WorldWideScience

Sample records for fuming sulfuric acid

  1. STUDIES ON THE RING-OPENING POLYMERIZATION OF TETRAHYDROFURAN Ⅳ. COPOLYMERIZATION OF TETRAHYDROFURAN AND PROPYLENE OXIDE INITIATED BY FUMING SULFURIC ACID AND PERCHLORIC ACID CATALYST SYSTEM

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongzhi; GAO Guozhen; WANG Yin; FENG Xinde(S. T. Voong)

    1983-01-01

    The yield of copolymerization of tetrahydrofuran and propylene oxide (THF: PO = 100: 5-15, by wt) using a binary catalyst of fuming sulfuric acid (21% or 28%) and perchloric acid is around 50-60%, and the loss of THF in the reaction is below 10-15%. The average molecular weight of the product can be controlled in the range of 1000-2000 by varying the binary catalyst system.The present method, which is different from the usual copolymerization initiated by BF3-diol or SbCl5-diol system, shows the pecularities i.e. the yield of copolymerization with the low PO feed is not decreased, the hydroxyl functionality is equal to 2, and the end-groups are predominantly primary hydroxyls (around 65-70%).

  2. Effect of sulfur dioxide fumes on plants

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, P.W.; Cracker, W.

    1930-12-01

    Sulfur dioxide injured the foliage of all the plants tested. Injury in the form of brown or withered areas usually appeared first along the margins of the leaves, then between the veins. Regions along the main veins frequently resisted high concentrations. After a one hour treatment in 3-4 ppm of SO/sub 2/ leaves were injured on tomato, salvia, coleus, geranium, castor bean, roses, and several other plants. The same plants in a slightly wilted condition were not injured by 8 ppm after a five hour treatment. Middle-aged leaves were more sensitive than either young or old leaves. Orchid foliage showed no injury after a four hour treatment in 70 ppm, but a high concentration for a longer period injured the leaves and some of the exposed roots.

  3. Sulfuric Acid on Europa

    Science.gov (United States)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer.Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  4. Solubility of Sulfur Dioxide in Sulfuric Acid

    Science.gov (United States)

    Chang, K. K.; Compton, L. E.; Lawson, D. D.

    1982-01-01

    The solubility of sulfur dioxide in 50% (wt./wt.) sulfuric acid was evaluated by regular solution theory, and the results verified by experimental measurements in the temperature range of 25 C to 70 C at pressures of 60 to 200 PSIA. The percent (wt./wt.) of sulfur dioxide in 50% (wt./wt.) sulfuric acid is given by the equation %SO2 = 2.2350 + 0.0903P - 0.00026P 10 to the 2nd power with P in PSIA.

  5. Bronchiolitis obliterans organizing pneumonia following nitric acid fume exposure.

    Science.gov (United States)

    Lee, L T; Ho, C H B; Putti, T C

    2014-03-01

    We describe a patient with clinical, radiological and pathological features of bronchiolitis obliterans organizing pneumonia. Investigation showed that this was likely to have been a delayed consequence of inhalation of nitric acid fumes (containing nitrogen dioxide) after a fire. This case shows that thorough investigation of the aetiology is important not only in clinical management but also in ensuring patients benefit from appropriate work injury compensation.

  6. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  7. Sulfuric acid on Europa and the radiolytic sulfur cycle

    Science.gov (United States)

    Carlson, R. W.; Johnson, R. E.; Anderson, M. S.

    1999-01-01

    A comparison of laboratory spectra with Galileo data indicates that hydrated sulfuric acid is present and is a major component of Europa's surface. In addition, this moon's visually dark surface material, which spatially correlates with the sulfuric acid concentration, is identified as radiolytically altered sulfur polymers. Radiolysis of the surface by magnetospheric plasma bombardment continuously cycles sulfur between three forms: sulfuric acid, sulfur dioxide, and sulfur polymers, with sulfuric acid being about 50 times as abundant as the other forms. Enhanced sulfuric acid concentrations are found in Europa's geologically young terrains, suggesting that low-temperature, liquid sulfuric acid may influence geological processes.

  8. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  9. 发烟硫酸浓度互换公式的推导%Derivation about Concentrations Exchanging Formula of Fuming Sulphuric Acid

    Institute of Scientific and Technical Information of China (English)

    谭靖辉; 唐淑贞

    2011-01-01

    指出发烟硫酸是游离态SO3的H2SO4溶液,运用质量守恒定律对发烟硫酸浓度互换公式进行了推导,阐述了使用该公式的注意事项。%Fuming sulphuric acid was regarded as SO3 of free state in sulfuric acid solution,concentrations exchanging formula of fuming sulphuric acid was deduced by mass conservation law,attentions of formula were expounded.

  10. Blunted behavioral and c Fos responses to acidic fumes in the African naked mole-rat.

    Directory of Open Access Journals (Sweden)

    Pamela Colleen LaVinka

    Full Text Available Acidosis in the skin triggers activation of pain pathways and behaviors indicative of pain in vertebrates. The exception is the naked mole-rat, the only known vertebrate to show physiological and behavioral insensitivity to acid pain in the skin. The goal of the present study was to determine behavioral and physiological responses of this species to airborne acidic fumes, which would be expected to affect the trigeminal pain pathway in other species. Behaviorally, naked mole-rats did not avoid fumes from moderately high concentrations of acetic acid (10 and 20%, and c Fos labeling showed no increase in activity in the trigeminal nuclei and nucleus tractus solitarius. In contrast, these concentrations triggered behavioral aversion and increased Fos activity in other laboratory rodents. For a very high concentration of acetic acid (50%, naked mole-rats showed significant avoidance behavior and increased Fos labeling in the nucleus tractus solitarius caudal region, which receives vagal chemosensory information. However, there was no increase in trigeminal labeling, and in fact, activity significantly decreased. This pattern is opposite of that associated with another irritant, ammonia fumes, which elicited an increase in trigeminal but not nucleus tractus solitarius Fos labeling, and no behavioral avoidance. Behavioral avoidance of acidic fumes, but no increased labeling in the trigeminal pain nucleus is consistent with the notion of adaptations to blunt acid pain, which would be advantageous for naked mole-rats as they normally live under chronically high levels of acidosis-inducing CO(2.

  11. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Yongyue Wei

    Full Text Available BACKGROUND: Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans. OBJECTIVES: To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure. METHODS: The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry. RESULTS: Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5 exposure (p<0.05. The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [β(95% CI = -0.013(-0.022 ≈ -0.004; p = 0.005], docosapentaenoic acid n3 [β(95% CI = -0.010(-0.018 ≈ -0.002; p = 0.017], and docosapentaenoic acid n6 [β(95% CI = -0.007(-0.013 ≈ -0.001; p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study-2011 = 0.025; p Study-2012 = 0.021; p Combined = 0.009. The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders. CONCLUSIONS: High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.

  12. Radiolysis of Sulfuric Acid, Sulfuric Acid Monohydrate, and Sulfuric Acid Tetrahydrate and Its Relevance to Europa

    Science.gov (United States)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.; Carlson, R. W.

    2011-01-01

    We report laboratory studies on the 0.8 MeV proton irradiation of ices composed of sulfuric acid (H2SO4), sulfuric acid monohydrate (H2SO4 H2O), and sulfuric acid tetrahydrate (H2SO4 4H2O) between 10 and 180 K. Using infrared spectroscopy, we identify the main radiation products as H2O, SO2, (S2O3)x, H3O+, HSO4(exp -), and SO4(exp 2-). At high radiation doses, we find that H2SO4 molecules are destroyed completely and that H2SO4 H2O is formed on subsequent warming. This hydrate is significantly more stable to radiolytic destruction than pure H2SO4, falling to an equilibrium relative abundance of 50% of its original value on prolonged irradiation. Unlike either pure H2SO4 or H2SO4 H2O, the loss of H2SO4 4H2O exhibits a strong temperature dependence, as the tetrahydrate is essentially unchanged at the highest irradiation temperatures and completely destroyed at the lowest ones, which we speculate is due to a combination of radiolytic destruction and amorphization. Furthermore, at the lower temperatures it is clear that irradiation causes the tetrahydrate spectrum to transition to one that closely resembles the monohydrate spectrum. Extrapolating our results to Europa s surface, we speculate that the variations in SO2 concentrations observed in the chaotic terrains are a result of radiation processing of lower hydration states of sulfuric acid and that the monohydrate will remain stable on the surface over geological times, while the tetrahydrate will remain stable in the warmer regions but be destroyed in the colder regions, unless it can be reformed by other processes, such as thermal reactions induced by diurnal cycling.

  13. Sulfur Reduction in Acid Rock Drainage Environments

    NARCIS (Netherlands)

    Florentino, A.P.; Weijma, J.; Stams, A.J.M.; Sanchez Andrea, I.

    2015-01-01

    Microbiological suitability of acidophilic sulfur reduction for metal recovery was explored by enriching sulfur reducers from acidic sediments at low pH (from 2 to 5) with hydrogen, glycerol, methanol and acetate as electron donors at 30°C. The highest levels of sulfide in the enrichments were detec

  14. Sulfur Reduction in Acid Rock Drainage Environments

    NARCIS (Netherlands)

    Florentino, A.P.; Weijma, J.; Stams, A.J.M.; Sanchez Andrea, I.

    2015-01-01

    Microbiological suitability of acidophilic sulfur reduction for metal recovery was explored by enriching sulfur reducers from acidic sediments at low pH (from 2 to 5) with hydrogen, glycerol, methanol and acetate as electron donors at 30°C. The highest levels of sulfide in the enrichments were detec

  15. Amine reactivity with charged sulfuric acid clusters

    OpenAIRE

    Bzdek, B. R.; D. P. Ridge; Johnston, M. V.

    2011-01-01

    The distribution of ionic species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid neu...

  16. Amine reactivity with charged sulfuric acid clusters

    OpenAIRE

    Bzdek, B. R.; D. P. Ridge; Johnston, M. V.

    2011-01-01

    The distribution of charged species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid n...

  17. Linking neutral and charged sulfuric acid-ammonia and sulfuric acid-dimethylamine clusters

    Science.gov (United States)

    Ortega, Ismael K.; Kupiainen, Oona; Olenius, Tinja; Loukonen, Ville; Kurtén, Theo; Vehkamäki, Hanna

    2013-05-01

    We have used a quantum chemical method to calculate the formation free energies of negatively charged sulfuric acid - ammonia and sulfuric acid - dimethylamine clusters. Using the calculated formation free energies we have estimated the evaporation rates of the clusters. We have compared the evaporation rate of the charged clusters with the corresponding neutral clusters. We found that, although small clusters of sulfuric acid with ammonia and dimethylamine are stable and should be present in the atmosphere, they can not be detected using mass spectroscopy techniques. Charging the cluster will result in the fast evaporation of the base molecules, and they will be detected as pure sulfuric acid cluster.

  18. Potentiometric determination of peroxodisulfuric acid during electrolysis sulfuric acid

    Directory of Open Access Journals (Sweden)

    Fedor Malchik

    2013-09-01

    Full Text Available Was proposed two potentiometric methods for determining peroxodisulfuric acid during electrolysis of sulfuric acid (potentiometric titration method and direct potentiometry, based on its interaction with a known excess of a solution Fe2+.

  19. Sulfur Reduction in Acid Rock Drainage Environments.

    Science.gov (United States)

    Florentino, Anna P; Weijma, Jan; Stams, Alfons J M; Sánchez-Andrea, Irene

    2015-10-06

    Microbiological suitability of acidophilic sulfur reduction for metal recovery was explored by enriching sulfur reducers from acidic sediments at low pH (from 2 to 5) with hydrogen, glycerol, methanol and acetate as electron donors at 30 °C. The highest levels of sulfide in the enrichments were detected at pH 3 with hydrogen and pH 4 with acetate. Cloning and sequencing of the 16S rRNA gene showed dominance of the deltaproteobacterial sulfur-reducing genus Desulfurella in all the enrichments and subsequently an acidophilic strain (TR1) was isolated. Strain TR1 grew at a broad range of pH (3-7) and temperature (20-50 °C) and showed good metal tolerance (Pb(2+), Zn(2+), Cu(2+), Ni(2+)), especially for Ni(2+) and Pb(2+), with maximal tolerated concentrations of 0.09 and 0.03 mM, respectively. Different sources of sulfur were tested in the enrichments, from which biosulfur showed fastest growth (doubling time of 1.9 days), followed by colloidal, chemical and sublimated sulfur (doubling times of 2.2, 2.5, and 3.6 days, respectively). Strain TR1's physiological traits make it a good candidate to cope with low pH and high metal concentration in biotechnological processes for treatment of metal-laden acidic streams at low and moderately high temperature.

  20. Molecular Interaction of Pinic Acid with Sulfuric Acid

    DEFF Research Database (Denmark)

    Elm, Jonas; Kurten, Theo; Bilde, Merete

    2014-01-01

    We investigate the molecular interactions between the semivolatile α-pinene oxidation product pinic acid and sulfuric acid using computational methods. The stepwise Gibbs free energies of formation have been calculated utilizing the M06-2X functional, and the stability of the clusters is evaluated...... from the corresponding ΔG values. The first two additions of sulfuric acid to pinic acid are found to be favorable with ΔG values of -9.06 and -10.41 kcal/mol. Addition of a third sulfuric acid molecule is less favorable and leads to a structural rearrangement forming a bridged sulfuric acid-pinic acid...... cluster. The involvement of more than one pinic acid molecule in a single cluster is observed to lead to the formation of favorable (pinic acid)2(H2SO4) and (pinic acid)2(H2SO4)2 clusters. The identified most favorable growth paths starting from a single pinic acid molecule lead to closed structures...

  1. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters

    OpenAIRE

    Huber, Bettina;Herzog, Bastian;Drewes, Jörg E.;Koch, Konrad;Müller, Elisabeth

    2017-01-01

    Background Biogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters. Sulfur/sulfide oxidizing bacteria (SOB) oxidize sulfur compounds to sulfuric acid, inducing BSA corrosion. To obtain more information on BSA corrosion in sludge digesters, microbial communities from six different, BSA-damaged, digesters were analyzed using culture dependent methods and subsequent polymerase chain reaction denaturing gradient ...

  2. Electrolytic nature of aqueous sulfuric acid. 2. Acidity.

    Science.gov (United States)

    Fraenkel, Dan

    2012-09-27

    In part 1 of this study, I reported that the Debye-Hückel limiting law and the smaller-ion shell (SiS) model of strong electrolyte solutions fit nicely with the experimental mean ionic activity coefficient (γ(±)) of aqueous sulfuric acid as a function of concentration and of temperature when the acid is assumed to be a strong 1-3 electrolyte. Here, I report that the SiS-derived activity coefficient of H(+), γ(H(+)), of the 1-3 acid is comparable to that of aqueous HCl. This agrees with titration curves showing, as well-known, that sulfuric acid in water is parallel in strength to aqueous HCl. The calculated pH is in good accord with the Hammett acidity function, H(0), of aqueous sulfuric acid at low concentration, and differences between the two functions at high concentration are discussed and explained. This pH-H(0) relation is consistent with the literature showing that the H(0) of sulfuric acid (in the 1-9 M range) is similar to those of HCl and the other strong mineral monoprotic acids. The titration of aqueous sulfuric acid with NaOH does not agree with the known second dissociation constant of 0.010 23; rather, the constant is found to be ~0.32 and the acid behaves upon neutralization as a strong diprotic acid practically dissociating in one step. A plausible reaction pathway is offered to explain how the acid may transform, upon base neutralization, from a dissociated H(4)SO(5) (as 3H(+) and HSO(5)(3-)) to a dissociated H(2)SO(4) even though the equilibrium constant of the reaction H(+) + HSO(5)(3-) ↔ SO(4)(2-) + H(2)O, at 25 °C, is 10(-37) (part 1).

  3. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    Science.gov (United States)

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  4. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    Science.gov (United States)

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  5. Economic comparison of hydrogen production using sulfuric acid electrolysis and sulfur cycle water decomposition. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Farbman, G.H.; Krasicki, B.R.; Hardman, C.C.; Lin, S.S.; Parker, G.H.

    1978-06-01

    An evaluation of the relative economics of hydrogen production using two advanced techniques was performed. The hydrogen production systems considered were the Westinghouse Sulfur Cycle Water Decomposition System and a water electrolysis system employing a sulfuric acid electrolyte. The former is a hybrid system in which hydrogen is produced in an electrolyzer which uses sulfur dioxide to depolarize the anode. The electrolyte is sulfuric acid. Development and demonstration efforts have shown that extremely low cell voltages can be achieved. The second system uses a similar sulfuric acid electrolyte technology in water electrolysis cells. The comparative technoeconomics of hydrogen produced by the hybrid Sulfur Cycle and by water electrolysis using a sulfuric acid electrolyte were determined by assessing the performance and economics of 380 million SCFD plants, each energized by a very high temperature nuclear reactor (VHTR). The evaluation concluded that the overall efficiencies of hydrogen production, for operating parameters that appear reasonable for both systems, are approximately 41% for the sulfuric acid electrolysis and 47% for the hybrid Sulfur Cycle. The economic evaluation of hydrogen production, based on a 1976 cost basis and assuming a developed technology for both hydrogen production systems and the VHTRs, indicated that the hybrid Sulfur Cycle could generate hydrogen for a total cost approximately 6 to 7% less than the cost from the sulfuric acid electrolysis plant.

  6. Amine reactivity with charged sulfuric acid clusters

    Science.gov (United States)

    Bzdek, B. R.; Ridge, D. P.; Johnston, M. V.

    2011-08-01

    The distribution of charged species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid neutralization is cluster size-dependent. With increasing cluster size (and, therefore, a decreasing role of charge), both positively- and negatively-charged cluster compositions converge toward ammonium bisulfate. The reactivity of negatively-charged sulfuric acid-ammonia clusters with dimethylamine and ammonia is also investigated by FTICR-MS. Two series of negatively-charged clusters are investigated: [(HSO4)(H2SO4)x]- and [(NH4)x(HSO4)x+1(H2SO4)3]-. Dimethylamine substitution for ammonia in [(NH4) x(HSO4) x+1(H2SO4)3]- clusters is nearly collision-limited, and subsequent addition of dimethylamine to neutralize H2SO4 to bisulfate is within one order of magnitude of the substitution rate. Dimethylamine addition to [(HSO4) (H2SO4) x]- clusters is either not observed or very slow. The results of this study indicate that amine chemistry will be evident and important only in large ambient negative ions (>m/z 400), whereas amine chemistry may be evident in small ambient positive ions. Addition of ammonia to unneutralized clusters occurs at a rate that is ~2-3 orders of magnitude slower than incorporation of dimethylamine either by substitution or addition. Therefore, in locations where amine levels are within a few orders of magnitude of ammonia levels, amine chemistry may compete favorably with ammonia chemistry.

  7. Rocket Performance of Red Fuming Nitric Acid with Blends of Norbornadiene, Carene and Cardanol

    Directory of Open Access Journals (Sweden)

    R. Chhibber

    1992-07-01

    Full Text Available The fuel blends of nornornadiene and carene (50:50 by weight and norbornadiene, carene and cardanol (40:40:20 by weight exhibit synergistic hypergolic ignition with red fuming nitric acid (RFNA as oxidiser. These fuel blends have been evaluated by theoretical calculations of performance parameters and subsequently verified by static firing in a 10 kg/sub f/ thruster at a chamber pressure of around 20 atm, using RFNA (with 21 per cent N/sub 2/O/sub 4/ by weight as oxidiser. The theoretical calculations show maximum specific impulse and C*values at the O/F, 3 to be 227.8 s and 1598.7 m/s respectively for the norbornadiene-carene blend. The corresponding values for the norbornadiene, carene and cardanol blend were found to be 226.8 s and 1586.0 m/s respectively at the O/F, 4. For theoretical calculations, the chamber pressure (P/sub c and the exit pressure (P/sub e/0 were assumed to be 20 and 1 atm, respectively. The static firing of the propellants in a 10 kg thruster exhibited smooth pressure-time curves with the experimental C* values in close agreement with those calculated and the non-deposition of carbon in the nozzle. This indicated low combustion instability and high combustion efficiency under rocket conditions (> 0.9. The fuel blends with their low cost and toxicity and relatively high density can replace G-fuel used in several Indian missiles without impairing the performance.

  8. Nano-composite polymer gel electrolytes containing ortho-nitro benzoic acid: role of dielectric constant of solvent and fumed silica

    Science.gov (United States)

    Kumar, R.

    2015-03-01

    In this paper, nano-composite polymer gel electrolytes containing polymethylmethacrylate, dimethylacetamide, diethyl carbonate, fumed silica and ortho-nitro benzoic acid have been synthesized. Electrical conductivity, viscosity, pH and thermal behavior of these electrolytes have been studied. The effect of acid, polymer, fumed silica concentration on conductivity, pH and viscosity has been discussed. The effect of dielectric constant of solvent on conductivity behavior of composite polymer gel electrolytes has also been studied. Two maxima in conductivity behavior have been observed with fumed silica concentration for composite polymer gel electrolytes, which have been explained on the basis of double percolation threshold model. Maximum conductivity of 3.20 × 10-4 and 2.46 × 10-6 S/cm at room temperature has been observed for nano-composite polymer gel electrolytes containing 10 wt% polymethylmethacrylate in 1 M solution of o-nitro benzoic acid in dimethylacetamide and diethyl carbonate respectively. The intensity of first maximum observed in conductivity at low concentration of fumed silica has been found to decrease with the decrease in acid concentration for composite polymer gel electrolytes, while the intensity of second maximum at higher fumed silica concentration remains unaffected. The conductivity of composite gels does not show much change in the temperature range of 20-100 °C and also remains constant with time, making them suitable for use as electrolytes in various devices like fuel cells, proton batteries, electrochromic window applications etc.

  9. Amine reactivity with charged sulfuric acid clusters

    Directory of Open Access Journals (Sweden)

    B. R. Bzdek

    2011-05-01

    Full Text Available The distribution of ionic species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS. Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid neutralization is cluster size-dependent. With increasing cluster size (and, therefore, a decreasing role of charge, both positively- and negatively-charged cluster compositions converge toward ammonium bisulfate. The reactivity of negatively-charged sulfuric acid-ammonia clusters with dimethylamine and ammonia are also investigated by FTICR-MS. Two series of negatively-charged clusters are investigated: [(HSO4(H2SO4x] and [(NH4x(HSO4x+1(H2SO43]. Dimethylamine substitution for ammonia in [(NH4x(HSO4x+1(H2SO43] clusters is nearly collision-limited, and subsequent addition of dimethylamine to neutralize H2SO4 is within one order of magnitude of the substitution rate. Dimethylamine addition to [(HSO4(H2SO4x]clusters is either not observed or very slow. The results of this study indicate that amine chemistry will be evident and important only in large ambient negative ions (> m/z 400, whereas amine chemistry may be evident in small ambient positive ions. Addition of ammonia to unneutralized clusters occurs at a rate that is ~2–3 orders of magnitude slower than incorporation of dimethylamine either by

  10. Amine reactivity with charged sulfuric acid clusters

    Directory of Open Access Journals (Sweden)

    B. R. Bzdek

    2011-08-01

    Full Text Available The distribution of charged species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS. Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid neutralization is cluster size-dependent. With increasing cluster size (and, therefore, a decreasing role of charge, both positively- and negatively-charged cluster compositions converge toward ammonium bisulfate. The reactivity of negatively-charged sulfuric acid-ammonia clusters with dimethylamine and ammonia is also investigated by FTICR-MS. Two series of negatively-charged clusters are investigated: [(HSO4(H2SO4x] and [(NH4x(HSO4x+1(H2SO43]. Dimethylamine substitution for ammonia in [(NH4 x(HSO4 x+1(H2SO43] clusters is nearly collision-limited, and subsequent addition of dimethylamine to neutralize H2SO4 to bisulfate is within one order of magnitude of the substitution rate. Dimethylamine addition to [(HSO4 (H2SO4 x] clusters is either not observed or very slow. The results of this study indicate that amine chemistry will be evident and important only in large ambient negative ions (>m/z 400, whereas amine chemistry may be evident in small ambient positive ions. Addition of ammonia to unneutralized clusters occurs at a rate that is ~2–3 orders of magnitude slower than incorporation of dimethylamine either by substitution or addition

  11. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    Science.gov (United States)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  12. Integrated boiler, superheater, and decomposer for sulfuric acid decomposition

    Science.gov (United States)

    Moore, Robert; Pickard, Paul S.; Parma, Jr., Edward J.; Vernon, Milton E.; Gelbard, Fred; Lenard, Roger X.

    2010-01-12

    A method and apparatus, constructed of ceramics and other corrosion resistant materials, for decomposing sulfuric acid into sulfur dioxide, oxygen and water using an integrated boiler, superheater, and decomposer unit comprising a bayonet-type, dual-tube, counter-flow heat exchanger with a catalytic insert and a central baffle to increase recuperation efficiency.

  13. The corrosion protection of several aluminum alloys by chromic acid and sulfuric acid anodizing

    Science.gov (United States)

    Danford, M. D.

    1994-01-01

    The corrosion protection afforded 7075-T6, 7075-T3, 6061-T6, and 2024-T3 aluminum alloys by chromic acid and sulfuric acid anodizing was examined using electrochemical techniques. From these studies, it is concluded that sulfuric acid anodizing provides superior corrosion protection compared to chromic acid anodizing.

  14. Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters.

    Science.gov (United States)

    Huber, Bettina; Herzog, Bastian; Drewes, Jörg E; Koch, Konrad; Müller, Elisabeth

    2016-07-18

    Biogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters. Sulfur/sulfide oxidizing bacteria (SOB) oxidize sulfur compounds to sulfuric acid, inducing BSA corrosion. To obtain more information on BSA corrosion in sludge digesters, microbial communities from six different, BSA-damaged, digesters were analyzed using culture dependent methods and subsequent polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). BSA production was determined in laboratory scale systems with mixed and pure cultures, and in-situ with concrete specimens from the digester headspace and sludge zones. The SOB Acidithiobacillus thiooxidans, Thiomonas intermedia, and Thiomonas perometabolis were cultivated and compared to PCR-DGGE results, revealing the presence of additional acidophilic and neutrophilic SOB. Sulfate concentrations of 10-87 mmol/L after 6-21 days of incubation (final pH 1.0-2.0) in mixed cultures, and up to 433 mmol/L after 42 days (final pH sulfuric acid production potentials. Additionally, elevated sulfate concentrations in the corroded concrete of the digester headspace in contrast to the concrete of the sludge zone indicated biological sulfur/sulfide oxidation. The presence of SOB and confirmation of their sulfuric acid production under laboratory conditions reveal that these organisms might contribute to BSA corrosion within sludge digesters. Elevated sulfate concentrations on the corroded concrete wall in the digester headspace (compared to the sludge zone) further indicate biological sulfur/sulfide oxidation in-situ. For the first time, SOB presence and activity is directly relatable to BSA corrosion in sludge digesters.

  15. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Science.gov (United States)

    2010-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

  16. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  17. Concentration Boundary Layer Model of Mortar Corrosion by Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    SONG Zhigang; ZHANG Xuesong; MIN Hongguang

    2011-01-01

    A long time immersion experiment of mortar specimens is carried out to investigate their degradation mechanism by sulfuric acid. Water-cement ratios of mortar are ranging from 0.5 to 0.7 and the pH value of sulfuric acid is 3.5 and 4.0 respectively. The pH meter is used to monitor the soak solution and the titration sulfuric acid with given concentration is added to maintain original pH value, through which the acid consumption of mortar is recorded. A theoretical reaction rate model is also proposed based on concentration boundary layer model. The results show that theoretical model fits the experimental results well and the corrosion mechanism can be modeled by a diffusion process accompanied with an irreversible chemical reaction when pH value of soak solution is no less than 3.5.

  18. Solvent extraction of vanadium from sulfuric acid solution

    Institute of Scientific and Technical Information of China (English)

    WANG Mingyu; ZHANG Guiqing; WANG Xuewen; ZHANG Jialiang

    2009-01-01

    The behaviour of vanadium(V) extracted from sulfuric acid solution was investigated using Cyanex 923 as an cxtractant. The effects of the concentration of Cyanex 923 and the pH of the solution were studied. The extraction of vanadium(V) increases with the increase of Cyanex 923 concentration and shaking time. Cyanex 923 can extract vanadium(V) fi'om sulfuric acid solution at low pH conditions, and the best pH conditions for exuaction of vanadium(V) are at pH 1.0-2.0. The species extracted into the organic phase is VO2HSO4 with one molecule of Cyanex 923. Equilibrium studies were used to assess the extraction efficiency of vanadium(V) recovery from the sulfuric acid solution.

  19. Air pollution and asthma: clinical studies with sulfuric acid aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Utell, M.J.; Frampton, M.W.; Morrow, P.E. (University of Rochester School of Medicine and Dentistry, NY (United States))

    1991-11-01

    Until recently, acid deposition has been widely considered a serious ecological problem but not a threat to human health. The controlled clinical study is an important approach in linking acidic aerosol inhalation with respiratory effects. Asthmatic patients represent a subpopulation most responsive to sulfuric acid aerosols. In a series of studies with asthmatic volunteers, several factors have been identified that may modulate the intensity of the bronchoconstrictor response to inhaled acidic aerosols. We found (1) enhancement of the bronchoconstrictor response during exercise, (2) the more acidic aerosols provoke the greatest changes in lung function, and (3) mitigation of airway responses during sulfuric acid aerosol inhalation caused by high respiratory ammonia concentrations. Additional factors influencing responsiveness await identification.

  20. About safety technology of cleaning tank storing fuming sulphuric acid%发烟硫酸贮罐清洗安全技术

    Institute of Scientific and Technical Information of China (English)

    彭友德

    2001-01-01

    To take the safety measures according to conclusion of analysis accident hidden danger, to clean successfully the tank storing fuming sulphuric acid on neutralization, then to put forward the improving measures.%根据事故隐患分析,采取安全措施,成功地用中和法清洗发烟硫酸贮罐,并提出了贮罐的改进措施。

  1. Physical, Mechanical, and Thermal Analysis of Polylactic Acid/Fumed Silica/Clay (1.28E Nanocomposites

    Directory of Open Access Journals (Sweden)

    Josephine Chang Hui Lai

    2015-01-01

    Full Text Available Polylactic acid/fumed silica/clay (PLA/FS/clay (1.28E nanocomposites have been successfully prepared by solution-intercalation film-casting technique. The resultant nanocomposites were characterized by Fourier Transform Infrared Spectroscopy (FT-IR, Scanning Electron Microscopy (SEM, tensile test, thermogravimetric analysis (TGA, and moisture absorption test. The FT-IR spectrum indicated that PLA/FS/clay with 2 wt% had much broader peak compared to 5 wt%, 10 wt%, and 15 wt% nanocomposites. Incorporation of clay (1.28E with 2 wt% showed the best compatibility with PLA/FS matrix. PLA/FS/clay (1.28E nanocomposite with 2 wt% of clay loading had higher tensile strength and modulus compared to other nanocomposites. The thermal stability and activation energy of 2 wt% of PLA/FS/clay (1.28E nanocomposite are the highest among all the nanocomposites. The moisture absorbed into PLA/FS/clay (1.28E nanocomposite was significantly reduced with clay loading of 2 wt%.

  2. ELEMENTAL MERCURY ADSORPTION BY ACTIVATED CARBON TREATED WITH SULFURIC ACID

    Science.gov (United States)

    The paper gives results of a study of the adsorption of elemental mercury at 125 C by a sulfuric-acid (H2S04, 50% w/w/ solution)-treated carbon for the removal of mercury from flue gas. The pore structure of the sample was characterized by nitrogen (N2) at -196 C and the t-plot m...

  3. Potential heat exchange fluids for use in sulfuric acid vaporizers

    Science.gov (United States)

    Lawson, D. D.; Petersen, G. R.

    1981-01-01

    A series of liquids have been screened as candidate heat exchange fluids for service in thermochemical cycles that involve the vaporization of sulfuric acid. The required chemical and physical criteria of the liquids is described with the results of some preliminary high temperature test data presented.

  4. Heat-Exchange Fluids for Sulfuric Acid Vaporizers

    Science.gov (United States)

    Lawson, D. D.; Petersen, G. R.

    1982-01-01

    Some fluorine-substituted organic materials meet criteria for heat-exchange fluids in contact with sulfuric acid. Most promising of these are perfluoropropylene oxide polymers with degree of polymerization (DP) between 10 and 50. It is desirable to have DP in high range because vapor pressure of material decreases as DP increases, and high-DP liquids have lower loss due to vaporization.

  5. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    Science.gov (United States)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  6. Microbial Sulfur Cycling in an Acid Mine Lake

    Science.gov (United States)

    Bernier, L.; Warren, L. A.

    2004-12-01

    Geochemical dynamics of a tailings impacted lake in Northern Ontario were investigated over a three-year period, in which active pyrrhotite slurry disposal was initiated in year two. A strong seasonal trend of decreasing epilimnetic pH with significant diurnal acid production, pre-, during and post slurry deposition was observed with high rates observed compared to pre-slurry. Slurry deposition occurred at the surface of the lake and acted as a reaction stimulant for acid generation. Over the diurnal timescale investigated, the highest rates of acid production occurred not at the lake surface but within the metaliminetic region of the lake. This region was exemplified by strong decreasing oxygen gradients, and thus observed high rates of acid generation are more consistent with microbial pathways of sulfur oxidation than with abiotic, oxygen catalyzed pathways. Consistent with microbial catalysis, metalimnetic rates of acid generation were highest during June and July when microbial populations and metabolic rates were maximal. These results indicate that microbial oxidation of sulfur species play a major role in acid generation in this system. Further, observed rates of acid generation exceed those predicted by published abiotic rates of pyrrhotite oxidation, but are consistent with literature estimates of acid generation catalyzed by microbial activity. Acidithiobacilli accounted for up to 50% of the microbial community pre slurry, but were absent post slurry deposition. These results are the first to demonstrate quantitatively that microbial sulfur oxidation can play a predominant role in acid generation within mine tailings impacted systems. They further highlight the need to evaluate the more complex pathways by which microorganisms process sulfur as the conditions, controls and process rates differ from those observed for abiotic reactions.

  7. Study of Cellulose Interaction with Concentrated Solutions of Sulfuric Acid

    OpenAIRE

    Michael Ioelovich

    2012-01-01

    The effect of the concentration of sulfuric acid (SA) and temperature on structure and properties of cellulose (MCC) had been studied. Investigations showed that solubility of the initial sample at the room temperature increased gradually in the range of the acid concentration from 50 to 60 wt.% SA. When SA concentration reached 65 wt.%, then MCC sample dissolved completely. Cellulose regenerated from 65 wt.% SA had an amorphized structure and was characterized by high enzymatic digestibility...

  8. Recovery of high purity sulfuric acid from the waste acid in toluene nitration process by rectification.

    Science.gov (United States)

    Song, Kai; Meng, Qingqiang; Shu, Fan; Ye, Zhengfang

    2013-01-01

    Waste sulfuric acid is a byproduct generated from numerous industrial chemical processes. It is essential to remove the impurities and recover the sulfuric acid from the waste acid. In this study the rectification method was introduced to recover high purity sulfuric acid from the waste acid generated in toluene nitration process by using rectification column. The waste acid quality before and after rectification were evaluated using UV-Vis spectroscopy, GC/MS, HPLC and other physical and chemical analysis. It was shown that five nitro aromatic compounds in the waste acid were substantially removed and high purity sulfuric acid was also recovered in the rectification process at the same time. The COD was removed by 94% and the chrominance was reduced from 1000° to 1°. The recovered sulfuric acid with the concentration reaching 98.2 wt% had a comparable quality with commercial sulfuric acid and could be recycled back into the toluene nitration process, which could avoid waste of resources and reduce the environmental impact and pollution.

  9. Removal of an acid fume system contaminated with perchlorates located within hot cell

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, K.E.; Henslee, S.P.; Vroman, W.R.; Krsul, J.R.; Michelbacher, J.A.; Knighton, G.C.

    1992-09-01

    An add scrubbing system located within the confines of a highly radioactive hot cell at Argonne National Laboratory-West (ANL-W) was remotely removed. The acid scrubbing system was routinely used for the dissolution of irradiated reactor fuel samples and structural materials. Perchloric acid was one of the acids used in the dissolution process and remained in the system with its inherent risks. Personnel could not enter the hot cell to perform the dismantling of the acid scabbing system due to the high radiation field and the explosion potential associated with the perchlorates. A robot was designed and built at ANL-W and used to dismantle the system without the need for personnel entry into the hot cell. The robot was also used for size reduction of removed components and loading of the removed components into waste containers.

  10. Interaction of sulfuric acid corrosion and mechanical wear of iron

    Science.gov (United States)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1986-01-01

    Friction and wear experiment were conducted with elemental iron sliding on aluminum oxide in aerated sulfuric acid at concentrations ranging from very dilute (0.00007 N; i.e., 4 ppm) to very concentrated (96 percent acid). Load and reciprocating sliding speed were kept constant. With the most dilute acid concentration of 0.00007 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At slightly higher concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent (1 N), the well-established high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid and decreased somewhat to 50 percent acid in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It was apparent that the normal passivating film was being worn away and a galvanic cell established that rapidly attacked the wear area. Under the conditions where direct corrosion losses were highest, the coefficient of friction was the lowest.

  11. Free energy barrier in the growth of sulfuric acid-ammonia and sulfuric acid-dimethylamine clusters

    Science.gov (United States)

    Olenius, T.; Kupiainen-Määttä, O.; Ortega, I. K.; Kurtén, T.; Vehkamäki, H.

    2013-08-01

    The first step in atmospheric new particle formation involves the aggregation of gas phase molecules into small molecular clusters that can grow by colliding with gas molecules and each other. In this work we used first principles quantum chemistry combined with a dynamic model to study the steady-state kinetics of sets of small clusters consisting of sulfuric acid and ammonia or sulfuric acid and dimethylamine molecules. Both sets were studied with and without electrically charged clusters. We show the main clustering pathways in the simulated systems together with the quantum chemical Gibbs free energies of formation of the growing clusters. In the sulfuric acid-ammonia system, the major growth pathways exhibit free energy barriers, whereas in the acid-dimethylamine system the growth occurs mainly via barrierless condensation. When ions are present, charged clusters contribute significantly to the growth in the acid-ammonia system. For dimethylamine the role of ions is minor, except at very low acid concentration, and the growing clusters are electrically neutral.

  12. Friction and wear of iron in sulfuric acid

    Science.gov (United States)

    Rengstorff, G. W. P.; Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Elemental iron sliding on aluminum oxide in aerated sulfuric acid concentrations ranging from very dilute (0.000007 N; i.e., 4 ppm) to very concentrated (96 percent acid) was studied. Load and reciprocating sliding speeds were kept constant. With the most dilute acid of 0.7 to 0.0002 N, a complex corrosion product formed that was friable and often increased friction and wear. At concentrations of 0.001 N, metal losses were essentially by wear alone. Because no buildup of corrosion products occurred, this acid concentration became the standard from which to separate metal loss from direct corrosion and mechanical wear losses. When the acid concentration was increased to 5 percent, the high corrosion rate of iron in sulfuric acid strongly dominated the total wear loss. This strong corrosion increased to 30 percent acid, and decreased somewhat at 50 percent in accordance with expectations. However, the low corrosion of iron expected at acid concentrations of 65 to 96 percent was not observed in the wear area. It is apparent that the normal passivating film was being worn away and a galvanic cell established which rapidly attached to the wear area.

  13. The role of ammonia in sulfuric acid ion induced nucleation

    Directory of Open Access Journals (Sweden)

    I. K. Ortega

    2008-06-01

    Full Text Available We have developed a new multi-step strategy for quantum chemical calculations on atmospherically relevant cluster structures that makes calculation for large clusters affordable with a good accuracy-to-computational effort ratio. We have applied this strategy to evaluate the relevance of ternary ion induced nucleation; we have also performed calculations for neutral ternary nucleation for comparison. The results for neutral ternary nucleation agree with previous results, and confirm the important role of ammonia in enhancing the growth of sulfuric acid clusters. On the other hand, we have found that ammonia does not enhance the growth of ionic sulfuric acid clusters. The results also confirm that ion-induced nucleation is a barrierless process at high altitudes, but at ground level there exists a barrier due to the presence of a local minimum on the free energy surface.

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2001-11-06

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2001 through September 30, 2001. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. During the current period, American Electric Power (AEP) joined the project as an additional co-funder and as a provider of a host site for testing. This is the fourth reporting period for the subject Cooperative Agreement. During this period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Station. These tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Station), and a byproduct magnesium hydroxide slurry (both Gavin Station and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70 to 75% sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Station, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO

  15. COS in the stratosphere. [sulfuric acid aerosol precursor

    Science.gov (United States)

    Inn, E. C. Y.; Vedder, J. F.; Tyson, B. J.; Ohara, D.

    1979-01-01

    Carbonyl sulfide (COS) has been detected in the stratosphere, and mixing ratio measurements are reported for altitudes of 15.2 to 31.2 km. A large volume, cryogenic sampling system mounted on board a U-2 aircraft has been used for lower stratosphere measurements and a balloon platform for measurement at 31.2 km. These observations and measurements strongly support the concept that stratospheric COS is an important precursor in the formation of sulfuric acid aerosols.

  16. Ozonation of Sulfur Dioxide in Sulphuric Acid Solution

    Institute of Scientific and Technical Information of China (English)

    LIU Limei; ZHANG Shuting; L(U) Xuebin; YU Xiaoyan; ZHI Suli

    2013-01-01

    In this study,the oxidation rates of sulfur dioxide (SO2) in sulphuric acid solution by ozone and oxygen were compared,and the oxidation mechanism of ozone on SO2 was investigated.The results showed that the oxidation-reduction potential of the acidic solution was enhanced,the transformation rate of sulfuric acid to sulphuric acid was increased and the absorption driving force was improved in the presence of ozone.By comparing the amount of sulfate ions measured in the experiments and the theoretical amount of sulfate ions calculated from the amount of ozone consumed in the reaction,it can be confirmed that oxygen free radicals from dissociation of ozone are reactive as an efficient oxidant and oxygen from ozone generator participates in the reaction with SO2.0.602tmol of effective oxygen was introduced into the reaction by one mole of ozone in 10.15 min at sulphuric acid concentration of 3% (by mass),SO2 concentration of 1.33% (by volume) and oxygen flow rate of 1.5 L·min-1 from ozone generator.

  17. Sulfuric Acid and Soot Particle Formation in Aircraft Exhaust

    Science.gov (United States)

    Pueschel, Rudolf F.; Verma, S.; Ferry, G. V.; Howard, S. D.; Vay, S.; Kinne, S. A.; Baumgardner, D.; Dermott, P.; Kreidenweis, S.; Goodman, J.; hide

    1997-01-01

    A combination of CN counts, Ames wire impactor size analyses and optical particle counter data in aircraft exhaust results in a continuous particle size distribution between 0.01 micrometer and 1 micrometer particle radius sampled in the exhaust of a Boeing 757 research aircraft. The two orders of magnitude size range covered by the measurements correspond to 6-7 orders of magnitude particle concentration. CN counts and small particle wire impactor data determine a nucleation mode, composed of aircraft-emitted sulfuric acid aerosol, that contributes between 62% and 85% to the total aerosol surface area and between 31% and 34% to its volume. Soot aerosol comprises 0.5% of the surface area of the sulfuric acid aerosol. Emission indices are: EIH2SO4 = 0.05 g/kgFUEL and (0.2-0.5) g/kgFUEL (for 75 ppmm and 675 ppmm fuel-S, respectively), 2.5E4sulfur (gas) to H2SO4 (particle) conversion efficiency is between 10% and 25%.

  18. Adsorption of 2-naphthalenesulfonic acid/sulfuric acid/sulfurous acid from aqueous solution by iron-impregnated weakly basic resin:Equilibrium and model

    Institute of Scientific and Technical Information of China (English)

    Changhai Li; Dongmei Jia

    2016-01-01

    Commercial grade weakly basic resin D301 was impregnated with iron through a simple method using ferric chloride. Experiments for single, bisolute and trinary competitive adsorption were carried out to investigate the adsorption behavior of 2-naphthalenesulfonic acid (NSA), sulfuric acid and sulfurous acid from their solution at 298K onto the novel hybrid iron impregnated D301(Fe-D301). Adsorption affinity of NSA on Fe-D301 was found to be much higher than that of sulfuric acid, while adsorption affinity of sulfuric acid was slightly higher than that of sulfurous acid. The data of single-solute adsorption were fitted to the Langmuir model and the Freundlich adsorption model. The non-ideal competitive adsorbed model coupled with the single-solute adsorp-tion models were used to predict the bisolute and trinary-solute competitive adsorption equilibria. The NICM coupled with the Langmuir model yields the favorable representation of the bisolute and trinary-solute compet-itive adsorption behavior.

  19. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2003-10-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in

  20. Synthesis of nanosilica from silica fume using an acid-base precipitation technique and PVA as a nonionic surfactant

    Directory of Open Access Journals (Sweden)

    Vajihe Jafari

    2014-12-01

    Full Text Available The purpose of the present study was to synthesize and characterize nanosilica from alkali-extraction of silica fume under controlled conditions using poly (vinyl alcohol (PVA as a dispersing agent. The dissolution efficiency of silica fume was affected by various factors such as concentration of the reagent, reaction time and temperature. A maximum dissolution efficiency of 91% was achieved at the sodium hydroxide solution concentration of 2.5 M, after areaction time of 30 minutes and at areaction temperature of 80°C. The microstructure and morphology of the obtained nanosilica powder at the optimum conditions were characterized using scanning electron microscopy (SEM. SEM images confirmed the formation of smaller and less agglomerated nanosilica particles due to the existence of the surfactant. Further, the synthesized nanosilica was characterized by Fourier transform infrared (FTIR spectroscopy, X-ray diffractometry (XRF and X-ray diffraction (XRD. The results show that the synthesized nanosilica consisted of pure silica particles.

  1. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    Science.gov (United States)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  2. Adsorption of β-Naphthalenesulfonic Acid/Sulfuric Acid From Their Solution by Weakly Basic Resin

    Institute of Scientific and Technical Information of China (English)

    李长海; 石宏仁; 等

    2003-01-01

    Experiments for single and bisolute competitive adsorption were carried out to investigate the adsorption behavior of β-naphthalenesulfonic acid(NSA and sulfuric acid from their solution at 25℃ onto weakly basic resin D301R,Adsorption affinity of sulfuric acid on D301R was found to be much higher than that of NSA.The data of single-solute adsorption were fitted to the Langmuir model and the Freundlich adsorption model.The ideal adsorbed solution theory(IAST) coupled with the single-solute adsorption models were used to predict the bisolute competitive adsorption equilibria.The IAST coupled with the Langmuir and the Freundlich model for sulfuric acid and NSA.Respectively,yields the favorable representation of the bisolute competitive adsorption behavior.

  3. An Efficient Procedure for Esterification of Aryloxyacetic Acid and Arylthioacetic Acid Catalyzed by Silica Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    LI,Hong-Ya; LI,Ji-Tai; LI,Hui-Zhang

    2004-01-01

    @@ Aryloxyacetate and arylthioacetate are wildly used in herbicides, plant regulator and insecticides. Recently, Wille et al. have reported that methyl aryloxyacetate is an efficient agent to prevent and treat allergic contact dermatitis.[1] The most popular synthesis is by heating sodium phenoxide (mercaptide) with ethyl chloroacetate in DMF,[2] or by the esterification of acid with alcohol using concentrated H2SO4 as catalyst.[3] In this paper, synthesis of aryloxyacetate and aryl thioacetate from aryloxyacetic acid and arylthioacetic acid respectively in ether catalyzed by silica sulfuric acid in 83%~94% yields is described. The catalyst is reused for 3 times without significant loss of activity (Entry 4). Compared with common procedures, the present procedure possesses the advantages of the operational simplicity, short reaction time,less-corrosion, high yield and reusable catalyst.

  4. SULFURIC ACID REMOVAL PROCESS EVALUATION: LONG-TERM RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe; Richard McMillan

    2002-07-03

    The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley Authority, and Dravo Lime, Inc. Sulfuric acid controls are becoming of increasing interest to power generators with coal-fired units for a number of reasons. Sulfuric acid is a Toxic Release Inventory species and can cause a variety of plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NO{sub x} control on many coal-fired plants, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project previously tested the effectiveness of furnace injection of four different calcium-and/or magnesium-based alkaline sorbents on full-scale utility boilers. These reagents were tested during four one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide byproduct slurry produced from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization system. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercial magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners, while the other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace, either across from the nose of the furnace or across from the pendant superheater tubes. After completing the four one- to two-week tests, the most promising sorbents were selected for

  5. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    KAUST Repository

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  6. Comparison between the single-bubble sonoluminescences in sulfuric acid and in water

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; CHEN WeiZhong; GAO XianXian; LIANG Yue

    2009-01-01

    Single-bubble sonoluminescence (SBSL) is achieved with strong stability in sulfuric acid solutions. Bubble dynamics and the SBSL spectroscopy in the sulfuric acid solutions with different concentrations are studied with phase-locked integral stroboscopic photography method and a spectrograph, respectively. The experimental results are compared with those in water. The SBSL in sulfuric acid is brighter than that in water. One of the most important reasons for that is the larger viscosity of sulfuric acid, which results in the larger ambient radius and thus the more contents of luminous material inside the bubble. However, sonoluminescence bubble's collapse in sulfuric acid is less violent than that in water, and the corresponding blackbody radiation temperature of the SBSL in sulfuric acid is lower than that in water.

  7. Comparison between the single-bubble sonoluminescences in sulfuric acid and in water

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Single-bubble sonoluminescence (SBSL) is achieved with strong stability in sulfuric acid solutions. Bubble dynamics and the SBSL spectroscopy in the sulfuric acid solutions with different concentra- tions are studied with phase-locked integral stroboscopic photography method and a spectrograph, respectively. The experimental results are compared with those in water. The SBSL in sulfuric acid is brighter than that in water. One of the most important reasons for that is the larger viscosity of sulfuric acid, which results in the larger ambient radius and thus the more contents of luminous material inside the bubble. However, sonoluminescence bubble’s collapse in sulfuric acid is less violent than that in water, and the corresponding blackbody radiation temperature of the SBSL in sulfuric acid is lower than that in water.

  8. The Liquid Crystal State Poliamidbenzimidazola Solutions in Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Khanchich Oleg

    2017-01-01

    Full Text Available We studied the temperature and concentration conditions of education and the field of LC – phase of existence in sulfuric acid solutions poliamidbenzimidazola. The polarization–optical methods and the structural features of biphasic and anisotropic areas and built plots the phase diagram of the concentrated solutions poliamidbenzimidazola in H2SO4. It is shown that in certain temperature – concentration of cooling modes can be observed the coexistence of three phases: isotropic crystal and a liquid crystal, which is shown as a characteristic of liquid crystal birefringent domains.

  9. Determination of thoracic and inhalable fraction of sulfuric acid(VI) in workplace air

    OpenAIRE

    Małgorzata Szewczyńska; Małgorzata Pośniak; Emilia Pągowska

    2016-01-01

    Background: The article presents the results of the determination of the inhalable and thoracic fraction of sulfuric acid(VI) in 3 workplaces producing or processing this chemical. Material and Methods: To collect thoracic fractions of sulfuric acid(VI) Parallel Particle Impactor (PPI) was used. To isolate inhalable fraction of sulfuric acid(VI) from the air we used a sampler developed at the Institute of Occupational Medicine (IOM), United Kingdom. Parallel Particle Impactor and IOM samplers...

  10. Hydration of pure and base-Containing sulfuric acid clusters studied by computational chemistry methods

    Science.gov (United States)

    Henschel, Henning; Ortega, Ismael K.; Kupiainen, Oona; Olenius, Tinja; Kurtén, Theo; Vehkamäki, Hanna

    2013-05-01

    The formation of hydrates of small molecular sulfuric acid clusters and cluster containing both sulfuric acid and base (ammonia or dimethylamine) has been studied by means of computational chemistry. Using a combined ab initio/density functional approach, formation energies of clusters with up to four sulfuric acid molecules, and up to two base molecules, have been calculated. Consequences for the hydration level of the corresponding clusters have been modelled. While the majority of pure sulfuric acid cluster are comparatively strongly hydrated, base containing cluster were found to be less hydrophilic. Dimethylamine is particularly effective in lowering the hydrophilicity of the cluster. Implications of the hydration profiles on atmospheric processes are discussed.

  11. Amine substitution into sulfuric acid – ammonia clusters

    Directory of Open Access Journals (Sweden)

    H. Vehkamäki

    2012-04-01

    Full Text Available The substitution of ammonia by dimethylamine in sulfuric acid – ammonia – dimethylamine clusters was studied using a collision and evaporation dynamics model. Quantum chemical formation free energies were computed using B3LYP/CBSB7 for geometries and frequencies and RI-CC2/aug-cc-pV(T+dZ for electronic energies. We first demonstrate the good performance of our method by a comparison with an experimental study investigating base substitution in positively charged clusters, and then continue by simulating base exchange in neutral clusters, which cannot be measured directly. Collisions of a dimethylamine molecule with an ammonia containing positively charged cluster result in the instantaneous evaporation of an ammonia molecule, while the dimethylamine molecule remains in the cluster. According to our simulations, a similar base exchange can take place in neutral clusters, although the overall process is more complicated. Neutral sulfuric acid – ammonia clusters are significantly less stable than their positively charged counterparts, resulting in a competition between cluster evaporation and base exchange.

  12. Amine substitution into sulfuric acid – ammonia clusters

    Directory of Open Access Journals (Sweden)

    O. Kupiainen

    2011-11-01

    Full Text Available The substitution of ammonia by dimethylamine in sulfuric acid – ammonia – dimethylamine clusters was studied using a collision and evaporation dynamics model. Quantum chemical formation free energies were computed using B3LYP/CBSB7 for geometries and frequencies and RI-CC2/aug-cc-pV(T+dZ for electronic energies. We first demonstrate the good performance of our method by a comparison with an experimental study investigating base substitution in positively charged clusters, and then continue by simulating base exchange in neutral clusters, which cannot be measured directly. Collisions of a dimethylamine molecule with an ammonia containing positively charged cluster result in the instantaneous evaporation of an ammonia molecule, while the dimethylamine molecule remains in the cluster. According to our simulations, a similar base exchange can take place in neutral clusters, although the overall process is more complicated. Neutral sulfuric acid – ammonia clusters are significantly less stable than their positively charged counterparts, resulting in a competition between cluster evaporation and base exchange.

  13. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  14. Synergy effect of naphthenic acid corrosion and sulfur corrosion in crude oil distillation unit

    Science.gov (United States)

    Huang, B. S.; Yin, W. F.; Sang, D. H.; Jiang, Z. Y.

    2012-10-01

    The synergy effect of naphthenic acid corrosion and sulfur corrosion at high temperature in crude oil distillation unit was studied using Q235 carbon-manganese steel and 316 stainless steel. The corrosion of Q235 and 316 in corrosion media containing sulfur and/or naphthenic acid at 280 °C was investigated by weight loss, scanning electron microscope (SEM), EDS and X-ray diffractometer (XRD) analysis. The results showed that in corrosion media containing only sulfur, the corrosion rate of Q235 and 316 first increased and then decreased with the increase of sulfur content. In corrosion media containing naphthenic acid and sulfur, with the variations of acid value or sulfur content, the synergy effect of naphthenic acid corrosion and sulfur corrosion has a great influence on the corrosion rate of Q235 and 316. It was indicated that the sulfur accelerated naphthenic acid corrosion below a certain sulfur content but prevented naphthenic acid corrosion above that. The corrosion products on two steels after exposure to corrosion media were investigated. The stable Cr5S8 phases detected in the corrosion products film of 316 were considered as the reason why 316 has greater corrosion resistance to that of Q235.

  15. A new test procedure for biogenic sulfuric acid corrosion of concrete

    Science.gov (United States)

    Vincke; Verstichel; Monteny; Verstraete

    1999-01-01

    A new test method is described for biogenic sulfuric acid corrosion of concrete, more specifically in sewer conditions. The aim of the new test method is the development of an accelerated and reproducible procedure for monitoring the resistance of different types of concrete with regard to biogenic sulfuric acid corrosion. This experimental procedure reflects worst case conditions by providing besides H2S, also an enrichment of thiobacilli and biologically produced sulfur. By simulating the cyclic processes occurring in sewer pipes, significant differences between concrete mixtures could be detected after 51 days. Concrete modified by a styrene-acrylic ester polymer demonstrated a higher resistance against biogenic sulfuric acid attack.

  16. Theoretical study of ultraviolet induced photodissociation dynamics of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuhiro; Ohta, Ayumi; Suzuki, Tomoya; Ikeda, Kumiko [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Danielache, Sebastian O. [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan); Earth-Life Science Institute (ELSI), Tokyo Institute of Technology (Japan); Department of Environmental Science and Techonology, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yoohama 226-8502 (Japan); Nanbu, Shinkoh, E-mail: shinkoh.nanbu@sophia.ac.jp [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-ku, Tokyo 102-8554 (Japan)

    2015-05-01

    Highlights: • Photodissociation dynamics of H{sub 2}SO{sub 4} at low-lying electronically excited states were investigated. • Photochemical processes were simulated by on-the-fly ab initio MD. • Sulfuric acid after the excitation to the S{sub 1} state dissociated to HSO{sub 4}(1{sup 2}A″) + H({sup 2}S). • Sulfuric acid after the excitation to the S{sub 2} state dissociated to HSO{sub 4}(2{sup 2}A″) + H({sup 2}S). • The energy region of the UV spectra where NMD fractionation may occur is predicted. - Abstract: Photodissociation dynamics of sulfuric acid after excitation to the first and second excited states (S{sub 1} and S{sub 2}) were studied by an on-the-fly ab initio molecular dynamics simulations based on the Zhu–Nakamura version of the trajectory surface hopping (ZN-TSH). Forces acting on the nuclear motion were computed on-the-fly by CASSCF method with Dunning’s augmented cc-pVDZ basis set. It was newly found that the parent molecule dissociated into two reaction-channels (i) HSO{sub 4}(1{sup 2}A″) + H({sup 2}S) by S{sub 1}-excitation, and (ii) HSO{sub 4}(2{sup 2}A″) + H({sup 2}S) by S{sub 2}-excitation. The direct dissociation dynamics yield products different from the SO{sub 2} + 2OH fragments often presented in the literature. Both channels result in the same product and differs only in the electronic state of the HSO{sub 4} fragment{sub .} The trajectories running on S{sub 2} do not hop with S{sub 0} and a nonadiabatic transition happens at the S{sub 2}–S{sub 1} conical intersection located at a longer OH bond-length than the S{sub 1}–S{sub 0} intersection producing an electronic excited state (2{sup 2}A″) of HSO{sub 4} product.

  17. Unexpectedly acidic nanoparticles formed in dimethylamine-ammonia-sulfuric-acid nucleation experiments at CLOUD

    Science.gov (United States)

    Lawler, Michael J.; Winkler, Paul M.; Kim, Jaeseok; Ahlm, Lars; Tröstl, Jasmin; Praplan, Arnaud P.; Schobesberger, Siegfried; Kürten, Andreas; Kirkby, Jasper; Bianchi, Federico; Duplissy, Jonathan; Hansel, Armin; Jokinen, Tuija; Keskinen, Helmi; Lehtipalo, Katrianne; Leiminger, Markus; Petäjä, Tuukka; Rissanen, Matti; Rondo, Linda; Simon, Mario; Sipilä, Mikko; Williamson, Christina; Wimmer, Daniela; Riipinen, Ilona; Virtanen, Annele; Smith, James N.

    2016-11-01

    New particle formation driven by acid-base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10-30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models, which predict a higher dimethylaminium fraction when NH3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : acid ratios lower than 1 : 1. The lowest base fractions were found in particles below 15 nm VMD, with a strong size-dependent composition gradient. The reasons for the very acidic composition remain uncertain, but a plausible explanation is that the particles did not reach thermodynamic equilibrium with respect to the bases due to rapid heterogeneous conversion of SO2 to sulfate. These results indicate that sulfuric acid does not require stabilization by ammonium or dimethylaminium as acid-base pairs in particles as small as 10 nm.

  18. Titania preparation from soda roasted slag using sulfuric acid solution

    Directory of Open Access Journals (Sweden)

    El-Sayed A. Manaa

    2016-11-01

    Full Text Available This work deals with treatment of the sodium titanate cake results from roasted titania slag using 60% sulfuric acid solution. The working sample produced by roasting titania slag with NaCO3 at 850 °C. After roasting V and Cr species as impurities in the roasted sample are converted to water soluble species as NaVO3 and Na2CrO4 before acid treatment however, the insoluble sodium titanate products (NaFeTiO4, Na8Ti5O14, Na6Ti2O7 and Na2TiO4 are then subjected to H2SO4 acid dissolution. The produced sulfate solution is subjected to hydrolysis step in presence of oxalic acid as a reducing agent. The hydrolyzed precipitate after filtration and washing with H2SO4 solution and warm water is dried at 100 °C and calcinated at 850 °C to prepare high pure TiO2 (99.8% besides removing ferrous sulfate (FeSO4 as a byproduct from the sulfate solution.

  19. A Novel Method for Beckmann Rearrangement of Oximes with Silica Sulfuric Acid under Mild Condition

    Institute of Scientific and Technical Information of China (English)

    Lin Fei XIAO; Jia Jian PENG; Chun Gu XIA

    2006-01-01

    Silica sulfuric acid in which sulfuric acid is immobilized on the surface of silica gel via covalent bond has been proved to be green catalyst for liquid-phase Beckmann rearrangement of oximes in dried dioxane at room temperature. Excellent conversion and selectivity were acquired in the Beckmann rearrangement of cyclohexanone oxime. The catalyst system was recycled and reused.

  20. What Is the Boiling Point and Heat of Vaporization of Sulfuric Acid?

    Science.gov (United States)

    Myers, R. Thomas

    1983-01-01

    Discusses the values presented in various handbooks for the boiling point and heat of vaporization of sulfuric acid, noting discrepencies. Analyzes various approaches to data presentation, discussing the data on sulfuric acid in light of the Trouton constant. Points out the need for a more critical use of tables. (JM)

  1. [Gene mining of sulfur-containing amino acid metabolic enzymes in soybean].

    Science.gov (United States)

    Qiu, Hongmei; Hao, Wenyuan; Gao, Shuqin; Ma, Xiaoping; Zheng, Yuhong; Meng, Fanfan; Fan, Xuhong; Wang, Yang; Wang, Yueqiang; Wang, Shuming

    2014-09-01

    The genes of sulfur-containing amino acid synthetases in soybean are essential for the synthesis of sulfur-containing amino acids. Gene mining of these enzymes is the basis for the molecular assistant breeding of high sulfur-containing amino acids in soybean. In this study, using software BioMercator2.1, 113 genes of sulfur-containing amino acid enzymes and 33 QTLs controlling the sulfur-containing amino acids content were mapped onto Consensus Map 4.0, which was integrated by genetic and physical maps of soybean. Sixteen candidate genes associated to the synthesis of sulfur-containing amino acids were screened based on the synteny between gene loci and QTLs, and the effect values of QTLs. Through a bioinformatic analysis of the copy number, SNP information, and expression profile of candidate genes, 12 related enzyme genes were identified and mapped on 8 linkage groups, such as D1a, M, A2, K, and G. The genes corresponding to QTL regions can explain 6%?38.5% genetic variation of sulfur-containing amino acids, and among them, the indirect effect values of 9 genes were more than 10%. These 12 genes were involved in sulfur-containing amino acid metabolism and were highly expressed in the cotyledons and flowers, showing an abundance of SNPs. These genes can be used as candidate genes for the development of functional markers, and it will lay a foundation for molecular design breeding in soybean.

  2. The effect of sulfuric acid on pore initiation in anodic alumina formed in oxalic acid

    Directory of Open Access Journals (Sweden)

    Behnam Hafezi

    2014-07-01

    Full Text Available In this work, a tracer study on pore initiation in anodic alumina in oxalic acid was performed. Effects of some experimental parameters such as applied electrical potential, electrolyte composition and heat pretreatment were evaluated. Electrochemical and morphological experiments were performed using potentiostatic anodizing and scanning electron microscopy (SEM techniques, respectively. Effect of electrolyte composition on current density was discussed. In various electrical potentials, electrolyte composition had different effects on current density. Addition of sulfuric acid into oxalic acid increased porosity. Also, distribution of pore size and pore diameter were influenced by presence of sulfuric acid. Effect of electrolyte composition on the morphology of aluminum surface layer depended on the electric potential. Current density and porosity of aluminum surface layer was decreased by heat pretreatment.

  3. Oscillatory bromate-oxalic acid-Ce-acetone-sulfuric acid reaction, in CSTR

    OpenAIRE

    Pereira,Janaina A. M.; Roberto B Faria

    2004-01-01

    Periodic oscillations were observed for the first time, in a CSTR, in the system bromate-oxalic acid-Ce(IV)-acetone-sulfuric acid, in a CSTR. A reaction between Ce(IV) and acetone, until now not described in the literature and occurring before the addition of the reagents to the reactor, was identified as a decisive factor for the appearing of the regular oscillations.

  4. Sulfuric acid leaching kinetics of South African chromite

    Institute of Scientific and Technical Information of China (English)

    Qing Zhao; Cheng-jun Liu; Pei-yang Shi; Bo Zhang; Mao-fa Jiang; Qing-song Zhang; Ron Zevenhoven; Henrik Saxn

    2015-01-01

    The sulfuric acid leaching kinetics of South African chromite was investigated. The negative influence of a solid product layer constituted of a silicon-rich phase and chromium-rich sulfate was eliminated by crushing the chromite and by selecting proper leaching con-ditions. The dimensionless change in specific surface area and the conversion rate of the chromite were observed to exhibit a proportional re-lationship. A modified shrinking particle model was developed to account for the change in reactive surface area, and the model was fitted to experimental data. The resulting model was observed to describe experimental findings very well. Kinetics analysis revealed that the leach-ing process is controlled by a chemical reaction under the employed experimental conditions and the activation energy of the reaction is 48 kJ·mol–1.

  5. Design and analysis of a high pressure and high temperature sulfuric acid experimental system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung-Deok, E-mail: sdhong1@kaeri.re.kr [Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 305-600 (Korea, Republic of); Kim, Chan-Soo; Kim, Yong-Wan [Korea Atomic Energy Research Institute, Yuseong-Gu, Daejeon 305-600 (Korea, Republic of); Seo, Dong-Un; Park, Goon-Cherl [Seoul National University, San56-1, Sillim-Dong, Kwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2012-10-15

    We discuss the design and analysis of a small scale sulfuric acid experimental system that can simulate a part of the hydrogen production module. Because nuclear hydrogen coupled components such as a SO{sub 3} decomposer and a sulfuric acid evaporator should be tested under high pressure and high temperature operating conditions, we developed the sulfuric acid loop to satisfy design specifications of 900 Degree-Sign C in temperature and 1.0 MPa in pressure. The components for the sulfuric acid loop were specially designed using a combination of materials with good corrosion resistance; a ceramic and Hastelloy-C276. The design feature of the loop was tested for performance in a 10 h sulfuric acid experiment and optimized using Aspen+ code simulation.

  6. A Demonstration of Acid Rain and Lake Acidification: Wet Deposition of Sulfur Dioxide.

    Science.gov (United States)

    Goss, Lisa M.

    2003-01-01

    Introduces a science demonstration on the dissolution of sulfuric oxide emphasizing the concept of acid rain which is an environmental problem. Demonstrates the acidification from acid rain on two lake environments, limestone and granite. Includes safety information. (YDS)

  7. Enhancement of aged and denatured fingerprints using the cyanoacrylate fuming technique following dusting with amino acid-containing powders.

    Science.gov (United States)

    Nixon, Carly; Almond, Matthew J; Baum, John V; Bond, John W

    2013-03-01

    We have carried out experiments to investigate the aging of latent fingerprints deposited on black PVC over a period of 4-15 weeks. A thumbprint was used in each case and before deposition of the print the donor rubbed their thumb around their nose to add sebaceous deposits. We have studied the effect of heat, light, and moisture and we find that moisture is the most significant factor in the degradation of the latent print. We have attempted to enhance these latent prints by dusting with valine powder or powders composed of valine mixed with gold or red fluorescent commercial fingerprint powders. To make a direct comparison between "treated" and "untreated" prints, the prints were cut in half with one-half being "treated" and one-half not. Our studies show the best results being obtained when powders of valine and red fluorescent powders are applied prior to cyanoacrylate fuming.

  8. [Investigation on formation mechanism of secologanic acid sulfonates in sulfur-fumigated buds of Lonicera japonica].

    Science.gov (United States)

    Guo, Ai-Li; Gao, Hui-Min; Chen, Liang-Mian; Zhang, Qi-Wei; Wang, Zhi-Min

    2014-05-01

    To investigate formation mechanism of secologanic acid sulfonates in sulfur-fumigated buds of Lonicera japonica, secologanic acid was enriched and purified from the sun-dried buds of L. japonica by various column chromatography on macroporus resin HPD-100, silica gel and ODS. The stimulation experiments of sulfur-fumigation process were carried out using secologanic acid reacted with SO2 in the aqueous solution. The reaction mechanism could be involved in the esterification or addition reaction. The present investigation provides substantial evidences for interpreting formation pathway of secologanic acid sulfonates in sulfur-fumigated buds of L. japonica.

  9. Sulfur Amino Acids in Diet-induced Fatty Liver: A New Perspective Based on Recent Findings

    Directory of Open Access Journals (Sweden)

    John I. Toohey

    2014-06-01

    Full Text Available The relationship of sulfur amino acids to diet-induced fatty liver was established 80 years ago, with cystine promoting the condition and methionine preventing it. This relationship has renewed importance today because diet-induced fatty liver is relevant to the current epidemics of obesity, non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes. Two recent papers provide the first evidence linking sulfane sulfur to diet-induced fatty liver opening a new perspective on the problem. This review summarizes the early data on sulfur amino acids in fatty liver and correlates that data with current knowledge of sulfur metabolism. Evidence is reviewed showing that the lipotropic effect of methionine may be mediated by sulfane sulfur and that the hepatosteatogenic effect of cystine may be related to the removal of sulfane sulfur by cysteine catabolites. Possible preventive and therapeutic strategies are discussed.

  10. Synthesis and degradation of nucleic acid components by formamide and iron sulfur minerals.

    Science.gov (United States)

    Saladino, Raffaele; Neri, Veronica; Crestini, Claudia; Costanzo, Giovanna; Graciotti, Michele; Di Mauro, Ernesto

    2008-11-19

    We describe the one-pot synthesis of a large panel of nucleic bases and related compounds from formamide in the presence of iron sulfur and iron-copper sulfur minerals as catalysts. The major products observed are purine, 1H-pyrimidinone, isocytosine, adenine, 2-aminopurine, carbodiimide, urea, and oxalic acid. Isocytosine and 2-aminopurine may recognize natural nucleobases by Watson-Crick and reverse Watson-Crick interactions, thus suggesting novel scenarios for the origin of primordial nucleic acids. Since the major problem in the origin of informational polymers is the instability of their precursors, we also investigate the effects of iron sulfur and iron-copper sulfur minerals on the stability of ribooligonucleotides in formamide and in water. All of the iron sulfur and iron-copper sulfur minerals stimulated degradation of RNA. The relevance of these findings with respect to the origin of informational polymers is discussed.

  11. Sulfur amino acids in diet-induced fatty liver: a new perspective based on recent findings.

    Science.gov (United States)

    Toohey, John I

    2014-06-19

    The relationship of sulfur amino acids to diet-induced fatty liver was established 80 years ago, with cystine promoting the condition and methionine preventing it. This relationship has renewed importance today because diet-induced fatty liver is relevant to the current epidemics of obesity, non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes. Two recent papers provide the first evidence linking sulfane sulfur to diet-induced fatty liver opening a new perspective on the problem. This review summarizes the early data on sulfur amino acids in fatty liver and correlates that data with current knowledge of sulfur metabolism. Evidence is reviewed showing that the lipotropic effect of methionine may be mediated by sulfane sulfur and that the hepatosteatogenic effect of cystine may be related to the removal of sulfane sulfur by cysteine catabolites. Possible preventive and therapeutic strategies are discussed.

  12. Amine Reactivity with Nanoclusters of Sulfuric Acid and Ammonia

    Science.gov (United States)

    Johnston, M. V.; Bzdek, B. R.; DePalma, J.

    2011-12-01

    Alkyl amines have emerged as key species in new particle formation and growth. This interest is reinforced by ambient measurements of amines (e.g. Smith et al., 2010) and enhanced levels of nitrogen (e.g. Bzdek et al., 2011) during growth of newly formed particles. An important mechanism of amine uptake is aminium salt formation, either by substituting for ammonium ions that already exist in the particle or by opening new channels for salt formation that are not favorable with ammonia. This presentation will focus on recent experimental and computational work in our group to study amine uptake into charged nanoclusters of sulfuric acid and ammonia. In the experimental work, clusters are produced by electrospray of an ammonium sulfate solution and then drawn into a Fourier transform ion cyclotron resonance mass spectrometer where a specific cluster is isolated and exposed to amine vapor. We find that amine reactivity is dependent on the size, composition and charge of the isolated cluster. For small clusters of either polarity, all ammonium ions reside on the surface and amine substitution occurs with near unit reaction probability. As the cluster size increases, an ammonium ion can be encapsulated in the center of the cluster, which provides a steric hindrance to amine substitution. Negatively charged clusters are more likely to be acidic than positively charged clusters. For acidic clusters, incoming amine molecules first substitute for preexisting ammonium ions and then add to the cluster until a "neutralized" aminium bisulfate composition is reached. Computational studies of these clusters provide fundamental insight into the thermodynamics and kinetics of amine uptake.

  13. Ion Irradiation of Sulfuric Acid: Implications for its Stability on Europa

    Science.gov (United States)

    Loeffler, M. J.; Hudson, R. L.; Moore, M. H.

    2010-01-01

    The Galileo near-infrared mapping spectrometer (NIMS) detected regions on Europa's surface containing distorted H2O bands. This distortion likely indicates that there are other molecules mixed with the water ice. Based on spectral comparison, some of the leading possibilities are sulfuric acid, salts. or possibly H3O(+). Previous laboratory studies have shown that sulfuric acid can be created by irradiation of H2OSO2 mixtures, and both molecules are present on Europa. In this project, we were interested in investigating the radiation stability of sulfuric acid (H2SO4) and determining its lifetime on the surface of Europa.

  14. Experimental Observation of Strongly Bound Dimers of Sulfuric Acid: Application to Nucleation in the Atmosphere

    DEFF Research Database (Denmark)

    Petaja, Tuukka; Sipila, Mikko; Paasonen, Pauli

    2011-01-01

    Sulfuric acid is a key compound in atmospheric nucleation. Here we report on the observation of a close-to-collision-limited sulfuric acid dimer formation in atmospherically relevant laboratory conditions in the absence of measurable quantities of ammonia or organics. The observed dimer formation...... compound(s) with (a) concentration(s) high enough to prevent the dimer evaporation. Such a stabilizing compound should be abundant enough in any natural environment and would therefore not limit the formation of sulfuric acid dimers in the atmosphere....

  15. PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

    Directory of Open Access Journals (Sweden)

    JUNG-SIK CHOI

    2014-06-01

    Full Text Available In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz. However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, Teflon® as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K (260 °C, even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

  16. Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid

    Science.gov (United States)

    Mohammadabad, Farhad Khorramshahi; Hejazi, Sina; khaki, Jalil Vahdati; Babakhani, Abolfazl

    2016-04-01

    This study aimed to introduce a new cost-effective methodology for increasing the leaching efficiency of chalcopyrite concentrates at ambient temperature and pressure. Mechanical activation was employed during the leaching (mechanochemical leaching) of chalcopyrite concentrates in a sulfuric acid medium at room temperature and atmospheric pressure. High energy ball milling process was used during the leaching to provide the mechanochemical leaching condition, and atomic absorption spectroscopy and cyclic voltammetry were used to determine the leaching behavior of chalcopyrite. Moreover, X-ray diffraction and scanning electron microscopy were used to characterize the chalcopyrite powder before and after leaching. The results demonstrated that mechanochemical leaching was effective; the extraction of copper increased significantly and continuously. Although the leaching efficiency of chalcopyrite was very low at ambient temperature, the percentages of copper dissolved in the presence of hydrogen peroxide (H2O2) and ferric sulfate (Fe2(SO4)3) after 20 h of mechanochemical leaching reached 28% and 33%, respectively. Given the efficiency of the developed method and the facts that it does not require the use of an autoclave and can be conducted at room temperature and atmospheric pressure, it represents an economical and easy-to-use method for the leaching industry.

  17. Np(V) reduction by humic acid: contribution of reduced sulfur functionalities to the redox behavior of humic acid.

    Science.gov (United States)

    Schmeide, K; Sachs, S; Bernhard, G

    2012-03-01

    The role of sulfur-containing functional groups in humic acids for the Np(V) reduction in aqueous solution has been studied with the objective to specify individual processes contributing to the overall redox activity of humic substances. For this, humic acid model substances type M1-S containing different amounts of sulfur (1.9, 3.9, 6.9 wt.%) were applied. The sulfur functionalities in these humic acids are dominated by reduced-sulfur species, such as thiols, dialkylsulfides and/or disulfides. The Np(V) reduction behavior of these humic acids has been studied in comparison to that of the sulfur-free humic acid type M1 at pH 5.0, 7.0 and 9.0 under anaerobic conditions by means of batch experiments. For Np redox speciation in solution, solvent extraction and ultrafiltration were applied. In addition, redox potentials of the sample solutions were monitored. At pH 5.0, both rate and extent of Np(V) to Np(IV) reduction were found to increase with increasing sulfur content of the humic acids. At pH 7.0 and 9.0, sulfur functional groups had only a slight influence on the reduction behavior of humic acid toward Np(V). Thus, in addition to quinoid moieties and non-quinoid phenolic OH groups, generally acknowledged as main redox-active sites in humic substances, sulfur functional groups have been identified as further redox-active moieties of humic substances being active especially in the slightly acidic pH range as shown for Np(V). Due to the low sulfur content of up to 2 wt.% in natural humic substances, their contribution to the total reducing capacity is smaller than that of the other redox-active functional groups. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. On the stability and dynamics of (sulfuric acid) (ammonia) and (sulfuric acid) (dimethylamine) clusters: A first-principles molecular dynamics investigation

    Science.gov (United States)

    Loukonen, V.; Kuo, I.-F. W.; McGrath, M. J.; Vehkamäki, H.

    2014-01-01

    The main pathway of new-particle formation in the atmosphere is likely to begin from small sulfuric acid clusters stabilized by other compounds, such as ammonia or amines. Here, we present the results of first-principles molecular dynamics simulations probing the stability and dynamics of (sulfuric acid) (ammonia/dimethylamine) clusters with two, three and four sulfuric acid molecules and a varying number of the bases. In each of the eight simulated clusters, an energetic equilibrium was reached and 35 ps of equilibrium data was collected in the NVT(T=300 K) ensemble. The clusters exhibited pronounced thermal motion including rotations of the molecules within the clusters. Regardless of the continuous movement, the clusters stayed bound together. The calculated electric dipole moments were found to be sensitive to the thermal motion and consequently, large fluctuations were observed. In addition, the vibrational spectra for all the clusters were determined, indicating that the thermal motion differs from purely harmonic motion.

  19. Synthesis of sulfur-containing lubricant additives on the basis of fatty acid ethyl esters

    Directory of Open Access Journals (Sweden)

    Iurii S. Bodachivskyi

    2016-12-01

    Full Text Available The study reveals an energy-, resource- and eco-friendly method for preparation of sulfur-containing lubricant additives via interaction of fatty acid ethyl esters of rapeseed oil with elemental sulfur. The structure of synthesized compounds under various reactants ratio (5–50 wt.% of sulfur, duration (30–240 min and temperature of the process (160–215°С was investigated using various analytical techniques. According to the established data, aside from addition to double bonds, the side reaction of hydrogen substitution at α-methylene groups near these bonds occurs and induces the formation of conjugated systems and chromophoric sulfur-rich derivatives. Also, we found that increase of process duration evokes growth of polysulfane chains, in contrast to the raise of temperature, which leads to the formation of sulfur-containing heterocycles and hydrogen sulfide, as a result of elimination. Influence of accelerators on sulfurization of fatty acid ethyl esters was also examined. The most effective among them are mixtures of zinc dibutyldithiocarbamate with zinc oxide or stearic acid, which soften synthesis conditions and doubly decrease duration of the high-temperature stage. In addition, sulfur-containing compositions of ethyl esters and α-olefins, vulcanized esters by benzoyl peroxide, nonylphenols and zinc dinonylphenyldithiophosphate were designed. The study identified that lithium lubricant with sulfurized vulcanized esters provides improved tribological properties, in comparison with base lubricant or lubricant with the non-modified product.

  20. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions

    National Research Council Canada - National Science Library

    Andreas Kürten; Tuija Jokinen; Mario Simon; Mikko Sipilä; Nina Sarnela; Heikki Junninen; Alexey Adamov; João Almeida; Antonio Amorim; Federico Bianchi; Martin Breitenlechner; Josef Dommen; Neil M. Donahue; Jonathan Duplissy; Sebastian Ehrhart; Richard C. Flagan; Alessandro Franchin; Jani Hakala; Armin Hansel; Martin Heinritzi; Manuel Hutterli; Juha Kangasluoma; Jasper Kirkby; Ari Laaksonen; Katrianne Lehtipalo; Markus Leiminger; Vladimir Makhmutov; Serge Mathot; Antti Onnela; Tuukka Petäjä; Arnaud P. Praplan; Francesco Riccobono; Matti P. Rissanen; Linda Rondo; Siegfried Schobesberger; John H. Seinfeld; Gerhard Steiner; António Tomé; Jasmin Tröstl; Paul M. Winkler; Christina Williamson; Daniela Wimmer; Penglin Ye; Urs Baltensperger; Kenneth S. Carslaw; Markku Kulmala; Douglas R. Worsnop; Joachim Curtius

    2014-01-01

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates...

  1. First-principles molecular dynamics simulations of (sulfuric acid)1(dimethylamine)1 cluster formation

    Science.gov (United States)

    Loukonen, Ville; Bork, Nicolai; Vehkamäki, Hanna

    2013-05-01

    The clustering process (sulfuric acid) + (base)→(sulfuric acid)1(base)1 is of fundamental importance in the atmospheric new-particle formation. Especially interesting are the collisions where a proton transfer reaction can happen, as the reaction often leads to relatively strongly bound clusters. Here, we studied the clustering process of (sulfuric acid) + (dimethylamine) → (sulfuric acid)1(dimethylamine)1 using first-principles molecular dynamics simulations. The collision of the two molecules was simulated starting with various spatial orientations and the evolution of the cluster was followed in the NVE ensemble. The simulations suggest that the proton transfer reaction takes place regardless of the intial collision orientation. However, due to the energy released in the process, the newly-formed cluster is not able to reach the minimun energy configuration, which might affect the following growth processes.

  2. Measurement of neutral sulfuric acid-dimethylamine clusters using CI-APi-TOF-MS

    Science.gov (United States)

    Simon, Mario; Kürten, Andreas; Jokinen, Tuija; Sarnela, Nina; Sipilä, Mikko; Rondo, Linda; Ehrhart, Sebastian; Junninen, Heikki; Hutterli, Manuel; Kirkby, Jasper; Worsnop, Douglas R.; Curtius, Joachim; Cloud Collaboration

    2013-05-01

    Recent studies suggest that dimethylamine could be a key ternary species in the formation and early growth of atmospheric aerosol particles. We report on nucleation studies for the ternary system of sulfuric acid, water and dimethylamine which have been performed at the CERN CLOUD chamber. These studies were conducted at atmospherically relevant concentrations of sulfuric acid and dimethylamine at 278 K and 38% RH. Two newly developed Chemical Ionization-Atmospheric Pressure interface-Time of Flight-Mass Spectrometers (CIAPi-TOF-MS) were used to measure the time-resolved concentration of neutral clusters containing sulfuric acid and dimethylamine. Results from other instrumental techniques are included in the analysis as well to obtain a deeper insight into the occurring mechanisms. It is the first time that the neutral nucleation pathway has been studied in such detail from the early generation of sulfuric acid monomers up to particle sizes reaching several nanometers.

  3. Dental erosion and sulfuric ion exposure levels in individuals working with sulfuric acid in lead storage battery manufacturing plant measured with mouth-rinse index.

    Science.gov (United States)

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    To investigate dental erosion in employees working with sulfuric acid at a lead storage battery manufacturing plant and level of personal exposure to sulfuric ions, we measured sulfuric ion concentrations in the mouth rinse of those employees. We also measured exposure levels from air samples obtained from 2 employees from the same plant who did not work with sulfuric acid using a portable air sampler. At the same time, we collected and compared their mouth rinses with those from other employees. More specifically, we measured and compared sulfuric ion, calcium, and magnesium concentrations, along with pH levels from the mouth rinse of these two groups. Positive correlations were found between sulfuric ion and calcium concentrations (r=0.61, p<0.005), calcium and magnesium concentrations (r=0.61, p<0.005), Ca/Mg and calcium concentrations (r=0.64, p<0.005), and sulfuric ion and magnesium concentrations (r=0.55, p<0.005). Negative correlations were found between sulfuric ion concentrations and pH levels (r=-0.31, p<0.01), and magnesium concentrations and pH levels (r=-0.32, p<0.01). This suggests that mouth rinse from employees working with sulfuric acid could function as an indicator of sulfuric ion concentration in the work environment. Furthermore, this could lead to the development of a more accurate indicator of individual exposure.

  4. Formation rates, stability and reactivity of sulfuric acid - amine clusters predicted by computational chemistry

    Science.gov (United States)

    Kurtén, Theo; Ortega, Ismael; Kupiainen, Oona; Olenius, Tinja; Loukonen, Ville; Reiman, Heidi; McGrath, Matthew; Vehkamäki, Hanna

    2013-04-01

    Despite the importance of atmospheric particle formation for both climate and air quality, both experiments and non-empirical models using e.g. sulfuric acid, ammonia and water as condensing vapors have so far been unable to reproduce atmospheric observations using realistic trace gas concentrations. Recent experimental and theoretical evidence has shown that this mystery is likely resolved by amines. Combining first-principles evaporation rates for sulfuric acid - dimethylamine clusters with cluster kinetic modeling, we show that even sub-ppt concentrations of amines, together with atmospherically realistic concentrations of sulfuric acid, result in formation rates close to those observed in the atmosphere. Our simulated cluster formation rates are also close to, though somewhat larger than, those measured at the CLOUD experiment in CERN for both sulfuric acid - ammonia and sulfuric acid - dimethylamine systems. A sensitivity analysis indicates that the remaining discrepancy for the sulfuric acid - amine particle formation rates is likely caused by steric hindrances to cluster formation (due to alkyl groups of the amine molecules) rather than by significant errors in the evaporation rates. First-principles molecular dynamic and reaction kinetic modeling shed further light on the microscopic physics and chemistry of sulfuric acid - amine clusters. For example, while the number and type of hydrogen bonds in the clusters typically reach their equilibrium values on a picosecond timescale, and the overall bonding patterns predicted by traditional "static" quantum chemical calculations seem to be stable, the individual atoms participating in the hydrogen bonds continuously change at atmospherically realistic temperatures. From a chemical reactivity perspective, we have also discovered a surprising phenomenon: clustering with sulfuric acid molecules slightly increases the activation energy required for the abstraction of alkyl hydrogens from amine molecules. This implies

  5. Nucleation modeling of the Antarctic stratospheric CN layer and derivation of sulfuric acid profiles

    Science.gov (United States)

    Münch, Steffen; Curtius, Joachim

    2017-06-01

    Recent analysis of long-term balloon-borne measurements of Antarctic stratospheric condensation nuclei (CN) between July and October showed the formation of a volatile CN layer at 21-27 km altitude in a background of existing particles. We use the nucleation model SAWNUC to simulate these CN in subsiding air parcels and study their nucleation and coagulation characteristics. Our simulations confirm recent analysis that the development of the CN layer can be explained with neutral sulfuric acid-water nucleation and we show that outside the CN layer the measured CN concentrations are well reproduced just considering coagulation and the subsidence of the air parcels. While ion-induced nucleation is expected as the dominating formation process at higher temperatures, it does not play a significant role during the CN layer formation as the charged clusters recombine too fast. Further, we derive sulfuric acid concentrations for the CN layer formation. Our concentrations are about 1 order of magnitude higher than previously presented concentrations as our simulations consider that nucleated clusters have to grow to CN size and can coagulate with preexisting particles. Finally, we calculate threshold sulfuric acid profiles that show which concentration of sulfuric acid is necessary for nucleation and growth to observable size. These threshold profiles should represent upper limits of the actual sulfuric acid outside the CN layer. According to our profiles, sulfuric acid concentrations seem to be below midlatitude average during Antarctic winter but above midlatitude average for the CN layer formation.

  6. Design and Testing of Lab-scale Red Fuming Nitric Acid/Hydroxyl-terminated Polybutadiene Hybrid Rocket Motor for Studying Regression Rate

    Directory of Open Access Journals (Sweden)

    Sankaran Venugopal

    2011-10-01

    Full Text Available This paper presents the design of a hybrid rocket motor and the experiments carried out for investigation of hybrid combustion and regression rates for a combination of liquid oxidiser red fuming nitric acid with solid fuel hydroxyl-terminated Polybutadiene. The regression rate is enhanced with the addition of small quantity of solid oxidiser ammonium perchlorate in the fuel. The characteristics of the combustion products were calculated using the NASA CEA Code and were used in a ballistic code developed for predicting the performance of the hybrid rocket motor. A lab-scale motor was designed and the oxidiser mass flow requirements of the hybrid motor for the above combination of fuel and oxidiser have been calculated using the developed ballistic code. A static rocket motor testing facility has been realised for conducting the hybrid experiments. A series of tests were conducted and proper ignition with stable combustion in the hybrid mode has been established. The regression rate correlations were obtained as a function of the oxidiser mass flux and chamber pressure from the experiments for the various combinations.Defence Science Journal, 2011, 61(6, pp.515-522, DOI:http://dx.doi.org/10.14429/dsj.61.873

  7. Updating Older Fume Hoods.

    Science.gov (United States)

    Saunders, G. Thomas

    1985-01-01

    Provides information on updating older fume hoods. Areas addressed include: (1) adjustment of the hood's back baffle; (2) hood air leakage; (3) light level; (4) hood location in relation to room traffic and room air; and (5) establishing and maintaining hood performance. (JN)

  8. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  9. Control strategy for sulfur dioxide and acid rain pollution inChinaa

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Several factors, namely, coal-dominated primary energy mix, extensive economic development mode, inefficient energy utilization, end the imperfect environmental regulations, result in the serious urban sulfur dioxide pollution end large-scale sulfatetype acid precipitation in China. In 1995, China's sulfur dioxide emissions reached 23.70 Mt, and the areas affected by acid rain accounted for 40% of the territory. Chinese government accords considerable importance to the sulfur dioxide end acid rain contamination. New sets of environmental friendly policies have been promulgated. But enforcement of laws and regulations on SO2 emissions need to be further improved and broadened, especially those respond to market conditions. This paper focuses particular attention on the analysis of strategy, policies, and national actions which had or should be taken against sulfur dioxide emissions nationwide to achieve the environmental targets, on the basis of which gives the technical options in future.

  10. Effects of sulfurous acid on anodic process of gold electrode in thiourea solution

    Institute of Scientific and Technical Information of China (English)

    龙怀中; 舒万艮

    2003-01-01

    The electrochemistry behaviors of gold electrode in thiourea solution were studied by using electrochemical techniques, such as potentiodynamic, voltammogram and current step. A catalytical electrochemical-reduction mechanism was proposed to identify the anodic oxidation of gold in the thiourea solution. The results indicate that the decomposition of thiourea occurs when the electrode potential is higher than 640 mV. The addition of sulfurous acid presents a very positive effect on the anodic process of gold electrode. The anodic oxidation rate of gold is 5 times faster than that without sulfurous acid. The passivity of gold electrode is attributed to the accumulation of elemental sulfur on the surface of gold. The sulfurous acid reacts with the oxidation product ((SC(NH)NH2 )2 ) of thiourea, which can decrease the decomposition of thiourea and improves its stability.

  11. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    Science.gov (United States)

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Acid deposition critical loads modeling for the simulation of sulfur exceedance and reduction in Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    QIU Rongliang; WANG Shizhong; QIU Hao; WANG Xuemei; LIAO Jin; ZHANG Zhentian

    2009-01-01

    In this study, the current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3×3 km resolution.Calculations were carried out for critical loads of potential acidity, actual acidity, sulfur and nitrogen, with values in extents of 0-3.5, 0-14.0, 0-26.0 and 0-3.5 kmol/(hm2·year), respectively.These values were comparable to previously reported results and reflected the influences of vegetation and soil characteristics on the soil acid buffering capacity.Simulations of SO2 emission and sulfur deposition in this study showed that sulfur deposition core areas mirrored SO2 emission centers.The prediction of sulfur deposition after 20% and 40% reduction of SO2 emission suggested that the reduction of area sources contributed greatly to the decrease of sulfur deposition.Thus, abatement of area source emissions could be the primary way to mitigate sulfur deposition in Guangdong so as to meet both the provincial and national regulations of air pollution control.

  13. Acid deposition critical loads modeling for the simulation of sulfur exceedance and reduction in Guangdong, China.

    Science.gov (United States)

    Qiu, Rongliang; Wang, Shizhong; Qiu, Hao; Wang, Xuemei; Liao, Jin; Zhang, Zhentian

    2009-01-01

    The current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3 km x 3 km resolution. Calculations were carried out for critical loads of potential acidity, actual acidity, sulfur and nitrogen, with values in extents of 0-3.5, 0-14.0, 0-26.0 and 0-3.5 kmol/(hm2 x year), respectively. These values were comparable to previously reported results and reflected the influences of vegetation and soil characteristics on the soil acid buffering capacity. Simulations of SO2 emission and sulfur deposition in this study showed that sulfur deposition core areas mirrored SO2 emission centers. The prediction of sulfur deposition after 20% and 40% reduction of SO2 emission suggested that the reduction of area sources contributed greatly to the decrease of sulfur deposition. Thus, abatement of area source emissions could be the primary way to mitigate sulfur deposition in Guangdong to meet both the provincial and national regulations of air pollution control.

  14. Roles of sulfuric acid in elemental mercury removal by activated carbon and sulfur-impregnated activated carbon.

    Science.gov (United States)

    Morris, Eric A; Kirk, Donald W; Jia, Charles Q; Morita, Kazuki

    2012-07-17

    This work addresses the discrepancy in the literature regarding the effects of sulfuric acid (H(2)SO(4)) on elemental Hg uptake by activated carbon (AC). H(2)SO(4) in AC substantially increased Hg uptake by absorption particularly in the presence of oxygen. Hg uptake increased with acid amount and temperature exceeding 500 mg-Hg/g-AC after 3 days at 200 °C with AC treated with 20% H(2)SO(4). In the absence of other strong oxidizers, oxygen was able to oxidize Hg. Upon oxidation, Hg was more readily soluble in the acid, greatly enhancing its uptake by acid-treated AC. Without O(2), S(VI) in H(2)SO(4) was able to oxidize Hg, thus making it soluble in H(2)SO(4). Consequently, the presence of a bulk H(2)SO(4) phase within AC pores resulted in an orders of magnitude increase in Hg uptake capacity. However, the bulk H(2)SO(4) phase lowered the AC pore volume and could block the access to the active surface sites and potentially hinder Hg uptake kinetics. AC treated with SO(2) at 700 °C exhibited a much faster rate of Hg uptake attributed to sulfur functional groups enhancing adsorption kinetics. SO(2)-treated carbon maintained its fast uptake kinetics even after impregnation by 20% H(2)SO(4).

  15. A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight.

    Science.gov (United States)

    Naghdi, Mitra; Zamani, Akram; Karimi, Keikhosro

    2014-02-01

    The most recent method of fungal chitosan purification, i.e., two steps of dilute sulfuric acid treatment, pretreatment of cell wall at room temperature for phosphate removal and extraction of chitosan from the phosphate free cell wall at high temperature, significantly reduces the chitosan molecular weight. This study was aimed at improvement of this method. In the pretreatment step, to choose the best conditions, cell wall of Rhizopus oryzae, containing 9% phosphate, 10% glucosamine, and 21% N-acetyl glucosamine, was treated with sulfuric, lactic, acetic, nitric, or hydrochloric acid, at room temperature. Sulfuric acid showed the best performance in phosphate removal (90%) and cell wall recovery (89%). To avoid depolymerisation of chitosan, hot sulfuric acid extraction was replaced with lactic acid treatment at room temperature, and a pure fungal chitosan was obtained (0.12 g/g cell wall). Similar pretreatment and extraction processes were conducted on pure shrimp chitosan and resulted in a chitosan recovery of higher than 87% while the reduction of chitosan viscosity was less than 15%. Therefore, the sulfuric-lactic acid method purified the fungal chitosan without significant molecular weight manipulation.

  16. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine

    Science.gov (United States)

    Jen, Coty N.; McMurry, Peter H.; Hanson, David R.

    2014-06-01

    This study experimentally explores how ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) affect the chemical formation mechanisms of electrically neutral clusters that contain two sulfuric acid molecules (dimers). Dimers may also contain undetectable compounds, such as water or bases, that evaporate upon ionization and sampling. Measurements were conducted using a glass flow reactor which contained a steady flow of humidified nitrogen with sulfuric acid concentrations of 107 to 109 cm-3. A known molar flow rate of a basic gas was injected into the flow reactor. The University of Minnesota Cluster Chemical Ionization Mass Spectrometer was used to measure the resulting sulfuric acid vapor and cluster concentrations. It was found that, for a given concentration of sulfuric acid vapor, the dimer concentration increases with increasing concentration of the basic gas, eventually reaching a plateau. The base concentrations at which the dimer concentrations saturate suggest NH3 < MA < TMA ≲ DMA in forming stabilized sulfuric acid dimers. Two heuristic models for cluster formation by acid-base reactions are developed to interpret the data. The models provide ranges of evaporation rate constants that are consistent with observations and leads to an analytic expression for nucleation rates that is consistent with atmospheric observations.

  17. Cluster Formation of Sulfuric Acid with Dimethylamine or Diamines and Detection with Chemical Ionization

    Science.gov (United States)

    Jen, C. N.; McMurry, P. H.; Hanson, D. R.

    2015-12-01

    Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to chemically ionize clusters for detection. In this study, we compare measured cluster concentrations formed by reacting sulfuric acid vapor with dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine) using nitrate and acetate ions. We show from flow reactor measurements that nitrate is unable to chemically ionize clusters with weak acidities. In addition, we vary the ion-molecule reaction time to probe the chemical ionization processes and lifetimes of ions composed of sulfuric acid and base molecules. We then model the neutral and ion cluster formation pathways, including chemical ionization, ion-induced clustering, and ion decomposition, to better identify which cluster types cannot be chemically ionized by nitrate. Our results show that sulfuric acid dimer with two diamines and sulfuric acid trimer with 2 or more base molecules cannot be chemical ionized by nitrate. We conclude that cluster concentrations measured with acetate CI gives a better representation of both cluster abundancies and their base content than nitrate CI.

  18. Corrosion by concentrated sulfuric acid in carbon steel pipes and tanks: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Panossian, Zehbour; Almeida, Neusvaldo Lira de; Sousa, Raquel Maria Ferreira de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Pimenta, Gutemberg de Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento (CENPES); Marques, Leandro Bordalo Schmidt [PETROBRAS Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS, allied to the policy of reduction of emission of pollutants, has been adjusting the processes of the new refineries to obtain products with lower sulfur content. Thus, the sulfur dioxide, extracted from the process gases of a new refinery to be built in the Northeast, will be used to produce sulfuric acid with concentration between (94-96) %. This acid will be stored in carbon steel tanks and transported through a buried 8-km carbon steel pipe from the refinery to a pier, where it will be loaded onto ships and sent to the consumer markets. Therefore, the corrosion resistance of carbon steel by concentrated acid will become a great concern for the mentioned storage and transportation. When the carbon steel comes into contact with concentrated sulfuric acid, there is an immediate acid attack with the formation of hydrogen gas and ferrous ions which, in turn, forms a protective layer of FeSO{sub 4} on the metallic surface. The durability of the tanks and pipes made of carbon steel will depend on the preservation of this protective layer. This work presents a review of the carbon steel corrosion in concentrated sulfuric acid and discusses the preventive methods against this corrosion, including anodic protection. (author)

  19. Lipoic Acid as a Possible Pharmacological Source of Hydrogen Sulfide/Sulfane Sulfur

    Directory of Open Access Journals (Sweden)

    Anna Bilska-Wilkosz

    2017-03-01

    Full Text Available The aim of the present study was to verify whether lipoic acid (LA itself is a source of H2S and sulfane sulfur. It was investigated in vitro non-enzymatically and enzymatically (in the presence of rat tissue homogenate. The results indicate that both H2S and sulfane sulfur are formed from LA non-enzymatically in the presence of environmental light. These results suggest that H2S is the first product of non-enzymatic light-dependent decomposition of LA that is, probably, next oxidized to sulfane sulfur-containing compound(s. The study performed in the presence of rat liver and kidney homogenate revealed an increase of H2S level in samples containing LA and its reduced form dihydrolipoic acid (DHLA. It was accompanied by a decrease in sulfane sulfur level. It seems that, in these conditions, DHLA acts as a reducing agent that releases H2S from an endogenous pool of sulfane sulfur compounds present in tissues. Simultaneously, it means that exogenous LA cannot be a direct donor of H2S/sulfane sulfur in animal tissues. The present study is an initial approach to the question whether LA itself is a donor of H2S/sulfane sulfur.

  20. Lipoic Acid as a Possible Pharmacological Source of Hydrogen Sulfide/Sulfane Sulfur.

    Science.gov (United States)

    Bilska-Wilkosz, Anna; Iciek, Małgorzata; Kowalczyk-Pachel, Danuta; Górny, Magdalena; Sokołowska-Jeżewicz, Maria; Włodek, Lidia

    2017-03-02

    The aim of the present study was to verify whether lipoic acid (LA) itself is a source of H₂S and sulfane sulfur. It was investigated in vitro non-enzymatically and enzymatically (in the presence of rat tissue homogenate). The results indicate that both H₂S and sulfane sulfur are formed from LA non-enzymatically in the presence of environmental light. These results suggest that H₂S is the first product of non-enzymatic light-dependent decomposition of LA that is, probably, next oxidized to sulfane sulfur-containing compound(s). The study performed in the presence of rat liver and kidney homogenate revealed an increase of H₂S level in samples containing LA and its reduced form dihydrolipoic acid (DHLA). It was accompanied by a decrease in sulfane sulfur level. It seems that, in these conditions, DHLA acts as a reducing agent that releases H₂S from an endogenous pool of sulfane sulfur compounds present in tissues. Simultaneously, it means that exogenous LA cannot be a direct donor of H₂S/sulfane sulfur in animal tissues. The present study is an initial approach to the question whether LA itself is a donor of H₂S/sulfane sulfur.

  1. Distribution of Hydrogen Peroxide, Carbon Dioxide, and Sulfuric Acid in Europa's Icy Crust

    Science.gov (United States)

    Carlson, R. W.

    2004-01-01

    Galileo's Near Infrared Mapping Spectrometer (NIMS) detected hydrogen peroxide, carbon dioxide and a hydrated material on Europa's surface, the latter interpreted as hydrated sulfuric acid (H2SO4*nH2O) or hydrated salts. Related compounds are molecular oxygen, sulfur dioxide, and two chromophores, one that is dark in the ultraviolet(UV) and concentrated on the trailing side, the other brighter in the UV and preferentially distributed in the leading hemisphere. The UV-dark material has been suggested to be sulfur.

  2. An Aerosol Condensation Model for Sulfur Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide

  3. submitter Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD

    CERN Document Server

    Lawler, Michael J; Kim, Jaeseok; Ahlm, Lars; Tröstl, Jasmin; Praplan, Arnaud P; Schobesberger, Siegfried; Kürten, Andreas; Kirkby, Jasper; Bianchi, Federico; Duplissy, Jonathan; Hansel, Armin; Jokinen, Tuija; Keskinen, Helmi; Lehtipalo, Katrianne; Leiminger, Markus; Petäjä, Tuukka; Rissanen, Matti; Rondo, Linda; Simon, Mario; Sipilä, Mikko; Williamson, Christina; Wimmer, Daniela; Riipinen, Ilona; Virtanen, Annele; Smith, James N

    2016-01-01

    New particle formation driven by acid–base chemistry was initiated in the CLOUD chamber at CERN by introducing atmospherically relevant levels of gas-phase sulfuric acid and dimethylamine (DMA). Ammonia was also present in the chamber as a gas-phase contaminant from earlier experiments. The composition of particles with volume median diameters (VMDs) as small as 10 nm was measured by the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS). Particulate ammonium-to-dimethylaminium ratios were higher than the gas-phase ammonia-to-DMA ratios, suggesting preferential uptake of ammonia over DMA for the collected 10–30 nm VMD particles. This behavior is not consistent with present nanoparticle physicochemical models, which predict a higher dimethylaminium fraction when NH3 and DMA are present at similar gas-phase concentrations. Despite the presence in the gas phase of at least 100 times higher base concentrations than sulfuric acid, the recently formed particles always had measured base : ...

  4. Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases

    Directory of Open Access Journals (Sweden)

    J. H. Zollner

    2012-01-01

    Full Text Available Nucleation of particles composed of sulfuric acid, water, and nitrogen base molecules was studied using a continuous flow reactor. The particles formed from these vapors were detected with an ultrafine condensation particle counter, while vapors of sulfuric acid and nitrogen bases were detected by chemical ionization mass spectrometry. Variation of particle numbers with sulfuric acid concentration yielded a power dependency on sulfuric acid of 5 ± 1 for relative humidities of 14–68% at 296 K; similar experiments with varying water content yielded power dependencies on H2O of ~7. The critical cluster contains about 5 H2SO4 molecules and a new treatment of the power dependency for H2O suggests about 12 H2O molecules for these conditions. Addition of 2-to-45 pptv of ammonia or methyl amine resulted in up to millions of times more particles than in the absence of these compounds. Particle detection efficiencies, sulfuric acid and nitrogen base detection, wall losses, and the extent of particle growth are discussed with the help of a recent computational fluid dynamics study that simulated the flow and chemistry in the flow reactor. Results are compared to previous laboratory nucleation studies and they are also discussed in terms of atmospheric nucleation scenarios.

  5. Pretreatment of Sugar Beet Pulp with Dilute Sulfurous Acid is Effective for Multipurpose Usage of Carbohydrates.

    Science.gov (United States)

    Kharina, M; Emelyanov, V; Mokshina, N; Ibragimova, N; Gorshkova, T

    2016-05-01

    Sulfurous acid was used for pretreatment of sugar beet pulp (SBP) in order to achieve high efficiency of both extraction of carbohydrates and subsequent enzymatic hydrolysis of the remaining solids. The main advantage of sulfurous acid usage as pretreatment agent is the possibility of its regeneration. Application of sulfurous acid as hydrolyzing agent in relatively low concentrations (0.6-1.0 %) during a short period of time (10-20 min) and low solid to liquid ratio (1:3, 1:6) allowed effective extraction of carbohydrates from SBP and provided positive effect on subsequent enzymatic hydrolysis. The highest obtained concentration of reducing substances (RS) in hydrolysates was 8.5 %; up to 33.6 % of all carbohydrates present in SBP could be extracted. The major obtained monosaccharides were arabinose and glucose (9.4 and 7.3 g/l, respectively). Pretreatment of SBP with sulfurous acid increased 4.6 times the yield of glucose during subsequent enzymatic hydrolysis of remaining solids with cellulase cocktail, as compared to the untreated SBP. Total yield of glucose during SBP pretreatment and subsequent enzymatic hydrolysis amounted to 89.4 % of the theoretical yield. The approach can be applied directly to the wet SBP. Hydrolysis of sugar beet pulp with sulfurous acid is recommended for obtaining of individual monosaccharides, as well as nutritional media.

  6. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Rondo, L.; Ehrhart, S.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-03-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosol nucleation. Based on quantum chemical calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was set up at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection of H2SO4 in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time in the CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF (Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutral sulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presence of dimethylamine (dimethylamine dramatically changes the H2SO4 cluster distribution compared to binary (H2SO4-H2O) conditions, the CIMS detection efficiency does not seem to depend substantially on whether an individual H2SO4 monomer is clustered with a DMA molecule. The experimental observations are supported by numerical simulations based on A Self-contained Atmospheric chemistry coDe coupled with a molecular process model (Sulfuric Acid Water NUCleation) operated in the kinetic limit.

  7. Sulfuric acid nucleation: An experimental study of the effect of seven bases

    Science.gov (United States)

    Glasoe, W. A.; Volz, K.; Panta, B.; Freshour, N.; Bachman, R.; Hanson, D. R.; McMurry, P. H.; Jen, C.

    2015-03-01

    Nucleation of particles with sulfuric acid, water, and nitrogeneous bases was studied in a flow reactor. Sulfuric acid and water levels were set by flows over sulfuric acid and water reservoirs, respectively, and the base concentrations were determined from measured permeation rates and flow dilution ratios. Particle number distributions were measured with a nano-differential-mobility-analyzer system. Results indicate that the nucleation capability of NH3, methylamine, dimethylamine, and trimethylamine with sulfuric acid increases from NH3 as the weakest, methylamine next, and dimethylamine and trimethylamine the strongest. Three other bases were studied, and experiments with triethylamine showed that it is less effective than methylamine, and experiments with urea and acetamide showed that their capabilities are much lower than the amines with acetamide having basically no effect. When both NH3 and an amine were present, nucleation was more strongly enhanced than with just the amine present. Comparisons of nucleation rates to predictions and previous experimental work are discussed, and the sulfuric acid-base nucleation rates measured here are extrapolated to atmospheric conditions. The measurements suggest that atmospheric nucleation rates are significantly affected by synergistic interactions between ammonia and amines.

  8. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions

    Science.gov (United States)

    Brus, D.; Neitola, K.; Hyvärinen, A.-P.; Petäjä, T.; Vanhanen, J.; Sipilä, M.; Paasonen, P.; Kulmala, M.; Lihavainen, H.

    2011-06-01

    In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS), commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3 × 109 molecules cm-3. The nucleation rates obtained in this study cover about three orders of magnitude from 10-1 to 102 cm-3 s-1 for commercial ultrafine condensation particle counter (UCPC) TSI model 3025A and from 101 to 104 cm-3 s-1 for PSM. The nucleation rates and the slopes (dlnJ/dln [H2SO4]) show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data. To the best of our knowledge, this is the first experimental work providing temperature dependent nucleation rate measurements using a high efficiency particle counter with a cut-off-size of 1.5 nm together with direct measurements of gas phase sulfuric acid concentration.

  9. Sulfuric acid speleogenesis (SAS) close to the water table: Examples from southern France, Austria, and Sicily

    Science.gov (United States)

    De Waele, Jo; Audra, Philippe; Madonia, Giuliana; Vattano, Marco; Plan, Lukas; D'Angeli, Ilenia M.; Bigot, Jean-Yves; Anoux, Catherine; Nobécourt, Jean-Claude

    2016-01-01

    Caves formed by rising sulfuric waters have been described from all over the world in a wide variety of climate settings, from arid regions to mid-latitude and alpine areas. H2S is generally formed at depth by reduction of sulfates in the presence of hydrocarbons and is transported in solution through the deep aquifers. In tectonically disturbed areas major fractures eventually allow these H2S-bearing fluids to rise to the surface where oxidation processes can become active producing sulfuric acid. This extremely strong acid reacts with the carbonate bedrock creating caves, some of which are among the largest and most spectacular in the world. Production of sulfuric acid mostly occurs at or close to the water table but also in subaerial conditions in moisture films and droplets in the cave environment. These caves are generated at or immediately above the water table, where condensation-corrosion processes are dominant, creating a set of characteristic meso- and micromorphologies. Due to their close connection to the base level, these caves can also precisely record past hydrological and geomorphological settings. Certain authigenic cave minerals, produced during the sulfuric acid speleogenesis (SAS) phase, allow determination of the exact timing of speleogenesis. This paper deals with the morphological, geochemical and mineralogical description of four very typical sulfuric acid water table caves in Europe: the Grotte du Chat in the southern French Alps, the Acqua Fitusa Cave in Sicily (Italy), and the Bad Deutsch Altenburg and Kraushöhle caves in Austria.

  10. 40 CFR 721.7770 - Alkylphenoxypoly(oxyethylene) sulfuric acid ester, substituted amine salt.

    Science.gov (United States)

    2010-07-01

    ... acid ester, substituted amine salt. 721.7770 Section 721.7770 Protection of Environment ENVIRONMENTAL... ester, substituted amine salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as alkyl phenoxypoly(oxyethylene) sulfuric acid ester,...

  11. Development and Test Operation of a Demonstration Plant for Sulfuric Acid Splitting at the DLR Concentrating Solar Power Tower Facility

    OpenAIRE

    Thomey, Dennis; Streber, Hans-Peter; Guerra-Niehoff, Alejandro; Romero, Moises; Lapp, Justin; Roeb, Martin; Sattler, Christian

    2016-01-01

    Sulfuric acid splitting is a key step of the hybrid sulfur cycle (HyS) for solar thermochemical hydrogen production. This exothermal reaction can be divided into two steps: firstly, the evaporation of liquid sulfuric acid (H2SO4) at about 400 °C forming sulfur trioxide (SO3), and secondly, the decomposition of SO3 to sulfur dioxide (SO2) and oxygen (O2) at 800 – 1000 °C. While the first sub-reaction has fast kinetics, the second one is rather slow and requires the introduction of ...

  12. Adsorption of β-naphthalenesulfonic acid/sulfuric acid from their solution by weakly basic resin: equilibrium

    Institute of Scientific and Technical Information of China (English)

    LI Chang-hai; SHI Peng-fei

    2005-01-01

    Experiments for single and bisolute competitive adsorption were carried out to investigate the adsorption behavior of β-naphthalenesulfonic acid(NSA) and sulfuric acid (H2 SO4 ) from their solution at 25 ℃ onto weakly basic resin D301R. Adsorption affinity of sulfuric acid on D301R was found to be much higher than that of NSA. The data of single-solute adsorption were fitted to the Langmuir model and the Freundlich adsorption model. The ideal adsorbed solution theory(IAST) coupled with the single-solute adsorption models were used to predict the bisolute competitive adsorption equilibria. The IAST coupled with the Langmuir and the Freundlich model for sulfuric acid and NSA, respectively, yields the favorable representation of the bisolute competitive adsorption behavior.

  13. A Simple, Transparent Fume Hood

    Science.gov (United States)

    Fredericks, John

    1998-10-01

    An inexpensive transparent fume hood can be constructed from a clear-plastic two-liter soft drink bottle that is cut just above the base. A length of vacuum tubing is secured to the opening of the bottle using black electrical tape. The tubing is then connected to a water aspirator. Beakers or flasks easily fit inside the bottle, and the bottle may be secured with a clamp and ring stand for added stability. This device has been used to collect the noxious NO2 gas generated from the reaction of copper metal with nitric acid. It also may be used in the collection of other gases. It should not be used to collect gases that are not water-soluble or in experiments that involve open flames.

  14. Diamine-sulfuric acid reactions are a potent source of new particle formation

    Science.gov (United States)

    Jen, Coty N.; Bachman, Ryan; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-01-01

    Atmospheric nucleation from sulfuric acid depends on the concentrations and the stabilizing effect of other trace gases, such as ammonia and amines. Diamines are an understudied class of atmospherically relevant compounds, and we examine how they affect sulfuric acid nucleation in both flow reactor experiments and the atmosphere. The number of particles produced from sulfuric acid and diamines in the flow reactor was equal to or greater than the number formed from monoamines, implying that diamines are more effective nucleating agents. Upper limits of diamine abundance were also monitored during three field campaigns: Lamont, OK (2013); Lewes, DE (2012); and Atlanta, GA (2009). Mixing ratios were measured as high as tens of parts per trillion by volume (GA and OK). Laboratory results suggest that diamines at these levels are important for atmospheric nucleation. Diamines likely participate in atmospheric nucleation and should be considered in nucleation measurements and models.

  15. Bimodal Distribution of Sulfuric Acid Aerosols in the Upper Haze of Venus

    CERN Document Server

    Gao, Peter; Crisp, David; Bardeen, Charles G; Yung, Yuk L

    2013-01-01

    The upper haze (UH) of Venus is variable on the order of days and it is populated by two particle modes. We use a 1D microphysics and vertical transport model based on the Community Aerosol and Radiation Model for Atmospheres to evaluate whether interaction of upwelled cloud particles and sulfuric acid particles nucleated in situ on meteoric dust are able to generate the two size modes and whether their observed variability are due to cloud top vertical transient winds. Nucleation of photochemically produced sulfuric acid onto polysulfur condensation nuclei generates mode 1 cloud droplets that then diffuse upwards into the UH. Droplets generated in the UH from nucleation of sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles and cannot reproduce the observed bimodal size distribution. The mass transport enabled by cloud top transient winds are able to generate a bimodal size distribution in a time scale consistent with observations. Sedimentation and convection in the middle and lower...

  16. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-05-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to formation and to the early growth of nucleated particles, respectively. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two Chemical Ionization Mass Spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a Condensation Particle Counter battery and a Scanning Mobility Particle Sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is dominated by organic compounds already at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particles growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. The size resolved growth analysis finally indicates that both condensation of oxidized organic compounds and reactive uptake contribute to

  17. Age-Related Changes in Sulfur Amino Acid Metabolism in Male C57bl/6 Mice.

    Science.gov (United States)

    Jeon, Jang Su; Oh, Jeong-Ja; Kwak, Hui Chan; Yun, Hwi-Yeol; Kim, Hyoung Chin; Kim, Young-Mi; Oh, Soo Jin; Kim, Sang Kyum

    2017-06-14

    Alterations in sulfur amino acid metabolism are associated with an increased risk of a number of common late-life diseases, which raises the possibility that metabolism of sulfur amino acids may change with age. The present study was conducted to understand the age-related changes in hepatic metabolism of sulfur amino acids in 2-, 6-, 18- and 30-month-old male C57BL/6 mice. For this purpose, metabolite profiling of sulfur amino acids from methionine to taurine or glutathione (GSH) was performed. The levels of sulfur amino acids and their metabolites were not significantly different among 2-, 6- and 18-month-old mice, except for plasma GSH and hepatic homocysteine. Plasma total GSH and hepatic total homocysteine levels were significantly higher in 2-month-old mice than those in the other age groups. In contrast, 30-month-old mice exhibited increased hepatic methionine and cysteine, compared with all other groups, but decreased hepatic S-adenosylmethionine (SAM), S-adenosylhomocysteine and homocysteine, relative to 2-month-old mice. No differences in hepatic reduced GSH, GSH disulfide, or taurine were observed. The hepatic changes in homocysteine and cysteine may be attributed to upregulation of cystathionine β-synthase and down-regulation of γ-glutamylcysteine ligase in the aged mice. The elevation of hepatic cysteine levels may be involved in the maintenance of hepatic GSH levels. The opposite changes of methionine and SAM suggest that the regulatory role of SAM in hepatic sulfur amino acid metabolism may be impaired in 30-month-old mice.

  18. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  19. Dental erosion in workers exposed to sulfuric acid in lead storage battery manufacturing facility.

    Science.gov (United States)

    Suyama, Yuji; Takaku, Satoru; Okawa, Yoshikazu; Matsukubo, Takashi

    2010-01-01

    Dental erosion, and specifically its symptoms, has long been studied in Japan as an occupational dental disease. However, in recent years, few studies have investigated the development of this disease or labor hygiene management aimed at its prevention. As a result, interest in dental erosion is comparatively low, even among dental professionals. Our investigation at a lead storage battery factory in 1991 found that the work environmental sulfuric acid density was above the tolerable range (1.0mg/m(3)) and that longterm workers had dental erosion. Therefore, workers handling sulfuric acid were given an oral examination and rates of dental erosion by tooth type, rates of erosion by number of working years and rates of erosion by sulfuric acid density in the work environment investigated. Where dental erosion was diagnosed, degree of erosion was identified according to a diagnostic criterion. No development of dental erosion was detected in the maxillary teeth, and erosion was concentrated in the anterior mandibular teeth. Its prevalence was as high as 20%. Rates of dental erosion rose precipitously after 10 working years. The percentages of workers with dental erosion were 42.9% for 10-14 years, 57.1% for 15-19 years and 66.7% for over 20 years with 22.5% for total number of workers. The percentages of workers with dental erosion rose in proportion to work environmental sulfuric acid density: 17.9% at 0.5-1.0, 25.0% at 1.0-4.0 and 50.0% at 4.0-8.0mg/m(3). This suggests that it is necessary to evaluate not only years of exposure to sulfuric acid but also sulfuric acid density in the air in factory workers.

  20. An empirical approach to the nucleation of sulfuric acid droplets in the atmosphere

    Directory of Open Access Journals (Sweden)

    P. R. Turco

    2003-06-01

    Full Text Available We use quantum mechanical evaluations of the Gibbs free energy of the hydrates of sulfuric acid, H2SO4. nH2O and (H2SO42 . nH2O to evaluate an empirical surface tension for sulfuric acid-water clusters containing few molecules. We use this surface tension to evaluate nucleation rates using classical heteromolecular theory. At low temperatures (T 213 K the nucleation rates obtained with the empirical surface tensions are signifi cantly greater than those using bulk values of the surface tension. At higher temperatures the difference disappears.

  1. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    Science.gov (United States)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  2. Bee Wax Propolis Extract as Eco-Friendly Corrosion Inhibitors for 304SS in Sulfuric Acid

    OpenAIRE

    Femiana Gapsari; Rudy Soenoko; Agus Suprapto; Wahyono Suprapto

    2015-01-01

    The inhibition properties of bee wax propolis (BWP) extract on the 304SS in 0.5 M sulfuric acid were conducted using potentiodynamic polarization, EIS, and XRD. Quercetin (2-(3.4-dihydroxy phenyl)-3.5.7-trihydroxy-4H-chromen-4-one) was identified as the main compound in the BWP extract based on FTIR and HPLC analysis. The results showed that the inhibitor could retard the corrosion rate of 304SS in 0.5 M sulfuric acid which reached 97.29% and 91.42% at 2000 ppm based on potentiodynamic polari...

  3. Molecular steps of neutral sulfuric acid and dimethylamine nucleation in CLOUD

    Science.gov (United States)

    Jokinen, Tuija; Sarnela, Nina; Sipilä, Mikko; Junninen, Heikki; Lehtipalo, Katrianne; Duplissy, Jonathan; Cloud Collaboration

    2013-05-01

    We have run a set of experiments in the CLOUD chamber at CERN, Switzerland, studying the effect of dimethylamine (DMA) on sulfuric acid (SA)-water nucleation using a nitrate based Chemical Ionization Atmospheric Pressure ionization Time-Of-Flight Mass Spectrometer (CI-APi-TOF). Experiment was designed to produce neutral high m/z SA-DMA clusters in close to atmospherically relevant conditions to be detected and characterized by the CI-APi-TOF. We aimed in filling up the gap in measurement techniques from molecular level up to climatically relevant aerosol particles and thus improve our understanding of the role of sulfuric acid and DMA in atmospheric nucleation.

  4. Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study

    Directory of Open Access Journals (Sweden)

    V. Loukonen

    2010-02-01

    Full Text Available We have studied the hydration of sulfuric acid – ammonia and sulfuric acid – dimethylamine clusters using quantum chemistry. We calculated the formation energies and thermodynamics for clusters of one ammonia or one dimethylamine molecule together with 1–2 sulfuric acid and 0–5 water molecules. The results indicate that dimethylamine enhances the addition of sulfuric acid to the clusters much more efficiently than ammonia when the number of water molecules in the cluster is either zero, or greater than two. Further hydrate distribution calculations reveal that practically all dimethylamine-containing two-acid clusters will remain unhydrated in tropospherically relevant circumstances, thus strongly suggesting that dimethylamine assists atmospheric sulfuric acid nucleation much more effectively than ammonia.

  5. Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water – a computational study

    Directory of Open Access Journals (Sweden)

    V. Loukonen

    2010-05-01

    Full Text Available We have studied the hydration of sulfuric acid – ammonia and sulfuric acid – dimethylamine clusters using quantum chemistry. We calculated the formation energies and thermodynamics for clusters of one ammonia or one dimethylamine molecule together with 1–2 sulfuric acid and 0–5 water molecules. The results indicate that dimethylamine enhances the addition of sulfuric acid to the clusters much more efficiently than ammonia when the number of water molecules in the cluster is either zero, or greater than two. Further hydrate distribution calculations reveal that practically all dimethylamine-containing two-acid clusters will remain unhydrated in tropospherically relevant circumstances, thus strongly suggesting that dimethylamine assists atmospheric sulfuric acid nucleation much more effectively than ammonia.

  6. Acid-base thermochemistry of gaseous oxygen and sulfur substituted amino acids (Ser, Thr, Cys, Met).

    Science.gov (United States)

    Riffet, Vanessa; Frison, Gilles; Bouchoux, Guy

    2011-11-07

    Acid-base thermochemistry of isolated amino acids containing oxygen or sulfur in their side chain (serine, threonine, cysteine and methionine) have been examined by quantum chemical computations. Density functional theory (DFT) was used, with B3LYP, B97-D and M06-2X functionals using the 6-31+G(d,p) basis set for geometry optimizations and the larger 6-311++G(3df,2p) basis set for energy computations. Composite methods CBS-QB3, G3B3, G4MP2 and G4 were applied to large sets of neutral, protonated and deprotonated conformers. Conformational analysis of these species, based on chemical approach and AMOEBA force field calculations, has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. It is observed that G4, G4MP2, G3B3, CBS-QB3 composite methods and M06-2X DFT lead to similar conformer energies. Thermochemical parameters have been computed using either the most stable conformers or equilibrium populations of conformers. Comparison of experimental and theoretical proton affinities and Δ(acid)H shows that the G4 method provides the better agreement with deviations of less than 1.5 kJ mol(-1). From this point of view, a set of evaluated thermochemical quantities for serine, threonine, cysteine and methionine may be proposed: PA = 912, 919, 903, 938; GB = 878, 886, 870, 899; Δ(acid)H = 1393, 1391, 1396, 1411; Δ(acid)G = 1363, 1362, 1367, 1382 kJ mol(-1). This study also confirms that a non-negligible ΔpS° is associated with protonation of methionine and that the most acidic hydrogen of cysteine in the gas phase is that of the SH group. In several instances new conformers were identified thus suggesting a re-examination of several IRMPD spectra.

  7. Decoupling the Impacts of Heterotrophy and Autotrophy on Sulfuric Acid Speleogenesis

    Science.gov (United States)

    Jones, A. A.; Bennett, P.

    2013-12-01

    Within caves such as Movile Caves (Romania), the Frasassi Caves (Italy), and Lower Kane Cave (LKC, Wyoming, USA) the combination of abiotic autoxidation and microbiological oxidation of H2S produces SO42- and H+ that promotes limestone dissolution through sulfuric-acid speleogenesis (SAS). Microbial sulfide oxidation by sulfur-oxidizing bacteria (SOB) has been shown recently to be the dominant process leading to speleogenesis in these caves. However, due to the inherently large diversity of microbial communities within these environments, there are a variety of metabolic pathways that can impact limestone dissolution and carbon cycling to varying degrees. In order to investigate these variations we outfitted a continuous flow bioreactor with a Picarro Wavelength-Scanned Cavity Ring Down Spectrometer (WS-CRDS) that continuously monitored and logged 12CO2 and 13CO2 at ppmv sensitivity and isotope ratios at prefers to store sulfur internally as So under these conditions, generating no acidity. The headspace was depleted in 13C when sulfur was being stored as So and enriched in 13C when sulfur was being converted to SO42-. This suggests a preference for a heterotrophy during periods of high sulfur input and autotrophy when sulfur input is low. This was corroborated by an increase in SO42- during low sulfide input and microscope images showed loss of internal sulfur within the filaments during these periods. In both monoculture and LKC environmental cultures, dissolution rates were highest when sulfur-substrate was limited and CO2 was supplied with no organic carbon. Under these conditions δ13C values were as much as 20‰ higher than abiotic conditions and signifies autotrophic carbon fixation which discriminates against 13C. 16S rRNA sequences confirm that autotrophic SOB dominate within this reactor. In contrast, when acetate was supplied with no supplied CO2, δ13C was relatively constant, maintaining values between -31‰ and as low as -37‰. This signifies

  8. Fumes from shotfiring

    Energy Technology Data Exchange (ETDEWEB)

    Carbonel, P.; Bigourd, J.; Dangreaux, J.

    1980-07-01

    Fumes arising from shotfiring explosives contain a variety of toxic substances depending on the type of explosive used. CERCHAR is studying several test methods for assessing the amounts of these toxic gases. The test conditions, which are varied systematically, have a large effect on the amount of gas produced by a given explosive. Describes 115 l bomb tests and tests in a chamber (15 m3). Presents a comparison with real shotfiring operations underground. The tests in the 15 m3 chamber gave results which were very close to operating practice. (In French)

  9. Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry

    CERN Document Server

    Rondo, L.; Kürten, A.; Adamov, A.; Bianchi, F.; Breitenlechner, M.; Duplissy, J.; Franchin, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Hakala, J.; Hansel, A.; Keskinen, H.; Kim, J.; Jokinen, T.; Lehtipalo, K.; Leiminger, M.; Praplan, A.; Riccobono, F.; Rissanen, M. P.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Smith, J. N.; Tomé, A.; Tröstl, J.; Tsagkogeorgas, G.; Vaattovaara, P.; Winkler, P. M.; Williamson, C.; Wimmer, D.; Baltensperger, U.; Kirkby, J.; Kulmala, M.; Petäjä, T.; Worsnop, D. R.; Curtius, J.

    2016-01-01

    Sulfuric acid is widely recognized as a very important substance driving atmospheric aerosolnucleation. Based on quantum chemical calculations it has been suggested that the quantitative detectionof gas phase sulfuric acid (H2SO4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased inthe presence of gas phase amines such as dimethylamine (DMA). An experiment (CLOUD7 campaign) was setup at the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber to investigate the quantitative detection ofH2SO4in the presence of dimethylamine by CIMS at atmospherically relevant concentrations. For the first time inthe CLOUD experiment, the monomer sulfuric acid concentration was measured by a CIMS and by two CI-APi-TOF(Chemical Ionization-Atmospheric Pressure interface-Time Of Flight) mass spectrometers. In addition, neutralsulfuric acid clusters were measured with the CI-APi-TOFs. The CLOUD7 measurements show that in the presenceof dimethylamine (<5 to 70 pptv) the sulfuric acid monomer measured by the CIMS...

  10. Determination of phosphine: comparison of rates of desorption by purge-and-trap method and by sulfuric acid treatment.

    Science.gov (United States)

    Saeed, T; Abu-Tabanja, R

    1985-01-01

    Two methods were compared for quantitative determination of phosphine present on fumigated food and materials. The rate of desorption of PH3 by using a purge-and-trap method was shown to be much slower when compared with sulfuric acid treatment and was also simpler. Application of the modified sulfuric acid treatment for real samples is described.

  11. Photosynthetic and growth responses of Schima superba seedlings to sulfuric and nitric acid depositions.

    Science.gov (United States)

    Yao, Fang-Fang; Ding, Hui-Ming; Feng, Li-Li; Chen, Jing-Jing; Yang, Song-Yu; Wang, Xi-Hua

    2016-05-01

    A continuing rise in acid deposition can cause forest degradation. In China, acid deposition has converted gradually from sulfuric acid deposition (SAD) to nitric acid deposition (NAD). However, the differing responses of photosynthesis and growth to depositions of sulfuric vs. nitric acid have not been well studied. In this study, 1-year-old seedlings of Schima superba, a dominant species in subtropical forests, were treated with two types of acid deposition SO4 (2-)/NO3 (-) ratios (8:1 and 0.7:1) with two applications (foliar spraying and soil drenching) at two pH levels (pH 3.5 and pH 2.5) over a period of 18 months. The results showed that the intensity, acid deposition type, and spraying method had significant effects on the physiological characteristics and growth performance of seedlings. Acid deposition at pH 2.5 via foliar application reduced photosynthesis and growth of S. superba, especially in the first year. Unlike SAD, NAD with high acidity potentially alleviated the negative effects of acidity on physiological properties and growth, probably due to a fertilization effect that improved foliar nitrogen and chlorophyll contents. Our results suggest that trees were damaged mainly by direct acid stress in the short term, whereas in the long term, soil acidification was also likely to be a major risk to forest ecosystems. Our data suggest that the shift in acid deposition type may complicate the ongoing challenge of anthropogenic acid deposition to ecosystem stability.

  12. Revealing biogenic sulfuric acid corrosion in sludge digesters: detection of sulfur-oxidizing bacteria within full-scale digesters.

    Science.gov (United States)

    Huber, B; Drewes, J E; Lin, K C; König, R; Müller, E

    2014-01-01

    Biogenic sulfuric acid corrosion (BSA) is a costly problem affecting both sewerage infrastructure and sludge handling facilities such as digesters. The aim of this study was to verify BSA in full-scale digesters by identifying the microorganisms involved in the concrete corrosion process, that is, sulfate-reducing (SRB) and sulfur-oxidizing bacteria (SOB). To investigate the SRB and SOB communities, digester sludge and biofilm samples were collected. SRB diversity within digester sludge was studied by applying polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) targeting the dsrB-gene (dissimilatory sulfite reductase beta subunit). To reveal SOB diversity, cultivation dependent and independent techniques were applied. The SRB diversity studies revealed different uncultured SRB, confirming SRB activity and H2S production. Comparable DGGE profiles were obtained from the different sludges, demonstrating the presence of similar SRB species. By cultivation, three pure SOB strains from the digester headspace were obtained including Acidithiobacillus thiooxidans, Thiomonas intermedia and Thiomonas perometabolis. These organisms were also detected with PCR-DGGE in addition to two new SOB: Thiobacillus thioparus and Paracoccus solventivorans. The SRB and SOB responsible for BSA were identified within five different digesters, demonstrating that BSA is a problem occurring not only in sewer systems but also in sludge digesters. In addition, the presence of different SOB species was successfully associated with the progression of microbial corrosion.

  13. Chemical ionization mass spectrometry (CIMS may not measure all gas-phase sulfuric acid if base molecules are present

    Directory of Open Access Journals (Sweden)

    T. Kurtén

    2010-12-01

    Full Text Available The state-of-the art method for measuring atmospheric gas-phase sulfuric acid is chemical ionization mass spectrometry (CIMS based on nitrate reagent ions. Using computed proton affinities and reaction thermodynamics for the relevant charging reactions, we show that in the presence of strong bases such as amines, which tend to cluster with the sulfuric acid molecules, a significant fraction of the total gas-phase sulfuric acid may not be measured by a CIMS instrument. If this is the case, this effect has to be taken into account in the interpretation of atmospheric sulfuric acid measurement data, as well as in intercomparison of different CIMS instruments, which likely have different susceptibilities to amine-sulfuric acid clustering.

  14. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.

    Science.gov (United States)

    Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S

    This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.

  15. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution.

    Science.gov (United States)

    Chen, Guo; Zhang, Bin; Zhao, Jun; Chen, Hongwen

    2013-06-05

    An improved process for production of cellulose sulfate (CS) was developed by using sulfuric acid/ethanol solution as sulfonating agent and Na2SO4 as water absorbent. The FTIR, SEM and TG analysis were used to characterize the CS prepared. The total degree of substitution and viscosity of the product solution (2%, w/v) were ranging from 0.28 to 0.77 and from 115 to 907 mPa s, respectively, by changing the process parameters such as the amount of Na2SO4, the reaction time, the temperature, the sulfuric acid/alcohol ratio and liquid/solid ratio. The results indicated that the product with DS (0.28-0.77) and η2% (115-907) mPa s could be produced by using this improved process and more cellulose sulfate could be produced when cellulose was sulfonated for 3-4 h at -2 °C in sulfuric acid/ethanol (1.4-1.6) solution with addition of 0.8 g Na2SO4. The (13)C NMR indicated that the sulfate group of CS produced using sulfuric acid/ethanol solution was at C6 position.

  16. Sulfuric acid-ammonium sulfate aerosol: optical detection in the St. Louis region.

    Science.gov (United States)

    Charlson, R J; Vanderpol, A H; Covert, D S; Waggnoner, A P; Ahlquist, N C

    1974-04-12

    Nephelometric sensing of the deliquescence of ammonium sulfate produced by the reaction of sulfuric acid or ammonium bisulfate aerosol with ammonia provides a means for detecting these substances in air. Field experiments show them to be the dominant substances in the submicrometer, light-scattering aerosol in the St. Louis region.

  17. Pressure leaching of metals from waste printed circuit boards using sulfuric acid

    Science.gov (United States)

    Jha, Manis K.; Lee, Jae-Chun; Kumari, Archana; Choubey, Pankaj K.; Kumar, Vinay; Jeong, Jinki

    2011-08-01

    Printed circuit boards (PCBs) are essential components of electronic equipments which contain various metallic values. This paper reports a hydrometallurgical recycling process for waste PCBs, which consists of the novel pretreatment consisting of organic swelling of PCBs followed by sulfuric acid leaching of metals from waste PCBs. To recycle the waste PCBs, experiments were carried out for the recovery of copper from the crushed and organic swelled materials of waste PCBs using sulfuric acid leaching in presence of hydrogen peroxide under atmospheric and pressure condition. The leaching of PCBs at 90°C, pulp density 100 g/L under atmospheric condition, using 6M sulfuric acid resulted in the dissolution of a minor amount of copper due to the presence of plastic coating on the surface of metallic layers. On the other hand, when the liberated metal sheets from organic swelled PCBs were treated with dilute sulfuric acid of concentration 2M along with hydrogen peroxide in an autoclave under oxygen atmosphere, the percentage recovery of copper was found to increase from 59.63% to 97.01% with an increase in hydrogen peroxide concentration from 5 to 15% (v/v) keeping constant pulp density 30 g/L.

  18. Characteristics of Sulfuric Acid Condensation on Cylinder Liners of Large Two-Stroke Marine Engines

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Mayer, Stefan; Schramm, Jesper;

    The present work seeks to clarify the characteristics of sulfuric acid condensation on the cylinder liner of a large two–stroke marine engine. The liner is directly exposed to the cylin-der gas (i.e. no protective lube oil film) and is represented by a constant temperature over the full stroke...

  19. Silica Sulfuric Acid: An Eco-Friendly and Reusable Catalyst for Synthesis of Benzimidazole Derivatives

    OpenAIRE

    Bahareh Sadeghi; Mahboobeh Ghasemi Nejad

    2013-01-01

    Silica sulfuric acid (SiO2-OSO3H) as an eco-friendly, readily available, and reusable catalyst is applied to benzimidazole derivatives synthesis under reflux in ethanol. The procedure is very simple and the products are isolated with an easy workup in good-to-excellent yields.

  20. Silica Sulfuric Acid: An Eco-Friendly and Reusable Catalyst for Synthesis of Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Bahareh Sadeghi

    2013-01-01

    Full Text Available Silica sulfuric acid (SiO2-OSO3H as an eco-friendly, readily available, and reusable catalyst is applied to benzimidazole derivatives synthesis under reflux in ethanol. The procedure is very simple and the products are isolated with an easy workup in good-to-excellent yields.

  1. Inhibition of Enzymatic Browning of Chlorogenic Acid by Sulfur-Containing Compounds

    NARCIS (Netherlands)

    Kuijpers, T.F.M.; Narvaez Cuenca, C.E.; Vincken, J.P.; Verloop, J.W.; Berkel, van W.J.H.; Gruppen, H.

    2012-01-01

    The antibrowning activity of sodium hydrogen sulfite (NaHSO3) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectra

  2. Chemical ionization of clusters formed from sulfuric acid and dimethylamine or diamines

    Science.gov (United States)

    Jen, Coty N.; Zhao, Jun; McMurry, Peter H.; Hanson, David R.

    2016-10-01

    Chemical ionization (CI) mass spectrometers are used to study atmospheric nucleation by detecting clusters produced by reactions of sulfuric acid and various basic gases. These instruments typically use nitrate to deprotonate and thus chemically ionize the clusters. In this study, we compare cluster concentrations measured using either nitrate or acetate. Clusters were formed in a flow reactor from vapors of sulfuric acid and dimethylamine, ethylene diamine, tetramethylethylene diamine, or butanediamine (also known as putrescine). These comparisons show that nitrate is unable to chemically ionize clusters with high base content. In addition, we vary the ion-molecule reaction time to probe ion processes which include proton-transfer, ion-molecule clustering, and decomposition of ions. Ion decomposition upon deprotonation by acetate/nitrate was observed. More studies are needed to quantify to what extent ion decomposition affects observed cluster content and concentrations, especially those chemically ionized with acetate since it deprotonates more types of clusters than nitrate.Model calculations of the neutral and ion cluster formation pathways are also presented to better identify the cluster types that are not efficiently deprotonated by nitrate. Comparison of model and measured clusters indicate that sulfuric acid dimers with two diamines and sulfuric acid trimers with two or more base molecules are not efficiently chemical ionized by nitrate. We conclude that acetate CI provides better information on cluster abundancies and their base content than nitrate CI.

  3. Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals

    Science.gov (United States)

    John F. Harris; Andrew J. Baker; Anthony H. Conner; Thomas W. Jeffries; James L. Minor; Roger C. Pettersen; Ralph W. Scott; Edward L Springer; Theodore H. Wegner; John I. Zerbe

    1985-01-01

    This paper presents a fundamental analysis of the processing steps in the production of methanol from southern red oak (Quercus falcata Michx.) by two-stage dilute sulfuric acid hydrolysis. Data for hemicellulose and cellulose hydrolysis are correlated using models. This information is used to develop and evaluate a process design.

  4. Response of DOC in acid-sensitive Maine lakes to decreasing sulfur deposition (1993 - 2009)

    Science.gov (United States)

    In response to the Clean Air Act Amendments of 1990, sulfur deposition has decreased across the northeastern United States. As a result, sulfate concentrations in lakes and streams have also decreased and many surface waters have become less acidic. Over the same time period, th...

  5. The role of cluster energy nonaccommodation in atmospheric sulfuric acid nucleation.

    Science.gov (United States)

    Kurtén, Theo; Kuang, Chongai; Gómez, Pedro; McMurry, Peter H; Vehkamäki, Hanna; Ortega, Ismael; Noppel, Madis; Kulmala, Markku

    2010-01-14

    We discuss the possible role of energy nonaccommodation (monomer-cluster collisions that do not result in stable product formation due to liberated excess energy) in atmospheric nucleation processes involving sulfuric acid. Qualitative estimates of the role of nonaccommodation are computed using quantum Rice-Ramsberger-Kassel theory together with quantum chemically calculated vibrational frequencies and anharmonic coupling constants for small sulfuric acid-containing clusters. We find that energy nonaccommodation effects may, at most, decrease the net formation rate of sulfuric acid dimers by up to a factor of 10 with respect to the hard-sphere collision rate. A decrease in energy nonaccommodation due to an increasing number of internal degrees of freedom may kinetically slightly favor the participation of amines rather than ammonia as stabilizing agents in sulfuric acid nucleation, though the kinetic enhancement factor is likely to be less than three. However, hydration of the clusters (which always occurs in ambient conditions) is likely to increase the energy accommodation factor, reducing the role that energy nonaccommodation plays in atmospheric nucleation.

  6. Homogenous nucleation of sulfuric acid and water at atmospherically relevant conditions

    Science.gov (United States)

    Brus, D.; Neitola, K.; Petäjä, T.; Vanhanen, J.; Hyvärinen, A.-P.; Sipilä, M.; Paasonen, P.; Lihavainen, H.; Kulmala, M.

    2010-11-01

    In this study the homogeneous nucleation rates of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS), commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3×109 molecules cm-3. The nucleation rates obtained in this study cover about three orders of magnitude from 10-1 to 102 cm3 s-1 for commercial ultrafine condensation particle counter (UCPC) TSI model 3025A and from 101 to 104 cm3 s-1 for PSM. The nucleation rates and the slopes (dlnJ/dln[H2SO4]) show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data.

  7. The Optimized Synthesis of Starch-g-Lactic Acid Copolymer with High Grafting Degree Catalyzed by Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    HU Zhiying

    2014-01-01

    The starch-g-lactic acid copolymer was synthesized with catalysis of sulfuric acid by one-step process, and the structure of starch-g-lactic acid copolymer was characterized by means of IR, 13C-NMR, HMBC, XRD, and SEM. The experimental results show that the maximum grafting degree of starch can reach 75%when the starch-g-lactic acid copolymer is activated at 80℃for 2 h and reacted with lactic acid at 90℃for 4 h in vacuum.

  8. Sulfuric acid leaching of mechanically activated manganese carbonate ore

    Directory of Open Access Journals (Sweden)

    Kenan Yıldız

    2010-06-01

    Full Text Available Acidic leaching of mechanically activated manganese ore from Denizli – Tavas was investigated. The ore was activated mechanically in a planetary mill and the amorphisation in manganese structure was analyzed with X-ray diffraction. The parameters in acidic leaching of the ore were milling time, acid concentration and time. All experiments were performed at 25°C with solid to liquid ratio: 1/10. The activation procedure led to amorphization and structural disordering in manganese ore and accelerated the dissolution of manganese in acidic media.

  9. Extraction of uranium from tailings by sulfuric acid leaching with oxidants

    Science.gov (United States)

    Huang, Jing; Li, Mi; Zhang, Xiaowen; Huang, Chunmei; Wu, Xiaoyan

    2017-06-01

    Recovery of uranium have been performed by leaching uranium-containing tailings in sulfuric acid system with the assistance of HF, HClO4, H2O2 and MnO2. The effect of reagent dosage, sulfuric acid concentration, Liquid/solid ratio, reaction temperature and particle size on the leaching of uranium were investigated. The results show that addiction of HF, HClO4, H2O2 and MnO2 significantly increased the extraction of uranium under 1M sulphuric acid condition and under the optimum reaction conditions a dissolution fraction of 85% by HClO4, 90% by HF, 95% by H2O2 can be reached respectively. The variation of technological mineralogy properites of tailings during leaching process show that the assistants can break gangue effectively. These observations suggest that optimum oxidants could potentially influence the extraction of uranium from tailings even under dilute acid condition.

  10. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

    Science.gov (United States)

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2015-03-01

    The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment.

  11. [Health aspects of sodium salts of sulfurous and sulfuric acids as environmental pollutants].

    Science.gov (United States)

    Denisov, Iu N; Tkachev, P G

    1990-09-01

    For the first time hygienic characteristics of long-term inhalation exposure effects of sodium salts of sulphurous and sulphuric acids in low concentrations on animals is given. The most sensitive organs and organism systems have been identified. MACs of the substances under study for the ambient air are proposed. The degree of contamination and the distance of spreading of sodium sulfate from the source have been determined in field studies. The size of the sanitary-protective zone has been substantiated.

  12. Planned Complex Occupation-related Suicide by Sulfuric Acid Ingestion and Thorax Stab Wound: Case Report

    Directory of Open Access Journals (Sweden)

    Pasquale Beltempo

    2015-12-01

    Full Text Available Sulfuric acid is a colourless, odorless liquid, which causes typical injury patterns such as cutaneous and ocular burns, respiratory complications from inhalation, and ingestion injuries (coagulative necrosis of the mucosa, gastric and intestinal perforations with significant dermal and mucosal injury because of its corrosive action. Most injuries caused by sulfuric acid ingestion are accidental, especially in the paediatric population. Intentional cases of ingestion have rarely been reported in adults as a method of suicide following a major depressive disorder. In this paper, we report the case of a 44-year-old woman who was found dead outside her home with a retained fillet knife embedded in her left chest wall and cutaneous chemical burns extending from her mouth down her chin and anterior torso. During the crime scene investigation, a half empty bottle of chemical drain cleaner containing concentrated sulfuric acid was found next to her body. An autopsy revealed chemical burns to the tongue, trachea, larynx, pharynx and oesophagus along with a blackish fluid in the peritoneal cavity. Histological analyses showed extensive corrosive changes in the gastrointestinal tract. Toxicological screening of blood and urine samples was negative; gastric contents contained a high quantity of concentrated (≈ 96% sulfuric acid with a pH value of < 1.0. Death was attributed to shock following sulfuric acid ingestion. Circumstantial evidence and autopsy findings proved that the manner of death was suicidal. Complex suicides can be challenging for the forensic pathologist because of the plurality of methods used. The authors highlight the importance of systematical exhaustive postmortem investigation in order to ascertain the cause and manner of death in cases of planned complex suicide.

  13. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions

    Directory of Open Access Journals (Sweden)

    D. Brus

    2011-06-01

    Full Text Available In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS, commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3 × 109 molecules cm−3. The nucleation rates obtained in this study cover about three orders of magnitude from 10−1 to 102 cm−3 s−1 for commercial ultrafine condensation particle counter (UCPC TSI model 3025A and from 101 to 104 cm−3 s−1 for PSM. The nucleation rates and the slopes (dlnJ/dln [H2SO4] show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data. To the best of our knowledge, this is the first experimental work providing temperature dependent nucleation rate measurements using a high efficiency particle counter with a cut-off-size of 1.5 nm together with direct measurements of gas phase sulfuric acid concentration.

  14. STARCH SULFURIC ACID: AN ALTERNATIVE, ECO-FRIENDLY CATALYST FOR BIGINELLI REACTION

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2013-12-01

    Full Text Available The one-pot multicomponent synthesis of 3,4-dihydropyrimidinone derivatives using starch sulfuric acid as an environmentally friendly biopolymer-based solid acid catalyst from aldehydes, β-keto esters and urea/ thiourea without solvent is described. Compared with classical Biginelli reaction conditions, this new method has the advantage of minimizing the cost operational hazards and environmental pollution, good yields, shorter reaction times and simple work-up.

  15. A combined proteomic and transcriptomic analysis on sulfur metabolism pathways of Arabidopsis thaliana under simulated acid rain.

    Science.gov (United States)

    Liu, Tingwu; Chen, Juan A; Wang, Wenhua; Simon, Martin; Wu, Feihua; Hu, Wenjun; Chen, Juan B; Zheng, Hailei

    2014-01-01

    With rapid economic development, most regions in southern China have suffered acid rain (AR) pollution. In our study, we analyzed the changes in sulfur metabolism in Arabidopsis under simulated AR stress which provide one of the first case studies, in which the systematic responses in sulfur metabolism were characterized by high-throughput methods at different levels including proteomic, genomic and physiological approaches. Generally, we found that all of the processes related to sulfur metabolism responded to AR stress, including sulfur uptake, activation and also synthesis of sulfur-containing amino acid and other secondary metabolites. Finally, we provided a catalogue of the detected sulfur metabolic changes and reconstructed the coordinating network of their mutual influences. This study can help us to understand the mechanisms of plants to adapt to AR stress.

  16. Characterization of Unye bentonite after treatment with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Bulent Caglar

    2013-01-01

    Full Text Available Unye bentonite was found to consist predominantly of a dioctahedral smectite along with quartz, tridymite, cristobalite, and minor fractions of feldspar and anatase. A considerable amount of Al was retained as a constituent in acid-resistant impurities following the decomposition of the montmorillonite via acid treatment at an acid/clay ratio of 0.4. These impurities were mesoporous with a maximum surface area of 303.9±0.4 m² g-1. A sharp decrease in the d001 lattice spacing of the montmorillonite to 15.33 Å reflected the reduction of the crystallinity in the activated products. In addition, the increase in the ease with which newly formed hydroxyl groups were lost paralleled the severity of the acid treatment.

  17. Characterisation of fume from hyperbaric welding operations

    Energy Technology Data Exchange (ETDEWEB)

    Ross, John A S; Semple, Sean [Environmental and Occupational Medicine, University of Aberdeen (United Kingdom); Duffin, Rodger [ELEGI Colt Laboratory, University of Edinburgh (United Kingdom); Kelly, Frank [Lung Biology Group, Kings College, University of London (United Kingdom); Seldmann, Joerg; Raab, Andrea, E-mail: j.a.ross@abdn.ac.u [Trace Element Speciation Laboratory, University of Aberdeen (United Kingdom)

    2009-02-01

    We report preliminary work characterising dust from hyperbaric welding trials carried out at increased pressure in a helium and oxygen atmosphere. Particle size and concentration were measured during welding. Samples for quartz and metal analysis and toxicity assessment were taken from a filter in the local fume extraction system. The residue of dust after metal extraction by nitric acid in hydrogen peroxide predominantly a non-metallic white powder assumed to be dust from welding rod coatings and thermal insulation material. Metallic analysis showed predominantly calcium, from the welding rod coating, and period 4 transition metals such as iron, manganese, magnesium and titanium (inductively coupled mass spectrometry, Agilent 7500c). The presence of zirconium indicated a contribution from grinding. The fume was nanoparticulate in nature with a mean particle diameter of 20-30 nm (MSI Inc WPS 1000XP). It showed an intermediate level of oxidative potential regarding the low-molecular weight respiratory tract lining fluid antioxidants ascorbate and glutathione and caused release of the inflammatory marker IL-8 in a human lung A 549 epithelial cell culture with no indication of cytotoxicity. The study findings have strong implications for the measurement techniques needed to assess fume exposure in hyperbaric welding and the provision of respiratory protection.

  18. Sulfur recovery from low H{sub 2}S content acid gas using catalytic partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D.; Dowling, N.I.; Huang, M.

    2010-01-15

    The poster presentation discussed a new strategy for recovering sulfur from low hydrogen-sulphide-content acid gas using catalytic partial oxidation. In a new technology for dealing with BTX-contaminated lean acid gas, a catalytic reactor replaces the burner-furnace stage to achieve BTX conversion greater than 95 percent and control the hydrogen sulfide/sulfur dioxide ratio. The product gas is then sent to the Claus catalytic converters. The best catalysts for this process are alumina-supported Co-Mo and y-alumina. This process was compared with SELECTOX, another process that deals with poor acid gas with BTX conversion better than 95 percent. Catalytic oxidation can deal with a higher BTX feed content than SELECTOX, but the running temperature is higher. Both processes produce acceptable sulfur quality. To improve this process, the quality of the sulfur produced and the lifetime of the catalyst need to be increased, and an economic way to increase the heat to reach the running temperature needs to be found. The partial oxidation (POX) of CH{sub 4} solves both of these problems. The catalytic POX of acid gas is combined with the POX of fuel gas in the pre-heating zone. This process has the advantage that the burner-furnace stage of the Claus process can be replaced by a stream containing H{sub 2}S/SO{sub 2}=2; the reaction is performed at its adiabatic temperature requiring only a small amount of fuel gas; the presence of H{sub 2} and CO produced by the POX of fuel gas improves the quality of sulfur; the catalyst remains active for about 30 hours; and the process can tolerate high BTX content. 6 tabs., 2 figs.

  19. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing

    Directory of Open Access Journals (Sweden)

    D. L. Yue

    2010-05-01

    Full Text Available Simultaneous measurements of gaseous sulfuric acid and particle number size distributions were performed to investigate aerosol nucleation and growth during CAREBeijing-2008. The analysis of the measured aerosols and sulfuric acid with an aerosol dynamic model shows the dominant role of sulfuric acid in new particle formation (NPF process but also in the subsequent growth in Beijing. Based on the data of twelve NPF events, the average formation rates (2–13 cm−3 s−1 show a linear correlation with the sulfuric acid concentrations (R2=0.85. Coagulation seems to play a significant role in reducing the number concentration of nucleation mode particles with the ratio of the coagulation loss to formation rate being 0.41±0.16. The apparent growth rates vary from 3 to 11 nm h−1. Condensation of sulfuric acid and its subsequent neutralization by ammonia and coagulation contribute to the apparent particle growth on average 45±18% and 34±17%, respectively. The 30% higher concentration of sulfate than organic compounds in particles during the seven sulfur-rich NPF events but 20% lower concentration of sulfate during the five sulfur-poor type suggest that organic compounds are an important contributor to the growth of the freshly nucleated particles, especially during the sulfur-poor cases.

  20. Effect of Mineral Admixtures on Resistance to Sulfuric Acid Solution of Mortars with Quaternary Binders

    Science.gov (United States)

    Makhloufi, Zoubir; Bederina, Madani; Bouhicha, Mohamed; Kadri, El-Hadj

    This research consists to study the synergistic action of three mineral additions simultaneously added to the cement. This synergistic effect has a positive effect on the sustainability of limestone mortars. Tests were performed on mortars based on crushed limestone sand and manufactured by five quaternary binders (ordinary Portland cement and CPO mixed simultaneously with filler limestone, blast-furnace and natural pozzolan). The purpose of this research was to identify the resistance of five different mortars to the solution of sulfuric acid. Changes in weight loss and compressive strength measured at 30, 60, 90, 120 and 180 days for each acid solution were studied. We followed up on the change in pH of the sulfuric acid solution at the end of each month up to 180 days.

  1. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.

    Science.gov (United States)

    Chen, Haihan; Grassian, Vicki H

    2013-09-17

    Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.

  2. Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching

    Institute of Scientific and Technical Information of China (English)

    Qing-quan Lin; Guo-hua Gu; Hui Wang; Ren-feng Zhu; You-cai Liu; and Jian-gang Fu

    2016-01-01

    In this study, a method for preparing pure manganese sulfate from low-grade ores with a granule mean size of 0.47 mm by direct acid leaching was developed. The effects of the types of leaching agents, sulfuric acid concentration, reaction temperature, and agitation rate on the leaching efficiency of manganese were investigated. We observed that sulfuric acid used as a leaching agent provides a similar leach-ing efficiency of manganese and superior selectivity against calcium compared to hydrochloric acid. The optimal leaching conditions in sul-furic acid media were determined; under the optimal conditions, the leaching efficiencies of Mn and Ca were 92.42% and 9.61%, respec-tively. Moreover, the kinetics of manganese leaching indicated that the leaching follows the diffusion-controlled model with an apparent ac-tivation energy of 12.28 kJ·mol−1. The purification conditions of the leaching solution were also discussed. The results show that manganese dioxide is a suitable oxidant of ferrous ions and sodium dimethyldithiocarbamate is an effective precipitant of heavy metals. Finally, through chemical analysis and X-ray diffraction analysis, the obtained product was determined to contain 98% of MnSO4·H2O.

  3. Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite

    Science.gov (United States)

    Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir

    2016-04-01

    An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.

  4. 40 CFR 721.3130 - Sulfuric acid, mono-C9-11-alkyl esters, sodium salts.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sulfuric acid, mono-C9-11-alkyl esters... Specific Chemical Substances § 721.3130 Sulfuric acid, mono-C9-11-alkyl esters, sodium salts. (a) Chemical... acid, mono-C9-11-alkyl esters, sodium salts (PMN P-01-149; CAS No. 84501-49-5) is subject to reporting...

  5. Exploration of Sulfur Assimilation of Aspergillus fumigatus Reveals Biosynthesis of Sulfur-Containing Amino Acids as a Virulence Determinant.

    Science.gov (United States)

    Amich, Jorge; Dümig, Michaela; O'Keeffe, Gráinne; Binder, Jasmin; Doyle, Sean; Beilhack, Andreas; Krappmann, Sven

    2016-04-01

    Fungal infections are of major relevance due to the increased numbers of immunocompromised patients, frequently delayed diagnosis, and limited therapeutics. To date, the growth and nutritional requirements of fungi during infection, which are relevant for invasion of the host, are poorly understood. This is particularly true for invasive pulmonary aspergillosis, as so far, sources of (macro)elements that are exploited during infection have been identified to only a limited extent. Here, we have investigated sulfur (S) utilization by the human-pathogenic mold Aspergillus fumigatus during invasive growth. Our data reveal that inorganic S compounds or taurine is unlikely to serve as an S source during invasive pulmonary aspergillosis since a sulfate transporter mutant strain and a sulfite reductase mutant strain are fully virulent. In contrast, the S-containing amino acid cysteine is limiting for fungal growth, as proven by the reduced virulence of a cysteine auxotroph. Moreover, phenotypic characterization of this strain further revealed the robustness of the subordinate glutathione redox system. Interestingly, we demonstrate that methionine synthase is essential for A. fumigatus virulence, defining the biosynthetic route of this proteinogenic amino acid as a potential antifungal target. In conclusion, we provide novel insights into the nutritional requirements ofA. fumigatus during pathogenesis, a prerequisite to understanding and fighting infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist.

    Science.gov (United States)

    Huang, Jiayu; Wang, Hongmei; Shi, Yingjie; Zhang, Fan; Dang, Xiaoqing; Zhang, Hui; Shu, Yun; Deng, Shuang; Liu, Yu

    2016-10-01

    The use of a wet electrostatic precipitator (WESP) is often regarded as a viable option to reduce sulfuric acid mist emitted from the wet flue gas desulfurization (WFGD) tower in coal-fired power plants. In this study, a pilot-scale wet electrostatic precipitator equipped with a wall-cooled collection electrode is investigated for the control of sulfuric acid mist from a simulated WFGD system. The results show that due to partial charging effect, the removal efficiency of sulfuric acid aerosol decreases when the aerosol size decreases to several tens of nanometers. Moreover, due to the plasma-induced effect, a large number of ultrafine sulfuric acid aerosols below 50 nm formed at a voltage higher than 24 kV inside the WESP. The percentages of submicron-sized aerosols significantly increase together with the voltage. To minimize the adverse plasma-induced effect, a WESP should be operated at a high gas velocity with an optimum high voltage. Even at a high flue gas velocity of 2.3 m s(-1), the mass concentration and the total number concentration of uncaptured sulfuric acid aerosols at the WESP outlet are as low as ca. 0.6 mg m(-3) and ca. 10(4) 1 cm(-3) at 28 kV, respectively. The corresponding removal efficiencies were respectively higher than 99.4 and 99.9 % and are very similar to that at 1.1 and 1.6 m s(-1). Moreover, the condensation-induced aerosol growth enhances the removal of sulfuric acid mist inside a WESP and enables a low emission concentration of ca. 0.65 mg m(-3) with a corresponding removal efficiency superior to 99.4 % even at a low voltage of 21 kV, and of ca. 0.35 mg m(-3) with a corresponding removal efficiency superior to 99.6 % at a higher voltage level of 26 kV.

  7. short communication facile, mild and selective silica sulfuric acid ...

    African Journals Online (AJOL)

    Preferred Customer

    as a mild, efficient and reusable solid acid catalyst was used to afford the ... and overcome typical problems that occur during oxidation and accept wide rang of ... synthetic and natural organic and inorganic compounds in aqueous solution and it .... (CCl4), dichloromethane (CH2Cl2), chloroform (CHCl3), diethyl ether and.

  8. Uptake of sulfuric acid mist by plant canopies. [Exposure chamber studies with maize and soybeans

    Energy Technology Data Exchange (ETDEWEB)

    Wedding, J.B.

    1979-01-01

    Wind tunnel studies and exposure chamber experiments were conducted in the Aerosol Science Laboratory at Colorado State University. Full scale, live plant canopies of 4 to 6 week old corn and soybeans were established in a large wind tunnel. Monodisperse aerosols (1 to 15 ..mu..m aerodynamic diameter) were injected into the tunnel and deposition velocities were determined for wind speeds of 183, 305, and 610 cm/sec. A minimum deposition velocity was seen to occur at 5 ..mu..m. Initially, 4 to 6 week old soybean plants were exposed to hydrated sulfuric acid mist droplets. Unquantified topically applied sulfuric acid mist was applied at a 1% or 10% volumetric concentration of acid to water. The 10% solution produced severe necrotic lesions and large chlorotic regions on the acropetal leaves. A heavy application of the 1% solution produced similar effects but with a reduced number of necrotic lesions. A light application had no visual effects on the plants even after 24 h.In addition, 4 to 6 week old corn and soybeans were placed in a glass exposure chamber. Droplets of pure 18M sulfuric acid mist (1.7 ..mu..m) were injected into the chamber at a rate commensurate with the deposition velocity results. Loading of 107 particles/cm2 were realized during exposure periods up to 10 h per day extending to 14 days total fumigation periods. No visible toxicity symptoms of damage resulted to the plants from these tests conducted at background humidity levels of approximately 40%. Scanning electron microscope observations of the 140 h treated plants showed no apparent damage due to the sulfuric acid mist treatment.

  9. Bond energies and structures of ammonia-sulfuric acid positive cluster ions.

    Science.gov (United States)

    Froyd, Karl D; Lovejoy, Edward R

    2012-06-21

    New particle formation in the atmosphere is initiated by nucleation of gas-phase species. The small molecular clusters that act as seeds for new particles are stabilized by the incorporation of an ion. Ion-induced nucleation of molecular cluster ions containing sulfuric acid generates new particles in the background troposphere. The addition of a proton-accepting species to sulfuric acid cluster ions can further stabilize them and may promote nucleation under a wider range of conditions. To understand and accurately predict atmospheric nucleation, the stabilities of each molecular cluster within a chemical family must be known. We present the first comprehensive measurements of the ammonia-sulfuric acid positive ion cluster system NH(4)(+)(NH(3))(n)(H(2)SO(4))(s). Enthalpies and entropies of individual growth steps within this system were measured using either an ion flow reactor-mass spectrometer system under equilibrium conditions or by thermal decomposition of clusters in an ion trap mass spectrometer. Low level ab initio structural calculations provided inputs to a master equation model to determine bond energies from thermal decomposition measurements. Optimized ab initio structures for clusters up through n = 3, s = 3 are reported. Upon addition of ammonia and sulfuric acid pairs, internal proton transfer generates multiple NH(4)(+) and HSO(4)(-) ions within the clusters. These multiple-ion structures are up to 50 kcal mol(-1) more stable than corresponding isomers that retain neutral NH(3) and H(2)SO(4) species. The lowest energy n = s clusters are composed entirely of ions. The addition of acid-base pairs to the core NH(4)(+) ion generates nanocrystals that begin to resemble the ammonium bisulfate bulk crystal starting with the smallest n = s cluster, NH(4)(+)(NH(3))(1)(H(2)SO(4))(1). In the absence of water, this cluster ion system nucleates spontaneously for conditions that encompass most of the free troposphere.

  10. Electrical charging changes the composition of sulfuric acid-ammonia/dimethylamine clusters

    Science.gov (United States)

    Ortega, I. K.; Olenius, T.; Kupiainen-Määttä, O.; Loukonen, V.; Kurtén, T.; Vehkamäki, H.

    2014-08-01

    Sulfuric acid clusters stabilized by base molecules are likely to have a significant role in atmospheric new-particle formation. Recent advances in mass spectrometry techniques have permitted the detection of electrically charged clusters. However, direct measurement of electrically neutral clusters is not possible. Mass spectrometry instruments can be combined with a charger, but the possible effect of charging on the composition of neutral clusters must be addressed in order to interpret and understand the measured data. In the present work we have used formation free energies from quantum chemical methods to calculate the evaporation rates of electrically charged (both positive and negative) sulfuric acid-ammonia/dimethylamine clusters. To understand how charging will affect the composition of electrically neutral clusters, we have compared the evaporation rates of the most stable neutral clusters with those of the corresponding charged clusters. Based on the evaporation rates of different molecules from the charged clusters, we determined the most likely resulting cluster composition when a stable neutral cluster is charged and the molecules with the highest evaporation rates are lost from it. We found that all of the most stable neutral clusters will be altered by both positive and negative charging. In the case of charging clusters negatively, base molecules will completely evaporate from clusters with 1 to 3 sulfuric acid molecules in the case of ammonia, and from clusters with 1 or 2 sulfuric acid molecules in the case of dimethylamine. Larger clusters will maintain some base molecules, but the H2SO4 : base ratio will increase. In the case of positive charging, some of the acid molecules will evaporate, decreasing the H2SO4 : base ratio.

  11. Uptake of sulfuric acid mist by plant canopies. [Exposure chamber studies with maize and soybeans

    Energy Technology Data Exchange (ETDEWEB)

    Wedding, J.B.

    1979-01-01

    Wind tunnel studies and exposure chamber experiments were conducted in the Aerosol Science Laboratory at Colorado State University. Full scale, live plant canopies of 4 to 6 week old corn and soybeans were established in a large wind tunnel. Monodisperse aerosols (1 to 15 ..mu..m aerodynamic diameter) were injected into the tunnel and deposition velocities were determined for wind speeds of 183, 305, and 610 cm/sec. A minimum deposition velocity was seen to occur at 5 ..mu..m. Initially, 4 to 6 week old soybean plants were exposed to hydrated sulfuric acid mist droplets. Unquantified topically applied sulfuric acid mist was applied at a 1% or 10% volumetric concentration of acid to water. The 10% solution produced severe necrotic lesions and large chlorotic regions on the acropetal leaves. A heavy application of the 1% solution produced similar effects but with a reduced number of necrotic lesions. A light application had no visual effects on the plants even after 24 h.In addition, 4 to 6 week old corn and soybeans were placed in a glass exposure chamber. Droplets of pure 18M sulfuric acid mist (1.7 ..mu..m) were injected into the chamber at a rate commensurate with the deposition velocity results. Loading of 107 particles/cm2 were realized during exposure periods up to 10 h per day extending to 14 days total fumigation periods. No visible toxicity symptoms of damage resulted to the plants from these tests conducted at background humidity levels of approximately 40%. Scanning electron microscope observations of the 140 h treated plants showed no apparent damage due to the sulfuric acid mist treatment.

  12. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca

    2013-11-15

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimens without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.

  13. Using heat pipe to make isotherm condition in catalytic converters of sulfuric acid plants

    Science.gov (United States)

    Yousefi, M.; Pahlavanzadeh, H.; Sadrameli, S. M.

    2017-08-01

    In this study, for the first time, it is tried to construct a pilot reactor, for surveying the possibility of creating isothermal condition in the catalytic convertors where SO2 is converted to SO3 in the sulfuric acid plants by heat pipe. The thermodynamic and thermo-kinetic conditions were considered the same as the sulfuric acid plants converters. Also, influence of SO2 gas flow rate on isothermal condition, has been studied. A thermo-siphon type heat pipe contains the sulfur + 5% iodine as working fluid, was used for disposing the heat of reaction from catalytic bed. Our results show that due to very high energy-efficiency, isothermal and passive heat transfer mechanism of heat pipe, it is possible to reach more than 95% conversion in one isothermal catalytic bed. As the results, heat pipe can be used as a certain piece of equipment to create isothermal condition in catalytic convertors of sulphuric acid plants. With this work a major evaluation in design of sulphuric acid plants can be taken place.

  14. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst.

    Science.gov (United States)

    Kim, Hong-In; Park, Kyung-Ho; Mishra, Devabrata

    2009-07-30

    Dissolution of metals from a pre-oxidized refinery plant spent Co-Mo/Al(2)O(3) catalyst have been tried through low temperature (200-450 degrees C) sulfuric acid baking followed by mild leaching process. Direct sulfuric acid leaching of the same sample, resulted poor Al and Mo recoveries, whereas leaching after sulfuric acid baking significantly improved the recoveries of above two metals. The pre-oxidized spent catalyst, obtained from a Korean refinery plant found to contain 40% Al, 9.92% Mo, 2.28% Co, 2.5% C and trace amount of other elements such as Fe, Ni, S and P. XRD results indicated the host matrix to be poorly crystalline gamma- Al(2)O(3). The effect of various baking parameters such as catalyst-to-acid ratio, baking temperature and baking time on percentage dissolutions of metals has been studied. It was observed that, metals dissolution increases with increase in the baking temperature up to 300 degrees C, then decreases with further increase in the baking temperature. Under optimum baking condition more than 90% Co and Mo, and 93% Al could be dissolved from the spent catalyst with the following leaching condition: H(2)SO(4)=2% (v/v), temperature=95 degrees C, time=60 min and Pulp density=5%.

  15. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    CERN Document Server

    Schobesberger, Siegfried; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molec...

  16. Parameterization of ammonia and water content of atmospheric droplets with fixed number of sulfuric acid molecules

    Science.gov (United States)

    Napari, I.; Makkonen, R.; Kulmala, M.; Vehkamäki, H.

    2006-12-01

    We present a parameterization for numbers of water and ammonia molecules in an equilibrium droplet with fixed number of sulfuric acid molecules at known relative humidity, ammonia mixing ratio and temperature. The radius of the droplet is also parameterized. The parameterizations are based on macroscopic model of solution droplets and up-to-date thermodynamics. The binary parameterizations are valid for temperatures 190-330 K and relative humidities 1-99%. The ternary parameterization can be used at temperatures 240-300 K, relative humidities 5-95%, and ammonia mixing ratios 10 - 4 -100 ppt. In both cases the parameterizations are valid for droplets containing up to 10 11 sulfuric acid molecules. The droplet composition is always between the limits of pure ammonium bisulfate and pure ammonium sulfate.

  17. Comparison of Xe single bubble sonoluminescence in water and sulfuric acid

    Institute of Scientific and Technical Information of China (English)

    An Yu

    2008-01-01

    Using the equations of fluid mechanics with proper boundary conditions and taking account of the gas properties, we can numerically simulate the process of single bubble sonoluminescence, in which electron-neutral atom bremsstrahlung, electron-ion bremsstrahlung and recombination radiation, and the radiative attachment of electrons to atoms and molecules contribute to the light emission. The calculation can quantitatively or qualitatively interpret the experimental results. We find that the accumulated heat energy inside the compressed gas bubble is mostly consumed by the chemical reaction, therefore, the maximum degree of ionization inside Xe bubble in water is much lower than that in sulfuric acid, of which the vapour pressure is very low. In addition, in sulfuric acid much larger pa and R0 are allowed which makes the bubbles in it much brighter than that in water.

  18. Bee Wax Propolis Extract as Eco-Friendly Corrosion Inhibitors for 304SS in Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Femiana Gapsari

    2015-01-01

    Full Text Available The inhibition properties of bee wax propolis (BWP extract on the 304SS in 0.5 M sulfuric acid were conducted using potentiodynamic polarization, EIS, and XRD. Quercetin (2-(3.4-dihydroxy phenyl-3.5.7-trihydroxy-4H-chromen-4-one was identified as the main compound in the BWP extract based on FTIR and HPLC analysis. The results showed that the inhibitor could retard the corrosion rate of 304SS in 0.5 M sulfuric acid which reached 97.29% and 91.42% at 2000 ppm based on potentiodynamic polarization and EIS measurement, respectively. The inhibition efficiency decreased with increasing temperature. The inhibition mechanism of BWP extract on the 304SS was physisorption and obeyed Temkin adsorption isotherm equation. The thin protective layer on the 304SS surface was confirmed by XRD.

  19. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    CERN Document Server

    Kürten, Andreas; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-01-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia arethought to be the dominant processes responsible for new particle formation (NPF) in the cold temperaturesof the middle and upper troposphere. Ions are also thought to be important for particle nucleation inthese regions. However, global models presently lack experimentally measured NPF rates under controlledlaboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here withdata obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets)chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. Theconditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrationsbet ween 5 × 105and 1 × 109cm3, and ammonia mixing ratios from zero added ammonia, i.e., nominally purebinary, to a maximum of ~1400 parts per trillion by volume (pptv). We performed nucleation s...

  20. Numerical Simulation of Condensation of Sulfuric Acid and Water in a Large Two-stroke Marine Diesel Engine

    Science.gov (United States)

    Walther, J. H.; Karvounis, N.; Pang, K. M.

    2016-11-01

    We present results from computational fluid dynamics simulations of the condensation of sulfuric acid (H2SO 4) and water (H2 O) in a large two-stroke marine diesel engine. The model uses a reduced n-heptane skeletal chemical mechanism coupled with a sulfur subset to simulate the combustion process and the formation of SOx and H2SO 4 . Condensation is modeled using a fluid film model coupled with the Eulerian in-cylinder gas phase. The fluid film condensation model is validated against both experimental and numerical results. The engine simulations reveal that the fluid film has a significant effect on the sulfuric acid gas phase. A linear correlation is found between the fuel sulfur content and the sulfuric acid condensation rate. The initial in-cylinder water content is found not to affect the sulfuric acid condensation but it has a high impact on water condensation. The scavenging pressure level shows an inverse correlation between pressure and condensation rate due to change in the flame propagation speed. Finally, increasing the cylinder liner temperature significantly decreases water condensation but has a negligible influence on the condensation of sulfuric acid.

  1. On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation

    OpenAIRE

    S. Schobesberger; Franchin, A.; Bianchi, F.(University of Turin, Turin, I-10125, Italy); L. Rondo; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; R. Schnitzhofer; Almeida, J; Amorim, A.; Dommen, J.; Dunne, E.M.; Ehn, M.; S. Gagné

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in th...

  2. Formation and growth of molecular clusters containing sulfuric acid, water, ammonia, and dimethylamine.

    Science.gov (United States)

    DePalma, Joseph W; Doren, Douglas J; Johnston, Murray V

    2014-07-24

    The structures and thermochemistry of molecular clusters containing sulfuric acid, water, ammonia, and/or dimethylamine ((CH3)2NH or DMA) are explored using a combination of Monte Carlo configuration sampling, semiempirical calculations, and density functional theory (DFT) calculations. Clusters are of the general form [(BH(+))n(HSO4(-))n(H2O)y], where B = NH3 or DMA, 2 ≤ n ≤ 8, and 0 ≤ y ≤ 10. Cluster formulas are written based on the computed structures, which uniformly show proton transfer from each sulfuric acid molecule to a base molecule while the water molecules remain un-ionized. Cluster formation is energetically favorable, owing to strong electrostatic attraction among the ions. Water has a minor effect on the energetics of cluster formation, lowering the free energy of formation by ∼ 10% depending on the cluster size and number of water molecules. Cluster growth (addition of one base molecule and one sulfuric acid molecule to a pre-existing cluster) and base substitution (substituting DMA for ammonia) are also energetically favorable processes for both anhydrous and hydrated clusters. However, the effect of water is different for different bases. Hydrated ammonium bisulfate clusters have a more favorable free energy for growth (i.e., incrementing n with fixed y) than anhydrous clusters, while the reverse is observed for dimethylammonium bisulfate clusters, where the free energy for growth is more favorable for anhydrous clusters. The substitution of DMA for ammonia in bisulfate clusters is favorable but exhibits a complex water dependence. Base substitution in smaller bisulfate clusters is enhanced by the presence of water, while base substitution in larger bisulfate clusters is less favorable for hydrated clusters than that for anhydrous clusters. While DMA substitution can stabilize small clusters containing one or a few sulfuric acid molecules, the free energy advantage of forming amine clusters relative to ammonia clusters becomes less

  3. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    OpenAIRE

    S. Schobesberger; Franchin, A.; Bianchi, F.(University of Turin, Turin, I-10125, Italy); L. Rondo; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; R. Schnitzhofer; Almeida, J; Amorim, A.; Dommen, J.; Dunne, E.M.; Ehn, M.; S. Gagné

    2014-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments wer...

  4. Effects of simulated rain acidified with sulfuric acid on host-parasite interactions

    Science.gov (United States)

    D. S. Shriner

    1976-01-01

    Wind-blown rain, rain splash, and films of free moisture play important roles in the epidemiology of many plant diseases. The effects of simulated rain acidified with sulfuric acid were studied on several host-parasite systems. Plants were exposed, in greenhouse or field, to simulated rain of pH 3.2 ? 0.1 or pH 6.0 ? 0.2. Simulated "rain" of pH 3.2 resulted...

  5. Design bases: Bauxite-sulfuric acid feed facilities 100-K Area

    Energy Technology Data Exchange (ETDEWEB)

    Etheridge, E.L.

    1993-06-10

    This document defines the objective, bases, and functional requirements governing the preparation of detail design of the bauxite-sulfuric acid feed facilities to be installed in the 183-KE and KW buildings. These facilities will produce the chemical coagulant used in the treatment of Columbia River water in the water plants; they will replace existing liquid alum feed systems. The treated water will be used as reactor coolant.

  6. Concentrated Sulfuric Acid Hydrolysis of Hardwood Aspen and Softwood Pine for Bioethanol Production

    OpenAIRE

    Janga, Kando Khalifa

    2011-01-01

    Bioethanol production from lignocellulosic biomass has been targeted as an alternative solution to the existing dependence on fossil fuels in the transportation sector. However, the recalcitrant nature of lignocelluloses has been a challenge to the hydrolytic processes and hence commercialization.This study has investigated the feasibility of the concentrated sulfuric acid hydrolysis (CSAH) process for bioethanol production from wood-based lignocelluloses. This is because the process enjoys h...

  7. Thoracic Duct Chylous Fistula Following Severe Electric Injury Combined with Sulfuric Acid Burns: A Case Report

    Science.gov (United States)

    Chang, Fei; Cheng, Dasheng; Qian, Mingyuan; Lu, Wei; Li, Huatao; Tang, Hongtai; Xia, Zhaofan

    2016-01-01

    Patient: Male, 32 Final Diagnosis: Thoracic duct chylous fistula Symptoms: Fistula Medication: — Clinical Procedure: A boneless muscle flap transplantatio Specialty: — Objective: Rare disease Background: As patients with thoracic duct injuries often suffer from severe local soft tissue defects, integrated surgical treatment is needed to achieve damage repair and wound closure. However, thoracic duct chylous fistula is rare in burn patients, although it typically involves severe soft tissue damage in the neck or chest. Case Report: A 32-year-old male patient fell after accidentally contacting an electric current (380 V) and knocked over a barrel of sulfuric acid. The sulfuric acid continuously poured onto his left neck and chest, causing combined electrical and sulfuric acid burn injuries to his anterior and posterior torso, and various parts of his limbs (25% of his total body surface area). During treatment, chylous fistula developed in the left clavicular region, which we diagnosed as thoracic duct chylous fistula. We used diet control, intravenous nutritional support, and continuous somatostatin to reduce the chylous fistula output, and hydrophilic silver ion-containing dressings for wound coverage. A boneless muscle flap was used to seal the left clavicular cavity, and, integrated, these led to resolution of the chylous fistula. Conclusions: Patients with severe electric or chemical burns in the neck or chest may be complicated with thoracic duct injuries. Although conservative treatment can control chylous fistula, wound cavity filling using a muscle flap is an effective approach for wound healing. PMID:27725628

  8. Trans-sulfuration Pathway Seleno-amino Acids Are Mediators of Selenomethionine Toxicity in Saccharomyces cerevisiae*

    Science.gov (United States)

    Lazard, Myriam; Dauplais, Marc; Blanquet, Sylvain; Plateau, Pierre

    2015-01-01

    Toxicity of selenomethionine, an organic derivative of selenium widely used as supplement in human diets, was studied in the model organism Saccharomyces cerevisiae. Several DNA repair-deficient strains hypersensitive to selenide displayed wild-type growth rate properties in the presence of selenomethionine indicating that selenide and selenomethionine exert their toxicity via distinct mechanisms. Cytotoxicity of selenomethionine decreased when the extracellular concentration of methionine or S-adenosylmethionine was increased. This protection resulted from competition between the S- and Se-compounds along the downstream metabolic pathways inside the cell. By comparing the sensitivity to selenomethionine of mutants impaired in the sulfur amino acid pathway, we excluded a toxic effect of Se-adenosylmethionine, Se-adenosylhomocysteine, or of any compound in the methionine salvage pathway. Instead, we found that selenomethionine toxicity is mediated by the trans-sulfuration pathway amino acids selenohomocysteine and/or selenocysteine. Involvement of superoxide radicals in selenomethionine toxicity in vivo is suggested by the hypersensitivity of a Δsod1 mutant strain, increased resistance afforded by the superoxide scavenger manganese, and inactivation of aconitase. In parallel, we showed that, in vitro, the complete oxidation of the selenol function of selenocysteine or selenohomocysteine by dioxygen is achieved within a few minutes at neutral pH and produces superoxide radicals. These results establish a link between superoxide production and trans-sulfuration pathway seleno-amino acids and emphasize the importance of the selenol function in the mechanism of organic selenium toxicity. PMID:25745108

  9. Modification of smectite structure by sulfuric acid and characteristics of the modified smectite

    Directory of Open Access Journals (Sweden)

    Tomić Zorica P.

    2011-01-01

    Full Text Available Bentonite samples from Petrovac and Aleksinac were treated with sulfuric acid of different molarities. Differences in structure and texture of the initial and modified bentonite were determined by chemical analysis and Xraypowder diffraction (XRPD, infra-red spectroscopy (FTIR, scanning electron microscopy (SEM and physisorption nitrogen at −196°C. Sulfuric acid caused an exchange of Al3+, Fe3+ and Mg2+ with H+ ions which led to a modification of the smectite crystalline structure. The Mg and Fe substitution in the octahedral sheet promoted the dispersion of those layers and forming of amorphous silicon. The sequence according to which the cations left the octahedral sheets was as follows: Mg2+>Fe3+>Al3+. The sulfuric acid activated bentonites exhibiting a lower cation exchange capacity (CEC and а change of specific surface area (SBET from 6 to 387 for bentonite from Petrovac and from 44 to 1784 m2 g-1 for bentonite from Aleksinac, positioning them as an excellent absorber in wine technology and in the protection of soil and environment.

  10. Sulfur amino acid metabolism limits the growth of children living in environments of poor sanitation.

    Science.gov (United States)

    Bickler, Stephen W; Ring, Jason; De Maio, Antonio

    2011-09-01

    Environmental enteropathy has been identified as a cause of poor growth in children living in low-income countries, but a mechanism has not been well defined. We suggest changes in sulfur amino acid metabolism can in part explain the poor growth and possibly the histological changes in the small bowel, which is the hallmark of environmental enteropathy. In environments of poor sanitation, where infection is common, we propose increased oxidative stress drives methionine metabolism toward cystathionine synthesis. This "cystathionine siphon" limits sulfur amino acids from participating in critical protein synthesis pathways. Increased expression of cystathionine β-synthase (CBS) could be one mechanism, as lipopolysaccharide and TNFα increase activity of this enzyme in vivo. CBS catalyzes the first of two steps in the transsulfuration pathway that converts homocysteine to cysteine. As enterocytes are one of the most rapidly proliferating cells in the body, we suggest diminished translation might also be important in the barrier failure observed in environmental enteropathy. Identifying sulfur amino acid metabolism as a mechanism leading to poor growth provides a new testable hypothesis for the undernutrition observed in children living in settings of poor sanitation.

  11. Amelioration of Saline-Sodic Soils with Tillage Implements and Sulfuric Acid Application

    Institute of Scientific and Technical Information of China (English)

    M.SADIQ; G.HASSAN; S.M.MEHDI; N.HUSSAIN; M.JAMIL

    2007-01-01

    Amelioration of saline-sodic soils through land preparation with three tillage implements(disc plow,rotavator and cultivator)each followed by application of sulfuric acid at 20%of gypsum(CaSO4·2H2O)requirement or no sulfuric acid application during crop growth period was evaluated in a field study for 2.5 years at three sites,i.e., Jhottianwala, Gabrika(Thabal),and Thatta Langar,in Tehsil Piudi Bhattian,Hafizabad District,Pakistan.Within 2.5 years,there was a decrease in the salinity parameters measured(electrical conductivity,pH,and sodium adsorption ratio),with a gradual increase in rice and wheat grain yields.It was observed that the disc plow,which not only ensured favorable yields but also helped improve soil health at all the three sites,was the most effective tillage implement.Also,application of sulfuric acid resulted in higher yields and promoted rapid amelioration of the saline-sodic soils.

  12. The charging of neutral dimethylamine and dimethylamine-sulfuric acid clusters using protonated acetone

    Science.gov (United States)

    Ruusuvuori, K.; Hietala, P.; Kupiainen-Määttä, O.; Jokinen, T.; Junninen, H.; Sipilä, M.; Kurtén, T.; Vehkamäki, H.

    2015-06-01

    Sulfuric acid is generally considered one of the most important substances taking part in atmospheric particle formation. However, in typical atmospheric conditions in the lower troposphere, sulfuric acid and water alone are unable to form particles. It has been suggested that strong bases may stabilize sulfuric acid clusters so that particle formation may occur. More to the point, amines - strong organic bases - have become the subject of interest as possible cause for such stabilization. To probe whether amines play a role in atmospheric nucleation, we need to be able to measure accurately the gas-phase amine vapour concentration. Such measurements often include charging the neutral molecules and molecular clusters in the sample. Since amines are bases, the charging process should introduce a positive charge. This can be achieved by, for example, using chemical ionization with a positively charged reagent with a suitable proton affinity. In our study, we have used quantum chemical methods combined with a cluster dynamics code to study the use of acetone as a reagent ion in chemical ionization and compared the results with measurements performed with a chemical ionization atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-TOF). The computational results indicate that protonated acetone is an effective reagent in chemical ionization. However, in the experiments the reagent ions were not depleted at the predicted dimethylamine concentrations, indicating that either the modelling scheme or the experimental results - or both - contain unidentified sources of error.

  13. Study on mechanisms of different sulfuric acid leaching technologies of chromite

    Science.gov (United States)

    Shi, Pei-yang; Liu, Cheng-jun; Zhao, Qing; Shi, Hao-nan

    2017-09-01

    The extraction of chromate from chromite via the sulfuric acid leaching process has strong potential for practical use because it is a simple and environmentally friendly process. This paper aims to study the sulfuric acid leaching process using chromite as a raw material via either microwave irradiation or in the presence of an oxidizing agent. The results show that the main phases in Pakistan chromite are ferrichromspinel, chrompicotite, hortonolite, and silicate embedded around the spinel phases. Compared with the process with an oxidizing agent, the process involving microwaves has a higher leaching efficiency. When the mass fraction of sulfuric acid was 80% and the leaching time was 20 min, the efficiency could exceed 85%. In addition, the mechanisms of these two technologies fundamentally differ. When the leaching was processed in the presence of an oxidizing agent, the silicate was leached first and then expanded. By contrast, in the case of leaching under microwave irradiation, the chromite was dissolved layer by layer and numerous cracks appeared at the particle surface because of thermal shock. In addition, the silicate phase shrunk instead of expanding.

  14. Easy Access to Coumarin Derivatives Using Alumina Sulfuric Acid as an Efficient and Reusable Catalyst under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Ali Amoozadeh

    2013-01-01

    Full Text Available A new and efficient condition for the use of alumina sulfuric acid (ASA as a heterogeneous catalyst in the Pechmann condensation reaction in solvent-free condition for the formation of coumarins has been reported.

  15. Non-spectral interferences due to the presence of sulfuric acid in inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    García-Poyo, M. Carmen; Grindlay, Guillermo; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 – Alicante (Spain); Loos-Vollebregt, Margaretha T.C. de, E-mail: margaretha.deloos@ugent.be [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 67, 2628 BC Delft (Netherlands); Ghent University, Department of Analytical Chemistry, Krijgslaan 281 - S12, 9000 Ghent (Belgium); Mora, Juan, E-mail: juan.mora@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, P.O. Box 99, 03080 – Alicante (Spain)

    2015-03-01

    Results of a systematic study concerning non-spectral interferences from sulfuric acid containing matrices on a large number of elements in inductively coupled plasma–mass spectrometry (ICP-MS) are presented in this work. The signals obtained with sulfuric acid solutions of different concentrations (up to 5% w w{sup −1}) have been compared with the corresponding signals for a 1% w w{sup −1−} nitric acid solution at different experimental conditions (i.e., sample uptake rates, nebulizer gas flows and r.f. powers). The signals observed for {sup 128}Te{sup +}, {sup 78}Se{sup +} and {sup 75}As{sup +} were significantly higher when using sulfuric acid matrices (up to 2.2-fold for {sup 128}Te{sup +} and {sup 78}Se{sup +} and 1.8-fold for {sup 75}As{sup +} in the presence of 5 w w{sup -1} sulfuric acid) for the whole range of experimental conditions tested. This is in agreement with previously reported observations. The signal for {sup 31}P{sup +} is also higher (1.1-fold) in the presence of sulfuric acid. The signal enhancements for {sup 128}Te{sup +}, {sup 78}Se{sup +}, {sup 75}As{sup +} and {sup 31}P{sup +} are explained in relation to an increase in the analyte ion population as a result of charge transfer reactions involving S{sup +} species in the plasma. Theoretical data suggest that Os, Sb, Pt, Ir, Zn and Hg could also be involved in sulfur-based charge transfer reactions, but no experimental evidence has been found. The presence of sulfuric acid gives rise to lower ion signals (about 10–20% lower) for the other nuclides tested, thus indicating the negative matrix effect caused by changes in the amount of analyte loading of the plasma. The elemental composition of a certified low-density polyethylene sample (ERM-EC681K) was determined by ICP-MS after two different sample digestion procedures, one of them including sulfuric acid. Element concentrations were in agreement with the certified values, irrespective of the acids used for the digestion. These

  16. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii).

    Science.gov (United States)

    Meinita, Maria Dyah Nur; Hong, Yong-Ki; Jeong, Gwi-Taek

    2012-01-01

    In this study, hydrolysis of marine algal biomass Kappaphhycus alvarezii using two different acid catalysts was examined with the goal of identifying optimal reaction conditions for the formation of sugars and by-products. K. alvarezii were hydrolyzed by autoclave using sulfuric acid or hydrochloric acid as catalyst with different acid concentrations (0.1-1.0 M), substrate concentrations (1.0-13.5%), hydrolysis time (10-90 min) and hydrolysis temperatures (100-130 (°)C). A difference in galactose, glucose, reducing sugar and total sugar content was observed under the different hydrolysis conditions. Different by-product compounds such as 5-hydroxymethylfurfural and levulinic acid were also observed under the different reaction conditions. The optimal conditions for hydrolysis were achieved at a sulfuric acid concentration, temperature and reaction time of 0.2 M, 130 °C and 15 min, respectively. These results may provide useful information for the development of more efficient systems for biofuel production from marine biomass.

  17. Effect of pH on sulfite oxidation by Thiobacillus thiooxidans cells with sulfurous acid or sulfur dioxide as a possible substrate.

    Science.gov (United States)

    Takeuchi, T L; Suzuki, I

    1994-02-01

    The oxidation of sulfite by Thiobacillus thiooxidans was studied at various pH values with changing concentrations of potassium sulfite. The optimal pH for sulfite oxidation by cells was a function of sulfite concentrations, rising with increasing substrate concentrations, while that by the cell extracts was unaffected. The sulfite oxidation by cells was inhibited at high sulfite concentrations, particularly at low pH values. The results from kinetic studies show that the fully protonated form of sulfite, sulfurous acid or sulfur dioxide, is the form which penetrates the cells for the oxidation.

  18. Oxaldihydroxamic acid as a new reagent for the fixation of atmospheric sulfur dioxide

    Science.gov (United States)

    Paul, Khana Rani; Gupta, V. K.

    In the present investigation 0.01 M aqueous oxaldihydroxamic acid has been used to stabilize the atmospheric sulfur dioxide. The collection efficiency of the reagent was found to be ~ 100% and the sulfite solution was stable for ⩾ 30 days at room temperature. The sulfite ion was estimated colorimetrically using acidified p-aminoazobenzene and formaldehyde. The pink coloured dye, λmax 505 nm, obeys Beer's law in the range of 0.1-1 ppm. The procedure has been optimized with respect to the acidity, time and reagent concentration. The method is simple, free from pH dependence and several commonly present air pollutants do not interfere.

  19. 42 CFR 84.1146 - Lead fume test for dust, fume, and mist respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Lead fume test for dust, fume, and mist respirators... Efficiency Respirators and Combination Gas Masks § 84.1146 Lead fume test for dust, fume, and mist respirators; minimum requirements. (a) Three non-powered respirators will be tested for a period of...

  20. Analysis of the interactions of sulfur-containing amino acids in membrane proteins.

    Science.gov (United States)

    Gómez-Tamayo, José C; Cordomí, Arnau; Olivella, Mireia; Mayol, Eduardo; Fourmy, Daniel; Pardo, Leonardo

    2016-08-01

    The interactions of Met and Cys with other amino acid side chains have received little attention, in contrast to aromatic-aromatic, aromatic-aliphatic or/and aliphatic-aliphatic interactions. Precisely, these are the only amino acids that contain a sulfur atom, which is highly polarizable and, thus, likely to participate in strong Van der Waals interactions. Analysis of the interactions present in membrane protein crystal structures, together with the characterization of their strength in small-molecule model systems at the ab-initio level, predicts that Met-Met interactions are stronger than Met-Cys ≈ Met-Phe ≈ Cys-Phe interactions, stronger than Phe-Phe ≈ Phe-Leu interactions, stronger than the Met-Leu interaction, and stronger than Leu-Leu ≈ Cys-Leu interactions. These results show that sulfur-containing amino acids form stronger interactions than aromatic or aliphatic amino acids. Thus, these amino acids may provide additional driving forces for maintaining the 3D structure of membrane proteins and may provide functional specificity. © 2016 The Protein Society.

  1. The effect of dietary modulation of sulfur amino acids on cystathionine β synthase-deficient mice.

    Science.gov (United States)

    Kruger, Warren D; Gupta, Sapna

    2016-01-01

    Cystathionine β synthase (CBS) is a key enzyme in the methionine and cysteine metabolic pathway, acting as a metabolic gatekeeper to regulate the flow of fixed sulfur from methionine to cysteine. Mutations in the CBS gene cause clinical CBS deficiency, a disease characterized by elevated plasma total homocysteine (tHcy) and methionine and decreased plasma cysteine. The treatment goal for CBS-deficient patients is to normalize the metabolic values of these three metabolites using a combination of vitamin therapy and dietary manipulation. To better understand the effectiveness of nutritional treatment strategies, we have performed a series of long-term dietary manipulation studies using our previously developed Tg-I278T Cbs(-/-) mouse model of CBS deficiency and sibling Tg-I278T Cbs(+/-) controls. Tg-I278T Cbs(-/-) mice have undetectable levels of CBS activity, extremely elevated plasma tHcy, modestly elevated plasma methionine, and low plasma cysteine. They exhibit several easily assayable phenotypes, including osteoporosis, loss of fat mass, reduced life span, and facial alopecia. The diets used in these studies differed in the amounts of sulfur amino acids or sulfur amino acid precursors. In this review, we will discuss our findings and their relevance to CBS deficiency and the concept of gene-diet interaction. © 2015 New York Academy of Sciences.

  2. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    Directory of Open Access Journals (Sweden)

    S. Henning

    2012-05-01

    Full Text Available The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC to black carbon (BC ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA. Two Cloud Condensation Nucleus Counter (CCNC were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH, which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  3. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    Directory of Open Access Journals (Sweden)

    S. Henning

    2011-10-01

    Full Text Available The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA facility. A GFG-1000 soot generator applying nitrogen, respectively argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC to black carbon (BC ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA. Two Cloud Condensation Nucleus Counter (CCNC were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings lead to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH, which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume, that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  4. Hygroscopic growth and droplet activation of soot particles: uncoated, succinic or sulfuric acid coated

    Science.gov (United States)

    Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T. F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.

    2012-05-01

    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.

  5. Occupational rhinitis due to steel welding fumes.

    Science.gov (United States)

    Castano, Roberto; Suarthana, Eva

    2014-12-01

    Exposure to welding fumes is a recognized respiratory hazard. Occupational asthma but not occupational rhinitis has been documented in workers exposed to steel welding fumes. We report a 26-year-old male with work-related rhinitis symptoms as well as lower airways symptoms suggestive of occupational asthma and metal fume fever associated with exposure to steel welding fumes. The diagnosis of occupational rhinitis was confirmed by specific inhalation challenge.

  6. Sulfuric acid vapor and other cloud-related gases in the Venus atmosphere - Abundances inferred from observed radio opacity

    Science.gov (United States)

    Steffes, P. G.; Eshleman, V. R.

    1982-01-01

    It is suggested that the absorbing characteristics of sulfuric acid vapor appear to reconcile what had been thought to be an inconsistency among measurements and deductions regarding the constituents of the Venus atmosphere and radio occultation, radar reflection, and radio emission measurements of its opacity. Laboratory measurements of sulfuric acid, sulfur dioxide, water vapor, and carbon dioxide are used to model relative contributions to opacity as a function of height in a way that is consistent with observations of the constituents and absorbing properties of the atmosphere. It is concluded that sulfuric acid vapor is likely to be the principal microwave absorber in the 30-50 km altitude range of the middle atmosphere of Venus.

  7. Highly Efficient Sulfonic/Carboxylic Dual-Acid Synergistic Catalysis for Esterification Enabled by Sulfur-Rich Graphene Oxide.

    Science.gov (United States)

    Zhang, Honglei; Luo, Xiang; Shi, Kaiqi; Wu, Tao; He, Feng; Zhou, Shoubin; Chen, George Z; Peng, Chuang

    2017-09-11

    A new sulfonic/carboxylic dual-acid catalyst based on sulfur-rich graphene oxide (GO-S) was readily prepared and used as a highly efficient and reusable solid acid catalyst toward the esterification of oleic acid with methanol for biodiesel production. Higher yields of methyl oleate (98 %) and over 3 times higher turnover frequencies (TOFs) were observed for the GO-S dual-acid catalyst, compared to liquid sulfuric acid or other carbon-based solid acid catalysts. The "acidity" of sulfonic acid groups was enhanced by the addition of carboxylic acid groups as the combination of the two acids enhances their inherent activity by associative interaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrochemical behaviour of SnSO 4 in sulfuric acid solution

    Science.gov (United States)

    Wei, Guo-Lin; Wang, Jia-Rong

    The effect of SnSO 4 on the deep-discharge capacity of Lead/acid batteries is investigated when it is added to the sulfuric acid electrolyte. The electrochemical behaviour of Sn 2+ ions in sulfuric acid is studied by using chemical-analysis and cyclic-voltammetry methods. In the battery system, Sn 2+ ions will be reduced to tin on the negative plates or will be oxidized to tin(IV) species on the positive plates. Tin metal formed on the negative plates will improve the chargeJdischarge properties. Tin(IV) species formed on the positive plates may be incorporated as SnO 2 in the positive active material (PAM) as well as in the anodic film that is produced at the grid/active-material interface. The effect of SnO 2 on the properties of the PAM are explained in terms of the gel-crystal model. The SnO 2is stable during the discharge process. The compound increases the electronic conductivity of the gel zones, thereby, enhances the capacity of the PAM. The SnO 2 species may also act as nuclei for the formation of β-PbO 2 in the crystal zones. The corrosion of positive grids is inhibited by the presence of SnO 2. By virtue of these effects, the addition of SnSO 4 is beneficial to the operation of lead/acid batteries.

  9. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    Directory of Open Access Journals (Sweden)

    Jafari Mohammad Javad

    2012-12-01

    Full Text Available Abstract The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p 3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream.

  10. Selective Leaching of Vanadium from Roasted Stone Coal by Dilute Sulfuric Acid Dephosphorization-Two-Stage Pressure Acid Leaching

    Directory of Open Access Journals (Sweden)

    Jun Huang

    2016-07-01

    Full Text Available A novel staged leaching process has been reported in this paper to selectively extract vanadium from roasted stone coal and the mechanisms have been clarified. Results showed that the leaching efficiency of V, Al, P and Fe was 80.46%, 12.24%, 0.67% and 3.12%, respectively, under the optimum dilute sulfuric acid dephosphorization (DSAD-two-stage pressure acid leaching (PAL conditions. The efficient separation of V from Fe, Al and P was realized. As apatite could be leached more easily than mica, the apatite could completely react with sulfuric acid, while the mica had almost no change in the DSAD process, which was the key aspect in realizing the effective separation of V from P. Similarly, the hydrolyzation of Fe and Al could be initiated more easily than that of V by decreasing the residual acid of leachate. The alunite and iron-sulphate compound generated in the first-stage PAL process resulted in the effective separation of V from Fe and Al.

  11. Radiolytic Modification of Sulfur Containing Acidic Amino Residues in Model Peptides: Fundamental Studies for Protein Footprinting

    Energy Technology Data Exchange (ETDEWEB)

    Xu,G.; Chance, M.

    2005-01-01

    Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods. Here we have undertaken a detailed mass spectrometry study (using electrospray ionization mass spectrometry and tandem mass spectrometry) of model peptides containing cysteine (Cys-SH), cystine (disulfide bonded Cys), and methionine after oxidation using {gamma}-rays or synchrotron X-rays and have compared these results to those expected from oxidation mechanisms proposed in the literature. Radiolysis of cysteine leads to cysteine sulfonic acid (+48 Da mass shift) and cystine as the major products; other minor products including cysteine sulfinic acid (+32 Da mass shift) and serine (-16 Da mass shift) are observed. Radiolysis of cystine results in the oxidative opening of the disulfide bond and generation of cysteine sulfonic acid and sulfinic acid; however, the rate of oxidation is significantly less than that for cysteine. Radiolysis of methionine gives rise primarily to methionine sulfoxide (+16 Da mass shift); this can be further oxidized to methionine sulfone (+32 Da mass shift) or another product with a -32 Da mass shift likely due to aldehyde formation at the {gamma}-carbon. Due to the high reactivity of sulfur-containing amino acids, the extent of oxidation is easily influenced by secondary oxidation events or the presence of redox reagents used in standard proteolytic

  12. Uptake of isoprene, methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    Ze Liu; Maofa Ge; Weigang Wang

    2012-01-01

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol formation from isoprene and its gas-phase oxidation products,but the lack of kinetics data significantly limited the evaluation of this process in the atmosphere.Here we report the first measurement of the uptake of isoprene,methacrylic acid and methyl methacrylate into aqueous solutions of sulfuric acid and hydrogen peroxide.Isoprene cannot readily partition into the solution because of its high volatility and low solubility,which hinders its further liquid-phase oxidation.Both methacrylic acid and methyl methacrylate can enter the solutions and be oxidized by hydrogen peroxide,and steady-state uptake was observed with the acidity of solution above 30 wt.% and 70 wt.%,respectively.The steady-state uptake coefficient of methacrylic acid is much larger than that of methyl methacrylate for a solution with same acidity.These observations can be explained by the different reactivity of these two compounds caused by the different electron-withdrawing conjugation between carboxyl and ester groups.The atmospheric lifetimes were estimated based on the calculated steady-state uptake coefficients.These results demonstrate that the multiphase acid-catalyzed oxidation of methacrylic acid plays a role in secondary organic aerosol formation,but for isoprene and methyl methacrylate,this process is not important in the troposphere.

  13. Influence of dentin and enamel pretreatment with acidic sulfur compounds on adhesive performance.

    Science.gov (United States)

    Ioannidis, Alexis; Stawarczyk, Bogna; Sener, Beatrice; Attin, Thomas; Schmidlin, Patrick R

    2013-11-01

    This study tested the potential hampering effects of acidic sulfur compounds (ASC) containing hydroxybenzene sulfonic acid, hydroxymethoxybenzene sulfonic acid, and sulfuric acid, prior to self-etch and etch-and-rinse bonding procedures on enamel and dentin. According to the manufacturer, ASC should be applied after cavity preparation and prior to application of a primer in order to reduce the remaining biofilm in the preparation cavity. Despite promoted marketing, data on the investigated liquid are almost completely lacking. One hundred and fifty-two extracted mandibular bovine incisors were embedded and polished to expose either enamel (E) or dentin (D). Then, specimens were randomly divided and conditioned as follows (n = 12/group): ASC and consecutive phosphoric acid application (E1/D1), ASC (E2/D2; E5/D5), phosphoric acid (E3/D3), and no conditioning (E4/D4; E6/D6). Groups were then treated with either Optibond FL(®) (etch-and-rinse; 1-4) or Clearfil SE Bond(®) (self-etch; 5-6). Hollow acrylic cylinders were bonded with a hybrid composite resin (Filtek Supreme XTE®) to the specimens, and the shear bond strength was measured (1 mm/min). In addition, failure types were assessed. Descriptive statistics and statistical analyses were performed with one-way ANOVA followed by the Scheffé post hoc test. For enamel, the highest shear bond strength values were obtained applying routine bonding procedures (23.5 ± 5.6 MPa for etch-and-rinse and 26.0 ± 6.0 MPa for self-etch, respectively). In contrast, dentin pretreatment with a combination of ASC and phosphoric acid led to the highest shear bond values (22.8 ± 4.1 MPa). This study shows that ASC prior to dental restoration placement cannot be recommended for etch-and-rinse procedures on enamel but is appropriate for dentin without interfering with routine bonding procedures. The application of acidic sulfur compounds prior to adhesive restoration placement should be restricted to dentin only as it may negatively

  14. Visualization of imbalances in sulfur assimilation and synthesis of sulfur-containing amino acids at the single-cell level.

    Science.gov (United States)

    Hoffmann, Kristina; Grünberger, Alexander; Lausberg, Frank; Bott, Michael; Eggeling, Lothar

    2013-11-01

    We describe genetically encoded sensors which transmit elevated cytosolic concentrations of O-acetyl serine (OAS) and O-acetyl homoserine (OAH)-intermediates of l-cysteine and l-methionine synthesis-into an optical output. The sensor pSenOAS3 elicits 7.5-fold-increased fluorescence in cultures of a Corynebacterium glutamicum strain that excrete l-cysteine. Determination of the cytosolic OAS concentration revealed an increase to 0.13 mM, whereas the concentration in the reference strain was below the detection limit, indicating that incorporation of assimilatory sulfur is limited in the strain studied. In another strain, overexpression of metX encoding homoserine acetyltransferase resulted in an 8-fold increase in culture fluorescence at a cytosolic OAH concentration of 0.76 mM. We also assayed for consequences of extracellular sulfur supply and observed a graded fluorescence increase at decreasing sulfur concentrations below 400 μM. Overall, this demonstrates the usefulness of the sensors for monitoring intracellular sulfur availability. The sensors also enable monitoring at the single-cell level, and since related and close homologs of the transcription factor used in the constructed sensors are widespread among bacteria, this technology offers a new possibility of assaying in vivo for sulfur limitation and of doing this at the single-cell level.

  15. Preparation and characterization of silver loaded montmorillonite modified with sulfur amino acid

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tian, E-mail: phdlitian@163.com; Lin, Oulian; Lu, Zhiyuan; He, Liuimei; Wang, Xiaosheng

    2014-06-01

    The Na{sup +} montmorillonite (MMT) was modified with sulfur containing amino acid (L-cystine, L-cysteine or L-methionine) and characterized by energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectrum (FT-IR). The results showed the modification was smooth and the surface condition of MMT was changed with sulfur containing groups. Then silver was loaded on the modified MMTs via ion-exchange reaction under microwave irradiation, the spectra of X-ray photoelectron spectroscopy (XPS), EDS and FT-IR confirmed the successful loading of massive silver and the strong interaction between sulfur and silver, the silver loaded L-cystine modified MMT (Ag@AA-MMT-3) with a silver content of 10.93 wt% was the highest of all. Further more, the Ag@AA-MMT-3 was under the irradiation of a UV lamp to turn silver ions to silver nano particles (Ag NPs). The XPS, specific surface area (SSA), transmission electron microscopy (TEM), XRD patterns and UV–vis spectra proved the existence of uniform nano scaled metallic Ag NPs. By contrast, the UV irradiated Ag@AA-MMT-3 (Ag@AA-MMT-UV) showed a much better slow release property than Ag@AA-MMT-3 or Ag@MMT. The Ag@AA-MMT-UV showing a large inhibition zone and high inhibition ratio presented very good antibacterial property.

  16. Sulfuric acid recovery from rare earth sulphate solutions by diffusion dialysis

    Institute of Scientific and Technical Information of China (English)

    TANG Jian-jun; ZHOU Kang-gen; ZHANG Qi-xiu

    2006-01-01

    Sulfuric acid recovery from rare earth sulphate solutions by diffusion dialysis was studied. The mass transfer model of diffusion dialysis was established, the comparison between the experimental results and mathematical results was carried out, and the numerical analysis on the effects of operational parameters was studied. The results indicate that the derived mathematical model shows good quantitative relation between sulphuric acid recovery ratio and operational parameters, and the mathematical results agree with the experimental results well. The numerical analysis results indicate that it is appropriate to keep the ratio of water and feed flow rates, processing capacity per membrane area and recovery ratio of sulphuric acid to be 1, 20 L/(m2·d) and 0.7-0.8,respectively.

  17. The Pozzolanic reaction of silica fume

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2012-01-01

    Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone. In the ...... of activation of the pozzolanic reaction of silica fume is estimated. The results show that the pozzolanic reaction of silica fume has notable differences from Portland cement hydration.......Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone....... In the present paper different aspects of the pozzolanic reaction of silica fume are investigated. These include chemical shrinkage, isothermal heat development and strength development. Key data for these are given and compared with theoretical calculations, and based on presented measurements the energy...

  18. Rubber recovery from centrifuged natural rubber latex residue using sulfuric acid

    Directory of Open Access Journals (Sweden)

    Wirach Taweepreda

    2013-04-01

    Full Text Available Waste latex sludge from centrifuged residue, which is a null by-product of concentrated latex manufacturing, wasdigested to retrieve the rubber by using sulfuric acid. It was found that the acid concentration and digestion time have aneffect on the amount and purity of the retrieved rubber. Sulfuric acid at concentrations of more than 10% by weight with adigestion time of 48 hours completely digested waste latex sludge and gave rubber 10% by weight. The quality of the retrievedrubber was examined for Mooney viscosity (MV, plasticity retention index, nitrogen content, and ash content. The averagemolecular weight of the retrieved rubber, using gel permeation chromatography, was lower than that of normal natural rubber(NR which corresponds with the MV and initial plasticity (Po. The molecular structure from Fourier transform infraredspectroscopy (FT-IR indicated that the retrieved rubber surface is wet composed with hydroxyl functional ended group.The residue solution was evaporated and crystallized. The structure of crystals was determined using power X-ray diffractometer.

  19. Research of nickel’s electrochemical property in sulfuric acid solution by using potentiodynamic polarization curve.

    Directory of Open Access Journals (Sweden)

    Bekenova Gulmira

    2015-03-01

    Full Text Available In the presented work in order to deeply study the mechanism of electrode processes that take place while polarizing the nickel electrode in acid solutions by alternating current, potentiodynamic polarization curves were obtained.The detailed study of shapes of polarization curves; their dependence on concentration, temperature, and other physical and chemical parameters, gives opportunity to obtain full information on the nature and kinesthetic of processes taking place on electrode surface. The electrochemical properties of nickel electrode were researched by estimating cyclic potentiodynamic polarization curves in sulfuric acid medium; and the influence of electrolyte concentration, potential giving speed, the temperature of solution on anodic and cathode processes were also studied. The meanings of transfer number (an and diffusion (D coefficient, the reaction order of metal ions during the process of nickel electrode’s anode corrosion in sulfuric acid solution, and the activation energy is estimated. Result of the calculations showed that nickel’s melting process goes in mixed, diffusion-kinetic regime. It was found that the raising of solution’s temperature increases the height of corrosion current. The results of the experiments done during the application of cyclic polarization curves showed that the electrochemical processes that take place in polarization by industrial alternating current in anode and cathode half periods is different from those done in stable current and with more complex mechanism.

  20. Inhibition of enzymatic browning of chlorogenic acid by sulfur-containing compounds.

    Science.gov (United States)

    Kuijpers, Tomas F M; Narváez-Cuenca, Carlos-Eduardo; Vincken, Jean-Paul; Verloop, Annewieke J W; van Berkel, Willem J H; Gruppen, Harry

    2012-04-01

    The antibrowning activity of sodium hydrogen sulfite (NaHSO(3)) was compared to that of other sulfur-containing compounds. Inhibition of enzymatic browning was investigated using a model browning system consisting of mushroom tyrosinase and chlorogenic acid (5-CQA). Development of brown color (spectral analysis), oxygen consumption, and reaction product formation (RP-UHPLC-PDA-MS) were monitored in time. It was found that the compounds showing antibrowning activity either prevented browning by forming colorless addition products with o-quinones of 5-CQA (NaHSO(3), cysteine, and glutathione) or inhibiting the enzymatic activity of tyrosinase (NaHSO(3) and dithiothreitol). NaHSO(3) was different from the other sulfur-containing compounds investigated, because it showed a dual inhibitory effect on browning. Initial browning was prevented by trapping the o-quinones formed in colorless addition products (sulfochlorogenic acid), while at the same time, tyrosinase activity was inhibited in a time-dependent way, as shown by pre-incubation experiments of tyrosinase with NaHSO(3). Furthermore, it was demonstrated that sulfochlorogenic and cysteinylchlorogenic acids were not inhibitors of mushroom tyrosinase.

  1. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    Science.gov (United States)

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials.

  2. A density-functional theory study of electrochemical adsorption of sulfuric acid anions on Pt(111).

    Science.gov (United States)

    Santana, Juan A; Cabrera, Carlos R; Ishikawa, Yasuyuki

    2010-08-28

    A density-functional theory study of the electrochemical adsorption of sulfuric acid anions was conducted at the Pt(111)/electrolyte interface over a wide range of electrode potential, including the anomalous region of the hydrogen voltammogram of this electrode. We focus on the precise nature of the binding species and their bonding to the surface, identifying the adsorbed species as a function of electrode potential. In particular, the origin of anomalous or so-called "butterfly" feature in this voltammogram between +0.30 and +0.50 V vs. the reference hydrogen electrode and the nature of the adsorbed species on the Pt(111) surface in this potential range were explicated.

  3. [Application of the vanillin sulfuric acid colorimetry-ultraviolet spectrometry on quality evaluation of Panax notoginseng].

    Science.gov (United States)

    Ding, Yong-Li; Wang, Yuan-Zhong; Zhang, Ji; Zhang, Qing-Zhi; Zhang, Jin-Yu; Jin, Hang

    2013-02-01

    In this study, Panax notoginseng samples were extracted by chloroform, ethanol and water, or by those extracted solution with 5% vanillin sulfuric acid to establish two kinds of UV fingerprint of P. notoginseng which were compared by applying the common and variation peak ratio dual index sequence analysis method and SIMCA software qualitative analysis. The results indicated that the optimization extraction time of P. notoginseng samples was 20 min with chloroform, ethanol and water extraction, but the fingerprint differed significantly after add vanillin sulfuric acid. The common peak ratios of UV fingerprint of P. notoginseng were scattered. The minimum was 25% (Y5-Y8), while the maximum was 84.38% (Y11-Y13, Y20-Y21). The maximum variation peak ratio was 177.78% (Y8-Y5), meanwhile, the variation peak ratios of several samples were more than 100%. However, the common peak ratios of UV fingerprint of P. notoginseng with vanillin sulfuric acid were concentrated (distributed in the range of 50%-70%): the minimum was 42.86%(Y1-Y19), whereas the maximum was 79.55% (Y22-Y23); the range of the variation peak ratios was also smaller with the ranges of 20%-50% in general. The result of the dual index sequence analysis was agreement with the fingerprint implied. The similarity of the UV fingerprint of the extracts of P. notoginseng after adding vanillin sulfuric acid was greater than before. Both the ages and origin was related with the difference of UV fingerprint. The similarity of the two samples with same age was more significant than those with different ages. The similarity and difference between samples was no correlation with the distance of geographic space, the near origin samples maybe have a significant similarity or difference. This method appears as good alternative for evaluate quality of the P. notoginseng and can distinguish at least two samples quantitatively, duo to it reaches the limitation of the multiple methods which only could be used to indistinctly

  4. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DEFF Research Database (Denmark)

    Beller, Harry R.; Zhou, Peng; Jewell, Talia N.M.

    2016-01-01

    Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H2S, while fixing CO2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus...... strength of the two native promoters as assessed by fatty acid production in engineered strains was very similar to that assessed by expression of the cognate genes in the wild-type strain. This proof-of-principle study suggests that engineering sulfide-oxidizing chemolithoautotrophic bacteria...

  5. Protonation of Alcohols in Sulfuric Acid Solutions at UT/LS Conditions

    Science.gov (United States)

    Michelsen, R. R.; Vernier, K.; Axson, J.; Morley, D.

    2007-12-01

    The protonation of several small alcohols (ethanol, 2-propanol, and 1-butanol) in cold sulfuric acid aqueous solutions was measured using variable temperature 13C nuclear magnetic resonance (NMR) spectroscopy. The acidity of the sulfuric acid + deuterium oxide solutions ranged from 43 to 81 weight percent (wt %) H2SO4. The pKBH+ values, which are a measure of the acidity of each alcohol, range from -2.0 for butanol at room temperature to -2.2 for ethanol at -20°C. The protonation enthalpies of the three alcohols over the temperature range of 22°C to -35°C were found to be small and negative, ranging from -1.8 kJ mol-1 for 2-propanol to -2.3 kJ mol-1 for ethanol. A small, negative protonation enthalpy means that the degree of protonation of the alcohol slightly decreases as temperature decreases. The pKBH+values and protonation enthalpies are used to predict the form of dissolved alcohols in sulfate aerosols. For typical upper troposphere/lower stratosphere (UT/LS) conditions (40-70 wt % H2SO4 and 220 K), all three alcohols increase from approximately 10% protonated in 40 wt % H2SO4 to over 60% protonated in 70 wt % H2SO4. The percent of protonated alcohol depends more strongly on m*, the slope factor of the excess acidity treatment, than on pKBH+ values. This relationship may reflect solvation effects. The treatment of strongly acidic, non-ideal solutions as applied to organic solutes in sulfate aerosol particles will be discussed.

  6. Effect of Silica Sol on Boric-sulfuric Acid Anodic Oxidation of LY12CZ Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    LIU Hui-cong

    2016-07-01

    Full Text Available Aluminum alloy anodizing coatings were prepared for LY12CZ in the boric-sulfuric acid solution (45g/L sulfuric acid,8g/L boric acid with the addition of 10%,20%,30% (volume fractionsilica sol,with the gradient voltage of 15V. The current and voltage transients of the anodizing process were collected by data collection instrument. The surface morphologies,microstructure and chemical composition of the anodic coatings were characterized by scanning electron microscopy (SEM. The corrosion resistance was examined by neutral salt spray,electrochemical impedance spectroscopy (EIS test and titrating test. The results show that the different concentration of silica sol addition can influence the forming and dissolution of anodizing coatings,improve the compactness smoothness and corrosion resistance during the anodizing process in the boric-sulfuric acid solution.

  7. Effects of Fatty Acids on Low-Sulfur Diesel Lubricity:Experimental Investigation, DFT Calculation and MD Simulation

    Institute of Scientific and Technical Information of China (English)

    Luo Hui; Fan Weiyu; Li Yang; Zhao Pinhui; Nan Guozhi

    2013-01-01

    The continuous reduction in sulfur content of fuels would lead to diesel fuel with poor lubricity which could re-sult in engine pump failure. In the present work, fatty acids were adopted as lubricity additives to low-sulfur diesel fuel. It was attempted to correlate the molecular structures of fatty acids, such as carbon chain length, degree of saturation and hy-droxylation, to their lubricity enhancement, which was evaluated by the High-Frequency Reciprocating Rig (HFRR) meth-od. The efifciency order was supported by the density functional theory (DFT) calculations and the molecular dynamics (MD) simulations. The lubricity enhancing properties of fatty acids are mainly determined by the cohesive energy of adsorbed iflms formed on iron surface. The greater the cohesive energy, the more efifciently the fatty acid would enhance the lubricity of low-sulfur diesel fuel.

  8. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  9. Reactions of sulfur- and phosphorus-substituted fluoroalkylating silicon reagents with imines and enamines under acidic conditions.

    Science.gov (United States)

    Kosobokov, Mikhail D; Dilman, Alexander D; Struchkova, Marina I; Belyakov, Pavel A; Hu, Jinbo

    2012-02-17

    Nucleophilic fluoroalkylation reactions of imines and enamines with α-phenylthio, α-phenylsulfonyl, and α-diethylphosphoryl substituted fluorinated silanes have been investigated. The reactions are promoted by hydrofluoric acid generated in situ from potassium hydrodifluoride and trifluoroacetic acid. Sulfur reagents worked well with both imines and enamines, whereas phosphorus reagent efficiently coupled only with enamines.

  10. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    Science.gov (United States)

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  11. Modeling the condensation of sulfuric acid and water on the cylinder liner of a large two-stroke marine diesel engine

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Faurskov; Mayer, Stefan; Eskildsen, Svend S.

    2017-01-01

    how fuel sulfur content, charge air humidity and liner temperature variations affects the deposition of water and sulfuric acid at low load operation. A phenomenological engine model is applied to simulate the formation of cylinder/bulk gas combustion products and dew points comply with H2O–H2SO4......Corrosive wear of cylinder liners in large two-stroke marine diesel engines that burn heavy fuel oil containing sulfur is coupled to the formation of gaseous sulfur trioxide (SO3) and subsequent combined condensation of sulfuric acid (H2SO4) and water (H2O) vapor. The present work seeks to address...

  12. Why is sulfuric acid a much stronger acid than ethanol? Determination of the contributions by inductive/field effects and electron-delocalization effects.

    Science.gov (United States)

    Lynch, Kevin; Maloney, Adam; Sowell, Austin; Wang, Changwei; Mo, Yirong; Karty, Joel M

    2015-01-07

    Two different and complementary computational methods were used to determine the contributions by inductive/field effects and by electron-delocalization effects toward the enhancement of the gas-phase deprotonation enthalpy of sulfuric acid over ethanol. Our alkylogue extrapolation method employed density functional theory calculations to determine the deprotonation enthalpy of the alkylogues of sulfuric acid, HOSO2-(CH2CH2)n-OH, and of ethanol, CH3CH2-(CH2CH2)n-OH. The inductive/field effect imparted by the HOSO2 group for a given alkylogue of sulfuric acid was taken to be the difference in deprotonation enthalpy between corresponding (i.e., same n) alkylogues of sulfuric acid and ethanol. Extrapolating the inductive/field effect values for the n = 1-6 alkylogues, we obtained a value of 51.0 ± 6.4 kcal mol(-1) for the inductive/field effect for n = 0, sulfuric acid, leaving 15.4 kcal mol(-1) as the contribution by electron-delocalization effects. Our block-localized wavefunction method was employed to calculate the deprotonation enthalpies of sulfuric acid and ethanol using the electron-localized acid and anion species, which were compared to the values calculated using the electron-delocalized species. The contribution from electron delocalization was thus determined to be 18.2 kcal mol(-1), which is similar to the value obtained from the alkylogue extrapolation method. The two methods, therefore, unambiguously agree that both inductive/field effects and electron-delocalization effects have significant contributions to the enhancement of the deprotonation enthalpy of sulfuric acid compared with ethanol, and that the inductive/field effects are the dominant contributor.

  13. Exploring Jupiter's icy moons with old techniques and big facilities - new insights on sulfuric acid hydrates

    Science.gov (United States)

    Maynard-Casely, H. E.; Avdeev, M.; Brand, H.; Wallwork, K.

    2013-12-01

    Sulfuric acid hydrates have been proposed to be abundant on the surface of Europa [1], and hence would be important planetary forming materials for this moon and its companions Ganymede and Callisto. Understanding of the surface features and subsurface of these moons could be advanced by firmer knowledge of the icy materials that comprise them [2], insight into which can be drawn from firmer knowledge of physical properties and phase behaviour of the candidate materials. We wish to present results from a study that started with the question ';What form of sulfuric acid hydrate would form on the surface of Europa'. The intrinsic hydrogen-domination of planetary ices, makes studying these materials with laboratory powder diffraction very challenging. Insights into their crystalline phase behavior and the extraction of a number of thermal and mechanical properties is often only accessible with high-flux synchrotron x-ray diffraction and utilization of the large scattering cross section with neutron diffraction. We have used the Powder Diffraction beamline at Australian synchrotron [4] and the Echidna (High-resolution neutron powder diffraction) instrument of the Australian Nuclear Science and Technology Organization, [5] to obtain an number of new insights into the crystalline phases formed from sulfruic acid and water mixtures. These instruments have enabled the discovery a new water-rich sulfuric acid hydrate form [6], improved structural characterisation of existing forms [7] and a charting the phase diagram of this fundamental binary system [8]. This has revealed exciting potential for understanding more about the surface of Europa from space, perhaps even providing a window into its past. [1] Carlson, R.W., R.E. Johnson, and M.S. Anderson, Science, 1999. 286(5437): p. 97-99. [2] Fortes, A.D. and M. Choukroun. Space Sci Rev, 2010. 153(1-4): p. 185-218. [3] Blake, D., et al., Space Sci Rev,, 2012. 170(1-4): p. 341-399. [4] Wallwork, K.S., Kennedy B. J. and Wang, D

  14. The effect of thermal loading on laboratory fume hood performance.

    Science.gov (United States)

    Johnston, J D; Chessin, S J; Chesnovar, B W; Lillquist, D R

    2000-11-01

    A modified version of the ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to evaluate the relationship between thermal loading in a laboratory fume hood and subsequent tracer gas leakage. Three types of laboratory burners were used, alone and in combination, to thermally challenge the hood. Heat output from burners was measured in BTU/hr, which was based on the fuel heat capacity and flow rate. Hood leakage was measured between 2824 and 69,342 BTU/hr. Sulfur hexafluoride (SF6) was released at 23.5 LPM for each level of thermal loading. Duct temperature was also measured during the heating process. Results indicate a linear relationship for both BTU/hr vs. hood leakage and duct temperature vs. hood leakage. Under these test conditions, each increase of 10,000 BTU/hr resulted in an additional 4 ppm SF6 in the manikin's breathing zone (r2 = 0.68). An additional 3.1 ppm SF6 was measured for every 25 degrees F increase in duct temperature (r2 = 0.60). Both BTU/hr and duct temperature models showed p hood leakage than duct temperature. The results of this study indicate that heat output may compromise fume hood performance. This finding is consistent with those of previous studies.

  15. New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions

    Science.gov (United States)

    Merikanto, J.; Napari, I.; VehkamäKi, H.; Anttila, T.; Kulmala, M.

    2007-08-01

    Recently, the classical theory of sulfuric acid-ammonia-water (H2SO4-NH3-H2O) nucleation was reinvestigated by including the effect of stable ammonium bisulfate formation into calculations. The predicted nucleation rates lowered by many orders of magnitude, bringing them close to agreement with the available experiments on H2SO4-NH3-H2O nucleation. However, because of complex thermodynamics involved, the theoretical calculations of nucleation rates are computationally demanding, and sometimes the theory breaks down at specific concentrations and temperatures. Here we present parameterized equations of ternary H2SO4-NH3-H2O nucleation rates, critical cluster sizes, and critical cluster compositions. Our parameterizations reduce the computing time of these values by a factor of 105 compared with the calculations with the full thermodynamic model. Also, our parameterizations provide reliable estimates for ternary nucleation rates in cases when the full theory fails in isolated points of the parameter space. The parameterized nucleation rates are accurate to one order of magnitude in nucleation rate. Because of their computational efficiency, our parameterizations are particularly suitable for large-scale models of atmosphere. They are valid for temperatures above 235 K, sulfuric acid concentrations 5 · 104-109 cm-3, ammonia mixing ratios 0.1-1000 ppt, relative humidities 5%-95%, and nucleation rates over 10-5 cm-3 s-1. At these conditions, no significant nucleation occurs above 295 K.

  16. Ice Formation by Sulfate and Sulfuric Acid Aerosol Particles under Upper-Tropospheric Conditions.

    Science.gov (United States)

    Chen, Yalei; Demott, Paul J.; Kreidenweis, Sonia M.; Rogers, David C.; Eli Sherman, D.

    2000-11-01

    Ice formation in ammoniated sulfate and sulfuric acid aerosol particles under upper-tropospheric conditions was studied using a continuous flow thermal diffusion chamber. This technique allowed for particle exposure to controlled temperatures and relative humidities for known residence times. The phase states of (NH4)2SO4 and NH4HSO4 particles were found to have important impacts on their ice formation capabilities. Dry (NH4)2SO4 particles nucleated ice only at high relative humidity (RH 94%) with respect to water at temperatures between 40° and 60°C. This result suggested either an impedance or finite time dependence to deliquescence and subsequent homogeneous freezing nucleation. Ammonium sulfate particles that entered the diffusion chamber in a liquid state froze homogeneously at relative humidities that were 10% lower than where ice nucleated on initially dry particles. Likewise, crystalline or partially crystallized (as letovicite) NH4HSO4 particles required higher relative humidities for ice nucleation than did initially liquid bisulfate particles. Liquid particles of size 0.2 m composed of either ammonium sulfate or bisulfate froze at lower relative humidity at upper-tropospheric temperatures than did 0.05-m sulfuric acid aerosol particles. Comparison of calculated homogeneous freezing point depressions suggest that size effects on freezing may be more important than the degree of ammoniation of the sulfate compound.

  17. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    CERN Document Server

    Schobesberger, S; Bianchi, F; Rondo, L; Duplissy, J; Kürten, A; Ortega, I K; Metzger, A; Schnitzhofer, R; Almeida, J; Amorim, A; Dommen, J; Dunne, E M; Ehn, M; Gagné, S; Ickes, L; Junninen, H; Hansel, A; Kerminen, V-M; Kirkby, J; Kupc, A; Laaksonen, A; Lehtipalo, K; Mathot, S; Onnela, A; Petäjä, T; Riccobono, F; Santos, F D; Sipilä, M; Tomé, A; Tsagkogeorgas, G; Viisanen, Y; Wagner, P E; Wimmer, D; Curtius, J; Donahue, N M; Baltensperger, U; Kulmala, M; Worsnop, D R

    2014-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm / Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid-base bindings ...

  18. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.

    Science.gov (United States)

    Chen, Xiangping; Chen, Yongbin; Zhou, Tao; Liu, Depei; Hu, Hang; Fan, Shaoyun

    2015-04-01

    Environmentally hazardous substances contained in spent Li-ion batteries, such as heavy metals and nocuous organics, will pose a threat to the environment and human health. On the other hand, the sustainable recycling of spent lithium-ion batteries may bring about environmental and economic benefits. In this study, a hydrometallurgical process was adopted for the comprehensive recovery of nickel, manganese, cobalt and lithium from sulfuric acid leaching liquor from waste cathode materials of spent lithium-ion batteries. First, nickel ions were selectively precipitated and recovered using dimethylglyoxime reagent. Recycled dimethylglyoxime could be re-used as precipitant for nickel and revealed similar precipitation performance compared with fresh dimethylglyoxime. Then the separation of manganese and cobalt was conducted by solvent extraction method using cobalt loaded D2EHPA. And McCabe-Thiele isotherm was employed for the prediction of the degree of separation and the number of extraction stages needed at specific experimental conditions. Finally, cobalt and lithium were sequentially precipitated and recovered as CoC2O4 ⋅ 2H2O and Li2CO3 using ammonium oxalate solution and saturated sodium carbonate solution, respectively. Recovery efficiencies could be attained as follows: 98.7% for Ni; 97.1% for Mn, 98.2% for Co and 81.0% for Li under optimized experimental conditions. This hydrometallurgical process may promise a candidate for the effective separation and recovery of metal values from the sulfuric acid leaching liquor.

  19. Application of modified bentonite using sulfuric acid for the removal of hexavalent chromium from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Masoud Moradi

    2015-09-01

    Full Text Available Background: Environmental contamination by chromium (Cr has become an important issue due to its adverse effects on human health and environment. This study was done to evaluate the application of modified bentonite using sulfuric acid as an adsorbent in the removal of hexavalent Cr from aqueous solution. Methods: Adsorbent features were determined using x-ray diffraction (XRD, fourier transformed infrared spectroscopy (FTIR and scanning electron microscope (SEM techniques. Thereafter, the effect of pH, contact time, adsorbent dosage and different concentrations of Cr was investigated. The experimental data was fitness in terms of kinetic and equilibrium adsorption processes. Results: The maximum capacity (Qm of Cr(VI according to Langmuir model was obtained at 4.21 mg/g. The experimental data properly obeyed the Longmuir and pseudo-second-order models. The highest percentage of Cr(VI adsorption was observed at pH = 3 and the process after 60 minutes reached the equilibrium state. Conclusion: In Langmuir expression, the dimensionless constant separation term (RL values for the adsorption of Cr onto the modified bentonite was in the range of 0-1, indicating that the adsorption is a favorable process and the modified bentonite has good potential in removing hexavalent Cr using sulfuric acid.

  20. Studies on the protein and sulfur amino acid requirements of young bobwhite quail

    Science.gov (United States)

    Serafin, J.A.

    1977-01-01

    Four experiments were conducted with purified diets to examine the influence of protein level and to estimate the sulfur amino acid (S.A.A.) requirement of young Bobwhite quail (Colinus virginianus). These studies demonstrated (I) that 26% protein was sufficient for rapid growth when the diet was supplemented with methionine; (2) that diets containing higher levels of protein (29.3% and 31.3%) failed to support satisfactory growth unless they contained supplemental methionine; and (3) that young Bobwhite quail require no more than 1.0% sulfur-containing amino acids for optimal growth and efficiency of feed utilization. A fifth experiment was conducted to examine the protein and S.A.A. requirements of young Bobwhite quail using practical rations and to compare results with those obtained with purified diets. Diets containing 24%, 26% and 28% protein were supplied with and without supplemental methionine in a five week study. Results showed significant growth responses to protein and supplemental methionine. Responses showed that Bobwhite quail require no more than 26% protein for maximum growth and efficiency of feed utilization when the S.A.A. level of the diet was approximately 1.0%. The results were in close agreement with those obtained with purified diets. These findings define more precisely than had been known the quantitative requirements of young Bobwhite quail for protein and for the S.A.A. necessary for optimal growth.

  1. Synthesis of glycerin triacetate over molding zirconia-loaded sulfuric acid catalyst

    Institute of Scientific and Technical Information of China (English)

    Lian Wang; Qun Liu; Minghao Zhou; Guomin Xiao

    2012-01-01

    Zirconia-loaded sulfuric acid (SO2-4/ZrO2) catalysts were prepared by impregnation method,molded by punch tablet machine and characterized by X-ray diffraction.SO2-4/ZrO2 catalyst was used to obtain glycerol triacetate (GTA) directly from glycerin.The effect of some factors,such as different temperatures of calcination and catalysts molded or not,on the reusable times of catalysts and the yield of GTA were investigated.The optimum reaction conditions were shown as follows:the reaction temperature was 403 K; the reaction time continued for 8 h; the amount of molded catalysts was 5 wt% of glycerin and the molar ratio of glycerin to acetic acid was 1 ∶ 8.The yield of GTA was 97.93% under the optimum condition.

  2. Leaching and recovery of zinc and copper from brass slag by sulfuric acid

    Directory of Open Access Journals (Sweden)

    I.M. Ahmed

    2016-09-01

    Full Text Available Leaching and recovery processes for zinc and copper from brass slag by sulfuric acid were carried out and iron and aluminum were also precipitated as hydroxides in addition to silica gel. The factors affecting the performance and efficiency of the leaching processsuch as agitation rate, leaching time, acid concentration and temperature were separately investigated. The results obtained revealed that zinc and copper are successfully recovered from these secondary resources, where the percent recovery amounts to 95% and 99% for zinc and copper, respectively. The experimental data of this leaching process were well interpreted with the shrinking core model under chemically controlled processes. The apparent activation energy for the leaching of zinc has been evaluated using the Arrhenius expression. Based on the experimental results, a separation method and a flow sheet were developed and tested to separate zinc, copper, iron, aluminum and silica gel from the brass slag.

  3. Elusive Sulfurous Acid: Gas-Phase Basicity and IR Signature of the Protonated Species.

    Science.gov (United States)

    Sinha, Rajeev K; Scuderi, Debora; Maitre, Philippe; Chiavarino, Barbara; Crestoni, Maria Elisa; Fornarini, Simonetta

    2015-05-01

    The ion corresponding to protonated sulfurous acid, H3SO3(+), has been successfully delivered into the gas phase by electrospray ionization of the solution of a suitable precursor and an in-source fragmentation process. The neutral acid is a highly elusive molecule. However, its gas-phase basicity has been ascertained by means of a kinetic study of proton-transfer reactivity. The structure of the H3SO3(+) sampled ion has been probed by IRMPD spectroscopy in two complementary IR frequency ranges in conjunction with density functional theory calculations and found to conform to a trihydroxosulfonium ion. The characteristic IR signatures may aid in deciphering the presence of this species in extraterrestrial atmospheres.

  4. Computational Study on the Effect of Hydration on New Particle Formation in the Sulfuric Acid/Ammonia and Sulfuric Acid/Dimethylamine Systems.

    Science.gov (United States)

    Henschel, Henning; Kurtén, Theo; Vehkamäki, Hanna

    2016-03-24

    The formation of new particles through condensation from the gas phase is an important source of atmospheric aerosols. The properties of the electrically neutral clusters formed in the very first steps of the condensation process are, however, not directly observable by experimental means. We present here electronic structure calculations on the hydrates of clusters of three molecules of sulfuric acid and three molecules of ammonia or dimethylamine. On the basis of the results of these new calculations together with previously published material we simulate the influence of hydration on the dynamic processes involved in particle formation. Most strongly affected by hydration and most important as a mediator for the effect on particle formation rates are the evaporation rates of clusters. The results give an estimate of the sensitivity of the atmospheric particle formation rate for humidity. The particle formation rate can change approximately two orders of magnitude in either direction due to hydration; the net effect, however, is highly dependent on the exact conditions.

  5. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments.

    Science.gov (United States)

    Florentino, Anna P; Brienza, Claudio; Stams, Alfons J M; Sánchez-Andrea, Irene

    2016-03-01

    A novel acidotolerant and moderately thermophilic sulfur-reducing bacterium was isolated from sediments of the Tinto River (Spain), an extremely acidic environment. Strain TR1T stained Gram-negative, and was obligately anaerobic, non-spore-forming and motile. Cells were short rods (1.5-2 × 0.5-0.7 μm), appearing singly or in pairs. Strain TR1T was catalase-negative and slightly oxidase-positive. Urease activity and indole formation were absent, but gelatin hydrolysis was present. Growth was observed at 20-52 °C with an optimum close to 50 °C, and a pH range of 3-7 with optimum between pH 6 and 6.5. Yeast extract was essential for growth, but extra vitamins were not required. In the presence of sulfur, strain TR1T grew with acetate, formate, lactate, pyruvate, stearate, arginine and H2/CO2. All substrates were completely oxidized and H2S and CO2 were the only metabolic products detected. Besides elemental sulfur, thiosulfate was used as an electron acceptor. The isolate also grew by disproportionation of elemental sulfur. The predominant cellular fatty acids were saturated components: C16 : 0, anteiso-C17 : 0 and C18 : 0. The only quinone component detected was menaquinone MK-7(H2). The G+C content of the genomic DNA was 34 mol%. The isolate is affiliated to the genus Desulfurella of the class Deltaproteobacteria, sharing 97 % 16S rRNA gene sequence similarity with the four species described in the genus Desulfurella. Considering the distinct physiological and phylogenetic characteristics, strain TR1T represents a novel species within the genus Desulfurella, for which the name Desulfurella amilsii sp. nov. is proposed. The type strain is TR1T ( = DSM 29984T = JCM 30680T).

  6. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.

    Science.gov (United States)

    Chen, Longjian; Zhang, Haiyan; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Han, Lujia

    2015-02-01

    Kinetic experiments on the dilute sulfuric acid pretreatment of corn stover were performed. A high xylan removal and a low inhibitor concentration were achieved by acid pretreatment. A novel diffusion-hydrolysis coupled kinetic model was proposed. The contribution to the xylose yield was analyzed by the kinetic model. Compared with the inhibitor furfural negatively affecting xylose yield, the fast and slow-hydrolyzing xylan significantly contributed to the xylose yield, however, their dominant roles were dependent on reaction temperature and time. The impact of particle size and acid concentration on the xylose yield were also investigated. The diffusion process may significantly influence the hydrolysis of large particles. Increasing the acid concentration from 0.15 M to 0.30 M significantly improved the xylose yield, whereas the extent of improvement decreased to near-quantitative when further increasing acid loading. These findings shed some light on the mechanism for dilute sulfuric acid hydrolysis of corn stover.

  7. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus.

    Science.gov (United States)

    Wu, Chien-Hui; Chien, Wei-Chen; Chou, Han-Kai; Yang, Jungwoo; Lin, Hong-Ting Victor

    2014-09-01

    One-step sulfuric acid saccharification of the red alga Pterocladiella capillacea was optimized, and various detoxification methods (neutralization, overliming, and electrodialysis) of the acid hydrolysate were evaluated for fermentation with the thermotolerant yeast Kluyveromyces marxianus. A proximate composition analysis indicated that P. capillacea was rich in carbohydrates. A significant galactose recovery of 81.1 ± 5% was also achieved under the conditions of a 12% (w/v) biomass load, 5% (v/v) sulfuric acid, 121°C, and hydrolysis for 30 min. Among the various detoxification methods, electrodialysis was identified as the most suitable for fermentable sugar recovery and organic acid removal (100% reduction of formic and levulinic acids), even though it failed to reduce the amount of the inhibitor 5-HMF. As a result, K. marxianus fermentation with the electrodialyzed acid hydrolysate of P. capillacea resulted in the best ethanol levels and fermentation efficiency.

  8. Sulfuric Acid Pretreatment and Enzymatic Hydrolysis of Photoperiod Sensitvie Sorghum for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    F Xu; Y Shi; X Wu

    2011-12-31

    Photoperiod sensitive (PS) sorghum, with high soluble sugar content, high mass yield and high drought tolerance in dryland environments, has great potential for bioethanol production. The effect of diluted sulfuric acid pretreatment on enzymatic hydrolysis was investigated. Hydrolysis efficiency increased from 78.9 to 94.4% as the acid concentration increased from 0.5 to 1.5%. However, the highest total glucose yield (80.3%) occurred at the 1.0% acid condition because of the significant cellulose degradation at the 1.5% concentration. Synchrotron wide-angle X-ray diffraction was used to study changes of the degree of crystallinity. With comparison of cellulosic crystallinity and adjusted cellulosic crystallinity, the crystalline cellulose decreased after low acidic concentration (0.5%) applied, but did not change significantly, as the acid concentration increased. Scanning electron microscopy was also employed to understand how the morphological structure of PS sorghum changed after pretreatment. Under current processing conditions, the total ethanol yield is 74.5% (about 0.2 g ethanol from 1 g PS sorghum). A detail mass balance was also provided.

  9. Effect of Sulfuric and Triflic Acids on the Hydration of Vanadium Cations: An ab Initio Study.

    Science.gov (United States)

    Sepehr, Fatemeh; Paddison, Stephen J

    2015-06-01

    Vanadium redox flow batteries (VRFBs) may be a promising solution for large-scale energy storage applications, but the crossover of any of the redox active species V(2+), V(3+), VO(2+), and VO2(+) through the ion exchange membrane will result in self-discharge of the battery. Hence, a molecular level understanding of the states of vanadium cations in the highly acidic environment of a VRFB is needed. We examine the effects of sulfuric and triflic (CF3SO3H) acids on the hydration of vanadium species as they mimic the electrolyte and functional group of perfluorosulfonic acid (PFSA) membranes. Hybrid density functional theory in conjunction with a continuum solvation model was utilized to obtain the local structures of the hydrated vanadium cations in proximity to H2SO4, CF3SO3H, and their conjugate anions. The results indicate that none of these species covalently bond to the vanadium cations. The hydration structure of V(3+) is more distorted than that of V(2+) in an acidic medium. The oxo-group of VO2(+) is protonated by either acid, in contrast to VO(2+) which is not protonated. The atomic partial charge of the four oxidation states of vanadium varies from +1.7 to +2.0. These results provide the local solvation structures of vanadium cations in the VRFBs environment that are directly related to the electrolytes stability and diffusion of vanadium ions into the membrane.

  10. Sulfur Recovery from Acid Gas Using the Claus Process and High Temperature Air Combustion (HiTAC Technology

    Directory of Open Access Journals (Sweden)

    Mohamed Sassi

    2008-01-01

    Full Text Available Sulfur-bearing compounds are very detrimental to the environment and to industrial process equipment. They are often obtained or formed as a by-product of separation and thermal processing of fuels containing sulfur, such as coal, crude oil and natural gas. The two sulfur compounds, which need special attention, are: hydrogen sulfide (H2S and sulfur dioxide (SO2. H2S is a highly corrosive gas with a foul smell. SO2 is a toxic gas responsible for acid rain formation and equipment corrosion. Various methods of reducing pollutants containing sulfur are described in this paper, with a focus on the modified Claus process, enhanced by the use of High Temperature Air Combustion (HiTAC technology in the Claus furnace. The Claus process has been known and used in the industry for over 100 years. It involves thermal oxidation of hydrogen sulfide and its reaction with sulfur dioxide to form sulfur and water vapor. This process is equilibrium-limited and usually achieves efficiencies in the range of 94-97%, which have been regarded as acceptable in the past years. Nowadays strict air pollution regulations regarding hydrogen sulfide and sulfur dioxide emissions call for nearly 100% efficiency, which can only be achieved with process modifications. High temperature air combustion technology or otherwise called flameless (or colorless combustion is proposed here for application in Claus furnaces, especially those employing lean acid gas streams, which cannot be burned without the use of auxiliary fuel or oxygen enrichment under standard conditions. With the use of HiTAC it has been shown, however, that fuel-lean, Low Calorific Value (LCV fuels can be burned with very uniform thermal fields without the need for fuel enrichment or oxygen addition. The uniform temperature distribution favors clean and efficient burning with an additional advantage of significant reduction of NOx, CO and hydrocarbon emission.

  11. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    Directory of Open Access Journals (Sweden)

    Katrin eHug

    2014-11-01

    Full Text Available Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand. Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic, and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  12. Oxidation of Co(II) by ozone and reactions of Co(III) in solutions of sulfuric acid

    Science.gov (United States)

    Levanov, A. V.; Isaikina, O. Ya.; Lunin, V. V.

    2016-12-01

    Reactions of the oxidation of bivalent cobalt ions by ozone, of the spontaneous decomposition of trivalent cobalt, and of interactions between Co(III) and chloride ions in solutions of sulfuric acid are studied. The order and rate constant of the process of decomposition of Co(III) are determined. Information on the kinetics of the interaction between Co(III) and Cl- is obtained. Kinetic patterns of the accumulation of Co(III) during the ozonation of solutions of CoSO4 in sulfuric acid are explained. Molar absorption coefficients of Co(III) and Co2+ ions in the visible range of wavelengths are determined.

  13. Reason analysis of sulfuric acid reduction in sulfuric acid storage tank of acid-adding system and modification measures thereof%加酸系统硫酸减少的原因分析和改进措施

    Institute of Scientific and Technical Information of China (English)

    靳晋陵

    2013-01-01

    针对某电厂工业水系统停运期间发生加酸系统硫酸自动进入压力混合器造成硫酸储罐内的硫酸减少的事件,从系统流程、现场布置、设备状况等方面分析事故产生的根源.分析结果表明,工业水系统发生“回流”导致压力混合器产生“真空”进而引发加酸管路发生“虹吸”是造成储罐内硫酸减少的根本原因,针对事故产生的因素提出了加强设备巡检、做好加酸系统、压力混合器设备停运工作的技术措施和做好工业水停运期间全厂工业水用户的管理工作.%In view of the accident: sulfuric acid in acid-adding system automatically flowed into the pressure mixer and caused sulfuric acid reduction in the sulfuric acid storage tank which happened in a power plant during the outage period of industrial water system, the reasons that caused the said accident were analyzed from the aspects of process flow, site layout, equipment status and so on. The results showed that, the refluxing of industrial water system made pressure mixer vacuum, thus led the siphon phenomenon in acid-adding pipeline, which was the basic cause of the sulfuric acid reduction. According to the factors that may cause accident, some modification measures such as: strengthening equipment inspection, perfecting technical measures to ensure the safety of acid-adding system and pressure mixer, completing management mechamism of industrial water users during the outage period of industrial water system were proposed.

  14. Influence of Smelting-Flue-Gas-Sulfuric Acid Purifying Process to Reagent Sulfuric Acid Preparation%冶炼烟气硫酸净化工艺对制取试剂硫酸的影响研究

    Institute of Scientific and Technical Information of China (English)

    张析; 余江鸿; 王进龙

    2014-01-01

    s:By using smelting-flue-gas sulfuric acid from a lead-zinc smelter as raw material to prepare reagent sulfuric acid through the process of direct distillation , it has heavy impact on quality of the reagent acid due to that lab test shows high content of impurities in the raw material acid .Therefore, raw material acid should be purified before distillatio , and experi-mental test is carried out to study raw material acid purifying process .Reagent sulfuric acid prepared from purified raw ma-terial acid meet the specifications for Chemically Pure under the National Standard GB /T625-2007.%利用某铅锌冶炼厂冶炼烟气硫酸为原料,经分析化验,原料酸中杂质含量较高,直接蒸馏对试剂硫酸的质量影响较大。因此,在蒸馏前需对原料酸进行净化处理,对原料酸的净化工艺进行了试验研究,采用经过净化的原料酸制取的试剂硫酸产品指标达到国家标准GB/T625-2007化学纯指标要求。

  15. Field environmental evaluation plan for sulfur use in pavements

    Science.gov (United States)

    Saylak, D.; Deuel, L. E.; Izatt, J. O.; Jacobs, C.; Zahray, R.; Ham, S.

    1982-07-01

    The use of sulfur in highway paving mixtures is discussed. The evaluation procedures deal with the safety and environmental aspects of storage and handling, formulation, construction, operation and maintenance of highway pavements containing sulfur, including the possible generation of noxious and abnoxious fumes, dust and gases. Methods and equipment for monitoring potential emissions and pollutants are recommended and safety practices for the handling of sulfur and sulfur-modified asphalt mixtures and pavements are discussed.

  16. Stearoyl-CoA Desaturase-1: Is It the Link between Sulfur Amino Acids and Lipid Metabolism?

    Science.gov (United States)

    Poloni, Soraia; Blom, Henk J; Schwartz, Ida V D

    2015-06-03

    An association between sulfur amino acids (methionine, cysteine, homocysteine and taurine) and lipid metabolism has been described in several experimental and population-based studies. Changes in the metabolism of these amino acids influence serum lipoprotein concentrations, although the underlying mechanisms are still poorly understood. However, recent evidence has suggested that the enzyme stearoyl-CoA desaturase-1 (SCD-1) may be the link between these two metabolic pathways. SCD-1 is a key enzyme for the synthesis of monounsaturated fatty acids. Its main substrates C16:0 and C18:0 and products palmitoleic acid (C16:1) and oleic acid (C18:1) are the most abundant fatty acids in triglycerides, cholesterol esters and membrane phospholipids. A significant suppression of SCD-1 has been observed in several animal models with disrupted sulfur amino acid metabolism, and the activity of SCD-1 is also associated with the levels of these amino acids in humans. This enzyme also appears to be involved in the etiology of metabolic syndromes because its suppression results in decreased fat deposits (regardless of food intake), improved insulin sensitivity and higher basal energy expenditure. Interestingly, this anti-obesogenic phenotype has also been described in humans and animals with sulfur amino acid disorders, which is consistent with the hypothesis that SCD-1 activity is influenced by these amino acids, in particularly cysteine, which is a strong and independent predictor of SCD-1 activity and fat storage. In this narrative review, we discuss the evidence linking sulfur amino acids, SCD-1 and lipid metabolism.

  17. CO2 Adsorption by para-Nitroaniline Sulfuric Acid-Derived Porous Carbon Foam

    Directory of Open Access Journals (Sweden)

    Enrico Andreoli

    2016-12-01

    Full Text Available The expansion product from the sulfuric acid dehydration of para-nitroaniline has been characterized and studied for CO2 adsorption. The X-ray photoelectron spectroscopy (XPS characterization of the foam indicates that both N and S contents (15 and 9 wt%, respectively are comparable to those separately reported for nitrogen- or sulfur-containing porous carbon materials. The analysis of the XPS signals of C1s, O1s, N1s, and S2p reveals the presence of a large number of functional groups and chemical species. The CO2 adsorption capacity of the foam is 7.9 wt% (1.79 mmol/g at 24.5 °C and 1 atm in 30 min, while the integral molar heat of adsorption is 113.6 kJ/mol, indicative of the fact that chemical reactions characteristic of amine sorbents are observed for this type of carbon foam. The kinetics of adsorption is of pseudo-first-order with an extrapolated activation energy of 18.3 kJ/mol comparable to that of amine-modified nanocarbons. The richness in functionalities of H2SO4-expanded foams represents a valuable and further pursuable approach to porous carbons alternative to KOH-derived activated carbons.

  18. EFFECTS OF ALKALINE SANDY LOAM ON SULFURIC SOIL ACIDITY AND SULFIDIC SOIL OXIDATION

    Directory of Open Access Journals (Sweden)

    Patrick S. Michael

    2015-08-01

    Full Text Available  In poor soils, addition of alkaline sandy loam containing an adequate proportion of sand, silt and clay would add value by improving the texture, structure and organic matter (OM for general use of the soils. In acid sulfate soils (ASS, addition of alkaline sandy would improve the texture and leach out salts as well as add a sufficient proportion of OM for vegetation establishment. In this study, addition of alkaline sandy loam into sulfuric soil effectively increased the pH, lowered the redox and reduced the sulfate content, the magnitude of the effects dependent on moisture content. Addition of alkaline sandy loam in combination with OM was highly effective than the effects of the lone alkaline sandy loam. When alkaline sandy was added alone or in combination with OM into sulfidic soil, the effects on pH and the redox were similar as in the sulfuric soil but the effect on sulfate content was variable. The effects under aerobic conditions were higher than under anaerobic conditions. The findings of this study have important implications for the general management of ASS where lime availability is a concern and its application is limited.International Journal of Environment Volume-4, Issue-3, June-August 2015Page: 42-54

  19. submitter On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation

    CERN Document Server

    Schobesberger, S; Bianchi, F; Rondo, L; Duplissy, J; Kürten, A; Ortega, I K; Metzger, A; Schnitzhofer, R; Almeida, J; Amorim, A; Dommen, J; Dunne, E M; Ehn, M; Gagné, S; Ickes, L; Junninen, H; Hansel, A; Kerminen, V -M; Kirkby, J; Kupc, A; Laaksonen, A; Lehtipalo, K; Mathot, S; Onnela, A; Petäjä, T; Riccobono, F; Santos, F D; Sipilä, M; Tomé, A; Tsagkogeorgas, G; Viisanen, Y; Wagner, P E; Wimmer, D; Curtius, J; Donahue, N M; Baltensperger, U; Kulmala, M; Worsnop, D R

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia $(NH_3)$ and sulfuric acid $(H-2SO_4)$. Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small $NH_3–H_2SO_4$ clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high $[NH_3]$ / $[H_2SO_4]$. The $H_2SO_4$ molecules of these clusters are partially neutralized by $NH_3$, in close resemblance...

  20. Effects of acid precipitation alone and in combination with sulfur dioxide on field-grown soybeans

    Energy Technology Data Exchange (ETDEWEB)

    Irving, P. M.; Miller, J. E.

    1979-01-15

    In view of the increasing prevalence of acid precipitation in the Midwest, a study was undertaken in 1977 to determine its effects, and possible interactions with SO/sub 2/, on soybeans, an economically important crop in the Midwest. The findings to date are summarized. Field-grown soybeans were exposed to acid (approx. pH 3.1) or control (approx. pH 5.3) precipitation simulants in sulfur dioxide fumigated and unfumigated field plots as described previously. No statistically significant effects of the acid or control simulants, nor interactions with SO/sub 2/, were found on seed yield in either year, although the plots receiving both precipitation simulant and SO/sub 2/ had significantly lower yields (12 to 46%) than plots receiving only precipitation simulant. In 1977 the seed yields were slightly lower in both the fumigated and unfumigated acid-treated plots, when compared to the appropriate controls, while in 1978, yields in the unfumigated, acid-treated plots were somewhat higher. It is interesting to note that the weights of individual seeds were consistent with the yield differences; in 1978 the seed weight in the acid precipitation plot was significantly different from that in plots both with control precipitation and no precipitation. This suggests that the acid treatment in 1978 did, in fact, have an effect on productivity as reflected seed growth. Although visible damage was not apparent in any of the plots, a histological study revealed significant increases in the number of dead leaf cells in all plots, compared to untreated controls, except the one exposed to control precipitation alone.

  1. Assessment of toxicologic interactions resulting from acute inhalation exposure to sulfuric acid and ozone mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, R.B.; Zelikoff, J.T.; Chen, L.C.; Kinney, P.L. (Department of Environmental Medicine, New York University Medical Center, NY (United States))

    1992-08-01

    Studies examining effects of air pollutants often use single compounds, while real world' exposures are to more than one chemical. Thus, it is necessary to assess responses following inhalation of chemical mixtures. Rabbits were exposed for 3 hr to sulfuric acid aerosol at 0, 50, 75, or 125 micrograms/m3 in conjunction with ozone at 0, 0.1, 0.3, or 0.6 ppm, following which broncho-pulmonary lavage was performed. Various pulmonary response endpoints related to general cytotoxicity and macrophage function were examined. In addition, a goal of the study was to define an improved approach to the analysis of data sets involving binary pollutant mixtures. Results were evaluated using analysis of variance with multiple linear contrasts to determine the significance of any effect in the pollutant-exposed groups compared to sham control animals and to assess the type, and extent, of any toxicological interaction between acid and ozone. Interaction was considered to occur when the effects of combined exposure were either significantly greater or less than additive. Pollutant exposures had no effect on lavage fluid levels of lactate dehydrogenase, prostaglandins E2 and F2 alpha, nor on the numbers, viability, or types of immune cells recovered by lavage. Phagocytic activity of macrophages was depressed at the two highest acid levels and at all levels of ozone. Superoxide production by stimulated macrophages was depressed by acid exposure at the two highest concentrations, while ozone alone had no effect. Significant antagonistic interaction was observed following exposure to mixtures of 75 or 125 micrograms/m3 acid with 0.1 or 0.3 ppm ozone. The activity of tumor necrosis factor elicited from stimulated macrophages was depressed by acid at 75 and 125 micrograms/m3 while ozone had no effect. Exposure to mixtures of 125 micrograms/m3 acid with 0.3 or 0.6 ppm ozone resulted in synergistic interaction.

  2. Sulfur-rich geothermal emissions elevate acid aerosol levels in metropolitan Taipei.

    Science.gov (United States)

    Lin, Chih-Hung; Mao, I-Fang; Tsai, Pei-Hsien; Chuang, Hsin-Yi; Chen, Yi-Ju; Chen, Mei-Lien

    2010-08-01

    Several studies have demonstrated that millions of people globally are potentially exposed to volcanic gases. Hydrogen sulfide is a typical gas in volcanic and geothermal areas. The gas is toxic at high concentrations that predominantly affects the nervous, cardiovascular, and respiratory systems. The WHO air quality guideline for hydrogen sulfide is 150 microg m(-3) (105 ppb). The northwest part of Taipei is surrounded by sulfur-rich geothermal and hot springs. Active fumaroles and bubbling springs around the geothermal area emit acidic gases. In combination with automobile emissions, the pollution of acid aerosols is characteristic of the metropolis. This study considered sulfur-rich geothermal, suburban and downtown locations of this metropolis to evaluate geothermally emitted acid aerosol and H(2)S pollution. Acid aerosols were collected using a honeycomb denuder filter pack sampling system (HDS), and then analyzed by ion chromatography (IC). Results indicated that long-term geothermal emissions, automobile emissions and photochemical reactions have led to significant variations in air pollution among regions of metropolitan Taipei. The highest H(2)S concentration was 1705 ppb in the geothermal area with low traffic density and the mean concentration was 404.06 ppb, which was higher than WHO guideline and might cause eye irritation. The SO(2) concentrations were relatively low (mean concentration was 3.9 ppb) in this area. It may partially result from the chemical reduction reaction in the geothermal emission, which converted the SO(2) gas into SO(4)(2-) and H(2)S. Consequently, very high sulfate concentrations (mean concentration higher than 25.0 microg m(-3)) were also observed in the area. The geothermal areas also emitted relatively high levels of aerosol acidity, Cl(-), F(-), PO(4)(3-), and N-containing aerosols. As a result, concentrations of HNO(3), NO(2)(-), PO(4)(3-), and SO(4)(2-) in metropolitan Taipei are significantly higher than those in other

  3. Improved Synthesis of 5-Substituted 1H-Tetrazoles via the [3+2] Cycloaddition of Nitriles and Sodium Azide Catalyzed by Silica Sulfuric Acid

    Science.gov (United States)

    Du, Zhenting; Si, Changmei; Li, Youqiang; Wang, Yin; Lu, Jing

    2012-01-01

    A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium azide in DMF in 72%–95% yield. PMID:22606004

  4. Improved Synthesis of 5-Substituted 1H-Tetrazoles via the [3+2] Cycloaddition of Nitriles and Sodium Azide Catalyzed by Silica Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2012-04-01

    Full Text Available A silica supported sulfuric acid catalyzed [3+2] cycloaddition of nitriles and sodium azide to form 5-substituted 1H-tetrazoles is described. The protocol can provide a series of 5-substituted 1H-tetrazoles using silica sulfuric acid from nitriles and sodium azide in DMF in 72%–95% yield.

  5. Sulfur and oxygen isotope geochemistry of acid mine drainage--the polymetallic sulfide deposit "himmelfahrt fundgrube" in Freiberg (Germany).

    Science.gov (United States)

    Haubrich, F; Tichomirowa, M

    2002-06-01

    We investigated physical, chemical and isotope (S, O) parameters of sulfate from acid mine drainage from the polymetallic sulfide ore deposit Freiberg (Gennany), which was mined for more than eight hundred years. Two main groups of water were distinguished: 1. Flowing mine water with sulfate concentrations of less than 9,000 mg/l and pH values higher than 3.2, 2. Pore water in weathered low grade ores and pools with sulfate concentrations higher than 9000mg/l and pH values below 3.2. The sulfur and oxygen isotope composition of sulfate from flowing mine waters reflects mixing of sulfate from two sulfur sources: a) atmospheric sulfur from precipitation and b) sulfate formed as a result of sulfide oxidation processes. Sulfur isotope values of mine water sulfate were used to estimate the contribution of sulfate derived through oxidation of sulfides. The sulfur isotope composition of pore water sulfate and precipitated sulfate (jarosite) from weathered low grade ore samples is identical to the sulfur isotope composition of primary sulfides. The oxygen isotope composition of pore water sulfate from low grade ore samples indicates that the oxidation process proceeds relatively slowly in 02-depleted waters, probably without significant microbial catalysis.

  6. Hypogenic origin of Provalata Cave, Republic of Macedonia: a distinct case of successive thermal carbonic and sulfuric acid speleogenesis

    Directory of Open Access Journals (Sweden)

    Marjan Temovski

    2013-09-01

    Full Text Available Provalata Cave (Republic of Macedonia is a small but remarkable hypogenic cave, developed in Cambrian marbles by successive thermal carbonic and sulfuric acid speleogenesis. The cave has a thick partly corroded calcite crust, abundant gypsum deposits, with cupolas, ceiling and wall channels, feeders and replacement pockets as some of the most characteristic morphological features. Distribution of morphology and deposits suggest a hypogenic origin in two distinct speleogenetic phases: the first by thermal CO2 rich waters, the second by sulfuric acid dissolution, which were separated by complete infilling of cave passages with pyroclastic-derived clays. In the first phase of speleogenesis, cave passages were formed by dissolution along fractures due to cooling of rising carbonated thermal waters. These phreatic morphologies were later covered with a thick calcite crust deposited in a shallow phreatic environment. In Early Pleistocene the cave was completely filled with clays due to deposition of pyroclastic rocks in a lacustrine environment in the nearby Mariovo Basin. Mariovo Lake sediments were later incised by the Buturica River, which cut down into Cambrian marbles, creating its superimposed valley. Incision lowered the water table and allowed removal of the clay deposits in Provalata Cave. The second phase of speleogenesis started after introduction of H2S associated with rising thermal waters. Oxidation produced sulfuric acid, which rapidly dissolved first calcite crust, then marble host rock. Condensation-corrosion by sulfuric vapors replaced carbonate rock with gypsum producing replacement pockets as well as second generation of pockets and cupolas. The contact of sulfuric acid with the clay deposits formed alunite, jarosite, and natroalunite. 40Ar/39Ar dating gave maximum ages of 1.6 Ma (alunite and 1.46 Ma (jarosite for this last stage of speleogenesis, thus making it the second 40Ar/39Ar dating of a sulfuric cave in Europe (after Kraush

  7. INFLUENCE OF ACID CONCENTRATION, TEMPERATURE, AND TIME ON THE CONCENTRATED SULFURIC ACID HYDROLYSIS OF PINEWOOD AND ASPENWOOD: A STATISTICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Kando K. Janga

    2011-11-01

    Full Text Available The effects on sugar yields of acid concentration, temperature, and time in the first (decrystallization stage of a two-stage concentrated sulfuric acid hydrolysis of softwood (Scots pine and hardwood (aspen were investigated. The study focused on the multi-variable effects of the decrystallization stage and applied a statistical modeling with Central Composite Face (CCF design of experiment to systematically study and simulate the effect of decrystallization reaction conditions on hydrolysis products and degradation products. The models were statistically significant and showed that for both aspen and pine, the reaction temperature and acid concentration were the most influential variables on monosaccharides and total sugar yields compared to the reaction time. The interaction between temperature and acid concentration was the most important for both species. The sugar degradation products were much influenced by the decrystallization temperature on both aspen and pine. The models were validated by a test-set and showed a good agreement between the experimental and predicted values. The optimum predicted total sugar yields were 56 g / 100 g d.w for aspen (74% theoretical and 64 g / 100 g d.w for pine (91% theoretical.

  8. Sulfur - Containing Amino Acids Homocysteine And Taurine In Seizures: Current State Of The Art.

    Science.gov (United States)

    Hrncic, Dragan; Rasic-Markovic, Aleksandra; Macut, Duro; Mladenovic, Dusan; Susic, Veselinka; Djuric, Dragan; Stanojlovic, Olivera

    2017-06-08

    Homocysteine and taurine are non-proteinogenic sulfur-containing amino acids with numerous important physiological roles. Homocysteine and taurine are considered to be neurotransmitters and neuromodulators, the first showing clear hyperexcitability role, while the second is known by its inhibitory and neuroprotective properties. In this article we addressed the role of homocysteine and its related metabolite homocysteine thiolactone in the development of seizures, focusing on its experimental models in vivo, potential mechanisms of proepileptogenic activity via interactions with glutamatergic neurotransmission, sodium pump activity, oxidative stress, cholinergic system and NO-mediated neuronal signaling, as well as the pharmacological and non-pharmacological approaches to modulate its proconvulsive activity. Additionally, herein we will focus on taurine neuroprotective effects linked with its anticonvulsive properties and mediated by taurine interactions with GABA-ergic and glutamatergic system and oxidative stress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Anodic Dissolution of Spheroidal Graphite Cast Iron with Different Pearlite Areas in Sulfuric Acid Solutions

    Directory of Open Access Journals (Sweden)

    Yoshikazu Miyata

    2013-01-01

    Full Text Available The rate equation of anodic dissolution reaction of spheroidal graphite cast iron in sulfuric acid solutions at 298 K has been studied. The cast irons have different areas of pearlite. The anodic Tafel slope of 0.043 V decade−1 and the reaction order with respect to the hydroxyl ion activity of 1 are obtained by the linear potential sweep technique. The anodic current density does not depend on the area of pearlite. There is no difference in the anodic dissolution reaction mechanisms between pure iron and spheroidal graphite cast iron. The anodic current density of the cast iron is higher than that of the pure iron.

  10. EFFECT OF LIGNIN ON ENZYMATIC SACCHARIFICATION OF HARDWOOD AFTER GREEN LIQUOR AND SULFURIC ACID PRETREATMENTS

    Directory of Open Access Journals (Sweden)

    Douyong Min,

    2012-02-01

    Full Text Available Red maple, sweet gum, trembling aspen, red alder, and Eucalyptus globulus samples were pretreated with dilute sulfuric acid and green liquor before enzymatic saccharification. Substrates showed different levels of delignification and sugar recovery, depending on the applied pretreatments and the syringaldehyde/vanillin ratio (S/V. Three major conclusions were drawn in this research. First, lignin is the greatest contributor to recalcitrance of hardwood to enzymatic saccharification. Second, a high S/V ratio is a useful indicator of high delignification during a pretreatment process. Third, green liquor pretreatment is a promising pretreatment method because of a high delignification degree and sugar recovery. In addition, xylan also contributes to the recalcitrance of hardwoods toward enzymatic saccharification.

  11. Adsorption of Pb(II Ions on Sulfuric Acid Treated Leucaena leucocephala Leaf Powder

    Directory of Open Access Journals (Sweden)

    Mansur Noor Fhadzilah

    2015-01-01

    Full Text Available Sulfuric acid treated Petai belalang (Leucaena leucocephala leaf powder (SLLP was used as an adsorbent for Pb(II ions removal. The experimental adsorption parameters investigated include pH, dosage and initial Pb(II concentration. Pb(II removal was more favored at a higher adsorbent dosage, pH and temperature. Adsorption kinetics conformed to the pseudo-second order model while Langmuir isotherm model recorded the value of maximum adsorption capacity (qmax of 222 mg/g. The major functional groups involved in the adsorption process were identified as hydroxyl, amino and ether as revealed by the FTIR analysis. The prepared adsorbent demonstrated a potential application for efficient removal of Pb(II ions from industrial wastewater.

  12. Electrochemical behavior of the Ⅴ(Ⅳ)/Ⅴ(Ⅴ) couple in sulfuric acid medium

    Institute of Scientific and Technical Information of China (English)

    S. Iwasa; Y. Wei; B. Fang; T. Arai; M. Kumagai

    2003-01-01

    The electrochemical behavior of the Ⅴ(Ⅳ)/Ⅴ(Ⅴ) redox couple at a glassy carbon electrode was investigated. Cyclic voltammetry(CV) results indicated that electrode process of the Ⅴ(Ⅳ)/Ⅴ(Ⅴ) couple was electrochemically quasi-reversible with a rate constant of 8×10 -4 cm/S . Increasing concentration of sulfuric acid was electrochemically favourable for the Ⅴ(Ⅳ)/Ⅴ(Ⅴ)couple while elevated temperature was unfavourable for this system. Constant-current electrolysis results showed that current efficiency of more than 95 % could be achieved, which indicated that the Ⅴ(Ⅳ)/Ⅴ(Ⅴ) couple had excellent electrolytic performance and was suitable for the application as the anolyte of redox flow batteries.

  13. The Mechanism of Electropolishing of Niobium in Hydrofluoric-Sulfuric Acid Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hui; Corcoran, Sean; Reece, Charles; Kelley, Michael

    2008-07-01

    Niobium surfaces are commonly electropolished in an effort to obtain optimal smoothness for high-field superconducting radio-frequency cavity applications. We report the use of controlled electrochemical analysis techniques to characterize electropolishing of Nb in a sulfuric and hydrofluoric acid electrolyte. Through the use of a reference electrode, we are able to clearly distinguish the anode and cathode polarization potentials as well as the electrolyte voltage drop, which together sum to the applied power supply voltage. We then identify the temperature and HF concentration dependence of each potential. We also report the use of electrochemical impedance spectroscopy (EIS) on this system. EIS results are consistent with the compact salt film mechanism for niobium electropolishing (EP) in this electrolyte and are not consistent with either the porous salt film or the absorbate-acceptor mechanism. Microscopic understanding of the basic Nb EP mechanism is expected to provide an appro

  14. Molten Salt Catalysts for Sulfuric Acid Production and SO2 Removal From Flue Gas

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus

    1996-01-01

    The report summarises the results obtained during 3 years of collaboration between ICE/HT,University of Patras,GR and Department of Chemistry,DTU,DK , supported by EU through a BRITE/EURAM project.The project has been concerned with fundamental investigations on the complex , redox and compound c...... chemistry of the V2O5 based sulfuric acid catalysts and model systems......The report summarises the results obtained during 3 years of collaboration between ICE/HT,University of Patras,GR and Department of Chemistry,DTU,DK , supported by EU through a BRITE/EURAM project.The project has been concerned with fundamental investigations on the complex , redox and compound...

  15. Hydration of AN Acid Anhydride: the Water Complex of Acetic Sulfuric Anhydride

    Science.gov (United States)

    Smith, CJ; Huff, Anna; Mackenzie, Becca; Leopold, Ken

    2017-06-01

    The water complex of acetic sulfuric anhydride (ASA, CH_{3}COOSO_{2}OH) has been observed by pulsed nozzle Fourier transform microwave spectroscopy. ASA is formed in situ in the supersonic jet via the reaction of SO_{3} and acetic acid and subsequently forms a complex with water during the expansion. Spectra of the parent and fully deuterated form, as well as those of the species derived from CH_{3}^{13}COOH, have been observed. The fitted internal rotation barrier of the methyl group is 219.599(21), \\wn indicating the complexation with water lowers the internal rotation barrier of the methyl group by 9% relative to that of free ASA. The observed species is one of several isomers identified theoretically in which the water inserts into the intramolecular hydrogen bond of the ASA. Aspects of the intermolecular potential energy surface are discussed.

  16. Acetalization of Carbonyl Compounds as Pentaerythritol Diacetals and Diketals in the Presence of Cellulose Sulfuric Acid as an Efficient, Biodegradable and Reusable Catalyst

    Institute of Scientific and Technical Information of China (English)

    Shaterian, Hamid Reza; Rigi, Fatemeh

    2012-01-01

    This paper reports a practical and green method for the acetalization of carbonyl compounds as pentaerythritol diacetals and diketals derivatives using cellulose sulfuric acid as a biodegradable and reusable solid acid catalyst under thermal solvent-free conditions.

  17. Physiology and application of sulfur-reducing microorganisms from acidic environments

    NARCIS (Netherlands)

    Florentino, Anna Patrícya

    2017-01-01

    Sulfur cycle is one of the main geochemical cycles on Earth. Oxidation and reduction reactions of sulfur are mostly biotic and performed by microorganisms. In anaerobic conditions – marine and some freshwater systems, dissimilatory sulfur- and sulfate-reducing bacteria and archaea are key

  18. Physiology and application of sulfur-reducing microorganisms from acidic environments

    NARCIS (Netherlands)

    Florentino, Anna Patrícya

    2017-01-01

    Sulfur cycle is one of the main geochemical cycles on Earth. Oxidation and reduction reactions of sulfur are mostly biotic and performed by microorganisms. In anaerobic conditions – marine and some freshwater systems, dissimilatory sulfur- and sulfate-reducing bacteria and archaea are key play

  19. Structure and energetics of nanometer size clusters of sulfuric acid with ammonia and dimethylamine.

    Science.gov (United States)

    DePalma, Joseph W; Bzdek, Bryan R; Doren, Douglas J; Johnston, Murray V

    2012-01-26

    The structures of positively and negatively charged clusters of sulfuric acid with ammonia and/or dimethylamine ((CH(3))(2)NH or DMA) are investigated using a combination of Monte Carlo configuration sampling, semiempirical calculations, and density functional theory (DFT) calculations. Positively charged clusters of the formula [(NH(4)(+))(x)(HSO(4)(-))(y)](+), where x = y + 1, are studied for 1 ≤ y ≤ 10. These clusters exhibit strong cation-anion interactions, with no contribution to the hydrogen-bonding network from the bisulfate ion protons. A similar hydrogen-bonding network is found for the [(DMAH(+))(5)(HSO(4)(-))(4)](-) cluster. Negatively charged clusters derived from the reaction of DMA with [(H(2)SO(4))(3)(NH(4)(+))(HSO(4)(-))(2)](-) are also studied, up to the fully reacted cluster [(DMAH(+))(4)(HSO(4)(-))(5)](-). These clusters exhibit anion-anion and ion-molecule interactions in addition to cation-anion interactions. While the hydrogen-bonding network is extensive for both positively and negatively charged clusters, the binding energies of ions and molecules in these clusters are determined mostly by electrostatic interactions. The thermodynamics of amine substitution is explored and compared to experimental thermodynamic and kinetic data. Ammonia binds more strongly than DMA to sulfuric acid due to its greater participation in hydrogen bonding and its ability to form a more compact structure that increases electrostatic attraction between oppositely charged ions. However, the greater gas-phase basicity of DMA is sufficient to overcome the stronger binding of ammonia, making substitution of DMA for ammonia thermodynamically favorable. For small clusters of both polarities, substitutions of surface ammonium ions are facile. As the cluster size increases, an ammonium ion becomes encapsulated in the center of the cluster, making it inaccessible to substitution.

  20. Open Access Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters

    Science.gov (United States)

    Ehlmann, Bethany L.; Swayze, Gregg A.; Milliken, Ralph E.; Mustard, John F.; Clark, Roger N.; Murchie, Scott L.; Breit, George N.; Wray, James J.; Gondet, Brigitte; Poulet, Francois; Carter, John; Calvin, Wendy M.; Benzel, William M.; Seelos, Kimberly D.

    2016-01-01

    Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la Minéralogie, L’Eau, les Glaces et l’Activitié (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km × 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H2S- and/or SO2-bearing) waters in contact with a magmatic source, upwelling

  1. Measurement of aerosol sulfuric acid 2. Pronounced layering in the free troposphere during the second Aerosol Characterization Experiment (ACE 2)

    NARCIS (Netherlands)

    Curtius, J; Sierau, B; Arnold, F; de Reus, M; Strom, J; Scheeren, HA; Lelieveld, J

    2001-01-01

    Measurements of aerosol sulfuric acid in the free troposphere were performed in the vicinity of Tenerife, Canary Islands (28degreesN, 16degreesW), in July 1997. These measurements were carried out on board a Dutch Cessna Citation 11 research aircraft within the framework of the second Aerosol Charac

  2. Hepatic Oxidative Stress in Fructose-Induced Fatty Liver Is Not Caused by Sulfur Amino Acid Insufficiency

    Directory of Open Access Journals (Sweden)

    Dean P. Jones

    2011-11-01

    Full Text Available Fructose-sweetened liquid consumption is associated with fatty liver and oxidative stress. In rodent models of fructose-mediated fatty liver, protein consumption is decreased. Additionally, decreased sulfur amino acid intake is known to cause oxidative stress. Studies were designed to test whether oxidative stress in fructose-sweetened liquid-induced fatty liver is caused by decreased ad libitum solid food intake with associated inadequate sulfur amino acid intake. C57BL6 mice were grouped as: control (ad libitum water, fructose (ad libitum 30% fructose-sweetened liquid, glucose (ad libitum 30% glucose-sweetened water and pair-fed (ad libitum water and sulfur amino acid intake same as the fructose group. Hepatic and plasma thiol-disulfide antioxidant status were analyzed after five weeks. Fructose- and glucose-fed mice developed fatty liver. The mitochondrial antioxidant protein, thioredoxin-2, displayed decreased abundance in the liver of fructose and glucose-fed mice compared to controls. Glutathione/glutathione disulfide redox potential (EhGSSG and abundance of the cytoplasmic antioxidant protein, peroxiredoxin-2, were similar among groups. We conclude that both fructose and glucose-sweetened liquid consumption results in fatty liver and upregulated thioredoxin-2 expression, consistent with mitochondrial oxidative stress; however, inadequate sulfur amino acid intake was not the cause of this oxidative stress.

  3. Diketene-based neat four-component synthesis of the dihydropyrimidinones and dihydropyridine backbones using silica sulfuric acid (SSA)

    Institute of Scientific and Technical Information of China (English)

    Sadegh Rostamnia; Kamran Lamei

    2012-01-01

    Heterocyclic skeleton building blocks to afford dihydropyrimidinones and dihydropyridines based on neat adducts of diketene,alcohols and aldehydes via silica sulfuric acid (SSA) catalyzed ring opening of diketene in four-c6mponent Biginelli-type and Hantzsch-type reactions are presented.

  4. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    Science.gov (United States)

    Kirk, Nordstrom D.; Blaine, McCleskey R.; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  5. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry and quantum chemical methods.

    Science.gov (United States)

    Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina

    2016-05-15

    Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability.

  6. Freezing of sulfuric and nitric acid solutions: Implications for polar stratospheric cloud formation

    Science.gov (United States)

    Salcedo Gonzalez, Dara

    2000-12-01

    Polar Stratospheric Clouds (PSCs) play an important role in ozone chemistry during the polar winter. The magnitude of their effect depends on their phase, composition and formation mechanism, which are not fully understood yet. In order to understand how liquid PSCs freeze, two apparatus were designed to study the freezing behavior of small drops using a Fourier transform infrared (FTIR) spectrometer and an optical microscope. Sulfuric acid aqueous drops with composition of 10 to 50 wt % were studied with the FTIR apparatus. The surface on which the drops stand caused heterogeneous nucleation of ice, but not of the sulfuric acid hydrates. The more concentrated solutions (>40 wt %) supercooled to 130 K without freezing. Below 150 K these solutions formed an amorphous solid, which liquefied upon warming. Drops with composition of 40 to 64 wt % HNO3 were prepared and their phase transitions were detected with the optical microscope apparatus. Freezing temperatures of the drops were determined and homogeneous nucleation rates of nitric acid dihydrate (JNAD) and nitric acid trihydrate (JNAT) between 170 and 190 K were calculated. JNAT and JNAD depend predominantly on the saturation of the solid in the liquid solution: higher saturation ratios correspond to higher nucleation rates. Classical nucleation theory was used to parameterize this relation. Since the saturation ratios of NAD and NAT vary with temperature and composition in different ways, NAT or NAD can form preferentially under different conditions. Evidence was found that NAD catalyzes the nucleation of NAT below ~183 K. Mullite, cristobalite and alumina were tested as possible heterogeneous nuclei of volcanic origin for PSCs. They catalyze freezing of NAD and NAT at temperatures below 179 K, which are too low to be stratospherically important. The results suggest that the largest drops in a PSC will freeze homogeneously if the stratospheric temperature remains below the NAT condensation temperature for more

  7. Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, Z. H., E-mail: zaffar.zaidi@sheffield.ac.uk; Lee, K. B.; Qian, H.; Jiang, S.; Houston, P. A. [Department of Electronic and Electrical Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Guiney, I.; Wallis, D. J.; Humphreys, C. J. [Department of Materials Science and Metallurgy, The University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom)

    2014-12-28

    In this work, we have compared SiN{sub x} passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiN{sub x} passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 10{sup 4}–10{sup 5} to 10{sup 7}) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid is believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (D{sub it}) is reduced (from 4.86 to 0.90 × 10{sup 12 }cm{sup −2} eV{sup −1}), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiN{sub x} passivation after full device fabrication results in the reduction of D{sub it} and improves the surface related current collapse.

  8. Synergistic extraction of rare earth by mixtures of 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester and di-(2-ethylhexyl) phosphoric acid from sulfuric acid medium?

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaowei; LI Jianning; LONG Zhiqi; ZHANG Yongqi; XUE Xiangxin; ZHU Zhaowu

    2008-01-01

    The extraction of Nd3+ and Sm3+, including the extraction and stripping capability as well as the separation effect of Nd3+ or Sm3+, from a sulfuric acid medium, by mixtures of di-(2-ethylhexyl) phosphoric acid (HDEHP, H2A2(0)) and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester (HEH/EHP, H2L2(0)) were studied. The distribution ratios and synergistic coefficients of Nd3+ and Sm3+ in different acidities were also determined. A synergistic extractive effect was found when HDEHP and HEH/EHP were used as mixed extractants for Sm3+ or Nd3+. The chemical compositions of the extracted complex were determined as Nd·(HA2)2·HL2 and Sm·(HA2)2·HL2. The extraction equilibrium constants, enthalpy change, and entropy change of the extraction reaction were also determined.

  9. Mutagenicity of bitumen and asphalt fumes.

    Science.gov (United States)

    Heikkilä, P R; Väänänen, V; Hämeilä, M; Linnainmaa, K

    2003-08-01

    The mutagenicity of asphalt fumes was tested with the Salmonella bioassays. The aim was to investigate if recycled additives modify the genotoxicity of emissions. Recycling of old asphalt is increasing, and we studied also the mutagenicity of emissions sampled during the re-use of asphalt. The composition of vapours and fumes were analysed by gas chromatography and by liquid chromatography. Bitumens containing coal fly ash (CFA) or waste plastics were heated to the paving temperatures in the laboratory. In the field, bitumen fumes were collected during paving of stone mastic asphalts (lime or CFA as a filler), remixing of stone mastic asphalt (lime or CFA as a filler), and of asphalt concrete. All the lab-generated vapour fractions were non-mutagenic. The particulate fractions were mutagenic with TA98 in the presence of the S9 activation. In addition, the lab-fumes from bitumen containing waste plastics were positive with both strains without S9. Only particulate fractions sampled in the field were tested. They were mutagenic with and without metabolic activation with both strains. The mutagenic potency of the field samples was higher than that of the lab-generated fumes without S9, and the remixing fumes were more mutagenic than the normal paving and lab-generated fumes with S9. The use of inorganic additive, CFA, did not change the mutagenicity of the fumes, whereas the organic additive, waste plastics, increased the mutagenicity of the laboratory emissions significantly.

  10. Numerical Simulation of Condensation of Sulfuric Acid and Water in a Large Two-stroke Marine Diesel Engine

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Karvounis, Nikolas; Pang, Kar Mun

    2016-01-01

    We present results from computational fluid dynamics simulations of the condensation of sulfuric acid (H2SO4) and water (H2O) in a large two-stroke marine diesel engine. The model uses a reduced n-heptane skeletal chemical mechanism coupled with a sulfur subsetto simulate the combustion process...... and the formation of SOx and H2SO4. Condensation is modeled using a fluid film model coupled with the Eulerian in-cylindergas phase. The fluid film condensation model is validated against both experimental and numerical results. The engine simulations reveal that the fluid film has a significant effect...

  11. On the composition of ammonia-sulfuric-acid ion clusters during aerosol particle formation

    Science.gov (United States)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid-base bindings of ammonium bisulfate. Supported by model simulations, we substantiate previous evidence for acid-base reactions being the essential mechanism behind the formation of these clusters under atmospheric conditions and up to sizes of at least 2 nm. Our results also suggest that electrically neutral NH3-H2SO4 clusters, unobservable in this study, have generally the same composition as ionic clusters for [NH3] / [H2SO4] > 10. We expect that NH3-H2SO4 clusters form and grow also mostly by Δm/Δn > 1 in the atmosphere's boundary layer, as [NH3] / [H2SO4] is mostly larger than 10. We compared our results from CLOUD with APi-TOF measurements of NH3-H2SO4 anion clusters during new-particle formation in the Finnish boreal forest. However, the exact role of NH3-H2SO4 clusters in boundary layer particle formation remains to be resolved.

  12. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    Science.gov (United States)

    Schobesberger, S.; Franchin, A.; Bianchi, F.; Rondo, L.; Duplissy, J.; Kürten, A.; Ortega, I. K.; Metzger, A.; Schnitzhofer, R.; Almeida, J.; Amorim, A.; Dommen, J.; Dunne, E. M.; Ehn, M.; Gagné, S.; Ickes, L.; Junninen, H.; Hansel, A.; Kerminen, V.-M.; Kirkby, J.; Kupc, A.; Laaksonen, A.; Lehtipalo, K.; Mathot, S.; Onnela, A.; Petäjä, T.; Riccobono, F.; Santos, F. D.; Sipilä, M.; Tomé, A.; Tsagkogeorgas, G.; Viisanen, Y.; Wagner, P. E.; Wimmer, D.; Curtius, J.; Donahue, N. M.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.

    2014-05-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm / Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid-base bindings of ammonium bisulfate. Supported by model simulations, we substantiate previous evidence for acid-base reactions being the essential mechanism behind the formation of these clusters under atmospheric conditions and up to sizes of at least 2 nm. Our results also suggest that yet unobservable electrically neutral NH3-H2SO4 clusters grow by generally the same mechanism as ionic clusters, particularly for [NH3] / [H2SO4]>10. We expect that NH3-H2SO4 clusters form and grow also mostly by Δm / Δn>1 in the atmosphere's boundary layer, as [NH3] / [H2SO4] is mostly larger than 10. We compared our results from CLOUD with APi-TOF measurements of NH3-H2SO4 anion clusters during new particle formation in the Finnish boreal forest. However, the exact role of NH3-H2SO4 clusters in boundary layer particle formation remains to be resolved.

  13. Corrosion inhibition of steel in sulfuric acidic solution by the Chenopodium Ambrosioides Extracts

    Directory of Open Access Journals (Sweden)

    L. Bammou

    2014-10-01

    Full Text Available The influence of natural occurring extract of Chenopodium Ambrosioides (CAE on the corrosion inhibition of carbon steel in sulfuric acid solution is studied by the weight loss method, potentiodynamic polarization and impedance spectroscopy (EIS measurements. The experimental results reveal that extract has a good inhibiting effect on the metal tested in 0.5 M H2SO4 solution. The protection efficiency increases with increasing inhibitor concentration to attain 94% at 4 g/l. Potentiodynamic polarization studies clearly reveal that it acts essentially as a cathodic inhibitor. EIS results show that the change in the impedance parameters (Rt and Cdl with concentration of extract of Chenopodium Ambrosioides is indicative of the adsorption of molecules leading to the formation of a protective layer on the surface of carbon steel. The efficiency decreases with temperature. The adsorption of Chenopodium Ambrosioides extract is found to obey the Langmuir adsorption isotherm. The activation energies and enthalpies of the corrosion process of carbon steel in acidic medium were determined.

  14. Airway responses to sulfate and sulfuric acid aerosols in asthmatics. An exposure-response relationship.

    Science.gov (United States)

    Utell, M J; Morrow, P E; Speers, D M; Darling, J; Hyde, R W

    1983-09-01

    Epidemiologic studies support an association between elevated levels of sulfates and increased symptoms in asthmatics. To determine if these pollutants produce airway responses, 17 asthmatics inhaled the following sulfates: sodium bisulfate, ammonium sulfate, ammonium bisulfate (NH4HSO4), or sulfuric acid (H2SO4) aerosols with an aerodynamic diameter of 0.80 micron at concentrations of 100 micrograms/m3, 450 micrograms/m3, and 1,000 micrograms/m3. A sodium chloride (NaCl) aerosol of similar characteristics, administered by double-blind randomization, served as a control. Subjects breathed these aerosols for a 16-minute period via a mouthpiece. Deposition studies showed 54 to 65% retention of the inhaled aerosols. At the 1,000 micrograms/m3 concentration, the Threshold Limit Value for occupational exposure, H2SO4 and NH4HSO4 inhalation produced significant reductions in specific airway conductance (SGaw) (p less than 0.05) and forced expiratory volume in one second (p less than 0.01) compared with NaCl or pre-exposure values. At the 450 micrograms/m3 concentration, only H2SO4 inhalation produced a significant reduction in SGaw (p less than 0.01). At 100 micrograms/m3, a level 3 to 5 times greater than peak urban levels, no significant change in airway function occurred after any sulfate exposure. These data indicate that asthmatics demonstrate bronchoconstriction after brief exposure to common acidic sulfate pollutants.

  15. Leaching platinum-group metals in a sulfuric acid/chloride solution

    Science.gov (United States)

    Mahmoud, M. H. H.

    2003-04-01

    A leaching process was established based on the ability of platinum-group metals to form stable chloro-complexes in acidic chloride solutions. Industrial catalyst losses were examined for the recovery of platinum, palladium, and rhodium by leaching with a mixture of sulfuric acid and sodium chloride to avoid using aqua regia or autoclave conditions. Extraction of platinum and rhodium in 60% H2SO4 at 135°C steadily increased with increasing NaCl concentrations reaching 95% and 85%, respectively, at 0.1 M NaCl after two hours. By comparison, palladium was dissolved more quickly but also reached 85% under the same conditions. Extraction of each metal increased with temperatures up to 125°C but plateaued at higher temperatures. Similar behavior was observed with increasing H2SO4 concentrations up to 60%. More than 99% extraction of each metal was obtained after ten hours using 0.1 M NaCl and 60% H2SO4 at 125°C.

  16. Optimising sulfuric acid hard coat anodising for an Al-Mg-Si wrought aluminium alloy

    Science.gov (United States)

    Bartolo, N.; Sinagra, E.; Mallia, B.

    2014-06-01

    This research evaluates the effects of sulfuric acid hard coat anodising parameters, such as acid concentration, electrolyte temperature, current density and time, on the hardness and thickness of the resultant anodised layers. A small scale anodising facility was designed and set up to enable experimental investigation of the anodising parameters. An experimental design using the Taguchi method to optimise the parameters within an established operating window was performed. Qualitative and quantitative methods of characterisation of the resultant anodised layers were carried out. The anodised layer's thickness, and morphology were determined using a light optical microscope (LOM) and field emission gun scanning electron microscope (FEG-SEM). Hardness measurements were carried out using a nano hardness tester. Correlations between the various anodising parameters and their effect on the hardness and thickness of the anodised layers were established. Careful evaluation of these effects enabled optimum parameters to be determined using the Taguchi method, which were verified experimentally. Anodised layers having hardness varying between 2.4-5.2 GPa and a thickness of between 20-80 μm were produced. The Taguchi method was shown to be applicable to anodising. This finding could facilitate on-going and future research and development of anodising, which is attracting remarkable academic and industrial interest.

  17. New nanocomposites of polystyrene with polyaniline doped with lauryl sulfuric acid

    Science.gov (United States)

    Pud, A. A.; Nikolayeva, O. A.; Vretik, L. O.; Noskov, Yu. V.; Ogurtsov, N. A.; Kruglyak, O. S.; Fedorenko, E. A.

    2017-08-01

    This work is concentrated on synthesis and investigation of new core-shell nanocomposites of polystyrene (PS) with doped polyaniline (PANI). The latex containing PS nanoparticles with sizes of 15-30 nm was prepared by microemulsion polymerization of styrene in water media. The PS/PANI nanocomposites were synthesized by chemical oxidative polymerization of aniline in the PS latex media in a presence of lauryl sulfuric acid (LSA), which served as both dopant and plasticizer. The real content of PANI in the synthesized nanocomposites was determined by UV-Vis spectroscopy method. The composition of the nanocomposites and oxidation state of the doped polyaniline were characterized by FTIR spectroscopy. The core-shell morphology of the nanocomposite nanoparticles was proved by transmission and scanning electron microscopy. It was found that conductivity and thermal behavior in air of these nanocomposites not only nonlinearly depended on the doped polyaniline content but also were strongly effected both by plasticizing properties of the acid-dopant and presence of the polyaniline shell. A possibility of application of these nanocomposites as sensor materials has been demonstrated.

  18. Influence of sulfur amino acid levels in diets of broiler chickens submitted to immune stress

    Directory of Open Access Journals (Sweden)

    LL Rubin

    2007-03-01

    Full Text Available Several changes in amino acid levels occur during an infection. As a rule, glycine, taurine and serine levels diminish considerably, while cysteine levels increase. Such changes may be attributed to the intense consumption of sulfur amino acids (SAA- methionine+cysteine during infectious challenge. Methionine plays an important role in humoral and cellular immune responses. It has been suggested that such effect is exerted by intracellular glutathione and cysteine levels. Four-hundred thirty-two day-old Ross male broiler chickens were fed (from 1 to 42 days of age three SAA levels in the diet (0.72, 0.82, and 0.92% from 1 to 21 days of age; 0.65, 0.75, and 0.85% from 22 to 42 days of age and submitted to two immunological stimulus series. Vaccines against Marek's disease, Fowlpox, Infectious Bronchitis and Infectious Bursal disease, Freund's Complete Adjuvant, and avian tuberculin were used as immunological stimuli. The experiment comprised 6 treatments, with 6 replications using 12 birds per replicate. Performance data were collected weekly. Gumboro antibodies were measured by ELISA, and the cellular immune response by the tuberculin test. SAA levels tested did not influence immune response. Nevertheless, the vaccines applied on the 1st day impaired chick performance up to the 21 days of age. The SAA levels generally adopted in poultry husbandry may not be enough to assure weight gain, especially when birds are raised if a low-challenge infectious environment.

  19. Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis.

    Science.gov (United States)

    Wei, Benxi; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2014-01-01

    Surface chemical compositions of starch nanocrystals (SNC) prepared using sulfuric acid (H2SO4) and hydrochloric acid (HCl) hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS) and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were -23.1 and -5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to -32.3 and -10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to -24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample.

  20. Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis.

    Directory of Open Access Journals (Sweden)

    Benxi Wei

    Full Text Available Surface chemical compositions of starch nanocrystals (SNC prepared using sulfuric acid (H2SO4 and hydrochloric acid (HCl hydrolysis were analyzed by X-ray photoelectron spectroscopy (XPS and FT-IR. The results showed that carboxyl groups and sulfate esters were presented in SNC after hydrolysis with H2SO4, while no sulfate esters were detected in SNC during HCl-hydrolysis. TEM results showed that, compared to H2SO4-hydrolyzed sample, a wider size distribution of SNC prepared by HCl-hydrolysis were observed. Zeta-potentials were -23.1 and -5.02 mV for H2SO4- and HCl-hydrolyzed SNC suspensions at pH 6.5, respectively. Nevertheless, the zeta-potential values decreased to -32.3 and -10.2 mV as the dispersion pH was adjusted to 10.6. After placed 48 h at pH 10.6, zeta-potential increased to -24.1 mV for H2SO4-hydrolyzed SNC, while no change was detected for HCl-hydrolyzed one. The higher zeta-potential and relative small particle distribution of SNC caused more stable suspensions compared to HCl-hydrolyzed sample.

  1. The cysteine, total sulfur amino acid, tyrosine, phenylalanine + tyrosine, and non-essential amino acid maintenance requirements of broiler breeders.

    Science.gov (United States)

    Ekmay, R D; Mei, S J; Sakomura, N K; Coon, C N

    2016-06-01

    Two hundred and fifty Cobb-Vantress broiler breeders were used to determine the maintenance requirement and efficiency of utilization of dietary Cys, Tyr, and non-essential amino acids (AA) in a 21-day experiment. The breeders were fed crystalline amino acid diets containing graded levels of Cys or Tyr representing 0, 10, 20, 30, and 40% of their suggested requirement level with all other amino acids maintained at 40% of their suggested requirement level. To determine the non-essential AA maintenance requirement, graded levels of non-essential AA were provided by glutamic acid to represent 12, 19, 26, 33, and 40% of the ideal level of glutamic acid with all other amino acids maintained at their maintenance requirement level. The total sulfur amino acid (TSAA) and Phe + Tyr requirements were calculated by combining Cys and Tyr results, respectively, with previously determined Met and Phe, respectively. The slope of Cys, Tyr, and non-essential AA accretion regression line indicated that 29% Cys, 24% TSAA, 21% Tyr, 20% Phe + Tyr, and 9% non-essential AA of crystalline amino acids were retained. The Cys requirement for zero protein accretion was calculated to be 30.48 mg/d or 17.006 mg/ kgBW(0.75)/d or 75.426 mg/kgCP/d. The TSAA requirement for zero accretion was calculated to be 132.25 mg/b/d, 71.48 mg/kgBW(0.75)/d, and 307.55 mg/kgCP/d. The Tyr requirement for zero protein accretion was calculated to be 65.907 mg/d or 37.233 mg/ kgBW(0.75)/d or 175.566 mg/kgCP/d. The Phe + Tyr requirement for zero protein accretion was calculated to be 352.18 mg/b/d, 190.37 mg/kgBW(0.75)/d, and 749.33 mg/kgCP/d. The non-essential AA requirement for zero protein accretion was calculated to be 3715.194 mg/d or 2003.155 mg/kgBW(0.75)/d or 9452.954 mg/kgCP/d.

  2. Effects of vine water status on dimethyl sulfur potential, ammonium, and amino acid contents in Grenache Noir grapes (Vitis vinifera).

    Science.gov (United States)

    De Royer Dupré, N; Schneider, R; Payan, J C; Salançon, E; Razungles, A

    2014-04-02

    We studied the effect of vine water status on the dimethyl sulfur potential (DMSP), ammonium, and amino acid contents of the berry during the maturation of Grenache Noir grapes. Water deficit increased the accumulation of amino acids in berries and favored yeast assimilable amino nitrogen. Similarly, ammonium content was higher in berries from vines subjected to moderate water deficit. DMSP content followed the same trend as yeast assimilable amino acid content, with higher concentrations observed in the berries of vines subjected to water deficit. The high DMSP and yeast assimilable nitrogen contents of musts from vines subjected to water deficit resulted in a better preservation of DMSP during winemaking. The wines produced from these musts had a higher DMSP level and would therefore probably have a higher aroma shelf life, because the DMSP determines the rate of release of dimethyl sulfur during wine storage, and this compound enhances fruity notes.

  3. APPLICATION OF A PSEUDO-KINETIC GENERALIZED SEVERITY MODEL TO THE CONCENTRATED SULFURIC ACID HYDROLYSIS OF PINEWOOD AND ASPENWOOD

    Directory of Open Access Journals (Sweden)

    Kando K. Janga,

    2012-05-01

    Full Text Available The yield of monosaccharides after two-stage concentrated sulfuric acid hydrolysis of softwood (Scots pine and hardwood (trembling aspen was modeled using a generalized severity parameter with a time-independent rate constant. The severity parameter, which combines the major operating variables acid concentration, temperature, and reaction time in the decrystallization stage into a single reaction ordinate, was successfully used to describe monosaccharide yields after a standardized hydrolysis stage. Conversion of cellulose to glucose demanded a higher severity to reach maximum glucose yields than the conversion of hemicelluloses to their respective monosaccharides, and the conversion of pine demanded a higher severity to obtain maximum monosaccharide yields as compared to aspen. The results indicate that the generalized severity parameter can be a useful tool for the prediction of sugar yields in a two-stage concentrated sulfuric acid hydrolysis process.

  4. Effects of acidity, temperature and surfactants on electrochemical behavior of V5+ ion in sulfuric acid solutions

    Institute of Scientific and Technical Information of China (English)

    易清风; 刘云清; 赵红钢; 周秀林; 刘小平; 宋和付

    2003-01-01

    The effects of sulfuric acid concentration,reaction temperature,potential-scanning rate and surfactants on electrochemical behavior of V5+ ion on platinum electrodes were investigated.In voltammetric curves of V5+ ion there are two reduction peaks corresponding to reductions of V5+ to V4+(R2)and V5+ to V3+(R1),which are irreversible and quasi-reversible processes respectively.Oxidation peak of V3+ to V5+ is intensively affected by pH values on the electrode surface and scanning-potential rates.Only stronger acidity on the electrode surface and faster scanning-potential rates can lead to appearance of this oxidation peak.The neutral surfactant(PCBE)and cationic surfactant(CTAB)retard the V5+ electroreduction.The anionic surfactant(SDS),even at a very low concentration,increases the currents of both the reduction peaks R1 and R2,and the oxidation peak involves with the oxidation of H2 to H+.

  5. Kinetics of extracting phosphoric acid and sulfuric acid in composite system%复合体系下磷酸和硫酸的萃取动力学

    Institute of Scientific and Technical Information of China (English)

    张莉; 丁瑶; 刘玉娟

    2012-01-01

    In order to deeply understand the mechanism and dynamic characteristics under the extraction process, the extraction kinetics of phosphoric acid and sulfuric acid was investigated by using constant-interface cell in the composite system. The effects of specific interfacial area, the concentration of phosphoric acid in the optimum extraction conditions and the concentration of sulfuric acid in the optimum extraction conditions on the extraction rate of phosphoric acid and sulfuric acid were reviewed. The kinetic equation of the extraction of phosphoric acid and sulfuric acid was put forward in the sulfuric acid-phosphoric acid system at 60 ℃. The results show that the extraction rate of phosphoric acid and sulfuric acid decreases with the increase of specific interfacial area, and increases with the increase of the initial concentration of phosphate in the aqueous phase gradually. With increasing the initial concentration of sulfuric acid in the aqueous phase, the extraction rate of phosphate is improved. The raw industrial phosphoric acid was used to verify the acid extraction kinetics. The result reveals that the extraction rates of the calculated values agree with the measured values of sulfuric acid and phosphoric acid.%为了深入了解萃取过程的机理和动力学特征,采用了恒界面池法研究了复合体系下磷酸和硫酸的萃取动力学,分别考察了比界面积、初始水相中磷酸浓度、初始水相中硫酸浓度对磷酸、硫酸萃取速率的影响,并提出了60℃下硫酸-磷酸复合体系中萃取磷酸和硫酸的动力学方程.实验结果表明:磷酸和硫酸的萃取速率随着比界面积增大而减小,随着初始水相中磷酸浓度的升高而逐步增加;初始水相中硫酸浓度的增大也有利于提高磷酸和硫酸的萃取速率.并研究了在60℃硫酸-磷酸复合体系中,磷酸和硫酸的萃取动力学方程,并用工业原料磷酸对萃取动力学进行了验证,

  6. Solubilities of 2-Naphthalenesulfonic Acid Monohydrate and Sodium 2-Naphthalenesulfonate in Sulfuric Acid Solution and Their Application for Preparing Sodium 2-Naphthalenesulfonate

    Institute of Scientific and Technical Information of China (English)

    张凤宝; 景晖; 朱文宇; 张林; 刘博; 张国亮; 夏清

    2016-01-01

    The solubilities of 2-naphthalenesulfonic acid monohydrate and sodium 2-naphthalenesulfonate in sul-furic acid solutions were measured at temperatures ranging from 278.15 to 338.15 K by using a dynamic method. The concentration of sulfuric acid solution ranged from 0 to 80wt%,. The solubilities of 2-naphthalenesulfonic acid monohydrate and sodium 2-naphthalenesulfonate increased with temperature, and both of them were the lowest at 70wt%, of sulfuric acid solution(03w=0.70)while the highest in pure water. The solubility data were correlated by the modified Apelblat equation. Based on the solubility difference between 2-naphthalenesulfonic acid monohy-drate and sodium 2-naphthalenesulfonate, a new technique in which sodium sulfate was used to replace sodium sulfite in the neutralization reaction was developed. The suitable mole ratio of H2O to Na2SO4 in the neutralization reaction was 80∶1, and that of 2-naphthalenesulfonic acid monohydrate to Na2SO4 was 3.2∶1. The material bal-ance under the suitable mole ratios was given and discussed.

  7. Structure and Energetics of Nanometer Size Clusters of Sulfuric Acid with Ammonia and Dimethylamine

    Energy Technology Data Exchange (ETDEWEB)

    Depalma, Joseph W.; Bzdek, Bryan R.; Doren, Doug J.; Johnston, Murray V.

    2012-01-26

    The structures of positively and negatively charged clusters of sulfuric acid with ammonia and/or dimethylamine ((CH{sub 3}){sub 2}NH or DMA) are investigated using a combination of Monte Carlo configuration sampling, semiempirical calculations, and density functional theory (DFT) calculations. Positively charged clusters of the formula [(NH{sub 4}{sup +}){sub x}(HSO{sub 4}{sup -}){sub y}]{sup +}, where x = y + 1, are studied for 1 {le} y {le} 10. These clusters exhibit strong cation-anion interactions, with no contribution to the hydrogen-bonding network from the bisulfate ion protons. A similar hydrogen-bonding network is found for the [(DMAH{sup +}){sub 5}(HSO{sub 4}{sup -}){sub 4}]{sup -} cluster. Negatively charged clusters derived from the reaction of DMA with [(H{sub 2}SO{sub 4}){sub 3}(NH{sub 4}{sup +})(HSO{sub 4}{sup -}){sub 2}]{sup -} are also studied, up to the fully reacted cluster [(DMAH{sup +}){sub 4}(HSO{sub 4}{sup -}){sub 5}]{sup -}. These clusters exhibit anion-anion and ion-molecule interactions in addition to cation-anion interactions. While the hydrogen-bonding network is extensive for both positively and negatively charged clusters, the binding energies of ions and molecules in these clusters are determined mostly by electrostatic interactions. The thermodynamics of amine substitution is explored and compared to experimental thermodynamic and kinetic data. Ammonia binds more strongly than DMA to sulfuric acid due to its greater participation in hydrogen bonding and its ability to form a more compact structure that increases electrostatic attraction between oppositely charged ions. However, the greater gas-phase basicity of DMA is sufficient to overcome the stronger binding of ammonia, making substitution of DMA for ammonia thermodynamically favorable. For small clusters of both polarities, substitutions of surface ammonium ions are facile. As the cluster size increases, an ammonium ion becomes encapsulated in the center of the cluster, making

  8. Development of novel processes for Cu concentrates without producing sulfuric acid; Hiryusan hasseigata no atarashii doshigen shori gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Awakura, Y.; Hirato, T. [Kyoto University, Kyoto (Japan)

    1997-02-01

    Studies are conducted to develop a new wet method for copper concentrates to replace the conventional dry smelting method for the settlement of problems involving the processing of impurities for environmental protection. A specimen of pyrites polycrystals is subjected to leaching at 80 {degree}C in a strongly acidic cupric solution. Findings are that the element sulfur generated in this process does not impede leaching and only approximately 4% of the sulfur is oxidized into sulfur ions; that the presence of more than 2g/liter of bromide ions produced during bromine-aid leaching of gold changes the structure of sulfur for the inhibition of leaching; that circulation of a bromine-containing leaching liquid is not desired since even a small amount of approximately 0.02mol/liter inhibits the leaching rate. Controlled potential electrolysis is performed for the anode in an acid solution containing CuCl, NaCl, and NaBr, for the observation of oxidation/reduction potentials predicted by Nernst`s equation. It is then disclosed that bromine is more effective than chlorine in gold leaching and that the solution potential during leaching agent regeneration enables the monitoring of solution constitution. 2 refs.

  9. The Origin of Sulfur Tolerance in Supported Platinum Catalysts: The Relationship between Structural and Catalytic Properties in Acidic and Alkaline Pt/LTL.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.

    1996-01-01

    The reactivity, structure, and sulfur tolerance is compared for platinum supported on acidic and alkaline LTL zeolite. In the absence of sulfur, EXAFS spectroscopy indicates that small metallic platinum particles of approximately 6 to 14 atoms/cluster are present. The TOF for neopentane hydrogenolys

  10. Synthesis of Substituted Thioureas and Their Sulfur Heterocyclic Systems of p-Amino Salicylic Acid as Antimycobacterial Agents

    OpenAIRE

    Mohammed Saleh I. T. Makki; Abdel-Rahman, Reda M.; Faidallah, Hassan M.; Khalid Ali Khan

    2013-01-01

    A series of new N,N′-substituted thioureas (2, 6, and 8) and their sulfur heterocycles as thiobarbituric acids (3, 4, and 7), 2-thioxothiazoliodin-4-one (10), thiazolidin-4-one (11), 1,2,4-triazol-5-thione (14), and 1,3,4-thiadiazole (15) of p-Amino salicylic acid (PAS) have been synthesized from treatment with dithiocarbazinate (1, 5 and 12) followed by heterocyclization with dimethyl malonate, chloroacetic acid, and/or trifluoroacetic anhydride. The structures of the newly synthesized compo...

  11. Macroporous chitosan hydrogels: Effects of sulfur on the loading and release behaviour of amino acid-based compounds.

    Science.gov (United States)

    Elviri, Lisa; Asadzadeh, Maliheh; Cucinelli, Roberta; Bianchera, Annalisa; Bettini, Ruggero

    2015-11-05

    Chitosan is a biodegradable, biocompatible polymer of natural origin widely applied to the preparation of functional hydrogels suitable for controlled release of drugs, peptides and proteins. Non-covalent interactions, expecially ionic interactions, are the main driver of the loading and release behaviour of amino acids or peptides from chitosan hydrogels. With the aim to improve the understanding of the mechanisms governing the behaviour of chitosan hydrogels on peptide uptake and delivery, in this paper the attention was focused on the role played by sulfur on the interactions of chitosan hydrogels with sulfur-containing amino acids (AA) and peptides. Hence, loading and release experiments on cysteine, cystine and glutathione (SH containing amino acid, dipeptide and tripeptide, respectively) as well as on glycine and valine as apolar amino acids were carried out. For these puroses, chitosan hydrogels were prepared in an easy and reproducible manner by a freeze-gelation process on a poly-L-lysine coated support. The hydrogel surface pore size, uniformity and distribution were tested. Optimal results (D50 = 26 ± 4 μm) were obtained by using the poly-L-lysine positively-charged surface. The loading results gathered evidenced that the sulfur-containing molecules presented an increased absorption both in terms of rate and extent by chitosan hydrogels with respect to nonpolar amino acids, mainly due to ionic and hydrogen bond interactions. ATR-FTIR analysis carried out on chitosan hydrogels, with and without the AA related compounds to study putative interactions, supported these apparent sulfur-dependent results. Finally, chitosan hydrogels displayed excellent retention capabilities (AA release hydrogels as matrix for controlled drug release.

  12. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid.

    Science.gov (United States)

    Nam, Seong-Nam; Jeong, Seongkyeong; Lim, Hojoo

    2014-01-30

    In this study, we have investigated the feasibility of using a thermochemical technique on ∼17% chrysotile-containing roofing sheet or slate (ACS), in which 5N sulfuric acid-digestive destruction was incorporated with 10-24-h heating at 100°C. The X-ray diffraction (XRD) and the polarized light microscopy (PLM) results have clearly shown that raw chrysotile asbestos was converted to non-asbestiform material with no crystallinity by the low temperature thermochemical treatment. As an alternative to the use of pricey sulfuric acid, waste sulfuric acid discharged from a semiconductor manufacturing process was reused for the asbestos-fracturing purpose, and it was found that similar removals could be obtained under the same experimental conditions, promising the practical applicability of thermochemical treatment of ACWs. A thermodynamic understanding based on the extraction rates of magnesium and silica from a chrysotile structure has revealed that the destruction of chrysotile by acid-digestion is greatly influenced by the reaction temperatures, showing a 80.3-fold increase in the reaction rate by raising the temperature by 30-100°C. The overall destruction is dependent upon the breaking-up of the silicon-oxide layer - a rate-limiting step. This study is meaningful in showing that the low temperature thermochemical treatment is feasible as an ACW-treatment method.

  13. Inhibition of cold rolled steel corrosion by Tween-20 in sulfuric acid: weight loss, electrochemical and AFM approaches.

    Science.gov (United States)

    Mu, Guannan; Li, Xianghong

    2005-09-01

    The inhibiting action of a nonionic surfactant of Tween-20 on the corrosion of cold rolled steel (CRS) in 0.5-7.0 M sulfuric acid (H(2)SO(4)) was studied by weight loss and potentiodynamic polarization methods. Atomic force microscope (AFM) provided the surface conditions. The results show that inhibition efficiency increases with the inhibitor concentration, while it decreases with the sulfuric acid concentration. The adsorption of inhibitor on the cold rolled steel surface obeys the Langmuir adsorption isotherm equation. Effect of immersion time was studied and discussed. The effect of temperature on the corrosion behavior of cold rolled steel was also studied at four temperatures ranging from 30 to 60 degrees C, the thermodynamic parameters such as adsorption heat, adsorption free energy, and adsorption entropy were calculated. The results revealed that the adsorption was physisorption mechanism. A kinetic study of cold rolled steel in uninhibited and inhibited acid was also discussed. The kinetic parameters such as apparent activation energy, pre-exponential factor, rate constant, and reaction constant were calculated for the reactions of corrosion. The inhibition effect is satisfactorily explained by both thermodynamic and kinetic models. Polarization curves show that Tween-20 is a cathodic-type inhibitor in sulfuric acid. The results obtained from weight loss and potentiodynamic polarization are in good agreement, and the Tween-20 inhibition action could also be evidenced by surface AFM images.

  14. The enhancement mechanism of glycolic acid on the formation of atmospheric sulfuric acid-ammonia molecular clusters

    Science.gov (United States)

    Zhang, Haijie; Kupiainen-Määttä, Oona; Zhang, Xiuhui; Molinero, Valeria; Zhang, Yunhong; Li, Zesheng

    2017-05-01

    Highly oxidized multifunctional organic molecules, which span a wide range of low volatilities, are capable of driving particle formation as well as the initial growth of particles in the atmosphere. However, their participant mechanism in new particle formation still remains largely ambiguous. Here we present an investigation of the potentially participant mechanism of the simplest hydroxyl acid, glycolic acid (GA) on clusters formation by sulfuric acid (SA) and ammonia (A). Density functional theory calculations at the M062X/6-311++G(3df,3pd) level of theory combining with atmospheric cluster dynamics code simulations of (𝐒𝐀)xṡ𝐀yṡ(𝐆𝐀)z cluster (y≤x + z ≤ 3) systems at different temperatures (298, 278, 258, 238, and 218 K) give direct evidence of the enhancement effect of GA on the formation rates of SA-A-based clusters at high concentration of GA and T = 238 K and 218 K. Moreover, within GA's enhancement concentrations, the enhancement strength R of GA presents a positive dependence on its atmospheric concentrations and a negative dependence on temperature. A competitive relationship between SA and GA has been identified through the negative dependence of R on the concentrations of SA. The influence of A on R is more complex that R first increases, reaching a maximum value, and then decreases with the increasing concentration of A. Finally, the combination of the traced growth paths of the system with the enhancement strength of GA suggests a "catalytic" enhancement mechanism of GA where GA acts as a mediate bridge for the formation of pure SA-A-based clusters.

  15. Effect of Digestible Protein and Sulfur Amino Acids in Starter Diet on Performance and Small Intestinal (Jejunum Morphology of Broilers

    Directory of Open Access Journals (Sweden)

    Avisa Akhavan khaleghi

    2016-04-01

    Full Text Available Introduction Protein is an essential constituent of all tissues of animal body and has major effect on growth performance of the bird. A better understanding of the nutritional requirements of amino acids allows a more precise nutrition, offering the possibility for the formulator to optimize the requirement of at least minimum levels of crude protein by essential amino acids requirements, generating better result and lower costs for the producer. Methionine + Cystine (total sulfur amino acid = TSSA perform a number of functions in enzyme reactions and protein synthesis. Methionine is an essential amino acid for poultry and has an important role as a precursor of Cystine. Methionine is usually the first limiting amino acid in most of the practical diets for broiler chicken. The efficiency of utilization of dietary nutrients partly depends on the development of the gastro intestinal tract. Material and methods A 2×3 factorial arrangement in a CRD experiment was conducted to study the effect of digestible protein (DP and sulfur amino acids (DSAA during the starter period on performance and small intestinal (jejunum villous morphology. A total number of 300 day-old Ross 308 male broiler chicks were randomly distributed to 30 groups with 10 chicks each. Treatments consisted of two dietary levels of DP (19.5 and 21.5% and three dietary levels of DSAA (0.94, 1.02 and 1.1% that were fed for 10 days. For Each group and treatment, Feed Intake (FI, Weight Gain (WG and Feed Conversion Ratio (FCR were calculated and all the data were statistically analyzed by the SAS software. Results and Discussions The effects of different levels of protein and digestible sulfur amino acids on the mean feed intake, feed conversion ratio and daily weight gain are shown in the Table 3. Increase in the percentage of digestible sulfur amino acids, increased the levels of feed intake and feed conversion ratio in the starter period but, had no effect on the WG. Adding the DSAA

  16. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    Energy Technology Data Exchange (ETDEWEB)

    Kirk Nordstrom, D. [US Geological Survey, Boulder, CO 80303 (United States)], E-mail: dkn@usgs.gov; Blaine McCleskey, R.; Ball, James W. [US Geological Survey, Boulder, CO 80303 (United States)

    2009-02-15

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 deg. C) and low-temperature (0-30 deg. C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H{sub 2}S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH < 2.7. Field pH measurements were predominantly used because the charge imbalance was <{+-}10%. When the charge imbalance was generally >{+-}10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H{sub 2}S or S{sub 2}O{sub 3} oxidation, CO{sub 2} degassing, and the temperature-dependence of pK{sub 2} for H{sub 2}SO{sub 4}. Charge imbalances are shown to be dependent on a speciation model for pH values <3. The highest SO{sub 4} concentrations, in the thousands of mg/L, result from evaporative concentration at elevated temperatures as shown by the consistently high {delta}{sup 18}O values (-10 per mille to -3 per mille ) and a {delta}D vs. {delta}{sup 18}O slope of 3, reflecting kinetic fractionation. Low SO{sub 4} concentrations (<100 mg/L) for thermal waters (>350 mg/L Cl) decrease as the Cl{sup -} concentration increases from boiling which appears inconsistent with the hypothesis of H{sub 2}S oxidation as a source of hydrothermal SO{sub 4}. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and

  17. Heavy metal contamination in arable soils and vegetables around a sulfuric acid factory, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Department of Earth Sciences, National Taiwan University, Taipei (China); Wang, Jin; Li, Xiangping; Chen, Yongheng; Wu, Yingjuan [Department of Environmental Science and Engineering, Guangzhou University, Guangzhou (China); Qi, Jianying [South China Institute of Environmental Science, Ministry of Environmental Protection (SCIES-MEP), Guangzhou (China); Wang, Chunlin [Research Center for Environmental Science, Guangdong Provincial Academy of Environmental Science, Guangzhou (China)

    2012-07-15

    This study was designed to investigate heavy metal (Tl, Pb, Cu, Zn, and Ni) contamination levels of arable soils and vegetables grown in the vicinity of a sulfuric acid factory in the Western Guangdong Province, China. Health risks associated with these metals by consumption of vegetables were assessed based on the hazard quotient (HQ). The soils show a most significant contamination of Tl, followed by Pb, Cu, Zn, and Ni. The heavy metal contents ({mu}g/g, dry weight basis) in the edible parts of vegetables range from 5.60 to 105 for Tl, below detection limit to 227 for Pb, 5.0-30.0 for Cu, 10.0-82.9 for Zn, and 0.50-26.0 for Ni, mostly exceeding the proposed maximum permissible level in Germany or China. For the studied vegetables, the subterranean part generally bears higher contents of Tl and Zn than the aerial part, while the former has lower contents of Cu and Ni than the latter. In addition, the results reveal that Tl is the major risk contributor for the local people since its HQ values are mostly much higher than 1.0. The potential health risk of Tl pollution in the food chain and the issue of food safety should be highly concerned and kept under continued surveillance and control. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Microbial Diversity and Population Structure of Extremely Acidic Sulfur-Oxidizing Biofilms From Sulfidic Caves

    Science.gov (United States)

    Jones, D.; Stoffer, T.; Lyon, E. H.; Macalady, J. L.

    2005-12-01

    Extremely acidic (pH 0-1) microbial biofilms called snottites form on the walls of sulfidic caves where gypsum replacement crusts isolate sulfur-oxidizing microorganisms from the buffering action of limestone host rock. We investigated the phylogeny and population structure of snottites from sulfidic caves in central Italy using full cycle rRNA methods. A small subunit rRNA bacterial clone library from a Frasassi cave complex snottite sample contained a single sequence group (>60 clones) similar to Acidithiobacillus thiooxidans. Bacterial and universal rRNA clone libraries from other Frasassi snottites were only slightly more diverse, containing a maximum of 4 bacterial species and probably 2 archaeal species. Fluorescence in situ hybridization (FISH) of snottites from Frasassi and from the much warmer Rio Garrafo cave complex revealed that all of the communities are simple (low-diversity) and dominated by Acidithiobacillus and/or Ferroplasma species, with smaller populations of an Acidimicrobium species, filamentous fungi, and protists. Our results suggest that sulfidic cave snottites will be excellent model microbial ecosystems suited for ecological and metagenomic studies aimed at elucidating geochemical and ecological controls on microbial diversity, and at mapping the spatial history of microbial evolutionary events such as adaptations, recombinations and gene transfers.

  19. Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. Kürten

    2010-11-01

    Full Text Available The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS through the reaction of NO3 ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (Americium 241 ion source which has been used previously. Our results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of one minute it is ~6 × 104 molecules of H2SO4 per cm3. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS.

  20. Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    A. Kürten

    2011-03-01

    Full Text Available The performance of an ion source based on corona discharge has been studied. This source is used for the detection of gaseous sulfuric acid by chemical ionization mass spectrometry (CIMS through the reaction of NO3 ions with H2SO4. The ion source is operated under atmospheric pressure and its design is similar to the one of a radioactive (americium-241 ion source which has been used previously. The results show that the detection limit for the corona ion source is sufficiently good for most applications. For an integration time of 1 min it is ~6 × 104 molecule cm−3 of H2SO4. In addition, only a small cross-sensitivity to SO2 has been observed for concentrations as high as 1 ppmv in the sample gas. This low sensitivity to SO2 is achieved even without the addition of an OH scavenger. When comparing the new corona ion source with the americium ion source for the same provided H2SO4 concentration, both ion sources yield almost identical values. These features make the corona ion source investigated here favorable over the more commonly used radioactive ion sources for most applications where H2SO4 is measured by CIMS.

  1. Ice condensation on sulfuric acid tetrahydrate: Implications for polar stratospheric ice clouds

    Directory of Open Access Journals (Sweden)

    T. J. Fortin

    2003-01-01

    Full Text Available The mechanism of ice nucleation to form Type 2 PSCs is important for controlling the ice particle size and hence the possible dehydration in the polar winter stratosphere. This paper probes heterogeneous ice nucleation on sulfuric acid tetrahydrate (SAT. Laboratory experiments were performed using a thin-film, high-vacuum apparatus in which the condensed phase is monitored via Fourier transform infrared spectroscopy and water pressure is monitored with the combination of an MKS baratron and an ionization gauge. Results show that SAT is an efficient ice nucleus with a critical ice saturation ratio of S*ice = 1.3 to 1.02 over the temperature range 169.8-194.5 K. This corresponds to a necessary supercooling of 0.1-1.3 K below the ice frost point. The laboratory data is used as input for a microphysical/photochemical model to probe the effect that this heterogeneous nucleation mechanism could have on Type 2 PSC formation and stratospheric dehydration. In the model simulations, even a very small number of SAT particles (e.g., 10-3 cm-3 result in ice nucleation on SAT as the dominant mechanism for Type 2 PSC formation. As a result, Type 2 PSC formation is more widespread, leading to larger-scale dehydration. The characteristics of the clouds are controlled by the assumed number of SAT particles present, demonstrating that a proper treatment of SAT is critical for correctly modeling Type 2 PSC formation and stratospheric dehydration.

  2. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions.

    Science.gov (United States)

    Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S; Kulmala, Markku; Worsnop, Douglas R; Curtius, Joachim

    2014-10-21

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.

  3. Optimization of thermal-dilute sulfuric acid pretreatment for enhancement of methane production from cassava residues.

    Science.gov (United States)

    Zhang, Qinghua; Tang, Lei; Zhang, Jianhua; Mao, Zhonggui; Jiang, Li

    2011-02-01

    In this study, the pretreatment of cassava residues by thermal-dilute sulfuric acid (TDSA) hydrolysis was investigated by means of a statistically designed set of experiments. A three-factor central composite design (CCD) was employed to identify the optimum pretreatment condition of cassava residues for methane production. The individual and interactive effects of temperature, H(2)SO(4) concentration and reaction time on increase of methane yield (IMY) were evaluated by applying response surface methodology (RSM). After optimization, the resulting optimum pretreatment condition was 157.84°C, utilizing 2.99% (w/w TS) H(2)SO(4) for 20.15 min, where the maximum methane yield (248 mL/g VS) was 56.96% higher than the control (158 mL/g VS), which was very close to the predict value 56.53%. These results indicate the model obtained through RSM analysis is suit to predict the optimum pretreatment condition and there is great potential of using TDSA pretreatment of cassava residues to enhance methane yield.

  4. NOVEL CHARACTERIZATION OF THE ELECTROPOLISHING OF NIOBIUM WITH SULFURIC AND HYDROFLUORIC ACID MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Hui Tian; Charles Reece; Michael Kelley; Sean Corcoran

    2008-02-12

    Niobium surfaces are commonly electropolished in an effort to obtain optimally smooth surfaces for high-field SRF cavity applications. We report the first use of controlled electrochemical analysis techniques to characterize electropolishing of Nb in a sulfuric and hydrofluoric acid electrolyte. Through the use of a reference electrode we are able to clearly distinguish the anode, cathode polarization potentials as well as the electrolyte voltage drop that sum to the applied power supply voltage. We then separate the temperature and HF concentration dependence of each. We also report the first use of Electrochemical Impedance Spectroscopy (EIS) on this system. EIS results are consistent with a presence of a compact salt film at the Nb/electrolyte interface that is responsible for the limiting current. Microscopic understanding of the basic Nb EP mechanism is expected to provide an appropriate foundation with which to optimize the preparation of high-field niobium cavity surfaces. The implication of EIS for monitoring Nb surface during electropolishing shows this technology could be potentially used as a source of on-line feedback.

  5. Molecular Modeling of Ammonium, Calcium, Sulfur, and Sodium Lignosulphonates in Acid and Basic Aqueous Environments

    Science.gov (United States)

    Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.

    2015-12-01

    Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.

  6. A new steel with good low-temperature sulfuric acid dew point corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X.Q.; Li, X.G. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Key Laboratory of Corrosion and Protection (Ministry of Education), Beijing (China); Sun, F.L. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Lv, S.J. [Corrosion and Protection Center, University of Science and Technology Beijing (China); Equipment and Power Department, Shijiazhuang Refine and Chemical Company Limited, SINOPEC, Shijiazhuang (China)

    2012-07-15

    In this work, new steels (1, 2, and 3) were developed for low-temperature sulfuric acid dew point corrosion. The mass loss rate, macro- and micro-morphologies and compositions of corrosion products of new steels in 10, 30, and 50% H{sub 2}SO{sub 4} solutions at its corresponding dew points were investigated by immersion test, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS). The results indicated that mass loss rate of all the tested steels first strongly increased and then decreased as H{sub 2}SO{sub 4} concentration increased, which reached maximum at 30%. Corrosion resistance of 2 steel is the best among all specimens due to its fine and homogeneous morphologies of corrosion products. The electrochemical corrosion properties of new steels in 10 and 30% H{sub 2}SO{sub 4} solutions at its corresponding dew points were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results demonstrated that corrosion resistance of 2 steel is the best among all the experimental samples due to its lowest corrosion current density and highest charge transfer resistance, which is consistent with the results obtained from immersion tests. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Dynamic effects on containment of air-curtain fume hood operated with heat source.

    Science.gov (United States)

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi

    2012-01-01

    This study focused on the leakage characteristics of the air-curtain fume hood that are subject to the influences of sash movement and walk-by motion while a high temperature heat source was operated in the hood. The flow visualization and trace gas test method were used to investigate the performance of the air-curtain fume hood. An electric heater was placed in the hood to simulate the heat source. The temperature of the heat source installed inside the air-curtain fume hood varied between 180°C and 300°C. Trace gas tests following the dynamic test methods of EN-14175 protocol were employed to measure the spillages of sulfur hexafluoride gas that were released in the hood. When subject to the influence of sash movement at a heat source temperature lower than 260°C, the leakage level was high at the suction velocity V(s) 10 m/sec. When subject to the influence of people walk-by, the leakage level was relatively low at the suction velocity larger than 8 m/sec at sash height H = 50 cm. The height of the sash opening was a crucial parameter for the containment of the air-curtain fume hood. At the sash opening lower than about 25 cm, suction velocity less than or equal to 6 m/sec was enough to make the sulfur hexafluoride leakage less than the threshold value, 0.65 ppm, suggested by the BG Chemie. The air-curtain fume hood presented a great performance to resist the effect of drafts even though there was a high temperature heat source working in the hood.

  8. Leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate as oxidant

    Institute of Scientific and Technical Information of China (English)

    刘志雄; 尹周澜; 陈义光; 熊利芝

    2015-01-01

    The leaching kinetics of molybdenum from Ni-Mo ore in sulfuric acid solution with sodium peroxodisulfate was studied. The effects including leaching temperature, reaction time, particle size, stirring speed, and concentrations of sulfuric acid and sodium peroxodisulfate were investigated. The leaching process of molybdenum from Ni-Mo ore is controlled by the chemical reaction through the solid layer across the unreacted shrinking core. The apparent activation energy of the leaching of molybdenum is calculated to be 41.0 kJ/mol and the leaching kinetics equation of molybdenum from Ni-Mo ore is expressed as 1−(1−a)1/3=3405.7exp[−41030.0/(RT)]t.

  9. Optimum ratio to lysine of threonine, tryptophan, and sulfur amino acids for finishing swine.

    Science.gov (United States)

    Hahn, J D; Baker, D H

    1995-02-01

    Forty-eight crossbred (PIC line 26 x Camborough 15) pigs were used in two finishing trials to compare the ideal ratios of threonine (Thr), tryptophan (Trp), and sulfur amino acids (SAA) to lysine (Lys) determined for young pigs to a proposed ratio of these amino acids for finishing pigs. Trial 1 involved 20 barrows and 20 gilts that were self-fed in sex groups of two. Trial 2 was a Latin square design that used four barrows and four gilts that were individually fed in metabolism cages. Separate diets were used for the early (EF = 56 to 90 kg) and late (LF = 90 to 112 kg) finishing periods. Diets were formulated from a corn-soybean meal mixture and contained 11% CP and .55% digestible lysine for EF pigs and 10% CP and .50% digestible lysine for LF pigs. Negative-control diets in both the EF and LF periods were designed to be slightly deficient in lysine and to contain digestible Thr (65%), Trp (18%), and SAA (60%) at the ideal ratio to digestible Lys determined for 10- to 20-kg pigs. The experimental diet in both the EF and LF periods was formulated to contain digestible Thr (70%), Trp (20%), and SAA (65%) at the proposed ideal ratio to digestible Lys for finishing pigs. In Trial 1, increased ratios of Thr, Trp, and SAA improved gain:feed ratio, whole-body and carcass protein concentration, and whole-body and carcass protein accretion. In Trial 2, LF pigs responded to the increased ratios of Thr, Trp, and SAA with decreased urinary nitrogen excretion and increased N retention.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Heterogeneous uptake of ammonia and dimethylamine into sulfuric and oxalic acid particles

    Science.gov (United States)

    Sauerwein, Meike; Keung Chan, Chak

    2017-05-01

    Heterogeneous uptake is one of the major mechanisms governing the amounts of short-chain alkylamines and ammonia (NH3) in atmospheric particles. Molar ratios of aminium to ammonium ions detected in ambient aerosols often exceed typical gas phase ratios. The present study investigated the simultaneous uptake of dimethylamine (DMA) and NH3 into sulfuric and oxalic acid particles at gaseous DMA / NH3 molar ratios of 0.1 and 0.5 at 10, 50 and 70 % relative humidity (RH). Single-gas uptake and co-uptake were conducted under identical conditions and compared. Results show that the particulate dimethyl-aminium/ammonium molar ratios (DMAH / NH4) changed substantially during the uptake process, which was severely influenced by the extent of neutralisation and the particle phase state. In general, DMA uptake and NH3 uptake into concentrated H2SO4 droplets were initially similarly efficient, yielding DMAH / NH4 ratios that were similar to DMA / NH3 ratios. As the co-uptake continued, the DMAH / NH4 gradually dropped due to a preferential uptake of NH3 into partially neutralised acidic droplets. At 50 % RH, once the sulfate droplets were neutralised, the stronger base DMA displaced some of the ammonium absorbed earlier, leading to DMAH / NH4 ratios up to four times higher than the corresponding gas phase ratios. However, at 10 % RH, crystallisation of partially neutralised sulfate particles prevented further DMA uptake, while NH3 uptake continued and displaced DMAH+, forming almost pure ammonium sulfate. Displacement of DMAH+ by NH3 has also been observed in neutralised, solid oxalate particles. The results can explain why DMAH / NH4 ratios in ambient liquid aerosols can be larger than DMA / NH3, despite an excess of NH3 in the gas phase. An uptake of DMA to aerosols consisting of crystalline ammonium salts, however, is unlikely, even at comparable DMA and NH3 gas phase concentrations.

  11. Problems Encountered and Countermeasure Adopted During Processing of Shengli High-sulfur and High-acidity Crude

    Institute of Scientific and Technical Information of China (English)

    Hu Zhenghai

    2007-01-01

    The centralized processing of high-sulfur and high-acidity crude has contributed to improvement of the overall economic benefits of the oil refining enterprise,but has also resulted in crude emulsification,severe corrosion of process units and environmental protection issues.The long-cycle,safe and smooth operation of process units were guaranteed after selection of optimal processing routes and adoption of a series of technical measures.

  12. Effect of plasticizer and fumed silica on ionic conductivity behaviour of proton conducting polymer electrolytes containing HPF6

    Indian Academy of Sciences (India)

    Jitender Paul Sharma; S S Sekhon

    2013-08-01

    The effect of addition of propylene carbonate (PC) and nano-sized fumed silica on the ionic conductivity behaviour of proton conducting polymer electrolytes containing different concentrations of hexafluorophosphoric acid (HPF6) in polyethylene oxide (PEO) has been studied. The addition of PC results in an increase in ionic conductivity, whereas the addition of nano-sized fumed silica improves mechanical strength of electrolytes along with a small increase in ionic conductivity. It was observed that the simultaneous addition of PC and fumed silica results in electrolytes with optimum value of ionic conductivity and other properties.

  13. Emissions of sulfur-containing odorants, ammonia, and methane from pig slurry: effects of dietary methionine and benzoic acid.

    Science.gov (United States)

    Eriksen, Jørgen; Adamsen, Anders Peter S; Nørgaard, Jan V; Poulsen, Hanne D; Jensen, Bent Borg; Petersen, Søren O

    2010-01-01

    Supplementation of benzoic acid to pig diets reduces the pH of urine and may thereby affect emissions of ammonia and other gases from slurry, including sulfur-containing compounds that are expected to play a role in odor emission. Over a period of 112 d, we investigated hydrogen sulfide (H(2)S), methanethiol (MT), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), and dimethyl trisulfide (DMTS), as well as ammonia and methane emissions from stored pig slurry. The slurry was derived from a feeding experiment with four pig diets in a factorial design with 2% (w/w) benzoic acid and 1% (w/w) methionine supplementation as treatments. Benzoic acid reduced slurry pH by 1 to 1.5 units and ammonia emissions by 60 to 70% for up to 2 mo of storage, and a considerable, but transitory reduction of methane emissions was also observed after 4 to 5 wk. All five volatile sulfur (S) compounds were identified in gas emitted from the slurry of the control treatment, which came from pigs fed according to Danish recommendations for amino acids and minerals. The emission patterns of volatile S compounds suggested an intense cycling between pools of organic S in the slurries, with urinary sulfate as the main source. Diet supplementation with methionine significantly increased all S emissions. Diet supplementation with benzoic acid reduced emissions of H(2)S and DMTS compared with the control slurry and moderately increased the concentrations of MT. Sulfur gas emissions were influenced by a strong interaction between methionine and benzoic acid treatments, which caused a significant increase in emissions of especially MT, but also of DMDS. In conclusion, addition of 2% benzoic acid to pig diets effectively reduced ammonia volatilization, but interactions with dietary S may increase odor problems.

  14. Intrauterine growth restriction leads to changes in sulfur amino acid metabolism, but not global DNA methylation, in Yucatan miniature piglets.

    Science.gov (United States)

    MacKay, Dylan S; Brophy, Julie D; McBreairty, Laura E; McGowan, Ross A; Bertolo, Robert F

    2012-09-01

    Intrauterine growth restriction (IUGR), in both animals and humans, has been linked to metabolic syndrome later in life. There has been recent evidence that perturbations in sulfur amino acid metabolism may be involved in this early programming phenomenon. Methionine is the precursor for cellular methylation reactions and for the synthesis of cysteine. It has been suggested that the mechanism behind the "fetal origins" of adult diseases may be epigenetic, involving DNA methylation. Because we have recently demonstrated the fetal origins phenomenon in Yucatan miniature swine, we hypothesized that sulfur amino acid metabolism is altered in IUGR piglets. In this study, metabolites and the activities of sulfur amino acid cycle enzymes were analyzed in liver samples of 3- to 5-day-old runt (IUGR: 0.85±0.13 kg) and large (1.36±0.21 kg) Yucatan miniature pig littermates (n=6 pairs). The IUGR piglets had significantly lower specific and total activities of betaine-homocysteine methyltransferase (BHMT) and cystathionine γ-lyase (CGL) than larger littermates (PYucatan miniature piglets impairs their remethylation capacity as well as their ability to remove cystathionine and synthesize cysteine and taurine, which could have important implications on long-term health outcomes of IUGR neonates.

  15. Structures, Hydration, and Electrical Mobilities of Bisulfate Ion-Sulfuric Acid-Ammonia/Dimethylamine Clusters: A Computational Study.

    Science.gov (United States)

    Tsona, Narcisse T; Henschel, Henning; Bork, Nicolai; Loukonen, Ville; Vehkamäki, Hanna

    2015-09-17

    Despite the well-established role of small molecular clusters in the very first steps of atmospheric particle formation, their thermochemical data are still not completely available due to limitation of the experimental techniques to treat such small clusters. We have investigated the structures and the thermochemistry of stepwise hydration of clusters containing one bisulfate ion, sulfuric acid, base (ammonia or dimethylamine), and water molecules using quantum chemical methods. We found that water facilitates proton transfer from sulfuric acid or the bisulfate ion to the base or water molecules, and depending on the hydration level, the sulfate ion was formed in most of the base-containing clusters. The calculated hydration energies indicate that water binds more strongly to ammonia-containing clusters than to dimethylamine-containing and base-free clusters, which results in a wider hydrate distribution for ammonia-containing clusters. The electrical mobilities of all clusters were calculated using a particle dynamics model. The results indicate that the effect of humidity is negligible on the electrical mobilities of molecular clusters formed in the very first steps of atmospheric particle formation. The combination of the results of this study with those previously published on the hydration of neutral clusters by our group provides a comprehensive set of thermochemical data on neutral and negatively charged clusters containing sulfuric acid, ammonia, or dimethylamine.

  16. A statistical approach to the experimental design of the sulfuric acid leaching of gold-copper ore

    Directory of Open Access Journals (Sweden)

    Mendes F.D.

    2003-01-01

    Full Text Available The high grade of copper in the Igarapé Bahia (Brazil gold-copper ore prevents the direct application of the classic cyanidation process. Copper oxides and sulfides react with cyanides in solution, causing a high consumption of leach reagent and thereby raising processing costs and decreasing recovery of gold. Studies have showm that a feasible route for this ore would be a pretreatment for copper minerals removal prior to the cyanidation stage. The goal of this experimental work was to study the experimental conditions required for copper removal from Igarapé Bahia gold-copper ore by sulfuric acid leaching by applying a statistical approach to the experimental design. By using the Plackett Burman method, it was possible to select the variables that had the largest influence on the percentage of copper extracted at the sulfuric acid leaching stage. These were temperature of leach solution, stirring speed, concentration of sulfuric acid in the leach solution and particle size of the ore. The influence of the individual effects of these variables and their interactions on the experimental response were analyzed by applying the replicated full factorial design method. Finally, the selected variables were optimized by the ascending path statistical method, which determined the best experimental conditions for leaching to achieve the highest percentage of copper extracted. Using the optimized conditions, the best leaching results showed a copper extraction of 75.5%.

  17. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role?

    Science.gov (United States)

    Sanchez-Arenillas, M.; Galvez-Martinez, S.; Mateo-Marti, E.

    2017-08-01

    This paper describes the first successful adsorption of the cysteine, cystine, methionine and alanine amino acids on the pyrite (100) surface under ultra-high vacuum conditions with crucial chemical adsorption parameters driving the process. We have demonstrated by X-ray photoemission spectroscopy (XPS) that the surface pretreatment annealing process on pyrite surfaces is a critical parameter driving surface reactivity. The presence of enriched monosulfide species on the pyrite (100) surface favours the amino acid NH2 chemical form, whereas a longer annealing surface pretreatment of over 3 h repairs the sulfur vacancies in the pyrite, enriching disulfide species on the pyrite surface, which promotes NH3+ adsorption due to the sulfur vacancies in the pyrite being replaced by sulfur atom dimers (S22-) on the surface. Furthermore, even if the surface chemistry (monosulfide or disulfide species enrichment) is the main factor promoting a partial conversion from NH2 to NH3+ species, the unique chemical structure of each amino acid provides a particular fingerprint in the process.

  18. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover.

    Science.gov (United States)

    Baral, Nawa Raj; Shah, Ajay

    2017-05-01

    Pretreatment is required to destroy recalcitrant structure of lignocelluloses and then transform into fermentable sugars. This study assessed techno-economics of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments, and identified bottlenecks and operational targets for process improvement. Techno-economic models of these pretreatment processes for a cellulosic biorefinery of 113.5 million liters butanol per year excluding fermentation and wastewater treatment sections were developed using a modelling software-SuperPro Designer. Experimental data of the selected pretreatment processes based on corn stover were gathered from recent publications, and used for this analysis. Estimated sugar production costs ($/kg) via steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological methods were 0.43, 0.42, 0.65 and 1.41, respectively. The results suggest steam explosion and sulfuric acid pretreatment methods might be good alternatives at present state of technology and other pretreatment methods require research and development efforts to be competitive with these pretreatment methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Design for a Miniature Portable Fume Hood.

    Science.gov (United States)

    Bailey, Ronald A.; Wait, Samuel C., Jr.

    1999-01-01

    Describes the design of undergraduate chemical laboratory fume hoods. Proves that folding the sides and top permit the hood and its duct hose to be stored in a standard 18-inch-wide laboratory cabinet. (WRM)

  20. A new method for the mononitration of phenol derivatives by poly(4-vinylpyridinium nitrate) and silica sulfuric acid under mild conditions

    Institute of Scientific and Technical Information of China (English)

    Hamid Goudarziafshar

    2012-01-01

    This procedure works efficiently for high selective mono nitration of phenol and substituted phenol to corresponding nitro compounds in moderate to high yield using poly(4-vinylpyridinium nitrate) and silica sulfuric acid in dichloromethane at room temperature.

  1. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    Directory of Open Access Journals (Sweden)

    S. Schobesberger

    2014-05-01

    Full Text Available The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3 and sulfuric acid (H2SO4. Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 2SO4] from 3.3 × 106 to 1.4 × 109 cm−3, and a temperature range from −25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4 only form at [NH3] / [H2SO4]3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm / Δn, where n is in the range 4–18 (negatively charged clusters or 1–17 (positively charged clusters. For negatively charged clusters, Δm / Δn saturated between 1 and 1.4 for [NH3] / [H2SO4]>10. Positively charged clusters grew on average by Δm / Δn = 1.05 and

  2. Evaporation of water and uptake of HCl and HBr through hexanol films at the surface of supercooled sulfuric acid.

    Science.gov (United States)

    Glass, Samuel V; Park, Seong-Chan; Nathanson, Gilbert M

    2006-06-22

    Vacuum evaporation and molecular beam scattering experiments have been used to monitor the loss of water and dissolution of HCl and HBr in deuterated sulfuric acid at 213 K containing 0 to 100 mM hexanol. The addition of 1-hexanol to the acid creates a surface film of hexyl species. This film becomes more compact with decreasing acidity, ranging from approximately 62% to approximately 68% of maximum packing on 68 to 56 wt % D(2)SO(4), respectively. D(2)O evaporation from 68 wt % acid remains unaltered by the hexyl film, where it is most porous, but is impeded by approximately 20% from 56 and 60 wt % acid. H --> D exchange experiments further indicate that the hexyl film on 68 wt % acid enhances conversion of HCl and HBr into DCl and DBr, which is interpreted as an increase in HCl and HBr entry into the bulk acid. For this permeable hexyl film, the hydroxyl groups of surface hexanol molecules may assist uptake by providing extra sites for HCl and HBr hydrogen bonding and dissociation. In contrast, HCl --> DCl exchange in 60 wt % D(2)SO(4) at first rises with hexyl surface coverage but then drops back to the bare acid value as the hexyl species pack more tightly. HCl entry is actually diminished by the hexyl film on 56 wt % acid, where the film is most compact. These experiments reveal a transition from a porous hexanol film on 68 wt % sulfuric acid that enhances HCl and HBr uptake to one on 56 wt % acid that slightly impedes HCl and D(2)O transport.

  3. Influence of Silica Fume on Normal Concrete

    Directory of Open Access Journals (Sweden)

    Debabrata Pradhan

    2013-09-01

    Full Text Available The incorporation of silica fume into the normal concrete is a routine one in the present days to produce the tailor made high strength and high performance concrete. The design parameters are increasing with the incorporation of silica fume in conventional concrete and the mix proportioning is becoming complex. The main objective of this paper has been made to investigate the different mechanical properties like compressive strength, compacting factor, slump of concrete incorporating silica fume. In this present paper 5 (five mix of concrete incorporating silica fume are cast to perform experiments. These experiments were carried out by replacing cement with different percentages of silica fume at a single constant water-cementitious materials ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15% and 20% for water-cementitious materials (w/cm ratio for 0.40. For all mixes compressive strengths were determined at 24 hours, 7 and 28 days for 100 mm and 150 mm cubes. Other properties like compacting factor and slump were also determined for five mixes of concrete.

  4. WOOD COLOR CHANGES BY AMMONIA FUMING

    Directory of Open Access Journals (Sweden)

    Josip Miklečić,

    2012-06-01

    Full Text Available This paper studies the influence of ammonia gas on wood color changes in response to an increasing demand for dark colored wood specimens. The darker wood color in ammonia fuming is accomplished through chemical reactions between ammonia gas and wood compounds. We exposed oak, maple, spruce, and larch wood samples to ammonia gas for 16 days. During fuming, the color changes were studied using CIE L*a*b* parameters. After fuming, the changes in extractives content, tannin, and nitrogen content were analyzed. The chemical changes of wood and residues of wood extractives after fuming were analyzed by FTIR spectroscopy. Oak wood reacted intensively with ammonia gas in a very short time, and the darkening was prominent for all the investigated wood species. It was established that tannin had no major influence on color changes of maple and larch wood in the ammonia-fuming process. The FTIR spectra of fumed wood indicated involvement of carbonyl groups, and the FTIR spectra of wood extractives indicated involvement of carbonyl, aromatic, and alcohol groups in reaction with ammonia gas.

  5. Uranium, Cesium, and Mercury Leaching and Recovery from Cemented Radioactive Wastes in Sulfuric Acid and Iodide Media

    Directory of Open Access Journals (Sweden)

    Nicolas Reynier

    2015-11-01

    Full Text Available The Canadian Nuclear Laboratories (CNL is developing a long-term management strategy for its existing inventory of solid radioactive cemented wastes, which contain uranium, mercury, fission products, and a number of minor elements. The composition of the cemented radioactive waste poses significant impediments to the extraction and recovery of uranium using conventional technology. The goal of this research was to develop an innovative method for uranium, mercury and cesium recovery from surrogate radioactive cemented waste (SRCW. Leaching using sulfuric acid and saline media significantly improves the solubilization of the key elements from the SRCW. Increasing the NaCl concentration from 0.5 to 4 M increases the mercury solubilization from 82% to 96%. The sodium chloride forms a soluble mercury complex when mercury is present as HgO or metallic mercury but not with HgS that is found in 60 °C cured SRCW. Several leaching experiments were done using a sulfuric acid solution with KI to leach SRCW cured at 60 °C and/or aged for 30 months. Solubilization yields are above 97% for Cs and 98% for U and Hg. Leaching using sulfuric acid and KI improves the solubilization of Hg by oxidation of Hg0, as well as HgS, and form a mercury tetraiodide complex. Hg and Cs were selectively removed from the leachate prior to uranium recovery. It was found that U recovery from sulfuric leachate in iodide media using the resin Lewatit TP260 is very efficient. Considering these results, a process including effluent recirculation was applied. Improvements of solubilization due to the recycling of chemical reagents were observed during effluent recirculation.

  6. IMS-MS and IMS-IMS investigation of the structure and stability of dimethylamine-sulfuric acid nanoclusters.

    Science.gov (United States)

    Ouyang, Hui; He, Siqin; Larriba-Andaluz, Carlos; Hogan, Christopher J

    2015-03-12

    Recent studies of new particle formation events in the atmosphere suggest that nanoclusters (i.e, the species formed during the early stages of particle growth which are composed of 10(1)-10(3) molecules) may consist of amines and sulfuric acid. The physicochemical properties of sub-10 nm amine-sulfuric acid clusters are hence of interest. In this work, we measure the density, thermostability, and extent of water uptake of dimethylamine-sulfuric (DMAS) nanoclusters in the gas phase, produced via positive electrospray ionization. Specifically, we employ three systems to investigate DMAS properties: ion mobility spectrometry (IMS, with a parallel-plate differential mobility analyzer) is coupled with mass spectrometry to measure masses and collision cross sections for dimethylamine to sulfuric acid originally present in the electrospray solution. IMS-IMS thermostability studies reveal that partial pressures of DMAS nanoclusters are dependent upon the electrospray solution concentration ratio, R = [H2SO4]/[(CH3)2NH]. Extrapolating measurements, we estimate that dry DMAS nanoclusters have surface vapor pressures of order 10(-4) Pa near 300 K, with the surface vapor pressure increasing with increasing values of R through most of the probed concentration range. This suggests that nanocluster surface vapor pressures are substantially enhanced by capillarity effects (the Kelvin effect). Meanwhile, IMS-IMS water uptake measurements show clearly that DMAS nanoclusters uptake water at relative humidities beyond 10% near 300 K, and that larger clusters uptake water to a larger extent. In total, our results suggest that dry DMAS nanoclusters (in the 5-8.5 nm size range in diameter) would not be stable under ambient conditions; however, DMAS nanoclusters would likely be hydrated in the ambient (in some cases above 20% water by mass), which could serve to reduce surface vapor pressures and stabilize them from dissociation.

  7. Effect of pyridoxine treatment of a homocystinuric patient on the urinary excretion of some sulfur-containing amino acids

    Directory of Open Access Journals (Sweden)

    Kodama,H.

    1974-08-01

    Full Text Available The effect of pyridoxine treatment of a homocystinuric patient on the urinary excretion of some sulfur-containing amino acids was studied and the following results were obtained. As a result of pyridoxine treatment, urinary homocystine decreased to a fairly great extent, and its unusual metabolites S.(3-hydroxy-3-carboxyn- propylthio homocysteine (HCPTHC and S-C8-carboxyethylthio homocysteine (j3-CETHC increased to some extent. But its oxidation product (homocysteic acid showed a tendency to decrease slightly. Urinary methionine and cystine increased to some extent, but cysteinehomocysteine mixed disulfide showed no remarkable change.

  8. Energy concentration and positional stability of sonoluminescent bubbles in sulfuric acid for different static pressures.

    Science.gov (United States)

    Rosselló, Juan Manuel; Dellavale, Damián; Bonetto, Fabián José

    2013-09-01

    In this study we report several experimental and numerical results on the influence of static pressure (P_{0}) over the main parameters in single bubble sonoluminescence (SBSL), using a sulfuric acid aqueous solution (SA) with low concentrations of argon gas dissolved. Bifrequency driving was used in the experiments to enhance spatial stability of the bubbles. The experimental results were compared with simulations provided by a numerical code that models the radial dynamics of the bubbles. The results showed that an increase on the static pressure of the system shifts the Bjerknes instability threshold, allowing the bubble to access higher acoustic pressures (P_{Ac}^{}). Furthermore, a decrease in the measured ambient radius R_{0} and the calculated relative gas concentration c_{∞}/c_{0} were observed. A notorious increment in the bubble collapse violence and energy focusing for P_{0} above 1 bar was achieved. These were mainly indicated by the growth of the bubble expansion ratio (R_{max}/R_{0}), the bubble mechanical energy density, and the maximum bubble wall velocity dR/dt. In agreement with the previous statement, the maximum temperature during the bubble collapse predicted by the model is augmented as well. The use of different harmonics in the ultrasound pressure field regarding energy focusing is also discussed. Finally, we analyzed the stability regions of the R_{0}-P_{Ac}^{} parameter space via numerical predictions for P_{0} above the measured, identifying the shape instabilities as the main limiting agent to obtain further energy concentration in SA systems at high static pressures.

  9. Fatigue Crack Nucleation Studies on Sulfuric Acid Anodized 7075-T73 Aluminum

    Science.gov (United States)

    Savas, Terence P.; Earthman, James C.

    2014-06-01

    The influence of a sulfuric acid anodic coating process on the fatigue crack nucleation behavior of 7075-T73 aluminum alloy was investigated. Silicone surface replication in combination with carbon sputter coating and scanning electron microscopy (SEM) allowed for in situ monitoring of the number of cycles for crack nucleation. A single edge circular notch (SECN) coupon was designed for the present study to localize fatigue damage thus enhancing fatigue crack detection and capture the effects of multiaxial stress conditions indicative of a majority engineering applications. Linear elastic finite element modeling of the SECN coupon was performed to quantify the von Mises equivalent stress distribution and the stress concentration factor of the notched region. The experimental results indicate that the presence of localized pitting corrosion initiated during the anodic coating pretreatment process had an adverse effect on fatigue performance. Specifically, multiple crack nucleation sites were evident as opposed to a single crack origin for the untreated specimens. Post-cycling SEM surface examinations displayed networks of micro-cracks in the anodic coating emanating from the pits although these were not found to be fatigue crack origin sites during post SEM fractographic exams. Thus, the stress concentration effect of the corrosion pits was found to be predominant. The total cycles to failure on average was reduced by approximately 60% for the anodic coated versus untreated specimens. A strategy is also discussed on how to mitigate accelerated crack nucleation by controlled surface pretreatment and use of a chromated chemical conversion coating in lieu of an anodic coating for selective applications.

  10. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seong-Nam, E-mail: namsn76@gmail.com [Engineering Research Institute, Seoul National University, Daehak-dong, Gwanak-gu 151-744 (Korea, Republic of); Jeong, Seongkyeong [Environmental Resource Recirculation Division, National Institute of Environmental Research, Environmental Research Complex, Kyeongseo-dong, Seo-gu, Incheon 404-708 (Korea, Republic of); Lim, Hojoo [Indoor Environment and Noise Division, National Institute of Environmental Research, Environmental Research Complex, Kyeongseo-dong, Seo-gu, Incheon 404-708 (Korea, Republic of)

    2014-01-30

    Highlights: • Asbestos-containing roofing slates (ACS) were thermochemically treated. • 5 N H{sub 2}SO{sub 4} with 100 °C heating for 10–24 h showed complete disappearance. • Asbestiform of ACS was changed to non-asbestiform after treatment. • Favorable destruction was occurred at the Mg(OH){sub 2} layer rather than SiO{sub 2} sheet. • Equivalent treatability of waste acid brightened the feasibility of this approach. -- Abstract: In this study, we have investigated the feasibility of using a thermochemical technique on ∼17% chrysotile-containing roofing sheet or slate (ACS), in which 5 N sulfuric acid-digestive destruction was incorporated with 10–24-h heating at 100 °C. The X-ray diffraction (XRD) and the polarized light microscopy (PLM) results have clearly shown that raw chrysotile asbestos was converted to non-asbestiform material with no crystallinity by the low temperature thermochemical treatment. As an alternative to the use of pricey sulfuric acid, waste sulfuric acid discharged from a semiconductor manufacturing process was reused for the asbestos-fracturing purpose, and it was found that similar removals could be obtained under the same experimental conditions, promising the practical applicability of thermochemical treatment of ACWs. A thermodynamic understanding based on the extraction rates of magnesium and silica from a chrysotile structure has revealed that the destruction of chrysotile by acid-digestion is greatly influenced by the reaction temperatures, showing a 80.3-fold increase in the reaction rate by raising the temperature by 30–100 °C. The overall destruction is dependent upon the breaking-up of the silicon-oxide layer – a rate-limiting step. This study is meaningful in showing that the low temperature thermochemical treatment is feasible as an ACW-treatment method.

  11. Determination of sulfur and nitrogen compounds during the processing of dry fermented sausages and their relation to amino acid generation.

    Science.gov (United States)

    Corral, Sara; Leitner, Erich; Siegmund, Barbara; Flores, Mónica

    2016-01-01

    The identification of odor-active sulfur and nitrogen compounds formed during the processing of dry fermented sausages was the objective of this study. In order to elucidate their possible origin, free amino acids (FAAs) were also determined. The volatile compounds present in the dry sausages were extracted using solvent assisted flavor evaporation (SAFE) and monitored by one and two-dimensional gas chromatography with different detectors: mass spectrometry (MS), nitrogen phosphorous (NPD), flame photometric (FPD) detectors, as well as gas chromatography-olfactometry. A total of seventeen sulfur and nitrogen compounds were identified and quantified. Among them, 2-acetyl-1-pyrroline was the most potent odor active compound, followed by methional, ethylpyrazine and 2,3-dihydrothiophene characterized by toasted, cooked potato, and nutty notes. The degradation of FAAs, generated during processing, was related to the production of aroma compounds, such as methionine forming methional and benzothiazole while ornithine was the precursor compound for 2-acetyl-1-pyrroline and glycine for ethylpyrazine.

  12. Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion.

    Science.gov (United States)

    Oguzie, E E; Li, Y; Wang, F H

    2007-06-01

    The corrosion inhibition of mild steel in sulfuric acid by methionine (MTI) was investigated using electrochemical techniques. The effect of KI additives on corrosion inhibition efficiency was also studied. The results reveal that MTI inhibited the corrosion reaction by adsorption onto the metal/solution interface. Inhibition efficiency increased with MTI concentration and synergistically increased in the presence of KI, with an optimum [KI]/[MTI] ratio of 5/5, due to stabilization of adsorbed MTI cations as revealed by AFM surface morphological images. Potentiodynamic polarization data suggest that the compound functioned via a mixed-inhibition mechanism. This observation was further corroborated by the fit of the experimental adsorption data to the Temkin and Langmuir isotherms. The inhibition mechanism has been discussed vis-à-vis the presence of both nitrogen and sulfur atoms in the MTI molecule.

  13. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests.

    Science.gov (United States)

    Erust, Ceren; Akcil, Ata; Bedelova, Zyuldyz; Anarbekov, Kuanysh; Baikonurova, Aliya; Tuncuk, Aysenur

    2016-03-01

    Catalysts are used extensively in industry to purify and upgrade various feeds and to improve process efficiency. These catalysts lose their activity with time. Spent catalysts from a sulfuric acid plant (main elemental composition: 5.71% V2O5, 1.89% Al2O3, 1.17% Fe2O3 and 61.04% SiO2; and the rest constituting several other oxides in traces/minute quantities) were used as a secondary source for vanadium recovery. Experimental studies were conducted by using three different leaching systems (citric acid with hydrogen peroxide, oxalic acid with hydrogen peroxide and sulfuric acid with hydrogen peroxide). The effects of leaching time, temperature, concentration of reagents and solid/liquid (S/L) ratio were investigated. Under optimum conditions (1:25 S/L ratio, 0.1 M citric acid, 0.1 M hydrogen peroxide, 50°C and 120 min), 95% V was recovered in the presence of hydrogen peroxide in citric acid leaching.

  14. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent.

  15. Uptake and diffusion of short chain alcohols into sulfuric acid and ammonium bisulfate solutions: considering the role of water in secondary organic aerosol formation.

    Science.gov (United States)

    van Loon, L. L.; Minor, R. N.; Allen, H. C.

    2006-12-01

    Secondary organic aerosol formation is of great interest since it may constitute an important fraction of tropospheric aerosols. These aerosols often contain a significant amount of sulfuric acid (40-80 wt%), which can be partially neutralized by ammonia, the most abundant basic species in the atmosphere. We have investigated the uptake of short-chain alcohols (n=1, 4, 6) by sulfuric acid and ammonium bisulfate solutions. First, methanol-sulfuric acid solutions were investigated using Raman spectroscopy. In 70+ wt% solutions of sulfuric acid, the formation of methyl sulfate was observed. In solutions of 70 wt% sulfuric acid or less no reaction was observed. While sulfuric acid is partially neutralized by ammonia, ammonium bisulfate is still quite acidic (pH 2). Studies have shown enhanced oxidation of gas-phase species in the presence of acidic particles such as NH4HSO4,1 suggesting a reaction between the particles and organic species. Solutions of ammonium bisulfate and methanol were investigated, but no methyl sulfate was detected. The surface enhancement of alcohols on sulfuric acid solutions was also investigated using sum frequency generation spectroscopy. From all these experiments we conclude that the formation of organosulfates, and therefore possible aerosol growth, is controlled by the amount of water present in the system. Second, Raman spectroscopy was used to determine the diffusion coefficients of methanol in sulfuric acid solutions. This method allows the diffusion of gas-phase methanol into aqueous solutions to be monitored simply using a Raman probe over the course of several hours. From the time data we are able to extract the diffusion coefficients. We have determined DAB = (1.7 ± 0.2) x 10^{-5} cm2/s for methanol into water and DAB = (2.5 ± 0.5) x 10^{-5} cm2/s for methanol into 96.6 wt% sulfuric acid at 293 K. 1. M. Jang, N. M. Czoschke, A. L. Northcross, Environ. Sci. Technol., 39, 164 (2005).

  16. Properties of silica fume procured from natural diatomite and its usage in the production of vacuum insulation panels

    Directory of Open Access Journals (Sweden)

    V.P. Selyaev

    2013-11-01

    Full Text Available The article shows the results of the research of silica fume particles procured from diatomite from Atemar deposit by means of separating silicic acid from colloidal dissolved state into the sediment. The objective of the work was to define thermal-physical and structural characteristics of the silica fume. The research included IR-spectrometry, granulometry, thermal gravimetric analysis, X-ray structural analysis, optical microscopy, and small angle X-Ray scattering. As a result of the research, the silica fume was defined to predominantly consist of amorphous silicon dioxide and had the developed pore structure of particles. A large number of nanosized particles and pores decreases heat transmission and increases reactive capability, that gives opportunity of using the powder silica fume as an active agent in dry mixes and concrete composites, as a component of sponge-glass, and as a filler material in vacuum insulation panel.

  17. U-Pb dating of speleogenetic dolomite: A new sulfuric acid speleogenesis chronometer

    Directory of Open Access Journals (Sweden)

    Victor Polyak

    2016-05-01

    Full Text Available The 1100-meter Big Room elevation level of Carlsbad Cavern, New Mexico USA, formed 4 Ma by hypogenic sulfuric acid speleogenesis (SAS. The age of the Big Room level of 4.0 ± 0.2 Ma was previously determined by dating alunite, a byproduct of speleogenesis, using the 40Ar/39Ar method. Duplication of these results is possible by radiometric dating of other byproducts interpreted to be speleogenetic (a byproduct of speleogenesis such as calcite and dolomite in certain settings. XRD and TEM analyses of sample 94044, a piece of crust collected within the Big Room level of SAS just below Left Hand Tunnel indicate that this dolomite sample we interpret to be speleogenetic is as well-ordered crystallographically as the Permian bedrock dolomite, possibly reflecting its SAS origin. Three U-Pb analyses were performed on subsamples A1, A2, and A3 of sample 94044, and two, A1 & A2, produced out-of-secular equilibrium results due to the presence of authigenic quartz and/or later re-distribution of uranium in the dolomite crust, which prevented the calculation of an isochron age. Because subsample 94044-A3 exhibited δ234U and 230Th/238U values consistent with secular equilibrium, we were able to generate a 238U/204Pb-206Pb/204Pb model age of 4.1 ± 1.3 Ma on the dolomite crust (94044 that we interpret to be reliable. The 4.1 Ma age of the speleogenetic dolomite crust agrees with the 4 Ma 40Ar/39Ar age for the timing of speleogenesis of the Big Room level. While 40Ar/39Ar-dating of speleogenetic alunite- and jarosite-group minerals remains the primary way to determine absolute timing of hypogenic SAS, here we demonstrate that U-Pb dating of speleogenetic dolomite can be used to compliment or independently measure the timing of SAS. This method of dating SAS could be applicable in caves where the more soluble SAS-indicator minerals such as gypsum, alunite, and jarosite have been removed.

  18. Sulfur Fractions in Typic Udalfs in Forest Ecosystem in Mt. Lushan as Affected by Acid Deposition.%酸沉降影响下庐山森林生态系统土壤硫形态分布研究

    Institute of Scientific and Technical Information of China (English)

    石盛莉; 潘根兴; 王连峰; 张乐华; 黄明星

    2001-01-01

    Acid deposition has been a severe environmental pollution problem in Mt. Lushan since early 1980, Soil acidification trends have been resultantly obvious. Pedons of the Typic Udalfs both under deciduous and coniferous forest with and without root-growing effects were sampled. Soil sulfur was fractionated by selective extraction methods and the sulfur in solutions was determined by BaSO4 turbidimetry. The results showed the total S in surface layers amounted to 400-800mg*kg-1, indicating a high net accumulation of S under impacts of the acid deposition. The sulfur in the soils were predominated by adsorbed sulfur(160.0±72.1mg*kg-1) and organic sulfur(123.3±142.9 mg*kg-1), with the former accumulating to deep profile and the latter in surface 0-30 cm depth. Under deciduous soil sulfur accumulated to deep profile. Adsorbed sulfur under coniferous was higher (152.72 mg*kg-1) than which under deciduous (121.85 mg*kg-1), while the latter contained more water sulfur, indicating sulfur under deciduous inclined to move. Soils with root-growing effects contained more total sulfur (351.15 mg*kg-1) than soil without root-growing effects (300.50 mg*kg-1), high organic sulfur accumulated in soils in root-growing depth, but no significant profile difference under deciduous. Therefore, the sulfur transform was involved in accumulation of sulfur affected by acid deposition.

  19. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2007-01-01

    Full Text Available The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.

  20. Asphalt fume dermal carcinogenicity potential: I. dermal carcinogenicity evaluation of asphalt (bitumen) fume condensates.

    Science.gov (United States)

    Clark, Charles R; Burnett, Donald M; Parker, Craig M; Arp, Earl W; Swanson, Mark S; Minsavage, Gary D; Kriech, Anthony J; Osborn, Linda V; Freeman, James J; Barter, Robert A; Newton, Paul E; Beazley, Shelley L; Stewart, Christopher W

    2011-10-01

    Asphalt (bitumen) fume condensates collected from the headspace above paving and Type III built up roofing asphalt (BURA) tanks were evaluated in two-year dermal carcinogenicity assays in male C3H/HeNCrl mice. A third sample was generated from the BURA using a NIOSH laboratory generation method. Similar to earlier NIOSH studies, the BURA fume condensates were applied dermally in mineral oil twice per week; the paving sample was applied 7 days/week for a total weekly dose of 50 mg/wk in both studies. A single benign papilloma was observed in a group of 80 mice exposed to paving fume condensate at the end of the two-year study and only mild skin irritation was observed. The lab generated BURA fume condensate resulted in statistically significant (P<0.0001) increases in squamous cell carcinomas (35 animals or 55% of animals at risk). The field-matched BURA condensate showed a weaker but significant (P=0.0063) increase (8 carcinomas or 13% of animals) and a longer average latency (90 weeks vs. 76 for the lab fume). Significant irritation was observed in both BURA condensates. It is concluded that the paving fume condensate was not carcinogenic under the test conditions and that the field-matched BURA fume condensate produced a weak tumor response compared to the lab generated sample.

  1. Synthesis of Substituted Thioureas and Their Sulfur Heterocyclic Systems of p-Amino Salicylic Acid as Antimycobacterial Agents

    Directory of Open Access Journals (Sweden)

    Mohammed Saleh I. T. Makki

    2013-01-01

    Full Text Available A series of new N,N′-substituted thioureas (2, 6, and 8 and their sulfur heterocycles as thiobarbituric acids (3, 4, and 7, 2-thioxothiazoliodin-4-one (10, thiazolidin-4-one (11, 1,2,4-triazol-5-thione (14, and 1,3,4-thiadiazole (15 of p-Amino salicylic acid (PAS have been synthesized from treatment with dithiocarbazinate (1, 5 and 12 followed by heterocyclization with dimethyl malonate, chloroacetic acid, and/or trifluoroacetic anhydride. The structures of the newly synthesized compounds were substantiated with IR, H1, and C13 NMR spectral data and elementary microanalyses. The in vitro antitubercular activity of synthesized compounds against M. tuberculosis strain H37Rv showed moderate-to-good activity.

  2. Preparing ultrafine PbS powders from the scrap lead-acid battery by sulfurization and inert gas condensation

    Science.gov (United States)

    Xia, Huipeng; Zhan, Lu; Xie, Bing

    2017-02-01

    A novel method for preparing ultrafine PbS powders involving sulfurization combined with inert gas condensation is developed in this paper, which is applicable to recycle Pb from lead paste of spent lead-acid batteries. Initially, the effects of the evaporation and condensation temperature, the inert gas pressure, the condensation distance and substrate on the morphology of as-obtained PbS ultrafine particles are intensively investigated using sulfur powders and lead particles as reagents. Highly dispersed and homogeneous PbS nanoparticles can be prepared under the optimized conditions which are 1223 K heating temperature, 573 K condensation temperature, 100 Pa inert gas pressure and 60 cm condensation distance. Furthermore, this method is successfully applied to recycle Pb from the lead paste of spent lead acid battery to prepare PbS ultrafine powders. This work does not only provide the theoretical fundamental for PbS preparation, but also provides a novel and efficient method for recycling spent lead-acid battery with high added-value products.

  3. Influence of ascorbic acid, sulfur dioxide and glutathione on oxidation product formation in wine-like systems

    Directory of Open Access Journals (Sweden)

    Wegmann-Herr Pascal

    2015-01-01

    Full Text Available The impact of the addition of ascorbic acid, sulfur dioxide and glutathione on oxidation product formation under accelerated oxidative conditions was evaluated in model wines. The effects of these antioxidants have been compared in aqueous ethanol solutions containing (+-catechin and metal ions at pH 3.2 by monitoring O2 consumption, color evolution by CIELab, as well as (+-catechin and glutathione decrease by LC-DAD/FD. The analysis of oxidation products formation was focused on the determination of yellowish colored xanthylium compounds by LC-ESI-ToFMS and acetaldehyde by HS-GC-FID. The results could show, that under some conditions glutathione could not inhibit carboxymethine-briged (+-catechine dimer formation and subsequent xanthylium cation pigment generation, compared to ascorbic acid or sulfur dioxide addition providing a good protec- tion against oxidative color changes. In systems containing 0.08–0.32 mmol/L glutathion without any further addition of SO2 or ascorbic acid, increasing acetaldehyde concentrations could be observed. These results demonstrate clearly the need for further research to highlight the reactions of glutathione.

  4. Catalytic Mechanism and Efficiency of Methane Oxidation by Hg(II) in Sulfuric Acid and Comparison to Radical Initiated Conditions

    OpenAIRE

    Fuller, Jack T.; Butler, Steven; Devarajan, Deepa; Jacobs, Austin; Hashiguchi, Brian G.; Konnick, Michael M.; Goddard, William A.; Gonzales, Jason M.; Periana, Roy A.; Ess, Daniel H.

    2016-01-01

    Methane conversion to methyl bisulfate by Hg^(II)(SO_4) in sulfuric acid is an example of fast and selective alkane oxidation catalysis. Dichotomous mechanisms involving C–H activation and electron transfer have been proposed based on experiments. Radical oxidation pathways have also been proposed for some reaction conditions. Hg^(II) is also of significant interest because as a d^(10) transition metal it is similar to d^(10) main-group metals that also oxidize alkanes. Density-functional cal...

  5. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate)

    OpenAIRE

    Paulina Arellanes-Lozada; Octavio Olivares-Xometl; Diego Guzmán-Lucero; Natalya V. Likhanova; Marco A. Domínguez-Aguilar; Irina V. Lijanova; Elsa Arce-Estrada

    2014-01-01

    Compounds of poly(ionic liquid)s (PILs), derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium) (PImC12), poly(1-vinyl-3-octylimidazolium) (PImC8) and poly(1-vinyl-3-butylimidazolium) (PImC4) hexafluorophosphate) were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1–1 M H2SO4) by weight loss tests, polarization resistance meas...

  6. The effect of H2SO4 - amine clustering on chemical ionization mass spectrometry (CIMS) measurements of gas-phase sulfuric acid

    DEFF Research Database (Denmark)

    Kurten, T.; Petaja, T.; Smith, J.;

    2011-01-01

    by the CIMS instrument, though the most reliable computational methods employed predict this fraction to be small; on the order of ten percent or less. Third, the amine molecules will evaporate practically immediately after charging, thus evading detection. These effects may need to be taken into account......The state-of-the art method for measuring atmospheric gas-phase sulfuric acid is chemical ionization mass spectrometry (CIMS) based on nitrate reagent ions. We have assessed the possible effect of the sulfuric acid molecules clustering with base molecules on CIMS measurements using computational...... chemistry. From the computational data, three conclusions can be drawn. First, a significant fraction of the gas-phase sulfuric acid molecules are very likely clustered with amines if the amine concentration is around or above a few ppt. Second, some fraction of these acid-amine clusters may not be charged...

  7. DORMANCY BREAKING OF OIL PALM SEED TENERA VARIETY BY SOAKING FOR A CERTAIN LENGTH OF TIME IN THE SULFURIC ACID SOLUTION

    Directory of Open Access Journals (Sweden)

    WAYAN SUENA

    2012-11-01

    Full Text Available The experiment aimed to know the effect of length of soaked time in sulfuric acid (H2SO4 solution to the dormancy breaking upon the oil palm seeds. The experiment show that soaking seeds for 12 and 10 minutes in the acid solution resulted dormancy breaking were reached after 61.3 days, while soaking seed for 2 minutes in the same solution breaking of dormancy was reached after 73.5 days. By soaked oil palm seeds in sulfuric acid solution gave highest germination percentage (80%, peak value of germination was 0.77%/day, by an average of 0.73%/day. So that, by soaked oil palm seed in sulfuric acid solution for 12 minutes was able to increase vigor, viability, rate of germination and growth uniformity.

  8. Comparative analysis of the effect of pretreating aspen wood with aqueous and aqueous-organic solutions of sulfuric and nitric acid on its reactivity during enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Dotsenko, Gleb; Osipov, D. O.; Zorov, I. N.;

    2016-01-01

    The effect of aspen wood pretreatment methods with the use of both aqueous solutions of sulfuric and nitric acids and aqueous-organic solutions (ethanol, butanol) of sulfuric acid (organosolv) on the limiting degree of conversion of this type of raw material into simple sugars during enzymatic...... of ground wood by 300–400%, compared to the initial raw material. Pretreatment with a 4.8% aqueous solution of nitric acid (125°C, 1.8 MPa, 10 min) is shown to be most effective, as it increases the reactivity of the ground aspen wood by more than 500%....

  9. 浓硫酸铁道罐车罐体的检验检测技术%Inspecting and Testing Technology of the Concentrated Sulfuric Acid Railway Tank

    Institute of Scientific and Technical Information of China (English)

    吴昌玉; 李雨泓

    2012-01-01

    实际生产中,某企业采用浓硫酸铁道罐车存储、运输浓硫酸,由于罐体金属的缺陷和浓硫酸的强腐蚀,以往罐体泄漏事故较多,为了保证浓硫酸铁道罐车的运行安全,制定了详细的浓硫酸铁道罐车罐体的检验检测方案。%In the actual production, concentrated sulfuric acid was transported and storaged by the concentrated sulfuric acid railway tank car in some enterprise. Because of the defect of the tank metal and the strong corrosion of concentrated sulfuric acid on the tank mental, there were more leakage accidents of the tank in the past. In order to ensuring the operating safety of the concentrated sulfuric acid railway tank car, a detailed inspecting and testing plan of the concentrated sulfuric acid railway tank car was developed.

  10. Degradation of self-compacting concrete (SCC) due to sulfuric acid attack: Experiment investigation on the effect of high volume fly ash content

    Science.gov (United States)

    Kristiawan, S. A.; Sunarmasto; Tyas, G. P.

    2016-02-01

    Concrete is susceptible to a variety of chemical attacks. In the sulfuric acid environment, concrete is subjected to a combination of sulfuric and acid attack. This research is aimed to investigate the degradation of self-compacting concrete (SCC) due to sulfuric acid attack based on measurement of compressive strength loss and diameter change. Since the proportion of SCC contains higher cement than that of normal concrete, the vulnerability of this concrete to sulfuric acid attack could be reduced by partial replacement of cement with fly ash at high volume level. The effect of high volume fly ash at 50-70% cement replacement levels on the extent of degradation owing to sulfuric acid will be assessed in this study. It can be shown that an increase in the utilization of fly ash to partially replace cement tends to reduce the degradation as confirmed by less compressive strength loss and diameter change. The effect of fly ash to reduce the degradation of SCC is more pronounced at a later age.

  11. Application of automatically backwashing surface filter on dilute sulfuric acid filtration in sulfuric acid plant%自动反洗表面过滤器在硫酸装置稀硫酸过滤上的应用

    Institute of Scientific and Technical Information of China (English)

    徐立创; 刘长芹; 赵勇; 刘治保

    2012-01-01

    The waste acid from inclined plate settler in cleaning section is filtered by automatically backwashing surface filter, the treatment process and main equipments are introduced. About 1 400 t standard sulfuric acid can be recovered with the economic benefit of 861 900 RMB Yuan every year.%硫酸净化工序斜板沉降器出来的污酸用自动反洗表面过滤器进行清污分离,介绍处理工艺流程及主要设备。每年可以回用硫酸1400t(折标酸),年经济效益约为86.19万元。

  12. Quantitative comparison of caffeoylquinic acids and flavonoids in Chrysanthemum morifolium flowers and their sulfur-fumigated products by three-channel liquid chromatography with electrochemical detection.

    Science.gov (United States)

    Chen, Liangmian; Kotani, Akira; Kusu, Fumiyo; Wang, Zhimin; Zhu, Jingjing; Hakamata, Hideki

    2015-01-01

    For the determination of seven caffeoylquinic acids [neochlorogenic acid (NcA), cryptochlorogenic acid (CcA), chlorogenic acid (CA), caffeic acid (CfA), isochlorogenic acid A (Ic A), isochlorogenic acid B (Ic B), isochlorogenic acid C (Ic C)] and two flavonoids [luteolin 7-O-glucoside (LtG) and luteolin (Lt)], a three-channel liquid chromatography with electrochemical detection (LC-3ECD) method was established. Chromatographic peak heights were proportional to each concentration, ranging from 2.5 to 100 ng/mL for NcA, CA, CcA, and CfA, and ranging from 2.5 to 250 ng/mL for LtG, Ic B, Ic A, Ic C, and Lt, respectively. The present LC-3ECD method was applied to the quantitative analysis of caffeoylquinic acids and flavonoids in four cultivars of Chrysanthemum morifolium flowers and their sulfur-fumigated products. It was found that 60% of LtG and more than 47% of caffeoylquinic acids were lost during the sulfur fumigation processing. Sulfur fumigation showed a destructive effect on the C. morifolium flowers. In addition, principle component analyses (PCA) were performed using the results of the quantitative analysis of caffeoylquinic acids and flavonoids to compare the "sameness" and "differences" of these analytes in C. morifolium flowers and the sulfur-fumigated products. PCA score plots showed that the four cultivars of C. morifolium flowers were clearly classified into four groups, and that significant differences were also found between the non-fumigated C. morifolium flowers and the sulfur-fumigated products. Therefore, it was demonstrated that the present LC-3ECD method coupled with PCA is applicable to the variation analysis of different C. morifolium flower samples.

  13. Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Madakkaruppan, V. [Atomic Minerals Directorate for Exploration and Research, Begumpet, Hyderabad 500016 (India); Pius, Anitha, E-mail: dranithapius@gmail.com [Department of Chemistry, Gandhigram Rural Institute, Gandhigram, Dindigul District, Tamil Nadu 624302 (India); Sreenivas, T.; Giri, Nitai [Mineral Processing Division, Bhabha Atomic Research Center, AMD Complex, Begumpet, Hyderabad 500016 (India); Sarbajna, Chanchal [Atomic Minerals Directorate for Exploration and Research, Begumpet, Hyderabad 500016 (India)

    2016-08-05

    Highlights: • U leaching from a low-grade Si-rich ore studied in H{sub 2}SO{sub 4} medium with (MW) irradiation. • MW heating is more efficient in terms of U recovery, kinetics and purity of liquor. • U leachability of 84% obtained in 90 min at 95 °C with 0.38 M H{sub 2}SO{sub 4} at 450 mVwith MW heating • Conventional conductive heating gave about 74% leachability with less purity liquor. • U leaching was found follow product layer diffusion as controlling mechanism. - Abstract: This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12–0.50 M), redox potential (400–500 mV), particle size (600–300 μm) and temperature (35°–95 °C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism.

  14. Fatty acid methyl esters, carbon nanotubes and carbon nanowalls coatings such as lubricity improvers of low sulfur diesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cursaru, Diana Luciana; Tanasescu, Constantin [Petroleum-Gas Univ. of Ploiesti (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics (Romania)

    2013-06-01

    In this study the lubricity of diesel fuel was restored by different methods, firstly by classic addition of fatty acid methyl esters or by dispersing carbon nanotubes into diesel fuels and secondly, by protecting the metallic surfaces which are in the direct contact to the low sulfur diesel fuel, by application of solid carbon nanowalls coatings synthesized by radiofrequency plasma beam deposition. The fatty acid methyl esters were prepared by transesterification of the sun flower oil in the presence of methanol. The carbon nanotubes were synthesized by CO disproportionation method and were characterized by RAMAN spectroscopy and high resolution transmission electron microscopy (TEM). The CNWs layers, before the friction tests, were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, while the wear on the steel balls was investigated by optical microscopy of the HRRT apparatus and the wear track on the steel disk was investigated by SEM, AFM and profilometry. The lubricity was measured using the High Frequency Reciprocating Rig (HFRR) method. It has been found that CNWs layers exhibit a lubricating potential for the rubbed surfaces in the presence of low sulfur diesel fuels. Tribological analyses of various carbon materials revealed that the friction coefficient of carbon nanowalls is close to the values obtained for graphite. (orig.)

  15. Alleviation of alcoholic liver injury by betaine involves an enhancement of antioxidant defense via regulation of sulfur amino acid metabolism.

    Science.gov (United States)

    Jung, Young Suk; Kim, Sun Ju; Kwon, Do Young; Ahn, Chul Won; Kim, Young Soon; Choi, Dal Woong; Kim, Young Chul

    2013-12-01

    Previous studies suggested that the hepatoprotective activity of betaine is associated with its effects on sulfur amino acid metabolism. We examined the mechanism by which betaine prevents the progression of alcoholic liver injury and its therapeutic potential. Rats received a liquid ethanol diet for 6 wk. Ethanol consumption elevated serum triglyceride and TNFα levels, alanine aminotransferase and aspartate aminotransferase activities, and lipid accumulation in liver. The oxyradical scavenging capacity of liver was reduced, and expression of CD14, TNFα, COX-2, and iNOS mRNAs was induced markedly. These ethanol-induced changes were all inhibited effectively by betaine supplementation. Hepatic S-adenosylmethionine, cysteine, and glutathione levels, reduced in the ethanol-fed rats, were increased by betaine supplementation. Methionine adenosyltransferase and cystathionine γ-lyase were induced, but cysteine dioxygenase was down-regulated, which appeared to account for the increment in cysteine availability for glutathione synthesis in the rats supplemented with betaine. Betaine supplementation for the final 2 wk of ethanol intake resulted in a similar degree of hepatoprotection, revealing its potential therapeutic value in alcoholic liver. It is concluded that the protective effects of betaine against alcoholic liver injury may be attributed to the fortification of antioxidant defense via improvement of impaired sulfur amino acid metabolism.

  16. Luminescence features from conical bubble collapse in 1,2 propanediol and its perturbation adding sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete, M; Godinez, F A [Universidad Nacional Autonoma de Mexico, Ciudad Universitaria No. 3000, Col. Copilco Universidad, Delegacion de Coyoacan, Mexico, D. F. Codigo Postal 04360, Instituto de Ingenieria, Lab. de Fotofisica (Mexico); Sanchez, C [Universidad Nacional Autonoma de Mexico, Ciudad Universitaria No. 3000, Col. Copilco Universidad, Delegacion de Coyoacan, Mexico, D. F. Codigo Postal 04360, Lab. de Fotonica y Microondas (Mexico); Mejia, E V; Villagran, M, E-mail: mnm@pumas.iingen.unam.mx [Universidad Nacional Autonoma de Mexico, Ciudad Universitaria No. 3000, Col. Copilco Universidad, Delegacion de Coyoacan, Mexico, D. F. Codigo Postal 04360 (Mexico)

    2011-01-01

    A summary of experimental findings on the luminescence from bubble collapse, CBL, varying the gas inert bubble content, the driving pressure and perturbing the liquid piston with small quantities of sulfuric acid is presented. The temporal, spectral, and spatial characteristics of the luminescence regarding with dynamic features of collapse are also examinees. CBL was reproduced using Argon gas, and 1, 2-propanediol as liquid piston. In general, the pulse shape exhibits a large variety of profiles. The luminescence intensity was increased two-fold and the pulse width decreased almost to half when the liquid was disturbed with sulfuric acid. Spectrally, the Swan, CH and CN lines were observed at low volume of Ar gas and low driving pressure, lines of OH{sup 0}, Na*, K* always appear superimposed on an underlying continuum background. De-excitation of sodium atom at 589 nm and two satellites diffuse bands at {approx}554 nm and {approx}620 nm from alkali-metal-argon exciplexes was observed in both systems under certain conditions. All these findings point towards several sources of light emission that are generated during the compression time line, resulting in temporally and spatially inhomogeneous pulse. A mechanism for explain the bright CBL is broached.

  17. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?

    Science.gov (United States)

    Okkenhaug, Gudny; Breedveld, Gijs D; Kirkeng, Terje; Lægreid, Marit; Mæhlum, Trond; Mulder, Jan

    2013-03-15

    Antimony (Sb) in air pollution control (APC) residues from municipal solid waste incineration has gained increased focus due to strict Sb leaching limits set by the EU landfill directive. Here we study the chemical speciation and solubility of Sb at the APC treatment facility NOAH Langøya (Norway), where iron (Fe)-rich sulfuric acid (∼3.6M, 2.3% Fe(II)), a waste product from the industrial extraction of ilmenite, is used for neutralization. Antimony in water extracts of untreated APC residues occurred exclusively as pentavalent antimonate, even at low pH and Eh values. The Sb solubility increased substantially at pHSb in porewater, occurring exclusively as Sb(V). Concentrations of Sb decreased from 87-918μgL(-1) (day 3) to 18-69μgL(-1) (day 600). We hypothesize that an initial sorption of Sb to Fe(II)-Fe(III) hydroxides (green rust) and eventually precipitation of Ca- and Fe-antimonates (tripuhyite; FeSbO4) occurred. We conclude that Fe-rich, sulfuric acid waste is efficient to immobilize Sb in APC residues from waste incineration.

  18. Sulfuric acid doped poly diaminopyridine/graphene composite to remove high concentration of toxic Cr(VI).

    Science.gov (United States)

    Dinda, Diptiman; Kumar Saha, Shyamal

    2015-06-30

    Sulfuric acid doped diaminopyridine polymers are synthesized in situ on graphene oxide surface via mutual oxidation-reduction technique. Exploiting large and highly porous surface, we have used this polymer composite as an adsorbent to remove high concentration of toxic Cr(VI) from water. It shows very high adsorption capacity (609.76 mg g(-1)) during removal process. The composite takes only 100 min to remove high concentration of 500 mg L(-1) Cr(VI) from water. Interesting features for this material is the enhancement of removal efficiency at lower acidic condition due to the formation of acid doped emeraldine salt during polymerization. XPS and AAS measurements reveal that our prepared material mainly follows reduction mechanism at higher acidic condition while anions exchange mechanism at lower acidic condition during the removal experiments. Good recycling ability with ∼ 92% removal efficiency after fifth cycle is also noticed for this material. Easy preparation, superior stability in acidic condition, remarkable removal efficiency and excellent recycling ability make this polymer composite an efficient material for modern filtration units in waste water purification. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Soot and Sulfuric Acid from Aircraft: Is There Enough to Cause Detrimental Environmental E-kCTSs?

    Science.gov (United States)

    Pueschel, R. F.; Strawa, A. W.; Ferry, G. V.; Howard, S. D.; Verma, S.

    1998-01-01

    Aerosol from aircraft can affect the environment in three ways: First, soot aerosol has been implicated to cause Icing-tern ozone depletion at mid-latitudes in the lower stratosphere at a rate of approx. 5% per decade. This effect is in addition and unrelated to the polar ozone holes which are strongly influenced by heterogeneous chemistry on polar stratospheric clouds. Second, the most obvious effect of jet aircraft is the formation of visible contrails in the upper troposphere. The Salt Lake City region experienced an 8% increase in cirrus cloud cover over a 15-year period which covariates with an increase in regional commercial air traffic. If soot particles act as freezing nuclei to cause contrail formation heterogeneously, they would be linked to a secondary effect to cloud modification that very likely is climatologically important. Third, a buildup of soot aerosol could reduce the single scatter albedo of stratospheric aerosol from 0.993+0.004 to 0.98, a critical value that has been postulated to separate stratospheric cooling from warming. Thus arises an important question: Do aircraft emit sufficient amounts of soot to have detrimental effects and warrant emission controls? During the 1996 SUCCESS field campaign, we sampled aerosols in the exhaust wake of a Boeing 757 aircraft and determined emission indices for sulfuric acid (EI(sub H2SO4) = 9.0E-2 and 5.0E-1 g/kg (sub FUEL) for 75 and 675 ppm fuel-sulfur, respectively) and soot aerosol (2.2E-3 less than EI(sub SOOT) = l.lE-2 g/kg (sub FUEL)). The soot particle analysis accounted for their fractal nature, determined electron-microscopically, which enhanced the surface area by a factor of 26 and the volume 11-fold over equivalent-volume spheres. The corresponding fuel-sulfur to H2SO4 conversion efficiency was 10% (for 675 ppmm fuel-S) and 37% (for 75 ppmm fuel-S). Applying the H2SO4 emission index to the 1990 fuel use by the worlds commercial fleets of 1.3E11 kg, a conversion efficiency of 30% of 500 ppmm

  20. Facile, mild and selective silica sulfuric acid catalyzed oxidation of benzylalcohols to benzaldehyde derivatives by potassium peroxodisulfate

    Directory of Open Access Journals (Sweden)

    M. K. Mohammadi

    2013-04-01

    Full Text Available An efficient, facile, and mild oxidation of a variety of primary benzylic alcohols to the corresponding aldehydes with potassium peroxodisulfate in the presence of a catalytic amount of sodium chloride and silica sulfuric acid (SSA in acetonitrile as solvent is reported. It is a renowned fact that potassium peroxodisulfate acts as a powerful oxidizing agent and the control of conditions is difficult. For this purpose, SSA as a mild, efficient and reusable solid acid catalyst was used to afford the carbonyl compounds in excellent yields and short time. The structure of all of the resulting products was confirmed by FT-IR spectroscopy.DOI: http://dx.doi.org/10.4314/bcse.v27i1.14

  1. SOLUBILITIES AND PHYSICAL PROPERTIES OF SATURATED SOLUTIONS IN THE COPPER SULFATE + SULFURIC ACID + SEAWATER SYSTEM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    F. J. Justel

    2015-09-01

    Full Text Available AbstractIn Chile, the most important economic activity is mining, concentrated in the north of the country. This is a desert region with limited water resources; therefore, the mining sector requires research and identification of alternative sources of water. One alternative is seawater, which can be a substitute of the limited fresh water resources in the region. This work determines the influence of seawater on the solid-liquid equilibrium for acid solutions of copper sulfate at different temperatures (293.15 to 318.15 K, and its effect on physical properties (density, viscosity, and solubility. Knowledge of these properties and solubility data are useful in the leaching process and in the design of copper sulfate pentahydrate crystallization plants from the leaching process using seawater by means of the addition of sulfuric acid.

  2. Experimental and Molecular Dynamics Simulations for Investigating the Effect of Fatty Acid and Its Derivatives on Low Sulfur Diesel Lubricity

    Institute of Scientific and Technical Information of China (English)

    Luo Hui; Fan Weiyu; Li Yang; Zhao Pinhui; Nan Guozhi

    2013-01-01

    In this work, fatty acid and its derivatives were adopted as lubricity additives for low sulfur diesel. Tribological evaluation obtained from the High-Frequency Reciprocating Rig (HFRR) apparatus showed that the lubricating performance of the additives increased in the following order:stearic acid>glycol monopalmitate>stearyl alcohol>ethyl palmitate>cetyl ethyl ether. The adsorption behavior of the additives on Fe (110) surface and Fe2O3 (001) surface was investigated by mo-lecular dynamics (MD) simulations to verify their lubricity performance. The results suggested that adsorption energies of the additives on Fe (110) surface are determined by the van der Waals forces, while adsorptions on Fe2O3 (001) surface are signiifcantly attributed to the electrostatic attractive forces. Higher values of adsorption energy of the additives on Fe2O3 (001) surface indicate that the additive has more efifcient lubricity enhancing properties.

  3. Stabilization of heavy metals in MSWI fly ash using silica fume

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinying; Chen, Quanyuan [School of Environment Science and Engineering, Donghua University, Shanghai 201620 (China); State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620 (China); Zhou, Yasu [School of Environment Science and Engineering, Donghua University, Shanghai 201620 (China); Tyrer, Mark [Mineral Industry Research Organisation, Solihull B37 7HB (United Kingdom); Yu, Yang [School of Environment Science and Engineering, Donghua University, Shanghai 201620 (China)

    2014-12-15

    Highlights: • The stabilization of heavy metals in MSWI fly ash was investigated. • The addition of silica fume effectively reduced the leaching of Pb and Cd. • The relation of solid phase transformation and leaching behavior of heavy metals was discussed. - Abstract: The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR ({sup 27}Al and {sup 29}Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China.

  4. The mitochondrial sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis.

    Science.gov (United States)

    Krüßel, Lena; Junemann, Johannes; Wirtz, Markus; Birke, Hannah; Thornton, Jeremy D; Browning, Luke W; Poschet, Gernot; Hell, Rüdiger; Balk, Janneke; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2014-05-01

    The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.

  5. The Mitochondrial Sulfur Dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 Is Required for Amino Acid Catabolism during Carbohydrate Starvation and Embryo Development in Arabidopsis1[C][W

    Science.gov (United States)

    Krüßel, Lena; Junemann, Johannes; Wirtz, Markus; Birke, Hannah; Thornton, Jeremy D.; Browning, Luke W.; Poschet, Gernot; Hell, Rüdiger; Balk, Janneke; Braun, Hans-Peter; Hildebrandt, Tatjana M.

    2014-01-01

    The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine. PMID:24692429

  6. Mechanism of Early Stage Corrosion for Boric-sulfuric Acid Anodized 2A97 Al-Cu-Li Alloy Under Tropical Marine Atmosphere

    Directory of Open Access Journals (Sweden)

    LUO Chen

    2016-09-01

    Full Text Available Optical microscopy(OM, scanning electron microscopy(SEM, EDX and EIS combined with ultramicrotomy were employed to investigate the micro morphology, chemical composition and electrochemical properties of anodized 2A97 Al-Cu-Li alloy before and after atmospheric corrosion. The results show that when electrolytes containing combinations of tartaric-sulfuric or boric-sulfuric acid are used to grow the films at different temperatures, boric acid addition and higher temperature allow for higher current density that speeds up the film growth. The pore geometry and structure is similar for different electrolytes. Dispersive dark rusty spots composed of O, Al, Cl, Cu are present on the boric-sulfuric acid anodized specimen after exposure in tropical marine atmosphere for 1 month. Deposition of white corrosion product is found on the specimen surface as well. Severe pitting occurs and develops deeply into the alloy substrate after elongated outdoor exposure. Corrosion propagation is associated with θ-phase particles.

  7. Determination of sulfuric acid concentration for anti-cavitation characteristics of Al alloy by two step anodizing process to forming nano porous.

    Science.gov (United States)

    Lee, Seung-Jun; Kim, Seong-Kweon; Jeong, Jae-Yong; Kim, Seong-Jong

    2014-12-01

    Al alloy is a highly active metal but forms a protective oxide film having high corrosion resistance in atmosphere environment. However, the oxide film is not suitable for practical use, since the thickness of the film is not uniform and it is severly altered with formation conditions. This study focused on developing an aluminum anodizing layer having hardness, corrosion resistance and abrasion resistance equivalent to a commercial grade protective layer. Aluminum anodizing layer was produced by two-step aluminum anodizing oxide (AAO) process with different sulfuric acid concentrations, and the cavitation characteristics of the anodized coating layer was investigated. In hardness measurement, the anodized coating layer produced with 15 vol.% of sulfuric acid condition had the highest value of hardness but exhibited poor cavitation resistance due to being more brittle than those with other conditions. The 10 vol.% of sulfuric acid condition was thus considered to be the optimum condition as it had the lowest weight loss and damage depth.

  8. Gaseous ion-composition measurements in the young exhaust plume of jet aircraft at cruising altitudes. Implications for aerosols and gaseous sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, F.; Wohlfrom, K.H.; Klemm, M.; Schneider, J.; Gollinger, K. [Max-Planck-Inst. for Nuclear Physics, Heidelberg (Germany); Schumann, U.; Busen, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    Mass spectrometric measurements were made in the young exhaust plume of an Airbus (A310) at cruising altitudes at distances between 400 and 800 m behind the Airbus (averaged plume age: 3.4 sec). The measurements indicate that gaseous sulfuric acid (GSA) number densities were less than 1.3 x 10{sup 8} cm{sup -3} which is smaller than the expected total sulfuric acid. Hence the missing sulfuric acid must have been in the aerosol phase. These measurements also indicate a total aerosol surface area density A{sub T} {<=} 5.4 x 10{sup -5} cm{sup 2} per cm{sup 3} which is consistent with simultaneously measured soot and water contrail particles. However, homogeneous nucleation leading to (H{sub 2}SO{sub 4}){sub x}(H{sub 2}O){sub y}-clusters can not be ruled out. (author) 16 refs.

  9. EFFECT OF DIATOMEAOUS EARTH TREATMENT USING HYDROGEN CHLORIDE AND SULFURIC ACID ON KINETICS OF CADMIUM(II ADSORPTION

    Directory of Open Access Journals (Sweden)

    Nuryono Nuryono

    2010-06-01

    Full Text Available In this research, treatment of diatomaceous earth, Sangiran, Central Java using hydrogen chloride (HCl and sulfuric acid (H2SO4 on kinetics of Cd(II adsorption in aqueous solution has been carried out. The work was conducted by mixing an amount of grounded diatomaceous earth (200 mesh in size with HCl or H2SO4 solution in various concentrations for two hours at temperature range of 100 - 150oC. The mixture was then filtered and washed with water until the filtrate pH is approximately 7 and then the residue was dried for four hours at a temperature of 70oC. The product was used as an adsorbent to adsorb Cd(II in aqueous solution with various concentrations. The Cd(II adsorbed was determined by analyzing the rest of Cd(II in the solution using atomic absorption spectrophotometry. The effect of treatment was evaluated from kinetic parameter of adsorption rate constant calculated based on the simple kinetic model. Results showed  that before equilibrium condition reached, adsorpstion of Cd(II occurred through two steps, i.e. a step tends to follow a reaction of irreversible first order  (step I followed by reaction of reversible first order (step II. Treatment with acids, either hydrogen chloride or sulfuric acid, decreased adsorption rate constant for the step I from 15.2/min to a range of 6.4 - 9.4/min.  However, increasing concentration of acid (in a range of concentration investigated did not give significant and constant change of adsorption rate constant. For step II process,  adsorption involved physical interaction with the sufficient low adsorption energy (in a range of 311.3 - 1001 J/mol.     Keywords: adsorption, cdmium, diatomaceous earth, kinetics.

  10. Persistence of Change: Fume Hood Campaign Lessons

    Science.gov (United States)

    Feder, Elah; Robinson, Jennifer; Wakefield, Sarah

    2012-01-01

    Purpose: Sustainability initiatives typically operate for a limited time period, but it is often unclear whether they have lasting effects. The purpose of this paper is to examine a laboratory fume hood campaign, in order to identify factors that might contribute or detract from long-term change persistence. Design/methodology/approach: The…

  11. Effects of simultaneous dietary fish oil ingestion and sulfur amino acid supplementation on the lipid metabolism in hepatoma-bearing rats with hyperlipidemia.

    Science.gov (United States)

    Kawasaki, Masashi; Miura, Yutaka; Funabiki, Ryuhei; Yagasaki, Kazumi

    2010-01-01

    The effects of simultaneous dietary fish oil ingestion and sulfur amino acid (L-methionine and L-cystine) supplementation on serum lipid concentrations and various parameters related to the lipid metabolism were studied in Donryu rats subcutaneously implanted with an ascites hepatoma cell line, AH109A. A diet containing 10% fish oil was found to reduce serum triglyceride, total cholesterol, (very-low-density lipoprotein plus low-density lipoprotein)-cholesterol, phospholipid and nonesterified fatty acid (NEFA) concentrations in these animals, and dietary supplementation of 1.2% L-methionine and L-cystine also suppressed these serum lipid concentrations. Hepatic fatty acid synthesis and the availability of serum NEFA were decreased, and epididymal adipose tissue lipoprotein lipase (LPL) activity was elevated by dietary fish oil, while LPL activity in various tissues and hepatic fatty acid oxidation were increased by dietary sulfur amino acids, resulting in a reduction in the serum triglyceride concentration by dietary fish oil and sulfur amino acids, respectively. Dietary fish oil suppressed the hepatoma-induced increase in cholesterogenesis in the host liver, and dietary methionine and cystine enhanced bile acid excretion into feces, which were the causes of the hypocholesterolemic effect. In these serum lipid concentrations, there were significant effects of fish oil ingestion and sulfur amino acid supplementation, but no significant interaction between these two factors was seen. These results indicate that dietary fish oil and sulfur amino acid, L-methionine and L-cystine, have hypolipidemic effects in cancer-related hyperlipidemia, and that the effects of these two factors on the decrease in these serum lipid concentrations are additive; these two factors may affect the lipid metabolism via different pathways and mechanisms.

  12. Sulfur recovery further improved

    Energy Technology Data Exchange (ETDEWEB)

    Borsboom, J.; Grinsven, M. van; Warners, A. van [Jacobs Nederland B.V., (Netherlands); Nisselrooy, P. van [Gastec N.V., (Netherlands)

    2002-04-01

    The original 100-year-old Claus process for producing sulfur from hydrogen sulfide in acid gas is described together with improvements which have been made over the years. The most recent modification, EUROCLAUS, achieves sulfur recoveries of 99-99.9 per cent. Five commercial units are being designed.

  13. Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York

    Science.gov (United States)

    Sullivan, T.J.; Cosby, B.J.; Driscoll, C.T.; McDonnell, T.C.; Herlihy, A.T.; Burns, Douglas A.

    2012-01-01

    The dynamic watershed acid-base chemistry model of acidification of groundwater in catchments (MAGIC) was used to calculate target loads (TLs) of atmospheric sulfur and nitrogen deposition expected to be protective of aquatic health in lakes in the Adirondack ecoregion of New York. The TLs were calculated for two future dates (2050 and 2100) and three levels of protection against lake acidification (acid neutralizing capacity (ANC) of 0, 20, and 50 eq L -1). Regional sulfur and nitrogen deposition estimates were combined with TLs to calculate exceedances. Target load results, and associated exceedances, were extrapolated to the regional population of Adirondack lakes. About 30% of Adirondack lakes had simulated TL of sulfur deposition less than 50 meq m -2 yr to protect lake ANC to 50 eq L -1. About 600 Adirondack lakes receive ambient sulfur deposition that is above this TL, in some cases by more than a factor of 2. Some critical criteria threshold values were simulated to be unobtainable in some lakes even if sulfur deposition was to be decreased to zero and held at zero until the specified endpoint year. We also summarize important lessons for the use of target loads in the management of acid-impacted aquatic ecosystems, such as those in North America, Europe, and Asia. Copyright 2012 by the American Geophysical Union.

  14. Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fang [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com.cn [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Fengxiu [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Yuansong [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China)

    2015-09-15

    Highlights: • A durable super-hydrophilic PET fabric was prepared using dilute H{sub 2}SO{sub 4} under microwave irradiation. • Dilute sulfuric acid was gradually concentrated enough to sulfonate PET fabric. • Microwave irradiation made PET fabric modification highly efficient. • The mechanical properties of modified PET fibers were kept well. • The method was novel, rapid, and eco-friendly. - Abstract: The hydrophilicity of a poly(ethylene terephthalate) (PET) fabric was greatly modified by using dilute sulfuric acid, which gradually became concentrated enough to sulfonate the fabric when microwave irradiation (MW) was applied. The modified PET fabric was super-hydrophilic. Modifying the fabric caused the water contact angle to decrease from 132.46 (for the unmodified fabric) to 0°, the water absorption rate to increase from 36.45 to 119.78%, and the capillary rise height to increase from 0.4 to 14.4 cm. The hydrophilicity of the modified PET fabric was not affected by washing it many times. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed that there were sulfonic acid groups on the modified fibers. Almost no difference between the surfaces of the unmodified and modified PET fibers was found using scanning electron microscopy. Analysis by differential scanning calorimetry showed that the unmodified and modified fabrics had similar thermostabilities. X-ray diffraction analysis of the crystalline structures of the unmodified and modified fibers showed that they were almost the same. The strength, elasticity, and rigidity of the unmodified fabric were retained by the modified fabric. The modified fabric had better dyeing properties than the unmodified fabric.

  15. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    Science.gov (United States)

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.

  16. Development and evaluation of an air-curtain fume cabinet with considerations of its aerodynamics.

    Science.gov (United States)

    Huang, R F; Wu, Y D; Chen, H D; Chen, C-C; Chen, C-W; Chang, C-P; Shih, T-S

    2007-03-01

    In order to avoid the inherent aerodynamic difficulties of the conventional fume hood, an innovative design--the 'air curtain-isolated fume hood' is developed. The new hood applies a specially designed air curtain (which is generated by a narrow planar jet and a suction slot flow at low velocities) across the sash plane. The hood constructed for the study is full size and transparent for flow visualization. The aerodynamic characteristics are diagnosed by using the laser-light-sheet-assisted smoke flow visualization method. Four characteristic air-curtain flow modes are identified in the domain of jet and suction velocities when the sash remains static. Some of these characteristic flow modes have much improved flow patterns when compared with those of the conventional fume hoods. From the viewpoint of the aerodynamics and mass transport, the results indicate that the air curtain properly setup across the sash opening allows almost no sensible exchange of momentum and mass between the flowfields of the cabinet and the outside environment. Two standard sulfur hexafluoride (SF6) tracer gas concentration measurement methods following the ANSI/ASHRAE 110-1995 standard and the prEN14175 protocol for static test are employed to examine the contaminant leakage levels. Results of the rigorous examinations of leakage show unusually satisfactory hood performance. The leakage of the tracer gas can approach almost null (<0.001 p.p.m.) if the jet and suction velocities are properly adjusted.

  17. Effects of Nitrogen and Sulfur Fertilization on Free Amino Acids, Sugars, and Acrylamide-Forming Potential in Potato

    Science.gov (United States)

    2013-01-01

    Nitrogen (N) fertilizer is used routinely in potato (Solanum tuberosum) cultivation to maximize yield. However, it also affects sugar and free amino acid concentrations in potato tubers, and this has potential implications for food quality and safety because free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results in the formation of color, aroma, and flavor compounds, but also some undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the final stages of the reaction is asparagine. Another mineral, sulfur (S), also has profound effects on tuber composition. In this study, 13 varieties of potato were grown in a field trial in 2010 and treated with different combinations of N and S. Potatoes were analyzed immediately after harvest to show the effect of N and S fertilization on concentrations of free asparagine, other free amino acids, sugars, and acrylamide-forming potential. The study showed that N application can affect acrylamide-forming potential in potatoes but that the effect is type- (French fry, chipping, and boiling) and variety-dependent, with most varieties showing an increase in acrylamide formation in response to increased N but two showing a decrease. S application reduced glucose concentrations and mitigated the effect of high N application on the acrylamide-forming potential of some of the French fry-type potatoes. PMID:23768004

  18. Effects of nitrogen and sulfur fertilization on free amino acids, sugars, and acrylamide-forming potential in potato.

    Science.gov (United States)

    Muttucumaru, Nira; Powers, Stephen J; Elmore, J Stephen; Mottram, Donald S; Halford, Nigel G

    2013-07-10

    Nitrogen (N) fertilizer is used routinely in potato (Solanum tuberosum) cultivation to maximize yield. However, it also affects sugar and free amino acid concentrations in potato tubers, and this has potential implications for food quality and safety because free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results in the formation of color, aroma, and flavor compounds, but also some undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the final stages of the reaction is asparagine. Another mineral, sulfur (S), also has profound effects on tuber composition. In this study, 13 varieties of potato were grown in a field trial in 2010 and treated with different combinations of N and S. Potatoes were analyzed immediately after harvest to show the effect of N and S fertilization on concentrations of free asparagine, other free amino acids, sugars, and acrylamide-forming potential. The study showed that N application can affect acrylamide-forming potential in potatoes but that the effect is type- (French fry, chipping, and boiling) and variety-dependent, with most varieties showing an increase in acrylamide formation in response to increased N but two showing a decrease. S application reduced glucose concentrations and mitigated the effect of high N application on the acrylamide-forming potential of some of the French fry-type potatoes.

  19. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    Science.gov (United States)

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated.

  20. Sulfur containing activated hydantions. Synthesis and screening some novel benzylidenehydantoins amino acids derivatives

    Directory of Open Access Journals (Sweden)

    RAGAB A. EL-SAYED

    2001-01-01

    Full Text Available 5-Benzylidenehydantoin reacts with chlorosulfonic acid to give the corresponding p-sulfonyl chloride 1. Condensation with nucleophiles gives amino acid derivatives 2–7. Coupling reactions of some amino acid derivatives (2–6 with amino acid methyl ester hydrochloride in THF-Et3N medium using the dicyclohexylcarbodiimide method (DCC furnish the desired dipeptide methyl esters 8–12. The spectral data of the synthesized compounds are briefly discussed.

  1. Corrosion-resistant sulfur concretes

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  2. Comparison of formic acid oxidation at supported Pt catalyst and at low-index Pt single crystal electrodes in sulfuric acid solution

    Directory of Open Access Journals (Sweden)

    AMALIJA V. TRIPKOVIC

    2003-11-01

    Full Text Available The oxidation of formic acid was studied at supported Pt catalyst (47.5 wt%. Pt and a low-index single crystal electrodes in sulfuric acid. The supported Pt catalyst was characterized by the TEM and HRTEM techniques. The mean Pt particle diameter, calculated from electrochemical measurements, fits well with Pt particle size distribution determined by HRTEM. For the mean particle diameter the surface averaged distribution of low-index single crystal facets was established. Comparison of the activities obtained at Pt supported catalyst and low-index Pt single crystal electrodes revealed that Pt(111 plane is the most active in the potential region relevant for fuel cell applications.

  3. Soft cutting of single-wall carbon nanotubes by low temperature ultrasonication in a mixture of sulfuric and nitric acids

    Science.gov (United States)

    Shuba, M. V.; Paddubskaya, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Ksenevich, V. K.; Niaura, G.; Seliuta, D.; Kasalynas, I.; Valusis, G.

    2012-12-01

    To decrease single-wall carbon nanotube (SWCNT) lengths to a value of 100-200 nm, aggressive cutting methods, accompanied by a high loss of starting material, are frequently used. We propose a cutting approach based on low temperature intensive ultrasonication in a mixture of sulfuric and nitric acids. The method is nondestructive with a yield close to 100%. It was applied to cut nanotubes produced in three different ways: gas-phase catalysis, chemical vapor deposition, and electric-arc-discharge methods. Raman and Fourier transform infrared spectroscopy were used to demonstrate that the cut carbon nanotubes have a low extent of sidewall degradation and their electronic properties are close to those of the untreated tubes. It was proposed to use the spectral position of the far-infrared absorption peak as a simple criterion for the estimation of SWCNT length distribution in the samples.

  4. Effect of Sn content on the properties of passive film on PbSn alloy in sulfuric acid solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of Sn content on properties of anodic film formed on PbSn alloys in sulfuric acid solution was investigated using linear sweeping voltage (LSV), cyclic voltammetry (CV), and a.c. voltammetry (ACV), based on the Mott-Schottky analysis. The results revealed that the addition of Sn into lead alloys can promote the corrosion resistance property and could decrease the impedance of anodic film; these results were more remarkable with enhancing the Sn content. The over potential of oxygen evolution on lead alloys enhanced with the increase of Sn content. The Mott-Schottky analysis indicated that the passive film appeared an n-type semiconductor, and the donor density of passive film increased with increasing Sn content. The increased vacancies in the passive film with Sn content increasing could illustrate this trend.

  5. 硫铁矿烧渣双酸酸解工艺研究%Study on decomposition process of pyrite cinder with hydrochloric acid and sulfuric acid

    Institute of Scientific and Technical Information of China (English)

    左大学; 王仁宗

    2012-01-01

    The decomposition process of pyrite cinder with hydrochloric acid and sulfuric acid , and its influence factors are studied. Through orthogonal test, the optimum process conditions are confirmed including: the consumption factor of hydrochloric acid with w(HC1) of 37% is 0.12; the consumption factor of sulfuric acid with w(H2SO4) of 65%-70% is 0.95, the reaction temperature is of 125 ℃, the reaction time is of 4h. The decomposition rate of pyrite cinder can reach to above 95%, and the product ferric sulfate solution can be used to produce polymeric ferric sulfate and iron oxide pigments.%研究了硫铁矿烧渣双酸酸解工艺及影响酸解的因素。通过正交实验,找到最适宜的工艺条件:w(HCl)37%,盐酸用量系数为0.12,硫酸用量系数为0.95,硫酸W(H2SO4)为65%~70%,反应温度为125℃,反应时间为4h,酸解率可达95%以上,制得的硫酸铁盐溶液可用作生产聚合硫酸铁及氧化铁系颜料的原料。

  6. Effect of Some Admixtures on the Hydration of Silica Fume and Hydrated Lime

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects of sodium salt of naphthalene formaldehyde sulfonic acid and stearic acid on the hydration of silica fume and Ca(0H)2 have been investigated. The hydration was carried out at 60℃ and W/S ratio of 4 for various time intervals namely, 1, 3, 7 and 28 days and in the presence of 0.2% and 5% superplasticizer and stearic acid. The results of the hydration kinetics show that both admixtures accelerate the hydration reaction of silica fume and calcium hydroxide during the first 7 days. Whereas, after 28 days hydration there is no significant effect. Generally, most of free calcium hydroxide seems to be consumed after 28 days. In addition, the phase composition as well as the microstructure of the formed hydrates was examined by using X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) respectively.

  7. Raman Spectra and Nucleation Rates of Sulfuric Acid and Ammonium Sulfate Aerosols Supercooled with Respect to Ice

    Science.gov (United States)

    Knopf, D. A.; Koop, T.; Weers, U. G.; Krieger, U. K.; Peter, T.

    2001-12-01

    Sulfuric acid and ammonium sulfate aerosol particles can serve as ice condensation nuclei for the formation of upper tropospheric cirrus clouds. These clouds influence the global radiation budget by scattering of short wavelength (solar) radiation as well as by absorbing long wavelength (terrestrial) radiation. Knowledge of the thermodynamics and the nucleation rates of aerosols is fundamental for the understanding of formation processes of cirrus clouds. Here, we present a new investigation tool to observe phase transitions of aerosols supercooled with respect to ice. Confocal Raman microscopy is used to determine the phase changes and the morphology of the particles. Raman spectroscopy is employed to distinguish and to characterize the different phases inside the frozen particles. Single droplets with a diameter of typically 20-120 μ m are deposited on a hydrophobically coated Herasil-plate that is covered by a spacer and another plate. Since the gas phase volume of the cell is small compared to the liquid droplet volume the composition of the droplets remains fixed during temperature changes. The temperature of the droplets can be varied between 150-350~K. We present the first Raman spectra of aqueous H2SO4/H2O and (NH4)2SO4/H2O droplets for several concentrations and temperatures to the homogeneous ice nucleation limits. The analysis of the speciation of the components inside the droplets (e.g. sulfate vs. bisulfate ions) is compared to results from thermodynamic models. Evaluation of the freezing data gives upper limits for ice nucleation rates of droplets as a function of sulfuric acid or ammonium sulfate concentration.

  8. Chlorobaculum tepidum Modulates Amino Acid Composition in Response to Energy Availability, as Revealed by a Systematic Exploration of the Energy Landscape of Phototrophic Sulfur Oxidation.

    Science.gov (United States)

    Levy, Amalie T; Lee, Kelvin H; Hanson, Thomas E

    2016-11-01

    Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S(0)), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S(0) > thiosulfate. To understand this preference in the context of light energy availability, an "energy landscape" of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times.

  9. Metal-free oxidative coupling of thiols to disulfides using guanidinium nitrate or nitro urea in the presence of silica sulfuric acid

    Indian Academy of Sciences (India)

    Arash Ghorbani-Choghamarani; Mohsen Nikoorazm; Hamid Goudarziafshar; Alireza Shokr; Hosein Almasi

    2011-07-01

    Efficient combination of nitro urea or guanidinium nitrate and silica sulfuric acid (SiO2OSO3H) as a new oxidizing system is able to oxidize a variety of aliphatic or aromatic thiols to the corresponding disulfides. The process reported here is operationally simple, environmentally benign and reactions have been mildly and heterogeneously performed in dichloromethane at room temperature.

  10. Sulfur, Protein Size Distribution, and Free Amino Acids in Flour Mill Streams and Their Relationship to Dough Rheology and Breadmaking Traits

    Science.gov (United States)

    The aim of this study was to evaluate differences in sulfur content, protein size distribution, and free amino acids among flour mill streams (FMS) and their relationships to dough rheology and breadmaking traits. Information from this study would likely lead to more precise blending of FMS in comme...

  11. Using Demonstrations Involving Combustion and Acid-Base Chemistry to Show Hydration of Carbon Dioxide, Sulfur Dioxide, and Magnesium Oxide and Their Relevance for Environmental Climate Science

    Science.gov (United States)

    Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis

    2016-01-01

    The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…

  12. The challenge of measuring sulfuric acid aerosols: number concentration and size evaluation using a condensation particle counter (CPC) and an electrical low pressure impactor (ELPI+)

    NARCIS (Netherlands)

    Brachert, L.; Mertens, J.; Khakharia, P.M.; Schaber, K.

    2014-01-01

    In this study, two different methods for the measurement of the sulfuric acid aerosol which is formed in wet flue gas cleaning processes have been investigated. The condensation particle counter (UFCPC, PALAS GmbH) provides information about the number concentration. With the electrical low pressure

  13. Using Demonstrations Involving Combustion and Acid-Base Chemistry to Show Hydration of Carbon Dioxide, Sulfur Dioxide, and Magnesium Oxide and Their Relevance for Environmental Climate Science

    Science.gov (United States)

    Shaw, C. Frank, III; Webb, James W.; Rothenberger, Otis

    2016-01-01

    The nature of acidic and basic (alkaline) oxides can be easily illustrated via a series of three straightforward classroom demonstrations for high school and general chemistry courses. Properties of carbon dioxide, sulfur dioxide, and magnesium oxide are revealed inexpensively and safely. Additionally, the very different kinetics of hydration of…

  14. Methemoglobinemia secondary to automobile exhaust fumes

    Energy Technology Data Exchange (ETDEWEB)

    Laney, R.F.; Hoffman, R.S. (Department of Emergency Medicine, Morristown Memorial Hospital, NJ (United States))

    1992-09-01

    Methemoglobinemia is an uncommon cause of cyanosis. A 28-year-old male presented to the emergency department cyanotic and short of breath after exposure to noxious automobile fumes. He did not improve with the administration of 100% oxygen therapy. The initial arterial blood gas with cooximetry was: pH of 7.38, PaCO2 of 43 mm Hg, PaO2 of 118 mm Hg, measured oxygen saturation of 70%, and a methemoglobin level of 24.8%. Methylene blue was given (2 mg/kg intravenously) and the patient's symptoms resolved. On the following day he was discharged home without complication. A comprehensive review of the literature revealed no reported cases of methemoglobinemia secondary to accidental exposure to exhaust fumes.17 references.

  15. PROTEIN METABOLISM IN REGENERATING WOUND TISSUE: FUNCTION OF THE SULFUR AMINO ACIDS.

    Science.gov (United States)

    PROTEINS, *TISSUES(BIOLOGY), METABOLISM, TISSUES(BIOLOGY), REGENERATION(ENGINEERING), WOUNDS AND INJURIES, TISSUES(BIOLOGY), TRACER STUDIES, METHIONINE, COLLAGEN, TYROSINE, BIOSYNTHESIS, AMINO ACIDS .

  16. Characterization of shortday onion cultivars of 3 pungency levels with flavor precursor, free amino acid, sulfur, and sugar contents.

    Science.gov (United States)

    Lee, Eun Jin; Yoo, Kil Sun; Jifon, John; Patil, Bhimanagouda S

    2009-08-01

    This study was conducted to characterize shortday onions of 3 pungency levels with regard to the composition of flavor related compounds. A total of 9 onion breeding lines/cultivars were selected, per each of low, medium, and high pungency level, with pyruvic acid contents of 1.9 to 2.8, 4.8 to 5.4, and 7.2 to 8.3 micromoles/mL, respectively. The contents of flavor precursors (S-1-propenyl-L-cysteine sulfoxide [1-PeCSO] and S-methyl-L-cysteine-sulfoxide [MCSO]), free amino acids, free sugars, soluble solids (SSC), and total sulfur (S) in onion bulbs were measured. The flavor precursor contents ranged from 0.03 to 0.16 mg/g fresh weight (FW) for MCSO, 0.07 to 0.65 mg for 1-PeCSO, and 0.12 to 0.77 mg in total, and precursor contents increased with the pungency levels. Onions of different pungency levels did not differ in the contents of individual or total free amino acids, and the most abundant amino acids were glutamine and arginine. The total sugar contents ranged from 50 to 75 mg/g FW, and total S contents (3.5 to 5.1 mg/g dry weight) were not correlated with the pungency levels. However, pungency levels were correlated inversely with bulb weight and positively with SSC, presumably by the effect of dilution. This study indicates that onion pungency is primarily determined by the content of flavor precursor compounds and not by total S, total sugars, or individual/total free amino acids in shortday bulbs.

  17. Oxidation of SO2 by stabilized Criegee intermediate (sCI radicals as a crucial source for atmospheric sulfuric acid concentrations

    Directory of Open Access Journals (Sweden)

    M. Boy

    2013-04-01

    Full Text Available The effect of increased reaction rates of stabilized Criegee intermediates (sCIs with SO2 to produce sulfuric acid is investigated using data from two different locations, SMEAR II, Hyytiälä, Finland, and Hohenpeissenberg, Germany. Results from MALTE, a zero-dimensional model, show that using previous values for the rate coefficients of sCI + SO2, the model underestimates gas phase H2SO4 by up to a factor of two when compared to measurements. Using the rate coefficients recently calculated by Mauldin et al. (2012 increases sulfuric acid by 30–40%. Increasing the rate coefficient for formaldehyde oxide (CH2OO with SO2 according to the values recommended by Welz et al. (2012 increases the H2SO4 yield by 3–6%. Taken together, these increases lead to the conclusion that, depending on their concentrations, the reaction of stabilized Criegee intermediates with SO2 could contribute as much as 33–46% to atmospheric sulfuric acid gas phase concentrations at ground level. Using the SMEAR II data, results from SOSA, a one-dimensional model, show that the contribution from sCI reactions to sulfuric acid production is most important in the canopy, where the concentrations of organic compounds are the highest, but can have significant effects on sulfuric acid concentrations up to 100 m. The recent findings that the reaction of sCI + SO2 is much faster than previously thought together with these results show that the inclusion of this new oxidation mechanism could be crucial in regional as well as global models.

  18. Cellulose-Sulfuric Acid as an Efficient Biosupported Catalyst in One-Pot Synthesis of Novel Heteroaryl Substituted 1,4-Dihydropyridines

    Directory of Open Access Journals (Sweden)

    Manouchehr Mamaghani

    2013-01-01

    Full Text Available An efficient method for the synthesis of new heteroaryl substituted dihydropyridine derivatives via a one-pot four-component coupling reaction of heteroaldehyde, 1,3-diketone, ethylacetoacetate, and amonium acetate in the presence of cellulose-sulfuric acid as a biosupported solid acid catalyst was developed. The reaction gave the new derivatives of fused 1,4-dihydropyridines in lower reaction times and excellent yields (85–95%.

  19. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release.

    Science.gov (United States)

    Moran, Ernesto E; Timerghazin, Qadir K; Kwong, Elizabeth; English, Ann M

    2011-03-31

    The denitrosation of three primary S-nitrosothiols (RSNO; S-nitrosocysteine, S-nitroso-N-acetylcysteine, and S-nitrosoglutathione) and two tertiary RSNOs (S-nitrosopenicillamine and S-nitroso-N-acetylpenicillamine) was investigated in 3.75 M H(2)SO(4) to probe the mechanism of acid-catalyzed RSNO hydrolysis and its dependence on RSNO structure. This reversible reaction was forced to proceed in the denitrosation direction by trapping the nitrosating agent with HN(3). The primary RSNOs exhibited hydrolysis k(obs) values of ∼2 × 10(-4) s(-1), and the tertiary RSNO k(obs) values were an order of magnitude higher. Product analysis by HPLC revealed that the parent thiols (RSHs) were formed in 90-100% yield on 79-99% RSNO denitrosation. Possible hydrolysis mechanisms were studied computationally at the CBS-QB3 level using S-nitrosomethanethiol (MeSNO) as a model RSNO. Consideration of RSNOs as a combination of conventional R-S-N═O, zwitterionic R-S(+)═N-O(-), and RS(-)/NO(+) ion-pair resonance structures was key in understanding the mechanistic details of acid-catalyzed hydrolysis. Protonation of the S-nitroso oxygen or nitrogen activates the sulfur and nucleophilic attack by H(2)O at this atom leads to the formation of the sulfoxide-protonated N-hydroxysulfinamide, MeS(+)(OH)NHOH, with barriers of 19 and 29 kcal/mol, respectively. Proton loss and reprotonation at the nitrogen lead to secondary hydrolysis that produces the sulfinic acid MeS(═O)OH and NH(2)OH. Notably, no low-energy RSNO hydrolysis pathway for HNO release was found in the computational analysis. Protonation of the S-nitroso sulfur gives rise to NO(+) release with a low activation barrier (ΔH(double dagger)(calc) ≈ 6 kcal/mol) and the formation of MeSH in agreement with experiment. The experimental k(obs) can be expressed as K(a)k(1), where K(a) is the acid dissociation constant for protonation of the S-nitroso sulfur and k(1) the pseudo-first-order hydrolysis rate constant. Given the low

  20. Adsorption of β-Naphthalenesulfonic Acid/Sulfuric Acid from Their Solution by Weakly Basic Resin%2-萘磺酸/硫酸在弱碱性树脂上的吸附平衡研究

    Institute of Scientific and Technical Information of China (English)

    李长海; 史鹏飞; 余政哲; 石宏仁

    2003-01-01

    Experiments for single and bisolute competitive adsorption were carried out to investigate the adsorptionbehavior ofβ-naphthalenesulfonic acid (NSA) and sulfuric acid from their solution at 25℃ onto weakly basic resinD301R. Adsorption affinity of sulfuric acid on D301R was found to be much higher than that of NSA. The dataof single-solute adsorption were fitted to the Langmuir model and the Freundlich adsorption model. The idealadsorbed solution theory (IAST) coupled with the single-solute adsorption models were used to predict the bisolutecompetitive adsorption equilibria. The IAST coupled with the Langmuir and the Freundlich model for sulfuric acidand NSA, respectively, yields the favorable representation of the bisolute competitive adsorption behavior.

  1. Requirement of Digestible Sulfur Amino Acids in Laying Hens Fed Sorghum- and Soybean Meal-Based Diets

    Directory of Open Access Journals (Sweden)

    RS Gomez

    Full Text Available ABSTRACT Two experiments were done to evaluate the effect of increasing levels of dietary digestible methionine (Met and Met:cysteine (Met:Cys ratio on the productivity of Hy-Line W-36 laying hens fed sorghum- and soybean meal-based diets. In Exp. 1, 160 hens from 68 to 75 weeks of age were assigned to four dietary levels of digestible Met (0.20 0.24, 0.28 and 0.32%. The digestible total sulfur amino acids:Lysine (TSAA:Lys ratios were: 62, 68, 76 and 84%. In Exp. 2, 192 hens from 76-83 weeks of age were assigned to four dietary digestible Met:Cys ratios (160, 116.7, 85.7 and 62.5%. The digestible TSAA:Lys ratio was kept constant across diets (80%. Results were subjected to ANOVA and linear regression analyses. In Exp. 1, optimal egg production, egg mass, and feed efficiency responses were observed at 0.30 and 0.50% of dietary digestible Met and TSAA, respectively (quadratic effect, p<0.05. Live performance was maximized with digestible Met and TSAA in takes of 288 and 478 mg/hen/d, respectively. In Exp. 2, optimal egg production and feed efficiency responses were observed at 151 and 150% of dietary digestible Met:Cys ratios, respectively (quadratic effect, p<0.05. The digestible Met, Cys and TSAA intake to maximize egg production and feed efficiency were 313, 207 and 510 mg/hen/d, respectively. The requirements for sulfur AA in Hy-Line W-36 hens from 68 to 83 weeks of age fed sorghum- and soybean meal-based diets fell inside the range of the requirements previously estimated in hens fed corn-soybean meal based diets.

  2. Permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland.

    Science.gov (United States)

    Susanti, Dwi; Johnson, Eric F; Lapidus, Alla; Han, James; Reddy, T B K; Pilay, Manoj; Ivanova, Natalia N; Markowitz, Victor M; Woyke, Tanja; Kyrpides, Nikos C; Mukhopadhyay, Biswarup

    2016-01-01

    This report presents the permanent draft genome sequence of Desulfurococcus mobilis type strain DSM 2161, an obligate anaerobic hyperthermophilic crenarchaeon that was isolated from acidic hot springs in Hveravellir, Iceland. D. mobilis utilizes peptides as carbon and energy sources and reduces elemental sulfur to H2S. A metabolic construction derived from the draft genome identified putative pathways for peptide degradation and sulfur respiration in this archaeon. Existence of several hydrogenase genes in the genome supported previous findings that H2 is produced during the growth of D. mobilis in the absence of sulfur. Interestingly, genes encoding glucose transport and utilization systems also exist in the D. mobilis genome though this archaeon does not utilize carbohydrate for growth. The draft genome of D. mobilis provides an additional mean for comparative genomic analysis of desulfurococci. In addition, our analysis on the Average Nucleotide Identity between D. mobilis and Desulfurococcus mucosus suggested that these two desulfurococci are two different strains of the same species.

  3. Management Observation Facility Fume Hoods

    Energy Technology Data Exchange (ETDEWEB)

    Sundsmo, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-17

    I reviewed all the hoods used for AS&I work in buildings 253, 254, and 255. All have had the minimum annual surveys conducted and some have had semi-annual reviews. The operating parameter labels are posted consistent to the right or above right (with the only exception the perchloric acid hood in 1734- on the left) which facilitates users knowing where to check for information. All hoods with sash doors (except the SE one in 1734 have a note on the Operating Parameters label to "keep sash doors closed". Again, this was checking consistency. No surveys were missed.

  4. Oxidation of Liquid Silicon in a Medium Scale Induction Furnace: Examination of the Fuming Rate and Fume Composition

    OpenAIRE

    Smith, Nicholas

    2012-01-01

    The aim of this work was to study the effect of flow rate on the fuming rate/silica flux of liquid silicon in order to gain a better understanding of the silica fuming during industrial ladle refining during silicon production. The formation of silica fume is the results when the liquid silicon is exposed to air. This silica fume has been shown to be a health hazard when breathed by plant workers and increased environmental regulations call for its elimination. This work is being done as part...

  5. The Inhibition of Aluminum Corrosion in Sulfuric Acid by Poly(1-vinyl-3-alkyl-imidazolium Hexafluorophosphate

    Directory of Open Access Journals (Sweden)

    Paulina Arellanes-Lozada

    2014-08-01

    Full Text Available Compounds of poly(ionic liquids (PILs, derived from imidazole with different alkylic chain lengths located in the third position of the imidazolium ring (poly(1-vinyl-3-dodecyl-imidazolium (PImC12, poly(1-vinyl-3-octylimidazolium (PImC8 and poly(1-vinyl-3-butylimidazolium (PImC4 hexafluorophosphate were synthesized. These compounds were tested as corrosion inhibitors on aluminum alloy AA6061 in diluted sulfuric acid (0.1–1 M H2SO4 by weight loss tests, polarization resistance measurements and inductively coupled plasma optical emission spectroscopy. Langmuir’s isotherms suggested film formation on bare alloy while standard free energy indicated inhibition by a physisorption process. However, compound efficiencies as inhibitors ranked low (PImC12 > PImC8 > PImC4 to reach 61% for PImC12 in highly diluted acidic solution. Apparently, the high mobility of sulfates favored their adsorption in comparison to PILs. The surface film displayed general corrosion, and pitting occurred as a consequence of PILs’ partial inhibition along with a continuous dissolution of defective patchy film on formation. A slight improvement in efficiency was displayed by compounds having high molecular weight and a long alkyl chain, as a consequence of steric hindrance and PIL interactions.

  6. End-Permian catastrophicevent of marine acidification by hydrated sulfuric acid: Mineralogical evidence from Meishan Section of South China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The event Permian-Triassic boundary (EPTB) is well marked by the famous "white clay" of bed 25 in Meishan section located in Changxing county, Zhejiang province of China. In this paper, the white clay as well as its overlying and underlying sequences is investigated particularly for mineralogical records. The investigation yields three findings that contribute to better understanding the scenario of the EPTB mass extinction. 1) A red goethite-rich microlayer (0.3 mm) is first recognized to be horizontally widespread on the base of the white clay in the section. The microlayer should be considered as a macro geochemical indicator naturally tracing a catastrophic initiation at the EPTB. 2) An interruption of marine carbonate deposition is discovered due to blank of carbonate minerals in the white clay. The discovery provides significant evidence of a marine acidification event that would occur in the paleo-ocean with marine acidity estimated at pH<4.0 at least and be triggered by the ultimate catastrophic event. 3) Gypsum as typical sulfate mineral is identified to exist in the white clay with high abundance (34%). The fact reveals that hydrated sulfuric acid would be present on the bottom of the ocean and thus chemically create the marine acidification event. Furthermore, it is suggested that the marine acidification event could not only directly kill some marine biotic species but also result in some derivative events such as the benthic anoxia and the temporal global temperature-increase during the EPTB mass extinction.

  7. submitter Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber

    CERN Document Server

    Ahlm, L; Schobesberger, S; Praplan, A P; Kim, J; Tikkanen, O -P; Lawler, M J; Smith, J N; Tröstl, J; Acosta Navarro, J C; Baltensperger, U; Bianchi, F; Donahue, N M; Duplissy, J; Franchin, A; Jokinen, T; Keskinen, H; Kirkby, J; Kürten, A; Laaksonen, A; Lehtipalo, K; Petäjä, T; Riccobono, F; Rissanen, M P; Rondo, L; Schallhart, S; Simon, M; Winkler, P M; Worsnop, D R; Virtanen, A; Riipinen, I

    2016-01-01

    Dimethylamine (DMA) has a stabilizing effect on sulfuric acid (SA) clusters, and the SA and DMA molecules and clusters likely play important roles in both aerosol particle formation and growth in the atmosphere. We use the monodisperse particle growth model for acid-base chemistry in nanoparticle growth (MABNAG) together with direct and indirect observations from the CLOUD4 and CLOUD7 experiments in the cosmics leaving outdoor droplets (CLOUD) chamber at CERN to investigate the size and composition evolution of freshly formed particles consisting of SA, DMA, and water as they grow to 20 nm in dry diameter. Hygroscopic growth factors are measured using a nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA), which combined with simulations of particle water uptake using the thermodynamic extended-aerosol inorganics model (E-AIM) constrain the chemical composition. MABNAG predicts a particle-phase ratio between DMA and SA molecules of 1.1–1.3 for a 2 nm particle and DMA gas-phase mixing ratio...

  8. Effect of Sulfur Acid Corrosion on the Luminescent Intensity of Plasma-Sprayed YAG:Ce Coatings

    Science.gov (United States)

    Wang, Weize; Zeng, Peng; Wang, Hehui; Yu, Jingye; Wu, Liangmin

    2016-12-01

    In order to monitor the corrosion condition of components, plasma-sprayed YAG:Ce coating was prepared for the detection, which could develop the application of plasma spraying. The effect of sulfuric acid corrosion on the microstructure, phase composition and luminescence intensity of coatings was studied. The powder was synthesized by the high-temperature solid-state method. Microstructure and phases were characterized through using SEM and XRD, respectively. Effect of immersion time in the acid was studied on the luminescence intensity. It was found that the phase composition of the powder was dominated by YAG (Y3Al5O12). More pores could be observed in coatings with the increase in immersion time. Sprayed coatings mainly included phases of YAG and YAP (YAlO3). The position of the XRD peaks of coatings was changing during the immersion. The luminescence intensity showed the fluctuation tendency with the immersion time, which related to the coating porosity, phase composition and the migration of the diffract peak.

  9. A dielectric barrier discharge terminally inactivates RNase A by oxidizing sulfur-containing amino acids and breaking structural disulfide bonds

    Science.gov (United States)

    Lackmann, J.-W.; Baldus, S.; Steinborn, E.; Edengeiser, E.; Kogelheide, F.; Langklotz, S.; Schneider, S.; Leichert, L. I. O.; Benedikt, J.; Awakowicz, P.; Bandow, J. E.

    2015-12-01

    RNases are among the most stable proteins in nature. They even refold spontaneously after heat inactivation, regaining full activity. Due to their stability and universal presence, they often pose a problem when experimenting with RNA. We investigated the capabilities of nonthermal atmospheric-pressure plasmas to inactivate RNase A and studied the inactivation mechanism on a molecular level. While prolonged heating above 90 °C is required for heat inactivating RNase A, direct plasma treatment with a dielectric barrier discharge (DBD) source caused permanent inactivation within minutes. Circular dichroism spectroscopy showed that DBD-treated RNase A unfolds rapidly. Raman spectroscopy indicated methionine modifications and formation of sulfonic acid. A mass spectrometry-based analysis of the protein modifications that occur during plasma treatment over time revealed that methionine sulfoxide formation coincides with protein inactivation. Chemical reduction of methionine sulfoxides partially restored RNase A activity confirming that sulfoxidation is causal and sufficient for RNase A inactivation. Continued plasma exposure led to over-oxidation of structural disulfide bonds. Using antibodies, disulfide bond over-oxidation was shown to be a general protein inactivation mechanism of the DBD. The antibody’s heavy and light chains linked by disulfide bonds dissociated after plasma exposure. Based on their ability to inactivate proteins by oxidation of sulfur-containing amino acids and over-oxidation of disulfide bonds, DBD devices present a viable option for inactivating undesired or hazardous proteins on heat or solvent-sensitive surfaces.

  10. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    Science.gov (United States)

    Vet, Robert; Artz, Richard S.; Carou, Silvina

    2014-08-01

    Investigating and assessing the chemical composition of precipitation and atmospheric deposition is essential to understanding how atmospheric pollutants contribute to contemporary environmental concerns including ecosystem acidification and eutrophication, loss of biodiversity, air pollution and global climate change. Evidence of the link between atmospheric deposition and these environmental issues is well established. The state of scientific understanding of this link is that present levels of atmospheric deposition of sulfur and nitrogen adversely affect terrestrial and aquatic ecosystems, putting forest sustainability and aquatic biodiversity at risk. Nitrogen and phosphorus loadings are linked to impacts on the diversity of terrestrial and aquatic vegetation through biological cycling, and atmospheric deposition plays a major role in the emission-transport-conversion-loss cycle of chemicals in the atmosphere as well as the formation of particulate matter and ozone in the troposphere. Evidence also shows that atmospheric constituents are changing the earth's climate through direct and indirect atmospheric processes. This Special Issue, comprising a single article titled "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus", presents a recent comprehensive review of precipitation chemistry and atmospheric deposition at global and regional scales. The information in the Special Issue, including all supporting data sets and maps, is anticipated to be of great value not only to the atmospheric deposition community but also to other science communities including those that study ecosystem impacts, human health effects, nutrient processing, climate change, global and hemispheric modeling and biogeochemical cycling. Understanding and quantifying pollutant loss from the atmosphere is, and will remain, an important component of each of these scientific fields as they

  11. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    Science.gov (United States)

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and (1)H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  12. Sulfur acidic mining lakes in Germany: ways of controlling geogenic acidification

    Energy Technology Data Exchange (ETDEWEB)

    Klapper, H.; Schultze, M. [UFZ GmbH Centre for Environmental Research Leipzig-Halle, Magdeburg (Germany). Section of Inland Water Research

    1997-12-31

    The main cause of the sulphurous acidity found in about 100 mining lakes in eastern Germany is oxidation of pyrite from surface lignite mining. Methods for neutralization of these lakes into well functioning ecosystems are described, in particular, water pollution abatement and the related problems of salinization, contamination, eutrophication, saprobization, and infection. The chemical characteristics and life conditions of the acidic environment and acidification control are discussed. Several ways to foster alkalinity production by microbial processes are outlined. 25 refs., 6 figs., 1 tab.

  13. Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid

    Directory of Open Access Journals (Sweden)

    Qingwen Wang

    2013-09-01

    Full Text Available Crude bio-oil from pine chip fast pyrolysis was upgraded with olefins (1-octene, cyclohexene, 1,7-octadiene, and 2,4,4-trimethylpentene plus 1-butanol (iso-butanol, t-butanol and ethanol at 120 °C using a silica sulfuric acid (SSA catalyst that possesses a good catalytic activity and stability. Gas chromatography-mass spectrometry (GC-MS, Fourier transform infrared spectroscopy (FT-IR and proton nuclear magnetic resonance (1H-NMR analysis showed that upgrading sharply increased ester content and decreased the amounts of levoglucosan, phenols, polyhydric alcohols and carboxylic acids. Upgrading lowered acidity (pH value rose from 2.5 to >3.5, removed the unpleasant odor and increased hydrocarbon solubility. Water content dramatically decreased from 37.2% to about 7.0% and the heating value increased from 12.6 MJ·kg−1 to about 31.9 MJ·kg−1. This work has proved that bio-oil upgrading with a primary olefin plus 1-butanol is a feasible route where all the original heating value of the bio-oil plus the added olefin and alcohol are present in the resulting fuel.

  14. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    Science.gov (United States)

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  15. Fabrication of the micro/nano-structure superhydrophobic surface on aluminum alloy by sulfuric acid anodizing and polypropylene coating.

    Science.gov (United States)

    Wu, Ruomei; Liang, Shuquan; Liu, Jun; Pan, Anqiang; Yu, Y; Tang, Yan

    2013-03-01

    The preparation of the superhydrophobic surface on aluminum alloy by anodizing and polypropylene (PP) coating was reported. Both the different anodizing process and different PP coatings of aluminum alloy were investigated. The effects of different anodizing conditions, such as electrolyte concentration, anodization time and current on the superhydrophobic surface were discussed. By PP coating after anodizing, a good superhydrophobic surface was facilely fabricated. The optimum conditions for anodizing were determined by orthogonal experiments. After the aluminium-alloy was grinded with 600# sandpaper, pretreated by 73 g/L hydrochloric acid solution at 1 min, when the concentration of sulfuric acid was 180 g/L, the concentration of oxalic acid was 5 g/L, the concentration of potassium dichromate was 10 g/L, the concentration of chloride sodium was 50 g/L and 63 g/L of glycerol, anodization time was 20 min, and anodization current was 1.2 A/dm2, anodization temperature was 30-35 degrees C, the best micro-nanostructure aluminum alloy films was obtained. On the other hand, the PP with different concentrations was used to the PP with different concentrations was used to coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was achieved by coating PP, and the duration of the superhydrophobic surface was improved by modifying the coat the aluminum alloy surface after anodizing. The results showed that the best superhydrophobicity was surface with high concentration PP. The morphologies of micro/nano-structure superhydrophobic surface were further confirmed by scanning electron microscope (SEM). The material of PP with the low surface free energy combined with the micro/nano-structures of the surface resulted in the superhydrophobicity of the aluminum alloy surface.

  16. High effective silica fume alkali activator

    Indian Academy of Sciences (India)

    Vladimír Živica

    2004-04-01

    Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali activated cements. A significant factor influencing their properties is alkali activator used. In this paper we present a new high effective alkali activator prepared from silica fume and its effectiveness. According to the results obtained this activator seems to be more effective than currently used activators like natrium hydroxide, natrium carbonate, and water glass.

  17. Health hazards from inhalation of metal fumes

    Energy Technology Data Exchange (ETDEWEB)

    Piscator, M.

    1976-04-01

    Hazards to the health of workers exposed to metal fumes in high-temperature industrial operations (such as in shipyards) are detailed. After oxidation, the metals appear as submicron particles which are deposited in various parts of the respiratory system. Mixed exposures and a wide variety of symptoms may occur, depending on the type of metal and the intensity and duration of exposure. The major metal may not always be the most dangerous. Two of the most hazardous metals are lead and cadmium, the former being well recognized but still a problem, the latter often unrecognized but capable of causing severe, acute or chronic disease. (RFC)

  18. Critical evaluation of sequential leaching procedures for the determination of Ni and Mn species in welding fumes.

    Science.gov (United States)

    Berlinger, B; Náray, M; Sajó, I; Záray, G

    2009-06-01

    In this work, welding fume samples were collected in a welding plant, where corrosion-resistant steel and unalloyed structural steel were welded by gas metal arc welding (GMAW) and manual metal arc welding (MMAW) techniques. The welding fumes were sampled with a fixed-point sampling strategy applying Higgins-Dewell cyclones. The following solutions were used to dissolve the different species of Ni and Mn: ammonium citrate solution [1.7% (m/v) diammonium hydrogen citrate and 0.5% (m/v) citric acid monohydrate] for 'soluble' Ni, 50:1 methanol-bromine solution for metallic Ni, 0.01 M ammonium acetate for soluble Mn, 25% acetic acid for Mn(0) and Mn(2+) and 0.5% hydroxylammonium chloride in 25% acetic acid for Mn(3+) and Mn(4+). 'Insoluble' Ni and Mn contents of the samples were determined after microwave-assisted digestion with the mixture of concentrated (cc). HNO(3), cc. HCl and cc. HF. The sample solutions were analysed by inductively coupled plasma quadrupole mass spectrometry and inductively coupled plasma atomic emission spectrometry. The levels of total Ni and Mn measured in the workplace air were different because of significant differences of the fume generation rates and the distributions of the components in the welding fumes between the welding processes. For quality control of the leaching process, dissolution of the pure stoichiometric Mn and Ni compounds and their mixtures weighing was investigated using the optimized leaching conditions. The results showed the adequacy of the procedure for the pure metal compounds. Based on the extraction procedures, the predominant oxidation states of Ni and Mn proved to be very different depending on the welding techniques and type of the welded steels. The largest amount of Mn in GMAW fumes were found as insoluble Mn (46 and 35% in case of corrosion-resistant steel and unalloyed structural steel, respectively), while MMAW fumes contain mainly soluble Mn, Mn(0) and Mn(2+) (78%) and Mn(3+) and Mn(4+) (54%) in case of

  19. HYDRAULIC CONDUCTIVITY OF GCL WITH BENTONITE – SILICA FUME MATRIX

    Directory of Open Access Journals (Sweden)

    Mudimby Andal

    2012-12-01

    Full Text Available This paper presents the influence of partial replacement of bentonite by silica fume which is used in the manufacture of Geosynthetic Clay Liner (GCL. Geosynthetic Clay Liners consist bentonite (Sodium Based sandwiched between two geotextile. Benotinite, having low permeability imparts better hydraulic performance to the GCL to act as liner. In this investigation, an attempt has been made to study the hydraulic conductivity of GCL with modified Bentonite. The bentonite is partially replaced by silica fume, a waste product of ferroalloy industries. Silica fume reduces the cracking characteristics of bentonite on desiccation. The replacement levels varied from 0% to 50% at a gradual increment of 5%. The test results indicated that partial replacement of bentonite by silica fume did not affected the permeability of bentonite even at 30%. Beyond 45% replacement levels the bentonite- silica fume mixtures showed increased permeability. This increased permeability also well within permeability limits of liners 1×10-9 m/sec.

  20. HYDRAULIC CONDUCTIVITY OF GCL WITH BENTONITE - SILICA FUME MATRIX

    Directory of Open Access Journals (Sweden)

    M. Andal

    2012-01-01

    Full Text Available This paper presents the influence of partial replacement of bentonite by silica fume which is used in the manufacture of Geosynthetic Clay Liner (GCL. Geosynthetic Clay Liners consist bentonite (Sodium Based sandwiched between two geotextile. Benotinite, having low permeability imparts better hydraulic performance to the GCL to act as liner. In this investigation, an attempt has been made to study the hydraulic conductivity of GCL with modified Bentonite. The bentonite is partially replaced by silica fume, a waste product of ferroalloy industries. Silica fume reduces the cracking characteristics of bentonite on desiccation. The replacement levels varied from 0% to 50% at a gradual increment of 5%. The test results indicated that partial replacement of bentonite by silica fume did not affected the permeability of bentonite even at 30%. Beyond 45% replacement levels the bentonite- silica fume mixtures showed increased permeability. This increased permeability also well within permeability limits of liners 1×10-9m/sec.

  1. Genotoxicity of fumes from heated cooking oils produced in Taiwan.

    Science.gov (United States)

    Wu, P F; Chiang, T A; Ko, Y C; Lee, H

    1999-02-01

    Epidemiologic investigations of lung cancer among Taiwanese nonsmoking women have found that exposure to fumes from cooking oils may be an important risk factor. Fume samples from three different commercial cooking oils (lard, soybean, and peanut oils) often used in Taiwan for preparing Chinese meals were collected for genotoxicity analysis in SOS chromotest and sister chromatid exchange (SCE) assays. The induction factors of the SOS chromotest in Escherichia coli PQ 37 were dependent on the concentrations of lard and soybean cooking oil extracts without S9 mix. In addition, when CHO-K1 cells were exposed to condensates of cooking oil fumes for 12 h, SCEs showed a dose-related increase in extracts of lard and soybean oil fumes. This result provides experimental evidence and is in accordance with the findings of epidemiologic studies that women exposed to the emitted fumes of cooking oils are at an increase risk of contracting lung cancer. Copyright 1999 Academic Press.

  2. Degradation Kinetics of Xylose and Glucose in Hydrolysate Containing Dilute Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    亓伟; 张素平; 许庆利; 任铮伟; 颜涌捷

    2008-01-01

    In preparation of fuel alcohol from biomass as feedstock,hydrolysis with dilute acid as catalyst iS one way to produce fermentable saccharide,xylose and glucose.However,the acid is also the catalyst in degradation of xylose and glucose and the yield of sacchride is dependent on the kinetic behaviors of saccharide.The degradation kinetics of xylose and glucose in the hydrolysate Was investigated under the conventional process conditions of hydrogen ion concentration from O.05 to 0.2 mol/L and temperature from 150 to 200℃.With a numerical calculation method,the kinetic parameters Were estimated,and the activation energy of xylose and glucose in the degradation reaction was obtained.The kinetic equations correlating the effect of hydrogen ion concentration on the rate constants of degradation reaction were established.Comparison between the calculated results from the equations and experimental ones proved that the established kinetic model could satisfactorily predict the degradation behavior of xylose and glucose in the acidic hydrolysate.

  3. Benevolent behavior ofKleinia grandifloraleaf extract as a green corrosion inhibitor for mild steel in sulfuric acid solution

    Institute of Scientific and Technical Information of China (English)

    Muthukrishnan Pitchaipillai; Karthik Raj; Jeyaprabha Balasubramanian; Prakash Periakaruppan

    2014-01-01

    The ethanolic extract ofKleinia grandifloraleaves was characterized and tested for its potential anticorrosion properties on mild steel in 1 M H2SO4 medium using mass-loss analysis, potentiodynamic polarization measurements, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, UV–visible spectroscopy, and X-ray diffraction analysis. The effect of temperature on the corrosion behavior of mild steel was studied in the range of 308 to 328 K. The inhibition efficiency was observed to increase with increasing concentration of the extract. Polarization curves revealed that theKleinia grandiflora leaf extract is a mixed inhibitor. Impedance diagrams revealed that an increase ofKleinia grandiflora leaf extract concentration increased the charge transfer resistance and decreased the double-layer capacitance. The adsorption process obeys Langmuir’s model, with a standard free energy of adsorption (∆Gads) of−18.62 kJ/mol. The obtained results indicate that theKleinia grandiflora leaf extract can serve as an effective inhibitor for the corrosion of mild steel in a sulfuric acid medium.

  4. The Mixture of Salvianolic Acids from Salvia miltiorrhiza and Total Flavonoids from Anemarrhena asphodeloides Attenuate Sulfur Mustard-Induced Injury.

    Science.gov (United States)

    Li, Jianzhong; Chen, Linlin; Wu, Hongyuan; Lu, Yiming; Hu, Zhenlin; Lu, Bin; Zhang, Liming; Chai, Yifeng; Zhang, Junping

    2015-10-15

    Sulfur mustard (SM) is a vesicating chemical warfare agent used in numerous military conflicts and remains a potential chemical threat to the present day. Exposure to SM causes the depletion of cellular antioxidant thiols, mainly glutathione (GSH), which may lead to a series of SM-associated toxic responses. MSTF is the mixture of salvianolic acids (SA) of Salvia miltiorrhiza and total flavonoids (TFA) of Anemarrhena asphodeloides. SA is the main water-soluble phenolic compound in Salvia miltiorrhiza. TFA mainly includes mangiferin, isomangiferin and neomangiferin. SA and TFA possess diverse activities, including antioxidant and anti-inflammation activities. In this study, we mainly investigated the therapeutic effects of MSTF on SM toxicity in Sprague Dawley rats. Treatment with MSTF 1 h after subcutaneous injection with 3.5 mg/kg (equivalent to 0.7 LD50) SM significantly increased the survival levels of rats and attenuated the SM-induced morphological changes in the testis, small intestine and liver tissues. Treatment with MSTF at doses of 60 and 120 mg/kg caused a significant (ptotal of 36 pathways, such as the MAPK signaling pathway, pathways in cancer, antigen processing and presentation. These data suggest that MSTF attenuates SM-induced injury by increasing GSH and targeting multiple pathways, including the MAPK signaling pathway, as well as antigen processing and presentation. These results suggest that MSTF has the potential to be used as a potential therapeutic agent against SM injuries.

  5. Kinetics and Mechanism of Iridium(Ⅲ)-Catalyzed Oxidation of Ethanol Amine by Cerium(Ⅳ) in Sulfuric Acid Media

    Institute of Scientific and Technical Information of China (English)

    ZHAI Yong-qing; LIU Hong-mei; YANG Lin; YANG Guo-zhong; SONG Wen-yu; LIU Yu-kai

    2007-01-01

    In this study, the kinetics and mechanism of the iridium(Ⅲ)-catalyzed oxidation of ethanol amine(EAN) by cerium(Ⅳ) in a sulfuric acid medium was investigated using titrimetric technique of redox in a temperature range of 298-313 K. It was found that the reaction is of first order with respect to Ce(Ⅳ) and Ir(Ⅲ), and a positive fractional order with respect to EAN. It was also found that the pseudo-first-order([EAN](》)[Ce(Ⅳ)]) rate constant kobs decreases with the increase of [H+] and [HSO-4]. Under the protection of nitrogen gas, the reaction system can initiate the polymerization of acrylonitrile, indicating the generation of free radicals. On the basis of the experimental results, a suitable mechanism was proposed. From the dependence of kobs on the concentration of hydrogen sulfate, Ce(SO4)2 was found to be the kinetically active species. The rate constants of the rate-determining step together with the activation parameters were evaluated.

  6. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves

    Science.gov (United States)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-01

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  7. The increase of surface area of a Brazilian palygorskite clay activated with sulfuric acid solutions using a factorial design

    Directory of Open Access Journals (Sweden)

    R. N. Oliveira

    2013-01-01

    Full Text Available Palygorskite is fibrous clay in which the structural tetrahedral and octahedral layers are organized in a way that structural channels are formed, leading to high surface area. However, impurities inside the channels and aggregated ones considerably reduce the available area. In order to increase the surface area, an activation treatment can be considered useful. The goal of this work is the activation of palygorskite from Guadalupe, Piauí, via sulfuric acid treatment using a two-level factorial design. The influence of three parameters (solution molarity, temperature and time on BET surface area was determined. Moreover, samples were characterized via X-ray diffraction (XRD and fluorescence (XRF, Fourier-transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM. The largest surface area (282 m²/g without considerable changes in clay structure and morphology was found in a sample treated with 5M H2SO4 at 70°C for 1h. The main parameters that favored the improvement of the surface area were the solution's molarity, temperature and their interaction.

  8. Effect of Aging Temperature on Corrosion Behavior of Sintered 17-4 PH Stainless Steel in Dilute Sulfuric Acid Solution

    Science.gov (United States)

    Szewczyk-Nykiel, Aneta; Kazior, Jan

    2017-07-01

    The general corrosion behavior of sintered 17-4 PH stainless steel processed under different processing conditions in dilute sulfuric acid solution at 25 °C was studied by open-circuit potential measurement and potentiodynamic polarization technique. The corrosion resistance was evaluated based on electrochemical parameters, such as polarization resistance, corrosion potential, corrosion current density as well as corrosion rate. The results showed that the precipitation-hardening treatment could significantly improve the corrosion resistance of the sintered 17-4 PH stainless steel in studied environment. As far as the influence of aging temperature on corrosion behavior of the sintered 17-4 PH stainless steel is concerned, polarization resistance and corrosion rate are reduced with increasing aging temperature from 480 up to 500 °C regardless of the temperature of solution treatment. It can be concluded that the highest corrosion resistance in 0.5 M H2SO4 solution exhibits 17-4 PH after solution treatment at 1040 °C followed by aging at 480 °C.

  9. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves.

    Science.gov (United States)

    Dixit, Garima; Singh, Amit Pal; Kumar, Amit; Dwivedi, Sanjay; Deeba, Farah; Kumar, Smita; Suman, Shankar; Adhikari, Bijan; Shukla, Yogeshwar; Trivedi, Prabodh Kumar; Pandey, Vivek; Tripathi, Rudra Deo

    2015-11-10

    Arsenic (As) contamination of water is a global concern and rice consumption is the biggest dietary exposure to human posing carcinogenic risks, predominantly in Asia. Sulfur (S) is involved in di-sulfide linkage in many proteins and plays crucial role in As detoxification. Present study explores role of variable S supply on rice leaf proteome, its inclination towards amino acids (AA) profile and non protein thiols under arsenite exposure. Analysis of 282 detected proteins on 2-DE gel revealed 113 differentially expressed proteins, out of which 80 were identified by MALDI-TOF-TOF. The identified proteins were mostly involved in glycolysis, TCA cycle, AA biosynthesis, photosynthesis, protein metabolism, stress and energy metabolism. Among these, glycolytic enzymes play a major role in AA biosynthesis that leads to change in AAs profiling. Proteins of glycolytic pathway, photosynthesis and energy metabolism were also validated by western blot analysis. Conclusively S supplementation reduced the As accumulation in shoot positively skewed thiol metabolism and glycolysis towards AA accumulation under AsIII stress.

  10. Benevolent behavior of Kleinia grandiflora leaf extract as a green corrosion inhibitor for mild steel in sulfuric acid solution

    Science.gov (United States)

    Pitchaipillai, Muthukrishnan; Raj, Karthik; Balasubramanian, Jeyaprabha; Periakaruppan, Prakash

    2014-11-01

    The ethanolic extract of Kleinia grandiflora leaves was characterized and tested for its potential anticorrosion properties on mild steel in 1 M H2SO4 medium using mass-loss analysis, potentiodynamic polarization measurements, electrochemical impedance spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, UV-visible spectroscopy, and X-ray diffraction analysis. The effect of temperature on the corrosion behavior of mild steel was studied in the range of 308 to 328 K. The inhibition efficiency was observed to increase with increasing concentration of the extract. Polarization curves revealed that the Kleinia grandiflora leaf extract is a mixed inhibitor. Impedance diagrams revealed that an increase of Kleinia grandiflora leaf extract concentration increased the charge transfer resistance and decreased the double-layer capacitance. The adsorption process obeys Langmuir's model, with a standard free energy of adsorption (Δ G ads) of -18.62 kJ/mol. The obtained results indicate that the Kleinia grandiflora leaf extract can serve as an effective inhibitor for the corrosion of mild steel in a sulfuric acid medium.

  11. Enhanced photocatalytic activity of nanotube-like titania by sulfuric acid treatment

    Institute of Scientific and Technical Information of China (English)

    YANG Shao-gui; QUAN Xie; LI Xin-yong; FANG Ning; ZHANG Ning; ZHAO Hui-min

    2005-01-01

    The TiO2 nanotube sample was prepared via a NaOH solution in a Teflon vessel at 150℃. The as-prepared nanotubes were then treated with H2 SO4 solutions. The TiO2 nanotube has a crystalline structure with open-ended and multiwall morphologies. The TiO2 nanotubes before and after surface acid treatment were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM),transmission electron microscopy (TEM) and UV-VIS dispersive energy spectrophotometry (DRS). The photocatalytic activity of the samples was evaluated by photocatalytic degradation of acid orange Ⅱ in aqueous solutions. It was found that the order of photocatalytic activity was as follows: TiO2 nanotubes treated with 1.0 mol/L H2 SO4 solution (TiO2(1.0M H2SO4) nanotubes) > TiO2 nanotubes treated with 0.2 mol/L H2SO4 solution (TiO2(0.2MH2SO4) nanotubes) > TiO2 nanotubes > TiO2 powder. This was attributed to the fact that TiO2 nanotubes treated with H2 SO4 was composed of smaller particles and had higher specific surface areas. Furthermore, the smaller TiO2 particles were beneficial to the transfer and separation of photo-generated electrons and holes in the inner of and on the surface of TiO2 particles and reduced the recombination of photo-generated electrons and holes. Acid treatment was particularly effective for TiO2 nanotubes, this increase in activity was correlated with the concentration of H2 O4 solution.

  12. Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Bouklah, M. [Laboratoire de Chimie des eaux et Corrosion, Faculte des Sciences, B.P. 717, Oujda (Morocco); Hammouti, B. [Laboratoire de Chimie des eaux et Corrosion, Faculte des Sciences, B.P. 717, Oujda (Morocco); Lagrenee, M. [Laboratoire de Cristallochimie et Physicochimie du Solide, UMR 8012 ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Cristallochimie et Physicochimie du Solide, UMR 8012 ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France) and Laboratoire de Chimie de Coordination et d' Analytique, Universite Chouaib Doukkali, Faculte des Sciences, B.P. 20, El Jadida (Morocco)]. E-mail: f.bentiss@pop.ensc-lille.fr

    2006-09-15

    The corrosion rates in the presence of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole (4-MOX) as a steel corrosion inhibitor in 0.5 M sulfuric acid, were measured by the weight loss method, in the range of temperatures from 303 to 343 K. Results obtained revealed that 4-MOX performed excellently as a corrosion inhibitor for mild steel in sulfuric acid media and its efficiency attains more than 96.19% at 8 x 10{sup -4} M at 333 K. The inhibition was assumed to occur via adsorption of the oxadiazole molecules on the metal surface. The Langmuir adsorption isotherm was tested for their fit to the experimental data. The apparent activation energies, enthalpies and entropies of the dissolution process and the free energies and enthalpies for the adsorption process were determined and discussed. The fundamental thermodynamic functions were used to glean important information about 4-MOX inhibitory behaviour.

  13. Simulation of a Wet Sulfuric Acid Process (WSA for Utilization of Acid Gas Separated from Omani Natural Gas

    Directory of Open Access Journals (Sweden)

    Ahmed Jawad Ali Al-Dallal

    2013-06-01

    Full Text Available In this study, a proposed process for the utilization of hydrogen sulphide separated with other gases from omani natural gas for the production of sulphuric acid by wet sulphuric acid process (WSA was studied. The processwas simulated at an acid gas feed flow of 5000 m3/hr using Aspen ONE- V7.1-HYSYS software. A sensitivity analysis was conducted to determine the optimum conditions for the operation of plant. This included primarily the threepacked bed reactors connected in series for the production of sulphur trioxidewhich represented the bottleneck of the process. The optimum feed temperature and catalyst bed volume for each reactor were estimated and then used in the simulation of the whole process for two cases namely 4 and 6 mole% SO2 stream fed to the first catalytic reactor. The 4mole% SO2 gaves the highest conversion (98% compared with 6 mole% SO2 (94.7%. A valuable quantity of heat was generated from the process. This excess heat could also be transformed into power in a turbine or used as a heating media in neighbouring process units.

  14. Ice nucleation of bare and sulfuric acid-coated mineral dust particles and implication for cloud properties

    Science.gov (United States)

    Kulkarni, Gourihar; Sanders, Cassandra; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-01

    Ice nucleation properties of atmospherically relevant dust minerals coated with soluble materials are not yet well understood. We determined ice nucleation ability of bare and sulfuric acid-coated mineral dust particles as a function of temperature (-25 to -35°C) and relative humidity with respect to water (RHw; 75 to 110%) for five different mineral dust types: (1) Arizona test dust, (2) illite, (3) montmorillonite, (4) K-feldspar, and (5) quartz. The particles were dry dispersed and size selected at 200 nm, and we determined the fraction of dust particles nucleating ice at various temperatures and RHw. Under water-subsaturated conditions, compared to bare dust particles, we found that coated particles showed a reduction in their ice nucleation ability. Under water-supersaturated conditions, however, we did not observe a significant coating effect (i.e., the bare and coated dust particles had nearly similar nucleating properties). X-ray diffraction patterns of the coated particles indicated that acid treatment altered the crystalline nature of the surface and caused structural disorder; thus, we concluded that the lack of such structured order reduced the ice nucleation efficiency of the coated particles in deposition ice nucleation mode. In addition, our single column model results show that coated particles significantly modify cloud properties such as ice crystal number concentration and ice water content compared to bare particles in water-subsaturated conditions. However, in water-supersaturated conditions, cloud properties differ only at warmer temperatures. These modeling results imply that future aged dust particle simulations should implement coating parameterizations to accurately predict cloud properties.

  15. Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw

    Directory of Open Access Journals (Sweden)

    Zheng Yubin

    2012-07-01

    Full Text Available Abstract Background Lipids produced from filamentous fungi show great promise for biofuel production, but a major limiting factor is the high production cost attributed to feedstock. Lignocellulosic biomass is a suitable feedstock for biofuel production due to its abundance and low value. However, very limited study has been performed on lipid production by culturing oleaginous fungi with lignocellulosic materials. Thus, identification of filamentous fungal strains capable of utilizing lignocellulosic hydrolysates for lipid accumulation is critical to improve the process and reduce the production cost. Results The growth performances of eleven filamentous fungi were investigated when cultured on glucose and xylose. Their dry cell weights, lipid contents and fatty acid profiles were determined. Six fungal strains with high lipid contents were selected to culture with the hydrolysate from dilute sulfuric acid pretreatment of wheat straw. The results showed that all the selected fungal strains were able to grow on both detoxified liquid hydrolysate (DLH and non-detoxified liquid hydrolysate (NDLH. The highest lipid content of 39.4% was obtained by Mortierella isabellina on NDLH. In addition, NDLH with some precipitate could help M. isabellina form pellets with an average diameter of 0.11 mm. Conclusion This study demonstrated the possibility of fungal lipid production from lignocellulosic biomass. M. isabellina was the best lipid producer grown on lignocellulosic hydrolysates among the tested filamentous fungi, because it could not only accumulate oils with a high content by directly utilizing NDLH to simplify the fermentation process, but also form proper pellets to benefit the downstream harvesting. Considering the yield and cost, fungal lipids from lignocellulosic biomass are promising alternative sources for biodiesel production.

  16. Estimation of the optimum standardized ileal digestible total sulfur amino acid to lysine ratio in late finishing gilts fed low protein diets supplemented with crystalline amino acids.

    Science.gov (United States)

    Ma, Wenfeng; Zhu, Jinlong; Zeng, Xiangfang; Liu, Xutong; Thacker, Philip; Qiao, Shiyan

    2016-01-01

    A total of 90 gilts were used to investigate the effects of various standard ileal digestible (SID) total sulfur amino acid (TSAA) to lysine (Lys) ratios on the performance and carcass characteristics of late finishing gilts receiving low crude protein (CP) diets supplemented with crystalline amino acids (CAA). Graded levels of crystalline methionine (Met) (0, 0.3, 0.5, 0.8 or 1.1 g/kg) were added to the basal diet to produce diets providing SID TSAA to Lys ratios of 0.48, 0.53, 0.58, 0.63 or 0.68. At the termination of the experiment, 30 gilts (one pig per pen) with an average body weight (BW) of 120 kg were killed to evaluate carcass traits. Increasing the SID TSAA to Lys ratio increased average daily gain (ADG) (linear and quadratic effect, P < 0.05), improved feed conversion ratio (FCR) (linear and quadratic effect, P < 0.05) and decreased serum urea nitrogen (SUN) concentration (linear and quadratic effect, P < 0.05) of finishing gilts. No effects were obtained for carcass traits. The optimum SID TSAA to Lys ratios to maximize ADG as well as to minimize FCR and SUN levels were 0.57, 0.58 and 0.53 using a linear-break point model and 0.64, 0.62 and 0.61 using a quadratic model. © 2015 Japanese Society of Animal Science.

  17. Maintenance and Testing of Fume Cupboard

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Falah H.; Al-Dahhan, Wedad H.; Al-Zuhairi, Ali Jassim; Rodda, Kabrena E.; Yousif, Emad

    2017-01-01

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript highlights the importance of periodic maintenance on fume cupboards, and is the fourth in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. In this study, we describe a situation in which the ventilation capacity of the fume cupboard in the undergraduate chemistry laboratories at Al-Nahrain University had decreased to an unacceptable level. The CSS Committee investigated and found the ducting system had been blocked by plastic sheets and dead birds. All the ducts have since been cleaned, and four extra ventilation fans have been installed to further increase ventilation capacity. By openly sharing what happened along with the lessons learned from the accident, we hope to minimize the possibility of another researcher being injured in a similar incident in the future.

  18. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

    Science.gov (United States)

    Mohagheghi, Ali; Schell, Daniel J

    2010-04-01

    Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently.

  19. Dilute Sulfuric Acid Pretreatment of Agricultural and Agro-Industrial Residues for Ethanol Production

    Science.gov (United States)

    Martin, Carlos; Alriksson, Björn; Sjöde, Anders; Nilvebrant, Nils-Olof; Jönsson, Leif J.

    The potential of dilute-acid prehydrolysis as a pretreatment method for sugarcane bagasse, rice hulls, peanut shells, and cassava stalks was investigated. The prehydrolysis was performed at 122°C during 20, 40, or 60 min using 2% H2SO4 at a solid-to-liquid ratio of 1∶10. Sugar formation increased with increasing reaction time. Xylose, glucose, arabinose, and galactose were detected in all of the prehydrolysates, whereas mannose was found only in the prehydrolysates of peanut shells and cassava stalks. The hemicelluloses of bagasse were hydrolyzed to a high-extent yielding concentrations of xylose and arabinose of 19.1 and 2.2 g/L, respectively, and a xylan conversion of more than 80%. High-glucose concentrations (26-33.5 g/L) were found in the prehydrolysates of rice hulls, probably because of hydrolysis of starch of grain remains in the hulls. Peanut shells and cassava stalks rendered low amounts of sugars on prehydrolysis, indicating that the conditions were not severe enough to hydrolyze the hemicelluloses in these materials quantitatively. All prehydrolysates were readily fermentable by Saccharomyces cerevisiae. The dilute-acid prehydrolysis resulted in a 2.7-to 3.7-fold increase of the enzymatic convertibility of bagasse, but was not efficient for improving the enzymatic hydrolysis of peanut shells, cassava stalks, or rice hulls.

  20. A green method for the synthesis of bis-indolylmethanes and 3,3 -indolyloxindole derivatives using cellulose sulfuric acid under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Heshmatollah; Alinezhad; Asefeh; Hagh; Haghighi; Fatemeh; Salehian

    2010-01-01

    A highly efficient green protocol for the preparation of bis-indolylmethanes,bis-2-methylindolylmethanes,bis-1-methylindolylmethanes and 3,3'-diindolyloxindole derivatives from the reaction of indoles with various aldehydes and ketones in the presence of cellulose sulfuric acid under solvent-free conditions is reported.The significant features of this procedure are high yields of the products,mild reaction,solvent-free condition and non-toxicity of the catalyst.

  1. Mathematical modeling of microbially induced crown corrosion in wastewater collection systems and laboratory investigation and modeling of sulfuric acid corrosion of concrete

    Science.gov (United States)

    Jahani, Fereidoun

    In the model for microbially induced crown corrosion, the diffusion of sulfide inside the concrete pores, its biological conversion to sulfuric acid, and the corrosion of calcium carbonate aggregates are represented. The corrosion front is modeled as a moving boundary. The location of the interface between the corrosion layer and the concrete is determined as part of the solution to the model equations. This model consisted of a system of one dimensional reaction-diffusion equations coupled to an equation describing the movement of the corrosion front. The equations were solved numerically using finite element Galerkin approximation. The concentration profiles of sulfide in the air and the liquid phases, the pH as a function of concrete depth, and the position of the corrosion front. A new equation for the corrosion rate was also derived. A more specific model for the degradation of a concrete specimen exposed to a sulfuric acid solution was also studied. In this model, diffusion of hydrogen ions and their reaction with alkaline components of concrete were expressed using Fick's Law of diffusion. The model equations described the moving boundary, the dissolution rate of alkaline components in the concrete, volume increase of sulfuric acid solution over the concrete specimen, and the boundary conditions on the surface of the concrete. An apparatus was designed and experiments were performed to measure pH changes on the surface of concrete. The data were used to calculate the dissolution rate of the concrete and, with the model, to determine the diffusion rate of sulfuric acid in the corrosion layer and corrosion layer thickness. Electrochemical Impedance Spectroscopy (EIS) was used to study the corrosion rate of iron pins embedded in the concrete sample. The open circuit potential (OCP) determined the onset of corrosion on the surface of the pins. Visual observation of the corrosion layer thickness was in good agreement with the simulation results.

  2. An efficient hydrogenation catalyst in sulfuric acid for the conversion of nitrobenzene to p-aminophenol: N-doped carbon with encapsulated molybdenum carbide.

    Science.gov (United States)

    Wang, Tao; Dong, Zhen; Cai, Weimeng; Wang, Yongzheng; Fu, Teng; Zhao, Bin; Peng, Luming; Ding, Weiping; Chen, Yi

    2016-08-23

    The transfer of catalytic function from molybdenum carbide to N-doped carbon has been tested by encapsulating molybdenum carbide with N-doped carbon using a one-pot preparation process. The outer layer of N-doped carbon, inert itself, exhibits high activity and excellent selectivity with molybdenum carbide as the catalyst for the hydrogenation of nitrobenzene to p-aminophenol in sulfuric acid.

  3. [Isolation, identification and oxidizing characterization of an iron-sulfur oxidizing bacterium LY01 from acid mine drainage].

    Science.gov (United States)

    Liu, Yu-jiao; Yang, Xin-ping; Wang, Shi-mei; Liang, Yin

    2013-05-01

    An acidophilic iron-sulfur oxidizing bacterium LY01 was isolated from acid mine drainage of coal in Guizhou Province, China. Strain LY01 was identified as Acidithiobacillusferrooxidans by morphological and physiological characteristics, and phylogenetic analysis of its 16S rRNA gene sequence. Strain LY01 was able to grow using ferrous ion (Fe2+), elemental sulfur (S0) and pyrite as sole energy source, respectively, but significant differences in oxidation efficiency and bacterial growth were observed when different energy source was used. When strain LY01 was cultured in 9K medium with 44.2 g x L(-1) FeSO4.7H2O as the substrate, the oxidation efficiency of Fe2+ was 100% in 30 h and the cell number of strain LY01 reached to 4.2 x 10(7) cell x mL(-1). When LY01 was cultured in 9K medium with 10 g x L(-1) S0 as the substrate, 6.7% S0 oxidation efficiency, 2001 mg x L(-1) SO4(2-) concentration and 8.9 x 10(7) cell x mL(-1) cell number were observed in 21 d respectively. When LY01 was cultured with 30 g x L(-1) pyrite as the substrate, the oxidation efficiency of pyrite, SO4(2-) concentration and cell number reached 10%, 4443 mg x L(-1) and 3.4 x 10(8) cell x mL(-1) respectively in 20 d. The effects of different heavy metals (Ni2+, Pb2+) on oxidation activity of strain LY01 cultured with pyrite were investigated. Results showed that the oxidation activity of strain LY01 was inhibited to a certain extent with the addition of Ni2+ at 10-100 mg x L(-1) to the medium, but the addition of 10-100 mg x L(-1) Pb2+ had no effect on LY01 activity.

  4. Selection and Use of New Type of Heat Exchanger in Sulfuric Acid Production with Sulfur%硫黄制酸装置中新型换热器的选择与应用

    Institute of Scientific and Technical Information of China (English)

    王艳红

    2015-01-01

    By analyzing process features of the low resistance,high efficiency,sharp expansion and accelerated flow convergent-divergent tube shell-and-tube heat exchanger,and based on problems in actual operation of sulfur-burning sulfuric acid plant,the first heat exchanger in conversion system is transformed into a hollow ring type shell-and-tube heat exchanger with converging-diverging tubes. After the revamp,compared with conventional tube heat exchanger,heat transfer area can be reduced, the resistance of the heat exchanger,system energy consumption,operation cost and sulfuric acid production cost are decreased,and good environmental benefits and social benefits are obtained.%通过对低阻高效急扩加速流缩放管管壳式换热器的技术特点的分析并结合硫黄制酸装置的实际运行中存在的问题,将转化系统第1冷热换热器改造为采用缩放管管束的空心环管壳式换热器。改造后,与传统列管式换热器相比,可减小传热面积,降低换热器阻力、系统能耗、操作费用和硫酸生产成本,取得了良好的环境效益和社会效益。

  5. Structure of butanol and hexanol at aqueous, ammonium bisulfate, and sulfuric acid solution surfaces investigated by vibrational sum frequency generation spectroscopy.

    Science.gov (United States)

    Van Loon, Lisa L; Minor, Rena N; Allen, Heather C

    2007-08-09

    The organization of 1-butanol and 1-hexanol at the air-liquid interface of aqueous, aqueous ammonium bisulfate, and sulfuric acid solutions was investigated using vibrational broad bandwidth sum frequency generation spectroscopy. There is spectroscopic evidence supporting the formation of centrosymmetric structures at the surface of pure butanol and pure hexanol. At aqueous, ammonium bisulfate, and at most sulfuric acid solution surfaces, butanol molecules organize in all-trans conformations. This suggests that butanol self-aggregates. The spectrum for the 0.052 M butanol in 59.5 wt % sulfuric acid solution is different from the other butanol solution spectra, that is, the surface butanol molecules are observed to possess a significant number of gauche defects. Relative to surface butanol, surface hexanol chains are more disordered at the surface of their respective solutions. Statistically, an increase in the number of gauche defects is expected for hexanol relative to butanol, a six carbon chain vs a four carbon chain. Yet, self-aggregation of hexanol at its aqueous solution surfaces is not ruled out because the methylene spectral contribution is relatively small. The surface spectra for butanol and hexanol also show evidence for salting out from the ammonium bisulfate solutions.

  6. Effects of Sulfur Amino Acids on Tyrosyl or Serine/Threonine Phosphorylation and Translocation of Cytosolic Compounds to Cell Membrane in Stimulus-treated Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Kitaoka,Noriko

    2009-12-01

    Full Text Available We investigated the effects of various sulfur amino acids on the phosphorylation of proteins and the translocation of cytosolic compounds to cell membrane in stimulus-treated human neutrophils using specific monoclonal antibodies. D,L-homocysteine and D,L-homocysteine-thiolactone enhanced fMLP-induced tyrosyl phosphorylation of proteins and the translocation of p47phox, p67phox, and rac to the cell membrane in a concentration-dependent manner. L-cystathionine, NAc-L-cysteine and carboxymethylcysteine suppressed the tyrosyl phophorylation and translocation of cytosolic compounds to the cell membrane. L-cystathionine, L-cysteine and NAc-L-cysteine suppressed PMA-induced serine/threonine phosphorylation and the translocation of cytosolic compounds to the cell membrane. L-cysteine, NAc-L-cysteine and D,L-homocysteine enhanced AA-induced serine/threonine phosphorylation and the translocation of cytosolic compounds to the cell membrane, but L-cystathionine had opposite effects. These results indicated that the effects of sulfur amino acids on tyrosyl or serine/threonine phosphorylation and the translocation of p47phox, p67phox, and rac to the cell membrane in the stimulus-treated human neutrophils were in parallel with those of the stimulus-induced superoxide generation reported in previous paper. L-cysteine, D,L-homocysteine and L-cystathionine weakly inhibited lipid peroxidation, but the other sulfur amino acids tested had no effect.

  7. Comparison of sulfuric acid treatment and multi-layer silica gel column chromatography in cleanup methods for determination of PCDDs, PCDFs and dioxin-like PCBs in foods.

    Science.gov (United States)

    Amakura, Yoshiaki; Tsutsumi, Tomoaki; Sasaki, Kumiko; Toyoda, Masatake; Maitani, Tamio

    2002-10-01

    Two typical cleanup methods, sulfuric acid treatment and multi-layer silica gel column chromatography, for the determination of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and dioxin-like polychlorinated biphenyls (dioxin-like PCBs) in seventeen food samples were examined and compared. Vegetables, fruits, cereals, fish, meat and dairy foods were extracted by conventional methods (shaking with acetone/n-hexane or with n-hexane after alkaline treatment). The extracts were cleaned up by sulfuric acid treatment or multi-layer silica gel column chromatography, followed by several column chromatographic steps. Of the samples treated, the vegetable, fruit and cereal samples could be directly applied to the multi-layer silica gel column after extraction. However, the samples containing fats and oils such as fish, meat and dairy foods needed to be treated several times with concentrated sulfuric acid before multi-layer column chromatography, because these samples plugged the column with oily residues. Both cleanup methods gave similar values of isomeric concentrations and showed similar efficiency of purification, and the recoveries ranged from 40 to 120%. These results are considered to provide useful data for the efficient analysis of dioxins in foods which have wide-ranging compositions.

  8. Effect of betaine supplementation on changes in hepatic metabolism of sulfur-containing amino acids and experimental cholestasis induced by alpha-naphthylisothiocyanate.

    Science.gov (United States)

    Kim, Young C; Jung, Young S; Kim, Sang K

    2005-05-01

    Alterations in the hepatic metabolism of sulfur amino acids in experimental cholestasis induced by alpha-naphthylisothiocyanate (ANIT) (100 mg/kg, po) were monitored in male mice for 1 week. We also examined the effects of betaine supplementation (1% in drinking water) for 2 weeks on the hepatotoxicity and changes in the sulfur amino acid metabolism induced by ANIT treatment. Acute ANIT challenge elevated the serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, and total bilirubin contents from 5 h after the treatment, reaching a peak at t = 48-72 h. Hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels were decreased significantly in a manner almost inversely proportional to the changes in serum parameters measured to determine the ANIT-induced toxicity. Hepatic glutathione and cysteine levels were elevated at t = 120 h after the treatment. Betaine supplementation blocked or significantly attenuated induction of the hepatotoxicity by ANIT. The decrease in SAM and SAH levels was also inhibited by betaine intake. The results indicate that betaine supplementation may antagonize the induction of experimental cholestasis and changes in the metabolism of sulfur amino acids associated with ANIT treatment. The underlying mechanism and pharmacological significance of its action are discussed.

  9. Corrosion Inhibition of Carbon Steel In Sulfuric Acid by Sodium Caprylate

    Directory of Open Access Journals (Sweden)

    Saad Ghareba

    2016-01-01

    Full Text Available The interaction of a sodium salt of octanoic acid, sodium caprylate (SC, with a carbon steel (CS surface was investigated, using range of experimental techniques. It was shown that SC acts as a good CS general corrosion inhibitor, yielding a maximum corrosion inhibition efficiency of 77%. This high inhibition efficiency is maintained even at higher temperatures. It was determined that SC inhibits both partial corrosion reactions, and can thus be considered to be a mixed-type inhibitor. The adsorption of SC on the CS surface was described by the Langmuir adsorption isotherm. It was found that this process is spontaneous, irreversible and driven by the entropy gain. The CS surface morphology was studied by SEM and it was demonstrated that SC is a very effective general corrosion inhibitor of CS. This also was confirmed by contact angle measurements which showed that the CS surface became more hydrophobic when the SC was added to the solution.

  10. Adsorption of sulfur dioxide by active carbon treated by nitric acid: I. Effect of the treatment on adsorption of SO{sub 2} and extractability of the acid formed

    Energy Technology Data Exchange (ETDEWEB)

    Lisovskii, A.; Semiat, R.; Aharoni, C. [Technion-Israle Institute of Technology, Haifa (Israel). Chemical Engineering Dept.

    1997-12-31

    Activated carbon is used as an adsorbent in flue gas cleaning. The process of adsorptive-catalytic cleaning of gas from sulfur dioxide using active carbon, treated by concentrated nitric acid, was studied. After oxidative treatment the acidity of the carbon increases and the basicity decreases. This results in an increase of the SO{sub 2} adsorption and its oxidation to SO{sub 3}, and in weaker retention of the sulfuric acid formed. This facilitates the removal of H{sub 2}SO{sub 4} by washing of the carbon and allows to obtain a more concentrated acid. The efficiency of the treated carbon is also higher in the process of SO{sub 2} removal from a gas similar in composition to stack gases. 13 refs., 1 fig., 7 tabs.

  11. Synthesis and Odor Evaluation of Five New Sulfur-Containing Ester Flavor Compounds from 4-Ethyloctanoic Acid

    Directory of Open Access Journals (Sweden)

    Baoguo Sun

    2010-07-01

    Full Text Available Five sulfur-containing flavor compounds were synthesized for the first time by the reaction of 4-ethyloctanoyl chloride with sulfur-containing alcohols or mercaptans. The synthesized compounds are 3-(methylthiopropyl 4-ethyloctanoate, 2-methyl-3-tetrahydro-furanthiol 4-ethyloctanoate, 4-methyl-5-thiazoleethanol 4-ethyloctanoate, 2-furan-methanethiol 4-ethyloctanoate and 2-methyl-3-furanthiol 4-ethyloctanoate. These five synthetic sulfur-containing ester flavor compounds all have meaty odor and might be used in foods if approved for this purpose in the future.

  12. [Analysis on oil fume particles in catering industry cooking emission].

    Science.gov (United States)

    Tan, De-Sheng; Kuang, Yuan-Cheng; Liu, Xin; Dai, Fei-Hong

    2012-06-01

    By measuring the particulate matter of oil fume which is over 10 microm or below 10 microm separately and using microradiography and Electrical Low Pressure Impactor (ELPI), it is found out the distributing characteristic of oil fume particles in catering industry cooking emission. The result shows that the diameter of the oil fume particles which was sedimentated in the kitchen is between 10-400 microm, the concentration peak value is between 10-100 microm. The diameter of oil fume aerosol is mostly smaller than 1 microm, while the concentration peak value is between 0.063-0.109 microm. In addition, the mass concentration peak value is between 6.560-9.990 microm. Through the analysis to the physical characteristics of oil fume from catering industry cooking emissions, the eigenvalue of the oil fume has been found and the feature matter for monitoring the oil fume has been discovered to provide a reasonable standard for controlling and monitoring the catering industry cooking emission.

  13. Bitumen fume-induced gene expression profile in rat lung.

    Science.gov (United States)

    Gate, Laurent; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Hervé; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stéphane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 degrees C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  14. Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Norihiro; Sugimoto, Wataru [Department of Fine Materials Engineering, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan); Takasu, Yoshio [Department of Fine Materials Engineering, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567 (Japan)], E-mail: ytakasu@shinshu-u.ac.jp

    2008-12-30

    Two different forms of rutile-type iridium oxide catalysts were prepared: IrO{sub 2}-coated titanium plate electrocatalysts prepared by a dip-coating method (IrO{sub 2}/Ti) and iridium oxide nanoparticles (IrO{sub 2}) prepared by a wet method, the Adams fusion method. The catalytic behavior of the oxygen reduction reaction (ORR) was evaluated by cyclic voltammetry in 0.5 M H{sub 2}SO{sub 4} at 60 deg. C. Both catalysts were found to exhibit considerable activity for the ORR; however, the former oxide electrodes showed higher activity than the latter ones. All the IrO{sub 2}/Ti catalyst electrodes heat-treated at a temperature between 400 deg. C and 550 deg. C showed ca. 0.84 V (vs. RHE) of the onset potential for the ORR, E{sub ORR}, where the reduction current of oxygen had begun to be observed during the cathodic potential sweep of the test electrodes. It has been confirmed clearly that IrO{sub 2}, but neither metallic Ir nor the hydrated IrO{sub 2}, behaves as an active catalyst for the ORR in an acidic solution. It was also demonstrated that the enlargement of the surface area of the IrO{sub 2}/Ti with the help of lanthanum is effective for the enhancement of the catalytic activity in the reaction.

  15. Antimicrobial Efficacy of a Sulfuric Acid and Sodium Sulfate Blend, Peroxyacetic Acid, and Cetylpyridinium Chloride against Salmonella on Inoculated Chicken Wings.

    Science.gov (Unit