) 6(H 2O) 6+ clusters for MAl, Cr(III), and Fe(III), allowing determination of the relative acidities of the μ 3-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, Fe 3OH and Al 3OH groups have nearly the same intrinsic acidity, while Cr 3OH groups are significantly more acidic. The gas-phase acidity of the Fe 3OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. [ J. R. Rustad et al. (1996)Geochim. Cosmochim. Acta 60, 1563]. Acidities of aquo functional groups were also computed for Al and Cr. The AlOH 2 site is more acidic than the Al 3OH site, whereas the Cr 3OH site is more acidic than the CrOH 2 site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  1. Calculation of Resistivity of the Insulating Layer in Tunnelling-Magnetoresistive Head by Fast Green Function Method

    Institute of Scientific and Technical Information of China (English)

    WEI Dan; PIAO Kun; QIN Jian; DONG Zhong

    2005-01-01

    @@ We calculate the resistivity of the insulating layer in a tunnelling-magnetoresistive (TMR) magnetic head byusing the Landauer-Büttiker formula with a fast Green function method, where a recursive process with a faster simulation speed and higher accuracy is carried out to substitute the inversion of Green's matrix. A tight-binding model with an energy barrier △ E is utilized to simulate the magnetoresistive tunnelling junction in the TMR head. The resistivity of the insulating layer is 2.6 × 105μΩcm with two oxygen-ion layers and △E = 2.5 eV, which agrees with the experimental data.

  2. Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads

    Science.gov (United States)

    Hecht, T.; Weichselbaum, A.; von Delft, J.; Bulla, R.

    2008-07-01

    We use the numerical renormalization group method (NRG) to investigate a single-impurity Anderson model with a coupling of the impurity to a superconducting host. Analysis of the energy flow shows that, contrary to previous belief, NRG iterations can be performed up to a large number of sites, corresponding to energy differences far below the superconducting gap Δ. This allows us to calculate the impurity spectral function A(ω) very accurately for frequencies |ω|~Δ, and to resolve, in a certain parameter regime, sharp peaks in A(ω) close to the gap edge.

  3. Numerical renormalization group calculation of near-gap peaks in spectral functions of the Anderson model with superconducting leads

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, T; Weichselbaum, A; Delft, J von [Physics Department, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen (Germany); Bulla, R [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)], E-mail: Theresa.Hecht@physik.uni-muenchen.de

    2008-07-09

    We use the numerical renormalization group method (NRG) to investigate a single-impurity Anderson model with a coupling of the impurity to a superconducting host. Analysis of the energy flow shows that, contrary to previous belief, NRG iterations can be performed up to a large number of sites, corresponding to energy differences far below the superconducting gap {delta}. This allows us to calculate the impurity spectral function A({omega}) very accurately for frequencies |{omega}|{approx}{delta}, and to resolve, in a certain parameter regime, sharp peaks in A({omega}) close to the gap edge.

  4. Green's Function Monte Carlo Calculations with Two- and Three-Nucleon Interactions from Chiral Effective Field Theory

    CERN Document Server

    Lynn, J E

    2015-01-01

    I discuss our recent work on Green's function Monte Carlo (GFMC) calculations of light nuclei using local nucleon-nucleon interactions derived from chiral effective field theory (EFT) up to next-to-next-to-leading order (N$^2$LO). I present the natural extension of this work to include the consistent three-nucleon (3N) forces at the same order in the chiral expansion. I discuss our choice of observables to fit the two low-energy constants which enter in the 3N sector at N$^2$LO and present some results for light nuclei.

  5. Green’s Function Monte Carlo Calculations with Two- and Three-Nucleon Interactions from Chiral Effective Field Theory

    Directory of Open Access Journals (Sweden)

    Lynn J. E.

    2016-01-01

    Full Text Available I discuss our recent work on Green’s function Monte Carlo (GFMC calculations of light nuclei using local nucleon-nucleon interactions derived from chiral effective field theory (EFT up to next-to-next-to-leading order (N2LO. I present the natural extension of this work to include the consistent three-nucleon (3N forces at the same order in the chiral expansion. I discuss our choice of observables to fit the two low-energy constants which enter in the 3N sector at N2LO and present some results for light nuclei.

  6. Improvement in the hydrogen desorption from MgH2 upon transition metals doping: A hybrid density functional calculations

    Science.gov (United States)

    Hussain, Tanveer; Maark, Tuhina Adit; Pathak, Biswarup; Ahuja, Rajeev

    2013-10-01

    This study deals with the investigations of structural, electronic and thermodynamic properties of MgH2 doped with selected transition metals (TMs) by means of hybrid density functional theory (PBE0). On the structural side, the calculated lattice parameters and equilibrium volumes increase in case of Sc, Zr and Y opposite to all the other dopants indicating volumetrically increased hydrogen density. Except Fe, all the dopants improve the kinetics of MgH2 by reducing the heat of adsorption with Cu, Nb, Ni and V proving more efficient than others studied TM's. The electronic properties have been studied by density of states and correlated with hydrogen adsorption energies.

  7. An evaluation of exchange-correlation functionals for the calculations of the ionization energies for atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Segala, Maximiliano [Universidade Estadual do Rio Grande do Sul, Rua Oscar Matzembacher 475, 96760-000, Tapes, RS (Brazil); Chong, Delano P. [Department of Chemistry, 2036 Main Mall, University of British Columbia, Vancouver, B.C., V6T 1Z1 (Canada)], E-mail: chong@chem.ubc.ca

    2009-04-15

    In this paper, ionization energies of gas-phase atoms and molecules are calculated by energy-difference method and by approximate transition-state models with density functional theory (DFT). To determine the best functionals for ionization energies, we first study the H to Ar atoms. An approximation is used in which the electron density is first obtained from Kohn-Sham computations with an exchange-correlation potential V{sub xc} known as statistical average of orbital potentials (SAOP), after which the energy is computed from that density with 59 different exchange-correlation energy functionals E{sub xc}. For the 18 atoms, the best E{sub xc} functional providing an average absolute deviation (AAD) of only 0.110 eV is one known as the Krieger-Chen-Iafrate-Savin functional modified by Krieger, Chen, Iafrate, and Kurth, if one uses the spin-polarized spherical atom description. On the other hand, if one imposes the condition of integer-electrons, the best functional is the Becke 1997 functional modified by Wilson, Bradley, and Tozer, with an AAD of 0.107 eV, while several other functionals perform almost as well. For molecules, we can achieve an accuracy of AAD = 0.21 eV for valence VIPs of nonperhalo molecules with {delta}E(V{sub xc} = SAOP;PBE0) using integer-electron description. For perhalo molecules our best approach is {delta}E(V{sub xc} from either E{sub xc} or SAOP;mPW1PW) with full symmetry to obtain an AAD = 0.24 eV.

  8. Comparison of FEM calculated heat transfer coefficient in a minichannel using two approaches: Trefftz base functions and ADINA software

    Science.gov (United States)

    Maciejewska, Beata; Łabędzki, Paweł; Piasecki, Artur; Piasecka, Magdalena

    The paper presents the methods of heat transfer coefficient determination for boiling research during FC-72 flow in a minichannel. The boundary condition in the form of distributions of temperature on the outer side of the minichannel heated wall was obtained using infrared thermography. It was assumed two-dimensional steady-state heat flow. The local values of the heat transfer coefficients on the surface between the heated foil and boiling liquid, were determined from the Robin boundary condition. Data necessary for the heat transfer coefficient evaluation were obtained from numerical computations using two approaches: calculation procedure based on the Trefftz functions and FEM simulations by ADINA software. The shape functions were linear combinations of the Trefftz functions. Combinations of the Trefftz functions exactly satisfy the differential equation. Coefficients of the linear combination of the shape function in the approximate solution were chosen to minimize residuals on domain boundary and along common edges of adjacent elements. Temperature measurement points were located in boundary nodes. During FEM simulations 4-node FCBI elements were used, fluid flow was assumed to be laminar, incompressible and material constants of the fluid and of the foil were independent on temperature. The results of the comparative analysis were presented and discussed.

  9. Comparison of FEM calculated heat transfer coefficient in a minichannel using two approaches: Trefftz base functions and ADINA software

    Directory of Open Access Journals (Sweden)

    Maciejewska Beata

    2017-01-01

    Full Text Available The paper presents the methods of heat transfer coefficient determination for boiling research during FC-72 flow in a minichannel. The boundary condition in the form of distributions of temperature on the outer side of the minichannel heated wall was obtained using infrared thermography. It was assumed two-dimensional steady-state heat flow. The local values of the heat transfer coefficients on the surface between the heated foil and boiling liquid, were determined from the Robin boundary condition. Data necessary for the heat transfer coefficient evaluation were obtained from numerical computations using two approaches: calculation procedure based on the Trefftz functions and FEM simulations by ADINA software. The shape functions were linear combinations of the Trefftz functions. Combinations of the Trefftz functions exactly satisfy the differential equation. Coefficients of the linear combination of the shape function in the approximate solution were chosen to minimize residuals on domain boundary and along common edges of adjacent elements. Temperature measurement points were located in boundary nodes. During FEM simulations 4-node FCBI elements were used, fluid flow was assumed to be laminar, incompressible and material constants of the fluid and of the foil were independent on temperature. The results of the comparative analysis were presented and discussed.

  10. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations.

    Science.gov (United States)

    Braun, Sabine; Schindler, Christian; Leuzinger, Sebastian

    2010-09-01

    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model.

  11. Adsorption structures of phenol on the Si(001)-(2 \\times 1) surface calculated using density functional theory

    CERN Document Server

    Johnston, Karen; Verho, Tuukka; Puska, Martti J

    2010-01-01

    Several dissociated and two non-dissociated adsorption structures of the phenol molecule on the Si(001)-(2 \\times 1) surface are studied using density functional theory with various exchange and correlation functionals. The relaxed structures and adsorption energies are obtained and it is found that the dissociated structures are energetically more favourable than the non-dissociated structures. However, the ground state energies alone do not determine which structure is obtained experimentally. To elucidate the situation core level shift spectra for Si 2p and C 1s states are simulated and compared with experimentally measured spectra. Several transition barriers were calculated in order to determine which adsorption structures are kinetically accessible. Based on these results we conclude that the molecule undergoes the dissociation of two hydrogen atoms on adsorption.

  12. Validity of virial theorem in all-electron mixed basis density functional, Hartree–Fock, and GW calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Riichi [Department of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Accelrys K. K., Kasumigaseki Tokyu Building 17F, 3-7-1 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013 (Japan); Tadokoro, Yoichi; Ohno, Kaoru, E-mail: ohno@ynu.ac.jp [Department of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2014-08-28

    In this paper, we calculate kinetic and potential energy contributions to the electronic ground-state total energy of several isolated atoms (He, Be, Ne, Mg, Ar, and Ca) by using the local density approximation (LDA) in density functional theory, the Hartree–Fock approximation (HFA), and the self-consistent GW approximation (GWA). To this end, we have implemented self-consistent HFA and GWA routines in our all-electron mixed basis code, TOMBO. We confirm that virial theorem is fairly well satisfied in all of these approximations, although the resulting eigenvalue of the highest occupied molecular orbital level, i.e., the negative of the ionization potential, is in excellent agreement only in the case of the GWA. We find that the wave function of the lowest unoccupied molecular orbital level of noble gas atoms is a resonating virtual bound state, and that of the GWA spreads wider than that of the LDA and thinner than that of the HFA.

  13. Validity of virial theorem in all-electron mixed basis density functional, Hartree-Fock, and GW calculations.

    Science.gov (United States)

    Kuwahara, Riichi; Tadokoro, Yoichi; Ohno, Kaoru

    2014-08-28

    In this paper, we calculate kinetic and potential energy contributions to the electronic ground-state total energy of several isolated atoms (He, Be, Ne, Mg, Ar, and Ca) by using the local density approximation (LDA) in density functional theory, the Hartree-Fock approximation (HFA), and the self-consistent GW approximation (GWA). To this end, we have implemented self-consistent HFA and GWA routines in our all-electron mixed basis code, TOMBO. We confirm that virial theorem is fairly well satisfied in all of these approximations, although the resulting eigenvalue of the highest occupied molecular orbital level, i.e., the negative of the ionization potential, is in excellent agreement only in the case of the GWA. We find that the wave function of the lowest unoccupied molecular orbital level of noble gas atoms is a resonating virtual bound state, and that of the GWA spreads wider than that of the LDA and thinner than that of the HFA.

  14. The Calculation of NMR Chemical Shifts in Periodic Systems Based on Gauge Including Atomic Orbitals and Density Functional Theory.

    Science.gov (United States)

    Skachkov, Dmitry; Krykunov, Mykhaylo; Kadantsev, Eugene; Ziegler, Tom

    2010-05-11

    We present here a method that can calculate NMR shielding tensors from first principles for systems with translational invariance. Our approach is based on Kohn-Sham density functional theory and gauge-including atomic orbitals. Our scheme determines the shielding tensor as the second derivative of the total electronic energy with respect to an external magnetic field and a nuclear magnetic moment. The induced current density due to a periodic perturbation from nuclear magnetic moments is obtained through numerical differentiation, whereas the influence of the responding perturbation in terms of the external magnetic field is evaluated analytically. The method is implemented into the periodic program BAND. It employs a Bloch basis set made up of Slater-type or numeric atomic orbitals and represents the Kohn-Sham potential fully without the use of effective core potentials. Results from calculations of NMR shielding constants based on the present approach are presented for isolated molecules as well as systems with one-, two- and three-dimensional periodicity. The reported values are compared to experiment and results from calculations on cluster models.

  15. Accurate and efficient calculation of van der Waals interactions within density functional theory by local atomic potential approach.

    Science.gov (United States)

    Sun, Y Y; Kim, Yong-Hyun; Lee, Kyuho; Zhang, S B

    2008-10-21

    Density functional theory (DFT) in the commonly used local density or generalized gradient approximation fails to describe van der Waals (vdW) interactions that are vital to organic, biological, and other molecular systems. Here, we propose a simple, efficient, yet accurate local atomic potential (LAP) approach, named DFT+LAP, for including vdW interactions in the framework of DFT. The LAPs for H, C, N, and O are generated by fitting the DFT+LAP potential energy curves of small molecule dimers to those obtained from coupled cluster calculations with single, double, and perturbatively treated triple excitations, CCSD(T). Excellent transferability of the LAPs is demonstrated by remarkable agreement with the JSCH-2005 benchmark database [P. Jurecka et al. Phys. Chem. Chem. Phys. 8, 1985 (2006)], which provides the interaction energies of CCSD(T) quality for 165 vdW and hydrogen-bonded complexes. For over 100 vdW dominant complexes in this database, our DFT+LAP calculations give a mean absolute deviation from the benchmark results less than 0.5 kcal/mol. The DFT+LAP approach involves no extra computational cost other than standard DFT calculations and no modification of existing DFT codes, which enables straightforward quantum simulations, such as ab initio molecular dynamics, on biomolecular systems, as well as on other organic systems.

  16. Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power

    Science.gov (United States)

    Yost, Dillon C.; Yao, Yi; Kanai, Yosuke

    2017-09-01

    In ion irradiation processes, electronic stopping power describes the energy transfer rate from the irradiating ion to the target material's electrons. Due to the scarcity and significant uncertainties in experimental electronic stopping power data for materials beyond simple solids, there has been growing interest in the use of first-principles theory for calculating electronic stopping power. In recent years, advances in high-performance computing have opened the door to fully first-principles nonequilibrium simulations based on real-time time-dependent density functional theory (RT-TDDFT). While it has been demonstrated that the RT-TDDFT approach is capable of predicting electronic stopping power for a wide range of condensed matter systems, there has yet to be an exhaustive examination of the physical and numerical approximations involved and their effects on the calculated stopping power. We discuss the results of such a study for crystalline silicon with protons as irradiating ions. We examine the influences of key approximations in RT-TDDFT nonequilibrium simulations on the calculated electronic stopping power, including approximations related to basis sets, finite size effects, exchange-correlation approximation, pseudopotentials, and more. Finally, we propose a simple and efficient correction scheme to account for the contribution from core-electron excitations to the stopping power, as it was found to be significant for large proton velocities.

  17. Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations

    Science.gov (United States)

    Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.

    2017-02-01

    Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with

  18. Linear optical properties and their bond length dependence of yttrium bromide from ab initio and density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Alipour, Mojtaba, E-mail: malipour@shirazu.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Mohajeri, Afshan, E-mail: amohajeri@shirazu.ac.ir [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2011-08-25

    Graphical abstract: The electronic properties such as the static dipole polarizability, anisotropy of the polarizability, and dipole moment of yttrium bromide, YBr (X{sup 1}{Sigma}) have been theoretically studied. Highlights: {yields} Conventional ab initio and density functional theory methods were employed to study linear optical properties of YBr molecule. {yields} Properties derivatives and their level of theory dependence were studied. {yields} Electron correlation effects and rovibrational corrections have also been discussed. - Abstract: We have employed conventional ab initio and density functional theory methods to study the electronic properties such as the mean static dipole polarizability, {alpha}-bar, anisotropy of the polarizability, {Delta}{alpha}, and dipole moment, {mu}, of yttrium bromide. The bond length dependence of properties is determined at different levels of theory and appropriate expansions around experimental internuclear distance have been presented. Moreover, the first and second geometrical derivatives for each property are quantified and their level of theory dependence has been analyzed. To study the effect of molecular rotation and vibration on the electronic properties, the rovibrational corrections have also been carried out. It is found that these corrections are less pronounced for considered properties of YBr. In all calculations, the electron correlation effects have been considered and discussed. The obtained results show that the electron correlation is more significant in the calculation of the mean and the anisotropy of dipole polarizability.

  19. A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project

    CERN Document Server

    Carli, Tancredi; Cooper-Sarkar, Amanda; Gwenlan, Claire; Salam, Gavin P; Siegert, Frank; Starovoitov, Pavel; Sutton, Mark

    2010-01-01

    A method to facilitate the consistent inclusion of cross-section measurements based on complex final-states from HERA, TEVATRON and the LHC in proton parton density function (PDF) fits has been developed. This can be used to increase the sensitivity of LHC data to deviations from Standard Model predictions. The method stores perturbative coefficients of NLO QCD calculations of final-state observables measured in hadron colliders in look-up tables. This allows the posteriori inclusion of parton density functions (PDFs), and of the strong coupling, as well as the a posteriori variation of the renormalisation and factorisation scales in cross-section calculations. The main novelties in comparison to original work on the subject are the use of higher-order interpolation, which substantially improves the trade-off between accuracy and memory use, and a CPU and computer memory optimised way to construct and store the look-up table using modern software tools. It is demonstrated that a sufficient accuracy on the cro...

  20. Effects of nonmetal doping on electronic structures of NaNbO3 based on hybrid density functional calculation

    Science.gov (United States)

    Shi, Haifeng; Lan, Benyue; Zhang, Chengliang; Ye, Enjia; Nie, Yanguang; Bian, Baoan

    2016-10-01

    The influences of a series of anion doping on the electronic structures of sodium niobate (NaNbO3) have been systematically investigated by density functional theory (DFT) calculations with the hybrid B3LYP functional. As for B(C,P)-doped NaNbO3, the isolated B 2p (C 2p, P 3p) states were formed above the valence band maximum (VBM) of NaNbO3, which were too weak to mix with O 2p states and thus produced band gap narrowing. While the band gap of NaNbO3 was slightly narrowed after F doping. As for S-doped NaNbO3, the S 3p states mixed with O 2p states well and thus reduced the band gap energy. According to the calculation results, we tentatively put forward that S doping would be appropriate for single anion doping NaNbO3, while the B(C,P) elements would be suitable candidates for co-doping NaNbO3.

  1. Calculating the number of cluster heads based on the rate-distortion function in wireless sensor networks.

    Science.gov (United States)

    Yang, Mingxin; He, Jingsha; Zhang, Yuqiang

    2014-01-01

    Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs). Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.

  2. Calculating the Number of Cluster Heads Based on the Rate-Distortion Function in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mingxin Yang

    2014-01-01

    Full Text Available Due to limited resources in wireless sensor nodes, energy efficiency is considered as one of the primary constraints in the design of the topology of wireless sensor networks (WSNs. Since data that are collected by wireless sensor nodes exhibit the characteristics of temporal association, data fusion has also become a very important means of reducing network traffic as well as eliminating data redundancy as far as data transmission is concerned. Another reason for data fusion is that, in many applications, only some of the data that are collected can meet the requirements of the sink node. In this paper, we propose a method to calculate the number of cluster heads or data aggregators during data fusion based on the rate-distortion function. In our discussion, we will first establish an energy consumption model and then describe a method for calculating the number of cluster heads from the point of view of reducing energy consumption. We will also show through theoretical analysis and experimentation that the network topology design based on the rate-distortion function is indeed more energy-efficient.

  3. Hybrid density functional calculations of the defect properties of ZnO:Rh and ZnO:Ir

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz Ramo, David, E-mail: dm586@cam.ac.uk; Bristowe, Paul D., E-mail: pdb1000@cam.ac.uk

    2014-03-31

    We report density functional calculations of the atomic and electronic structure of the spinel phases ZnRh{sub 2}O{sub 4} and ZnIr{sub 2}O{sub 4} as well as crystalline ZnO lightly doped (1 at.%) with Rh and Ir ions using the B3LYP hybrid functional. Calculations for the spinels show band gaps (∼ 3 eV) and lattice parameters (∼ 2% difference) in reasonable agreement with experimental data. Incorporation of the transition metals into ZnO induces local distortions in the lattice and the appearance of metal d levels in the low gap region and near the conduction band minimum, with a d–d splitting of about 2 eV, which reduces the effective transparency of the material. Addition of a hole to the simulation cell of both spinels and doped ZnO leads to charge localization in the neighbourhood of Rh/Ir accompanied by local lattice deformations to form a small polaron which may lead to low hole mobility. We calculate polaron diffusion barriers in the spinels and obtain values around 0.02–0.03 eV. These very low barrier energies suggest that at high Rh/Ir concentrations polaron hopping is not going to be detected at room temperature. - Highlights: • Rh/Ir incorporation into ZnO at low doping induces local distortions in the lattice. • Localized levels appear in the gap of ZnO:Rh/ZnO:Ir near band edges. • Hole trapping is found in ZnO:Rh/ZnO:Ir and in the ZnRh{sub 2}O{sub 4}/ZnIr{sub 2}O{sub 4} spinels. • Hole diffusion barriers in the spinels are very small.

  4. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    Science.gov (United States)

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results

  5. Sequestering uranium from UO2(CO3)3(4-) in seawater with amine ligands: density functional theory calculations.

    Science.gov (United States)

    Guo, Xiaojing; Huang, Liangliang; Li, Cheng; Hu, Jiangtao; Wu, Guozhong; Huai, Ping

    2015-06-14

    The polystyrene-supported primary amine -CH2NH2 has shown an at least 3-fold increase in uranyl capacity compared to a diamidoxime ligand on a polystyrene support. This study aims to understand the coordination of substitution complexes from UO2(CO3)3(4-) and amines using density functional theory calculations. Four kinds of amines (diethylamine (DEA), ethylenediamine (EDA), diethylenetriamine (DETA) and triethylenetetramine (TETA)) were selected because they belong to different classes and have different chain lengths. The geometrical structures, electronic structures and the thermodynamic stabilities of various substitution complexes, as well as the trends in their calculated properties were investigated at equilibrium. In these optimized complexes, DEA groups bind to uranyl as monodentate ligands; EDA groups serve as monodentate and bidentate ligands; DETA groups act as monodentate and tridentate ligands; while TETA groups serve as monodentate, bidentate and tridentate ligands. The thermodynamic analysis confirmed that the primary amines coordinate to uranyl more strongly than does the secondary amine. The stabilities of substitution complexes with primary amines were calculated to decrease with increasing chain length of the amine, except for UO2(L2)(2+). Of the complexes analyzed, only UO2L(CO3)2(2-) (L = EDA and DETA) and UO2L2CO3 (L = EDA) were predicted to form from the substitution reactions with UO2(CO3)3(4-) and protonated amines as reactants in aqueous solution. Amines were calculated to be comparable to, or sometimes weaker than, amidoximate in replacing CO3(2-) in UO2(CO3)3(4-) to coordinate to uranium. Therefore, the coordination mechanism, in which amines replace carbonates to bind to uranyl, is not primarily responsible for the experimentally observed 3-fold or greater increase in uranyl capacity of primary amines compared to a diamidoxime ligand. Based on the results of our calculations, we believe that the cation exchange mechanism, in which the

  6. The calculation of the two-loop spin splitting functions P{sub ij}{sup (1)}(x)

    Energy Technology Data Exchange (ETDEWEB)

    Mertig, R. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H; Neerven, W.L. van [Rijksuniversiteit Leiden (Netherlands). Inst. Lorentz voor Theoretische Natuurkunde

    1995-06-01

    We present the calculation of the two-loop spin splitting functions P{sub ij}{sup (1)}(x) (i, j=q, g) contributing to the next-to-leading order corrected spin structure function g{sub 1}(x, Q{sup 2}). These splitting functions, which are presented in the anti M anti S scheme, are derived from the order {alpha}{sub s}{sup 2} contribution to the anomalous dimensions {gamma}{sup m}{sub ij} (i, j=q, g). The latter correspond to the local operators which appear in the operator product expansion of two electromagnetic currents. Some of the properties of the anomalous dimensions will be discussed. In particular we find that in order {alpha}{sub s}{sup 2} the supersymmetric relation {gamma}{sup m}{sub qq}+{gamma}{sup m}{sub qg}-{gamma}{sup m}{sub qg}-{gamma}{sup m}{sub gg}=0 is violated. (orig.).

  7. Density functional theory and RRKM calculations of decompositions of the metastable E-2,4-pentadienal molecular ions.

    Science.gov (United States)

    Solano Espinoza, Eduardo A; Vallejo Narváez, Wilmer E

    2010-07-01

    The potential energy profiles for the fragmentations that lead to [C(5)H(5)O](+) and [C(4)H(6)](+*) ions from the molecular ions [C(5)H(6)O](+*) of E-2,4-pentadienal were obtained from calculations at the UB3LYP/6-311G + + (3df,3pd)//UB3LYP/6-31G(d,p) level of theory. Kinetic barriers and harmonic frequencies obtained by the density functional method were then employed in Rice-Ramsperger-Kassel-Marcus calculations of individual rate coefficients for a large number of reaction steps. The pre-equilibrium and rate-controlling step approximations were applied to different regions of the complex potential energy surface, allowing the overall rate of decomposition to be calculated and discriminated between three rival pathways: C-H bond cleavage, decarbonylation and cyclization. These processes should have to compete for an equilibrated mixture of four conformers of the E-2,4-pentadienal ions. The direct dissociation, however, can only become important in the high-energy regime. In contrast, loss of CO and cyclization are observable processes in the metastable kinetic window. The former involves a slow 1,2-hydrogen shift from the carbonyl group that is immediately followed by the formation of an ion-neutral complex which, in turn, decomposes rapidly to the s-trans-1,3-butadiene ion [C(4)H(6)](+*). The predominating metastable channel is the second one, that is, a multi-step ring closure which starts with a rate-limiting cis-trans isomerization. This process yields a mixture of interconverting pyran ions that dissociates to the pyrylium ions [C(5)H(5)O](+). These results can be used to rationalize the CID mass spectrum of E-2,4-pentadienal in a low-energy regime.

  8. Calculation of excitation function of some structural fusion material for (n,p) reactions up to 25 MeV

    CERN Document Server

    Siddik, Tarik

    2013-01-01

    Fusion serves an inexhaustible energy for humankind. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, Furthermore, there are not radioactive nuclear waste problems in the fusion reactors. In this study, (n, p) reactions for some structural fusion materials such as 27Al, 51V, 52Cr, 55Mn and 56Fe have been investigated. The new calculations on the excitation functions of 27 Al(n,p) 27 Mg, 51 V(n,p) 51 Ti, 52 Cr(n,p) 52 V, 55 Mn(n,p) 55 Cr and 56 Fe(n,p) 56 Mn reactions have been carried out up to 30 MeV incident neutron energy. Statistical model calculations, based on the Hauser-Feshbach formalism, have been carried out using the TALYS-1.0 and were compared with available experimental data in the literature and with ENDF/B-VII, T=300k; JENDL-3.3, T=300k and JEFF3.1, T=300k evaluated libraries .

  9. Self-consistent calculations of the strength function and radiative neutron capture cross section for stable and unstable tin isotopes

    CERN Document Server

    Goriely, S; Krewald, S

    2011-01-01

    The E1 strength function for 15 stable and unstable Sn even-even isotopes from A=100 till A=176 are calculated using the self-consistent microscopic theory which, in addition to the standard (Q)RPA approach, takes into account the single-particle continuum and the phonon coupling. Our analysis shows two distinct regions for which the integral characteristics of both the giant and pygmy resonances behave rather differently. For neutron-rich nuclei, starting from $^{132}$Sn, we obtain a giant E1 resonance which significantly deviates from the widely-used systematics extrapolated from experimental data in the $\\beta$-stability valley. We show that the inclusion of the phonon coupling is necessary for a proper description of the low-energy pygmy resonances and the corresponding transition densities for $A132$ region the influence of phonon coupling is significantly smaller. The radiative neutron capture cross sections leading to the stable $^{124}$Sn and unstable $^{132}$Sn and $^{150}$Sn nuclei are calculated wi...

  10. Density functional calculations of graphene-based humidity and carbon dioxide sensors: effect of silica and sapphire substrates

    Science.gov (United States)

    Elgammal, Karim; Hugosson, Håkan W.; Smith, Anderson D.; Råsander, Mikael; Bergqvist, Lars; Delin, Anna

    2017-09-01

    We present dispersion-corrected density functional calculations of water and carbon dioxide molecules adsorption on graphene residing on silica and sapphire substrates. The equilibrium positions and bonding distances for the molecules are determined. Water is found to prefer the hollow site in the center of the graphene hexagon, whereas carbon dioxide prefers sites bridging carbon-carbon bonds as well as sites directly on top of carbon atoms. The energy differences between different sites are however minute - typically just a few tenths of a millielectronvolt. Overall, the molecule-graphene bonding distances are found to be in the range 3.1-3.3 Å. The carbon dioxide binding energy to graphene is found to be almost twice that of the water binding energy (around 0.17 eV compared to around 0.09 eV). The present results compare well with previous calculations, where available. Using charge density differences, we also qualitatively illustrate the effect of the different substrates and molecules on the electronic structure of the graphene sheet.

  11. Interference of lateralized distractors on arithmetic problem solving: a functional role for attention shifts in mental calculation.

    Science.gov (United States)

    Masson, Nicolas; Pesenti, Mauro

    2016-07-01

    Solving arithmetic problems has been shown to induce shifts of spatial attention in simple probe-detection tasks, subtractions orienting attention to the left side and additions to the right side of space. Whether these attentional shifts constitute epiphenomena or are critically linked to the calculation process is still unknown. In the present study, we investigate participants' performance on addition and subtraction solving while they have to detect central or lateralized targets. The results show that lateralized distractors presented in the hemifield congruent to the operation to be solved interfere with arithmetical solving: participants are slower to solve subtractions or additions when distractors are located on the left or on the right, respectively. These results converge with previous data to show that attentional shifts underlie not only number processing but also mental arithmetic. They extend them as they reveal the reverse effect of the one previously reported by showing that inducing attention shifts interferes with the solving of arithmetic problems. They also demonstrate that spatial attentional shifts are part of the calculation procedure of solving mentally arithmetic problems. Their functional role is to access, from the first operand, the representation of the result in a direction congruent to the operation.

  12. Adsorption of CO on the LaCoO3 (0 0 1) surface by density functional theory calculation

    Science.gov (United States)

    Sun, Lihui; Li, Guoping; Chen, Wen; Luo, Fenghua; Hu, Jifan; Qin, Hongwei

    2014-08-01

    The adsorption of CO molecule on the LaCoO3 (0 0 1) surface has been investigated using density functional theory calculation. Calculation results show that the most suitable configuration is Cosbnd CO structure for the CoO-terminated LaCoO3 (0 0 1) surface. In the adsorption process electrons transfer from CO molecule to the surface. The Cosbnd C bond is mainly from the hybrid between the CO and Co-d orbital. When CO molecule adsorption on the LaO-terminated LaCoO3 (0 0 1) surface, the most suitable configuration is the Osbnd CO structure and the electrons transfer from the surface to the CO molecule in the adsorption process. The bond between the C atom and the surface O atom is mainly from the hybrid between the C-2p and O-2p orbital. The LaCoO3 could be used as the gas sensing material to detect CO gas.

  13. Complex Orbitals, Multiple Local Minima, and Symmetry Breaking in Perdew-Zunger Self-Interaction Corrected Density Functional Theory Calculations.

    Science.gov (United States)

    Lehtola, Susi; Head-Gordon, Martin; Jónsson, Hannes

    2016-07-12

    Implentation of seminumerical stability analysis for calculations using the Perdew-Zunger self-interaction correction is described. It is shown that real-valued solutions of the Perdew-Zunger equations for gas phase atoms are unstable with respect to imaginary orbital rotations, confirming that a proper implementation of the correction requires complex-valued orbitals. The orbital density dependence of the self-interaction corrected functional is found to lead to multiple local minima in the case of the acrylic acid, H6, and benzene molecules. In the case of benzene, symmetry breaking that results in incorrect ground state geometry is found to occur, erroneously leading to alternating bond lengths in the molecule.

  14. Calculation of excitation functions of the 54,56,57,58Fe(, ) reaction from threshold to 30 MeV

    Indian Academy of Sciences (India)

    Damewan Suchiang; J Joseph Jeremiah; B M Jyrwa

    2014-10-01

    The cross-sections for the formation of 54,56,57,58Co in the 54,56,57,58Fe(, ) reaction from threshold to 30 MeV protons have been theoretically calculated using the TALYS-1.4 nuclear model code, whereby we have studied major nuclear reaction mechanisms, including direct, preequilibrium and compound nuclear reaction. Subsequently, the level density and shell damping parameters have been adjusted and at the same time, the odd–even effects are well comprehended. The excitation functions have been compared with experimental nuclear data. It is observed that the theoretical cross-sections match fairly well. Proton-induced reaction cross-sections provide clues to understand the nuclear structure and offers a good testing ground for ideas about nuclear forces. In addition, complete information in this field is very much required for application in accelerator-driven subcritical system.

  15. Electronic structure of ScN and YN:density-functional theory LDA and GW approximation calculations

    Institute of Scientific and Technical Information of China (English)

    Lü Tie-Yu; Huang Mei-Chun

    2007-01-01

    The desirable physical properties of hardness, high temperature stability, and conductivity make the early transition metal nitrides important materials for various technological applications. To learn more about the nature of these materials, the local-density approximation(LDA) and GW approximation i.e. combination of the Green function G and the screened Coulomb interaction W, have been performed. This paper investigates the bulk electronic and physical properties of early transition metal mononitrides, ScN and YN in the rocksalt structure. In this paper, the semicore electrons are regarded as valance electrons. ScN appears to be a semimetal, and YN is semiconductor with band gap of0.142 eV within the LDA, but are in fact semiconductors with indirect band gaps of 1.244 and 0.544 eV respectively, as revealed by calculations performed using GW approximation.

  16. Iron-oxygen vacancy defect centers in PbTi O3 : Newman superposition model analysis and density functional calculations

    Science.gov (United States)

    Meštrić, H.; Eichel, R.-A.; Kloss, T.; Dinse, K.-P.; Laubach, So.; Laubach, St.; Schmidt, P. C.; Schönau, K. A.; Knapp, M.; Ehrenberg, H.

    2005-04-01

    The Fe3+ center in ferroelectric PbTiO3 together with an oxygen vacancy forms a charged defect associate, oriented along the crystallographic c axis. Its microscopic structure has been analyzed in detail comparing results from a semiempirical Newman superposition model analysis based on fine-structure data and from calculations using density functional theory. Both methods give evidence for a substitution of Fe3+ for Ti4+ as an acceptor center. The position of the iron ion in the ferroelectric phase is found to be similar to the B site in the paraelectric phase. Partial charge compensation is locally provided by a directly coordinated oxygen vacancy. Using high-resolution synchrotron powder diffraction, it was verified that lead titanate remains tetragonal down to 12K , exhibiting a c/a ratio of 1.0721.

  17. Improvement in the hydrogen desorption from MgH2 upon transition metals doping: A hybrid density functional calculations

    Directory of Open Access Journals (Sweden)

    Tanveer Hussain

    2013-10-01

    Full Text Available This study deals with the investigations of structural, electronic and thermodynamic properties of MgH2 doped with selected transition metals (TMs by means of hybrid density functional theory (PBE0. On the structural side, the calculated lattice parameters and equilibrium volumes increase in case of Sc, Zr and Y opposite to all the other dopants indicating volumetrically increased hydrogen density. Except Fe, all the dopants improve the kinetics of MgH2 by reducing the heat of adsorption with Cu, Nb, Ni and V proving more efficient than others studied TM’s. The electronic properties have been studied by density of states and correlated with hydrogen adsorption energies.

  18. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations.

    Science.gov (United States)

    Brandenburg, Jan Gerit; Alessio, Maristella; Civalleri, Bartolomeo; Peintinger, Michael F; Bredow, Thomas; Grimme, Stefan

    2013-09-26

    We extend the previously developed geometrical correction for the inter- and intramolecular basis set superposition error (gCP) to periodic density functional theory (DFT) calculations. We report gCP results compared to those from the standard Boys-Bernardi counterpoise correction scheme and large basis set calculations. The applicability of the method to molecular crystals as the main target is tested for the benchmark set X23. It consists of 23 noncovalently bound crystals as introduced by Johnson et al. (J. Chem. Phys. 2012, 137, 054103) and refined by Tkatchenko et al. (J. Chem. Phys. 2013, 139, 024705). In order to accurately describe long-range electron correlation effects, we use the standard atom-pairwise dispersion correction scheme DFT-D3. We show that a combination of DFT energies with small atom-centered basis sets, the D3 dispersion correction, and the gCP correction can accurately describe van der Waals and hydrogen-bonded crystals. Mean absolute deviations of the X23 sublimation energies can be reduced by more than 70% and 80% for the standard functionals PBE and B3LYP, respectively, to small residual mean absolute deviations of about 2 kcal/mol (corresponding to 13% of the average sublimation energy). As a further test, we compute the interlayer interaction of graphite for varying distances and obtain a good equilibrium distance and interaction energy of 6.75 Å and -43.0 meV/atom at the PBE-D3-gCP/SVP level. We fit the gCP scheme for a recently developed pob-TZVP solid-state basis set and obtain reasonable results for the X23 benchmark set and the potential energy curve for water adsorption on a nickel (110) surface.

  19. Calculation of the zero-field splitting tensor on the basis of hybrid density functional and Hartree-Fock theory.

    Science.gov (United States)

    Neese, Frank

    2007-10-28

    The zero-field splitting (ZFS) (expressed in terms of the D tensor) is the leading spin-Hamiltonian parameter for systems with a ground state spin S>12. To first order in perturbation theory, the ZFS arises from the direct spin-spin dipole-dipole interaction. To second order, contributions arise from spin-orbit coupling (SOC). The latter contributions are difficult to treat since the SOC mixes states of different multiplicities. This is an aspect of dominant importance for the correct prediction of the D tensor. In this work, the theory of the D tensor is discussed from the point of view of analytic derivative theory. Starting from a general earlier perturbation treatment [F. Neese and E. I. Soloman, Inorg. Chem. 37, 6568 (1998)], straightforward response equations are derived that are readily transferred to the self-consistent field (SCF) Hartree-Fock (HF) or density functional theory (DFT) framework. The main additional effort in such calculations arises from the solution of nine sets of nonstandard coupled-perturbed SCF equations. These equations have been implemented together with the spin-orbit mean-field representation of the SOC operator and a mean-field treatment of the direct spin-spin interaction into the ORCA electronic structure program. A series of test calculations on diatomic molecules with accurately known zero-field splittings shows that the new approach corrects most of the shortcomings of previous DFT based methods and, on average, leads to predictions within 10% of the experimental values. The slope of the correlation line is essentially unity for the B3LYP and BLYP functionals compared to approximately 0.5 in previous treatments.

  20. Large-scale all-electron density functional theory calculations using an enriched finite-element basis

    Science.gov (United States)

    Kanungo, Bikash; Gavini, Vikram

    2017-01-01

    We present a computationally efficient approach to perform large-scale all-electron density functional theory calculations by enriching the classical finite element basis with compactly supported atom-centered numerical basis functions that are constructed from the solution of the Kohn-Sham (KS) problem for single atoms. We term these numerical basis functions as enrichment functions, and the resultant basis as the enriched finite element basis. The compact support for the enrichment functions is obtained by using smooth cutoff functions, which enhances the conditioning and maintains the locality of the enriched finite element basis. The integrals involved in the evaluation of the discrete KS Hamiltonian and overlap matrix in the enriched finite element basis are computed using an adaptive quadrature grid that is constructed based on the characteristics of enrichment functions. Further, we propose an efficient scheme to invert the overlap matrix by using a blockwise matrix inversion in conjunction with special reduced-order quadrature rules, which is required to transform the discrete Kohn-Sham problem to a standard eigenvalue problem. Finally, we solve the resulting standard eigenvalue problem, in each self-consistent field iteration, by using a Chebyshev polynomial based filtering technique to compute the relevant eigenspectrum. We demonstrate the accuracy, efficiency, and parallel scalability of the proposed method on semiconducting and heavy-metallic systems of various sizes, with the largest system containing 8694 electrons. We obtain accuracies in the ground-state energies that are ˜1 mHa with reference ground-state energies employing classical finite element as well as Gaussian basis sets. Using the proposed formulation based on enriched finite element basis, for accuracies commensurate with chemical accuracy, we observe a staggering 50 -300 -fold reduction in the overall computational time when compared to classical finite element basis. Further, we find a

  1. A general toolbox for the calculation of higher-order molecular properties using SCF wave functions at the one-, two- and four-component levels of theory

    Science.gov (United States)

    Ruud, Kenneth; Bast, Radovan; Gao, Bin; Thorvaldsen, Andreas J.; Ekström, Ulf; Visscher, Lucas

    2012-12-01

    We outline a new approach for the calculation of higher-order molecular properties for self-consistent field (SCF) wave functions (or Kohn-Sham density-functional theory) expressed in time- and perturbation-dependent basis sets. The approach is based on an atomic-orbital-based, open-ended quasienergy derivative formalism, and is applicable for use in linear scaling SCF calculations. In order to enable the calculation of any response property, we have also developed open- ended one- and two-electron integral derivative programs, as well as a program that can calculate derivatives of exchange- correlation functionals to any order using automatic differentiation. These modules have been interfaced to both the Dalton and DIRAC programs. This allows us to calculate molecular properties at the one-, two- and four-component levels of theory using a common theoretical framework and code.

  2. Combining density functional theory calculations, supercomputing, and data-driven methods to design new materials (Conference Presentation)

    Science.gov (United States)

    Jain, Anubhav

    2017-04-01

    Density functional theory (DFT) simulations solve for the electronic structure of materials starting from the Schrödinger equation. Many case studies have now demonstrated that researchers can often use DFT to design new compounds in the computer (e.g., for batteries, catalysts, and hydrogen storage) before synthesis and characterization in the lab. In this talk, I will focus on how DFT calculations can be executed on large supercomputing resources in order to generate very large data sets on new materials for functional applications. First, I will briefly describe the Materials Project, an effort at LBNL that has virtually characterized over 60,000 materials using DFT and has shared the results with over 17,000 registered users. Next, I will talk about how such data can help discover new materials, describing how preliminary computational screening led to the identification and confirmation of a new family of bulk AMX2 thermoelectric compounds with measured zT reaching 0.8. I will outline future plans for how such data-driven methods can be used to better understand the factors that control thermoelectric behavior, e.g., for the rational design of electronic band structures, in ways that are different from conventional approaches.

  3. Density Functional Theory Calculations of the Dissociation of H[2] on (100) 2H-MoS[2] Surfaces: A Key Step in the Hydroprocessing of Crude Oil

    Science.gov (United States)

    Todorova, Teodora; Alexiev, Valentin; Weber, Thomas

    2006-01-01

    Hydrogen activation on the (100) surface of MoS[2] structures was investigated by means of density functional theory calculations. Linear and quadratic synchronous transit methods with a conjugate gradient refinement of the saddle point were used to localize transition states. The calculations include heterolytic and homolytic dissociation of…

  4. Molecular and vibrational structure of diphenylether and its 4,4' -dibromo derivative. Infrared linear dichroism spectroscopy and density functional theory calculations

    DEFF Research Database (Denmark)

    Eriksen, Troels K; Karlsen, Eva; Spanget-Larsen, Jens

    2015-01-01

    The title compounds were investigated by means of Linear Dichroism (LD) IR spectroscopy on samples partially aligned in uniaxially stretched low-density polyethylene and by density functional theory calculations. Satisfactory overall agreement between observed and calculated vibrational wavenumbe...... and IR intensities are obtained, allowing a fairly detailed assignment of the observed transitions in terms of individual nuclear motions....

  5. ORBITALES. A program for the calculation of wave functions with an analytical central potential; ORBITALES. Programa de calculo de Funciones de Onda para una Potencial Central Analitico

    Energy Technology Data Exchange (ETDEWEB)

    Yunta Carretero; Rodriguez Mayquez, E.

    1974-07-01

    In this paper is described the objective, basis, carrying out in FORTRAN language and use of the program ORBITALES. This program calculate atomic wave function in the case of ths analytical central potential (Author) 8 refs.

  6. Perturbation theory with convergent series: the calculation of the {lambda}phi (cursive,open) Greek{sub (4)}{sup 4}-field theory {beta}-function

    Energy Technology Data Exchange (ETDEWEB)

    Yudin, I.L. E-mail: elieyudin@mail.ru

    2003-04-21

    Perturbation theory with convergent series, a new technique of divergent series summation, is applied to the problem of the calculation of the beta function in the scalar field theory with quartic self-interaction.

  7. Genetic Functional Algorithm Prediction of Toxicity of some Polychlorinated Dioxins using DFT and Semi-empirical Calculated Molecular Descriptors

    Directory of Open Access Journals (Sweden)

    Hassan Samuel

    2016-03-01

    Full Text Available A set of twenty five compounds of polyhalogenated dioxins with toxicity data in EC50 was subjected to quantitative structure activity relationship studies using Material Studio software 7.0. Large number of molecular descriptors was calculated from the level of theory DFT (BLYP/6-31G* and semi-empirical (AM1 using the softwares Spartan 14v1.1.2 and PaDel descriptor. The correlation between the toxicities and the DFT and semi-empirical calculated descriptors was examined. Genetic Function Approximation (GFA technique was used to generate ten QSAR models for each of the two level of theory, out of these models the one with the highest statistical significance was selected as the best for the two methods. DFT (R2 = 0.9516, R2 adj = 0.9389, R2 cv = 0.9091, LOF = 0.5882, significance of regression F-value = 74.8019 and Semi-empirical (R2 = 0.96803, R2 adj = 0.9596, R2 cv = 0.9518, LOF = 0.3877, significance of regression F-value = 115.0703. These descriptors were found to be responsible for the toxicities of polyhalogenated dioxins. DFT (BCUTc-1h, VP-3, SssssGe, 0ETA_dAlpha_B and ETA_BetaP and semi-empirical (EHOMO, SP-7, ETA_Shape_P, ETA_EtaP_L and GRAV-4. From the comparison of the models generated using DFT and semi-empirical and based on their statistical parameters, semi-empirical (AM1 has slightly better predictive power than DFT (BLYP/6-31G*.

  8. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations

    Science.gov (United States)

    Rak, Zs.; Rost, C. M.; Lim, M.; Sarker, P.; Toher, C.; Curtarolo, S.; Maria, J.-P.; Brenner, D. W.

    2016-09-01

    Density functional theory calculations were carried out for three entropic rocksalt oxides, (Mg0.1Co0.1Ni0.1Cu0.1Zn0.1)O0.5, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved density of states (DOS) for Co+3 in J14 + Li are very different from Co+2, while for Cu and Ni the Bader charges form continuous distributions and the two DOS are similar for the two oxidation states. Experimental detection of different oxidation states may therefore be challenging for Cu and Ni compared to Co. Based on these results, empirical stability parameters for these entropic oxides may be more complicated than those for non-oxide entropic solids.

  9. NO2 interaction with Au atom adsorbed on perfect and defective MgO(100) surfaces: density functional theory calculations.

    Science.gov (United States)

    Ammar, H Y; Eid, Kh M

    2013-10-01

    The interactions of nitrogen dioxide molecule (NO2) on Au atom adsorbed on the surfaces of metal oxide MgO (100) on both anionic (O2-) and defect (F(s) and F(s)(+)-centers) sites have been studied using the Density Functional Theory (DFT) in combination with embedded cluster model. The adsorption energies of NO2 molecule (N-down as well as O-down) on O(-2), F(s) and F(s)(+)-sites were considered. Full optimization for the additive materials and partial optimization for MgO substrate surfaces have been done. The formation energies were evaluated for F(s) and F(s)(+) of MgO substrate surfaces. Some parameters, the Ionization Potential (IP) and electron Affinity (eA), for defect free and defect containing surfaces have been calculated. The interaction properties of NO2 have been analyzed in terms of the adsorption energy, the electron donation (basicity), the elongation of N-O bond length and the charge distribution by using Natural Bond Orbital (NBO) analysis. The adsorption properties were examined by calculation of the Density of State (DOS). The presence of the Au atom increases the surface chemistry of the anionic O(2-)-site of MgO substrate surfaces. On the other hand, the presence of the Au atom decreases the surface chemistry of the F(s) and F(s)(+)-sites of MgO substrate surfaces. Generally, the NO2 molecule is strongly adsorbed (chemisorption) on the MgO substrate surfaces containing F(s) and F(s)(+)-centers.

  10. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: Results from density functional theory calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rak, Zs.; Rost, C. M.; Lim, M.; Maria, J.-P.; Brenner, D. W. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States); Sarker, P.; Toher, C.; Curtarolo, S. [Department of Mechanical Engineering and Materials Science and Center for Materials Genomics, Duke University, Durham, North Carolina 27708 (United States)

    2016-09-07

    Density functional theory calculations were carried out for three entropic rocksalt oxides, (Mg{sub 0.1}Co{sub 0.1}Ni{sub 0.1}Cu{sub 0.1}Zn{sub 0.1})O{sub 0.5}, termed J14, and J14 + Li and J14 + Sc, to understand the role of charge neutrality and electronic states on their properties, and to probe whether simple expressions may exist that predict stability. The calculations predict that the average lattice constants of the ternary structures provide good approximations to that of the random structures. For J14, Bader charges are transferable between the binary, ternary, and random structures. For J14 + Sc and J14 + Li, average Bader charges in the entropic structures can be estimated from the ternary compositions. Addition of Sc to J14 reduces the majority of Cu, which show large displacements from ideal lattice sites, along with reduction of a few Co and Ni cations. Addition of Li to J14 reduces the lattice constant, consistent with experiment, and oxidizes some of Co as well as some of Ni and Cu. The Bader charges and spin-resolved density of states (DOS) for Co{sup +3} in J14 + Li are very different from Co{sup +2}, while for Cu and Ni the Bader charges form continuous distributions and the two DOS are similar for the two oxidation states. Experimental detection of different oxidation states may therefore be challenging for Cu and Ni compared to Co. Based on these results, empirical stability parameters for these entropic oxides may be more complicated than those for non-oxide entropic solids.

  11. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  12. Calculation of excitation functions of proton, alpha and deuteron induced reactions for production of medical radioisotopes {sup 122–125}I

    Energy Technology Data Exchange (ETDEWEB)

    Artun, Ozan, E-mail: ozanartun@yahoo.com; Aytekin, Hüseyin, E-mail: huseyinaytekin@gmail.com

    2015-02-15

    In this work, the excitation functions for production of medical radioisotopes {sup 122–125}I with proton, alpha, and deuteron induced reactions were calculated by two different level density models. For the nuclear model calculations, the Talys 1.6 code were used, which is the latest version of Talys code series. Calculations of excitation functions for production of the {sup 122–125}I isotopes were carried out by using the generalized superfluid model (GSM) and Fermi-gas model (FGM). The results have shown that generalized superfluid model is more successful than Fermi-gas model in explaining the experimental results.

  13. Computational chemistry of natural products: a comparison of the chemical reactivity of isonaringin calculated with the M06 family of density functionals.

    Science.gov (United States)

    Glossman-Mitnik, Daniel

    2014-07-01

    The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Isonaringin flavonoid that can be an interesting material for dye-sensitized solar cells (DSSC). The chemical reactivity descriptors have been calculated through chemical reactivity theory within DFT (CR-DFT). The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptor f ((2))(r). A comparison between the descriptors calculated through vertical energy values and those arising from the Janak's theorem approximation have been performed in order to check for the validity of the last procedure.

  14. The interactions of phenylalanines in β-sheet-like structures from molecular orbital calculations using density functional theory (DFT), MP2, and CCSD(T) methods.

    Science.gov (United States)

    Pohl, Gabor; Plumley, Joshua A; Dannenberg, J J

    2013-06-28

    We present density functional theory calculations designed to evaluate the importance of π-stacking interactions to the stability of in-register Phe residues within parallel β-sheets, such as amyloids. We have used a model of a parallel H-bonded tetramer of acetylPheNH2 as a model and both functionals that were specifically designed to incorporate dispersion effects (DFs), as well as, several traditional functionals which have not been so designed. None of the functionals finds a global minimum for the π-stacked conformation, although two of the DFs find this to be a local minimum. The stacked phenyls taken from the optimized geometries calculated for each functional have been evaluated using MP2 and CCSD(T) calculations for comparison. The results suggest that π-stacking does not make an important contribution to the stability of this system and (by implication) to amyloid formation.

  15. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    CERN Document Server

    Zhang, Gaigong; Hu, Wei; Yang, Chao; Pask, John E

    2015-01-01

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracy required in practice. Since the adaptive local basis set has implicit dependence on a...

  16. First-principles equation-of-state table of beryllium based on density-functional theory calculations

    Science.gov (United States)

    Ding, Y. H.; Hu, S. X.

    2017-06-01

    Beryllium has been considered a superior ablator material for inertial confinement fusion (ICF) target designs. An accurate equation-of-state (EOS) of beryllium under extreme conditions is essential for reliable ICF designs. Based on density-functional theory (DFT) calculations, we have established a wide-range beryllium EOS table of density ρ = 0.001 to 500 g/cm3 and temperature T = 2000 to 108 K. Our first-principle equation-of-state (FPEOS) table is in better agreement with the widely used SESAME EOS table (SESAME 2023) than the average-atom INFERNO and Purgatorio models. For the principal Hugoniot, our FPEOS prediction shows ˜10% stiffer than the last two models in the maximum compression. Although the existing experimental data (only up to 17 Mbar) cannot distinguish these EOS models, we anticipate that high-pressure experiments at the maximum compression region should differentiate our FPEOS from INFERNO and Purgatorio models. Comparisons between FPEOS and SESAME EOS for off-Hugoniot conditions show that the differences in the pressure and internal energy are within ˜20%. By implementing the FPEOS table into the 1-D radiation-hydrodynamic code LILAC, we studied the EOS effects on beryllium-shell-target implosions. The FPEOS simulation predicts higher neutron yield (˜15%) compared to the simulation using the SESAME 2023 EOS table.

  17. The over-step coalescence of carbon atoms on copper surface in the CVD growth of graphene: density functional calculations

    Directory of Open Access Journals (Sweden)

    Yingfeng Li

    2013-05-01

    Full Text Available The ways in which carbon atoms coalesce over the steps on copper (111 surface are ascertained by density functional theory (DFT calculations in the context of chemical vapor deposition (CVD growth of graphene. Two strategies, (1 by putting carbon atoms on and under the steps separately and (2 by importing additional carbon atoms between the ones separated by the steps, have been attempted to investigate if an over-step coalescence of carbon atoms could take place. Based on analyses about the optimized configurations and adsorption energies of carbon atoms nearby the steps, as well as the energy evolution curve of the system throughout the geometry optimizations process, we determined the main way in which graphene grows over the steps continuously: the carbon atoms, adsorbed additionally on the locations between the already existing ones which are separated by the steps, link them (these carbon atoms separated by the steps together. The direct over-step coalescence of the carbon atoms separated by the steps is very difficult, although the energy barrier preventing their coalescence can be weakened by importing carbon atoms on and under the steps gradually. Our results imply potential applications in directing the fabrication of graphene with particular structure by controlling the surface topography of copper substrate.

  18. Green Function Calculations of Properties for the Magnetocaloric Layered Structures Based Upon FeMnAsP

    Science.gov (United States)

    Schilling, Osvaldo F.

    2016-11-01

    The alternating Fe-Mn layered structures of the compounds FeMnAsxP1-x display properties which have been demonstrated experimentally as very promising as far as commercial applications of the magnetocaloric effect are concerned. However, the theoretical literature on this and other families of magnetocaloric compounds still adopts simple molecular-field models in the description of important statistical mechanical properties like the entropy variation that accompanies applied isothermal magnetic field cycling, as well as the temperature variation following adiabatic magnetic field cycles. In the present paper, a random phase approximation Green function theoretical treatment is applied to such structures. The advantages of such approach are well known since the details of the crystal structure are easily incorporated in the model, as well as a precise description of correlations between neighbor spins can be obtained. We focus on a simple one-exchange parameter Heisenberg model, and the observed first-order phase transitions are reproduced by the introduction of a biquadratic term in the Hamiltonian whose origin is related both to the magnetoelastic coupling with the phonon spectrum in these compounds as well as with the values of spins in the Fe and Mn ions. The calculations are compared with experimental magnetocaloric data for the FeMnAsxP1-x compounds. In particular, the magnetic field dependence for the entropy variation at the transition temperature predicted from the Landau theory of continuous phase transitions is reproduced even in the case of discontinuous transitions.

  19. Metal-like Band Structures of Ultrathin Si {111} and {112} Surface Layers Revealed through Density Functional Theory Calculations.

    Science.gov (United States)

    Tan, Chih-Shan; Huang, Michael H

    2017-07-11

    Density functional theory calculations have been performed on Si (100), (110), (111), and (112) planes with tunable number of planes for evaluation of their band structures and density of states profiles. The purpose is to see whether silicon can exhibit facet-dependent properties derived from the presence of a thin surface layer having different band structures. No changes have been observed for single to multiple layers of Si (100) and (110) planes with a consistent band gap between the valence band and the conduction band. However, for 1, 2, 4, and 5 Si (111) and (112) planes, metal-like band structures were obtained with continuous density of states going from the valence band to the conduction band. For 3, 6, and more Si (111) planes, as well as 3 and 6 Si (112) planes, the same band structure as that seen for Si (100) and (110) planes has been obtained. Thus, beyond a layer thickness of five Si (111) planes at ≈1.6 nm, normal semiconductor behavior can be expected. The emergence of metal-like band structures for the Si (111) and (112) planes are related to variation in Si-Si bond length and bond distortion plus 3s and 3p orbital electron contributions in the band structure. This work predicts possession of facet-dependent electrical properties of silicon with consequences in FinFET transistor design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations

    Science.gov (United States)

    Elliott, S. D.; Dey, G.; Maimaiti, Y.

    2017-02-01

    Reaction cycles for the atomic layer deposition (ALD) of metals are presented, based on the incomplete data that exist about their chemical mechanisms, particularly from density functional theory (DFT) calculations. ALD requires self-limiting adsorption of each precursor, which results from exhaustion of adsorbates from previous ALD pulses and possibly from inactivation of the substrate through adsorption itself. Where the latter reaction does not take place, an "abbreviated cycle" still gives self-limiting ALD, but at a much reduced rate of deposition. Here, for example, ALD growth rates are estimated for abbreviated cycles in H2-based ALD of metals. A wide variety of other processes for the ALD of metals are also outlined and then classified according to which a reagent supplies electrons for reduction of the metal. Detailed results on computing the mechanism of copper ALD by transmetallation are summarized and shown to be consistent with experimental growth rates. Potential routes to the ALD of other transition metals by using complexes of non-innocent diazadienyl ligands as metal sources are also evaluated using DFT.

  1. The need for seasonal correction functions when calculating the annual electricity use of appliances based on shorter period measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bennich, Peter (Testlab, The Swedish Energy Agency, Eskilstuna (Sweden)); Oefverholm, Egil; Bjoern, Torgny (The Swedish Energy Agency, Eskilstuna (Sweden)); Norstedt, Inger (The Swedish Consumer Agency, Stockholm (Sweden))

    2011-07-01

    Along with the increasing number of smart electricity meters in the homes - both meters installed by the utilities and simpler ones installed by the household owners themselves - the interest in reliable methods for scaling up data measured during a limited time of the year to annual values, will most likely increase. For example, by measuring some specific loads for some time in a home, an inhabitant may assess possible annual savings when replacing old appliances with new ones. However, a straight forward scaling up calculation to annual values is not always appropriate. An obvious example is lighting, which displays a clear seasonal effect due to the difference in daylight: annual values based on measured summer data will strongly underestimate the annual consumption whereas winter data will lead to an overestimate. Another example going in the opposite direction is cold appliances, where the increase in ambient temperature during the summer increases the electricity consumption. This paper discusses an analysis of a set of appliances which nearly all display different seasonal effects. Apart from lighting and cold appliances, also washing machines, dish washers, TVs and PCs are analysed. Factors influencing the seasonality are discussed; either it is due to behaviour and/or technical parameters as well. Our analysis is based on 10 min measurements of appliances in 400 randomly selected households in Sweden. 40 households were measured during a full year and provided data for establishing seasonal correction functions. (See Appendix 1 for more details on the methodology.)

  2. Density functional calculations for a high energy density compound of formula C6H 6-n (NO 2) n.

    Science.gov (United States)

    Chi, Wei-Jie; Li, Lu-Lin; Li, Bu-Tong; Wu, Hai-Shun

    2012-08-01

    A series of polynitroprismanes, C(6)H(6-n )(NO(2))(n) (n = 1-6) intended for use as high energy density compounds (HEDCs) were designed computationally. Their electronic structures, heats of formation, interactions between nitro groups, specific enthalpies of combustion, bond dissociation energies, and explosive performances (detonation velocities and detonation pressures) were calculated using density functional theory (DFT) with the 6-311 G** basis set. The results showed that all of the polynitroprismanes had high positive heats of formation that increased with the number of substitutions for the prismane derivatives, while the specific enthalpy of combustion decreased as the number of nitro groups increased. In addition, the range of enthalpy of combustion reducing is getting smaller. Interactions between ortho (vicinal) groups deviate from the group additivity rule and decrease as the number of nitro groups increases. In terms of thermodynamic stability, all of the polynitroprismanes had higher bond dissociation energies (BDEs) than RDX and HMX. Detonation velocities and detonation pressures were estimated using modified Kamlet-Jacobs equations based on the heat of detonation (Q) and the theoretical density of the molecule (ρ). It was found that ρ, D, and P are strongly linearly related to the number of nitro groups. Taking both their energetic properties and thermal stabilities into account, pentanitroprismane and hexanitroprismane are potential candidate HEDCs.

  3. Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations.

    Science.gov (United States)

    Elliott, S D; Dey, G; Maimaiti, Y

    2017-02-07

    Reaction cycles for the atomic layer deposition (ALD) of metals are presented, based on the incomplete data that exist about their chemical mechanisms, particularly from density functional theory (DFT) calculations. ALD requires self-limiting adsorption of each precursor, which results from exhaustion of adsorbates from previous ALD pulses and possibly from inactivation of the substrate through adsorption itself. Where the latter reaction does not take place, an "abbreviated cycle" still gives self-limiting ALD, but at a much reduced rate of deposition. Here, for example, ALD growth rates are estimated for abbreviated cycles in H2-based ALD of metals. A wide variety of other processes for the ALD of metals are also outlined and then classified according to which a reagent supplies electrons for reduction of the metal. Detailed results on computing the mechanism of copper ALD by transmetallation are summarized and shown to be consistent with experimental growth rates. Potential routes to the ALD of other transition metals by using complexes of non-innocent diazadienyl ligands as metal sources are also evaluated using DFT.

  4. Conjugate spacer effect on molecular structures and absorption spectra of triphenylamine dyes for sensitized solar cells: density functional theory calculations.

    Science.gov (United States)

    Xu, Jie; Wang, Lei; Liang, Guijie; Bai, Zikui; Wang, Luoxin; Xu, Weilin; Shen, Xiaolin

    2011-01-01

    The molecular structures and absorption spectra of triphenylamine dyes containing variable thiophene units as the spacers (TPA1-TPA3) were investigated by density functional theory (DFT) and time-dependent DFT. The calculated results indicate that the strong conjugation is formed in the dyes and the length of conjugate bridge increases gradually with the increased thiophene spacers. The interfacial charge transfer between the TiO2 electrode and TPA1-TPA3 are electron injection processes from the excited dyes to the semiconductor conduction band. The simulated absorption bands are assigned to π→π* transitions, which exhibit appreciable red-shift with respect to the experimental bands due to the lack of direct solute-solvent interaction and the inherent approximations in TD-DFT. The effect of thiophene spacers on the molecular structures, absorption spectra and photovoltaic performance were comparatively discussed and points out that the choice of appropriate conjugate bridge is very important for the design of new dyes with improved performance.

  5. Density functional theory calculations of the turbostratically disordered compound [(SnSe )1 +y]m (VSe2)n

    Science.gov (United States)

    Rudin, Sven P.; Johnson, David C.

    2015-04-01

    Among composite materials that layer constituent substances of nanoscale thicknesses, [(SnSe) 1 +y]m(VSe2)n emerges as an example where the constituents retain incommensurate lattice structures. Perpendicular to the stacking direction, the system exhibits random translations and random rotations on average, i.e., turbostratic disorder, with local regions showing twelvefold diffraction patterns. Earlier theoretical work on these structures showed that combining density functional theory with an empirical treatment of the van der Waals interaction gave structural parameters in good agreement with experiment, but no attempt was made to examine the relative orientations. Here we approximate the extended system with one extended constituent and one finite constituent, which allows the treatment of all relative orientations on equal footing. The calculations show how the twelvefold periodicity follows from how the ions of the SnSe layer lock in with favored positions relative to the VSe2 layer, and the associated energy scale supports arguments for the overall turbostratic disorder. The success of this approximation in describing the structural parameters of the extended [(SnSe) 1 +y]m(VSe2)n system encourages its use for other properties and for other similar systems with other chemistries.

  6. Photoelectron spectroscopy and density functional calculations of C(n)S(m)(-) (n = 2-7; m = 1, 2) clusters.

    Science.gov (United States)

    Xu, Xi-Ling; Deng, Xiao-Jiao; Xu, Hong-Guang; Zheng, Wei-Jun

    2015-12-14

    CnSm(-) (n = 2-7; m = 1, 2) clusters were investigated by using photoelectron spectroscopy combined with density functional theory calculations. We found that the vertical detachment energies of both CnS(-) and CnS2(-) (n = 2-7) clusters exhibit a strong odd-even alternation with an increasing number of carbon atoms: the VDEs of even-n clusters are higher than those of adjacent odd-n clusters. The most stable structures of the anionic and neutral CnS (n = 2-7) clusters are linear with the S atom locating at one end of the carbon chain except that the structure of C3S(-) is slightly bent. The ground state isomers of the anionic and neutral CnS2 (n = 2-7) clusters are all linear structures with two S atoms locating at two ends of the carbon chain. The electron affinities of the neutral CnS (n = 2, 4-7) and CnS2 (n = 2-7) clusters are determined based on the experimental adiabatic detachment energies of the corresponding anion species, because the most stable structures of the neutral clusters are similar to those of the corresponding anions.

  7. Density functional theory calculations of the molecular structure and the vibrational spectra of bis-tetrapropyl-ammonium hexachloro-dizincate

    Science.gov (United States)

    Ben Gzaiel, M.; Oueslati, A.; Chaabane, I.; Gargouri, M.

    2016-10-01

    The molecular structure and vibrational spectra of bis-tetrapropyl-ammonium hexachloro-dizincate in the ground state have been investigated by density functional method (DFT) using the B3LYP method with the LanL2DZ and LanL2MB basis set. Infrared and Raman spectroscopes of the [N(C3H7)4]2Zn2Cl6 compound have been measured at room temperature in the frequencies range (3500-400 cm-1) and (3500-100 cm-1), respectively. The optimized geometric shows that the calculated values obtained by B3LYP/LanL2DZ basis are in much better agreement with the experimental data than those obtained by B3LYP/LanL2MB. Actually the theoretical vibrational spectra (B3LYP/LanL2DZ) of the title compound have been interpreted by means of potential energy distribution (PED) which is in good agreement with the experimental data. The comparison of the infrared spectrum of the tetrapropyl-ammonium chloride ligand with those of the bis-tetrapropyl-ammonium hexachloro-dizincate compound confirms an increase of the wavenumber in the [N(C3H7)4]2Zn2Cl6 compound. This can be explained by an increase of the electrostatic interactions of the [N(C3H7)4]Cl ligand.

  8. Terahertz spectroscopy and solid-state density functional theory calculation of anthracene: Effect of dispersion force on the vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Tominaga, Keisuke, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp [Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013 (Japan); Hayashi, Michitoshi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp; Wang, Houng-Wei [Center for Condensed Matter Sciences, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan (China); Kambara, Ohki; Sasaki, Tetsuo [Research Institute of Electronics, Shizuoka University, 3-5-1 Jyohoku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Nishizawa, Jun-ichi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp [Jun-ichi Nishizawa Memorial Research Center, Tohoku University, 519-1176 Aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan)

    2014-05-07

    The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D{sup *} have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. The relationship between the experimentally obtained IS and the IS obtained by PBE-D{sup *} simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D{sup *} data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D{sup *} produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D{sup *}.

  9. Influence of Hartree-Fock exchange on the calculated Mössbauer isomer shifts and quadrupole splittings in ferrocene derivatives using density functional theory.

    Science.gov (United States)

    Nemykin, Victor N; Hadt, Ryan G

    2006-10-01

    Influence of molecular geometry, type of exchange-correlation functional, and contraction scheme of basis set applied at the iron nuclei have been tested in the calculation of 57Fe Mössbauer isomer shifts and quadrupole splittings for a wide range of ligand types, as well as oxidation and spin states, in inorganic and organometallic systems. It has been found that uncontraction of the s-part of Wachter's full-electron basis set at the iron nuclei does not appreciably improve the calculated isomer shifts. The observed correlations for all tested sets of geometries are close to each other and predominantly depend on the employed exchange-correlation functional with B3LYP functional being slightly better as compared to BPW91. Both hybrid (B3LYP) and pure (BPW91) exchange-correlation functionals are suitable for the calculation of isomer shifts in organometallic compounds. Surprisingly, it has been found that the hybrid B3LYP exchange-correlation functional completely fails in accurate prediction of quadrupole splittings in ferrocenes, while performance of the pure BPW91 functional for the same systems was excellent. This observation has been explained on the basis of relationship between the amount of Hartree-Fock exchange involved in the applied exchange-correlation functional and the calculated HOMO-LUMO energy gap in ferrocenes. On the basis of this explanation, use of only pure exchange-correlation functionals has been suggested for accurate prediction of Mössbauer spectra parameters in ferrocenes.

  10. Calculated Rotational and Vibrational g Factors of LiH X (1)Sigma(+) and Evaluation of Parameters in Radial Functions from Rotational and Vibration-Rotational Spectra

    DEFF Research Database (Denmark)

    Sauer, S. P. A.; Paidarová, I.; Oddershede, J.

    2011-01-01

    The vibrational g factor, that is, the nonadiabatic correction to the vibrational reduced mass, of LiH has been calculated for internuclear distances over a wide range. Based on multiconfigurational wave functions with a large complete active space and an extended set of gaussian type basis...... functions, these calculations yielded also the rotational g factor, the electric dipolar moment, and its gradient with internuclear distance for LiH in its electronic ground state X (1)Sigma(+). The vibrational g factor g(v) exhibits a pronounced minimum near internuclear distance R = 3.65 x 10(-10) m...... state A (1)Sigma(+). The irreducible contribution g(r)(irr)(R) to the rotational g factor increases monotonically over the calculated domain, whereas the irreducible contribution g(v)(irr)(R) to the vibrational g factor has a minimum at the same location as that of g(v) itself. From these calculated...

  11. The importance of background correction during calculation of the major salivary gland function in salivary gland scintigraphy

    Directory of Open Access Journals (Sweden)

    Bekir Taşdemir

    2015-12-01

    Full Text Available Objective: The aim of this study was to compare the parotid (P and submandibular (SM glands uptake and excretion ratios of 99mTc-pertechnetate, which were calculated by using the backgrounds drawn on five different areas. Methods: Ninety-eight P and 98 SM glands of totally 48 patients were included in the study. 99mTc-pertechnetate salivary gland scintigraphy was performed in all patients. Oral stimulation with lemon juice was made at 15th minute of the imaging. The 99mTc-pertechnetate uptake and excretion ratios of the P and SM glands were calculated separately without using any background, and by using the backgrounds drawn on wide frontal, narrow frontal, temporal, cervical and shoulder regions. These values were statistically compared with each other in pairwise manner. Results: The radioactivity uptake and excretion ratios of the P and SM glands calculated without using any background correction were statistically different from that calculated by using any background correction. In addition, the radioactivity uptake and excretion ratios of the P and SM glands calculated by using the backgrounds drawn on five different areas were mostly found statistically different from each other (p<0.05. Conclusion: Background correction is important during the calculation of the uptake and excretion ratios of P and SM glands. This study demonstrates that calculated uptake and excretion ratios of P and SM glands may differ according to the used background area.

  12. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.

    Science.gov (United States)

    Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A

    2016-06-15

    We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G

  13. Calculation of wave resistance by using Kochin function in the Rankine source method; Rankinsosuho ni okeru kochin kansu wo mochiita zoha teiko keisan

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan)

    1997-10-01

    In order to avoid negative wave resistance (which is physically incomprehensible) generated in calculating wave resistance by using the Rankine source method, a proposal was made on a wave resistance calculation method using the Kochin function which describes behavior of speed potential in regions far apart from a hull. The Baba`s condition was used as a free surface condition for the speed potential which expresses wave motions around a hull. This has allowed a new Kochin function which uses as unknown the speed potential on the hull surface and the free surface near the hull to be defined and combined with the Rankine source method. A comparison was made between the calculated values for wave resistance, hull subsidence and trim change of an ore transporting vessel (SR107 type of ship) in a fully loaded condition and the result of water tank tests. The wave resistance values derived from pressure integration have all become negative when the Froude number is from 0.1 to 0.2, while no negative resistance has appeared in the calculations by using the Kochin function, but the result has agreed with that of the water tank tests. Accuracy of the calculations at low speeds was improved. The trim change in the calculations was slightly smaller than that in the water tank tests. The subsidence showed a good agreement. 7 refs., 1 fig.

  14. Tight-Binding Approximations to Time-Dependent Density Functional Theory - a fast approach for the calculation of electronically excited states

    CERN Document Server

    Rüger, Robert; Heine, Thomas; Visscher, Lucas

    2016-01-01

    We propose a new method of calculating electronically excited states that combines a density functional theory (DFT) based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive time-dependent density functional theory (TD-DFT) calculations. Errors in vertical excitation energies are reduced by a factor of two compared to TD-DFTB.

  15. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    Science.gov (United States)

    2016-06-03

    IR and UV-visible ranges. The absorption spectrum corresponding to excitation states of As-H2O complexes consisting of relatively small numbers of...complexes consisting of relatively small numbers of water molecules using DFT and TD- DFT. Calculation of excited state resonance structure using DFT and TD...absorption spectra. A significant aspect of using DFT and TD-DFT for the calculation of absorption spectra is that it adopts the perspective of computational

  16. Functional asymmetry in the lysyl-tRNA synthetase explored by molecular dynamics, free energy calculations and experiment

    Directory of Open Access Journals (Sweden)

    Miller Andrew D

    2003-06-01

    Full Text Available Abstract Background Charging of transfer-RNA with cognate amino acid is accomplished by the aminoacyl-tRNA synthetases, and proceeds through an aminoacyl adenylate intermediate. The lysyl-tRNA synthetase has evolved an active site that specifically binds lysine and ATP. Previous molecular dynamics simulations of the heat-inducible Escherichia coli lysyl-tRNA synthetase, LysU, have revealed differences in the binding of ATP and aspects of asymmetry between the nominally equivalent active sites of this dimeric enzyme. The possibility that this asymmetry results in different binding affinities for the ligands is addressed here by a parallel computational and biochemical study. Results Biochemical experiments employing isothermal calorimetry, steady-state fluorescence and circular dichroism are used to determine the order and stoichiometries of the lysine and nucleotide binding events, and the associated thermodynamic parameters. An ordered mechanism of substrate addition is found, with lysine having to bind prior to the nucleotide in a magnesium dependent process. Two lysines are found to bind per dimer, and trigger a large conformational change. Subsequent nucleotide binding causes little structural rearrangement and crucially only occurs at a single catalytic site, in accord with the simulations. Molecular dynamics based free energy calculations of the ATP binding process are used to determine the binding affinities of each site. Significant differences in ATP binding affinities are observed, with only one active site capable of realizing the experimental binding free energy. Half-of-the-sites models in which the nucleotide is only present at one active site achieve their full binding potential irrespective of the subunit choice. This strongly suggests the involvement of an anti-cooperative mechanism. Pathways for relaying information between the two active sites are proposed. Conclusions The asymmetry uncovered here appears to be a common

  17. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations.

    Science.gov (United States)

    Yin, Shi; Bernstein, Elliot R

    2016-10-21

    A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeSm(SH)n(-); m, n = 0-3, 0 density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH)1-3(-) cluster anions are lower than those found for their respective FeS1-3(-) cluster anions. The experimental first VDEs for FeS1-3(-) clusters are observed to increase for the first two S atoms bound to Fe(-); however, due to the formation of an S-S bond for the FeS3(-) cluster, its first VDE is found to be ∼0.41 eV lower than the first VDE for the FeS2(-) cluster. The first VDEs of Fe(SH)1-3(-) cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS1-3(-) and Fe(SH)1-3(-) clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH)(-) is lower than that for FeS2(-), but higher than that for Fe(SH)2(-); the first VDEs for FeS2(SH)(-) and FeS(SH)2(-) are close to that for FeS3(-), but higher than that for Fe(SH)3(-). The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeSm(SH)n(-); m, n = 0-3, 0 number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE

  18. Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations

    Science.gov (United States)

    Hung, Linda; Huang, Chen; Shin, Ilgyou; Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.

    2010-12-01

    : Intel with ifort; AMD Opteron with pathf90 Operating system: Linux Has the code been vectorized or parallelized?: Yes. Parallelization is implemented through domain composition using MPI. RAM: Problem dependent, but 2 GB is sufficient for up to 10,000 ions. Classification: 7.3 External routines: FFTW 2.1.5 ( http://www.fftw.org) Catalogue identifier of previous version: AEBN_v1_0 Journal reference of previous version: Comput. Phys. Comm. 179 (2008) 839 Does the new version supersede the previous version?: Yes Nature of problem: Given a set of coordinates describing the initial ion positions under periodic boundary conditions, recovers the ground state energy, electron density, ion positions, and cell lattice vectors predicted by orbital-free density functional theory. The computation of all terms is effectively linear scaling. Parallelization is implemented through domain decomposition, and up to ˜10,000 ions may be included in the calculation on just a single processor, limited by RAM. For example, when optimizing the geometry of ˜50,000 aluminum ions (plus vacuum) on 48 cores, a single iteration of conjugate gradient ion geometry optimization takes ˜40 minutes wall time. However, each CG geometry step requires two or more electron density optimizations, so step times will vary. Solution method: Computes energies as described in text; minimizes this energy with respect to the electron density, ion positions, and cell lattice vectors. Reasons for new version: To allow much larger systems to be simulated using PROFESS. Restrictions: PROFESS cannot use nonlocal (such as ultrasoft) pseudopotentials. A variety of local pseudopotential files are available at the Carter group website ( http://www.princeton.edu/mae/people/faculty/carter/homepage/research/localpseudopotentials/). Also, due to the current state of the kinetic energy functionals, PROFESS is only reliable for main group metals and some properties of semiconductors. Running time: Problem dependent: the test

  19. Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?

    Science.gov (United States)

    Xu, Xuefei; Zhang, Wenjing; Tang, Mingsheng; Truhlar, Donald G

    2015-05-12

    Coupled-cluster (CC) methods have been extensively used as the high-level approach in quantum electronic structure theory to predict various properties of molecules when experimental results are unavailable. It is often assumed that CC methods, if they include at least up to connected-triple-excitation quasiperturbative corrections to a full treatment of single and double excitations (in particular, CCSD(T)), and a very large basis set, are more accurate than Kohn-Sham (KS) density functional theory (DFT). In the present work, we tested and compared the performance of standard CC and KS methods on bond energy calculations of 20 3d transition metal-containing diatomic molecules against the most reliable experimental data available, as collected in a database called 3dMLBE20. It is found that, although the CCSD(T) and higher levels CC methods have mean unsigned deviations from experiment that are smaller than most exchange-correlation functionals for metal-ligand bond energies of transition metals, the improvement is less than one standard deviation of the mean unsigned deviation. Furthermore, on average, almost half of the 42 exchange-correlation functionals that we tested are closer to experiment than CCSD(T) with the same extended basis set for the same molecule. The results show that, when both relativistic and core-valence correlation effects are considered, even the very high-level (expensive) CC method with single, double, triple, and perturbative quadruple cluster operators, namely, CCSDT(2)Q, averaged over 20 bond energies, gives a mean unsigned deviation (MUD(20) = 4.7 kcal/mol when one correlates only valence, 3p, and 3s electrons of transition metals and only valence electrons of ligands, or 4.6 kcal/mol when one correlates all core electrons except for 1s shells of transition metals, S, and Cl); and that is similar to some good xc functionals (e.g., B97-1 (MUD(20) = 4.5 kcal/mol) and PW6B95 (MUD(20) = 4.9 kcal/mol)) when the same basis set is used. We

  20. Density functional theory (DFT)-based modified embedded atom method potentials: Bridging the gap between nanoscale theoretical simulations and DFT calculations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A density functional theory (DFT)-calculation scheme for constructing the modified embedded atom method (MEAM) potentials for face-centered cubic (fcc) metals is presented. The input quantities are carefully selected and a more reliable DFT approach for surface energy determination is introduced in the parameterization scheme, enabling MEAM to precisely predict the surface and nanoscale properties of metallic materials. Molecular dynamics simulations on Pt and Au crystals show that the parameterization employed leads to significantly improved accuracy of MEAM in calculating the surface and nanoscale properties, with the results agreeing well with both DFT calculations and experimental observations. The present study implies that rational DFT parameterization of MEAM may lead to a theoretical tool to bridge the gap between nanoscale theoretical simulations and DFT calculations.

  1. Density Functional Calculations for Prediction of (57)Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes.

    Science.gov (United States)

    McWilliams, Sean F; Brennan-Wydra, Emma; MacLeod, K Cory; Holland, Patrick L

    2017-06-30

    The relative ease of Mössbauer spectroscopy and of density functional theory (DFT) calculations encourages the use of Mössbauer parameters as a validation method for calculations, and the use of calculations as a double check on crystallographic structures. A number of studies have proposed correlations between the computationally determined electron density at the iron nucleus and the observed isomer shift, but deviations from these correlations in low-valent iron β-diketiminate complexes encouraged us to determine a new correlation for these compounds. The use of B3LYP/def2-TZVP in the ORCA platform provides an excellent balance of accuracy and speed. We provide here not only this new correlation and a clear guide to its use but also a systematic analysis of the limitations of this approach. We also highlight the impact of crystallographic inaccuracies, DFT model truncation, and spin states, with intent to assist experimentalists to use Mössbauer spectroscopy and calculations together.

  2. Locating the rate-limiting step for the interaction of hydrogen with Mg(0001) using density-functional theory calculations and rate theory

    DEFF Research Database (Denmark)

    Vegge, Tejs

    2004-01-01

    The dissociation of molecular hydrogen on a Mgs0001d surface and the subsequent diffusion of atomic hydrogen into the magnesium substrate is investigated using Density Functional Theory (DFT) calculations and rate theory. The minimum energy path and corresponding transition states are located using...... the nudged elastic band method, and rates of the activated processes are calculated within the harmonic approximation to transition state rate theory, using both classical and quantum partition functions based atomic vibrational frequencies calculated by DFT. The dissociation/recombination of H2 is found...... to be rate-limiting for the ab- and desorption of hydrogen, respectively. Zero-point energy contributions are found to be substantial for the diffusion of atomic hydrogen, but classical rates are still found to be within an order of magnitude at room temperature....

  3. CALCULATED MOLECULAR STRUCTURES AND POTENTIAL ENERGY FUNCTIONS OF PAHS WITH METHYL CROWDING IN THE BAY REGION AND THEIR METABOLITES: COMPARISON TO EXPERIMENTAL STRUCTURES

    Science.gov (United States)

    Calculated molecular structures and potential energy functions ofP AHs with methyl crowding in the bay region and their metabolites: Comparison to experimental structures PAHs with methyl group substitution near a bay region represent a class of chemicals associated with ...

  4. Periodic Hartree-Fock and hybrid density functional calculations on the metallic and the insulating phase of (EDO-TTF)(2)PF6

    NARCIS (Netherlands)

    Linker, Gerrit-Jan; Loosdrecht , van Paul H.M.; van Duijnen, Piet Th.; Broer, Ria

    2015-01-01

    The insulating and conducting phases of (EDO-TTF)(2)PF6 were studied by all electron, periodic Hartre-Fock and hybrid density functional calculations. Electronic properties, such as the electronic band structure, the density of states and the Fermi surface are discussed in relation to the metal-insu

  5. Self-consistent Green’s-function technique for bulk and surface impurity calculations: Surface core-level shifts by complete screening

    DEFF Research Database (Denmark)

    Aldén, M.; Abrikosov, I. A.; Johansson, B.

    1994-01-01

    We have implemented an efficient self-consistent Green's-function technique, based on the tight-binding linear-muffin-tin-orbitals method, for calculating the electronic structure and total energy of a substitutional impurity located either in the bulk or at the surface. The technique makes use...

  6. The performance of hybrid density functional theory for the calculation of indirect nuclear spin-spin coupling constants in substituted hydrocarbons.

    Science.gov (United States)

    Lutnaes, Ola B; Ruden, Torgeir A; Helgaker, Trygve

    2004-10-01

    Density functional theory, in particular, with the Becke-3-parameter-Lee-Yang-Parr (B3LYP) hybrid functional, has been shown to be a promising method for the calculation of indirect nuclear spin-spin coupling constants. However, no systematic investigation has so far been undertaken to evaluate the capability of B3LYP to calculate these coupling constants accurately, taking properly into account the vibrational contributions. In this work, vibrationally corrected indirect spin-spin coupling constants were calculated using the B3LYP functional for 10 rigid unsubstituted and substituted hydrocarbons: ethyne, ethene, allene, cyclopropene, cyclopropane, cyclobutene, pyrrole, furan, thiophene and benzene. The resulting spin-spin constants were compared with the available experimental values. The basis sets in these calculations give indirect nuclear spin-spin coupling constants of ethyne that are almost converged to the basis-set limit, making the intrinsic error of the computational method and the error in equilibrium geometry the main sources of error. On average, the B3LYP functional overestimates the indirect nuclear spin-spin coupling constants in hydrocarbons by 10%.

  7. Standardization of methods of calculating the weighting functions on the basis of the parameters of the fine structure of the absorption bands of atmospheric gases

    Science.gov (United States)

    1978-01-01

    Point 7 of a list of works conducted by the USSR in accordance with the Joint Soviet-American Research Program on improving methods of heat probes from satellites is discussed. Numerous calculations of transmission functions, along with tables are enclosed.

  8. The edge-based face element method for 3D-stream function and flux calculations in porous media flow

    NARCIS (Netherlands)

    Zijl, W.; Nawalany, M.

    2004-01-01

    We present a velocity-oriented discrete analog of the partial differential equations governing porous media flow: the edge-based face element method. Conventional finite element techniques calculate pressures in the nodes of the grid. However, such methods do not satisfy the requirement of flux cont

  9. Implicit Regularisation Technique Calculation of the Two-loop $\\phi_{4}^{4}$-theory $\\beta$-function

    CERN Document Server

    Brizola, A; Battistel, O A; Nemes, M C; Sampaio, Marcos

    1999-01-01

    A new 4-D regularisation scheme is proposed. The main advantage is that no explicit use of a specific regulator is made and thus we can, in principle, avoid undesirable symmmetry-breakings related to its choice. We illustrate with the calculation of the $QED$ and $\\phi^4_4$-theory

  10. Ion induced dipole clusters H(n)- (3 ≤ n-odd ≤ 13): density functional theory calculations of structure and energy.

    Science.gov (United States)

    Huang, Lulu; Matta, Chérif F; Massa, Lou

    2011-11-17

    We investigate anew the possible equilibrium geometries of ion induced dipole clusters of hydrogen molecular ions, of molecular formula H(n)(-) (3 ≤ n-odd ≤ 13). Our previous publications [Sapse, A. M.; et al. Nature 1979, 278, 332; Rayez, J. C.; et al., J. Chem. Phys. 1981, 75, 5393] indicated these molecules would have a shallow minimum and adopt symmetrical geometries that accord with the valence shell electron pair repulsion (VSEPR) rules for geometries defined by electron pairs surrounding a central point of attraction. These earlier calculations were all based upon Hartree-Fock (HF) calculations with a fairly small basis of atomic functions, except for the H3(-) ion for which configuration interaction (CI) calculations were carried out. A related paper [Hirao, K.; et al., Chem. Phys. 1983, 80, 237] carried out similar calculations on the same clusters, finding geometries similar to our earlier calculations. However, although that paper argued that the stabilization energy of negative ion clusters H(n)(-) is small, vibration frequencies for the whole set of clusters was not reported, and so a definitive assertion of a true equilibrium was not present. In this paper we recalculate the energetics of the ion induced dipole clusters using density function theory (DFT) B3LYP method calculations in a basis of functions (6-311++G(d,p)). By calculating the vibration frequencies of the VSEPR geometries, we prove that in general they are not true minima because not all the resulting frequencies correspond to real values. By searching the energy surface of the B3LYP calculations, we find the true minimum geometries, which are surprising configurations and are perhaps counterintuitive. We calculate the total energy and binding energy of the new geometries. We also calculate the bond paths associated with the quantum theory of atoms in molecules (QTAIM). The B3LYP/6-311++G(d,p) results, for each molecule, deliver bond paths that radiate between each polarized H2

  11. Adsorption of CO2, N2, and CH4 in Cs-exchanged chabazite: A combination of van der Waals density functional theory calculations and experiment study

    Science.gov (United States)

    Shang, Jin; Li, Gang; Singh, Ranjeet; Xiao, Penny; Danaci, David; Liu, Jefferson Z.; Webley, Paul A.

    2014-02-01

    The crucial role of dispersion force in correctly describing the adsorption of some typical small-size gas molecules (e.g., CO2, N2, and CH4) in ion-exchanged chabazites has been investigated at different levels of theory, including the standard density functional theory calculation using the Perdew, Burke, and Ernzerhof (PBE) exchange-correlation functional and van der Waals density functional theory (vdWDFT) calculations using different exchange-correlation models - vdW_DF2, optB86b, optB88, and optPBE. Our results show that the usage of different vdWDFT functionals does not significantly change the adsorption configuration or the profile of static charge rearrangement of the gas-chabazite complexes, in comparison with the results obtained using the PBE. The calculated values of adsorption enthalpy using different functionals are compared with our experimental results. We conclude that the incorporation of dispersion interaction is imperative to correctly predict the trend of adsorption enthalpy values, in terms of different gas molecules and Cs+ cation densities in the adsorbents, even though the absolute values of adsorption enthalpy are overestimated by approximate 10 kJ/mol compared with experiments.

  12. Explicit reformulations of the Lambert W-omega function for calculations of the solutions to one-compartment pharmacokinetic models with Michaelis-Menten elimination kinetics.

    Science.gov (United States)

    Goličnik, Marko

    2011-09-01

    The exact closed-form solutions to the integrated rate equations for one-compartment pharmacokinetic models that obey Michaelis-Menten elimination kinetics were derived recently (Tang and Xiao in J Pharmacokin Pharmacodyn 34:807-827, 2007). These solutions are expressed in terms of the Lambert W(x)-omega function; however, unfortunately, most of the available computer programs are not set up to handle equations that involve the W(x) function. Therefore, in this article, I provide alternative explicit analytical equations expressed in terms of elementary mathematical functions that accurately approximate exact solutions and can be simply calculated using any optional standard software.

  13. A new nonempirical tuning scheme with single self-consistent field calculation: Comparison with global and IP-tuned range-separated functional.

    Science.gov (United States)

    Borpuzari, Manash Protim; Kar, Rahul

    2017-10-05

    System-dependent nonempirical tuning of range-separated functional provides a way to minimize the delocalization error of the system. However, existing nonempirical tuning method requires the computation of several ΔSCF calculations to determine the optimal μ value. In this article, we have defined a scheme to evaluate the optimal μ value with single self-consistent field calculation. Our method is based on the evaluation of the spherically symmetric average Electron localization function (ELF) region. According to this scheme, the radius of the spherically symmetric average ELF region gives is a measure of the distance at which the long-range part of the range-separated functional becomes dominant. Numerical results indicate that our method improves the reproduction of HOMO energies and HOMO-LUMO gap in comparison to global and IP-tuned range-separated functional. Moreover, in case of HOMO energies, maximum error of the ELF-tuned functional is considerably smaller than the global and IP-tuned functional. Furthermore, our method gives considerably smaller deviation of HOMO energies from ΔSCF IP than global range-separated functional. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. The calculation of active Raman modes of -quartz crystal via density functional theory based on B3LYP Hamiltonian in 6–311+G(2d) basis set

    Indian Academy of Sciences (India)

    M Talebian; E Talebian; A Abdi

    2012-05-01

    We obtained an approximation of the force field of -quartz crystal using a new idea of applying density functional theory [J Purton, R Jones, C R A Catlow and M Leslie, Phys. Chem. Minerals 19, 392 (1993)]. Our calculations were based on B3LYP Hamiltonian [A N Lazarev and A P Mirgorodsky, Phys. Chem. Minerals 18, 231 (1991)] in 6−311+G(2d) basis set for H16Si7O6 cluster and included a unit cell of the lattice. The advantage of our method is the increase in the speed of calculations and the better adaption of simulation results with the experimental data.

  15. Ab initio quasi-particle approximation bandgaps of silicon nanowires calculated at density functional theory/local density approximation computational effort

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, M., E-mail: ribeiro.jr@oorbit.com.br [Office of Operational Research for Business Intelligence and Technology, Principal Office, Buffalo, Wyoming 82834 (United States)

    2015-06-21

    Ab initio calculations of hydrogen-passivated Si nanowires were performed using density functional theory within LDA-1/2, to account for the excited states properties. A range of diameters was calculated to draw conclusions about the ability of the method to correctly describe the main trends of bandgap, quantum confinement, and self-energy corrections versus the diameter of the nanowire. Bandgaps are predicted with excellent accuracy if compared with other theoretical results like GW, and with the experiment as well, but with a low computational cost.

  16. Radar Signature Calculation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...

  17. Neutrino Induced 4He Break-up Reaction -- Application of the Maximum Entropy Method in Calculating Nuclear Strength Function

    CERN Document Server

    Murata, T; Sato, T; Nakamura, S X

    2016-01-01

    The maximum entropy method is examined as a new tool for solving the ill-posed inversion problem involved in the Lorentz integral transformation (LIT) method. As an example, we apply the method to the spin-dipole strength function of 4He. We show that the method can be successfully used for inversion of LIT, provided the LIT function is available with a sufficient accuracy.

  18. Real-space finite-difference calculation method of generalized Bloch wave functions and complex band structures with reduced computational cost.

    Science.gov (United States)

    Tsukamoto, Shigeru; Hirose, Kikuji; Blügel, Stefan

    2014-07-01

    Generalized Bloch wave functions of bulk structures, which are composed of not only propagating waves but also decaying and growing evanescent waves, are known to be essential for defining the open boundary conditions in the calculations of the electronic surface states and scattering wave functions of surface and junction structures. Electronic complex band structures being derived from the generalized Bloch wave functions are also essential for studying bound states of the surface and junction structures, which do not appear in conventional band structures. We present a novel calculation method to obtain the generalized Bloch wave functions of periodic bulk structures by solving a generalized eigenvalue problem, whose dimension is drastically reduced in comparison with the conventional generalized eigenvalue problem derived by Fujimoto and Hirose [Phys. Rev. B 67, 195315 (2003)]. The generalized eigenvalue problem derived in this work is even mathematically equivalent to the conventional one, and, thus, we reduce computational cost for solving the eigenvalue problem considerably without any approximation and losing the strictness of the formulations. To exhibit the performance of the present method, we demonstrate practical calculations of electronic complex band structures and electron transport properties of Al and Cu nanoscale systems. Moreover, employing atom-structured electrodes and jellium-approximated ones for both of the Al and Si monatomic chains, we investigate how much the electron transport properties are unphysically affected by the jellium parts.

  19. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  20. A CALCULATION OF SEMI-EMPIRICAL ONE-ELECTRON WAVE FUNCTIONS FOR MULTI-ELECTRON ATOMS USED FOR ELEMENTARY PROCESS SIMULATION IN NONLOCAL PLASMA

    Directory of Open Access Journals (Sweden)

    M. V. Tchernycheva

    2017-01-01

    Full Text Available Subject of Research. The paper deals with development outcomes for creation method of one-electron wave functions of complex atoms, relatively simple, symmetrical for all atom electrons and free from hard computations. The accuracy and resource intensity of the approach are focused on systematic calculations of cross sections and rate constants of elementary processes of inelastic collisions of atoms or molecules with electrons (ionization, excitation, excitation transfer, and others. Method. The method is based on a set of two iterative processes. At the first iteration step the Schrödinger equation was solved numerically for the radial parts of the electron wave functions in the potential of the atomic core self-consistent field. At the second iteration step the new approximationfor the atomic core field is created that uses found solutions for all one-electron wave functions. The solution optimization for described multiparameter problem is achieved by the use of genetic algorithm. The suitability of the developed method was verified by comparing the calculation results with numerous data on the energies of atoms in the ground and excited states. Main Results. We have created the run-time version of the program for creation of sets of one-electron wave functions and calculation of the cross sections and constants of collisional transition rates in the first Born approximation. The priori available information about binding energies of the electrons for any many-particle system for creation of semi-empirical refined solutions for the one-electron wave functions can be considered at any step of this procedure. Practical Relevance. The proposed solution enables a simple and rapid preparation of input data for the numerical simulation of nonlocal gas discharge plasma. The approach is focused on the calculation of discharges in complex gas mixtures requiring inclusion in the model of a large number of elementary collisional and radiation