WorldWideScience

Sample records for fume inhalation exposure

  1. Exposure to inhalable, respirable, and ultrafine particles in welding fume.

    Science.gov (United States)

    Lehnert, Martin; Pesch, Beate; Lotz, Anne; Pelzer, Johannes; Kendzia, Benjamin; Gawrych, Katarzyna; Heinze, Evelyn; Van Gelder, Rainer; Punkenburg, Ewald; Weiss, Tobias; Mattenklott, Markus; Hahn, Jens-Uwe; Möhlmann, Carsten; Berges, Markus; Hartwig, Andrea; Brüning, Thomas

    2012-07-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.

  2. Acute Inhalation Exposure to Titanium Ethanolate as a Possible Cause of Metal Fume Fever

    Directory of Open Access Journals (Sweden)

    M Ahmadimanesh

    2014-04-01

    Full Text Available Occupational inhalation exposure to noxious agents is not uncommon. Herein, we present a 26-year-old male student who had accidental acute inhalation exposure to a large quantity of titanium ethanolate and hydrogen chloride in chemistry lab. He was referred to the emergency department of our hospital with low-grade fever, dyspnea, headache, fatigue and myalgia. After 24 hrs of symptomatic treatment (oxygen therapy and acetaminophen, the fever was subsided and the patient discharged home in a good clinical condition. The presented symptoms could be interpreted as a form of metal fume fever. It can therefore be concluded that organo-metallic compound of titanium metal may have the potential to produce metal fume fever in human.

  3. Health hazards from inhalation of metal fumes

    Energy Technology Data Exchange (ETDEWEB)

    Piscator, M.

    1976-04-01

    Hazards to the health of workers exposed to metal fumes in high-temperature industrial operations (such as in shipyards) are detailed. After oxidation, the metals appear as submicron particles which are deposited in various parts of the respiratory system. Mixed exposures and a wide variety of symptoms may occur, depending on the type of metal and the intensity and duration of exposure. The major metal may not always be the most dangerous. Two of the most hazardous metals are lead and cadmium, the former being well recognized but still a problem, the latter often unrecognized but capable of causing severe, acute or chronic disease. (RFC)

  4. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  5. Collection, validation and generation of bitumen fumes for inhalation studies in rats Part 1: Workplace samples and validation criteria.

    Science.gov (United States)

    Preiss, A; Koch, W; Kock, H; Elend, M; Raabe, M; Pohlmann, G

    2006-11-01

    Undertaking a chronic inhalation study on bitumen fume presents a challenge in terms of generating large amounts of representative fume. The objective of the study described in this and the following contributions was to collect sufficient fume and develop a laboratory-generated exposure atmosphere that resembles, as closely as possible, personal exposures seen in workers during road paving operations, for use in chronic inhalation toxicity studies in rats. To achieve this goal, atmospheric workplace samples were collected at road paving work sites both by Shell Global Solutions, Int. (Shell) and by the 'Berufsgenossenschaftliches Institut für Arbeitssicherheit' (BIA, Germany) and compared with bitumen fume condensate samples collected from the head space of hot bitumen storage tanks. Part 1 describes the collection and analysis of personal and static workplace samples. Different sampling methods were also used to allow a comparison of the standard German sampling method with the most common industry method used. Samples were analyzed by Shell, BIA and by the Fraunhofer Institute of Toxicology and Experimental Medicine (Fh-ITEM, Germany) using different methods. Parameters determined were: total particulate matter (TPM), benzene soluble matter (BSM), semi-volatiles (SV), total organic matter (TOM), boiling point distribution (BPD), polycyclic aromatic hydrocarbons (PAHs) and UV fluorescence (UVF). The BPD of personal and static samples had almost identical start and end points, but static samples show a tendency towards an increase in amounts of higher boiling point compounds. Personal samples generally show higher PAH concentrations than comparable static samples. The results of the analysis of personal workplace samples were used to establish validation/acceptance criteria for the bitumen fume condensate sampled from storage tanks for the inhalation study, which is described in a further publication. The criteria involve a range of parameters that can be

  6. Peripheral neuropathy following intentional inhalation of naphtha fumes.

    OpenAIRE

    Tenenbein, M; deGroot, W.; Rajani, K R

    1984-01-01

    Two adolescent native Canadians who presented with peripheral neuropathy secondary to the abuse of volatile hydrocarbons are described. They were initially thought to have been sniffing leaded gasoline fumes, but public health investigation revealed that they had been sniffing naphtha fumes. Naphtha contains a significant amount of n-hexane, a known inducer of neuropathy. Nerve conduction studies and nerve biopsy confirmed the diagnosis of naphtha abuse. These cases emphasize the need to spec...

  7. Peripheral neuropathy following intentional inhalation of naphtha fumes.

    Science.gov (United States)

    Tenenbein, M; deGroot, W; Rajani, K R

    1984-11-01

    Two adolescent native Canadians who presented with peripheral neuropathy secondary to the abuse of volatile hydrocarbons are described. They were initially thought to have been sniffing leaded gasoline fumes, but public health investigation revealed that they had been sniffing naphtha fumes. Naphtha contains a significant amount of n-hexane, a known inducer of neuropathy. Nerve conduction studies and nerve biopsy confirmed the diagnosis of naphtha abuse. These cases emphasize the need to specifically identify the formulation of hydrocarbons being abused.

  8. [Case of polymer fume fever with interstitial pneumonia caused by inhalation of polytetrafluoroethylene (Teflon)].

    Science.gov (United States)

    Son, Masami; Maruyama, Eiichi; Shindo, Yuichiro; Suganuma, Nobukazu; Sato, Shinji; Ogawa, Masahiro

    2006-07-01

    A 30-year old man was admitted to our hospital with cough, slight fever, and dyspnea that he had developed several hours after inhaling the fumes produced from a Teflon-coated pan, after evaporation of the water in the pan. Chest radiography revealed diffuse infiltrations, and a computed tomography (CT) scan revealed patchy interstitial shadows in both lungs. In pulmonary function tests, the diffusing capacity of the lungs showed a moderate decrease. Leukocytosis and slight hypoxemia were observed. The patient recovered clinically in a few days without any specific treatment. We speculated that the pulmonary problems in this patient may have been induced by the products of thermal degradation of Teflon that were present in the fumes. When Teflon is heated, the fumes generated cause an influenza like syndrome (polymer fume fever) or cause severe toxic effects such as pulmonary edema, pneumonitis, and death in the exposed individual.

  9. Bronchiolitis obliterans organizing pneumonia following nitric acid fume exposure.

    Science.gov (United States)

    Lee, L T; Ho, C H B; Putti, T C

    2014-03-01

    We describe a patient with clinical, radiological and pathological features of bronchiolitis obliterans organizing pneumonia. Investigation showed that this was likely to have been a delayed consequence of inhalation of nitric acid fumes (containing nitrogen dioxide) after a fire. This case shows that thorough investigation of the aetiology is important not only in clinical management but also in ensuring patients benefit from appropriate work injury compensation.

  10. Occupational rhinitis due to steel welding fumes.

    Science.gov (United States)

    Castano, Roberto; Suarthana, Eva

    2014-12-01

    Exposure to welding fumes is a recognized respiratory hazard. Occupational asthma but not occupational rhinitis has been documented in workers exposed to steel welding fumes. We report a 26-year-old male with work-related rhinitis symptoms as well as lower airways symptoms suggestive of occupational asthma and metal fume fever associated with exposure to steel welding fumes. The diagnosis of occupational rhinitis was confirmed by specific inhalation challenge.

  11. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats.

    Science.gov (United States)

    Antonini, James M; Roberts, Jenny R; Stone, Samuel; Chen, Bean T; Schwegler-Berry, Diane; Chapman, Rebecca; Zeidler-Erdely, Patti C; Andrews, Ronnee N; Frazer, David G

    2011-05-01

    Welding generates complex metal fumes that vary in composition. The objectives of this study were to compare the persistence of deposited metals and the inflammatory potential of stainless and mild steel welding fumes, the two most common fumes used in US industry. Sprague-Dawley rats were exposed to 40 mg/m(3) of stainless or mild steel welding fumes for 3 h/day for 3 days. Controls were exposed to filtered air. Generated fume was collected, and particle size and elemental composition were determined. Bronchoalveolar lavage was done on days 0, 8, 21, and 42 after the last exposure to assess lung injury/inflammation and to recover lung phagocytes. Non-lavaged lung samples were analyzed for total and specific metal content as a measure of metal persistence. Both welding fumes were similar in particle morphology and size. Following was the chemical composition of the fumes-stainless steel: 57% Fe, 20% Cr, 14% Mn, and 9% Ni; mild steel: 83% Fe and 15% Mn. There was no effect of the mild steel fume on lung injury/inflammation at any time point compared to air control. Lung injury and inflammation were significantly elevated at 8 and 21 days after exposure to the stainless steel fume compared to control. Stainless steel fume exposure was associated with greater recovery of welding fume-laden macrophages from the lungs at all time points compared with the mild steel fume. A higher concentration of total metal was observed in the lungs of the stainless steel welding fume at all time points compared with the mild steel fume. The specific metals present in the two fumes were cleared from the lungs at different rates. The potentially more toxic metals (e.g., Mn, Cr) present in the stainless steel fume were cleared from the lungs more quickly than Fe, likely increasing their translocation from the respiratory system to other organs.

  12. Pulmonary effects of occupational exposure to cadmium fumes

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, R.; Pilnacek, M.; Schuller, W.; Pospischil, E.; Meisinger, V.; Hochmeister, M.; Kopsa, H.; Sommer, G.

    1988-11-01

    Smelters (n=9) with occupational exposure to cadmium fumes underwent clinical routine screening, lung function test, blood gas analysis and chest-X-ray, furthermore the concentration of cadmium in blood and 24 h-urine samples was determined. The results were compared with data from controls (n=9) without specific occupational burden. Smelters showed decreased vital capacity, decreased partial pressure of oxygen and increased concentration of cadmium in blood and 24 h-urine samples compared to controls. Chronical exposure to cadmium fumes is suspected to be a causal factor for the altered data of smelters. Therefore routine-check-up in workers health control must include diagnostic means, which provide early detection of pulmonary effects.

  13. Tissue distribution of manganese in iron-sufficient or iron-deficient rats after stainless steel welding-fume exposure.

    Science.gov (United States)

    Park, Jung-Duck; Kim, Ki-Young; Kim, Dong-Won; Choi, Seong-Jin; Choi, Byung-Sun; Chung, Yong Hyun; Han, Jeong Hee; Sung, Jae Hyuck; Kwon, Il Hoon; Mun, Je-Hyeok; Yu, Il Je

    2007-05-01

    Welders can be exposed to high levels of manganese through welding fumes. Although it has already been suggested that excessive manganese exposure causes neurotoxicity, called manganism, the pathway of manganese transport to the brain with welding-fume exposure remains unclear. Iron is an essential metal that maintains a homeostasis in the body. The divalent metal transporter 1 (DMT1) transports iron and other divalent metals, such as manganese, and the depletion of iron is known to upregulate DMT1 expression. Accordingly, this study investigated the tissue distribution of manganese in iron-sufficient and iron-deficient rats after welding-fume exposure. The feeding of an iron-deficient diet for 4 wk produced a depletion of body iron, such as decreased iron levels in the serum and tissues, and upregulated the DMT1 expression in the rat duodenum. The iron-sufficient and iron-deficient rats were then exposed to welding fumes generated from manual metal arc stainless steel at a concentration of 63.5 +/- 2.3 mg/m3 for 2 h per day over a 30-day period. Animals were sacrificed on days 1, 15, and 30. The level of body iron in the iron-deficient rats was restored to the control level after the welding-fume exposure. However, the tissue distributions of manganese after the welding-fume exposure showed similar patterns in both the iron-sufficient and iron-deficient groups. The concentration of manganese increased in the lungs and liver on days 15 and 30, and increased in the olfactory bulb on day 30. Slight and heterogeneous increases of manganese were observed in different brain regions. Consequently, these findings suggest that the presence of Fe in the inhaled welding fumes may not have a significant effect on the uptake of Mn into the brain. Thus, the condition of iron deficiency did not seem to have any apparent effect on the transport of Mn into the brain after the inhalation of welding fumes.

  14. Detailed characterization of welding fumes in personal exposure samples

    Science.gov (United States)

    Quémerais, B.; Mino, James; Amin, M. R.; Golshahi, H.; Izadi, H.

    2015-05-01

    The objective of the project was to develop a method allowing for detailed characterization of welding particles including particle number concentration, size distribution, surface chemistry and chemical composition of individual particles, as well as metal concentration of various welding fumes in personal exposure samples using regular sampling equipment. A sample strategy was developed to evaluate the variation of the collection methods on mass concentration. Samples were collected with various samplers and filters at two different locations using our collection system. The first location was using a robotic welding system while the second was manual welding. Collected samples were analysed for mass concentration using gravimetryand metal concentration using ICP/OES. More advanced analysis was performed on selected filters using X-Ray Photoelectron Spectroscopy to determine surface composition of the particles, and X-Ray Diffraction to determine chemical composition of the fumes. Results showed that the robotic system had a lot of variation in space when the collection system was located close to the weld. Collection efficiency was found to be quite variable depending upon the type of filter. As well, metal concentrations in blank filters were dependent upon the type of filter with MCE presenting with the highest blank values. Results obtained with the XRD and XPS systems showed that it was possible to analyse a small of powdered welding fume sample but results on filters were not conclusive.

  15. Characterization of the early pulmonary inflammatory response associated with PTFE fume exposure

    Science.gov (United States)

    Johnston, C. J.; Finkelstein, J. N.; Gelein, R.; Baggs, R.; Oberdorster, G.; Clarkson, T. W. (Principal Investigator)

    1996-01-01

    Heating of polytetrafluoroethylene (PTFE) has been described to release fumes containing ultrafine particles (approximately 18 nm diam). These fumes can be highly toxic in the respiratory tract inducing extensive pulmonary edema with hemorrhagic inflammation. Fischer-344 rats were exposed to PTFE fumes generated by temperatures ranging from 450 to 460 degrees C for 15 min at an exposure concentration of 5 x 10(5) particles/cm3, equivalent to approximately 50 micrograms/m3. Responses were examined 4 hr post-treatment when these rats demonstrated 60-85% neutrophils (PMNs) in their lung lavage. Increases in abundance for messages encoding the antioxidants manganese superoxide dismutase and metallothionein (MT) increased 15- and 40-fold, respectively. For messages encoding the pro- and anti-inflammatory cytokines: inducible nitric oxide synthase, interleukin 1 alpha, 1 beta, and 6 (IL-1 alpha, IL-1 beta, and IL-6), macrophage inflammatory protein-2, and tumor necrosis factor-alpha (TNF alpha) increases of 5-, 5-, 10-, 40-, 40-, and 15-fold were present. Vascular endothelial growth factor, which may play a role in the integrity of the endothelial barrier, was decreased to 20% of controls. In situ sections were hybridized with 33P cRNA probes encoding IL-6, MT, surfactant protein C, and TNF alpha. Increased mRNA abundance for MT and IL-6 was expressed around all airways and interstitial regions with MT and IL-6 demonstrating similar spatial distribution. Large numbers of activated PMNs expressed IL-6, MT, and TNF alpha. Additionally, pulmonary macrophages and epithelial cells were actively involved. These observations support the notion that PTFE fumes containing ultrafine particles initiate a severe inflammatory response at low inhaled particle mass concentrations, which is suggestive of an oxidative injury. Furthermore, PMNs may actively regulate the inflammatory process through cytokine and antioxidant expression.

  16. Inhalation and dermal exposure among asphalt paving workers.

    Science.gov (United States)

    McClean, M D; Rinehart, R D; Ngo, L; Eisen, E A; Kelsey, K T; Herrick, R F

    2004-11-01

    The primary objective of this study was to identify determinants of inhalation and dermal exposure to polycyclic aromatic compounds (PACs) among asphalt paving workers. The study population included three groups of highway construction workers: 20 asphalt paving workers, as well as 12 millers and 6 roadside construction workers who did not work with hot-mix asphalt. During multiple consecutive work shifts, personal air samples were collected from each worker's breathing zone using a Teflon filter and cassette holder connected in series with an XAD-2 sorbent tube, while dermal patch samples were collected from the underside of each worker's wrist. All exposure samples were analyzed for PACs, pyrene and benzo[a]pyrene. Inhalation and dermal PAC exposures were highest among asphalt paving workers. Among paving workers, inhalation and dermal PAC exposures varied significantly by task, crew, recycled asphalt product (RAP) and work rate (inhalation only). Asphalt mix containing high RAP was associated with a 5-fold increase in inhalation PAC exposures and a 2-fold increase in dermal PAC exposure, compared with low RAP mix. The inhalation PAC exposures were consistent with the workers' proximity to the primary source of asphalt fume (paver operators > screedmen > rakers > roller operators), such that the adjusted mean exposures among paver operators (5.0 microg/m3, low RAP; 24 microg/m3, high RAP) were 12 times higher than among roller operators (0.4 microg/m3, low RAP; 2.0 microg/m3, high RAP). The dermal PAC exposures were consistent with the degree to which the workers have actual contact with asphalt-contaminated surfaces (rakers > screedmen > paver operators > roller operators), such that the adjusted mean exposures among rakers (175 ng/cm2, low RAP; 417 ng/cm2, high RAP) were approximately 6 times higher than among roller operators (27 ng/cm2, low RAP; 65 ng/cm2, high RAP). Paving task, RAP content and crew were also found to be significant determinants of

  17. Effects of asphalt fume condensate exposure on acute pulmonary responses

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.Y.C.; Barger, M.W.; Castranova, V. [Health Effects Lab. Div., National Inst. for Occupational Safety and Health, Morgantown, WV (United States); Kriech, A.J. [Heritage Research Group, Indianapolis, IN (United States)

    2000-10-01

    The present study was carried out to characterize the effects of in vitro exposure to paving asphalt fume condensate (AFC) on alveolar macrophage (AM) functions and to monitor acute pulmonary responses to in vivo AFC exposure in rats. Methods: For in vitro studies, rat primary AM cultures were incubated with various concentrations of AFC for 24 h at 37 C. AM-conditioned medium was collected and assayed for lactate dehydrogenase (LDH) as a marker of cytotoxicity. Tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-1 (IL-1) production were assayed in AM-conditioned medium to monitor AM function. The effect of AFC on chemiluminescence (CL) generated by resting AM or AM in response to zymosan or PMA stimulation was also determined as a marker of AM activity. For in vivo studies, rats received either (1) a single intratracheal (IT) instillation of saline, or 0.1 mg or 0.5 mg AFC and were killed 1 or 3 days later; or (2) IT instillation of saline, or 0.1, 0.5, or 2 mg AFC for three consecutive days and were killed the following day. Differential counts of cells harvested by bronchoalveolar lavage were measured to monitor inflammation. Acellular LDH and protein content in the first lavage fluid were measured to monitor damage. CL generation, TNF-{alpha} and IL-1 production by AM were assayed to monitor AM function. Results: In vitro AFC exposure at <200 {mu}g/ml did not induce cytotoxicity, oxidant generation, or IL-1 production by AM, but it did cause a small but significant increase in TNF-{alpha} release from AM. In vitro exposure of AM to AFC resulted in a significant decline of CL in response to zymosan or PMA stimulation. The in vivo studies showed that AFC exposure did not induce significant neutrophil infiltration or alter LDH or protein content in acellular lavage samples. Macrophages obtained from AFC-exposed rats did not show significant differences in oxidant production or cytokine secretion at rest or in response to LPS in comparison with control

  18. Effects of Exposure to Welding Fume on Lung Function: Results from the German WELDOX Study.

    Science.gov (United States)

    Lehnert, M; Hoffmeyer, F; Gawrych, K; Lotz, A; Heinze, E; Berresheim, H; Merget, R; Harth, V; Van Gelder, R; Hahn, J-U; Hartwig, A; Weiß, T; Pesch, B; Brüning, T

    2015-01-01

    The association between exposure to welding fume and chronic obstructive pulmonary disease (COPD) has been insufficiently clarified. In this study we assessed the influence of exposure to welding fume on lung function parameters. We investigated forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and expiratory flow rates in 219 welders. We measured current exposure to respirable particles and estimated a worker's lifetime exposure considering welding techniques, working conditions and protective measures at current and former workplaces. Multiple regression models were applied to estimate the influence of exposure to welding fume, age, and smoking on lung function. We additionally investigated the duration of working as a welder and the predominant welding technique. The findings were that age- and smoking-adjusted lung function parameters showed no decline with increasing duration, current exposure level, and lifetime exposure to welding fume. However, 15% of the welders had FEV1/FVC below the lower limit of normal, but we could not substantiate the presence of an association with the measures of exposure. Adverse effects of cigarette smoking were confirmed. In conclusion, the study did not support the notion of a possible detrimental effect of exposure to welding fume on lung function in welders.

  19. Manganese and welding fume exposure and control in construction.

    Science.gov (United States)

    Meeker, John D; Susi, Pam; Flynn, Michael R

    2007-12-01

    Overexposure to welding fume constituents, particularly manganese, is of concern in the construction industry due to the prevalence of welding and the scarcity of engineering controls. The control effectiveness of a commercially available portable local exhaust ventilation (LEV) unit was assessed. It consisted of a portable vacuum and a small bell-shaped hood connected by a flexible 2 inch (50.8 mm) diameter hose, in both experimental and field settings. The experimental testing was done in a semienclosed booth at a pipefitter training facility. Five paired trials of LEV control vs. no control, each approximately 1 hr in duration and conducted during two successive welds of 6 inch (152.4 mm) diameter carbon steel pipe were run in random order. Breathing zone samples were collected outside the welding hood during each trial. In the field scenario, full-shift breathing zone samples were collected from two pipefitters welding carbon steel pipe for a chiller installation on a commercial construction project. Eight days of full-shift sampling were conducted on both workers (n = 16), and the LEV was used by one of the two workers on an alternating basis for 7 of the days. All samples were collected with personal sample pumps calibrated at 2 L/min. Filter cassettes were analyzed for total particulate and manganese concentration by a certified laboratory. In the experimental setting, use of the portable LEV resulted in a 75% reduction in manganese exposure (mean 13 microg/m(3) vs. 51 microg/m(3); p 0.05). These results demonstrate that LEV use can reduce manganese exposure associated with welding tasks in construction.

  20. Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.

    Science.gov (United States)

    Zugasti, Agurtzane; Montes, Natividad; Rojo, José M; Quintana, M José

    2012-02-01

    Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P welding operations.

  1. Quantitative cancer risk assessment for occupational exposures to asphalt fumes during built-up roofing asphalt (BURA) operations.

    Science.gov (United States)

    Rhomberg, Lorenz R; Mayfield, David B; Goodman, Julie E; Butler, Eric L; Nascarella, Marc A; Williams, Daniel R

    2015-01-01

    The International Agency for Research on Cancer qualitatively characterized occupational exposure to oxidized bitumen emissions during roofing as probably carcinogenic to humans (Group 2A). We examine chemistry, exposure, epidemiology and animal toxicity data to explore quantitative risks for roofing workers applying built-up roofing asphalt (BURA). Epidemiology studies do not consistently report elevated risks, and generally do not have sufficient exposure information or adequately control for confounders, precluding their use for dose-response analysis. Dermal carcinogenicity bioassays using mice report increased tumor incidence with single high doses. In order to quantify potential cancer risks, we develop time-to-tumor model methods [consistent with U.S. Environmental Protection Agency (EPA) dose-response analysis and mixtures guidelines] using the dose-time-response shape of concurrent exposures to benzo[a]pyrene (B[a]P) as concurrent controls (which had several exposure levels) to infer presumed parallel dose-time-response curves for BURA-fume condensate. We compare EPA relative potency factor approaches, based on observed relative potency of BURA to B[a]P in similar experiments, and direct observation of the inferred BURA dose-time-response (scaled to humans) as means for characterizing a dermal unit risk factor. We apply similar approaches to limited data on asphalt-fume inhalation and respiratory cancers in rats. We also develop a method for adjusting potency estimates for asphalts that vary in composition using measured fluorescence. Overall, the various methods indicate that cancer risks to roofers from both dermal and inhalation exposure to BURA are within a range typically deemed acceptable within regulatory frameworks. The approaches developed may be useful in assessing carcinogenic potency of other complex mixtures of polycyclic aromatic compounds.

  2. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media.

    Science.gov (United States)

    Sutter, Benjamin; Ravera, Christel; Hussard, Caroline; Langlois, Eddy

    2016-01-01

    Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement.

  3. Global metabolomic profiling reveals an association of metal fume exposure and plasma unsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Yongyue Wei

    Full Text Available BACKGROUND: Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic effects of welding fumes on humans. OBJECTIVES: To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk assessment of welding fume exposure. METHODS: The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8 boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and analyzed by chromatography/mass spectrometry. RESULTS: Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with particulate (PM2.5 exposure (p<0.05. The combined analysis by linear mixed-effects model showed that exposure was associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [β(95% CI = -0.013(-0.022 ≈ -0.004; p = 0.005], docosapentaenoic acid n3 [β(95% CI = -0.010(-0.018 ≈ -0.002; p = 0.017], and docosapentaenoic acid n6 [β(95% CI = -0.007(-0.013 ≈ -0.001; p = 0.021]. Pathway analysis identified an association of the unsaturated fatty acid pathway with exposure (p Study-2011 = 0.025; p Study-2012 = 0.021; p Combined = 0.009. The functional network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders. CONCLUSIONS: High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health disorders.

  4. Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods

    Science.gov (United States)

    Tsai, Su-Jung (Candace); Ada, Earl; Isaacs, Jacqueline A.; Ellenbecker, Michael J.

    2009-01-01

    Manual handling of nanoparticles is a fundamental task of most nanomaterial research; such handling may expose workers to ultrafine or nanoparticles. Recent studies confirm that exposures to ultrafine or nanoparticles produce adverse inflammatory responses in rodent lungs and such particles may translocate to other areas of the body, including the brain. An important method for protecting workers handling nanoparticles from exposure to airborne nanoparticles is the laboratory fume hood. Such hoods rely on the proper face velocity for optimum performance. In addition, several other hood design and operating factors can affect worker exposure. Handling experiments were performed to measure airborne particle concentration while handling nanoparticles in three fume hoods located in different buildings under a range of operating conditions. Nanoalumina and nanosilver were selected to perform handling experiments in the fume hoods. Air samples were also collected on polycarbonate membrane filters and particles were characterized by scanning electron microscopy. Handling tasks included transferring particles from beaker to beaker by spatula and by pouring. Measurement locations were the room background, the researcher's breathing zone and upstream and downstream from the handling location. Variable factors studied included hood design, transfer method, face velocity/sash location and material types. Airborne particle concentrations measured at breathing zone locations were analyzed to characterize exposure level. Statistics were used to test the correlation between data. The test results found that the handling of dry powders consisting of nano-sized particles inside laboratory fume hoods can result in a significant release of airborne nanoparticles from the fume hood into the laboratory environment and the researcher's breathing zone. Many variables were found to affect the extent of particle release including hood design, hood operation (sash height, face velocity

  5. Lung Cancer in Chinese Women: Evidence for an Interaction between Tobacco Smoking and Exposure to Inhalants in the Indoor Environment

    OpenAIRE

    TANG, Li; Lim, Wei-Yen; Eng, Philip; Leong, Swan Swan; Lim, Tow Keang; Ng, Alan W. K.; Tee, Augustine; Seow, Adeline

    2010-01-01

    Background Epidemiologic data suggest that Chinese women have a high incidence of lung cancer in relation to their smoking prevalence. In addition to active tobacco smoke exposure, other sources of fumes and airborne particles in the indoor environment, such as cooking and burning of incense and mosquito coils, have been considered potential risk factors for lung cancer. Objectives We used a case–control study to explore effects of inhalants from combustion sources common in the domestic envi...

  6. Non-occupational exposure to paint fumes during pregnancy and fetal growth in a general population

    DEFF Research Database (Denmark)

    Sørensen, Mette; Andersen, Anne-Marie N; Raaschou-Nielsen, Ole

    2010-01-01

    associations between residential exposure to paint fumes during pregnancy and fetal growth within the Danish National Birth Cohort which consecutively recruited pregnant women from 1996 to 2002 from all over Denmark. Around the 30th pregnancy week, 19,000 mothers were interviewed about use of paint...... in their residence during pregnancy. The mothers were also asked about smoking habits and alcohol consumption during pregnancy, pre-pregnancy weight, height, parity and occupation. Information on birth weight and gestational age was obtained from national registers. We found that 45% of the mothers had been exposed......Occupational exposure to organic solvents during pregnancy has been associated with reduced fetal growth. Though organic solvents in the form of paint fumes are also found in the home environment, no studies have investigated the effect of such exposure in a general population. We studied...

  7. Accidental exposure to isocyanate fumes in a group of firemen.

    Science.gov (United States)

    Axford, A T; McKerrow, C B; Jones, A P; Le Quesne, P M

    1976-05-01

    A total of 35 firemen involved in fighting a fire in a factory in which polyurethane foam was made were exposed to fumes of toluene di-isocyanate from two large storage tanks which were damaged during the fire, resulting in massive spillage. Most of the men experienced symptoms during the fire or during the three weeks after it. The symptoms were mainly gastrointestinal, respiratory, or neurological. Altogether 15 men described gastrointestinal symptoms which subsided within two days of onset. Respiratory symptoms were described by 31 men and were most pronounced during the three days after the fire, thereafter tending to improve. The neurological findings are described separately. When the men were reviewed at six months there was a suggestion that some of them might have sustained long-term damage to the respiratory tract, and almost four years later 20 men had persistent respiratory symptoms. Serial measurements of ventilatory capacity revealed a marked decline in the first six months although this was not sustained.

  8. Exposure of Danish children to traffic exhaust fumes

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O; Olsen, J H; Hertel, O

    1996-01-01

    This exposure study addresses the validity of the exposure assessment method of an epidemiological study of traffic-related air pollution and childhood cancer. In particular, this paper concerns the question of whether the concentration of nitrogen dioxide (NO2) outside the front door is a valid...

  9. Increased levels of oxidative DNA damage attributable to cooking-oil fumes exposure among cooks.

    Science.gov (United States)

    Ke, Yuebin; Cheng, Jinquan; Zhang, Zhicheng; Zhang, Renli; Zhang, Zhunzhen; Shuai, Zhihong; Wu, Tangchun

    2009-07-01

    Previous investigations have indicated that cooks are exposed to polycyclic aromatic hydrocarbons (PAHs) from cooking-oil fumes. However, Emission of PAH and their carcinogenic potencies from cooking oil fumes sources have not been investigated among cooks. To investigate the urinary excretion of a marker for oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG), in different groups of cooks and different exposure groups, and to study the association between 8-OHdG and 1-hydroxypyrene(1-OHP), a biological marker for PAH exposure. Urine samples were collected from different groups of cooks (n = 86) and from unexposed controls (n = 36); all were male with similar age and smoking habits. The health status, occupational history, smoking, and alcohol consumption 24 h prior to sampling was estimated from questionnaires. The urine samples were frozen for later analyses of 8-OHdG and 1-OHP levels by high-performance liquid chromatography. Excretion in urine of 8-OHdG was similar for controls (mean 1.2micromol/mol creatinine, n = 36), and for those who had been in the kitchen with an exhaust-hood operating (mean 1.5micromol/mol creatinine, n = 45). Cooks exposed to cooking-oil fumes without exhaust-hood operation had significantly increased excretion of 8-OHdG (mean 2.3micromol/mol creatinine, n = 18), compared with controls. The urinary levels of ln 1-OHP and ln 8-OHdG were still significantly correlated in a multiple regression analysis. The results indicate that exposure to PAH or possibly other compounds in cooking-oil fumes may cause oxidative DNA damage.

  10. The comparative assessment of welders’ exposure to welding fumes based on mass and number concentration

    Directory of Open Access Journals (Sweden)

    Javad Sajedifar

    2016-12-01

    Full Text Available Introduction: Nowadays, Shielded Metal Arc Welding (SMAW is the most widely used arc welding. During the welding operation, typically, various harmful agents such as fumes, gases, heat, sound and ultraviolet radiation are produced of which fume is the most important component from the viewpoint of occupational health. The present study aims to compare the number and the mass concentration emitted in SMAW to determine the most appropriate index of exposure to fumes in the welding processes. Material and Method: In this study, the portable laser aerosol spectrometer and dust monitor of GRIMM, model 1.106, was used to measure the number and mass concentration of fumes emitted from SMAW on 304 stainless steel with a thickness of 0.4 mm. Air sampling was performed at a distance of 41 cm representing the welder’s breathing zone. The measurements of number concentration (NC and mass concentration (MC were taken under the condition of 25 volt voltage and direct current of the electrode polarity. Result: The total NC and MC of welding fumes in welder’s breathing zone was 1140451 particles per liter and 1631.11 micrograms per cubic meter, respectively. The highest number concentration was found to correspond to the particles with 0.35 to 0.5 micrometer-sized distribution (NC1; 938976 particles per liter and the lowest was related to the particles with 5 to 6.5 micrometer-sized distribution (NC7; 288 particles per liter and the particles larger than 6.5 micrometer (NC8; 463 particles per liter. Moreover, the highest mass concentration was related to the particles with 0.35 to 0.5 micrometer-sized distribution (MC1; 450 micrograms per cubic meter and the particles larger than 6.5 micrometer (MC8; 355 micrograms per cubic meter. Conclusion: The findings indicated that there is no agreement between number and mass concentration as two particles assessment index, and as the particles’ size become smaller, the mismatch of them is becoming more apparent

  11. Exposure to cooking oil fumes and oxidative damages: a longitudinal study in Chinese military cooks.

    Science.gov (United States)

    Lai, Ching-Huang; Jaakkola, Jouni J K; Chuang, Chien-Yi; Liou, Saou-Hsing; Lung, Shih-Chun; Loh, Ching-Hui; Yu, Dah-Shyong; Strickland, Paul T

    2013-01-01

    Cooking oil fumes (COF) contain polycyclic aromatic hydrocarbons (PAHs), heterocyclic aromatic amines, benzene, and formaldehyde, which may cause oxidative damages to DNA and lipids. We assessed the relations between exposure to COF and subsequent oxidative DNA damage and lipid peroxidation among military cooks and office-based soldiers. The study population, including 61 Taiwanese male military cooks and a reference group of 37 office soldiers, collected urine samples pre-shift of the first weekday and post-shift of the fifth workday. We measured airborne particulate PAHs in military kitchens and offices and concentrations of urinary 1-OHP, a biomarker of PAH exposure, urinary 8-hydroxydeoxyguanosine (8-OHdG), a biomarkers of oxidative DNA damage, and urinary isoprostane (Isop). Airborne particulate PAHs levels in kitchens significantly exceeded those in office areas. The concentrations of urinary 1-OHP among military cooks increased significantly after 5 days of exposure to COF. Using generalized estimating equation analysis adjusting for confounding, a change in log(8-OHdG) and log(Isop) were statistically significantly related to a unit change in log(1-OHP) (regression coefficient (β), β=0.06, 95% CI 0.001-0.12) and (β=0.07, 95% CI 0.001-0.13), respectively. Exposure to PAHs, or other compounds in cooking oil fumes, may cause both oxidative DNA damage and lipid peroxidation.

  12. Lifetime occupational exposure to dusts, gases and fumes is associated with bronchitis symptoms and higher diffusion capacity in COPD patients.

    NARCIS (Netherlands)

    Rodríguez, E.; Ferrer, J.; Zock, J.P.; Serra, I.; Antó, J.M.; Batlle, J. de; Kromhout, H.; Vermeulen, R.; Donaire-Gonzalez, D.; Benet, M.; Balcells, E.; Monso, E.; Gayete, A.; Garcia-Aymerich, J.

    2014-01-01

    Background: Occupational exposure to dusts, gases and fumes has been associated with reduced FEV1 and sputum production in COPD patients. The effect of occupational exposure on other characteristics of COPD, especially those reflecting emphysema, has not been studied in these patients. Methods: We s

  13. Lifetime occupational exposure to dusts, gases and fumes is associated with bronchitis symptoms and higher diffusion capacity in COPD patients

    NARCIS (Netherlands)

    Rodríguez, Esther; Ferrer, Jaume; Zock, Jan Paul; Serra, Ignasi; Antó, Josep M.; De Batlle, Jordi; Kromhout, Hans; Vermeulen, Roel; Donaire-González, David; Benet, Marta; Balcells, Eva; Monsó, Eduard; Gayete, Àngel; Garcia-Aymerich, Judith; Guerra, Stefano; Gea, Joaquim; Orozco-Levi, Mauricio; Vollmer, Ivan; Barberà, Joan Albert; Gómez, Federico P.; Paré, Carles; Roca, Josep; Rodriguez-Roisin, Robert; Agustí, Àlvar; Freixa, Xavier; Rodriguez, Diego A.; Gimeno, Elena; Portillo, Karina; Andreu, Jordi; Pallissa, Esther; Casan, Pere; Güell, Rosa; Giménez, Ana; Marín, Alicia; Morera, Josep; Farrero, Eva; Escarrabill, Joan; Ferrer, Antoni; Sauleda, Jaume; Togores, Bernat; Gáldiz, Juan Bautista; López, Lorena; Belda, José

    2014-01-01

    BACKGROUND: Occupational exposure to dusts, gases and fumes has been associated with reduced FEV1 and sputum production in COPD patients. The effect of occupational exposure on other characteristics of COPD, especially those reflecting emphysema, has not been studied in these patients.\

  14. Lifetime occupational exposure to dusts, gases and fumes is associated with bronchitis symptoms and higher diffusion capacity in COPD patients

    NARCIS (Netherlands)

    Rodríguez, Esther; Ferrer, Jaume; Zock, Jan Paul; Serra, Ignasi; Antó, Josep M.; De Batlle, Jordi; Kromhout, Hans; Vermeulen, Roel; Donaire-González, David; Benet, Marta; Balcells, Eva; Monsó, Eduard; Gayete, Àngel; Garcia-Aymerich, Judith; Guerra, Stefano; Gea, Joaquim; Orozco-Levi, Mauricio; Vollmer, Ivan; Barberà, Joan Albert; Gómez, Federico P.; Paré, Carles; Roca, Josep; Rodriguez-Roisin, Robert; Agustí, Àlvar; Freixa, Xavier; Rodriguez, Diego A.; Gimeno, Elena; Portillo, Karina; Andreu, Jordi; Pallissa, Esther; Casan, Pere; Güell, Rosa; Giménez, Ana; Marín, Alicia; Morera, Josep; Farrero, Eva; Escarrabill, Joan; Ferrer, Antoni; Sauleda, Jaume; Togores, Bernat; Gáldiz, Juan Bautista; López, Lorena; Belda, José

    2014-01-01

    BACKGROUND: Occupational exposure to dusts, gases and fumes has been associated with reduced FEV1 and sputum production in COPD patients. The effect of occupational exposure on other characteristics of COPD, especially those reflecting emphysema, has not been studied in these patients.\

  15. Parental Occupational Exposure to Heavy Metals and Welding Fumes and Risk of Testicular Germ Cell Tumors in Offspring

    DEFF Research Database (Denmark)

    Togawa, Kayo; Le Cornet, Charlotte; Feychting, Maria

    2016-01-01

    registries. Information on parental occupations was retrieved from censuses. From this, we estimated prenatal/preconception exposures of chromium, iron, nickel, lead, and welding fumes (all three countries), and cadmium (Finland only) for each parent using job-exposure matrices specifying prevalence (P...

  16. Evolution of Welding-Fume Aerosols with Time and Distance from the Source: A study was conducted on the spatiotemporal variability in welding-fume concentrations for the characterization of first- and second-hand exposure to welding fumes.

    Science.gov (United States)

    Cena, L G; Chen, B T; Keane, M J

    2016-08-01

    Gas metal arc welding fumes were generated from mild-steel plates and measured near the arc (30 cm), representing first-hand exposure of the welder, and farther away from the source (200 cm), representing second-hand exposure of adjacent workers. Measurements were taken during 1-min welding runs and at subsequent 5-min intervals after the welding process was stopped. Number size distributions were measured in real time. Particle mass distributions were measured using a micro-orifice uniform deposition impactor, and total mass concentrations were measured with polytetrafluorothylene filters. Membrane filters were used for collecting morphology samples for electron microscopy. Average mass concentrations measured near the arc were 45 mg/m(3) and 9 mg/m(3) at the farther distance. The discrepancy in concentrations at the two distances was attributed to the presence of spatter particles, which were observed only in the morphology samples near the source. As fumes aged over time, mass concentrations at the farther distance decreased by 31% (6.2 mg/m(3)) after 5 min and an additional 13% (5.4 mg/m(3)) after 10 min. Particle number and mass distributions during active welding were similar at both distances, indicating similar exposure patterns for welders and adjacent workers. Exceptions were recorded for particles smaller than 50 nm and larger than 3 μm, where concentrations were higher near the arc, indicating higher exposures of welders. These results were confirmed by microscopy analysis. As residence time increased, number concentrations decreased dramatically. In terms of particle number concentrations, second-hand exposures to welding fumes during active welding may be as high as first-hand exposures.

  17. Toenail as Non-invasive Biomarker in Metal Toxicity Measurement of Welding Fumes Exposure - A Review

    Science.gov (United States)

    Bakri, S. F. Z.; Hariri, A.; Ma'arop, N. F.; Hussin, N. S. A. W.

    2017-01-01

    Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

  18. Lifetime occupational exposure to dusts, gases and fumes is associated with bronchitis symptoms and higher diffusion capacity in COPD patients.

    Science.gov (United States)

    Rodríguez, Esther; Ferrer, Jaume; Zock, Jan-Paul; Serra, Ignasi; Antó, Josep M; de Batlle, Jordi; Kromhout, Hans; Vermeulen, Roel; Donaire-González, David; Benet, Marta; Balcells, Eva; Monsó, Eduard; Gayete, Angel; Garcia-Aymerich, Judith

    2014-01-01

    Occupational exposure to dusts, gases and fumes has been associated with reduced FEV1 and sputum production in COPD patients. The effect of occupational exposure on other characteristics of COPD, especially those reflecting emphysema, has not been studied in these patients. We studied 338 patients hospitalized for a first exacerbation of COPD in 9 Spanish hospitals, obtaining full occupational history in a face-to-face interview; job codes were linked to a job exposure matrix for semi-quantitative estimation of exposure to mineral/biological dust, and gases/fumes for each job held. Patients underwent spirometry, diffusing capacity testing and analysis of gases in stable conditions. Quality of life, dyspnea and chronic bronchitis symptoms were determined with a questionnaire interview. A high- resolution CT scan was available in 133 patients. 94% of the patients included were men, with a mean age of 68(8.5) years and a mean FEV1% predicted 52 (16). High exposure to gases or fumes was associated with chronic bronchitis, and exposure to mineral dust and gases/fumes was associated with higher scores for symptom perception in the St. George's questionnaire. No occupational agent was associated with a lower FEV1. High exposure to all occupational agents was associated with better lung diffusion capacity, in long-term quitters. In the subgroup with CT data, patients with emphysema had 18% lower DLCO compared to those without emphysema. In our cohort of COPD patients, high exposure to gases or fumes was associated with chronic bronchitis, and high exposure to all occupational agents was consistently associated with better diffusion capacity in long-term quitters.

  19. Lifetime occupational exposure to dusts, gases and fumes is associated with bronchitis symptoms and higher diffusion capacity in COPD patients.

    Directory of Open Access Journals (Sweden)

    Esther Rodríguez

    Full Text Available BACKGROUND: Occupational exposure to dusts, gases and fumes has been associated with reduced FEV1 and sputum production in COPD patients. The effect of occupational exposure on other characteristics of COPD, especially those reflecting emphysema, has not been studied in these patients. METHODS: We studied 338 patients hospitalized for a first exacerbation of COPD in 9 Spanish hospitals, obtaining full occupational history in a face-to-face interview; job codes were linked to a job exposure matrix for semi-quantitative estimation of exposure to mineral/biological dust, and gases/fumes for each job held. Patients underwent spirometry, diffusing capacity testing and analysis of gases in stable conditions. Quality of life, dyspnea and chronic bronchitis symptoms were determined with a questionnaire interview. A high- resolution CT scan was available in 133 patients. RESULTS: 94% of the patients included were men, with a mean age of 68(8.5 years and a mean FEV1% predicted 52 (16. High exposure to gases or fumes was associated with chronic bronchitis, and exposure to mineral dust and gases/fumes was associated with higher scores for symptom perception in the St. George's questionnaire. No occupational agent was associated with a lower FEV1. High exposure to all occupational agents was associated with better lung diffusion capacity, in long-term quitters. In the subgroup with CT data, patients with emphysema had 18% lower DLCO compared to those without emphysema. CONCLUSIONS: In our cohort of COPD patients, high exposure to gases or fumes was associated with chronic bronchitis, and high exposure to all occupational agents was consistently associated with better diffusion capacity in long-term quitters.

  20. Conceptual model for assessment of inhalation exposure: Defining modifying factors

    NARCIS (Netherlands)

    Tielemans, E.; Schneider, T.; Goede, H.; Tischer, M.; Warren, N.; Kromhout, H.; Tongeren, M. van; Hemmen, J. van; Cherrie, J.W.

    2008-01-01

    The present paper proposes a source-receptor model to schematically describe inhalation exposure to help understand the complex processes leading to inhalation of hazardous substances. The model considers a stepwise transfer of a contaminant from the source to the receptor. The conceptual model is c

  1. Personal exposure to inhalable cement dust among construction workers.

    Science.gov (United States)

    Peters, Susan; Thomassen, Yngvar; Fechter-Rink, Edeltraud; Kromhout, Hans

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and its cement content. Exposure variability was modelled with linear mixed models.Results- Inhalable dust concentrations at the construction site ranged from 0.05 to 34 mg/m(3), with a mean of 1.0 mg/m(3). Average concentration for inhalable cement dust was 0.3 mg/m(3) (GM; range 0.02-17 mg/m(3)). Levels in the ready-mix and pre-cast concrete plants were on average 0.5 mg/m(3) (GM) for inhalable dust and 0.2 mg/m(3) (GM) for inhalable cement dust. Highest concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM = 55 mg/m(3); inhalable cement dust GM = 33 mg/m(3)) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages during reinforcement work and pouring. Most likely other sources were contributing to dust concentrations, particularly at the construction site. Within job groups, temporal variability in exposure concentrations generally outweighed differences in average concentrations between workers. 'Using a broom', 'outdoor wind speed' and 'presence of rain' were overall the most influential factors affecting inhalable (cement) dust exposure.Conclusion- Job type appeared to be the main predictor of exposure to inhalable (cement) dust at the construction site. Inhalable dust concentrations in cement production plants, especially during cleaning tasks, are usually considerably higher than at the construction site.

  2. Development and characterization of a resistance spot welding aerosol generator and inhalation exposure system.

    Science.gov (United States)

    Afshari, Aliakbar; Zeidler-Erdely, Patti C; McKinney, Walter; Chen, Bean T; Jackson, Mark; Schwegler-Berry, Diane; Friend, Sherri; Cumpston, Amy; Cumpston, Jared L; Leonard, H Donny; Meighan, Terence G; Frazer, David G; Antonini, James M

    2014-10-01

    Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.

  3. The humoral immune response of mice exposed to simulated road paving-like asphalt fumes.

    Science.gov (United States)

    Anderson, Stacey E; Munson, Albert E; Tomblyn, Seth; Meade, B Jean; Diotte, Nicole M

    2008-07-01

    Asphalt is a complex mixture of organic molecules, including polycyclic aromatic hydrocarbons (PAH), which have been reported to cause serious adverse health effects in humans. Workers in manufacturing and construction trades exposed to asphalt are potentially at risk for being exposed to asphalt fumes and PAHs. Epidemiological investigations have collected mounting evidence that chemicals found in asphalt fumes present carcinogenic and possibly immunotoxic hazards. Studies evaluating the immunotoxic effects of asphalt fume are limited due to the large number of variables associated with asphalt fume exposures. This work investigates the immuno-toxic effects of road paving-like asphalt fume by analyzing the in vivo IgM response to a T-dependent antigen after exposure to whole, vapor, and particulate phase road paving-like asphalt fumes and asphalt fume condensate. Systemic exposures via intraperitoneal injection of asphalt fume condensate (at 0.625 mg/kg) and the particulate phase (at 5 mg/kg) resulted in significant reductions in the specific spleen IgM response to SRBC. Pharyngeal aspiration of the asphalt fume condensate (at 5 mg/kg) also resulted in significant suppression of the IgM response to SRBC. A significant reduction in the specific spleen IgM activity was observed after inhalation exposure to whole asphalt fumes (35 mg/m(3)) and the vapor components (11 mg/m(3)). Dermal exposures to the asphalt fume condensate resulted in significant reductions in the total (at 50 mg/kg) and specific (at 250 mg/kg) spleen IgM response to SRBC. These results demonstrate that exposure to road paving-like asphalt fumes is immunosuppressive through systemic, respiratory, and dermal routes of exposure in a murine model and raise concerns regarding the potential for adverse immunological effects.

  4. Summary of retrospective asbestos and welding fume exposure estimates for a nuclear naval shipyard and their correlation with radiation exposure estimates.

    Science.gov (United States)

    Zaebst, D D; Seel, E A; Yiin, J H; Nowlin, S J; Chen, P

    2009-07-01

    In support of a nested case-control study at a U.S. naval shipyard, the results of the reconstruction of historical exposures were summarized, and an analysis was undertaken to determine the impact of historical exposures to potential chemical confounders. The nested case-control study (N = 4388) primarily assessed the relationship between lung cancer and external ionizing radiation. Chemical confounders considered important were asbestos and welding fume (as iron oxide fume), and the chromium and nickel content of welding fume. Exposures to the potential confounders were estimated by an expert panel based on a set of quantitatively defined categories of exposure. Distributions of the estimated exposures and trends in exposures over time were examined for the study population. Scatter plots and Spearman rank correlation coefficients were used to assess the degree of association between the estimates of exposure to asbestos, welding fume, and ionizing radiation. Correlation coefficients were calculated separately for 0-, 15-, 20-, and 25-year time-lagged cumulative exposures, total radiation dose (which included medical X-ray dose) and occupational radiation dose. Exposed workers' estimated cumulative exposures to asbestos ranged from 0.01 fiber-days/cm(3) to just under 20,000 fiber-days/cm(3), with a median of 29.0 fiber-days/cm(3). Estimated cumulative exposures to welding fume ranged from 0.16 mg-days/m(3) to just over 30,000 mg-days/m(3), with a median of 603 mg-days/m(3). Spearman correlation coefficients between cumulative radiation dose and cumulative asbestos exposures ranged from 0.09 (occupational dose) to 0.47 (total radiation dose), and those between radiation and welding fume from 0.14 to 0.47. The estimates of relative risk for ionizing radiation and lung cancer were unchanged when lowest and highest estimates of asbestos and welding fume were considered. These results suggest a fairly large proportion of study population workers were exposed to

  5. The association between cooking oil fume exposure during pregnancy and birth weight: A prospective mother-child cohort study.

    Science.gov (United States)

    Wang, Lingling; Hu, Weiyue; Guan, Quanquan; Du, Guizhen; Chen, Ting; Wu, Wei; Wang, Yun; Wang, Xinru; Xia, Yankai

    2017-09-04

    Effects of indoor air pollution on neonatal birth weight has been studied for many years. In China, cooking oil fumes are important parts of indoor air pollution. However, whether cooking oil fume exposure during pregnancy affects birth weight in China remains poorly understood. The objective of this study was to examine the association between pregnancy exposure to cooking oil fumes and birth weight in a newly established prospective mother-child cohort in China. We finally included 1420 pregnant women from 2013 to 2015 and follow up for one year until the offspring was born. According to self-reported exposure status, we categorized mothers into non-exposure group and exposed group or three exposure time subgroups, including 0h/day, 0-1h/day and >1h/day respectively. By using multinomial logistics regression models, we found that pregnancy exposure to cooking oil fumes significantly increased the risk of large for gestational age (LGA, OR=1.58, 95% CI=1.15-2.18, P=4.88×10(-3)). Additionally, compared to pregnant women who were in non-exposure group, 0-1h/day exposure elevated the risk of LGA (OR=1.69, 95% CI=1.22-2.33, P=1.63×10(-3)), while >1h/day exposure elevated the risk of small for gestational age, but were not significant (SGA, OR=2.15, 95% CI=0.61-7.66, P=0.24). In the stratification analysis, women aged 25-29years and ≥30years were predisposed to the influence of cooking oil fumes and have LGA newborns (OR=1.73, 95% CI=1.09-2.75, P=0.02; OR=1.72, 95% CI=1.07-2.77, P=0.02, respectively). In conclusion, the present study suggests inverse U-shape dose response association between maternal exposure to cooking oil fumes during pregnancy and birth weight, and further studies are needed to verify the effect of cooking oil fumes on the birth weight. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bitumen fume-induced gene expression profile in rat lung.

    Science.gov (United States)

    Gate, Laurent; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Hervé; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stéphane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 degrees C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  7. Quantitative exposure matrix for asphalt fume, total particulate matter, and respirable crystalline silica among roofing and asphalt manufacturing workers.

    Science.gov (United States)

    Fayerweather, William E; Trumbore, David C; Johnson, Kathleen A; Niebo, Ronald W; Maxim, L Daniel

    2011-09-01

    This paper summarizes available data on worker exposures to asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica (quartz) [hereinafter RCS] over a 30-year period in Owens Corning's asphalt production and roofing manufacturing plants. For the period 1977 through 2006, the air-monitoring database contains more than 1,400 personal samples for asphalt fume (soluble fraction), 2,400 personal samples for total particulate, and 1,300 personal samples for RCS. Unique process-job categories were identified for the asphalt production and roofing shingle manufacturing plants. Quantitative exposures were tabulated by agent, process-job, and calendar period to form an exposure matrix for use in subsequent epidemiologic studies of the respiratory health of these workers. Analysis of time trends in exposure data shows substantial and statistically significant exposure reductions for asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica at Owens Corning plants. Cumulative distribution plots for the most recent sampling period (2001-2006) show that 95% of the asphalt fume (soluble fraction) measurements were less than 0.25 mg/m3; 95% of the total particulate measurements were less than 2.2 mg/m3; and 95% of the RCS measurements were less than 0.05 mg/m3. Several recommendations are offered to improve the design of future monitoring efforts.

  8. Asphalt fume exposure levels in North American asphalt production and roofing manufacturing operations.

    Science.gov (United States)

    Axten, Charles W; Fayerweather, William E; Trumbore, David C; Mueller, Dennis J; Sampson, Arthur F

    2012-01-01

    This study extends by 8 years (1998-2005) a previous survey of asphalt fume exposures within North American asphalt processing and roofing product manufacturing workers. It focuses on characterizing personal, full-shift samples and seeks to address several limitations of the previous survey. Five major roofing manufacturers with established occupational health programs submitted workplace asphalt fume sampling results to a central repository for review and analysis. A certified industrial hygienist-led quality assurance team oversaw the data collection, consolidation, and analysis efforts. The analysis dataset consisted of 1261 personal exposure samples analyzed for total particulate (TP) and benzene soluble fraction (BSF) using existing NIOSH methods. For BSF, the survey's arithmetic (0.25 mg/m(3), SD = 0.62) and geometric (0.12 mg/m(3), GSD = 2.88) means indicate that the industry has sustained the control levels achieved in the late 1980s, early 1990s. Similar results were found for TP. The survey-wide summary statistics are consistent with other post-1990 multi-company exposure studies. Although these findings indicate that currently available controls are capable of achieving substantial (95%) compliance with the current threshold limit value in asphalt processing and inorganic shingle and roll plants, they also show that the majority of plants are not achieving this level of exposure control, and that exposures are significantly higher in plants making other product lines, particularly organic felt products. The current retrospective survey of existing company exposure data, like its predecessor, has several important limitations. These include lack of data on smaller manufacturers and on several commercially important product lines; insufficient information on the prevalence and effectiveness of engineering controls; no standard criteria by which to define and assess exposures in non-routine operations; and a paucity of exposure data collected as part of a

  9. Exposure to rubber process dust and fume since 1970s in the United Kingdom; influence of origin of measurement data.

    NARCIS (Netherlands)

    Agostini, M.; de Vocht, F.; van Tongeren, M.; Cherrie, J.W.; Galea, K.S.; Kromhout, H.

    2010-01-01

    The objective of this study was to compare measured concentrations of rubber process dust and rubber fume originating from different sources in the British rubber manufacturing industry. Almost 8000 exposure measurements were obtained from industry-based survey results collected by the British Rubbe

  10. Characteristics of peaks of inhalation exposure to organic solvents

    NARCIS (Netherlands)

    Preller, L.; Burstyn, I.; Pater, N. de; Kromhout, H.

    2004-01-01

    Objectives: To determine which exposure metrics are sufficient to characterize 'peak' inhalation exposure to organic solvents (OS) during spraying operations. Methods: Personal exposure measurements (n = 27; duration 5-159 min) were collected during application of paints, primers, resins and glues i

  11. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.

    Science.gov (United States)

    Tsai, Su-Jung Candace; Huang, Rong Fung; Ellenbecker, Michael J

    2010-01-01

    Tsai et al. (Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2009; 11: 147-61) found that the handling of dry nanoalumina and nanosilver inside laboratory fume hoods can cause a significant release of airborne nanoparticles from the hood. Hood design affects the magnitude of release. With traditionally designed fume hoods, the airflow moves horizontally toward the hood cupboard; the turbulent airflow formed in the worker wake region interacts with the vortex in the constant-flow fume hood and this can cause nanoparticles to be carried out with the circulating airflow. Airborne particle concentrations were measured for three hood designs (constant-flow, constant-velocity, and air-curtain hoods) using manual handling of nanoalumina particles. The hood operator's airborne nanoparticle breathing zone exposure was measured over the size range from 5 nm to 20 mum. Experiments showed that the exposure magnitude for a constant-flow hood had high variability. The results for the constant-velocity hood varied by operating conditions, but were usually very low. The performance of the air-curtain hood, a new design with significantly different airflow pattern from traditional hoods, was consistent under all operating conditions and release was barely detected. Fog tests showed more intense turbulent airflow in traditional hoods and that the downward airflow from the double-layered sash to the suction slot of the air-curtain hood did not cause turbulence seen in other hoods.

  12. Association between cooking oil fume exposure and lung cancer among Chinese nonsmoking women: a meta-analysis.

    Science.gov (United States)

    Xue, Yingbo; Jiang, Ying; Jin, Shan; Li, Yong

    2016-01-01

    Lung cancer has been the main cause of cancer death around the world. Cigarette smoking has been identified as a risk factor for lung cancer in males. However, the etiological factors in nonsmoking women remain elusive. A meta-analysis was conducted to evaluate the relationship between cooking oil fume exposure and lung cancer among Chinese nonsmoking women. Thirteen articles containing three population-based case-control and ten hospital-based case-control studies were included in this meta-analysis. These studies with a total of 3,596 lung cancer women and 6,082 healthy controls were analyzed by RevMan 5.3. Fixed effects model or random effects model was used to obtain pooled estimates of risk ratio. The risk ratios with a 95% CI were 1.74 (95% CI =1.57-1.94) and 2.11 (95% CI =1.54-2.89), respectively. Cooking oil fume exposure as well as not using a kitchen ventilator when cooking was significantly associated with lung cancer among nonsmoking women (Z=10.07, PCooking oil fume exposure, especially lacking a fume extractor, may increase the risk of lung cancer among Chinese nonsmoking women.

  13. Toenail metal concentration as a biomarker of occupational welding fume exposure.

    Science.gov (United States)

    Grashow, Rachel; Zhang, Jinming; Fang, Shona C; Weisskopf, Marc G; Christiani, David C; Cavallari, Jennifer M

    2014-01-01

    In populations exposed to heavy metals, there are few biomarkers that capture intermediate exposure windows. We sought to determine the correlation between toenail metal concentrations and prior 12-month work activity in welders with variable, metal-rich, welding fume exposures. Forty-eight participants, recruited through a local union, provided 69 sets of toenail clippings. Union-supplied and worker-verified personal work histories were used to quantify hours welded and respirator use. Toenail samples were digested and analyzed for lead (Pb), manganese (Mn), cadmium (Cd), nickel (Ni), and arsenic (As) using ICP-MS. Spearman correlation coefficients were used to examine the correlation between toenail metal concentrations. Using mixed models to account for multiple participation times, we divided hours welded into three-month intervals and examined how weld hours correlated with log-transformed toenail Pb, Mn, Cd, Ni, and As concentrations. Highest concentrations were found for Ni, followed by Mn, Pb and As, and Cd. All the metals were significantly correlated with one another (rho range = 0.28-0.51), with the exception of Ni and As (rho = 0.20, p = 0.17). Using mixed models adjusted for age, respirator use, smoking status, and BMI, we found that Mn was associated with weld hours 7-9 months prior to clipping (p = 0.003), Pb was associated with weld hours 10-12 months prior to clipping (p = 0.03) and over the entire year (p = 0.04). Cd was associated with weld hours 10-12 months prior to clipping (p = 0.05), and also with the previous year's total hours welded (p = 0.02). The association between Ni and weld hours 7-9 months prior to clipping approached significance (p = 0.06). Toenail metal concentrations were not associated with the long-term exposure metric, years as a welder. Results suggest Mn, Pb, and Cd may have particular windows of relevant exposure that reflect work activity. In a population with variable exposure, toenails may serve as useful biomarkers

  14. Acute inhalation exposure of azodicarbonamide in the guinea pig.

    Science.gov (United States)

    Shopp, G M; Cheng, Y S; Gillett, N A; Bechtold, W E; Medinsky, M A; Hobbs, C H; Birnbaum, L S; Mauderly, J L

    1987-02-01

    Humans have been exposed to azodicarbonamide (ADA) by inhalation where bulk quantities of ADA are handled in the workplace. Responses of some workers have led to concern for the potential irritant and sensitizing properties of inhaled ADA. This study examined the effects of inhaling ADA on lung structure and function of guinea pigs during and after an acute exposure. Groups of 20 guinea pigs were exposed to each of 3 concentrations of ADA (19, 58, and 97 mg/m3), plus air as a control, for 1 hr. Pulmonary function was measured before exposure (baseline), during exposure, immediately after exposure and 24 hr after exposure. Dynamic compliance (Cdyn), total pulmonary resistance (RL), tidal volume (VT), respiratory frequency and minute volume were measured. In addition, gross necropsies and histological examinations of respiratory tract tissues were done either immediately following the exposure or 24 hr after exposure. There were no effects of ADA exposure on gross necropsy, histology, Cdyn, or RL. Some significant, concentration-related decreases in VT, respiratory frequency and minute volume were seen. The magnitudes of these changes were small: the largest change was seen in minute volume, amounting to a 24% decrease in the high concentration group. Inhalation exposure of guinea pigs to ADA at concentrations of up to 97 mg/m3 resulted in minor changes in pulmonary function without any changes in lung histology.

  15. Personal exposure to inhalable cement dust among construction workers.

    NARCIS (Netherlands)

    Peters, S.M.; Thomassen, Y.; Fechter-Rink, E.; Kromhout, H.

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and

  16. Pathways of inhalation exposure to manganese in children ...

    Science.gov (United States)

    Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation pathway model to ambient air Mn was hypothesized. Data for model evaluation were obtained from participants in the Communities Actively Researching Exposure Study (CARES). These data were collected in 2009 and included levels of Mn in residential soil and dust, levels of Mn in children's hair, information on the amount of time the child spent outside, heat and air conditioning in the home and level of parent education. Hair Mn concentration was the primary endogenous variable used to assess the theoretical inhalation exposure pathways. The model indicated that household dust Mn was a significant contributor to child hair Mn (0.37). Annual ambient air Mn concentration (0.26), time children spent outside (0.24) and soil Mn (0.24) significantly contributed to the amount of Mn in household dust. These results provide a potential framework for understanding the inhalation exposure pathway for children exposed to ambient air Mn who live in proximity to an industrial emission source. The purpose of this study was to use a structural equations modeling approach combined with exposure estimates derived from air-dispersion modeling to assess potential inhalation exposure pathways for children to a

  17. Pathways of inhalation exposure to manganese in children ...

    Science.gov (United States)

    Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation pathway model to ambient air Mn was hypothesized. Data for model evaluation were obtained from participants in the Communities Actively Researching Exposure Study (CARES). These data were collected in 2009 and included levels of Mn in residential soil and dust, levels of Mn in children's hair, information on the amount of time the child spent outside, heat and air conditioning in the home and level of parent education. Hair Mn concentration was the primary endogenous variable used to assess the theoretical inhalation exposure pathways. The model indicated that household dust Mn was a significant contributor to child hair Mn (0.37). Annual ambient air Mn concentration (0.26), time children spent outside (0.24) and soil Mn (0.24) significantly contributed to the amount of Mn in household dust. These results provide a potential framework for understanding the inhalation exposure pathway for children exposed to ambient air Mn who live in proximity to an industrial emission source. The purpose of this study was to use a structural equations modeling approach combined with exposure estimates derived from air-dispersion modeling to assess potential inhalation exposure pathways for children to a

  18. Complex suicide by ethanol intoxication and inhalation of fire fumes in an old lady: interdisciplinary elucidation including post-mortem analysis of congener alcohols.

    Science.gov (United States)

    Jungmann, L; Perdekamp, M Grosse; Bohnert, M; Auwärter, V; Pollak, S

    2011-06-15

    An 88-year-old woman committed suicide by drinking a toxic amount of highly concentrated alcohol and setting two rooms of her flat on fire. As there was not enough oxygen, the fire went out, however. At autopsy, no thermal lesions were found on the body, but soot depositions in the airways and a COHb value of 14% pointed to the inhalation of fire fumes. The ethanol concentration in femoral blood was 6.62 per mille. The gastric mucosa was fixed by the ingested alcohol and showed hardly any autolytic changes despite a post-mortem interval of five days. Congener analysis of the gastric contents and the femoral blood indicated the uptake of a fruit distillate or its foreshot.

  19. Inhalational and dermal exposures during spray application of biocides.

    Science.gov (United States)

    Berger-Preiss, Edith; Boehncke, Andrea; Könnecker, Gustav; Mangelsdorf, Inge; Holthenrich, Dagmar; Koch, Wolfgang

    2005-01-01

    Data on inhalational and potential dermal exposures during spray application of liquid biocidal products were generated. On the one hand, model experiments with different spraying devices using fluorescent tracers were carried out to investigate the influence of parameters relevant to the exposure (e.g. spraying equipment, nozzle size, direction of application). On the other hand, measurements were performed at selected workplaces (during disinfection operations in food and feed areas; pest control operations for private, public and veterinary hygiene; wood protection and antifouling applications) after application of biocidal products such as Empire 20, Responsar SC, Omexan-forte, Actellic, Perma-forte; Fendona SC, Pyrethrum mist; CBM 8, Aldekol Des 03, TAD CID, Basileum, Basilit. The measurements taken in the model rooms demonstrated dependence of the inhalation exposure on the type of spraying device used, in the following order: "spraying with low pressure" < "airless spraying" < "fogging" indicating that the particle diameter of the released spray droplets is the most important parameter. In addition inhalation exposure was lowest when the spraying direction was downward. Also for the potential dermal exposure, the spraying direction was of particular importance: overhead spraying caused the highest contamination of body surfaces. The data of inhalational and potential dermal exposures gained through workplace measurements showed considerable variation. During spraying procedures with low-pressure equipments, dose rates of active substances inhaled by the operators ranged from 7 to 230 microg active substance (a.s.)/h. An increase in inhaled dose rates (6-33 mg a.s./h) was observed after use of high application volumes/time unit during wood protection applications indoors. Spraying in the veterinary sector using medium-pressure sprayers led to inhaled dose rates between 2 and 24mga.s./h. The highest inhaled dose rates were measured during fogging (114 mg a

  20. About changes of lung function by occupational exposure to cadmium fumes. Zur Frage von Lungenfunktionsaenderungen bei beruflicher Belastung durch Cadmiumdaempfe

    Energy Technology Data Exchange (ETDEWEB)

    Smetana, R.; Schuller, W.; Meisinger, V. (Vienna Univ. (Austria). Klinik fuer Arbeitsmedizin); Klopsa, H. (Vienna Univ. (Austria). 1. Medizinische Klinik); Sommer, G. (Krankenhaus der Stadt Wien Floridsdorf, Vienna (Austria))

    1989-10-01

    In a one year follow-up-study the same group of smelters (n=8) with occupational exposure to cadmium fumes underwent clinical routine screening including lung function test and blood gas analysis under resting conditions and work load. Furthermore, the concentration of cadmium in blood and 24h-urine samples was determined. The results were compared with data from the same group of controls (n=8) without occupational exposure to cadmium fumes. The data of smelters showed a decreased (p<0,01) partial pressure of oxygen and an increased (p<0,01) alveolar-arterial tension of oxygen compared to controls. Furthermore, cadmium concentrations in blood and 24h-urine samples of smelters were higher than those of controls. Lung function parameters of smelters were within the normal range for both groups, a significant difference between smelters and controls was not computed. Acute or chronical pulmonary changes were not detected in smelters. (orig.).

  1. Comparison of nanoparticle exposures between fumed and sol-gel nano-silica manufacturing facilities.

    Science.gov (United States)

    Oh, Sewan; Kim, Boowook; Kim, Hyunwook

    2014-01-01

    Silica nanoparticles (SNPs) are widely used all around the world and it is necessary to evaluate appropriate risk management measures. An initial step in this process is to assess worker exposures in their current situation. The objective of this study was to compare concentrations and morphologic characteristics of fumed (FS) and sol-gel silica nanoparticles (SS) in two manufacturing facilities. The number concentration (NC) and particle size were measured by a real-time instrument. Airborne nanoparticles were subsequently analyzed using a TEM/EDS. SNPs were discharged into the air only during the packing process, which was the last manufacturing step in both the manufacturing facilities studied. In the FS packing process, the geometric mean (GM) NC in the personal samples was 57,000 particles/cm(3). The geometric mean diameter (GMD) measured by the SMPS was 64 nm. Due to the high-temperature formation process, the particles exhibited a sintering coagulation. In the SS packing process that includes a manual jet mill operation, the GM NC was calculated to be 72,000 particles/cm(3) with an assumption of 1,000,000 particles/cm(3) when the upper limit is exceeded (5% of total measure). The particles from SS process had a spherical-shaped morphology with GMD measured by SMPS of 94 nm.

  2. Inhalation a significant exposure route for chlorinated organophosphate flame retardants.

    Science.gov (United States)

    Schreder, Erika D; Uding, Nancy; La Guardia, Mark J

    2016-05-01

    Chlorinated organophosphate flame retardants (ClOPFRs) are widely used as additive flame retardants in consumer products including furniture, children's products, building materials, and textiles. Tests of indoor media in homes, offices, and other environments have shown these compounds are released from products and have become ubiquitous indoor pollutants. In house dust samples from Washington State, U.S.A., ClOPFRs were the flame retardants detected in the highest concentrations. Two ClOPFRs, tris(1,3-dichloro-2-propyl)phosphate (TDCPP or TDCIPP) and tris(2-chloroethyl)phosphate (TCEP), have been designated as carcinogens, and there is growing concern about the toxicity of the homologue tris(1-chloro-2-propyl)phosphate (TCPP or TCIPP). In response to concerns about exposure to these compounds, the European Union and a number of U.S. states have taken regulatory action to restrict their use in certain product categories. To better characterize exposure to ClOPFRs, inhalation exposure was assessed using active personal air samplers in Washington State with both respirable and inhalable particulate fractions collected to assess the likelihood particles penetrate deep into the lungs. Concentrations of ∑ClOPFRs (respirable and inhalable) ranged from 97.1 to 1190 ng m(-3) (mean 426 ng m(-3)), with TCPP detected at the highest concentrations. In general, higher levels were detected in the inhalable particulate fraction. Total intake of ClOPFRs via the inhalation exposure route was estimated to exceed intake via dust ingestion, indicating that inhalation is an important route that should be taken into consideration in assessments of these compounds.

  3. Risk Assessment of Baby Powder Exposure through Inhalation

    OpenAIRE

    Moon, Min Chaul; Park, Jung Duck; Choi, Byung Soon; Park, So Young; Kim, Dong Won; Chung, Yong Hyun; HISANAGA, Naomi; Yu, Il Je

    2011-01-01

    This study was conducted to assess the exposure risk through inhalation to baby powder for babies and adults under simulated conditions. Baby powder was applied to a baby doll and the amount of baby powder consumed per application was estimated. The airborne exposure to baby powder during application was then evaluated by sampling the airborne baby powder near the breathing zones of both the baby doll and the person applying the powder (the applicator). The average amount of baby powder consu...

  4. Pulmonary function abnormalities and airway irritation symptoms of metal fumes exposure on automobile spot welders.

    Science.gov (United States)

    Luo, Jiin-Chyuan John; Hsu, Kuang-Hung; Shen, Wu-Shiun

    2006-06-01

    Spot or resistance welding has been considered less hazardous than other types of welding. Automobile manufacturing is a major industry in Taiwan. Spot and arc welding are common processes in this industry. The respiratory effects on automobile spot welders exposed to metal fumes are investigated. The cohort consisted of 41 male auto-body spot welders, 76 male arc welders, 71 male office workers, and 59 assemblers without welding exposure. Inductivity Coupled Plasma Mass Spectrophotometer (ICP-MS) was applied to detect metals' (zinc, copper, nickel) levels in the post-shift urine samples. Demographic data, work history, smoking status, and respiratory tract irritation symptoms were gathered by a standard self-administered questionnaire. Pulmonary function tests were also performed. There were significantly higher values for average urine metals' (zinc, copper, nickel) levels in spot welders and arc welders than in the non-welding controls. There were 4 out of 23 (17.4%) abnormal forced vital capacity (FVC) among the high-exposed spot welders, 2 out of 18 (11.1%) among the low-exposed spot welders, and 6 out of 130 (4.6%) non-welding-exposed workers. There was a significant linear trend between spot welding exposure and the prevalence of restrictive airway abnormalities (P = 0.036) after adjusting for other factors. There were 9 out of 23 (39.1%) abnormal peak expiratory flow rate (PEFR) among high-exposed spot welders, 5 out of 18 (27.8%) among the low-exposed spot welders, and 28 out of 130 (21.5%) non-welding-exposed workers. There was a borderline significant linear trend between spot welding exposure and the prevalence of obstructive lung function abnormalities (P = 0.084) after adjusting for other factors. There was also a significant dose-response relationship of airway irritation symptoms (cough, phlegm, chronic bronchitis) among the spot welders. Arc welders with high exposure status also had a significant risk of obstructive lung abnormalities (PEFR

  5. Age dependent systemic exposure to inhaled salbutamol

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Jespersen, Jakob Jessing; Bisgaard, Hans

    2007-01-01

    a dose on a microg kg(-1) basis caused reduced systemic exposure in young children (Y) compared with older children (O) (C(max-microg kg(-1)-adjusted) Y : O ratio (95%CI) = 0.55 (0.47, 0.65)) whereas a fixed nominal dose irrespective of age caused increased exposure in young children (C(max) Y : O ratio...

  6. Neurotoxic effects of subchronic intratracheal Mn nanoparticle exposure alone and in combination with other welding fume metals in rats.

    Science.gov (United States)

    Máté, Zsuzsanna; Horváth, Edina; Papp, András; Kovács, Krisztina; Tombácz, Etelka; Nesztor, Dániel; Szabó, Tamás; Szabó, Andrea; Paulik, Edit

    2017-04-01

    Manganese (Mn) is a toxic heavy metal exposing workers in various occupational settings and causing, among others, nervous system damage. Metal fumes of welding, a typical source of Mn exposure, contain a complex mixture of metal oxides partly in nanoparticle form. As toxic effects of complex substances cannot be sufficiently understood by examining its components separately, general toxicity and functional neurotoxicity of a main pathogenic welding fume metal, Mn, was examined alone and combined with iron (Fe) and chromium (Cr), also frequently found in fumes. Oxide nanoparticles of Mn, Mn + Fe, Mn + Cr and the triple combination were applied, in aqueous suspension, to the trachea of young adult Wistar rats for 4 weeks. The decrease of body weight gain during treatment, caused by Mn, was counteracted by Fe, but not Cr. At the end of treatment, spontaneous and evoked cortical electrical activity was recorded. Mn caused a shift to higher frequencies, and lengthened evoked potential latency, which were also strongly diminished by co-application of Fe only. The interaction of the metals seen in body weight gain and cortical activity were not related to the measured blood and brain metal levels. Fe might have initiated protective, e.g. antioxidant, mechanisms with a more general effect.

  7. Exposure to welding fumes increases lung cancer risk among light smokers but not among heavy smokers: evidence from two case-control studies in Montreal.

    Science.gov (United States)

    Vallières, Eric; Pintos, Javier; Lavoué, Jérôme; Parent, Marie-Élise; Rachet, Bernard; Siemiatycki, Jack

    2012-08-01

    We investigated relationships between occupational exposure to gas and arc welding fumes and the risk of lung cancer among workers exposed to these agents throughout the spectrum of industries. Two population-based case-control studies were conducted in Montreal. Study I (1979-1986) included 857 cases and 1066 controls, and Study II (1996-2001) comprised 736 cases and 894 controls. Detailed job histories were obtained by interview and evaluated by an expert team of chemist-hygienists to estimate degree of exposure to approximately 300 substances for each job. Gas and arc welding fumes were among the agents evaluated. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer using logistic regression, adjusting for smoking history and other covariates. The two studies provided similar results, so a pooled analysis was conducted. Among all subjects, no significant association was found between lung cancer and gas welding fumes (OR = 1.1; 95% CI = 0.9-1.4) or arc welding fumes (OR = 1.0; 95% CI = 0.8-1.2). However, when restricting attention to light smokers, there was an increased risk of lung cancer in relation to gas welding fumes (OR = 2.9; 95% CI = 1.7-4.8) and arc welding fumes (OR = 2.3; 95% CI = 1.3-3.8), with even higher OR estimates among workers with the highest cumulative exposures. In conclusion, there was no detectable excess risk of lung cancer due to welding fumes among moderate to heavy smokers; but among light smokers we found an excess risk related to both types of welding fumes.

  8. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.

    Science.gov (United States)

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M

    2015-02-03

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks.

  9. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model

    Science.gov (United States)

    2012-06-13

    daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model Roy E. Barnewall 1, Jason E. Comer 1, Brian D. Miller 1, BradfordW...multiple exposure days. Keywords: Bacillus anthracis , inhalation exposures, low-dose, subchronic exposures, spores, anthrax, aerosol system INTRODUCTION... Bacillus Anthracis Spore Inhalation Exposures In The Rabbit Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  10. Effects on the efficiency of activated carbon on exposure to welding fumes

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D. [Southern Company Services, Inc., Birmingham, AL (United States)

    1995-02-01

    It is the intention of this paper to document that certain types of welding fumes have little or no effect on the effectiveness of the carbon filter air filtration efficiency when directly exposed to a controlled amount of welding fumes for a short-term period. The welding processes studied were restricted to shielded metal arc welding (SMAW), flux cored arc welding (FCAW), gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes. Contrary to the SMAW and FCAW processes, the GTAW (or TIG) and the GMAW (or MIG) welding processes do not require the use of flux as part of the overall process. Credit was taken for these processes occurring in inert gas environments and producing minimal amount of smoke. It was concluded that a study involving the SMAW process would also envelop the effects of the TIG and MIG welding processes. The quantity of welding fumes generated during the arc welding process is a function of the particular process, the size and type of electrode, welding machine amperage, and operator proficiency. For this study, the amount of welding for specific testing was equated to the amount of welding normally conducted during plant unit outages. Different welding electrodes were also evaluated, and the subsequent testing was limited to an E7018 electrode which was judged to be representative of all carbon and stainless steel electrodes commonly used at the site. The effect of welding fumes on activated charcoal was tested using a filtration unit complete with prefilters, upstream and downstream high efficiency particulate air (HEPA) filters, and a carbon adsorber section. The complete system was field tested in accordance with ANSI N510 standards prior to exposing the filters and the adsorber bed to welding fumes. The carbon samples were tested at an established laboratory using ASTM D3803-1989 standards.

  11. Zinc toxicology following particulate inhalation

    Directory of Open Access Journals (Sweden)

    Cooper Ross

    2008-01-01

    Full Text Available The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl 2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection.

  12. Cancer incidence among welders: possible effects of exposure to extremely low frequency electromagnetic radiation (ELF) and to welding fumes.

    Science.gov (United States)

    Stern, R M

    1987-12-01

    Epidemiological studies of cancer incidence among welders disclose a pooled total of 146 cases of leukemia observed versus 159.46 expected, a risk ratio of 0.92, and 40 cases of acute leukemia observed versus 43.39 expected, a risk ratio of 0.92. For respiratory tract cancer, the pooled total is 1789 cases observed versus 1290.7 expected, a risk ratio of 1.39. Most electric welders are exposed to extremely low frequency electromagnetic radiation (ELF) (magnetic flux densities of up to 100,000 microT), a suspected leukemogen, and to concentrated metallic aerosols (up to 200 mg/m3), which can contain the putative respiratory tract carcinogens Cr(VI) and Ni. The two exposures are usually coincident, since welding with an electric current produces welding fumes. The observation of an excess risk for respiratory tract cancer strongly suggests significant exposure both to fumes and to ELF. The absence of increased risk for all leukemia or for acute leukemia among ELF-exposed welders does not support the hypothesis that the observed excess risk for leukemia or acute leukemia among workers in the electrical trades is due to their ELF exposure, which on the average is lower than that of welders.

  13. Combustion-derived nanoparticles: A review of their toxicology following inhalation exposure

    Directory of Open Access Journals (Sweden)

    Mills Nicholas

    2005-10-01

    Full Text Available Abstract This review considers the molecular toxicology of combustion-derived nanoparticles (CDNP following inhalation exposure. CDNP originate from a number of sources and in this review we consider diesel soot, welding fume, carbon black and coal fly ash. A substantial literature demonstrates that these pose a hazard to the lungs through their potential to cause oxidative stress, inflammation and cancer; they also have the potential to redistribute to other organs following pulmonary deposition. These different CDNP show considerable heterogeneity in composition and solubility, meaning that oxidative stress may originate from different components depending on the particle under consideration. Key CDNP-associated properties of large surface area and the presence of metals and organics all have the potential to produce oxidative stress. CDNP may also exert genotoxic effects, depending on their composition. CDNP and their components also have the potential to translocate to the brain and also the blood, and thereby reach other targets such as the cardiovascular system, spleen and liver. CDNP therefore can be seen as a group of particulate toxins unified by a common mechanism of injury and properties of translocation which have the potential to mediate a range of adverse effects in the lungs and other organs and warrant further research.

  14. TP63 gene polymorphisms, cooking oil fume exposure and risk of lung adenocarcinoma in Chinese non-smoking females.

    Science.gov (United States)

    Yin, Zhi-Hua; Cui, Zhi-Gang; Ren, Yang-Wu; Su, Meng; Ma, Rui; He, Qin-Cheng; Zhou, Bao-Sen

    2014-01-01

    Genetic polymorphisms of TP63 have been suggested to influence susceptibility to lung adenocarcinoma development in East Asian populations. This study aimed to investigate the relationship between common polymorphisms in the TP63 gene and the risk of lung adenocarcinoma, as well as interactions of the polymorphisms with environmental risk factors in Chinese non-smoking females. A case-control study of 260 cases and 318 controls was conducted. Data concerning demographic and risk factors were obtained for each subject. The genetic polymorphisms were determined by Taqman real-time PCR and statistical analyses were performed using SPSS software. For 10937405, carriers of the CT genotype or at least one T allele (CT/TT) had lower risks of lung adenocarcinoma compared with the homozygous wild CC genotype in Chinese nonsmoking females (adjusted ORs were 0.68 and 0.69, 95%CIs were 0.48-0.97 and 0.50-0.97, P values were 0.033 and 0.030, respectively). Allele comparison showed that the T allele of rs10937405 was associated with a decreased risk of lung adenocarcinoma with an OR of 0.78 (95%CI=0.60-1.01, P=0.059). Our results showed that exposure to cooking oil fumes was associated with increased risk of lung adenocarcinoma in Chinese nonsmoking females (adjusted OR=1.58, 95%CI=1.11-2.25, P=0.011). However, we did not observe a significant interaction of cooking oil fumes and TP63 polymorphisms. TP63 polymorphism might be a genetic susceptibility factor for lung adenocarcinoma in Chinese non-smoking females, but no significant interaction was found with cooking oil fume exposure.

  15. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    Science.gov (United States)

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  16. Gaps in scientific knowledge about the carcinogenic potential of asphalt/bitumen fumes.

    Science.gov (United States)

    Schulte, Paul A

    2007-01-01

    Despite a relatively large body of published research, the potential carcinogenicity of asphalt/bitumen fumes is still a vexing question. Various uncertainties and gaps in scientific knowledge need to be addressed. These include uncertainties in chemistry, animal studies, and human studies. The chemistry of asphalt/bitumen fumes is complex and varies according to the source of the crude oil and the application parameters. The epidemiological studies, while showing weak evidence of lung cancer, are inconsistent and many confounding factors have not been addressed. Studies of animal exposure are also inconsistent regarding laboratory and field-generated fumes. There is a need for further human studies that address potential confounding factors such as smoking, diet, coal tar, and diesel exposures. Animal inhalation studies need to be conducted with asphalt/bitumen fumes that are chemically representative of roofing and paving fumes. Underlying all of this is the need for continued characterization of fumes so their use in animal and field studies can be properly assessed. Nonetheless, uncertainties such as these should not preclude appropriate public health actions to protect workers in the even that asphalt fumes are found to be a carcinogenic hazard.

  17. Beryllium contamination and exposure monitoring in an inhalation laboratory setting.

    Science.gov (United States)

    Muller, Caroline; Audusseau, Séverine; Salehi, Fariba; Truchon, Ginette; Chevalier, Gaston; Mazer, Bruce; Kennedy, Greg; Zayed, Joseph

    2010-02-01

    Beryllium (Be) is used in several forms: pure metal, beryllium oxide, and as an alloy with copper, aluminum, or nickel. Beryllium oxide, beryllium metal, and beryllium alloys are the main forms present in the workplace, with inhalation being the primary route of exposure. Cases of workers with sensitization or chronic beryllium disease challenge the scientific community for a better understanding of Be toxicity. Therefore, a toxicological inhalation study using a murine model was performed in our laboratory in order to identify the toxic effects related to different particle sizes and chemical forms of Be. This article attempts to provide information regarding the relative effectiveness of the environmental monitoring and exposure protection program that was enacted to protect staff (students and researchers) in this controlled animal beryllium inhalation exposure experiment. This includes specific attention to particle migration control through intensive housekeeping and systematic airborne and surface monitoring. Results show that the protective measures applied during this research have been effective. The highest airborne Be concentration in the laboratory was less than one-tenth of the Quebec OEL (occupational exposure limit) of 0.15 microg/m(3). Considering the protection factor of 10(3) of the powered air-purifying respirator used in this research, the average exposure level would be 0.03 x 10(- 4) microg/m(3), which is extremely low. Moreover, with the exception of one value, all average Be concentrations on surfaces were below the Quebec Standard guideline level of 3 microg/100 cm(2) for Be contamination. Finally, all beryllium lymphocyte proliferation tests for the staff were not higher than controls.

  18. Characteristics of a residential and working community with diverse exposure to World Trade Center dust, gas, and fumes.

    Science.gov (United States)

    Reibman, Joan; Liu, Mengling; Cheng, Qinyi; Liautaud, Sybille; Rogers, Linda; Lau, Stephanie; Berger, Kenneth I; Goldring, Roberta M; Marmor, Michael; Fernandez-Beros, Maria Elena; Tonorezos, Emily S; Caplan-Shaw, Caralee E; Gonzalez, Jaime; Filner, Joshua; Walter, Dawn; Kyng, Kymara; Rom, William N

    2009-05-01

    To describe physical symptoms in those local residents, local workers, and cleanup workers who were enrolled in a treatment program and had reported symptoms and exposure to the dust, gas, and fumes released with the destruction of the World Trade Center (WTC) on September 11, 2001. Symptomatic individuals underwent standardized evaluation and subsequent treatment. One thousand eight hundred ninety-eight individuals participated in the WTC Environmental Health Center between September 2005 and May 2008. Upper and lower respiratory symptoms that began after September 11, 2001 and persisted at the time of examination were common in each exposure population. Many (31%) had spirometry measurements below the lower limit of normal. Residents and local workers as well as those with work-associated exposure to WTC dust have new and persistent respiratory symptoms with lung function abnormalities 5 or more years after the WTC destruction.

  19. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    M. Wasiolek

    2006-06-05

    This analysis is one of the technical reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), referred to in this report as the biosphere model. ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. ''Inhalation Exposure Input Parameters for the Biosphere Model'' is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the biosphere model is presented in Figure 1-1 (based on BSC 2006 [DIRS 176938]). This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and how this analysis report contributes to biosphere modeling. This analysis report defines and justifies values of atmospheric mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of the biosphere model to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception. This

  20. Risk Assessment of Baby Powder Exposure through Inhalation.

    Science.gov (United States)

    Moon, Min Chaul; Park, Jung Duck; Choi, Byung Soon; Park, So Young; Kim, Dong Won; Chung, Yong Hyun; Hisanaga, Naomi; Yu, Il Je

    2011-09-01

    This study was conducted to assess the exposure risk through inhalation to baby powder for babies and adults under simulated conditions. Baby powder was applied to a baby doll and the amount of baby powder consumed per application was estimated. The airborne exposure to baby powder during application was then evaluated by sampling the airborne baby powder near the breathing zones of both the baby doll and the person applying the powder (the applicator). The average amount of baby powder consumed was 100 mg/application, and the average exposure concentration of airborne baby powder for the applicator and baby doll was 0.00527 mg/m(3) (range 0.00157~0.01579 mg/m(3)) and 0.02207 mg/m(3) (range 0.00780~ 0.04173 mg/m(3)), respectively. When compared with the Occupational Exposure Limit of 2 mg/m(3) set by the Korean Ministry of Labor and the Threshold Limit Value (TLV) of 2 mg/m(3) set by the ACGIH (American Conference of Governmental Industrial Hygienists), the exposure concentrations were much lower. Next, the exposure to asbestos-containing baby powder was estimated and the exposure risk was assessed based on the lung asbestos contents in normal humans. As a result, the estimated lung asbestos content resulting from exposure to asbestos-containing baby powder was found to be much lower than that of a normal Korean with no asbestos-related occupational history.

  1. Modelling of occupational exposure to inhalable nickel compounds.

    Science.gov (United States)

    Kendzia, Benjamin; Pesch, Beate; Koppisch, Dorothea; Van Gelder, Rainer; Pitzke, Katrin; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Siemiatycki, Jack; Lavoué, Jerome; Jöckel, Karl-Heinz; Stamm, Roger; Brüning, Thomas

    2017-01-18

    The aim of this study was to estimate average occupational exposure to inhalable nickel (Ni) using the German exposure database MEGA. This database contains 8052 personal measurements of Ni collected between 1990 and 2009 in adjunct with information on the measurement and workplace conditions. The median of all Ni concentrations was 9 μg/m(3) and the 95th percentile was 460 μg/m(3). We predicted geometric means (GMs) for welders and other occupations centered to 1999. Exposure to Ni in welders is strongly influenced by the welding process applied and the Ni content of the used welding materials. Welding with consumable electrodes of high Ni content (>30%) was associated with 10-fold higher concentrations compared with those with a low content (welding materials with high Ni content, in metal sprayers, grinders and forging-press operators, and in the manufacture of batteries and accumulators. The exposure profiles are useful for exposure assessment in epidemiologic studies as well as in industrial hygiene. Therefore, we recommend to collect additional exposure-specific information in addition to the job title in community-based studies when estimating the health risks of Ni exposure.Journal of Exposure Science and Environmental Epidemiology advance online publication, 18 January 2017; doi:10.1038/jes.2016.80.

  2. Inhalation exposure system used for acute and repeated-dose methyl isocyanate exposures of laboratory animals.

    Science.gov (United States)

    Adkins, B; O'Connor, R W; Dement, J M

    1987-06-01

    Laboratory animals were exposed by inhalation for 2 hr/day (acute) or 6 hr/day (four consecutive days, repeated dose) to methyl isocyanate (MIC). Exposures were conducted in stainless steel and glass inhalation exposure chambers placed in stainless steel, wire mesh cages. MIC was delivered with nitrogen via stainless steel and Teflon supply lines. Chamber concentrations ranged from 0 to 60 ppm and were monitored continuously with infrared spectrophotometers to 1 ppm and at 2-hr intervals to 20 ppb with a high performance liquid chromatograph equipped with a fluorescence detector. Other operational parameters monitored on a continuous basis included chamber temperature (20-27 degrees C), relative humidity (31-64%), static (transmural) pressure (-0.3 in.), and flow (300-500 L/min). The computer-assistance system interfaced with the inhalation exposure laboratory is described in detail, including the analytical instrumentation calibration system used throughout this investigation.

  3. Oxidative stress, telomere shortening, and DNA methylation in relation to low-to-moderate occupational exposure to welding fumes.

    Science.gov (United States)

    Li, Huiqi; Hedmer, Maria; Wojdacz, Tomasz; Hossain, Mohammad Bakhtiar; Lindh, Christian H; Tinnerberg, Håkan; Albin, Maria; Broberg, Karin

    2015-10-01

    Evidence suggests that exposure to welding fumes is a risk factor for lung cancer. We examined relationships between low-to-moderate occupational exposure to particles from welding fumes and cancer-related biomarkers for oxidative stress, changes in telomere length, and alterations in DNA methylation. We enrolled 101 welders and 127 controls (all currently nonsmoking men) from southern Sweden. We performed personal sampling of respirable dust and measured 8-oxodG concentrations in urine using a simplified liquid chromatography tandem mass spectrometry method. Telomere length in peripheral blood was measured by quantitative polymerase chain reaction. Methylation status of 10 tumor suppressor genes was determined by methylation-sensitive high-resolution melting analysis. All analyses were adjusted for age, body mass index, previous smoking, passive smoking, current residence, and wood burning stove/boiler at home. Welders were exposed to respirable dust at 1.2 mg/m(3) (standard deviation, 3.3 mg/m(3); range, 0.1-19.3), whereas control exposures did not exceed 0.1 mg/m(3) (P telomere length (β = -0.053, P = 0.083) in adjusted models. Welders showed higher probability of adenomatous polyposis coli (APC) methylation in the unadjusted model (odds ratio = 14, P = 0.014), but this was not significant in the fully adjusted model (P = 0.052). Every working year as a welder was associated with 0.0066 units shorter telomeres (95% confidence interval -0.013 to -0.00053, P = 0.033). Although there were no clear associations between concentrations of respirable dust and the biomarkers, there were modest signs of associations between oxidative stress, telomere alterations, DNA methylation, and occupational exposure to low-to-moderate levels of particles.

  4. Inhalation Exposure Input Parameters for the Biosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    K. Rautenstrauch

    2004-09-10

    This analysis is one of 10 reports that support the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN) biosphere model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the conceptual model as well as the mathematical model and its input parameters. This report documents development of input parameters for the biosphere model that are related to atmospheric mass loading and supports the use of the model to develop biosphere dose conversion factors (BDCFs). The biosphere model is one of a series of process models supporting the total system performance assessment (TSPA) for a Yucca Mountain repository. Inhalation Exposure Input Parameters for the Biosphere Model is one of five reports that develop input parameters for the biosphere model. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the Technical Work Plan for Biosphere Modeling and Expert Support (BSC 2004 [DIRS 169573]). This analysis report defines and justifies values of mass loading for the biosphere model. Mass loading is the total mass concentration of resuspended particles (e.g., dust, ash) in a volume of air. Mass loading values are used in the air submodel of ERMYN to calculate concentrations of radionuclides in air inhaled by a receptor and concentrations in air surrounding crops. Concentrations in air to which the receptor is exposed are then used in the inhalation submodel to calculate the dose contribution to the receptor from inhalation of contaminated airborne particles. Concentrations in air surrounding plants are used in the plant submodel to calculate the concentrations of radionuclides in foodstuffs contributed from uptake by foliar interception.

  5. Inhalants

    Science.gov (United States)

    ... which open the breathing passages. Inhalers are very safe when used as prescribed by doctors. Inhalants, on the other hand, are common household chemicals that contain a volatile component which can be ...

  6. Inhalation exposure of children to fragrances present in scented toys.

    Science.gov (United States)

    Masuck, I; Hutzler, C; Jann, O; Luch, A

    2011-12-01

    When utilized in the perfuming of children's toys, fragrances capable of inducing contact allergy in human skin may also become bioavailable to children via the inhalation route. The aim of this study was to determine the area-specific emission rates of 24 fragrances from a plasticized PVC reference material that was meant to mimic a real plastic toy. This material was introduced into an emission chamber for 28 days at handling conditions or at worst-case conditions. As a result, fragrances can be separated into three categories according to their emission rates ranging from 0.0041 to 16.2 mg/m² × h, i.e., highly volatile, semivolatile, and low-volatile compounds. Compounds of the first and second categories were monitored with decreasing emission rates. Substances of the third category were detected with increasing emission rates over time. Further, higher temperatures led to higher emission rates. The emission concentration of fragrances from four real scented toys varied between 1.10 and 107 μg/m³ at day 1 in the test chamber. Therefore, short-term inhalation exposure to fragrances originating from toys was in the range of 0.53-2700 ng/kg BW/d for the children of age 1 and older. Long-term exposure to these fragrances was calculated in the range of 2.2-220 ng/kg BW/d. Besides household products and cosmetics, fragrances can be found in toys for children. Some fragrances are known contact allergens in the skin, but there is a lack of information on their effects in the human respiratory tract. Here, we analyzed and categorized fragrances present in a plasticized PVC reference material according to their emission profiles and volatility. We also demonstrate that volatile fragrances are being emitted from real toys and thus may get inhaled under consumer conditions to different extents. © 2011 John Wiley & Sons A/S.

  7. Inter-rater agreement for a retrospective exposure assessment of asbestos, chromium, nickel and welding fumes in a study of lung cancer and ionizing radiation.

    Science.gov (United States)

    Seel, E A; Zaebst, D D; Hein, M J; Liu, J; Nowlin, S J; Chen, P

    2007-10-01

    A retrospective exposure assessment of asbestos, welding fumes, chromium and nickel (in welding fumes) was conducted at the Portsmouth Naval Shipyard for a nested case-control study of lung cancer risk from external ionizing radiation. These four contaminants were included because of their potential to confound or modify the effect of a lung cancer-radiation relationship. The exposure assessment included three experienced industrial hygienists from the shipyard who independently assessed exposures for 3519 shop/job/time period combinations. A consensus process was used to resolve estimates with large differences. Final exposure estimates were linked to employment histories of the 4388 study subjects to calculate their cumulative exposures. Inter-rater agreement analyses were performed on the original estimates to better understand the estimation process. Although concordance was good to excellent (78-99%) for intensity estimates and excellent (96-99%) for frequency estimates, overall simple kappa statistics indicated only slight agreement beyond chance (kappa asbestos exposures were higher in the early years and fell in the mid-1970s. Mean cumulative exposure for all study subjects was 520 fiber-days cc(-1) for asbestos and 1000 mg-days m(-3) for welding fumes. Mean exposure was much lower for nickel (140 microg-days m(-3)) and chromium (45 microg-days m(-3)). Asbestos and welding fume exposure estimates were positively associated with lung cancer in the nested case-control study. The radiation-lung cancer relationship was attenuated by the inclusion of these two confounders. This exposure assessment provided exposure estimates that aided in understanding of the lung cancer-radiation relationship at the shipyard.

  8. Alterations in welding process voltage affect the generation of ultrafine particles, fume composition, and pulmonary toxicity.

    Science.gov (United States)

    Antonini, James M; Keane, Michael; Chen, Bean T; Stone, Samuel; Roberts, Jenny R; Schwegler-Berry, Diane; Andrews, Ronnee N; Frazer, David G; Sriram, Krishnan

    2011-12-01

    The goal was to determine if increasing welding voltage changes the physico-chemical properties of the fume and influences lung responses. Rats inhaled 40 mg/m³ (3 h/day × 3 days) of stainless steel (SS) welding fume generated at a standard voltage setting of 25 V (regular SS) or at a higher voltage (high voltage SS) of 30 V. Particle morphology, size and composition were characterized. Bronchoalveolar lavage was performed at different times after exposures to assess lung injury. Fumes collected from either of the welding conditions appeared as chain-like agglomerates of nanometer-sized primary particles. High voltage SS welding produced a greater number of ultrafine-sized particles. Fume generated by high voltage SS welding was higher in manganese. Pulmonary toxicity was more substantial and persisted longer after exposure to the regular SS fume. In summary, a modest raise in welding voltage affected fume size and elemental composition and altered the temporal lung toxicity profile.

  9. Assessment of bioaerosols and inhalable dust exposure in Swiss sawmills.

    Science.gov (United States)

    Oppliger, Anne; Rusca, Sophie; Charrière, Nicole; Vu Duc, Trinh; Droz, Pierre-Olivier

    2005-07-01

    An assessment of wood workers' exposure to airborne cultivable bacteria, fungi, inhalable endotoxins and inhalable organic dust was performed at 12 sawmills that process mainly coniferous wood species. In each plant, samples were collected at four or five different work sites (debarking, sawing, sorting, planing and sawing cockpit) and the efficiency of sampling devices (impinger or filter) for determining endotoxins levels was evaluated. Results show that fungi are present in very high concentrations (up to 35 000 CFU m(-3)) in all sawmills. We also find that there are more bioaerosols at the sorting work site (mean +/- SD: 7723 +/- 9919 CFU m(-3) for total bacteria, 614 +/- 902 CFU m(-3) for Gram-negative, 19 438 +/- 14 246 CFU m(-3) for fungi, 7.0 +/- 9.0 EU m(-3) for endotoxin and 2.9 +/- 4.8 g m(-3) for dust) than at the sawing station (mean +/- SD: 1938 +/- 2478 CFU m(-3) for total bacteria, 141 +/- 206 CFU m(-3) for Gram-negative, 12 207 +/- 10 008 CFU m(-3) for fungi, 2.1 +/- 1.9 EU m(-3) for endotoxin and 0.75 +/- 0.49 mg m(-3) for dust). At the same time, the species composition and concentration of airborne Gram-negative bacteria were studied. Penicillinium sp. were the predominant fungi, while Bacillus sp. and the Pseudomonadacea family were the predominant Gram-positive and Gram-negative bacteria encountered, respectively.

  10. A Study on Genotoxicity of Cooking Fume from Rapessed Oil

    Institute of Scientific and Technical Information of China (English)

    CHENHUA; YANGMINGDING; 等

    1992-01-01

    The present article reports the genotoxic potential of rapeseed oil cooking fume investigated by a battery of short-term tests(Ames test,SCE/V79 in vitor and mice micronucleus in vivo test).The results showed that the cooking fume contained mutagenic activity.In the presence of S9 mix,an increase in the number of the Salmonella TA98 was observed at doses ranging from 1.0 to 5.0mg/plate,and the SCE frequencies of V79 cell were markedly raised at doses ranging from 0.05 to 0.5mg·m-1.The positive result was also obtained in mice micronucleus assay,the mice had inhaled the cooking fume a week earlier.The requency of mice bone marrow MN-PCR ws increased and it showed a remarkable time-dose-response relationship during the 4 weeks exposure.The results suggested that this cooking fume exposure may be a risk factor of lung cancer in Chinese women.

  11. LOW-DOSE AIRBORNE ENDOTOXIN EXPOSURE ENHANCES BRONCHIAL RESPONSIVENESS TO INHALED ALLERGEN IN ATOPIC ASTHMATICS

    Science.gov (United States)

    Endotoxin exposure has been associated with both protection against development of TH2-immune responses during childhood and exacerbation of asthma in persons who already have allergic airway inflammation.1 Occupational and experimental inhalation exposures to endotoxin have been...

  12. Prenatal Inhalation Exposure to Evaporative Condensates of Gasoline with 15% Ethanol and Evaluation of Sensory Function in Adult Rat Offspring

    Science.gov (United States)

    The introduction of ethanol-blended automotive fuels has raised concerns about potential health effects from inhalation exposure to the combination of ethanol and gasoline hydrocarbon vapors. Previously, we evaluated effects of prenatal inhalation exposure to 100% ethanol (E100) ...

  13. Human 8-oxoguanine DNA glycosylase 1 mRNA expression as an oxidative stress exposure biomarker of cooking oil fumes.

    Science.gov (United States)

    Cherng, Shur-Hueih; Huang, Kuo Hao; Yang, Sen-Chih; Wu, Tzu-Chin; Yang, Jia-Ling; Lee, Huei

    2002-02-01

    Epidemiological studies have indicated that the exposure to carcinogenic components formed during the cooking of food might be associated with lung cancer risk of Chinese women. Previous studies have confirmed that cooking oil fumes from frying fish (COF) contained relatively high amount of benzo[a]pyrene, 2-methyl-3,8-dimethylimidazo[4,5-f] qunoxaline, benzene, and 1,3-butadiene, reported in fumes from heated soybean oil. Thus, we consider that oxidative stress induced by COF may play a role in lung cancer development among Chinese women. To verify whether the oxidative DNA damage was induced by COF, high-performance liquid chromatography (HPLC) analysis data showed that the levels of 8-hydroxydeoxyguanine (8-OH dG) were increased in a dose-dependent manner when calf thymus DNA reacted with various concentrations of COF. Since human 8-oxoguanine DNA glycosylase 1 (hOGG1) was a repair enzyme for removing 8- OH dG from damaged DNA, we hypothesized that hOGG1 mRNA may be used to assess the risk of oxidative damage induced by the exposure of COF. The results from reverse-transcription polymerase chain reaction showed that the hOGG1 mRNA expression was induced by hydrogen peroxide (H2O2) and COF in human lung adenocarcinoma CL-3 cells. To elucidate whether hOGG1 mRNA expression was an exposure biomarker of COF, a cross-sectional study of 238 subjects including 94 professional cooks, 43 housewives, and 101 COF-nonexposed control subjects was conducted. The hOGG1 mRNA expression frequencies of COF-exposed cooks (27 of 94, 28.7%) and housewives (6 of 43, 14%) were significantly higher than those of control subjects (4 of 101, 4%). After adjusting for age, sex, and smoking and drinking status, the odds risks (ORs) of housewives versus control and cooks versus control were 3.94 (95% confidence interval [CI] = 0.95-16.62) and 10.12 (95% CI = 2.83-36.15), respectively. These results indicated that hOGG1 may be adequate to act as an exposure biomarker to assess the oxidative

  14. STOP-EXPOSURE STUDIES OF INHALED CHLORINE PROVIDE IMPORTANT INSIGHTS ON PATHOGENESIS

    Science.gov (United States)

    As part of a project to inform approaches for risk assessment of inhaled irritants of interest to homeland security, a set of acute (Peay et aI., SOT 2010) and subacute (George et aI., SOT 2010) studies of inhaled chlorine (CI2) in female F344 rats was performed. The exposure des...

  15. Non-occupational exposure to paint fumes during pregnancy and risk of congenital anomalies

    DEFF Research Database (Denmark)

    Hjortebjerg, Dorrit; Andersen, Anne-Marie Nybo; Garne, Ester

    2012-01-01

    Occupational exposure to organic solvents during the 1st trimester of pregnancy has been associated with congenital anomalies. Organic solvents are also used in the home environments in paint products, but no study has investigated the effect of such exposure in a general population.......Occupational exposure to organic solvents during the 1st trimester of pregnancy has been associated with congenital anomalies. Organic solvents are also used in the home environments in paint products, but no study has investigated the effect of such exposure in a general population....

  16. Assessment of occupational exposure to manganese and other metals in welding fumes by portable X-ray fluorescence spectrometer.

    Science.gov (United States)

    Laohaudomchok, Wisanti; Cavallari, Jennifer M; Fang, Shona C; Lin, Xihong; Herrick, Robert F; Christiani, David C; Weisskopf, Marc G

    2010-08-01

    Elemental analysis of welding fume samples can be done using several laboratory-based techniques. However, portable measurement techniques could offer several advantages. In this study, we sought to determine whether the portable X-ray fluorescence spectrometer (XRF) is suitable for analysis of five metals (manganese, iron, zinc, copper, and chromium) on 37-mm polytetrafluoroethylene filters. Using this filter fitted on a cyclone in line with a personal pump, gravimetric samples were collected from a group of boilermakers exposed to welding fumes. We assessed the assumption of uniform deposition of these metals on the filters, and the relationships between measurement results of each metal obtained from traditional laboratory-based XRF and the portable XRF. For all five metals of interest, repeated measurements with the portable XRF at the same filter area showed good consistency (reliability ratios are equal or close to 1.0 for almost all metals). The portable XRF readings taken from three different areas of each filter were not significantly different (p-values = 0.77 to 0.98). This suggested that the metal rich PM(2.5) deposits uniformly on the samples collected using this gravimetric method. For comparison of the two XRFs, the results from the portable XRF were well correlated and highly predictive of those from the laboratory XRF. The Spearman correlation coefficients were from 0.325 for chromium, to 0.995 for manganese and 0.998 for iron. The mean differences as a percent of the mean laboratory XRF readings were also small (<5%) for manganese, iron, and copper. The differences were greater for zinc and chromium, which were present at very low amounts in our samples and below the limits of detection of the portable XRF for many of the samples. These five metals were moderately to strongly correlated with the total fine particle fraction on filters (Spearman rho = 0.41 for zinc to 0.97 for iron). Such strong correlations and comparable results suggested that

  17. Installation of a flow control device in an inclined air-curtain fume hood to control wake-induced exposure.

    Science.gov (United States)

    Chen, Jia-Kun

    2016-08-01

    An inclined plate for flow control was installed at the lower edge of the sash of an inclined air-curtain fume hood to reduce the effects of the wake around a worker standing in front of the fume hood. Flow inside the fume hood is controlled by the inclined air-curtain and deflection plates, thereby forming a quad-vortex flow structure. Controlling the face velocity of the fume hood resulted in convex, straight, concave, and attachment flow profiles in the inclined air-curtain. We used the flow visualization and conducted a tracer gas test with a mannequin to determine the performance of two sash geometries, namely, the half-cylinder and inclined plate designs. When the half-cylinder design was used, the tracer gas test registered a high leakage concentration at Vf ≦ 57.1 fpm or less. This concentration occurred at the top of the sash opening, which was close to the breathing zone of the mannequin placed in front of the fume hood. When the inclined plate design was used, the containment was good, with concentrations of 0.002-0.004 ppm, at Vf ≦ 63.0 fpm. Results indicate that an inclined plate effectively reduces the leakage concentration induced by recirculation flow structures that form in the wake of a worker standing in front of an inclined air-curtain fume hood.

  18. Interaction between Polymorphisms in Pre-MiRNA Genes and Cooking Oil Fume Exposure on the Risk of Lung Cancer in Chinese Non-Smoking Female Population.

    Science.gov (United States)

    Yin, Zhihua; Cui, Zhigang; Guan, Peng; Li, Xuelian; Wu, Wei; Ren, Yangwu; He, Qincheng; Zhou, Baosen

    2015-01-01

    Both genetic polymorphisms and environmental risk factors play important roles in the development of human chronic diseases including lung cancer. This is the first case-control study of interaction between polymorphisms in pre-miRNA genes and cooking oil fume exposure on the risk of lung cancer. A hospital-based case-control study of 258 cases and 310 controls was conducted. Six polymorphisms in miRNAs were determined by Taqman allelic discrimination method. The gene-environment interactions were assessed on both additive and multiplicative scale. The statistical analyses were performed mostly with SPSS. The combination of the risk genotypes of five miRNA SNPs (miR-146a rs2910164, miR-196a2 rs11614913, miR-608 rs4919510, miR-27a rs895819 and miR-423 rs6505162) with risk factor (cooking oil fume exposure) contributed to a significantly higher risk of lung cancer, and the corresponding ORs (95% confidence intervals) were 1.91(1.04-3.52), 1.94 (1.16-3.25), 2.06 (1.22-3.49), 1.76 (1.03-2.98) and 2.13 (1.29-3.51). The individuals with both risk genotypes of miRNA SNPs and exposure to risk factor (cooking oil fumes) were in a higher risk of lung cancer than persons with only one of the two risk factors (ORs were 1.91, 1.05 and 1.41 for miR-146a rs2910164, ORs were 1.94, 1.23 and 1.34 for miR-196a2 rs11614913, ORs were 2.06, 1.41 and 1.68 for miR-608 rs4919510, ORs were 1.76, 0.82 and 1.07 for miR-27a rs895819, and ORs were 2.13, 1.15 and 1.02 for miR-423 rs6505162, respectively). All the measures of biological interaction indicate that there were not indeed biological interactions between the six SNPs of miRNAs and exposure to cooking oil fumes on an additive scale. Logistic models suggested that the gene-environment interactions were not statistically significant on a multiplicative scale. The interactions between miRNA SNPs and cooking oil fume exposure suggested by ORs of different combination were not statistically significant.

  19. Interaction between Polymorphisms in Pre-MiRNA Genes and Cooking Oil Fume Exposure on the Risk of Lung Cancer in Chinese Non-Smoking Female Population.

    Directory of Open Access Journals (Sweden)

    Zhihua Yin

    Full Text Available Both genetic polymorphisms and environmental risk factors play important roles in the development of human chronic diseases including lung cancer. This is the first case-control study of interaction between polymorphisms in pre-miRNA genes and cooking oil fume exposure on the risk of lung cancer.A hospital-based case-control study of 258 cases and 310 controls was conducted. Six polymorphisms in miRNAs were determined by Taqman allelic discrimination method. The gene-environment interactions were assessed on both additive and multiplicative scale. The statistical analyses were performed mostly with SPSS.The combination of the risk genotypes of five miRNA SNPs (miR-146a rs2910164, miR-196a2 rs11614913, miR-608 rs4919510, miR-27a rs895819 and miR-423 rs6505162 with risk factor (cooking oil fume exposure contributed to a significantly higher risk of lung cancer, and the corresponding ORs (95% confidence intervals were 1.91(1.04-3.52, 1.94 (1.16-3.25, 2.06 (1.22-3.49, 1.76 (1.03-2.98 and 2.13 (1.29-3.51. The individuals with both risk genotypes of miRNA SNPs and exposure to risk factor (cooking oil fumes were in a higher risk of lung cancer than persons with only one of the two risk factors (ORs were 1.91, 1.05 and 1.41 for miR-146a rs2910164, ORs were 1.94, 1.23 and 1.34 for miR-196a2 rs11614913, ORs were 2.06, 1.41 and 1.68 for miR-608 rs4919510, ORs were 1.76, 0.82 and 1.07 for miR-27a rs895819, and ORs were 2.13, 1.15 and 1.02 for miR-423 rs6505162, respectively. All the measures of biological interaction indicate that there were not indeed biological interactions between the six SNPs of miRNAs and exposure to cooking oil fumes on an additive scale. Logistic models suggested that the gene-environment interactions were not statistically significant on a multiplicative scale.The interactions between miRNA SNPs and cooking oil fume exposure suggested by ORs of different combination were not statistically significant.

  20. Inhalants

    Science.gov (United States)

    Skip to main content En español Researchers Medical & Health Professionals Patients & Families Parents & Educators Children & Teens Search Connect with NIDA : ... get treatment for addiction to inhalants? Some people seeking treatment for ... for positive behaviors such as staying drug-free. More research is ...

  1. Trends in wood dust inhalation exposure in the UK, 1985-2005.

    NARCIS (Netherlands)

    Galea, K.S.; van Tongeren, M.; Sleeuwenhoek, A.J.; While, D.; Graham, M.; Bolton, A.; Kromhout, H.; Cherrie, J.W.

    2009-01-01

    OBJECTIVES: Wood dust data held in the Health and Safety Executive (HSE) National Exposure DataBase (NEDB) were reviewed to investigate the long-term changes in inhalation exposure from 1985 to 2005. In addition, follow-up sampling measurements were obtained from selected companies where exposure me

  2. Inhalable dust and protein exposure in soybean processing plants.

    Science.gov (United States)

    Spies, Adri; Rees, David; Fourie, Anna M; Wilson, Kerry S; Harris-Roberts, Joanne; Robinson, Edward

    2008-01-01

    Little is known about inhalable dust concentrations in soybean processing plants in southern Africa. This project measured inhalable dust in soybean plants in the region and correlated dust measurements with total protein and soy trypsin inhibitor. Sixty-four personal inhalable dust measurements were taken in three processing plants. Levels of total protein and soy trypsin inhibitor were determined in only two of the three plants. Correlations between inhalable dust, total protein and trypsin inhibitor were determined for 44 of 64 samples. In plants' production areas, inhalable dust levels were 0.24-35.02 mg/m3 (median 2.58 mg/m3). Total protein and soy trypsin inhibitor levels were 29.41-448.82 microg/m3 (median 90.09 microg/m3) and 0.05-2.58 microg/m3 (median 0.07 microg/m3), respectively. No statistically significant correlations between presence of inhalable dust and soy trypsin inhibitor were found. Total protein and soy trypsin inhibitor were better correlated. This study indicates that total protein might be a good proxy for soybean specific protein concentrations in soybean processing plants.

  3. Risk assessment of welders` exposure to total fume in an automobile industry

    Directory of Open Access Journals (Sweden)

    2012-01-01

    Full Text Available Introduction: Risk assessment of Toxic or hazardous chemicals enables the Industrial Hygienists to make the appropriate decision in providing healthy work place. This project was conducted in an assembling plant,(4workshop of an Automobile Industry in IRAN with 2 types of welding operations, including GMAW (CO2 welding and Spot resistance welding operations. . Method and Materials: Welders` exposures were assessed via collecting 143 breathing zone air samples based on NIOSH 0500 method. Risk assessment was carried out using Singapore recommended method. .Results: Finding showed that the mean of welders exposure in GMAW and Spot resistance welding operations 5.61 ± 5.78and 2.38± 2.15 mg/m3, respectively(p<0.05. The results showed that in GMAW welders had the highe exposure in comparison with Spot resistance welders (p<0.05. The findings also demonstrated that the risk rate of GMAW welders were high, while this rate for Spot resistance was low. .Conclusion: more hygienic attention is needed for GTAW welders. Control approaches are required including effective engineering control, conduct air monitoring, biological monitoring training, adopt respiratory protection program, develop and implement safe and correct work procedures and finally reassess the risk after all the controls have been done.

  4. Dearomatized white spirit inhalation exposure causes long-lasting neurophysiological changes in rats

    DEFF Research Database (Denmark)

    Lund, S. P.; Simonsen, L.; Hass, Ulla

    1996-01-01

    Dearomatized white spirit inhalation exposure causes long-lasting neurophysioloical changes in rats. NEUROTOXICOL TERATOL 18(1), 67-76, 1996. -Exposure for 6 h per day, 5 days per week, during a period of 6 months to the organic solvent dearomatized white spirit (0, 400, and 800 ppm) was studied...

  5. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX)

    DEFF Research Database (Denmark)

    Cochet, C.; Fernandes, E.O.; Jantunen, M.;

    ECA-IAQ (European Collaborative Action, Urban Air, Indoor Environment and Human Exposure), 2006. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX), Report No 25. EUR 22503 EN. Luxembourg: Office for Official Publications of the Eu...

  6. SUBCHRONIC INHALATION EXPOSURE OF RATS TO LIBBY AMPHIBOLE AND AMOSITE ASBESTOS

    Science.gov (United States)

    Exposure to Libby amphibole (LA) is associated with significant increases in asbestosis, lung cancer, and mesothelioma. To support biological potency assessment and dosimetry model development, a subchronic nose-only inhalation exposure study (6 hr/d, 5 d/wk, 13 wk) was conducted...

  7. Gestational Exposure to Inhaled Vapors of Ethanol and Gasoline-Ethanol Blends in Rats

    Science.gov (United States)

    The US automotive fleet is powered primarily by gasoline-ethanol fuel blends containing up to 10% ethanol (ElO). Uncertainties regarding the health risks associated with exposure to ElO prompted assessment of the effects of prenatal exposure to inhaled vapors of gasoline-ethanol ...

  8. SUBCHRONIC INHALATION EXPOSURE OF RATS TO LIBBY AMPHIBOLE AND AMOSITE ASBESTOS

    Science.gov (United States)

    Exposure to Libby amphibole (LA) is associated with significant increases in asbestosis, lung cancer, and mesothelioma. To support biological potency assessment and dosimetry model development, a subchronic nose-only inhalation exposure study (6 hr/d, 5 d/wk, 13 wk) was conducted...

  9. Reducing employee exposure potential using the ANSI/ASHRAE 110 Method of Testing Performance of Laboratory Fume Hoods as a diagnostic tool.

    Science.gov (United States)

    Maupins, K; Hitchings, D T

    1998-02-01

    The primary goal of a laboratory ventilation system is to assure that employee exposure to hazardous chemicals does not exceed acceptable levels. Industrial hygienists at Eli Lilly & Co. were concerned about the adequacy of fume hoods to protect workers in an aging laboratory facility. Wanting to conduct a comprehensive series of tests for a true reading on the containment effectiveness of these hoods, the industrial hygienists went beyond the traditional face velocity tests. Tests prescribed in the ANSI/ASHRAE 110 Method of Testing Performance of Laboratory Fume Hoods (ASHRAE 110) standard including low- and high-volume smoke tests, face velocity tests, and tracer gas containment tests indicated that many of the hoods did not meet industry consensus standards for containment (0.1 ppm), yet met industry recommended face velocity specifications (80-120 ft/min). Based on the results of performance tests and engineering observations of the facility, apparent causes of poor performance were identified, and a mitigation plan was implemented to bring the hoods to the desired containment standards. After completion of the improvements, retesting was conducted to confirm achievement of these standards. Pre- and postmitigation test results, indicating a 99.5% reduction in tracer gas leakage or potential employee exposures, build a strong case for a more complete testing protocol as specified by the ASHRAE 110 test method. The authors recommend that traditional face velocity testing alone be discontinued in favor of the ASHRAE 110 method as a quantitative measure of fume hood performance coupled with the traditional face velocity measurement at periodic intervals to assure continued performance.

  10. Impact of acute and chronic inhalation exposure to CdO nanoparticles on mice

    OpenAIRE

    Lebedová, J.; Bláhová, L.; Večeřa, Z. (Zbyněk); P. Mikuška; Dočekal, B. (Bohumil); Buchtová, M. (Marcela); Míšek, I. (Ivan); Dumková, J.; Hampl, A.; Hilscherová, K.

    2016-01-01

    Cadmium nanoparticles can represent a risk in both industrial and environmental settings, but there is little knowledge on the impacts of their inhalation, especially concerning longer-term exposures. In this study, mice were exposed to cadmium oxide (CdO) nanoparticles in whole body inhalation chambers for 4 to 72 h in acute and 1 to 13 weeks (24 h/day, 7 days/week) in chronic exposure to investigate the dynamics of nanoparticle uptake and effects. In the acute experiment, mice were ...

  11. Quantitative measurements of the inhalation, retention, and exhalation of dusts and fumes by man. II. Concentrations below 50 mg per cubic meter

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.E.

    1931-01-01

    422 experiments on retention of calcium carbonate dust and MgO fume by 32 volunteers breathing in a dust chamber are discussed. MgO: retention during normal breathing ranged from 60% at 10 mg/m/sup 3/ to 45% at 50 mg/m/sup 3/. CaCO/sub 3/: retention varied from 80% at 10 mg/m/sup 3/ to 70% at 50 mg/m/sup 3/. Mouth-breathing, exercise, or 5% CO/sub 2/ decreased retention by about 10%. Rapid increase in retention at concentrations below 10 mg/m/sup 3/ with little change in concentrations above 50 mg/m/sup 3/ was observed.

  12. Achieving consistent multiple daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model

    Directory of Open Access Journals (Sweden)

    Roy E Barnewall

    2012-06-01

    Full Text Available Repeated low-level exposures to Bacillus anthracis could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as Bacillus anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU of B. anthracis spores and included a pilot feasibility characterization study, acute exposure study, and a multiple fifteen day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 x 102, 1 x 103, 1 x 104, and 1 x 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 x 102, 1 x 103, and 1 x 104 CFU. In all studies, targeted inhaled doses remained fairly consistent from rabbit to rabbit and day to day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and multiple exposure days.

  13. 40 CFR 79.61 - Vehicle emissions inhalation exposure guideline.

    Science.gov (United States)

    2010-07-01

    ... used to avoid concurrent exposure by the dermal or oral routes, i.e., grooming, is not recommended... hours plus the time necessary to build the chamber atmosphere to 90 percent of the target exposure... analysis, to ensure that exposure levels are at the target values or within stated limits during the...

  14. Influence of exhaled air on inhalation exposure delivered through a directed-flow nose-only exposure system.

    Science.gov (United States)

    Moss, O R; James, R A; Asgharian, B

    2006-01-01

    In order to conserve material that is available in limited quantities, "directed-flow" nose-only exposure systems have at times been run at flow rates close to the minute ventilation of the animal. Such low-flow-rate conditions can contribute to a decrease of test substance concentration in inhaled air; near the animal nose, exhaled air and the directed flow of exposure air move in opposite directions. With a Cannon "directed-flow" nose-only exposure system (Lab Products, Maywood, NJ), we investigated the extent to which exposure air plus exhaled air can be inhaled by an animal. A mathematical model and a mechanical simulation of respiration were adopted to predict for a male Fischer 344 rat the concentration of test substance in inhaled air. The mathematical model was based on the assumption of instantaneous mixing. The mechanical simulation of respiration used a Harvard respirator. When the system was operated at an exposure air flow rate greater than 2.5 times the minute ventilation of the animal, the concentration of test substance in the inhaled air was reduced by less than 10%. Under these conditions, the circular jet of air exiting the exposure air delivery tube tended to reach the animal's nose with little dispersion. For exposure air flow rates less than 2 times the minute ventilation, we predict that the interaction of exhaled air and exposure air can be minimized by proportionally reducing the delivery tube diameter. These findings should be applicable to similar "directed-flow" nose-only exposure systems.

  15. Diet as a confounder of the association between air pollution and female lung cancer: Hong Kong studies on exposures to environmental tobacco smoke, incense, and cooking fumes as examples.

    Science.gov (United States)

    Koo, L C; Ho, J H

    1996-03-01

    Chinese females in Hong Kong, where only about a third of the lung cancer cases can be attributed to a history of active smoking, have a world age-standardized lung cancer incidence rate of 32.6 per 100 000, which is among the highest in the world. Trends in Hong Kong's female lung cancer mortality also indicate a tripling in mortality rates from 1961 to 1990. The characteristically high Chinese female lung cancer incidence among nonsmokers is also found among overseas Chinese communities in Singapore and Hawaii. To help elucidate the role of ingested and inhaled substances in the etiology of lung cancer, four epidemiological studies have been conducted in Hong Kong over the last 15 years: (1) a retrospective study of 200 cases and 200 neighbourhood controls, (2) a cross-sectional study measuring personal exposures to nitrogen dioxide among 362 children and their mothers, (3) a site monitoring study of 33 homes measuring airborne carcinogens, and (4) a telephone survey of 500 women on their dietary habits and exposure to air pollutants. Selected data from each study were drawn to evaluate exposures to three major air pollutants (environmental tobacco smoke, incense, and cooking fumes), their relationship with lung cancer risk, and their association with dietary habits. Generally in this population, nutritionally poorer diets were characterized by higher consumption of alcohol and preserved/cured foods, whereas better diets were characterized by higher intakes of fresh fruits, vegetables, and fish. For environmental tobacco smoke, exposure was only moderately high in Hong Kong (36% have current smokers at home), lung cancer risk was equivocal with exposure, and it was associated with poorer diets among wives with smoking husbands. Incense was identified as a major source of exposure to nitrogen dioxide and airborne carcinogens, but it had no effect on lung cancer risk among nonsmokers and significantly reduced risk (trend, P-value = 0.01) among smokers, even after

  16. Dose assessment to inhalation exposure of indoor 222Rn daughters in Korea.

    Science.gov (United States)

    Ha, C W; Chang, S Y; Lee, B H

    1992-10-01

    Long-term, average indoor 222Rn concentrations were measured in 12 residential areas by passive CR-39 radon cups. Corresponding equilibrium-equivalent concentration of radon daughters were derived. The resulting effective dose equivalent for the Korean population due to inhalation exposure of this equilibrium-equivalent concentration of radon daughters was then evaluated.

  17. Metabolite profiles of rats in repeated dose toxicological studies after oral and inhalative exposure.

    Science.gov (United States)

    Fabian, E; Bordag, N; Herold, M; Kamp, H; Krennrich, G; Looser, R; Ma-Hock, L; Mellert, W; Montoya, G; Peter, E; Prokudin, A; Spitzer, M; Strauss, V; Walk, T; Zbranek, R; van Ravenzwaay, B

    2016-07-25

    The MetaMap(®)-Tox database contains plasma-metabolome and toxicity data of rats obtained from oral administration of 550 reference compounds following a standardized adapted OECD 407 protocol. Here, metabolic profiles for aniline (A), chloroform (CL), ethylbenzene (EB), 2-methoxyethanol (ME), N,N-dimethylformamide (DMF) and tetrahydrofurane (THF), dosed inhalatively for six hours/day, five days a week for 4 weeks were compared to oral dosing performed daily for 4 weeks. To investigate if the oral and inhalative metabolome would be comparable statistical analyses were performed. Best correlations for metabolome changes via both routes of exposure were observed for toxicants that induced profound metabolome changes. e.g. CL and ME. Liver and testes were correctly identified as target organs. In contrast, route of exposure dependent differences in metabolic profiles were noted for low profile strength e.g. female rats dosed inhalatively with A or THF. Taken together, the current investigations demonstrate that plasma metabolome changes are generally comparable for systemic effects after oral and inhalation exposure. Differences may result from kinetics and first pass effects. For compounds inducing only weak changes, the differences between both routes of exposure are visible in the metabolome.

  18. TWO-WEEK INHALATION EXPOSURE OF RATS TO LIBBY AMPHIBOLE (LA) AND AMOSITE ASBESTOS

    Science.gov (United States)

    The relative potency of LA compared to UICC amosite was assessed in a subacute inhalation study designed to set exposure levels for a future subchronic study. Male F344 rats (n=7/group) were exposed nose-only to air (control), 3 concentrations of LA, or I concentration of amosite...

  19. TWO-WEEK INHALATION EXPOSURE OF RATS TO LIBBY AMPHIBOLE (LA) AND AMOSITE ASBESTOS

    Science.gov (United States)

    The relative potency of LA compared to UICC amosite was assessed in a subacute inhalation study designed to set exposure levels for a future subchronic study. Male F344 rats (n=7/group) were exposed nose-only to air (control), 3 concentrations of LA, or I concentration of amosite...

  20. Independent and joint exposure to passive smoking and cooking oil fumes on oral cancer in Chinese women: a hospital-based case-control study.

    Science.gov (United States)

    He, Baochang; Chen, Fa; Yan, Lingjun; Huang, Jiangfeng; Liu, Fangping; Qiu, Yu; Lin, Lisong; Zhang, Zuofeng; Cai, Lin

    2016-10-01

    Passive smoking and COF exposure are independent risk factors for oral cancer in Chinese women, with the multiplicative interactions from combined exposures. Avoiding exposure to environmental tobacco smoke and COF may contribute to the prevention of oral cancer in Chinese women. To evaluate the independent and joint effects of passive smoking and cooking oil fumes (COF) on oral cancer in Chinese women. A case-control study was performed including 238 female patients with pathologically confirmed oral cancer and 470 controls as age-matched controls. Face-to-face interviews were conducted based on a structured questionnaire. The effects of passive smoking and COF exposure were analyzed using non-conditional logistic regression models. Passive smoking significantly increased the risk of oral cancer in Chinese women: adjusted ORs were 2.12 (95% CI = 1.11-4.07) for those only exposed before age 18, 1.52 (95% CI = 1.01-2.31) for those only exposed after age 18, and 2.38 (95% CI = 1.47-3.85) for those both exposed before and after age 18. In addition, COF exposure was significantly associated with a risk of oral cancer (adjusted ORs were 1.69 (95% CI = 1.03-2.78) for light exposure and 2.06 (95% CI = 1.21-3.50) for heavy exposure). Furthermore, there was a significantly multiplicative interaction between passive smoking and COF for oral cancer.

  1. Biological effects of short-term, high-concentration exposure to methyl isocyanate. I. Study objectives and inhalation exposure design.

    OpenAIRE

    Dodd, D E; Frank, F R; Fowler, E H; Troup, C M; Milton, R M

    1987-01-01

    Early reports from India indicated that humans were dying within minutes to a few hours from exposure to methyl isocyanate (MIC). Attempts to explain the cause(s) of these rapid mortalities is where Union Carbide Corporation concentrated its post-Bhopal toxicologic investigations. The MIC studies involving rats and guinea pigs focused primarily on the consequences of acute pulmonary damage. All MIC inhalation exposures were acute, of short duration (mainly 15 min), and high in concentration (...

  2. Characterization and assessment of dermal and inhalable nickel exposures in nickel production and primary user industries.

    Science.gov (United States)

    Hughson, G W; Galea, K S; Heim, K E

    2010-01-01

    The aim of this study was to measure the levels of nickel in the skin contaminant layer of workers involved in specific processes and tasks within the primary nickel production and primary nickel user industries. Dermal exposure samples were collected using moist wipes to recover surface contamination from defined areas of skin. These were analysed for soluble and insoluble nickel species. Personal samples of inhalable dust were also collected to determine the corresponding inhalable nickel exposures. The air samples were analysed for total inhalable dust and then for soluble, sulfidic, metallic, and oxidic nickel species. The workplace surveys were carried out in five different workplaces, including three nickel refineries, a stainless steel plant, and a powder metallurgy plant, all of which were located in Europe. Nickel refinery workers involved with electrolytic nickel recovery processes had soluble dermal nickel exposure of 0.34 microg cm(-2) [geometric mean (GM)] to the hands and forearms. The GM of soluble dermal nickel exposure for workers involved in packing nickel salts (nickel chloride hexahydrate, nickel sulphate hexahydrate, and nickel hydroxycarbonate) was 0.61 microg cm(-2). Refinery workers involved in packing nickel metal powders and end-user powder operatives in magnet production had the highest dermal exposure (GM = 2.59 microg cm(-2) soluble nickel). The hands, forearms, face, and neck of these workers all received greater dermal nickel exposure compared with the other jobs included in this study. The soluble nickel dermal exposures for stainless steel production workers were at or slightly above the limit of detection (0.02 microg cm(-2) soluble nickel). The highest inhalable nickel concentrations were observed for the workers involved in nickel powder packing (GM = 0.77 mg m(-3)), although the soluble component comprised only 2% of the total nickel content. The highest airborne soluble nickel exposures were associated with refineries using

  3. The contributions to solvent uptake by skin and inhalation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Daniell, W.; Stebbins, A.; Kalman, D.; O' Donnell, J.F.; Horstman, S.W. (Department of Environmental Health, University of Washington, Seattle (United States))

    1992-02-01

    Solvent exposures were assessed among 97 auto body repair workers in order to determine whether skin contact represented a significant route of exposure. Each subject's cumulative skin exposure was ranked categorically based on simple observation: 49 none, 33 incidental or low, and 15 moderate or high. The median time-weighted average air exposure to solvents was 8.4% of the American Conference of Governmental Industrial Hygienists (ACGIH) combined solvent threshold limit value (TLV) with a range of 0-62% TLV, including toluene (median 4 ppm) and xylenes (median 0.9 ppm). Urine methyl hippuric acids (MHAs, metabolites of xylenes) were low compared to the ACGIH biological exposure index (BEI) with a median of 2% and a range of 0-12% BEI but were strongly correlated with both the level of airborne xylenes and skin exposure when considered simultaneously by using analysis of covariance (R = 0.91, p less than 0.0001). MHA excretion attributable to skin exposure for 15 min or more generally was comparable to or greater than that from associated air exposure over the full work shift. This study had limited ability to assess quantitatively the contributions of toluene exposures, but there was evidence that skin exposures also contributed significantly to toluene absorption. Air sampling will substantially underestimate a worker's total solvent dose in the setting of moderate or high skin exposure. Simple observation was effective in identifying workers in this sample who appeared to have sufficient skin exposure to produce a measurable increase in solvent uptake.

  4. Comparison of sarin and cyclosarin toxicity by subcutaneous, intravenous and inhalation exposure in Gottingen minipigs.

    Science.gov (United States)

    Hulet, Stanley W; Sommerville, Douglas R; Miller, Dennis B; Scotto, Jacqueline A; Muse, William T; Burnett, David C

    2014-02-01

    Sexually mature male and female Gottingen minipigs were exposed to various concentrations of GB and GF vapor via whole-body inhalation exposures or to liquid GB or GF via intravenous or subcutaneous injections. Vapor inhalation exposures were for 10, 60 or 180 min. Maximum likelihood estimation was used to calculate the median effect levels for severe effects (ECT50 and ED50) and lethality (LCT50 and LD50). Ordinal regression was used to model the concentration × time profile of the agent toxicity. Contrary to that predicted by Haber's rule, LCT50 values increased as the duration of the exposures increased for both nerve agents. The toxic load exponents (n) were calculated to be 1.38 and 1.28 for GB and GF vapor exposures, respectively. LCT50 values for 10-, 60- and 180-min exposures to vapor GB in male minipigs were 73, 106 and 182 mg min/m(3), respectively. LCT50 values for 10-, 60 - and 180-min exposures to vapor GB in female minipigs were 87, 127 and 174 mg min/m(3), respectively. LCT50 values for 10-, 60- and 180-min exposures to vapor GF in male minipigs were 218, 287 and 403 mg min/m(3), respectively. LCT50 values for 10-, 60- and 180-min exposures in female minipigs were 183, 282 and 365 mg min/m(3), respectively. For GB vapor exposures, there was a tenuous gender difference which did not exist for vapor GF exposures. Surprisingly, GF was 2-3 times less potent than GB via the inhalation route of exposure regardless of exposure duration. Additionally GF was found to be less potent than GB by intravenous and subcutaneous routes.

  5. Does a more refined assessment of exposure to bitumen fume and confounders alter risk estimates from a nested case-control study of lung cancer among European asphalt workers?

    DEFF Research Database (Denmark)

    Agostini, Michela; Ferro, Gilles; Burstyn, Igor

    2013-01-01

    To investigate whether a refined assessment of exposure to bitumen fume among workers in the European asphalt industry within a nested case-control study resulted in a different interpretation pertaining to risk of lung cancer mortality compared with the cohort study....

  6. Impact of non-constant concentration exposure on lethality of inhaled hydrogen cyanide.

    Science.gov (United States)

    Sweeney, Lisa M; Sommerville, Douglas R; Channel, Stephen R

    2014-03-01

    The ten Berge model, also known as the toxic load model, is an empirical approach in hazard assessment modeling for estimating the relationship between the inhalation toxicity of a chemical and the exposure duration. The toxic load (TL) is normally expressed as a function of vapor concentration (C) and duration (t), with TL equaling C(n) × t being a typical form. Hypothetically, any combination of concentration and time that yields the same "toxic load" will give a constant biological response. These formulas have been developed and tested using controlled, constant concentration animal studies, but the validity of applying these assumptions to time-varying concentration profiles has not been tested. Experiments were designed to test the validity of the model under conditions of non-constant acute exposure. Male Sprague-Dawley rats inhaled constant or pulsed concentrations of hydrogen cyanide (HCN) generated in a nose-only exposure system for 5, 15, or 30 min. The observed lethality of HCN for the 11 different C versus t profiles was used to evaluate the ability of the model to adequately describe the lethality of HCN under the conditions of non-constant inhalation exposure. The model was found to be applicable under the tested conditions, with the exception of the median lethality of very brief, high concentration, discontinuous exposures.

  7. TGFβ-1 and TGFBR2 polymorphisms, cooking oil fume exposure and risk of lung adenocarcinoma in Chinese nonsmoking females: a case control study.

    Science.gov (United States)

    Ren, Yangwu; Yin, Zhihua; Li, Kun; Wan, Yan; Li, Xuelian; Wu, Wei; Guan, Peng; Zhou, Baosen

    2015-04-10

    Transforming growth factor-β (TGF-β) plays an important role in regulating cellular functions, and many studies have demonstrated important roles for TGF-β in various cancers. Single nucleotide polymorphisms (SNPs) of TGF-β may influence lung carcinogenesis. The aim of this study was to test whether TGF-β1 C509T and TGF-β receptor II (TGFBR2) G-875A polymorphisms were associated with lung adenocarcinoma in nonsmoking females. A hospital-based case-control study was performed in Chinese nonsmoking females. Genotyping was performed using TaqMan SNP genotyping assay, and demographic data and environmental exposure were collected by trained interviewers after informed consents were obtained. A total of 272 (95.4%) cases and 313 (99.4%) controls were successfully genotyped, and the results showed that the polymorphic allele frequencies of C509T and G875A were similar among lung adenocarcinoma patients and controls (P=0.589 and 0.643, respectively). However, when the data were stratified for cooking oil fume exposure, the TT genotype of the TGFB1 C509T polymorphism showed a significantly decreased risk for lung adenocarcinoma compared with the CC genotype (adjusted OR=0.362, 95% CI=0.149-0.878, P=0.025). TGF-β1 gene C509T polymorphism might be associated with decreased risk of lung adenocarcinoma in Chinese females exposed to cooking oil fumes, but no association was observed TGFBR2 gene G875A polymorphism.

  8. Range-Finding Risk Assessment of Inhalation Exposure to Nanodiamonds in a Laboratory Environment

    Directory of Open Access Journals (Sweden)

    Antti J. Koivisto

    2014-05-01

    Full Text Available This study considers fundamental methods in occupational risk assessment of exposure to airborne engineered nanomaterials. We discuss characterization of particle emissions, exposure assessment, hazard assessment with in vitro studies, and risk range characterization using calculated inhaled doses and dose-response translated to humans from in vitro studies. Here, the methods were utilized to assess workers’ risk range of inhalation exposure to nanodiamonds (NDs during handling and sieving of ND powder. NDs were agglomerated to over 500 nm particles, and mean exposure levels of different work tasks varied from 0.24 to 4.96 µg·m−3 (0.08 to 0.74 cm−3. In vitro-experiments suggested that ND exposure may cause a risk for activation of inflammatory cascade. However, risk range characterization based on in vitro dose-response was not performed because accurate assessment of delivered (settled dose on the cells was not possible. Comparison of ND exposure with common pollutants revealed that ND exposure was below 5 μg·m−3, which is one of the proposed exposure limits for diesel particulate matter, and the workers’ calculated dose of NDs during the measurement day was 74 ng which corresponded to 0.02% of the modeled daily (24 h dose of submicrometer urban air particles.

  9. Chronic Inhalation Exposure of Experimental Animals to Methylcyclohexane

    Science.gov (United States)

    1985-04-01

    ELEMENT NO. NO. NO. NO. 󈧏. TITLE (Include Security Clasification ) u.nronic Inhalatlon 62202F 6302 01 15 Exposure of Experimental Animals to 12...tests including routine hematology, electrolytes, glucose, creatinine, bilirubin, serum protein , albumin, and three enzymes, SGPT, SGOT and alkaline

  10. Inhale while Dreaming: Human Exposure to Pollutants while Sleeping

    DEFF Research Database (Denmark)

    Corsi, Richard; Spilak, Michal; Boor, E., Brandon

    2012-01-01

    Humans spend approximately 1/3 of their total life asleep, typically on a mattress or other bedding. Despite the fact that there is no other location where most of humanity spends more time, this microenvironment has received little attention from the standpoint of human exposure to a wide range ...

  11. Conceptual model for assessment of inhalation exposure to manufactured nanoparticles

    NARCIS (Netherlands)

    Schneider, T.; Brouwer, D.H.; Koponen, I.K.; Jensen, K.A.; Fransman, W.; Duuren-Stuurman, B. van; Tongeren, M. van; Tielemans, E.

    2011-01-01

    As workplace air measurements of manufactured nanoparticles are relatively expensive to conduct, models can be helpful for a first tier assessment of exposure. A conceptual model was developed to give a framework for such models. The basis for the model is an analysis of the fate and underlying

  12. Risk assessment of inhalation exposure to Particulate Polycyclic Aromatic Hydrocarbons in school children

    Science.gov (United States)

    Jyethi, D. S.; Khillare, P. S.; Sarkar, S.

    2013-12-01

    Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for one year (2009-10) at an urban site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ~11.6 times the World Health Organization standard. Vehicular (59.5%) and coal combustion (40.5%) sources accounted for the high levels of PAHs (range 38.1 ng m-3 - 217.3 ng m-3) with four and five ring PAHs having ~80 % contribution. Atmospheric distribution of total PAHs were heavily influenced (~75%) by the carcinogenic species and the B[a]P equivalent concentrations, through both TEF and MEF approach, exhibited highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day-1) followed by monsoon (232.59 ng day-1) and summer (171.08 ng day-1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend: school hours>commuting to school>resting period, in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r=0.94, pindoor air quality. In the apparent absence of any indoor PAH sources, outdoor concentrations and in turn air exchange rates (that are specific for infiltration and natural ventilation pathways) play a key role in assessing PAH exposure. A conservative estimate of ~11 excess cancer cases in children during childhood and ~ 652 cases for a lifetime inhalation exposure of PAHs at the observed concentration have been calculated in Delhi.

  13. Study of the combined effects of smoking and inhalation of uranium ore dust, radon daughters and diesel oil exhaust fumes in hamsters and dogs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, F.T.; Palmer, R.F.; Filipy, R.E.; Busch, R.H.; Stuart, B.O.

    1978-09-01

    Exposure to particulates from uranium ore dust and diesel exhaust soot provoked inflammatory and proliferative responses in lungs. Also exposure to radon and radon daughters yielded increased occurrences of bronchiolar epithelial hyperplasia and metaplastic changes of alveolar epithelium. The data suggest that this cellular change is also a precursor of premalignant change in hamsters. The authors suggest an animal model other than the hamster based on two observations: (1) the Syrian golden hamster has been shown to be highly refractory to carcinoma induction; and (2) that when exposed to realistic levels of agents in life-span exposure regimens, the hamster does not develop lesions. Dog studies with cigarette smoke exposure showed mitigating effects on radon daughter induced respiratory tract cancer. Two reasons are suggested although no empirical evidence was gathered. A strict comparison of human and animal exposures and interpolative models are not possible at this time. (PCS)

  14. Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: Effects on liver DNA strand breaks in dams and offspring

    DEFF Research Database (Denmark)

    Jackson, Petra; Hougaard, Karin Sørig; Boisen, Anne Mette Zenner

    2011-01-01

    cells and liver, and in offspring liver. Persistent lung inflammation was observed in exposed mothers. Inhalation exposure induced more DNA strand breaks in the liver of mothers and their offspring, whereas intratracheal instillation did not. Neither inhalation nor instillation affected gestation...... and lactation. Maternal inhalation exposure to Printex 90-induced liver DNA damage in the mothers and the in utero exposed offspring....

  15. Increased Non-conducted P-wave Arrhythmias after a Single Oil Fly Ash Inhalation Exposure in Hypertensive Rats

    Science.gov (United States)

    Exposure to combustion-derived fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality especially in individuals with cardiovascular disease, including hypertension. PM inhalation causes several adverse changes in cardiac function that ar...

  16. Inflammatory Cytokines and White Blood Cell Counts Response to Environmental Levels of Diesel Exhaust and Ozone Inhalation Exposures

    Science.gov (United States)

    Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in envi...

  17. Cow Dung Ingestion and Inhalation Dependence: A Case Report

    Science.gov (United States)

    Khairkar, Praveen; Tiple, Prashant; Bang, Govind

    2009-01-01

    Although abuse of several unusual inhalants had been documented, addiction to cow dung fumes or their ashes has not been reported in medical literature as yet. We are reporting a case of cow dung dependence in ingestion and inhalational form.

  18. Cow Dung Ingestion and Inhalation Dependence: A Case Report

    Science.gov (United States)

    Khairkar, Praveen; Tiple, Prashant; Bang, Govind

    2009-01-01

    Although abuse of several unusual inhalants had been documented, addiction to cow dung fumes or their ashes has not been reported in medical literature as yet. We are reporting a case of cow dung dependence in ingestion and inhalational form.

  19. Applicability of a modified MCE filter method with Button Inhalable Sampler for monitoring personal bioaerosol inhalation exposure.

    Science.gov (United States)

    Xu, Zhenqiang; Xu, Hong; Yao, Maosheng

    2013-05-01

    In this study, a "modified" mixed cellulose ester (MCE) filter culturing method (directly placing filter on agar plate for culturing without extraction) was investigated in enumerating airborne culturable bacterial and fungal aerosol concentration and diversity both in different environments. A Button Inhalable Sampler loaded with a MCE filter was operated at a flow rate of 5 L/min to collect indoor and outdoor air samples using different sampling times: 10, 20, and 30 min in three different time periods of the day. As a comparison, a BioStage impactor, regarded as the gold standard, was operated in parallel at a flow rate of 28.3 L/min for all tests. The air samples collected by the Button Inhalable Sampler were directly placed on agar plates for culturing, and those collected by the BioStage impactor were incubated directly at 26 °C. The colony forming units (CFUs) were manually counted and the culturable concentrations were calculated both for bacterial and fungal aerosols. The bacterial CFUs developed were further washed off and subjected to polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) for diversity analysis. For fungal CFUs, microscopy method was applied to studying the culturable fungal diversity obtained using different methods. Experimental results showed that the performance of two investigated methods varied with sampling environments and microbial types (culturable bacterial and fungal aerosols). For bacterial aerosol sampling, both methods were shown to perform equally well, and in contrast the "modified" MCE filter method was demonstrated to enumerate more culturable fungal aerosols than the BioStage impactor. In general, the microbial species richness (number of gel bands) was observed to increase with increasing collection time. For both methods, the DGGE gel patterns were observed to vary with sampling time and environment despite of similar number of gel bands. In addition, an increase in sampling time from 20 to 30 min

  20. A histopathologic study of the nervous system after inhalation exposure of 1-bromopropane in rat.

    Science.gov (United States)

    Sohn, Yoon-Kyung; Suh, Jang-Soo; Kim, Jung-Wan; Seo, Hyung-Ho; Kim, Ji-Yeon; Kim, Hyeon-Yeong; Lee, Jun-Yeon; Lee, Sung-Bae; Han, Jeong-Hee; Lee, Yong-Mook; Lee, Jong-Young

    2002-05-28

    1-Bromopropane (1-BP) has recently become known as an alternative cleaning material with less damage to the ozone layer. However, its toxicity is not fully evaluated. This study was designed to investigate the repeated inhalation toxicity of 1-BP on the nervous systems in Sprague-Dawley rats. The experiment was done by repeated exposure of the rats to 0, 200, 500, and 1250 ppm for 6 h per day, 5 days a week, for 13 weeks, respectively. Morphologic studies were done for the central nervous system, sacral and peroneal nerves. The serial sections of the brain and spinal cord of 1-BP inhalation groups revealed no pathological features either in the gray or white matter. The nerve fiber teasing, light and electron microscopic studies of the sacral and peroneal nerve fibers showed no significant difference between 1-BP inhalation groups and the control group. From these results, it is concluded that the nervous system is histologically resistant to the repeated inhalation of 1-BP up to 1250 ppm for 13 weeks. Experiments with higher concentrations of 1-BP and the functional studies are necessary to clarify the 1-BP toxicity.

  1. [Interaction between benzene and toluene in long term inhalation exposure in rats (author's transl)].

    Science.gov (United States)

    Gradiski, D; Bonnet, P; Duprat, P; Zissu, D; Magadur, J L; Guenier, J P

    1981-07-01

    Industrial chemicals are seldom used as pure substances; hazards resulting from exposure to mixtures have, however not been solved. Our study deals with chronic inhalation toxicity of a mixture of benzene and toluene; few studies have been completed on this subject. Our results show: - leucopenia with benzene alone, at a concentration of 50 p.p.m., that is not detectable in the presence of toluene; - metabolic variations consisting in: a decrease in the phenol urinary rate versus time with benzene alone; a sharp decrease of this rate from the third month of exposure on, in presence of toluene.

  2. Systemic exposure to inhaled beclometasone/formoterol DPI is age and body size dependent

    DEFF Research Database (Denmark)

    Chawes, B L; Govoni, M; Kreiner-Møller, E

    2014-01-01

    the systemic exposure to the active ingredients of a fixed dose combination of beclometasone-dipropionate (BDP) and formoterol after dry powder inhaler (DPI) administration in children, adolescents and adults. METHODS: The pharmacokinetic profiles of formoterol and beclometasone-17-monopropionate (B17MP....... RESULTS: The systemic exposure (AUC) for children versus adults was almost doubled for formoterol and similar for B17MP despite the halved BDP dose administered in children. In adolescents the AUC for formoterol and B17MP were approximately one third higher than in adults for both compounds. Upon...

  3. Use of portable microbial samplers for estimating inhalation exposure to viable biological agents.

    Science.gov (United States)

    Yao, Maosheng; Mainelis, Gediminas

    2007-01-01

    Portable microbial samplers are being increasingly used to determine the presence of microbial agents in the air; however, their performance characteristics when sampling airborne biological agents are largely unknown. In addition, it is unknown whether these samplers could be used to assess microbial inhalation exposure according to the particle sampling conventions. This research analyzed collection efficiencies of MAS-100, Microflow, SMA MicroPortable, Millipore Air Tester, SAS Super 180, BioCulture, and RCS High Flow portable microbial samplers when sampling six bacterial and fungal species ranging from 0.61 to 3.14 microm in aerodynamic diameter. The efficiencies with which airborne microorganisms were deposited on samplers' collection medium were compared to the particle inhalation and lung deposition convention curves. When sampling fungi, RCS High Flow and SAS Super 180 deposited 80%-90% of airborne spores on agar - highest among investigated samplers. Other samplers showed collection efficiencies of 10%-60%. When collecting bacteria, RCS High Flow and MAS-100 collected 20%-30%, whereas other samplers collected less than 10% of these bioparticles. Comparison of samplers' collection efficiencies with particle inhalation convention curves showed that RCS High Flow and SAS Super 180 could be used to assess inhalation exposure to particles larger than 2.5 microm, such as fungal spores. Performance of RCS High Flow sampler was also reflective of the particle lung deposition pattern when sampling both bacteria and fungi. MAS-100 and SAS Super 180 matched the total deposition curve fairly well when collecting bacterial and fungi species, respectively. For other tested samplers, we observed substantial discrepancies between their performances and particle deposition efficiencies in the lung. The results show that feasibility of applying portable microbial samplers for exposure assessment depends on a particular sampler model and microbial species.

  4. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX)

    DEFF Research Database (Denmark)

    Cochet, C.; Fernandes, E.O.; Jantunen, M.

    ECA-IAQ (European Collaborative Action, Urban Air, Indoor Environment and Human Exposure), 2006. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX), Report No 25. EUR 22503 EN. Luxembourg: Office for Official Publications...... of the European Communities It is now well established that indoor air pollution contributes significantly to the global burden of disease of the population. Therefore, the knowledge of this contribution is essential in view of risk assessment and management. The ECA STRATEX report collates the respective...... information and describes the strategies to determine population exposure to indoor air pollutants. Its major goal is to emphasise the importance of the contribution of indoor air to total air exposure. Taking this contribution into account is a prerequisite for sound risk assessment of air pollution...

  5. 5-Day repeated inhalation and 28-day post-exposure study of graphene.

    Science.gov (United States)

    Shin, Jae Hoon; Han, Sung Gu; Kim, Jin Kwon; Kim, Boo Wook; Hwang, Joo Hwan; Lee, Jong Seong; Lee, Ji Hyun; Baek, Jin Ee; Kim, Tae Gyu; Kim, Keun Soo; Lee, Heon Sang; Song, Nam Woong; Ahn, Kangho; Yu, Il Je

    2015-01-01

    Graphene has recently been attracting increasing attention due to its unique electronic and chemical properties and many potential applications in such fields as semiconductors, energy storage, flexible electronics, biosensors and medical imaging. However, the toxicity of graphene in the case of human exposure has not yet been clarified. Thus, a 5-day repeated inhalation toxicity study of graphene was conducted using a nose-only inhalation system for male Sprague-Dawley rats. A total of three groups (20 rats per group) were compared: (1) control (ambient air), (2) low concentration (0.68 ± 0.14 mg/m(3) graphene) and (3) high concentration (3.86 ± 0.94 mg/m(3) graphene). The rats were exposed to graphene for 6 h/day for 5 days, followed by recovery for 1, 3, 7 or 28 days. The bioaccumulation and macrophage ingestion of the graphene were evaluated in the rat lungs. The exposure to graphene did not change the body weights or organ weights of the rats after the 5-day exposure and during the recovery period. No statistically significant difference was observed in the levels of lactate dehydrogenase, protein and albumin between the exposed and control groups. However, graphene ingestion by alveolar macrophages was observed in the exposed groups. Therefore, these results suggest that the 5-day repeated exposure to graphene only had a minimal toxic effect at the concentrations and time points used in this study.

  6. Biological effects of short-term, high-concentration exposure to methyl isocyanate. I. Study objectives and inhalation exposure design

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, D.E.; Frank, F.R.; Fowler, E.H.; Troup, C.M.; Milton, R.M.

    1987-06-01

    Early reports from India indicated that humans were dying within minutes to a few hours from exposure to methyl isocyanate (MIC). Attempts to explain the cause(s) of these rapid mortalities is where Union Carbide Corporation concentrated its post-Bhopal toxicologic investigations. The MIC studies involving rats and guinea pigs focused primarily on the consequences of acute pulmonary damage. All MIC inhalation exposures were acute, of short duration (mainly 15 min), and high in concentration. MIC vapors were statically generated in a double chamber exposure design. Precautionary measures taken during exposures are discussed. Guinea pigs were more susceptible than rats to MIC exposure-related early mortality. A greater than one order of magnitude difference was observed between an MIC concentration that caused no early mortality in rats (3506 ppm) and an MIC concentration that caused partial (6%) early mortality in guinea pigs (225 ppm) for exposures of 10 to 15 min duration. For both species, the most noteworthy clinical signs during exposure were lacrimation, blepharospasm, and mouth breathing. Fifteen minute LC/sub 50/ tests with 14-day postexposure follow-up were conducted, and the LC/sub 50/ (95% confidence limit) values were 171 (114-256) ppm for rats and 112 (61-204) ppm for guinea pigs. Target exposure concentrations for the toxicologic investigations of MIC-induced early mortality were established. A short summary of pertinent results of Union Carbide Corporation's post-Bhopal toxicologic investigations is presented.

  7. Hematotoxicity and concentration-dependent conjugation of phenol in mice following inhalation exposure to benzene.

    Science.gov (United States)

    Wells, M S; Nerland, D E

    1991-04-01

    Benzene is metabolized to one or more hematotoxic species. Saturation of benzene metabolism could limit the production of toxic species. Saturation of phase II enzymes involved in the conjugation of the phenolic metabolites of benzene also could affect the hematotoxicity of benzene. To investigate the latter possibility, we exposed male Swiss mice, via the inhalation route, to various concentrations of benzene for 6 h per day for 5 days. Following termination of the final exposure the mice were killed and the levels of phenylsulfate and phenylglucuronide in the blood determined. Spleen weights were recorded and the number of white blood cells counted. At low benzene exposure concentrations phenylsulfate is the major conjugated form of phenol in the blood. At high exposure concentrations, phenylglucuronide is the predominant species. The reductions in spleen weight and white blood cell numbers correlated with the concentration of phenylsulfate in the blood, but are most probably not causally related.

  8. Hepatotumorigenicity of ethyl tertiary-butyl ether with 2-year inhalation exposure in F344 rats.

    Science.gov (United States)

    Saito, Arata; Sasaki, Toshiaki; Kasai, Tatuya; Katagiri, Taku; Nishizawa, Tomoshi; Noguchi, Tadashi; Aiso, Shigetoshi; Nagano, Kasuke; Fukushima, Shoji

    2013-05-01

    Carcinogenicity of ethyl tertiary-butyl ether (ETBE) was examined with inhalation exposure using F344/DuCrlCrlj rats. Groups of 50 male and 50 female rats, 6 week old at commencement, were exposed to ETBE at 0, 500, 1,500 or 5,000 ppm (v/v) in whole-body inhalation chambers for 6 h/day, 5 days/week for 104 weeks. A significant increase in the incidence of hepatocellular adenomas was indicated in males exposed at 5,000 ppm, but not in females at any concentration. In addition, significantly increased incidences of eosinophilic and basophilic cell foci were observed in male rats at 5,000 ppm. Regarding non-neoplastic lesions, rat-specific changes were observed in kidney, with an increase in the severity of chronic progressive nephropathy in both sexes at 5,000 ppm. Increased incidences of urothelial hyperplasia of the pelvis were observed at 1,500 ppm and above, and mineral deposition was apparent in the renal papilla at 5,000 ppm in males. There were no treatment-related histopathological changes observed in any other organs or tissues in either sex. The present 2-year inhalation study demonstrated hepatotumorigenicity of ETBE in male, but not in female rats.

  9. Toxic effect in the lungs of rats after inhalation exposure to benzalkonium chloride

    Directory of Open Access Journals (Sweden)

    Radosław Świercz

    2013-08-01

    Full Text Available Background: Benzalkonium chloride (BAC is a quaternary ammonium compound (QAC toxic to microorganisms. Inhalation is one of the major possible routes of human exposure to BAC. Materials and Methods: Experiments were performed on female Wistar rats. The rats were exposed to aerosol of BAC water solution at the target concentration of 0 (control group and 35 mg/m3 for 5 days (6 h/day and, after a 2-week interval, the animals were challenged (day 21 with BAC aerosol at the target concentration of 0 (control group and 35 mg/m3 for 6 h. Results: Compared to the controls, the animals exposed to BAC aerosol were characterized by lower food intake and their body weight was significantly smaller. As regards BAC-exposed group, a significant increase was noted in relative lung mass, total protein concentration, and MIP-2 in BALF both directly after the termination of the exposure and 18 h afterwards. Significantly higher IL-6 and IgE concentrations in BALF and a decrease in the CC16 concentration in BALF were found in the exposed group immediately after the exposure. The leukocyte count in BALF was significantly higher in the animals exposed to BAC aerosol compared to the controls. In the lungs of rats exposed to BAC the following effects were observed: minimal perivascular, interstitial edema, focal aggregates of alveolar macrophages, interstitial mononuclear cell infiltrations, thickened alveolar septa and marginal lipoproteinosis. Conclusion: Inhalation of BAC induced a strong inflammatory response and a damage to the blood-air barrier. Reduced concentrations of CC16, which is an immunosuppressive and anti-inflammatory protein, in combination with increased IgE concentrations in BALF may be indicative of the immuno-inflammatory response in the animals exposed to BAC aerosol by inhalation. Histopathological examinations of tissue samples from the BAC-exposed rats revealed a number of pathological changes found only in the lungs.

  10. Lung injury via oxidative stress in mice induced by inhalation exposure to rocket kerosene.

    Science.gov (United States)

    Xu, Bingxin; Li, Chenglin; Wang, Jianying; Wu, Jihua; Si, Shaoyan; Liu, Zhiguo; Li, Jianzhong; Zhang, Jianzhong; Cui, Yan

    2015-01-01

    Rocket kerosene (RK) is a new rocket propellant. Toxicity occurs if a high level of RK is inhaled. To study the toxicity of RK in lung and the mechanisms of RK-induced lung jury, a total of 72 male ICR mice (1.5 months, adult) were randomly assigned to the RK exposure group (RKEG) and normal control group (NCG). Mice were whole-body exposed to room air or aerosol of 18000 mg/m3 RK for 4 hours. Histopathological analysis was performed to evaluate the pulmonary lesions. Oxidative stress was assessed by assay of MDA, SOD, GSH-PX and TAOC. Inflammatory response was estimated by detecting inflammatory cell counts, TNF-α and IL-6 protein levels in serum. The results showed that after 2 to 6 hours of RK exposure, pulmonary vascular dilatation, congestion and edematous widening of the alveolar septum were noted. After 12 to 24 hours post-exposure, diffuse hemorrhage in alveolar space were found, along with the progressive pulmonary vascular dilatation and edematous widening of alveolar septum. During 3 to 7 days of RK-exposure, inflammatory cells were scattered in the lung tissue. The pathological alterations of the lung were alleviated after 14 days post-exposure, and showed significant improvement after 21 days post-exposure. After 30 days of RK exposure, the pathological changes in the lung tissue were nearly recovered except the local thickening of the alveolar wall. Compared with NCG, RK inhalation produced a significant increase of MDA levels and a significant decrease of SOD, GSH-Px and TAOC activity in the lung after 2 hours post-exposure (P<0.05). There were significant increases of TNF-α and IL-6 protein levels in serum of mice in RKEG after 2, 6 and 12 hours and 1, 4 and 7 days post-exposure compared with NCG (P<0.05). TNF-α protein levels had a sharp increase after 4 days of exposure. IL-6 protein level was increased at early phase of experiment and then gradually decreased along with the prolonged course of exposure. Considering that the RK-induced lung

  11. Assessment of the genotoxicity of trichloroethylene in the in vivo micronucleus assay by inhalation exposure.

    Science.gov (United States)

    Wilmer, J W; Spencer, P J; Ball, N; Bus, J S

    2014-05-01

    The in vivo genotoxic potential of trichloroethylene (TCE) was evaluated by examining the incidence of micronucleated polychromatic erythrocytes (MN-PCEs) in the bone marrow. Groups of male CD rats were exposed by inhalation to targeted concentrations of 0 (negative control), 50, 500, 2500 or 5000 ppm for 6 consecutive hours on a single day. The exposure concentrations were selected to overlap those employed by a published study that reported a 2- to 3-fold increase in the frequency of micronuclei in male rats following a single inhalation exposure to 5, 500 and 5000 ppm TCE for 6h but not following repeated exposure to similar concentrations. In addition, any treatment-related findings were assessed in the context of potential TCE-induced hypothermia. Clinical signs consistent with marked TCE-induced sedation were observed in rats exposed to 5000 ppm and subsequently three rats died prior to the end of the 6h exposure period. No remarkable changes in body temperature were observed in surviving animals monitored with transponders before and after exposures. There were no statistically significant increases in the frequencies of MN-PCEs in groups treated with the test material as compared to the negative controls. The positive control animals showed a significant increase in the frequency of MN-PCEs and a decrease in the relative proportion of PCEs among erythrocytes as compared to the negative control animals. There were no statistically significant differences in the per cent PCEs in groups treated with the test material. As no increase in the incidence of micronuclei was observed in any of the TCE exposure groups, kinetochore analyses were not performed. Under the experimental conditions used, TCE was considered to be negative in the rat bone marrow micronucleus test.

  12. Effects of inhaled acid aerosols on lung mechanics: an analysis of human exposure studies.

    Science.gov (United States)

    Utell, M J

    1985-11-01

    There exist significant gaps in our understanding of human health effects from inhalation of pollutants associated with acid precipitation. Controlled clinical studies examine effects of criteria pollutants almost exclusively by assessing changes in lung mechanics. One constituent of acid precipitation, sulfuric acid aerosols, has been shown to induce bronchoconstriction in exercising extrinsic asthmatics at near ambient levels. These asthmatics may be an order of magnitude more sensitive to sulfuric acid aerosols than normal adults. More recently, a second component nitrogen dioxide has been observed to provoke changes in lung mechanics at progressively lower concentrations. To date, virtually no data exist from clinical exposures to acidic aerosols for subjects with chronic obstructive pulmonary disease.

  13. Design, Construction and Validation of a Nose-only Inhalation Exposure System to Study Infectivity of Filtered Bioaerosols in Mice

    Science.gov (United States)

    2011-12-01

    Gainesville, FL USA 3 Airbase Sciences Branch, Air Force Research Laboratory, Tyndall AFB , FL USA Keywords antimicrobials, infection, polymerase chain reaction...viruses. Correspondence Joseph D. Wander, Air Force Research Laboratory, 139 Barnes Drive, Suite 2, Tyndall AFB , FL 32403, USA. E-mail: Joe.wander...Moss, O.R. (1995) Inhalation exposure systems. In Concepts in Inhalation Toxicology eds McClellan , R.O. and Henderson, R.F. pp. 25–66. Boca Raton, FL

  14. A Comparison of "Total Dust" and Inhalable Personal Sampling for Beryllium Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Colleen M. [Tulane Univ., New Orleans, LA (United States). School of Public Health and Tropical Medicine

    2012-05-09

    In 2009, the American Conference of Governmental Industrial Hygienists (ACGIH) reduced the Beryllium (Be) 8-hr Time Weighted Average Threshold Limit Value (TLV-TWA) from 2.0 μg/m3 to 0.05 μg/m3 with an inhalable 'I' designation in accordance with ACGIH's particle size-selective criterion for inhalable mass. Currently, per the Department of Energy (DOE) requirements, the Lawrence Livermore National Laboratory (LLNL) is following the Occupational Health and Safety Administration (OSHA) Permissible Exposure Limit (PEL) of 2.0 μg/m3 as an 8-hr TWA, which is also the 2005 ACGIH TLV-TWA, and an Action Level (AL) of 0.2 μg/m3 and sampling is performed using the 37mm (total dust) sampling method. Since DOE is considering adopting the newer 2009 TLV guidelines, the goal of this study was to determine if the current method of sampling using the 37mm (total dust) sampler would produce results that are comparable to what would be measured using the IOM (inhalable) sampler specific to the application of high energy explosive work at LLNL's remote experimental test facility at Site 300. Side-by-side personal sampling using the two samplers was performed over an approximately two-week period during chamber re-entry and cleanup procedures following detonation of an explosive assembly containing Beryllium (Be). The average ratio of personal sampling results for the IOM (inhalable) vs. 37-mm (total dust) sampler was 1.1:1 with a P-value of 0.62, indicating that there was no statistically significant difference in the performance of the two samplers. Therefore, for the type of activity monitored during this study, the 37-mm sampling cassette would be considered a suitable alternative to the IOM sampler for collecting inhalable particulate matter, which is important given the many practical and economic advantages that it presents. However, similar comparison studies would be necessary for this conclusion to be

  15. Pathways of inhalation exposure to manganese in children living near a ferromanganese refinery: A structural equation modeling approach

    Science.gov (United States)

    Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation ...

  16. Pathways of inhalation exposure to manganese in children living near a ferromanganese refinery: A structural equation modeling approach

    Science.gov (United States)

    Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation ...

  17. A novel system to generate WTC dust particles for inhalation exposures.

    Science.gov (United States)

    Vaughan, Joshua M; Garrett, Brittany J; Prophete, Colette; Horton, Lori; Sisco, Maureen; Soukup, Joleen M; Zelikoff, Judith T; Ghio, Andrew; Peltier, Richard E; Asgharian, Bahman; Chen, Lung-Chi; Cohen, Mitchell D

    2014-01-01

    First responders (FRs) present at Ground Zero within the critical first 72 h after the World Trade Center (WTC) collapse have progressively exhibited significant respiratory injury. The majority (>96%) of WTC dusts were >10 μm and no studies have examined potential health effects of this size fraction. This study sought to develop a system to generate and deliver supercoarse (10-53 μm) WTC particles to a rat model in a manner that mimicked FR exposure scenarios. A modified Fishing Line generator was integrated onto an intratracheal inhalation (ITIH) system that allowed for a bypassing of the nasal passages so as to mimic FR exposures. Dust concentrations were measured gravimetrically; particle size distribution was measured via elutriation. Results indicate that the system could produce dusts with 23 μm mass median aerodynamic diameter (MMAD) at levels up to ≥1200 mg/m(3). To validate system utility, F344 rats were exposed for 2 h to ≈100 mg WTC dust/m(3). Exposed rats had significantly increased lung weight and levels of select tracer metals 1 h after exposure. Using this system, it is now possible to conduct relevant inhalation exposures to determine adverse WTC dusts impacts on the respiratory system. Furthermore, this novel integrated Fishing Line-ITIH system could potentially be used in the analyses of a wide spectrum of other dusts/pollutants of sizes previously untested or delivered to the lungs in ways that did not reflect realistic exposure scenarios.

  18. Assessing human exposure risk to cadmium through inhalation and seafood consumption

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yun-Ru; Chen, Wei-Yu [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei10617, Taiwan, ROC (China); Liao, Chung-Min, E-mail: cmliao@ccms.ntu.edu.tw [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei10617, Taiwan, ROC (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Trophically available fraction in seafood and bioaccessibility is linked. Black-Right-Pointing-Pointer Human health risk to Cd can via inhalation and seafood consumption. Black-Right-Pointing-Pointer Female had the higher Cd accumulation in urine and blood than male. Black-Right-Pointing-Pointer Cigarette smoking is a major determinant of human Cd intake. - Abstract: The role of cadmium (Cd) bioaccessibility in risk assessment is less well studied. The aim of this study was to assess human health risk to Cd through inhalation and seafood consumption by incorporating bioaccessibility. The relationships between trophically available Cd and bioaccessibility were constructed based on available experimental data. We estimated Cd concentrations in human urine and blood via daily intake from seafood consumption and inhalation based on a physiologically-based pharmacokinetic (PBPK) model. A Hill-based dose-response model was used to assess human renal dysfunction and peripheral arterial disease risks for long-term Cd exposure. Here we showed that fish had higher bioaccessibility ({approx}83.7%) than that of shellfish ({approx}73.2%) for human ingestion. Our results indicated that glomerular and tubular damage among different genders and smokers ranged from 18.03 to 18.18%. Our analysis showed that nonsmokers had 50% probability of peripheral arterial disease level exceeding from 3.28 to 8.80%. Smoking populations had 2-3 folds higher morbidity risk of peripheral arterial disease than those of nonsmokers. Our study concluded that the adverse effects of Cd exposure are exacerbated when high seafood consumption coincides with cigarette smoking. Our work provides a framework that could more accurately address risk dose dependency of Cd hazard.

  19. Characterization of an inhaled toluene drug discrimination in mice: effect of exposure conditions and route of administration

    Science.gov (United States)

    Shelton, Keith L.; Slavova-Hernandez, Galina

    2009-01-01

    The drug discrimination procedure in animals has been extensively utilized to model the abuse related, subjective effects of drugs in humans, but it has seldom been used to examine abused volatile inhalants like toluene. The present study sought to characterize the temporal aspects of toluene's discriminative stimulus as well assess toluene blood concentrations under identical exposure conditions. B6SJLF1/J mice were trained to discriminate 10 min of exposure to 6000 ppm inhaled toluene vapor from air. Toluene vapor concentration dependently substituted for the training exposure condition with longer exposures to equivalent concentrations producing greater substitution than shorter exposures. Toluene's discriminative stimulus effects dissipated completely by 60 min after the cessation of exposure. Injected liquid toluene dose-dependently substituted for toluene vapor as well as augmenting the discriminative stimulus effects of inhaled toluene. Toluene blood concentrations measured under several exposure conditions which produced full substitution were all nearly identical suggesting that the concentration of toluene in the animals tissues at the time of testing determined discriminative performance. These results indicate that the discriminative stimulus effects of inhaled toluene vapor are likely mediated by CNS effects rather than by it's pronounced peripheral stimulus effects. PMID:19268500

  20. Inhalational exposure to dimethyl sulfate vapor followed by reactive airway dysfunction syndrome

    Directory of Open Access Journals (Sweden)

    Aghabiklooei Abbas

    2010-01-01

    Full Text Available Dimethyl sulfate (DMS is an oily liquid used as a solvent, stabilizer, sulfonation agent, and catalyst. Exposure to DMS primarily happens in the workplace via inhalational contact and damages the upper and lower airways. Our manuscript reports a case of DMS-related reactive airway dysfunction syndrome ( RADS. The patient was a healthy 29-year-old man who was referred to our ER after accidental exposure to the vapor of DMS with the complaint of dyspnea, dry cough, photophobia, and hoarseness. His vital signs were normal except for a low-grade fever. Redness of the pharynx, conjunctivitis, and cholinergic signs and symptoms were present. Conservative management with O 2 and fluid therapy was initiated. Twenty hours later, the patient became drowsy and his respiratory symptoms exacerbated; chest X-ray revealed haziness in the base of the right lung and prominence of the vessels of the lung hillum. After 1 week, the liver transaminases rose and C-reactive protein elevated (2+. The patient got better with conservative treatment and was discharged after 9 days; however, exertional dyspnea, wheezing, and thick white sputum persisted and therefore, reactive airway dysfunction syndrome (RADS related to DMS vapor was confirmed which was treated by prednisolone. Exertional dyspnea continued up to 10 months. Hoarseness lasted for 6 months. This case shows that DMS vapor inhalation can cause RADS especially in the chemical workers who continue working in the contaminated place despite the relatively good air conditioning.

  1. Improved inhalation technology for setting safe exposure levels for workplace chemicals

    Science.gov (United States)

    Stuart, Bruce O.

    1993-01-01

    Threshold Limit Values recommended as allowable air concentrations of a chemical in the workplace are often based upon a no-observable-effect-level (NOEL) determined by experimental inhalation studies using rodents. A 'safe level' for human exposure must then be estimated by the use of generalized safety factors in attempts to extrapolate from experimental rodents to man. The recent development of chemical-specific physiologically-based toxicokinetics makes use of measured physiological, biochemical, and metabolic parameters to construct a validated model that is able to 'scale-up' rodent response data to predict the behavior of the chemical in man. This procedure is made possible by recent advances in personal computer software and the emergence of appropriate biological data, and provides an analytical tool for much more reliable risk evaluation and airborne chemical exposure level setting for humans.

  2. Hepatotoxic Alterations Induced by Subchronic Exposure of Rats to Formulated Fenvalerate (20% EC) by Nose Only Inhalation

    Institute of Scientific and Technical Information of China (English)

    U. MANI; A. K. PRASAD; V. SURESHKUMAR; P. KUMAR; KEWAL LAL; B. K. MAJI; K. K. DUTTA

    2004-01-01

    Fenvalerate (20% EC) is a synthetic pyrethroid, which is commonly used in India by farmers for the protection of many food and vegetable crops against a wide variety of insects. However, its inhalation toxicity data is very limited in the literature due to the fact that the exposure levels associated with these effects were usually not reported. Hence, inhalation exposure was carried out to investigate the hepatotoxic effects. Method Adult male rats were exposed to fen for 4 h/day, 5 days a week for 90 days by using Flow Past Nose Only Inhalation Chamber. Sham treated control rats were exposed to compressed air in the inhalation chamber for the same period. Results The results indicated hepatomegaly, increased activities of serum clinical enzymes (indicative of liver damage/dysfunction) along with pronounced histopathological damage of liver. Conclusion The hepatotoxic potential of formulated Fen (20% EC) in rats exposed by nose only inhalation is being reported for the first time and warrant adequate safety measures for human beings exposed to this insecticide, particularly by inhalation route.

  3. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  4. Acute lung injury following inhalation exposure to nerve agent VX in guinea pigs.

    Science.gov (United States)

    Wright, Benjamin S; Rezk, Peter E; Graham, Jacob R; Steele, Keith E; Gordon, Richard K; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2006-05-01

    A microinstillation technique of inhalation exposure was utilized to assess lung injury following chemical warfare nerve agent VX [methylphosphonothioic acid S-(2-[bis(1-methylethyl)amino]ethyl) O-ethyl ester] exposure in guinea pigs. Animals were anesthetized using Telazol-meditomidine, gently intubated, and VX was aerosolized using a microcatheter placed 2 cm above the bifurcation of the trachea. Different doses (50.4 microg/m3, 70.4 micro g/m(m3), 90.4 microg/m(m3)) of VX were administered at 40 pulses/min for 5 min. Dosing of VX was calculated by the volume of aerosol produced per 200 pulses and diluting the agent accordingly. Although the survival rate of animals exposed to different doses of VX was similar to the controls, nearly a 20% weight reduction was observed in exposed animals. After 24 h of recovery, the animals were euthanized and bronchoalveolar lavage (BAL) was performed with oxygen free saline. BAL was centrifuged and separated into BAL fluid (BALF) and BAL cells (BALC) and analyzed for indication of lung injury. The edema by dry/wet weight ratio of the accessory lobe increased 11% in VX-treated animals. BAL cell number was increased in VX-treated animals compared to controls, independent of dosage. Trypan blue viability assay indicated an increase in BAL cell death in 70.4 microg/m(m3) and 90.4 microg/m(m3) VX-exposed animals. Differential cell counting of BALC indicated a decrease in macrophage/monocytes in VX-exposed animals. The total amount of BAL protein increased gradually with the exposed dose of VX and was highest in animals exposed to 90.4 microg/m(m3), indicating that this dose of VX caused lung injury that persisted at 24 h. In addition, histopathology results also suggest that inhalation exposure to VX induces acute lung injury.

  5. The art of occupational exposure modelling - development and evaluation of generic inhalation exposure models

    NARCIS (Netherlands)

    Schinkel, J.M.

    2013-01-01

    When working with chemical substances, workers might be exposed to chemical contaminants. In a risk assessment the exposure is compared with a toxicological limit value. In a risk assessment the toxicological effect of a chemical substance is compared with the exposure to the chemical in order to

  6. Exposure-response relationships for inhalant wheat allergen exposure and asthma

    NARCIS (Netherlands)

    Baatjies, R; Meijster, T; Heederik, D; Jeebhay, M F

    2015-01-01

    BACKGROUND: A few studies have investigated exposure-response relationships for sensitisation to wheat, work-related symptoms and wheat allergen exposure. IgG4 is suggested to protect against the development of allergic sensitisation. The main aim of this current study was to explore the nature of e

  7. Propositions for the implementation and reinforcement of surveillance activities of exposure and risks associated to radon inhalation; Propositions pour la mise en place et le renforcement d'activites de surveillance des expositions et des risques associes a l'inhalation du radon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    This report treats exclusively of exposure by inhalation. It expresses the propositions relative to the implantation and the development of an information network allowing to characterize the radon exposures by inhalation and associated risks. (N.C.)

  8. Inhaled Nitric Oxide Decreases Leukocyte Trafficking in the Neonatal Mouse Lung During Exposure to >95% Oxygen

    Science.gov (United States)

    Rose, Melissa J.; Stenger, Michael R.; Joshi, Mandar S.; Welty, Stephen E.; Bauer, John Anthony; Nelin, Leif D.

    2010-01-01

    Chronic lung injury in the neonate is termed bronchopulmonary dysplasia (BPD). These patients generally require supplemental oxygen therapy, and hyperoxia has been implicated in the pathogenesis of BPD. The concomitant use of oxygen and inhaled nitric oxide (iNO) may result in the generation of reactive nitrogen species, or may have an anti-inflammatory effect in the neonatal lung. We tested the hypothesis that exposure to >95% O2 in neonatal mice would increase trafficking of leukocytes into the lung, and that the addition of iNO to >95% O2 would decrease this leukocyte trafficking. Hyperoxia resulted in fewer alveoli, increased presence of neutrophils and macrophages, and decreased number of mast cells within the lung parenchyma. Adding iNO to hyperoxia prevented the hyperoxia-induced changes and resulted in the numbers of alveoli, neutrophils, macrophages, and mast cells approximating those found in controls (room air exposure). Intercellular adhesion molecule (ICAM) and monocyte chemotactic protein-1 (MCP-1), two factors responsible for leukocyte recruitment, were upregulated by hyperoxic exposure, but the addition of iNO to the hyperoxic exposure prevented the hyperoxia-induced upregulation of ICAM and MCP-1. These data demonstrate that iNO alters the hyperoxia-induced recruitment of leukocytes into the lung. PMID:19915514

  9. Inhalation and dietary exposure to Dechlorane Plus and polybrominated diphenyl ethers in Osaka, Japan.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Takagi, Sokichi; Akutsu, Kazuhiko; Konishi, Yoshimasa; Kajimura, Keiji; Hayakawa, Kazuichi; Toriba, Akira

    2014-01-01

    This study estimated daily exposure to Dechlorane Plus (DP) and polybrominated diphenyl ethers (PBDE) via inhalation and diet. Samples of atmospheric particles and food (obtained by market basket method) from Osaka, Japan were analyzed for DP (syn-, anti-) and PBDE using gas chromatography-mass spectrometry. DP was detected in both atmospheric particles and food samples. Among the atmospheric particles, DP was detected in all samples. ΣDP concentration was 7.1-15.4 pg m(-3) and anti-DP was the dominant residue among DP isomers. PBDE was also detected in all the atmospheric particles. ΣPBDE concentration was 9.9-23.3 pg m(-3). In the market basket study, DP was detected in Groups Ш (sugar and confectionary), V (legumes and their products), X (fish, shellfish, and their products), and XI (meat and eggs) at concentrations of 3.3, 2.8, 1.9, and 1.5 pg g(-1) wet wt, respectively. PBDE was detected in Groups Ш, IV (oils and fats), V, X, XI, and XШ (seasonings and other processed foods) at concentrations of 153, 79.1, 74.6, 308, 94.8, and 186 pg g(-1) wet wt, respectively. The daily intake of ΣDP (750 pg day(-1)) via inhalation and diet was approximately one percent of that for ΣPBDE (62 ng day(-1)). © 2013 Published by Elsevier Inc.

  10. ACUTE NEUROTOXIC EFFECTS OF INHALED PERCHLOROETHYLENE ON PATTERN VISUAL EVOKED POTENTIALS AS A FUNCTION OF EXPOSURE AND ESTIMATED BLOOD AND BRAIN CONCENTRATION.

    Science.gov (United States)

    Previous experiments have shown the effects of acute inhalation exposure to trichloroethylene (TCE) and toluene are related to the target tissue concentration at the time of testing. The current studies examined exposure to another volatile organic compound, perchloroethylene (P...

  11. ACUTE NEUROTOXIC EFFECTS OF INHALED PERCHLOROETHYLENE ON PATTERN VISUAL EVOKED POTENTIALS AS A FUNCTION OF EXPOSURE AND ESTIMATED BLOOD AND BRAIN CONCENTRATION.

    Science.gov (United States)

    Previous experiments have shown the effects of acute inhalation exposure to trichloroethylene (TCE) and toluene are related to the target tissue concentration at the time of testing. The current studies examined exposure to another volatile organic compound, perchloroethylene (P...

  12. Genotoxicity of fumes from heated cooking oils produced in Taiwan.

    Science.gov (United States)

    Wu, P F; Chiang, T A; Ko, Y C; Lee, H

    1999-02-01

    Epidemiologic investigations of lung cancer among Taiwanese nonsmoking women have found that exposure to fumes from cooking oils may be an important risk factor. Fume samples from three different commercial cooking oils (lard, soybean, and peanut oils) often used in Taiwan for preparing Chinese meals were collected for genotoxicity analysis in SOS chromotest and sister chromatid exchange (SCE) assays. The induction factors of the SOS chromotest in Escherichia coli PQ 37 were dependent on the concentrations of lard and soybean cooking oil extracts without S9 mix. In addition, when CHO-K1 cells were exposed to condensates of cooking oil fumes for 12 h, SCEs showed a dose-related increase in extracts of lard and soybean oil fumes. This result provides experimental evidence and is in accordance with the findings of epidemiologic studies that women exposed to the emitted fumes of cooking oils are at an increase risk of contracting lung cancer. Copyright 1999 Academic Press.

  13. Characterizing worker exposure to bitumen during hot mix paving and asphalt mixing operations.

    Science.gov (United States)

    Burstyn, Igor; Ferrari, Pietro; Wegh, Hillion; Heederik, Dick; Kromhout, Hans

    2002-01-01

    A survey of bitumen exposure was carried out during hot mix paving and asphalt mixing. Four methods of characterizing and quantifying bitumen fume in inhalable particles were used: gravimetric, infrared spectroscopy, gas chromatography, and total absorbance (of the particle filter surface). Dermal deposition of bitumen was assessed by determination of cyclohexanesoluble matter in the material collected by paper or cotton pads worn on the inside of a person's wrists. The researchers studied the correlation patterns between results of these methods using pairwise correlation coefficients and principal component analysis (for air concentrations only). For hot mix paving, within- and between-worker variance components were evaluated, adjusting for area paved. Collected fume was dark in color and mainly consisted of aliphatic hydrocarbons of less than 20 carbon atoms. Inconsistent correlation patterns between dermal deposition and air levels were observed. Quantification of organic matter using either infrared spectroscopy or gas chromatography appeared to be good methods for monitoring inhalable bitumen fume. Cotton pads seem to be more promising than paper pads for measuring dermal exposure during paving. Paving workers were uniformly exposed to bitumen fume. Assessment of the uniformity of dermal exposure depended on the type of pad used. Day-to-day variability and intensity of inhalable and dermal bitumen exposures depended on area paved. The small size of the study limits the potential application of the results to the asphalt industry in general. More research is needed to develop a valid and inexpensive method of assessing total bitumen exposure.

  14. Management of a Patient With Faciocervical Burns and Inhalational Injury Due to Hydrofluoric Acid Exposure.

    Science.gov (United States)

    Yuanhai, Zhang; Xingang, Wang; Liangfang, Ni; Chunmao, Han

    2014-05-01

    Hydrofluoric acid, a highly dangerous substance, can cause tissue damage and systemic toxicity by its unique mechanisms. Many cases of severe faciocervical burns due to hydrofluoric acid exposure are lethal. Herein, we present a case of 37-year-old man who suffered from hydrofluoric acid burns to his face, anterior neck, lips, and nasal cavity. On admission, this patient coughed with much sputum, and the chest auscultation detected rough breath sounds, wheezes, and very weak heart sounds, indicating possible inhalation injury. This case highlights the extreme complexity of managing this kind of injury. Timely and accurate wound treatment and respiratory tract care, as well as active systematic support treatment, played vital roles in the management of this patient.

  15. Testing Dust Control Preparation with Respect to Mine Employee Exposure to Inhalling Chemical Agents

    Directory of Open Access Journals (Sweden)

    Eugeniusz Orszulik

    2013-01-01

    Full Text Available This paper presents the results of tests used in dust hazard prevention for air-water spraying devices in collieries. The purpose of the tests was to evaluate mine employees’ exposure to inhalling chemical agents when the ZWILKOP ZW-10 preparation is used. The paper presents the results of the measurements of concentration, in a mine atmosphere, of the following chemical agents: hazardous substances 2-(2-butoxyethoxyethanol and 2-ethylhexan-1-ol, constituting ingredients of the preparation at mine employees’ workstations. The tests were performed during work related to the mining of coal in inclined drift C31, seam 415/1-2 on the premises of “Borynia-Zofiówka-Jastrzębie” Hard Coal Mine, Jastrzębie-Zdrój, Poland, using the TELESTO mist systems. Using aqueous solutions for the preparation at concentrations of 15 and 20‰ causes no exceedance of the allowable mine air concentrations for the chemical agents tested.

  16. Assessment of toxicologic interactions resulting from acute inhalation exposure to sulfuric acid and ozone mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, R.B.; Zelikoff, J.T.; Chen, L.C.; Kinney, P.L. (Department of Environmental Medicine, New York University Medical Center, NY (United States))

    1992-08-01

    Studies examining effects of air pollutants often use single compounds, while real world' exposures are to more than one chemical. Thus, it is necessary to assess responses following inhalation of chemical mixtures. Rabbits were exposed for 3 hr to sulfuric acid aerosol at 0, 50, 75, or 125 micrograms/m3 in conjunction with ozone at 0, 0.1, 0.3, or 0.6 ppm, following which broncho-pulmonary lavage was performed. Various pulmonary response endpoints related to general cytotoxicity and macrophage function were examined. In addition, a goal of the study was to define an improved approach to the analysis of data sets involving binary pollutant mixtures. Results were evaluated using analysis of variance with multiple linear contrasts to determine the significance of any effect in the pollutant-exposed groups compared to sham control animals and to assess the type, and extent, of any toxicological interaction between acid and ozone. Interaction was considered to occur when the effects of combined exposure were either significantly greater or less than additive. Pollutant exposures had no effect on lavage fluid levels of lactate dehydrogenase, prostaglandins E2 and F2 alpha, nor on the numbers, viability, or types of immune cells recovered by lavage. Phagocytic activity of macrophages was depressed at the two highest acid levels and at all levels of ozone. Superoxide production by stimulated macrophages was depressed by acid exposure at the two highest concentrations, while ozone alone had no effect. Significant antagonistic interaction was observed following exposure to mixtures of 75 or 125 micrograms/m3 acid with 0.1 or 0.3 ppm ozone. The activity of tumor necrosis factor elicited from stimulated macrophages was depressed by acid at 75 and 125 micrograms/m3 while ozone had no effect. Exposure to mixtures of 125 micrograms/m3 acid with 0.3 or 0.6 ppm ozone resulted in synergistic interaction.

  17. Cancer mortality and occupational exposure to aromatic amines and inhalable aerosols in rubber tire manufacturing in Poland.

    NARCIS (Netherlands)

    de Vocht, F.; Sobala, W.; Wilczynska, U.; Kromhout, H.; Szeszenia-Dabrowska, N.; Peplonska, B.

    2009-01-01

    AIM: Most data on carcinogenic risk in the rubber industry are based on data from Western countries. This study assessed cancer risks in a retrospective cohort in a Polish tire manufacturing plant, relying on quantified exposure to inhalable aerosols and aromatic amines instead of job titles or exte

  18. Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals

    NARCIS (Netherlands)

    Olie, J. Daniël N; Bessems, Jos G.; Clewell, Harvey J.; Meulenbelt, Jan; Hunault, Claudine C.

    2015-01-01

    BACKGROUND: Physiologically Based Toxicokinetic Models (PBTK) may facilitate emergency risk assessment after chemical incidents with inhalation exposure, but they are rarely used due to their relative complexity and skill requirements. We aimed to tackle this problem by evaluating a semi-generic PBT

  19. Behavioral and biochemical evaluation of sub-lethal inhalation exposure to VX in rats.

    Science.gov (United States)

    Genovese, Raymond F; Benton, Bernard J; Lee, Esther H; Shippee, Sara J; Jakubowski, E Michael

    2007-03-22

    We evaluated the effects of low-level inhalation exposures (whole body, 60min duration) to the chemical warfare nerve agent VX (0.016, 0.15, 0.30 or 0.45mg/m(3)) in rats. The range of concentrations was approximately equivalent to 0.02-0.62 times 1.0 LC50. Biochemical effects were assessed by evaluating blood acetylcholinesterase (AChE) activity and by a regeneration assay that quantified the amount of VX (as the G analog) present in blood. Behavioral effects were assessed using a variable-interval 56-s schedule of reinforcement (VI56), in which rats were trained to press a lever to receive a food reward. VI56 training was established before exposure and evaluations continued after exposure. Additionally, after exposure, acquisition and maintenance of an eight-arm radial maze (RAM) task was evaluated in which rats learned to locate the four arms of the maze that presented a single food pellet reward. Behavioral assessments were conducted over approximately 3 months following exposure. Transient miosis was observed following exposure to all concentrations of VX and exposures to the 0.45mg/m(3) concentration also produced mild and temporary signs of toxicity (i.e., slight tremor and ataxia) in some subjects. All concentrations of VX also inhibited circulating AChE and the highest concentration inhibited AChE activity to less than 10% of pre-exposure values. Regenerated VX-G was found in red blood cell (RBC) and plasma blood fractions. In this respect, more VX-G was seen in plasma than RBC. Only small disruptions were observed on the VI56 or RAM following some VX exposures. In general, however, behavioral effects were minor and not clearly systematic. Taken together these results demonstrate that largely asymptomatic exposures to VX vapors in rats can produce substantial biochemical effects while having only minor performance effects on a previously learned behavioral task and on the acquisition of a new behavioral task.

  20. The systemic exposure to inhaled beclometasone/formoterol pMDI with valved holding chamber is independent of age and body size

    DEFF Research Database (Denmark)

    Govoni, Mirco; Piccinno, Annalisa; Lucci, Germano

    2015-01-01

    BACKGROUND: Asthma guidelines recommend prescription of inhaled corticosteroids at a reduced dosage in children compared to older patients in order to minimize the systemic exposure and risk of unwanted side effects. In children, pressurized metered dose inhalers (pMDI) are recommended in combina......BACKGROUND: Asthma guidelines recommend prescription of inhaled corticosteroids at a reduced dosage in children compared to older patients in order to minimize the systemic exposure and risk of unwanted side effects. In children, pressurized metered dose inhalers (pMDI) are recommended...

  1. Kinetics of sarin (GB) following a single sublethal inhalation exposure in the guinea pig.

    Science.gov (United States)

    Whalley, Christopher E; McGuire, Jeffrey M; Miller, Dennis B; Jakubowski, Edward M; Mioduszewski, Robert J; Thomson, Sandra A; Lumley, Lucille A; McDonough, John H; Shih, Tsung-Ming A

    2007-06-01

    To improve toxicity estimates from sublethal exposures to chemical warfare nerve agents (CWNA), it is necessary to generate mathematical models of the absorption, distribution, and elimination of nerve agents. However, current models are based on representative data sets generated with different routes of exposure and in different species and are designed to interpolate between limited laboratory data sets to predict a wide range of possible human exposure scenarios. This study was performed to integrate CWNA sublethal toxicity data in male Duncan Hartley guinea pigs. Specific goal was to compare uptake and clearance kinetics of different sublethal doses of sarin (either 0.1 x or 0.4 x LC50) in blood and tissues of guinea pigs exposed to agent by acute whole-body inhalation exposure after the 60-min LC50 was determined. Arterial catheterization allowed repeated blood sampling from the same animal at various time periods. Blood and tissue levels of acetylcholinesterase, butyrylcholinesterase, and regenerated sarin (rGB) were determined at various time points during and following sarin exposure. The following pharmacokinetic parameters were calculated from the graph of plasma or RBC rGB concentration versus time: time to reach the maximal concentration; maximal concentration; mean residence time; clearance; volume of distribution at steady state; terminal elimination-phase rate constant; and area under plasma concentration time curve extrapolated to infinity using the WinNonlin analysis program 5.0. Plasma and RBC t(1/2) for rGB was also calculated. Data will be used to develop mathematical model of absorption and distribution of sublethal sarin doses into susceptible tissues.

  2. Acute pulmonary toxicity following inhalation exposure to aerosolized VX in anesthetized rats.

    Science.gov (United States)

    Peng, Xinqi; Perkins, Michael W; Simons, Jannitt; Witriol, Alicia M; Rodriguez, Ashley M; Benjamin, Brittany M; Devorak, Jennifer; Sciuto, Alfred M

    2014-06-01

    This study evaluated acute toxicity and pulmonary injury in rats at 3, 6 and 24 h after an inhalation exposure to aerosolized O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX). Anesthetized male Sprague-Dawley rats (250-300 g) were incubated with a glass endotracheal tube and exposed to saline or VX (171, 343 and 514 mg×min/m³ or 0.2, 0.5 and 0.8 LCt₅₀, respectively) for 10 min. VX was delivered by a small animal ventilator at a volume of 2.5 ml × 70 breaths/minute. All VX-exposed animals experienced a significant loss in percentage body weight at 3, 6, and 24 h post-exposure. In comparison to controls, animals exposed to 514 mg×min/m³ of VX had significant increases in bronchoalveolar lavage (BAL) protein concentrations at 6 and 24 h post-exposure. Blood acetylcholinesterase (AChE) activity was inhibited dose dependently at each of the times points for all VX-exposed groups. AChE activity in lung homogenates was significantly inhibited in all VX-exposed groups at each time point. All VX-exposed animals assessed at 20 min and 3, 6 and 24 h post-exposure showed increases in lung resistance, which was prominent at 20 min and 3 h post-exposure. Histopathologic evaluation of lung tissue of the 514 mg×min/m³ VX-exposed animals at 3, 6 and 24 h indicated morphological changes, including perivascular inflammation, alveolar exudate and histiocytosis, alveolar septal inflammation and edema, alveolar epithelial necrosis, and bronchiolar inflammatory infiltrates, in comparison to controls. These results suggest that aerosolization of the highly toxic, persistent chemical warfare nerve agent VX results in acute pulmonary toxicity and lung injury in rats.

  3. Depleted uranium contamination by inhalation exposure and its detection after approximately 20 years: implications for human health assessment.

    Science.gov (United States)

    Parrish, Randall R; Horstwood, Matthew; Arnason, John G; Chenery, Simon; Brewer, Tim; Lloyd, Nicholas S; Carpenter, David O

    2008-02-01

    Inhaled depleted uranium (DU) aerosols are recognised as a distinct human health hazard and DU has been suggested to be responsible in part for illness in both military and civilian populations that may have been exposed. This study aimed to develop and use a testing procedure capable of detecting an individual's historic milligram-quantity aerosol exposure to DU up to 20 years after the event. This method was applied to individuals associated with or living proximal to a DU munitions plant in Colonie New York that were likely to have had a significant DU aerosol inhalation exposure, in order to improve DU-exposure screening reliability and gain insight into the residence time of DU in humans. We show using sensitive mass spectrometric techniques that when exposure to aerosol has been unambiguous and in sufficient quantity, urinary excretion of DU can be detected more than 20 years after primary DU inhalation contamination ceased, even when DU constitutes only approximately 1% of the total excreted uranium. It seems reasonable to conclude that a chronically DU-exposed population exists within the contamination 'footprint' of the munitions plant in Colonie, New York. The method allows even a modest DU exposure to be identified where other less sensitive methods would have failed entirely. This should allow better assessment of historical exposure incidence than currently exists.

  4. Depleted uranium contamination by inhalation exposure and its detection after {approx} 20 years: Implications for human health assessment

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, Randall R. [Department of Geology, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Notts, NG12 5GG (United Kingdom)], E-mail: rrp@nigl.nerc.ac.uk; Horstwood, Matthew [NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Notts, NG12 5GG (United Kingdom); Arnason, John G. [Department of Earth and Atmospheric Sciences, University at Albany, 1400 Washington Avenue, Albany NY 12222 (United States); Chenery, Simon [British Geological Survey, Keyworth, Notts, NG12 5GG (United Kingdom); Brewer, Tim [Department of Geology, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Lloyd, Nicholas S. [Department of Geology, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); British Geological Survey, Keyworth, Notts, NG12 5GG (United Kingdom); Carpenter, David O. [Institute for Health and the Environment, University at Albany, Five University Place, Room A217, Rensselaer, NY 12144-3456 (United States)

    2008-02-01

    Inhaled depleted uranium (DU) aerosols are recognised as a distinct human health hazard and DU has been suggested to be responsible in part for illness in both military and civilian populations that may have been exposed. This study aimed to develop and use a testing procedure capable of detecting an individual's historic milligram-quantity aerosol exposure to DU up to 20 years after the event. This method was applied to individuals associated with or living proximal to a DU munitions plant in Colonie New York that were likely to have had a significant DU aerosol inhalation exposure, in order to improve DU-exposure screening reliability and gain insight into the residence time of DU in humans. We show using sensitive mass spectrometric techniques that when exposure to aerosol has been unambiguous and in sufficient quantity, urinary excretion of DU can be detected more than 20 years after primary DU inhalation contamination ceased, even when DU constitutes only {approx} 1% of the total excreted uranium. It seems reasonable to conclude that a chronically DU-exposed population exists within the contamination 'footprint' of the munitions plant in Colonie, New York. The method allows even a modest DU exposure to be identified where other less sensitive methods would have failed entirely. This should allow better assessment of historical exposure incidence than currently exists.

  5. Assessment of potential dermal and inhalation exposure of workers to the insecticide imidacloprid using whole-body dosimetry in China

    Institute of Scientific and Technical Information of China (English)

    Lidong Cao; BO Chen; Li Zheng; Dongwei Wang; Feng Liu; Qiliang Huang

    2015-01-01

    In China,although improvements to the pesticide registration process have been made in last thirty years,no occupational exposure data are required to obtain a commercial license for a pesticide product.Consequently,notably little research has been conducted to establish an exposure assessment procedure in China.The present study monitored the potential dermal operator exposure from knapsack electric sprayer wheat field application of imidacloprid in Liaocheng City,Shandong Province and in Xinxiang City,Henan Province,China,using whole-body dosimetry.The potential inhalation exposure was determined using a personal air pump and XAD-2 sample tubes.The analytical method was developed and validated,including such performance parameters as limits of detection and quantification,linear range,recovery and precision.The total potential dermal and inhalation exposures were 14.20,16.80,15.39 and 20.78 mL/hr,respectively,for the four operators in Liaocheng and Xinxiang,corresponding to 0.02% to 0.03% of the applied volume of spray solution.In all trials,the lower part (thigh,lower leg) of the body was the most contaminated,accounting for approximately 76% to 88% of the total exposure.The inhalation exposure was less than 1% of the total exposure.Such factors as the application pattern,crop type,spray equipment,operator experience and climatic conditions have been used to explain the exposure distribution over the different parts of the body.As indicated by the calculated Margin of Exposure,the typical wheat treatment scenarios when a backpack sprayer was used are considered to be safe in terms of imidacloprid exposure.

  6. Effect of repeated benzene inhalation exposures on benzene metabolism, binding to hemoglobin, and induction of micronuclei.

    Science.gov (United States)

    Sabourin, P J; Sun, J D; MacGregor, J T; Wehr, C M; Birnbaum, L S; Lucier, G; Henderson, R F

    1990-05-01

    Metabolism of benzene is thought to be necessary to produce the toxic effects, including carcinogenicity, associated with benzene exposure. To extrapolate from the results of rodent studies to potential health risks in man, one must know how benzene metabolism is affected by species, dose, dose rate, and repeated versus single exposures. The purpose of our studies was to determine the effect of repeated inhalation exposures on the metabolism of [14C]benzene by rodents. Benzene metabolism was assessed by characterizing and quantitating urinary metabolites, and by quantitating 14C bound to hemoglobin and micronuclei induction. F344/N rats and B6C3F1 mice were exposed, nose-only, to 600 ppm benzene or to air (control) for 6 hr/day, 5 days/week for 3 weeks. On the last day, both benzene-pretreated and control animals were exposed to 600 ppm, 14C-labeled benzene for 6 hr. Individual benzene metabolites in urine collected for 24 hr after the exposure were analyzed. There was a significant decrease in the respiratory rate of mice (but not rats) pretreated with benzene which resulted in lower levels of urinary [14C]benzene metabolites. The analyses indicated that the only effects of benzene pretreatment on the metabolite profile in rat or mouse urine were a slight shift from glucuronidation to sulfation in mice and a shift from sulfation to glucuronidation in rats. Benzene pretreatment also had no effect, in either species, on formation of [14C]benzene-derived hemoglobin adducts. Mice and rats had similar levels of hemoglobin adduct binding, despite the higher metabolism of benzene by mice. This indicates that hemoglobin adduct formation occurs with higher efficiency in rats. After 1 week of exposure to 600 ppm benzene, the frequency of micronucleated, polychromatic erythrocytes (PCEs) in mice was significantly increased. Exposure to the same level of benzene for an additional 2 weeks did not further increase the frequency of micronuclei in PCEs. These results indicate

  7. Determining Nanoparticle Inhalation Exposure in the Prosthetics Laboratory at Walter Reed National Military Medical Center

    Science.gov (United States)

    2013-04-29

    Introduction From historical times to the industrial revolution, human activities have generated dust, fume, smoke, mist , haze, and smog. All the...gears, fans , and blades. Recently, some new applications of carbon fibers have emerged in military application other than 5 aviation indeed

  8. Assessment of human exposure to airborne fungi in agricultural confinements: personal inhalable sampling versus stationary sampling.

    Science.gov (United States)

    Adhikari, Atin; Reponen, Tiina; Lee, Shu-An; Grinshpun, Sergey A

    2004-01-01

    Accurate exposure assessment to airborne fungi in agricultural environments is essential for estimating the associated occupational health hazards of workers. The objective of this pilot study was to compare personal and stationary sampling for assessing farmers' exposure to airborne fungi in 3 different agricultural confinements located in Ohio, USA (hog farm, dairy farm, and grain farm), using Button Personal Inhalable Samplers. Personal exposures were measured with samplers worn by 3 subjects (each carrying 2 samplers) during 3 types of activities, including animal feeding in the hog farm, cleaning and animal handling in the dairy farm, and soybean unloading and handling in the grain farm. Simultaneously, the stationary measurements were performed using 5 static Button Samplers and 1 revolving Button Sampler. The study showed that the total concentration of airborne fungi ranged from 1.4 x 10(4)-1.2 x 10(5) spores m(-3) in 3 confinements. Grain unloading and handling activity generated highest concentrations of airborne fungi compared to the other 2 activities. Prevalent airborne fungi belonged to Cladosporium, Aspergillus/Penicillium, Ascospores, smut spores, Epicoccum, Alternaria, and Basidiospores. Lower coefficients of variations were observed for the fungal concentrations measured by personal samplers (7-12%) compared to the concentrations measured by stationary samplers (27-37%). No statistically significant difference was observed between the stationary and personal measurement data for the total concentrations of airborne fungi (p > 0.05). Revolving stationary and static stationary Button Samplers demonstrated similar performance characteristics for the collection of airborne fungi. This reflects the low sensitivity of the sampler's efficiency to the wind speed and direction. The results indicate that personal exposure of agricultural workers in confinements may be adequately assessed by placing several Button Samplers simultaneously operating in a

  9. Pathways of inhalation exposure to manganese in children living near a ferromanganese refinery: A structural equation modeling approach.

    Science.gov (United States)

    Fulk, Florence; Succop, Paul; Hilbert, Timothy J; Beidler, Caroline; Brown, David; Reponen, Tiina; Haynes, Erin N

    2017-02-01

    Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation pathway model to ambient air Mn was hypothesized. Data for model evaluation were obtained from participants in the Communities Actively Researching Exposure Study (CARES). These data were collected in 2009 and included levels of Mn in residential soil and dust, levels of Mn in children's hair, information on the amount of time the child spent outside, heat and air conditioning in the home and level of parent education. Hair Mn concentration was the primary endogenous variable used to assess the theoretical inhalation exposure pathways. The model indicated that household dust Mn was a significant contributor to child hair Mn (0.37). Annual ambient air Mn concentration (0.26), time children spent outside (0.24) and soil Mn (0.24) significantly contributed to the amount of Mn in household dust. These results provide a potential framework for understanding the inhalation exposure pathway for children exposed to ambient air Mn who live in proximity to an industrial emission source.

  10. Updating Older Fume Hoods.

    Science.gov (United States)

    Saunders, G. Thomas

    1985-01-01

    Provides information on updating older fume hoods. Areas addressed include: (1) adjustment of the hood's back baffle; (2) hood air leakage; (3) light level; (4) hood location in relation to room traffic and room air; and (5) establishing and maintaining hood performance. (JN)

  11. Inhalation exposures to particulate matter and carbon monoxide during Ethiopian coffee ceremonies in Addis Ababa: a pilot study.

    Science.gov (United States)

    Keil, Chris; Kassa, Hailu; Brown, Alexander; Kumie, Abera; Tefera, Worku

    2010-01-01

    The unique Ethiopian cultural tradition of the coffee ceremony increases inhalation exposures to combustion byproducts. This pilot study evaluated exposures to particulate matter and carbon monoxide in ten Addis Ababa homes during coffee ceremonies. For coffee preparers the geometric mean (57 μg/m³) and median (72 μg/m³) contributions to an increase in a 24-hour time-weighted average exposure were above World Health Organization (WHO) guidelines. At 40% of the study sites the contribution to the 24-hour average exposure was greater than twice the WHO guideline. Similar exposure increases existed for ceremony participants. Particulate matter concentrations may be related to the use of incense during the ceremony. In nearly all homes the WHO guideline for a 60-minute exposure to carbon monoxide was exceeded. Finding control measures to reduce these exposures will be challenging due to the deeply engrained nature of this cultural practice and the lack of availability of alternative fuels.

  12. Human Exposure to Legacy and Emerging Halogenated Flame Retardants via Inhalation and Dust Ingestion in a Norwegian Cohort.

    Science.gov (United States)

    Tay, Joo Hui; Sellström, Ulla; Papadopoulou, Eleni; Padilla-Sánchez, Juan Antonio; Haug, Line Småstuen; de Wit, Cynthia A

    2017-07-18

    In this study, we estimated human exposure to polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDDs), and several emerging flame retardants (EFRs) via inhalation and dust ingestion. Sixty indoor stationary air samples, 13 personal air samples, and 60 settled dust samples were collected from a Norwegian cohort during winter 2013. PBDEs showed the highest median concentration in dust (1200 ng/g), followed by EFRs (730 ng/g) and HBCDDs (190 ng/g). The PBDE concentrations in dust were mainly driven by BDE-209 and those of EFRs by bis(2-ethylhexyl) tetrabromophthalate. EFRs predominated in stationary air samples, with 2-ethylhexyl 2,3,4,5-tetrabromobenzoate and 4-(1,2-dibromoethyl)-1,2-dibromocyclohexane having the highest median concentrations (150 and 25 pg/m(3) (sum of α- and β-isomers), respectively). Different profiles and concentrations were observed in personal air samples compared to the corresponding stationary air samples. In relation to inhalation exposure, dust ingestion appears to be the major exposure pathway to FRs (median total exposure 230 pg/kg bw/d, accounting for more than 65% of the total exposure) for the Norwegian cohort. The calculated exposure due to air inhalation was substantially lower when the stationary air concentrations were used rather than personal air concentrations (43 pg/kg bw/d versus 130 pg/kg bw/d). This suggests that other exposure situations (such as outdoors or in offices) contributed significantly to the overall personal exposure, which cannot be included by using only a stationary air sampling technique. The median and 95th percentile exposures for all target FRs did not exceed the reference dose.

  13. Polymorphisms in pre-miRNA genes and cooking oil fume exposure as well as their interaction on the risk of lung cancer in a Chinese nonsmoking female population.

    Science.gov (United States)

    Yin, Zhihua; Li, Hang; Cui, Zhigang; Ren, Yangwu; Li, Xuelian; Wu, Wei; Guan, Peng; Qian, Biyun; Rothman, Nathaniel; Lan, Qing; Zhou, Baosen

    2016-01-01

    MicroRNAs (miRNAs) are suggested to be very important in the development of lung cancer. This study assesses the association between polymorphisms in miRNA-related (miR)-26a-1, miR-605, and miR-16-1 genes and risk of lung cancer, as well as the effect of gene-environment interaction between miRNA polymorphisms and cooking fume exposure on lung cancer. A case-control study including 268 diagnosed nonsmoking female lung cancer patients and 266 nonsmoking female controls was carried out. Three miRNA polymorphisms (miR-26a-1 rs7372209, miR-605 rs2043556, and miR-16-1 rs1022960) were analyzed. Both additive and multiplicative interactions were assessed. MiR-16-1 rs1022960 may be associated with the risk of lung cancer. Carriers with TT genotype of miR-16-1 rs1022960 were observed to have a decreased risk of lung cancer compared with CC and CT genotype carriers (odds ratio =0.550, 95% confidence interval =0.308-0.983, P=0.044). MiR-26a-1 rs7372209 and miR-605 rs2043556 showed no statistically significant associations with lung cancer risk. There were no significant associations between the three single nucleotide polymorphisms and lung adenocarcinoma. People with exposure to both risk genotypes of miR-26a-1 rs7372209 and cooking oil fumes were more likely to develop lung cancer than those with only genetic risk factor or cooking oil fumes (odds ratios were 2.136, 1.255, and 1.730, respectively). The measures of biological interaction and logistic models indicate that gene-environment interactions were not statistically significant on additive scale or multiplicative scale. MiR-16-1 rs1022960 may be associated with the risk of lung cancer in a Chinese nonsmoking female population. The interactions between miRNA polymorphisms (miR-26a-1 rs7372209, miR-605 rs2043556, and miR-16-1 rs1022960) and cooking oil fumes were not statistically significant.

  14. Inhalation exposure to chloramine T induces DNA damage and inflammation in lung of Sprague-Dawley rats.

    Science.gov (United States)

    Shim, Ilseob; Seo, Gyun-Baek; Oh, Eunha; Lee, Mimi; Kwon, Jung-Taek; Sul, Donggeun; Lee, Byung-Woo; Yoon, Byung-Il; Kim, Pilje; Choi, Kyunghee; Kim, Hyun-Mi

    2013-01-01

    Chloramine T has been widely used as a disinfectant in many areas such as kitchens, laboratories and hospitals. It has been also used as a biocide in air fresheners and deodorants which are consumer products; however, little is known about its toxic effects by inhalation route. This study was performed to identify the subacute inhalation toxicity of chloramine T under whole-body inhalation exposure conditions. Male and female groups of rats were exposed to chloramine T at concentrations of 0.2, 0.9 and 4.0 mg/m³ for 6 hr/day, 5 days/week during 4 weeks. After 28-day repeated inhalation of chloramine T, there were dose-dependently significant DNA damage in the rat tissues evaluated and inflammation was histopathologically noted around the terminal airways of the lung in both genders. As a result of the expression of three types of antioxidant enzymes (SOD-2, GPx-1, PRX-1) in rat's lung after exposure, there was no significant change of all antioxidant enzymes in the male and female rats. The results showed that no observed adverse effect level (NOAEL) was 0.2 mg/m³ in male rats and 0.9 mg/m³ in female rats under the present experimental condition.

  15. Lung cancer risk from exposure to alpha particles and inhalation of other pollutants in rats

    Energy Technology Data Exchange (ETDEWEB)

    Burns, F.J.

    1990-01-01

    The goal of these experiments is to establish a quantitative correlation between early DNA damage and cancer incidence in a way that would be helpful for assessing the carcinogenic risk of radon alone or in combination with specific indoor pollutants. Rat tracheal epithelium has been exposed in vivo to {sup 210}Po alpha particles in the presence and absence of NO{sub 2} or cigarette smoke. The major accomplishments so far are: the design and implementation of a tracheal implant to simulate radon alpha particle exposure, the measurement of DNA breaks in a small 7.0 mm segment of the trachea exposed to external x-irradiation, the measurement of the rate of repair of the x-ray induced tracheal DNA strand breaks, the measurement of DNA strand breaks following inhalation of cigarette smoke or NO{sub 2}, the measurement of tracheal DNA stand breaks following exposure to high doses {sup 210}Po alpha particle radiation, the assessment of the amount of mucous in the goblet cells and in the underlying mucous glands. So far we have been unable to detect DNA strand breaks in the tracheal epithelium as a result of exposure to NO{sub 2} cigarette smoke or {sup 210}Po alpha particles. We have developed a simple artificial' trachea consisting of rat tracheal epithelial cells growing on a basement membrane coated millipore filter. Experiments are proposed to utilize these artificial tracheas to eliminate the potential interference of increased mucous secretion and/or inflammation that can significantly affect the radiation dose from the alpha particles. 61 refs., 17 figs.

  16. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    Science.gov (United States)

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Anatomical indications of fume resistance in certain woody plants

    Energy Technology Data Exchange (ETDEWEB)

    Ninova, D.

    1970-01-01

    An attempt is made to describe studies on seven species of fruit and forest trees close to or far from a Bulgarian factory emitting fumes containing S. The most resistant species (Quercus borealis, Gleditsia triacanthos, Morus alba) had the smallest stomata and the greatest number of stomata per unit leaf area. Changes observed in leaf anatomy as a result of exposure to the fumes were: decreased leaf aeration, elongated palisade cells, thicker cuticles, and more stomata.

  18. Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain

    Energy Technology Data Exchange (ETDEWEB)

    Berlo, Damien van; Albrecht, Catrin; Krutmann, Jean; Schins, Roel P.F. [Institut fuer Umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universitaet Duesseldorf GmbH, Duesseldorf (Germany); Knaapen, Ad M.; Schooten, Frederik-Jan van [Maastricht University, Department of Health Risk Analysis and Toxicology, Maastricht (Netherlands); Cassee, Flemming R.; Gerlofs-Nijland, Miriam E.; Kooter, Ingeborg M. [National Institute for Public Health and the Environment (RIVM), Centre for Environmental Health, Bilthoven (Netherlands); Palomero-Gallagher, Nicola [Research Center Juelich, Institute of Neurosciences and Medicine (INM-2), Juelich (Germany); Bidmon, Hans-Juergen [Heinrich-Heine-University, C and O Vogt Institute for Brain Research, Duesseldorf (Germany)

    2010-07-15

    Combustion-derived nanoparticles, such as diesel engine exhaust particles, have been implicated in the adverse health effects of particulate air pollution. Recent studies suggest that inhaled nanoparticles may also reach and/or affect the brain. The aim of our study was to comparatively evaluate the effects of short-term diesel engine exhaust (DEE) inhalation exposure on rat brain and lung. After 4 or 18 h recovery from a 2 h nose-only exposure to DEE (1.9 mg/m{sup 3}), the mRNA expressions of heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and cytochrome P450 1A1 (CYP1A1) were investigated in lung as well as in pituitary gland, hypothalamus, olfactory bulb, olfactory tubercles, cerebral cortex, and cerebellum. HO-1 protein expression in brain was investigated by immunohistochemistry and ELISA. In the lung, 4 h post-exposure, CYP1A1 and iNOS mRNA levels were increased, while 18 h post-exposure HO-1 was increased. In the pituitary at 4 h post-exposure, both CYP1A1 and HO-1 were increased; HO-1 was also elevated in the olfactory tuberculum at this time point. At 18 h post-exposure, increased expression of HO-1 and COX-2 was observed in cerebral cortex and cerebellum, respectively. Induction of HO-1 protein was not observed after DEE exposure. Bronchoalveolar lavage analysis of inflammatory cell influx, TNF-{alpha}, and IL-6 indicated that the mRNA expression changes occurred in the absence of lung inflammation. Our study shows that a single, short-term inhalation exposure to DEE triggers region-specific gene expression changes in rat brain to an extent comparable to those observed in the lung. (orig.)

  19. Fractional Exhaled Nitric Oxide (FeNO) and Spirometry as Indicators of Inhalation Exposure to Chemical Agents in Pathology Workers.

    Science.gov (United States)

    Suzuki, Ritsuko Arakawa; Irokawa, Toshiya; Ogawa, Hiromasa; Ohkouchi, Shinya; Tabata, Masao; Togashi, Susumu; Nakamura, Takeshi; Ohisa, Noriko; Nikkuni, Etsuhiro; Miura, Emiri; Yoshida, Kaoru; Inomata, Hiroshi; Kurosawa, Hajime

    2017-05-01

    The objective of this study was to examine whether fractional exhaled nitric oxide (FeNO) and spirometry can be used as indices to evaluate adverse health effects of low-concentrated chemical inhalation exposure, mainly to formaldehyde. Thirty-three subjects (pathology technicians) and 30 controls (workers without handling any chemicals in the same hospitals) participated in this study. All participants underwent FeNO measurement and spirometry before and after 5 days of work. FeNO significantly increased in the subjects with a history of asthma (P < 0.05), whereas forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1) decreased in the subjects (P < 0.05). Furthermore, work duration and pre-work levels of FEV1 in the subjects had a significant association. The results suggest that FeNO, FVC, and FEV1 represent effective health-effect indices of low-concentrated chemical inhalation exposure.

  20. Job categories and their effect on exposure to fungal alpha-amylase and inhalable dust in the U.K. baking industry.

    Science.gov (United States)

    Elms, Joanne; Beckett, Paul; Griffin, Peter; Evans, Paul; Sams, Craig; Roff, Martin; Curran, Andrew D

    2003-01-01

    Enzymes in flour improver, in particular fungal alpha-amylase, are known to be a significant cause of respiratory allergy in the baking industry. This study measured total inhalable dust and fungal alpha-amylase exposures in U.K. bakeries, mills, and a flour improver production and packing facility and determined whether assignment of job description could identify individuals with the highest exposures to fungal alpha-amylase and inhalable dust. A total of 117 personal samples were taken for workers in 19 bakeries, 2 mills, and a flour improver production and packing facility and were analyzed using a monoclonal based immunoassay. Occupational hygiene surveys were undertaken for each site to assign job description and identify individuals who worked directly with flour improvers. Analysis of exposure data identified that mixers and weighers from large bakeries had the highest exposures to both inhalable dust and fungal alpha-amylase among the different categories of bakery workers (p<.01). Currently, the maximum exposure limit for flour dust in the United Kingdom is 10 mg/m(3) (8-hour time-weighted average reference period). In this study 25% of the total dust results for bakers exceeded 10 mg/m(3), and interestingly, 63% of the individuals with exposure levels exceeding 10 mg/m(3) were weighers and mixers. Individuals who worked directly with flour improvers were exposed to higher levels of both inhalable dust and fungal alpha-amylase (p<.01) than those who were not directly handling these products. Before sensitive immunoassays were utilized for the detection of specific inhalable allergens, gravimetric analysis was often used as a surrogate. There was a weak relationship between inhalable dust and fungal alpha-amylase exposures; however, inhalable dust levels could not be used to predict amylase exposures, which highlights the importance of measuring both inhalable dust and fungal alpha-amylase exposures.

  1. Methemoglobinemia secondary to automobile exhaust fumes

    Energy Technology Data Exchange (ETDEWEB)

    Laney, R.F.; Hoffman, R.S. (Department of Emergency Medicine, Morristown Memorial Hospital, NJ (United States))

    1992-09-01

    Methemoglobinemia is an uncommon cause of cyanosis. A 28-year-old male presented to the emergency department cyanotic and short of breath after exposure to noxious automobile fumes. He did not improve with the administration of 100% oxygen therapy. The initial arterial blood gas with cooximetry was: pH of 7.38, PaCO2 of 43 mm Hg, PaO2 of 118 mm Hg, measured oxygen saturation of 70%, and a methemoglobin level of 24.8%. Methylene blue was given (2 mg/kg intravenously) and the patient's symptoms resolved. On the following day he was discharged home without complication. A comprehensive review of the literature revealed no reported cases of methemoglobinemia secondary to accidental exposure to exhaust fumes.17 references.

  2. Personal inhalation exposure to polycyclic aromatic hydrocarbons and their nitro-derivatives in rural residents in northern Thailand.

    Science.gov (United States)

    Orakij, Walaiporn; Chetiyanukornkul, Thaneeya; Chuesaard, Thanyarat; Kaganoi, Yuichi; Uozaki, Waka; Homma, Chiharu; Boongla, Yaowatat; Tang, Ning; Hayakawa, Kazuichi; Toriba, Akira

    2017-09-18

    A personal inhalation exposure and cancer risk assessment of rural residents in Lampang, Thailand, was conducted for the first time. This highlighted important factors that may be associated with the highest areal incidence of lung cancer. Personal exposure of rural residents to polycyclic aromatic hydrocarbons (PAHs) and their nitro-derivatives (NPAHs) through inhalation of fine particulate matter (PM2.5) was investigated in addition to stationary air sampling in an urban area. The personal exposure of the subjects to PM2.5 ranged from 44.4 to 316 μg/m(3), and the concentrations of PAHs (4.2-224 ng/m(3)) and NPAHs (120-1449 pg/m(3)) were higher than those at the urban site, indicating that personal exposure was affected by microenvironments through individual activities. The smoking behaviors of the rural residents barely affected their exposure to PAHs and NPAHs compared to other sources. The most important factor concerning the exposure of rural populations to PAHs was cooking activity, especially the use of charcoal open fires. The emission sources for rural residents and urban air were evaluated using diagnostic ratios, 1-nitropyrene/pyrene, and benzo[a]pyrene/benzo[ghi]perylene. Their analyses showed a significant contribution to emission from residents' personal activities in addition to the atmospheric environment. Furthermore, the personal inhalation cancer risks for all rural subjects exceeded the USEPA guideline value, suggesting that the residents have a potentially increased cancer risk. The use of open fires showed the highest cancer risk. A reduction in exposure to air pollutants for the residents could potentially be achieved by using clean fuel such as liquid petroleum gas or electricity for daily cooking.

  3. Consumer inhalation exposure to formaldehyde from the use of personal care products/cosmetics.

    Science.gov (United States)

    Lefebvre, Marc-André; Meuling, Wim J A; Engel, Roel; Coroama, Manuela C; Renner, Gerald; Pape, Wolfgang; Nohynek, Gerhard J

    2012-06-01

    We measured consumer exposure to formaldehyde (FA) from personal care products (PCP) containing FA-releasing preservatives. Six study subjects applied facial moisturiser, foundation, shower gel, shampoo, deodorant, hair conditioner, hair styling gel or body lotion at the 90th percentile amount of EU PCP consumer use. FA air concentrations were measured in the empty room, in the presence of study subjects prior to PCP use, and for one hour (breathing zone, area monitoring) after PCP use. The mean FA air concentration in the empty bathroom was 1.32 ± 0.67 μg/m³, in the presence of subjects it was 2.33 ± 0.86 μg/m³). Except for body lotion and hair conditioner (6.2 ± 0.1.9 or 4.5 ± 0.1.5 μg/m³, respectively), mean 1-h FA air concentrations after PCP use were similar to background. Peak FA air concentrations, ranging from baseline values (2.2 μg/m³; shower gel) to 11.5 μg/m³ (body lotion), occurred during 0-5 to 5-10 min after PCP use. Despite of exaggerated exposure conditions, FA air levels were a fraction of those considered to be safe (120 μg/m³), occurring in indoor air (22-124 μg/m³) or expired human breath (1.4-87 μg/m³). Overall, our data yielded evidence that inhalation of FA from the use of PCP containing FA-releasers poses no risk to human health.

  4. Effects of subchronic inhalation exposure to ethyl tertiary butyl ether on splenocytes in mice.

    Science.gov (United States)

    Li, Q; Kobayashi, M; Inagaki, H; Hirata, Y; Hirata, K; Shimizu, T; Wang, R-S; Suda, M; Kawamoto, T; Nakajima, T; Kawada, T

    2011-01-01

    Ethyl tertiary-butyl ether (ETBE) is a motor fuel oxygenate used in reformulated gasoline. The current use of ETBE in gasoline or petrol is modest but increasing. To investigate the effects of ETBE on splenocytes, mice were exposed to 0 (control), 500 ppm, 1750 ppm, or 5000 ppm of ETBE by inhalation for 6 h/day for 5 days/wk over a 6- or 13-week period. Splenocytes were harvested from the control and exposed mice, and the following cell phenotypes were quantified by flow cytometry: (1) B cells (PerCP-Cy5.5-CD45R/B220), (2) T cells (PerCP-Cy5-CD3e), (3) T cell subsets (FITC-CD4 and PE-CD8a), (4) natural killer (NK) cells (PE-NK1.1), and (5) macrophages (FITC-CD11b). Body weight and the weight of the spleen were also examined. ETBE-exposure did not affect the weight of the spleen or body weight, while it transiently increased the number of RBC and the Hb concentration. The numbers of splenic CD3+, CD4+, and CD8+ T cells, the percentage of CD4+ T cells and the CD4+/CD8+ T cell ratio in the ETBE-exposed groups were significantly decreased in a dose-dependent manner. However, ETBE exposure did not affect the numbers of splenic NK cells, B cells, or macrophages or the total number of splenocytes. The above findings indicate that ETBE selectively affects the number of splenic T cells in mice.

  5. Effective dose scaling factors for use with cascade impactor sampling data in tenorm inhalation exposures.

    Science.gov (United States)

    Kim, Kwang Pyo; Wu, Chang-Yu; Birky, Brian K; Bolch, Wesley E

    2005-10-01

    When assessing the effective dose to workers following radio-aerosol inhalation exposures, significant reductions in dose uncertainty can be achieved through direct measurement of the particle-size distribution. The University of Washington Mark III cascade impactor is one such air sampling device that permits the user to determine aerosol mass and radioactivity concentrations as a function of particle size within eight different size intervals (each corresponding to a different impactor stage or end filter). Traditionally, dose assessments made using the LUDEP code or other internal dosimetry software utilize this air sampling information by assigning the radioactivity measured at each stage as concentrated at a single representative size central to the size interval. In this study, we explore more realistic assumptions that the measured radioactivity distributes uniformly, linearly increases, or linearly decreases across the particle size interval for each impactor stage. The concept of an effective dose scaling factor, SF(E), is thus introduced whereby (1) the former approach can be used (which requires less computational effort using the LUDEP code), and (2) the resulting values of effective dose per stage can then be rescaled to values appropriate to a linear radioactivity distribution per stage. For a majority of (238)U-series radionuclides, particle size ranges, and absorption classes, differences in these two approaches are less than 10%, and thus no corrections in effective dose per particle stage are needed. Significant corrections, however, were noted in select cases. For uniform or linearly decreasing radioactivity distributions, end-filter particles (0.03 to 0.35 microm) of type F, M, or S radionuclides were assigned values of SF(E) ranging from 1.15 to 1.44, while 3(rd) stage particles (4.5 to 12 microm) of type M and S radionuclides were assigned values of SF(E) ranging from 1.11 to 1.53. When the cascade impactor measurements indicate a linear

  6. Studies on the prenatal toxicity of toluene in rabbits following inhalation exposure and proposal of a pregnancy guidance value

    Energy Technology Data Exchange (ETDEWEB)

    Klimisch, H.J.; Hellwig, J. (BASF AG, Ludwigshafen am Rhein (Germany). Abt. fuer Toxikologie); Hofmann, A. (Merck (E.), Darmstadt (Germany). Inst. fuer Toxikologie)

    1992-07-01

    Prenatal toxicity of toluene was determined in two separate studies by inhalation exposure of Himalayan rabbits. In the first study 15 artificially inseminated females per group were exposed to 30, 100, or 300 ppm and in the second study 20 artificially inseminated females per group inhaled 100 or 500 ppm. In each case the rabbits were exposed for 6 hours per day from day 6 post-insemination (p.i.) to day 18 p.i. The respective controls inhaled conditioned clean air under the same exposure conditions. No signs of maternal toxicity were observed. All data obtained on gestational parameters were found to be within the variation range reported for this rabbit strain. The fetal external, soft tissue and skeletal findings, were seen in toluene exposed fetuses in a frequency similar to the corresponding and/or historical controls. Differences observed between the groups were not concentration dependent and were considered incidental rather than compound related. Therefore, toluene was not embryotoxic, fetotoxic, or teratogenic for rabbits exposed during the period of organogenesis. The highest concentration tested under these conditions (500 ppm) was found to be a no-observable-adverse-effect level (NOAEL) for both the adult and the fetal Himalayan rabbit. Based on these and previous results of animal studies of prenatal toxicity, a safety or uncertainty factor approach is considered for setting limits of exposure for women at workplaces. A pregnancy guidance value of 20 ppm is proposed. (orig.).

  7. Analysis of intervention strategies for inhalation exposure to polycyclic aromatic hydrocarbons and associated lung cancer risk based on a Monte Carlo population exposure assessment model.

    Directory of Open Access Journals (Sweden)

    Bin Zhou

    Full Text Available It is difficult to evaluate and compare interventions for reducing exposure to air pollutants, including polycyclic aromatic hydrocarbons (PAHs, a widely found air pollutant in both indoor and outdoor air. This study presents the first application of the Monte Carlo population exposure assessment model to quantify the effects of different intervention strategies on inhalation exposure to PAHs and the associated lung cancer risk. The method was applied to the population in Beijing, China, in the year 2006. Several intervention strategies were designed and studied, including atmospheric cleaning, smoking prohibition indoors, use of clean fuel for cooking, enhancing ventilation while cooking and use of indoor cleaners. Their performances were quantified by population attributable fraction (PAF and potential impact fraction (PIF of lung cancer risk, and the changes in indoor PAH concentrations and annual inhalation doses were also calculated and compared. The results showed that atmospheric cleaning and use of indoor cleaners were the two most effective interventions. The sensitivity analysis showed that several input parameters had major influence on the modeled PAH inhalation exposure and the rankings of different interventions. The ranking was reasonably robust for the remaining majority of parameters. The method itself can be extended to other pollutants and in different places. It enables the quantitative comparison of different intervention strategies and would benefit intervention design and relevant policy making.

  8. EVALUATION OF LEAKAGE FROM FUME HOODS USING TRACER GAS, TRACER NANOPARTICLES AND NANOPOWDER HANDLING TEST METHODOLOGIES

    OpenAIRE

    Dunn, Kevin H.; Tsai, Candace Su-Jung; Woskie, Susan R.; Bennett, James S.; Garcia, Alberto; Ellenbecker, Michael J.

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tr...

  9. Historical exposure levels of inhalable dust in the Polish rubber industry compared to levels in Western Europe

    Science.gov (United States)

    de Vocht, F.; Kromhout, H.; Sobala, W.; Peplonska, B.

    2009-02-01

    Although studies have been carried out to assess inhalable dust exposure levels in the rubber manufacturing industry, the levels of exposure in factories in Eastern Europe are less well documented. Routine stationary sampling for compliance testing of inhalable aerosols has however been conducted in a large factory producing tires and tubes in Poland between 1981 and 1996 (N=6,152). This study was conducted to assess historical inhalable aerosol levels in different departments in this rubber plant and to compare the results with estimates based on European data from the UK, Sweden, the Netherlands and Germany, and also Poland (EXASRUB project). Geometric mean (GM) concentrations in the factory ranged from 2.41 mg/m3 to 5.82 mg/m3 and were to a large extent associated to the actual production capacity of the plant and flow of the production process. Whereas 3-4 fold differences between departments existed prior to about 1985, stronger reduction of exposure in the raw materials and finishing departments (-12%/year) compared to other departments (range -5%/yr to -3%/yr), resulted in comparable levels in the 1990s. However, in the pre-treating departments, average concentrations were still about a factor 2-3 higher than in other departments, which could presumably be attributed to the use of anti-tacking agents. GM concentrations have been modelled using (1) stationary measurements collected in the Polish factory only, or (2) all European data collected in the EXASRUB project. Comparison of the estimates showed that these were fairly similar for both datasets. This analysis showed that the levels of inhalable aerosols in the Polish rubber industry have been at least a factor three to four higher than in Western European countries in the 1980s and 1990s, depending on the department, but that these differences were getting smaller in the 1990s. Furthermore, the estimates based on all European data from EXASRUB provides valid estimates compared to factory-specific data.

  10. Polymorphisms in pre-miRNA genes and cooking oil fume exposure as well as their interaction on the risk of lung cancer in a Chinese nonsmoking female population

    Directory of Open Access Journals (Sweden)

    Yin Z

    2016-01-01

    Full Text Available Zhihua Yin,1,2 Hang Li,1,2 Zhigang Cui,3 Yangwu Ren,1,2 Xuelian Li,1,2 Wei Wu,1,2 Peng Guan,1,2 Biyun Qian,4 Nathaniel Rothman,5 Qing Lan,5 Baosen Zhou1,2 1Department of Epidemiology, School of Public Health, China Medical University, 2Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, 3China Medical University, Shenyang, 4Department of Epidemiology, School of Public Health, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA Background: MicroRNAs (miRNAs are suggested to be very important in the development of lung cancer. This study assesses the association between polymorphisms in miRNA-related (miR-26a-1, miR-605, and miR-16-1 genes and risk of lung cancer, as well as the effect of gene–environment interaction between miRNA polymorphisms and cooking fume exposure on lung cancer. Methods: A case–control study including 268 diagnosed nonsmoking female lung cancer patients and 266 nonsmoking female controls was carried out. Three miRNA polymorphisms (miR-26a-1 rs7372209, miR-605 rs2043556, and miR-16-1 rs1022960 were analyzed. Both additive and multiplicative interactions were assessed. Results: MiR-16-1 rs1022960 may be associated with the risk of lung cancer. Carriers with TT genotype of miR-16-1 rs1022960 were observed to have a decreased risk of lung cancer compared with CC and CT genotype carriers (odds ratio =0.550, 95% confidence interval =0.308–0.983, P=0.044. MiR-26a-1 rs7372209 and miR-605 rs2043556 showed no statistically significant associations with lung cancer risk. There were no significant associations between the three single nucleotide polymorphisms and lung adenocarcinoma. People with exposure to both risk genotypes of miR-26a-1 rs7372209 and cooking oil fumes were more likely to develop lung cancer than those with only genetic risk factor or cooking oil fumes (odds ratios

  11. Urinary β2 Microglobulin in Workers Exposed to Arc Welding Fumes

    Directory of Open Access Journals (Sweden)

    Khosro Sadeghniiat-Haghighi

    2011-11-01

    Full Text Available Welding is a process in which two or more metals are attached by the use of heat and, in some cases, pressure. Direct exposure and inhalation of welding fumes causes acute and chronic side effects in humans. Kidney damage is one of these important side effects. β2 microglobulin is an 11.8 kilodalton protein and levels increase in the case of some inflammatory and viral diseases, or kidney malfunction and autoimmune diseases. In this study measurements of β2 microglobulin were used as a criterion for assessing effects on the kidneys of workers exposed to welding fumes. The study population were electric arc welders in an industrial plant in Tehran, Iran. For control we selected workers who did not have any exposure to welding fumes. Both groups were selected on the basis of a questionnaire and the consideration of criteria for inclusion and exclusion. In the end 50 cases and 50 controls were chosen. A urine sample was collected from all participants and urinary pH was set to between 6-8 using NaOH (1M. Sample transportation to the laboratory complied with the related standards. The samples were assessed using the ORG 5BM kit. For quantitative assessment of β2 microglobulin we used the Enzyme-linked Immunosorbent Assay (ELISA method. The ages of the welders ranged from 21 to 48 years (mean=30.5±5.9 yrs and of controls from 23 to 56 years (mean=31.8±5.9 yrs. Mean employment duration was 7.86±5.01years (range 2 to 27 years for welders. Mean β2 microglobulin level was 0.10±0.096 μg/ml in welders and 0.11±0.06 in controls. This difference was not statistically significant (P=0.381. In conclusion we don't find that exposure to electric arc welding fumes cause a significant change in urinary β2 microglobulin compared to the control group.

  12. Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: Effects on liver DNA strand breaks in dams and offspring

    DEFF Research Database (Denmark)

    Jackson, Petra; Hougaard, Karin Sørig; Boisen, Anne Mette Zenner

    2011-01-01

    Effects of maternal pulmonary exposure to carbon black (Printex 90) on gestation, lactation and DNA strand breaks were evaluated. Time-mated C57BL/6BomTac mice were exposed by inhalation to 42 mg/m3 Printex 90 for 1 h/day on gestation days (GD) 8–18, or by four intratracheal instillations on GD 7...... cells and liver, and in offspring liver. Persistent lung inflammation was observed in exposed mothers. Inhalation exposure induced more DNA strand breaks in the liver of mothers and their offspring, whereas intratracheal instillation did not. Neither inhalation nor instillation affected gestation...... and lactation. Maternal inhalation exposure to Printex 90-induced liver DNA damage in the mothers and the in utero exposed offspring....

  13. Dominant lethal study in CD-1 mice following inhalation exposure to 1,3-butadiene: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, P.L.; Mast, T.J.; Brown, M.G.; Clark, M.L.; Evanoff, J.J.; Rowe, S.E.; McClanahan, B.J.; Buschbom, R.L.; Decker, J.R.; Rommereim, R.L.; Westerberg, R.B.

    1988-04-01

    The effects of whole-body inhalation exposures to 1,3-butadiene on the reproductive system was evaluated. The results of dominant lethality in CD-1 male mice that were exposed to 1,3-butadiene are described. Subsequent to exposure, males were mated with two unexposed females. Mating was continued for 8 weeks with replacement of two females each week. Gravid uteri were removed, and the total number, position and status of implantations were determined. The mice were weighed prior to exposure and at 0, 1, 2, 3, 4, 5, 6, 7, and 8 weeks after exposure and at sacrifice. The animals were observed for mortality, morbidity and signs of toxicity throughout the study. 19 refs., 5 figs., 9 tabs.

  14. Pulmonary cellular effects in rats following aerosol exposures to ultrafine Kevlar aramid fibrils: evidence for biodegradability of inhaled fibrils.

    Science.gov (United States)

    Warheit, D B; Kellar, K A; Hartsky, M A

    1992-10-01

    Previous chronic inhalation studies have shown that high concentrations of Kevlar fibrils produced fibrosis and cystic keratinizing tumors in rats following 2-year inhalation exposures. The current studies were undertaken to evaluate mechanisms and to assess the toxicity of inhaled Kevlar fibrils relative to other reference materials. Rats were exposed to ultrafine Kevlar fibers (fibrils) for 3 or 5 days at concentrations ranging from 600-1300 fibers/cc (gravimetric concentrations ranging from 2-13 mg/m3). A complete characterization of the fiber aerosol and dose was carried out. These measurements included gravimetric concentrations, mass median aerodynamic diameter, fiber number, and count median lengths and diameters of the aerosol. Following exposures, cells and fluids from groups of sham- and fiber-exposed animals were recovered by bronchoalveolar lavage (BAL). Alkaline phosphatase, lactate dehydrogenase (LDH), protein, and N-acetyl glucosaminidase (NAG) values were measured in BAL fluids at several time points postexposure. Alveolar macrophages were cultured and studied for morphology, chemotaxis, and phagocytosis by scanning electron microscopy. The lungs of additional exposed animals were processed for deposition, cell labeling, retained dose, and lung clearance studies, as well as fiber dimensions (from digested lung tissue), histopathology, and transmission electron microscopy. Five-day exposures to Kevlar fibrils elicited a transient granulocytic inflammatory response with concomitant increases in BAL fluid levels of alkaline phosphatase, NAG, LDH, and protein. Unlike the data from silica and asbestos exposures where inflammation persisted, biochemical parameters returned to control levels at time intervals between 1 week and 1 month postexposure. Macrophage function in Kevlar-exposed alveolar macrophages was not significantly different from sham controls at any time period. Cell labeling studies were carried out immediately after exposure, as well as 1

  15. A probabilistic modeling approach to assess human inhalation exposure risks to airborne aflatoxin B 1 (AFB 1)

    Science.gov (United States)

    Liao, Chung-Min; Chen, Szu-Chieh

    To assess how the human lung exposure to airborne aflatoxin B 1 (AFB 1) during on-farm activities including swine feeding, storage bin cleaning, corn harvest, and grain elevator loading/unloading, we present a probabilistic risk model, appraised with empirical data. The model integrates probabilistic exposure profiles from a compartmental lung model with the reconstructed dose-response relationships based on an empirical three-parameter Hill equation model, describing AFB 1 cytotoxicity for inhibition response in human bronchial epithelial cells, to quantitatively estimate the inhalation exposure risks. The risk assessment results implicate that exposure to airborne AFB 1 may pose no significance to corn harvest and grain elevator loading/unloading activities, yet a relatively high risk for swine feeding and storage bin cleaning. Applying a joint probability function method based on exceedence profiles, we estimate that a potential high risk for the bronchial region (inhibition=56.69% with 95% confidence interval (CI): 35.05-72.87%) and bronchiolar region (inhibition=44.93% with 95% CI: 21.61 - 66.78%) is alarming during swine feeding activity. We parameterized the proposed predictive model that should encourage a risk-management framework for discussion of carcinogenic risk in occupational settings where inhalation of AFB 1-contaminated dust occurs.

  16. Chronic inhalation studies of man-made vitreous fibres: characterization of fibres in the exposure aerosol and lungs.

    Science.gov (United States)

    Hesterberg, T W; Miiller, W C; Thevenaz, P; Anderson, R

    1995-10-01

    Inhalation studies were conducted to determine the chronic biological effects in rodents of respirable fractions of different man-made vitreous fibres (MMVFs), including refractory ceramic fibre (RCF), fibrous glass, rock (stone) wool and slag wool. Animals were exposed nose-only, 6 h per day, 5 days per week, for 18 months (hamsters) or 24 months (rats). Exposure to 10 mg m-3 of crocidolite or chrysotile asbestos induced pulmonary fibrosis, lung tumours and mesothelioma in rats, thus validating the inhalation model with known human carcinogenic fibres. Exposure of rats to 30 mg m-3 of refractory ceramic fibres (RCF) also resulted in pulmonary fibrosis as well as significant increases in lung tumours and mesothelioma. In hamsters, 30 mg m-3 of RCF induced a 41% incidence of mesotheliomas. Exposure of rats to 30 mg m-3 of fibre glasses (MMVF 10 or 11) or of slag wool (MMVF 22) was associated with an inflammatory response, but no mesotheliomas or significant increase in the lung tumours were observed. Rock wool (stone wool: MMVF 21) at the same exposure level resulted in minimal lung fibrosis, but no mesotheliomas or significant increase in the lung tumours were observed. Fibre numbers (WHO fibres) and dimensions in the aerosols and lungs of exposed animals were comparable in this series of inhalation studies. Differences in lung fibre burdens and lung clearance rates could not explain the differences observed in the toxicologic effects of the MMVFs. These findings indicate that dose, dimension and durability may not be the only determinants of fibre toxicity. Chemical composition and the surface physico-chemical properties of the fibres may also play an important role.

  17. Fumes from shotfiring

    Energy Technology Data Exchange (ETDEWEB)

    Carbonel, P.; Bigourd, J.; Dangreaux, J.

    1980-07-01

    Fumes arising from shotfiring explosives contain a variety of toxic substances depending on the type of explosive used. CERCHAR is studying several test methods for assessing the amounts of these toxic gases. The test conditions, which are varied systematically, have a large effect on the amount of gas produced by a given explosive. Describes 115 l bomb tests and tests in a chamber (15 m3). Presents a comparison with real shotfiring operations underground. The tests in the 15 m3 chamber gave results which were very close to operating practice. (In French)

  18. Decreasing biotoxicity of fume particles produced in welding process.

    Science.gov (United States)

    Yu, Kuei-Min; Topham, Nathan; Wang, Jun; Kalivoda, Mark; Tseng, Yiider; Wu, Chang-Yu; Lee, Wen-Jhy; Cho, Kuk

    2011-01-30

    Welding fumes contain heavy metals, such as chromium, manganese, and nickel, which cause respiratory diseases and cancer. In this study, a SiO(2) precursor was evaluated as an additive to the shielding gas in an arc welding process to reduce the biotoxicity caused by welding fume particles. Transmission electron micrographic images show that SiO(2) coats on the surface of welding fume particles and promotes particle agglomeration. Energy dispersive X-ray spectroscopy further shows that the relative amount of silicon in these SiO(2)-coated agglomerates is higher than in baseline agglomerates. In addition, Escherichia coli (E. coli) exposed to different concentrations of pure SiO(2) particles generated from the arc welding process exhibits similar responses, suggesting that SiO(2) does not contribute to welding fume particle toxicity. The trend of E. coli growth in different concentrations of baseline welding fume particle shows the most significant inhibition occurs in higher exposure concentrations. The 50% lethal logarithmic concentrations for E. coli in arc welding particles of baseline, 2%, and 4.2% SiO(2) precursor additives were 823, 1605, and 1800 mg/L, respectively. Taken together, these results suggest that using SiO(2) precursors as an additive to arc welding shielding gas can effectively reduce the biotoxicity of welding fume.

  19. Effects of combined exposure of F344 rats to radiation and chronically inhaled cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Finch, G.L.; Nikula, K.J.; Barr, E.B. [and others

    1995-12-01

    Nuclear workers may be exposed to radiation in various forms, such as low-LET {gamma}-irradiation or {alpha}-irradiation from inhaled {sup 239}PuO{sub 2} particles. These workers may then have increased risk for lung cancer compared to the general population. Of additional concern is the possibility that interactions between radiation and other carcinogens may increase the risk of cancer induction, compared to the risks from either type of agent alone. An important and common lung carcinogen is cigarette smoke. The purpose of this project is to better determine the combined effects of chronically inhaled cigarette smoke and either inhaled {sup 239}PuO{sub 2} or external, thoracic X-irradiation on the induction of lung cancer in rats. Histologic and dosimetric evaluations of rats in the CS + {sup 239}PuO{sub 2} study continue, and the study of CS + X rays is beginning.

  20. Radiation exposure and risk estimates for inhaled airborne radioactive pollutants including hot particles. Annual report 1 July 1976--30 June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Mewhinney, J.A.

    1978-03-01

    Contents: Mixed-oxide fuel fabrication; Generation of aerosols of mixed uranium-plutonium oxides from dry powders for animal inhalation exposures; Analytical radiochemical determination of U, Pu and Am in biological samples; Physical chemical characterization of mixed uranium-plutonium oxide nuclear fuel as samples during animal inhalation exposure; Pilot studies of deposition and retention of industrial mixed-oxide aerosols in the laboratory rat; Extended radiation dose pattern studies of aerosols of mixed uranium-plutonium oxides treated at 750C inhaled by Fishcer-344 rats, beagle dogs and cynomolgus monkeys; Extended radiation dose pattern studies of aerosols of plutonium dioxide, treated at 850C and inhaled by Fischer-344 rats, beagle dogs and cynomolgus monkeys.

  1. Airborne exposure to inhalable hexavalent chromium in welders and other occupations: Estimates from the German MEGA database.

    Science.gov (United States)

    Pesch, Beate; Kendzia, Benjamin; Hauptmann, Kristin; Van Gelder, Rainer; Stamm, Roger; Hahn, Jens-Uwe; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Siemiatycki, Jack; Lavoué, Jerome; Jöckel, Karl-Heinz; Brüning, Thomas

    2015-07-01

    This study aimed to estimate occupational exposure to inhalable hexavalent chromium (Cr(VI)) using the exposure database MEGA. The database has been compiling Cr(VI) concentrations and ancillary data about measurements at German workplaces. We analysed 3659 personal measurements of inhalable Cr(VI) collected between 1994 and 2009. Cr(VI) was determined spectrophotometrically at 540 nm after reaction with diphenylcarbazide. We assigned the measurements to pre-defined at-risk occupations using the information provided about the workplaces. Two-thirds of the measurements were below the limit of quantification (LOQ) and multiply imputed according to the distribution above LOQ. The 75th percentile value was 5.2 μg/m(3) and the 95th percentile was 57.2 μg/m(3). We predicted the geometric mean for 2h sampling in the year 2000, and the time trend of Cr(VI) exposure in these settings with and without adjustment for the duration of measurements. The largest dataset was available for welding (N = 1898), which could be further detailed according to technique. The geometric means were above 5 μg/m(3) in the following situations: spray painting, shielded metal arc welding, and flux-cored arc welding if applied to stainless steel. The geometric means were between 1 μg/m(3) and 5 μg/m(3) for gas metal arc welding of stainless steel, cutting, hard-chromium plating, metal spraying and in the chemical chromium industry. The exposure profiles described here are useful for epidemiologic and industrial health purposes. Exposure to Cr(VI) varies not only between occupations, but also within occupations as shown for welders. In epidemiologic studies, it would be desirable to collect exposure-specific information in addition to the job title.

  2. Extremely low-level microwaves attenuate immune imbalance induced by inhalation exposure to low-level toluene in mice.

    Science.gov (United States)

    Novoselova, Elena G; Glushkova, Olga V; Khrenov, Maxim O; Novoselova, Tatyana V; Lunin, Sergey M; Fesenko, Eugeny E

    2017-05-01

    To clarify whether extremely low-level microwaves (MW) alone or in combination with p38 inhibitor affect immune cell responses to inhalation exposure of mice to low-level toluene. The cytokine profile, heat shock proteins expression, and the activity of several signal cascades, namely, NF-κB, SAPK/JNK, IRF-3, p38 MAPK, and TLR4 were measured in spleen lymphocytes of mice treated to air-delivered toluene (0.6 mg/m(3)) or extremely low-level microwaves (8.15-18 GHz, 1μW/cm(2), 1 Hz swinging frequency) or combined action of these two factors. A single exposure to air-delivered low-level toluene induced activation of NF-κB, SAPK/JNK, IFR-3, p38 MAPK and TLR4 pathways. Furthermore, air toluene induced the expression of Hsp72 and enhanced IL-1, IL-6, and TNF-α in blood plasma, which is indicative of a pro-inflammatory response. Exposure to MW alone also resulted in the enhancement of the plasma cytokine values (e.g. IL-6, TNF-α, and IFN-γ) and activation of the NF-κB, MAPK p38, and especially the TLR4 pathways in splenic lymphocytes. Paradoxically, pre-exposure to MW partially recovered or normalized the lymphocyte parameters in the toluene-exposed mice, while the p38 inhibitor XI additionally increased protective activity of microwaves by down regulating MAPKs (JNK and p38), IKK, as well as expression of TLR4 and Hsp90-α. The results suggest that exposure to low-intensity MW at specific conditions may recover immune parameters in mice undergoing inhalation exposure to low-level toluene via mechanisms involving cellular signaling.

  3. Characterisation of fume from hyperbaric welding operations

    Energy Technology Data Exchange (ETDEWEB)

    Ross, John A S; Semple, Sean [Environmental and Occupational Medicine, University of Aberdeen (United Kingdom); Duffin, Rodger [ELEGI Colt Laboratory, University of Edinburgh (United Kingdom); Kelly, Frank [Lung Biology Group, Kings College, University of London (United Kingdom); Seldmann, Joerg; Raab, Andrea, E-mail: j.a.ross@abdn.ac.u [Trace Element Speciation Laboratory, University of Aberdeen (United Kingdom)

    2009-02-01

    We report preliminary work characterising dust from hyperbaric welding trials carried out at increased pressure in a helium and oxygen atmosphere. Particle size and concentration were measured during welding. Samples for quartz and metal analysis and toxicity assessment were taken from a filter in the local fume extraction system. The residue of dust after metal extraction by nitric acid in hydrogen peroxide predominantly a non-metallic white powder assumed to be dust from welding rod coatings and thermal insulation material. Metallic analysis showed predominantly calcium, from the welding rod coating, and period 4 transition metals such as iron, manganese, magnesium and titanium (inductively coupled mass spectrometry, Agilent 7500c). The presence of zirconium indicated a contribution from grinding. The fume was nanoparticulate in nature with a mean particle diameter of 20-30 nm (MSI Inc WPS 1000XP). It showed an intermediate level of oxidative potential regarding the low-molecular weight respiratory tract lining fluid antioxidants ascorbate and glutathione and caused release of the inflammatory marker IL-8 in a human lung A 549 epithelial cell culture with no indication of cytotoxicity. The study findings have strong implications for the measurement techniques needed to assess fume exposure in hyperbaric welding and the provision of respiratory protection.

  4. Inhalation Exposures to Particulate Matter and Carbon Monoxide during Ethiopian Coffee Ceremonies in Addis Ababa: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Chris Keil

    2010-01-01

    Full Text Available The unique Ethiopian cultural tradition of the coffee ceremony increases inhalation exposures to combustion byproducts. This pilot study evaluated exposures to particulate matter and carbon monoxide in ten Addis Ababa homes during coffee ceremonies. For coffee preparers the geometric mean (57 μg/m3 and median (72 μg/m3 contributions to an increase in a 24-hour time-weighted average exposure were above World Health Organization (WHO guidelines. At 40% of the study sites the contribution to the 24-hour average exposure was greater than twice the WHO guideline. Similar exposure increases existed for ceremony participants. Particulate matter concentrations may be related to the use of incense during the ceremony. In nearly all homes the WHO guideline for a 60-minute exposure to carbon monoxide was exceeded. Finding control measures to reduce these exposures will be challenging due to the deeply engrained nature of this cultural practice and the lack of availability of alternative fuels.

  5. Genetic polymorphisms of TERT and CLPTM1L, cooking oil fume exposure, and risk of lung cancer: a case-control study in a Chinese non-smoking female population.

    Science.gov (United States)

    Yin, Zhihua; Cui, Zhigang; Ren, Yangwu; Zhang, Haibo; Yan, Ying; Zhao, Yuxia; Ma, Rui; Wang, Qianqian; He, Qincheng; Zhou, Baosen

    2014-08-01

    Genetic polymorphisms of telomerase reverse transcriptase (TERT) and cleft lip and palate transmembrane 1-like (CLPTM1L) genes in chromosome 5p15.33 region were previously identified to influence the risks of lung cancer. This study aimed to investigate the association between polymorphisms in TERT and CLPTM1L genes with the risk of lung cancer, as well as the interaction of the polymorphisms and the environmental risk factors in Chinese non-smoking females. A hospital-based case-control study of 524 cases and 524 controls was conducted. Two polymorphisms were determined by Taqman allelic discrimination method. The statistical analyses were performed mostly with SPSS. This study showed that the individuals with the TG or GG genotypes of TERT polymorphism (rs2736100) were at an increased risk for lung cancer compared with those carrying the TT genotype in Chinese non-smoking females [adjusted odds ratios (ORs) were 1.44 and 1.85, 95 % confidence intervals (CIs) were 1.09-1.90 and 1.29-2.65, respectively]. The stratified analysis suggested that increased risks were more pronounced in lung adenocarcinoma (corresponding ORs were 1.71 and 2.30, 95 % CIs were 1.25-2.35 and 1.54-3.43). Our results showed that exposure to cooking oil fume was associated with increased risk of lung cancer in Chinese non-smoking females (adjusted ORs 1.59, 95 % CI 1.13-2.23). However, we did not observe a significant interaction of cooking oil fume and TERT polymorphism on lung cancer among Chinese non-smoking females. TERT polymorphism (rs2736100) might be a genetic susceptibility factor for lung cancer in non-smoking females in China.

  6. Evaluation of the TRA ECETOC model for inhalation workplace exposure to different organic solvents for selected process categories.

    Science.gov (United States)

    Kupczewska-Dobecka, Małgorzata; Czerczak, Sławomir; Jakubowski, Marek

    2011-06-01

    The aim of this work is to describe the operation principle of the TRA ECETOC model developed using the descriptor system, and the utilization of that model for assessment of inhalation exposures to different organic solvents for selected process categories identifying a given application. Measurement results were available for toluene, ethyl acetate and acetone in workplace atmosphere in Poland. The following process categories have been postulated: (1) Paints and lacquers factory: use in closed, continuous process with occasional controlled exposure; (2) Shoe factory: roller or brush application of glues; (3) Refinery: use in closed process, no likelihood of exposure. The next step was to calculate the workplace concentration at chosen process categories by applying the TRA ECETOC model. The selected categories do not precisely describe the studied applications. Very high concentration values of acetone were measured in the shoe factory, mean 443 ppm. The concentration obtained with the aid of the model is underestimated, ranging from 25.47 to 254.7 ppm, for the case with and without activation of the local exhaust ventilation (LEV), respectively. Estimated concentration at a level corresponding to that of the measured concentration would be possible if the process category involving spraying, e.g., PROC 7 was considered. For toluene and ethyl acetate, the measured concentrations are within the predicted ranges determined with the use of the model when we assume the concentration predicted with active ventilation for the beginning, and the concentration predicted with inactive ventilation for the end of the range. Model TRA ECETOC can be easily used to assess inhalation exposure at workplace. It has numerous advantages, its structure is clear, requires few data, is available free of charge. Selection of appropriate process categories related to the uses identified is guarantee of successful exposure assessment.

  7. Historical exposure levels of inhalable dust in the Polish rubber industry compared to levels in Western Europe

    Energy Technology Data Exchange (ETDEWEB)

    Vocht, F de [Occupational and Environmental Health Research Group, School of Translational Medicine, Faculty of Medical and Human Sciences, The University of Manchester, Manchester (United Kingdom); Kromhout, H [Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht (Netherlands); Sobala, W; Peplonska, B, E-mail: Frank.devocht@manchester.ac.u [Department of Occupational and Environmental Epidemiology, NOFER Institute of Occupational Medicine, Lodz (Poland)

    2009-02-01

    Although studies have been carried out to assess inhalable dust exposure levels in the rubber manufacturing industry, the levels of exposure in factories in Eastern Europe are less well documented. Routine stationary sampling for compliance testing of inhalable aerosols has however been conducted in a large factory producing tires and tubes in Poland between 1981 and 1996 (N=6,152). This study was conducted to assess historical inhalable aerosol levels in different departments in this rubber plant and to compare the results with estimates based on European data from the UK, Sweden, the Netherlands and Germany, and also Poland (EXASRUB project). Geometric mean (GM) concentrations in the factory ranged from 2.41 mg/m{sup 3} to 5.82 mg/m{sup 3} and were to a large extent associated to the actual production capacity of the plant and flow of the production process. Whereas 3-4 fold differences between departments existed prior to about 1985, stronger reduction of exposure in the raw materials and finishing departments (-12%/year) compared to other departments (range -5%/yr to -3%/yr), resulted in comparable levels in the 1990s. However, in the pre-treating departments, average concentrations were still about a factor 2-3 higher than in other departments, which could presumably be attributed to the use of anti-tacking agents. GM concentrations have been modelled using (1) stationary measurements collected in the Polish factory only, or (2) all European data collected in the EXASRUB project. Comparison of the estimates showed that these were fairly similar for both datasets. This analysis showed that the levels of inhalable aerosols in the Polish rubber industry have been at least a factor three to four higher than in Western European countries in the 1980s and 1990s, depending on the department, but that these differences were getting smaller in the 1990s. Furthermore, the estimates based on all European data from EXASRUB provides valid estimates compared to factory

  8. Histomorphological and Histochemical Alterations Following Short-term Inhalation Exposure to Sulfur Mustard on Visceral Organs of Mice

    Institute of Scientific and Technical Information of China (English)

    S. C. PANT; R. VIJAYARAGHAVAN

    1999-01-01

    Toxic effects of inhaled sulfur mustard (SM) on the histology of visceral organs was investigated by exposing mice to 84.6mg/m3 for 1 h duration, using controlled single exposure conditions. A progressive fall in body weight from third day onwards was noticed. Light microscopic examination of the pulmonary tissue of these animals at 6 h post exposure revealed that the tracheobronchial epithelium remained intact, but was infiltrated by inflammatorv cells. By 24 h post exposure, the mucosecretory cells were destroyed. The inflammatory reaction was maximum at 48 h. Bv 7th day post exposure there was swelling and vacuolation of lung parenchymal cells and thrombi formation. In addition SM caused congestion and hemorrhage at alveolar level. SM also caused granulovacuolar degeneration with perinuclear clumping of the cytoplasm of hepatocytes and renal parenchymal cells. Renal lesions were characterized by congestion and hemorrhage. Among visceral tissues, maximum atrophy was observed in spleen. Distribution of lesions increased with post exposure period. The maximum lesions were observed at 7th day post-exposure.

  9. Effects of combined exposure of F344 rats to inhaled Plutonium-239 dioxide and a chemical carcinogen (NNK)

    Energy Technology Data Exchange (ETDEWEB)

    Lundgren, D.L.; Carlton, W.W. [Purdue Univ., Lafayette, IN (United States); Griffith, W.C. [and others

    1995-12-01

    Workers in nuclear weapons facilities have a significant potential for exposure to chemical carcinogens and to radiation from external sources or from internally deposited radionuclides such as {sup 239}Pu. Although the carcinogenic effects of inhaled {sup 239}Pu and many chemicals have been studied individually, very little information is available on their combined effects. One chemical carcinogen that workers could be exposed to via tobacco smoke is the tobacco-specific nitrosamine 4-(N-methyl-n-nitrosamino)-1-(3-pyridyl)-1(3-pyridyl)-1-butanone (NNK), a product of tobacco curing and the pyrolysis of nicotine in tobacco. NNK causes lung tumors in rats, regardless of the route of administration and to a lesser extent liver, nasal, and pancreatic tumors. From the results presented, it can be concluded that exposure to a chemical carcinogen (NNK) in combination with {alpha}-particle radiation from inhaled {sup 239}PuO{sub 2} acts in, at best, an additive manner in inducing lung cancer in rats.

  10. A pilot study of personal exposure to respirable and inhalable dust during the sanding and sawing of medium density fibreboard (MDF) and soft wood.

    Science.gov (United States)

    Hursthouse, Andrew; Allan, Fraser; Rowley, Louise; Smith, Frank

    2004-08-01

    A pilot study of production of respirable and inhalable dusts from sawing and sanding medium density fibreboard (MDF) and softwood in a typical cabinet-making workshop produced high but variable exposure levels at the bench and operator position. Exposure levels for the total inhalable fraction (approximately MDF and 2.5-45 mg m(-3) for softwood. For the respirable fraction (MDF and 0.4-2.9 mg m(-3) for softwood. These results show significant dust loading is produced in the coarser fraction and that the material used has a significant impact on levels produced. It suggests that fuller evaluation of operator influence of fine dust production is needed and may question the common application of a single inhalable exposure standard for wood dust to all wood working scenarios.

  11. Effects of inhaled acid aerosols on lung mechanics: an analysis of human exposure studies.

    OpenAIRE

    Utell, M J

    1985-01-01

    There exist significant gaps in our understanding of human health effects from inhalation of pollutants associated with acid precipitation. Controlled clinical studies examine effects of criteria pollutants almost exclusively by assessing changes in lung mechanics. One constituent of acid precipitation, sulfuric acid aerosols, has been shown to induce bronchoconstriction in exercising extrinsic asthmatics at near ambient levels. These asthmatics may be an order of magnitude more sensitive to ...

  12. Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

    Directory of Open Access Journals (Sweden)

    Fabian Herzog

    2014-08-01

    Full Text Available In the emerging market of nano-sized products, silver nanoparticles (Ag NPs are widely used due to their antimicrobial properties. Human interaction with Ag NPs can occur through the lung, skin, gastrointestinal tract, and bloodstream. However, the inhalation of Ag NP aerosols is a primary concern. To study the possible effects of inhaled Ag NPs, an in vitro triple cell co-culture model of the human alveolar/airway barrier (A549 epithelial cells, human peripheral blood monocyte derived dendritic and macrophage cells together with an air–liquid interface cell exposure (ALICE system was used in order to reflect a real-life exposure scenario. Cells were exposed at the air–liquid interface (ALI to 0.03, 0.3, and 3 µg Ag/cm2 of Ag NPs (diameter 100 nm; coated with polyvinylpyrrolidone: PVP. Ag NPs were found to be highly aggregated within ALI exposed cells with no impairment of cell morphology. Furthermore, a significant increase in release of cytotoxic (LDH, oxidative stress (SOD-1, HMOX-1 or pro-inflammatory markers (TNF-α, IL-8 was absent. As a comparison, cells were exposed to Ag NPs in submerged conditions to 10, 20, and 30 µg Ag/mL. The deposited dose per surface area was estimated by using a dosimetry model (ISDD to directly compare submerged vs ALI exposure concentrations after 4 and 24 h. Unlike ALI exposures, the two highest concentrations under submerged conditions promoted a cytotoxic and pro-inflammatory response after 24 h. Interestingly, when cell cultures were co-incubated with lipopolysaccharide (LPS, no synergistic inflammatory effects were observed. By using two different exposure scenarios it has been shown that the ALI as well as the suspension conditions for the lower concentrations after 4 h, reflecting real-life concentrations of an acute 24 h exposure, did not induce any adverse effects in a complex 3D model mimicking the human alveolar/airway barrier. However, the highest concentrations used in the ALI setup, as well

  13. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China.

    Science.gov (United States)

    Hu, Dalin; Yang, Jianping; Liu, Yungang; Zhang, Wenjuan; Peng, Xiaowu; Wei, Qinzhi; Yuan, Jianhui; Zhu, Zhiliang

    2016-02-06

    Methyl tertiary butyl ether (MTBE), a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs) in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p operating workers, and 0.026 to 0.049 per 10⁶ for support staff, which are below the typical target range for risk management of 1 × 10(-6) to 1 × 10(-4); The hazard quotients (HQs) for all subjects were exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.

  14. Health Risk Assessment for Inhalation Exposure to Methyl Tertiary Butyl Ether at Petrol Stations in Southern China

    Directory of Open Access Journals (Sweden)

    Dalin Hu

    2016-02-01

    Full Text Available Methyl tertiary butyl ether (MTBE, a well known gasoline additive, is used in China nationwide to enhance the octane number of gasoline and reduce harmful exhaust emissions, yet  little is known regarding the potential health risk associated with occupational exposure to MTBE in petrol stations. In this study, 97 petrol station attendants (PSAs in southern China were recruited for an assessment of the health risk associated with inhalation exposure to MTBE. The personal exposure levels of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS, and the demographic characteristics of the PSAs were investigated. Cancer and non-cancer risks were calculated with the methods recommended by the United States Environmental Protection Agency. The results showed that the exposure levels of MTBE in operating workers were much higher than among support staff (p < 0.01 and both were lower than 50 ppm (an occupational threshold limit value. The calculated cancer risks (CRs at the investigated petrol stations was 0.170 to 0.240 per 106 for operating workers, and 0.026 to 0.049 per 106 for support staff, which are below the typical target range for risk management of 1 × 10−6 to 1 × 10−4; The hazard quotients (HQs for all subjects were <1. In conclusion, our study indicates that the MTBE exposure of PSAs in southern China is in a low range which does not seem to be a significant health risk.

  15. Medical countermeasure against respiratory toxicity and acute lung injury following inhalation exposure to chemical warfare nerve agent VX.

    Science.gov (United States)

    Nambiar, Madhusoodana P; Gordon, Richard K; Rezk, Peter E; Katos, Alexander M; Wajda, Nikolai A; Moran, Theodore S; Steele, Keith E; Doctor, Bhupendra P; Sciuto, Alfred M

    2007-03-01

    To develop therapeutics against lung injury and respiratory toxicity following nerve agent VX exposure, we evaluated the protective efficacy of a number of potential pulmonary therapeutics. Guinea pigs were exposed to 27.03 mg/m(3) of VX or saline using a microinstillation inhalation exposure technique for 4 min and then the toxicity was assessed. Exposure to this dose of VX resulted in a 24-h survival rate of 52%. There was a significant increase in bronchoalveolar lavage (BAL) protein, total cell number, and cell death. Surprisingly, direct pulmonary treatment with surfactant, liquivent, N-acetylcysteine, dexamethasone, or anti-sense syk oligonucleotides 2 min post-exposure did not significantly increase the survival rate of VX-exposed guinea pigs. Further blocking the nostrils, airway, and bronchioles, VX-induced viscous mucous secretions were exacerbated by these aerosolized treatments. To overcome these events, we developed a strategy to protect the animals by treatment with atropine. Atropine inhibits muscarinic stimulation and markedly reduces the copious airway secretion following nerve agent exposure. Indeed, post-exposure treatment with atropine methyl bromide, which does not cross the blood-brain barrier, resulted in 100% survival of VX-exposed animals. Bronchoalveolar lavage from VX-exposed and atropine-treated animals exhibited lower protein levels, cell number, and cell death compared to VX-exposed controls, indicating less lung injury. When pulmonary therapeutics were combined with atropine, significant protection to VX-exposure was observed. These results indicate that combinations of pulmonary therapeutics with atropine or drugs that inhibit mucous secretion are important for the treatment of respiratory toxicity and lung injury following VX exposure.

  16. Changes in the function of the inhibitory neurotransmitter system in the rat brain following subchronic inhalation exposure to 1-bromopropane.

    Science.gov (United States)

    Ueno, Susumu; Yoshida, Yasuhiro; Fueta, Yukiko; Ishidao, Toru; Liu, Jiqin; Kunugita, Naoki; Yanagihara, Nobuyuki; Hori, Hajime

    2007-03-01

    1-Bromopropane (1-BP) has been widely used as a cleaning agent and a solvent in industries, but the central neurotoxicity of 1-BP remains to be clarified. In the present study, we investigated the effects of subchronic inhalation exposure to 1-BP vapor on the function of the inhibitory neurotransmitter system mediated by gamma-aminobutyric acid (GABA) in the rat brain. Male Wistar rats were exposed to 1-BP vapor for 12 weeks (6h/day, 5 days/week) at a concentration of 400 ppm, and, in order to investigate the expression and function of brain GABA type A (GABAA) receptors, total/messenger RNA was prepared from the neocortex, hippocampus, and cerebellum of the control and 1-BP-exposed rats. Moreover, hippocampal slices were prepared, and the population spike (PS) amplitude and the slope of the field excitatory postsynaptic potential (fEPSP) were investigated in the paired-pulse configuration of the extracellular recording technique. Using the Xenopus oocyte expression system, we compared GABA concentration-response curves obtained from oocytes injected with brain subregional mRNAs of control and 1-BP exposed rats, and observed no significant differences in apparent GABA affinity. On the other hand, paired-pulse inhibition of PS amplitude was significantly decreased in the hippocampal dentate gyrus (DG) by exposure to 1-BP, without any effect on the paired-pulse ratio of the fEPSP slopes, suggesting neuronal disinhibition in the DG. Moreover, RT-PCR analysis indicated decreased levels of GABAA receptor beta3 and delta subunit mRNAs in the hippocampus of 1-BP-exposed rats. These results demonstrate that subchronic inhalation exposure to 1-BP vapor reduces the function of the hippocampal GABAergic system, which could be due to changes in the expression and function of GABAA receptors, especially the delta subunit-containing GABAA receptors.

  17. Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice.

    Science.gov (United States)

    Ganguly, Koustav; Ettehadieh, Dariusch; Upadhyay, Swapna; Takenaka, Shinji; Adler, Thure; Karg, Erwin; Krombach, Fritz; Kreyling, Wolfgang G; Schulz, Holger; Schmid, Otmar; Stoeger, Tobias

    2017-06-20

    The death toll associated with inhaled ambient particulate matter (PM) is attributed mainly to cardio-vascular rather than pulmonary effects. However, it is unclear whether the key event for cardiovascular impairment is particle translocation from lung to circulation (direct effect) or indirect effects due to pulmonary particle-cell interactions. In this work, we addressed this issue by exposing healthy mice via inhalation and intra-arterial infusion (IAI) to carbon nanoparticles (CNP) as surrogate for soot, a major constituent of (ultrafine) urban PM. Equivalent surface area CNP doses in the blood (30mm(2) per animal) were applied by IAI or inhalation (lung-deposited dose 10,000mm(2); accounting for 0.3% of lung-to-blood CNP translocation). Mice were analyzed for changes in hematology and molecular markers of endothelial/epithelial dysfunction, pro-inflammatory reactions, oxidative stress, and coagulation in lungs and extra-pulmonary organs after CNP inhalation (4 h and 24 h) and CNP infusion (4 h). For methodological reasons, we used two different CNP types (spark-discharge and Printex90), with very similar physicochemical properties [≥98 and ≥95% elemental carbon; 10 and 14 nm primary particle diameter; and 800 and 300 m(2)/g specific surface area] for inhalation and IAI respectively. Mild pulmonary inflammatory responses and significant systemic effects were observed following 4 h and 24 h CNP inhalation. Increased retention of activated leukocytes, secondary thrombocytosis, and pro-inflammatory responses in secondary organs were detected following 4 h and 24 h of CNP inhalation only. Interestingly, among the investigated extra-pulmonary tissues (i.e. aorta, heart, and liver); aorta revealed as the most susceptible extra-pulmonary target following inhalation exposure. Bypassing the lungs by IAI however did not induce any extra-pulmonary effects at 4 h as compared to inhalation. Our findings indicate that extra-pulmonary effects due to CNP

  18. Human inhalation exposures to toluene, ethylbenzene, and m-xylene and physiologically based pharmacokinetic modeling of exposure biomarkers in exhaled air, blood, and urine.

    Science.gov (United States)

    Marchand, Axelle; Aranda-Rodriguez, Rocio; Tardif, Robert; Nong, Andy; Haddad, Sami

    2015-04-01

    Urinary biomarkers of exposure are used widely in biomonitoring studies. The commonly used urinary biomarkers for the aromatic solvents toluene (T), ethylbenzene (E), and m-xylene (X) are o-cresol, mandelic acid, and m-methylhippuric acid. The toxicokinetics of these biomarkers following inhalation exposure have yet to be described by physiologically based pharmacokinetic (PBPK) modeling. Five male volunteers were exposed for 6 h in an inhalation chamber to 1/8 or 1/4 of the time-weighted average exposure value (TWAEV) for each solvent: toluene, ethylbenzene, and m-xylene were quantified in blood and exhaled air and their corresponding urine biomarkers were measured in urine. Published PBPK model for parent compounds was used and simulations were compared with experimental blood and exhaled air concentration data. If discrepancies existed, Vmax and Km were optimized. Urinary excretion was modeled using parameters found in literature assuming simply stoichiometric yields from parent compound metabolism and first-order urinary excretion rate. Alternative models were also tested for (1) the possibility that CYP1A2 is the only enzyme implicated in o-cresol and (2) a 2-step model for describing serial metabolic steps for mandelic acid. Models adapted in this study for urinary excretion will be further used to interpret urinary biomarker kinetic data from mixed exposures of these solvents. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Acute toxic effects of nerve agent VX on respiratory dynamics and functions following microinsillation inhalation exposure in guinea pigs.

    Science.gov (United States)

    Rezk, Peter E; Graham, Jacob R; Moran, Theodore S; Gordon, Richard K; Sciuto, Alfred M; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2007-03-01

    Exposure to a chemical warfare nerve agent (CWNA) leads to severe respiratory distress, respiratory failure, or death if not treated. We investigated the toxic effects of nerve agent VX on the respiratory dynamics of guinea pigs following exposure to 90.4 mug/m3 of VX or saline by microinstillation inhalation technology for 10 min. Respiratory parameters were monitored by whole-body barometric plethysmography at 4, 24, and 48 h, 7 d, 18 d, and 4 wk after VX exposure. VX-exposed animals showed a significant decrease in the respiratory frequency (RF) at 24 and 48 h of recovery (p value .0329 and .0142, respectively) compared to the saline control. The tidal volume (TV) slightly increased in VX exposed animals at 24 and significantly at 48 h (p = .02) postexposure. Minute ventilation (MV) increased slightly at 4 h but was reduced at 24 h and remained unchanged at 48 h. Animals exposed to VX also showed an increase in expiratory (Te) and relaxation time (RT) at 24 and 48 h and a small reduction in inspiratory time (Ti) at 24 h. A significant increase in end expiratory pause (EEP) was observed at 48 h after VX exposure (p = .049). The pseudo lung resistance (Penh) was significantly increased at 4 h after VX exposure and remained slightly high even at 48 h. Time-course studies reveal that most of the altered respiratory dynamics returned to normal at 7 d after VX exposure except for EEP, which was high at 7 d and returned to normal at 18 d postexposure. After 1 mo, all the monitored respiratory parameters were within normal ranges. Bronchoalveolar lavage (BAL) 1 mo after exposure showed virtually no difference in protein levels, cholinesterase levels, cell number, and cell death in the exposed and control animals. These results indicate that sublethal concentrations of VX induce changes in respiratory dynamics and functions that over time return to normal levels.

  20. A computer-controlled whole-body inhalation exposure system for the oil dispersant COREXIT EC9500A.

    Science.gov (United States)

    Goldsmith, William Travis; McKinney, Walter; Jackson, Mark; Law, Brandon; Bledsoe, Toni; Siegel, Paul; Cumpston, Jared; Frazer, David

    2011-01-01

    An automated whole-body inhalation exposure system capable of exposing 12 individually housed rats was designed to examine the potential adverse health effects of the oil dispersant COREXIT EC9500A, used extensively during the Deepwater Horizon oil spill. A computer-controlled syringe pump injected the COREXIT EC9500A into an atomizer where droplets and vapor were formed and mixed with diluent air. The aerosolized COREXIT EC9500A was passed into a customized exposure chamber where a calibrated light-scattering instrument estimated the real-time particle mass concentration of the aerosol in the chamber. Software feedback loops controlled the chamber aerosol concentration and pressure throughout each exposure. The particle size distribution of the dispersant aerosol was measured and shown to have a count median aerodynamic diameter of 285 nm with a geometric standard deviation of 1.7. The total chamber concentration (particulate + vapor) was determined using a modification of the acidified methylene blue spectrophotometric assay for anionic surfactants. Tests were conducted to show the effectiveness of closed loop control of chamber concentration and to verify chamber concentration homogeneity. Five automated 5-h animal exposures were performed that produced controlled and consistent COREXIT EC9500A concentrations (27.1 ± 2.9 mg/m(3), mean ± SD).

  1. Acute symptoms during non-inhalation exposure to combinations of toluene, trichloroethylene, and n-hexane

    DEFF Research Database (Denmark)

    Bælum, Jesper

    1999-01-01

    To study the acute effect of exposure to a mixture of three commonly used solvents in humans using a route of exposure not involving the nose and lungs, in this case a gastrointestinal application....

  2. Pulmonary Endpoints (Lung Carcinomas and Asbestosis) Following Inhalation Exposure to Asbestos

    Science.gov (United States)

    Mossman, Brooke T.; Lippmann, Morton; Hesterberg, Thomas W.; Kelsey, Karl T.; Barchowsky, Aaron; Bonner, James C.

    2011-01-01

    Lung carcinomas and pulmonary fibrosis (asbestosis) occur in asbestos workers. Understanding the pathogenesis of these diseases is complicated because of potential confounding factors, such as smoking, which is not a risk factor in mesothelioma. The modes of action (MOA) of various types of asbestos in the development of lung cancers, asbestosis, and mesotheliomas appear to be different. Moreover, asbestos fibers may act differentially at various stages of these diseases, and have different potencies as compared to other naturally occurring and synthetic fibers. This literature review describes patterns of deposition and retention of various types of asbestos and other fibers after inhalation, methods of translocation within the lung, and dissolution of various fiber types in lung compartments and cells in vitro. Comprehensive dose-response studies at fiber concentrations inhaled by humans as well as bivariate size distributions (lengths and widths), types, and sources of fibers are rarely defined in published studies and are needed. Species-specific responses may occur. Mechanistic studies have some of these limitations, but have suggested that changes in gene expression (either fiber-catalyzed directly or by cell elaboration of oxidants), epigenetic changes, and receptor-mediated or other intracellular signaling cascades may play roles in various stages of the development of lung cancers or asbestosis. PMID:21534086

  3. Modeling potential occupational inhalation exposures and associated risks of toxic organics from chemical storage tanks used in hydraulic fracturing using AERMOD.

    Science.gov (United States)

    Chen, Huan; Carter, Kimberly E

    2017-05-01

    Various toxic chemicals used in hydraulic fracturing fluids may influence the inherent health risks associated with these operations. This study investigated the possible occupational inhalation exposures and potential risks related to the volatile organic compounds (VOCs) from chemical storage tanks and flowback pits used in hydraulic fracturing. Potential risks were evaluated based on radial distances between 5 m and 180 m from the wells for 23 contaminants with known inhalation reference concentration (RfC) or inhalation unit risks (IUR). Results show that chemicals used in 12.4% of the wells posed a potential acute non-cancer risks for exposure and 0.11% of the wells with may provide chronic non-cancer risks for exposure. Chemicals used in 7.5% of the wells were associated with potential acute cancer risks for exposure. Those chemicals used in 5.8% of the wells may be linked to chronic cancer risks for exposure. While eight organic compounds were associated with acute non-cancer risks for exposure (>1), methanol the major compound in the chemical storage tanks (1.00-45.49) in 7,282 hydraulic fracturing wells. Wells with chemicals additives containing formaldehyde exhibited both acute and chronic cancer risks for exposure with IUR greater than 10(-6), suggesting formaldehyde was the dominant contributor to both types of risks for exposure in hydraulic fracturing. This study also found that due to other existing on-site emission sources of VOCs and the geographically compounded air concentrations from other surrounding wells, chemical emissions data from storage tanks and flowback pits used in this study were lower than reported concentrations from field measurements where higher occupational inhalation risks for exposure may be expected.

  4. Source-to-receptor pathways of anthropogenic PM 2.5 in Detroit, Michigan: Comparison of two inhalation exposure studies

    Science.gov (United States)

    Morishita, Masako; Keeler, Gerald J.; McDonald, Jacob D.; Wagner, James G.; Young, Li-Hao; Utsunomiya, Satoshi; Ewing, Rodney C.; Harkema, Jack R.

    Recent studies have attributed toxic effects of ambient fine particulate matter (aerodynamic diameter ≤ 2.5 μm; PM 2.5) to physical and/or chemical properties rather than total mass. However, identifying specific components or sources of a complex mixture of ambient PM 2.5 that are responsible for adverse health effects is still challenging. In order to improve our understanding of source-to-receptor pathways for ambient PM 2.5 (links between sources of ambient PM 2.5 and measures of biologically relevant dose), integrated inhalation toxicology studies using animal models and concentrated air particles (CAPs) were completed in southwest Detroit, a community where the pediatric asthma rate is more than twice the national average. Ambient PM 2.5 was concentrated with a Harvard fine particle concentrator housed in AirCARE1, a mobile air research laboratory which facilitates inhalation exposure studies in real-world settings. Detailed characterizations of ambient PM 2.5 and CAPs, identification of major emission sources of PM 2.5, and quantification of trace elements in the lung tissues of laboratory rats that were exposed to CAPs for two distinct 3-day exposure periods were completed. This paper describes the physical/chemical properties and sources of PM 2.5, pulmonary metal concentrations and meteorology from two different 3-day exposure periods—both conducted at the southwest Detroit location in July 2003—which resulted in disparate biological effects. More specifically, during one of the exposure periods, ambient PM 2.5-derived trace metals were recovered from lung tissues of CAPs-exposed animals, and these metals were linked to local combustion point sources in southwest Detroit via receptor modeling and meteorology; whereas in the other exposure period, no such trace metals were observed. By comparing these two disparate results, this investigation was able to define possible links between PM 2.5 emitted from refineries and incinerators and biologically

  5. Measurement methods and optimization of radiation protection: the case of internal exposure by inhalation to natural uranium compounds; Methodes de mesure et optimisation de la radioprotection: le cas des expositions internes par inhalation aux composes d'uranium naturel

    Energy Technology Data Exchange (ETDEWEB)

    Degrange, J.P. [Centre d' Etudes sur l' Evaluation de la Protection dans le domaine Nucleaire (CEPN), 92 - Fontenay-aux-Roses (France); Gibert, B. [Societe pour la Conversion de l' Uranium en Metal et Hexafluorure (COMURHEX), 11 - Narbonne (France)

    1998-07-01

    The aim of this presentation is to discuss the ability of different measurement methods (air sampling and biological examinations) to answer to demands in the particular case of internal exposure by inhalation to natural uranium compounds. The realism and the sensitivity of each method are studied, on the base of new dosimetric models of the ICRP. The ability of analysis of these methods in order to optimize radiation protection are then discussed. (N.C.)

  6. 42 CFR 84.1146 - Lead fume test for dust, fume, and mist respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Lead fume test for dust, fume, and mist respirators... Efficiency Respirators and Combination Gas Masks § 84.1146 Lead fume test for dust, fume, and mist respirators; minimum requirements. (a) Three non-powered respirators will be tested for a period of...

  7. Supplementary catechins attenuate cooking-oil-fumes-induced oxidative stress in rat lung.

    Science.gov (United States)

    Yang, Chao-Huei; Lin, Chun-Yao; Yang, Joan-Hwa; Liou, Shaw-Yih; Li, Ping-Chia; Chien, Chiang-Ting

    2009-06-30

    Cooking-oil-fumes containing toxic components may induce reactive oxygen species (ROS) to oxidize macromolecules and lead to acute lung injury. Our previous study showed that a decaffineated green tea extract containing (+)-catechin, (-)-epicatechin, (+)-gallocatechin, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate can inhibit oxidation, inflammation, and apoptosis. We determined whether the catechins supplement may reduce cooking-oil-fumes-induced acute lung injury in rat. In the urethane-anesthetized Wistar rat subjected to 30-120 min of cooking-oil-fumes exposure, blood ROS significantly increased in the recovery stage. After 30-min cooking-oil-fumes exposure, the enhanced blood ROS level further increased in a time-dependent manner during the recovery stage (321 +/- 69 counts/10 s after 1 h, 540 +/- 89 counts/10 s after 2 h, and 873 +/- 112 counts/10 s after 4 h). Four hours after 30-min cooking-oil-fumes exposure, lung lavage neutrophils and ROS as well as lung tissue dityrosine and 4-hydroxy-2-nonenal increased significantly. Two weeks of catechins supplememnt significantly reduced the enhanced lavage ROS, lung dityrosine and 4-hydroxy-2-nonenal level. Cooking-oil-fumes-induced oxidative stress decreased lung Bcl-2/Bax ratio and HSP70 expression, but catechins treatment preserved the downregulation of Bcl-2/Bax ratio and HSP70 expression. We conclude that catechins supplement attenuates cooking-oil-fumes-induced acute lung injury via the preservation of oil-smoke induced downregulation of antioxidant, antiapoptosis, and chaperone protein expression.

  8. Children's Phthalate Intakes and Resultant Cumulative Exposures Estimated from Urine Compared with Estimates from Dust Ingestion, Inhalation and Dermal Absorption in Their Homes and Daycare Centers

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Weschler, Charles J; Langer, Sarka

    2013-01-01

    . For each child the intake attributable to exposures in the indoor environment via dust ingestion, inhalation and dermal absorption were estimated from the phthalate levels in the dust collected from the child's home and daycare center. Based on the urine samples, DEHP had the highest total daily intake...

  9. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: Evidence from a novel translational in vitro model**

    Science.gov (United States)

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  10. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model

    Directory of Open Access Journals (Sweden)

    Wolff Henrik

    2010-11-01

    Full Text Available Abstract Background Nanotechnology and engineered nanomaterials (ENM are here to stay. Recent evidence suggests that exposure to environmental particulate matter exacerbates symptoms of asthma. In the present study we investigated the modulatory effects of titanium dioxide particle exposure in an experimental allergic asthma. Methods Nonallergic (healthy and ovalbumin-sensitized (asthmatic mice were exposed via inhalation to two different sizes of titanium dioxide particles, nanosized (nTiO2 and fine (fTiO2, for 2 hours a day, three days a week, for four weeks at a concentration of 10 mg/m3. Different endpoints were analysed to evaluate the immunological status of the mice. Results Healthy mice elicited pulmonary neutrophilia accompanied by significantly increased chemokine CXCL5 expression when exposed to nTiO2. Surprisingly, allergic pulmonary inflammation was dramatically suppressed in asthmatic mice which were exposed to nTiO2 or fTiO2 particles - i.e. the levels of leucocytes, cytokines, chemokines and antibodies characteristic to allergic asthma were substantially decreased. Conclusions Our results suggest that repeated airway exposure to TiO2 particles modulates the airway inflammation depending on the immunological status of the exposed mice.

  11. Concentration of polybrominated diphenyl ethers (PBDEs) in house hold dust from various countries. Inhalation a potential route of human exposure

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, A. [Centers for Disease Control and Prevention (CDC), Atlanta, GA (United States); Paepke, O. [ERGO Research, Hamburg (Germany); McGahee III, E. [Centers for Disease Control and Prevention (CDC), Atlanta, GA (US)] (and others)

    2004-09-15

    Polybrominated diphenyl ethers (PBDEs) are congeners of a class of environmental contaminants that have been present in the environment for decades. PBDEs were first identified in the River Viskan in Sweden and have since then been recognized as an environmental contaminant with a global distribution as shown by the detection of this compound class in aquatic and terrestrial environments in Europe and North America. However, PBDEs will still be present in consumer products sold prior to the phase out of pentaBDE and octaBDE for decades to come. Hence it is of utmost importance to identify the exposure routes to humans especially in the Unites States where much higher levels of PBDEs have been observed in people. An average level of 34 ng/g lipid has been observed in human serum pools collected in 2002 and values in the range of 2.9-272 ng lipid (average 41ng/g lipid) have been observed in human milk. This can be contrasted to levels observed in Swedish milk pools (2.3 ng/g lipid) collected in 1997. Human exposure to persistent chemicals like polychlorinated biphenyls has traditionally been considered to be mainly through food consumption. Other direct exposure routes such as inhalation and/or dermal exposure are only of quantitatively more importance in the case of occupational exposures. However, this may or may not be true for PBDEs which are still being used in the modern indoor environment. This is further supported by the relatively low concentrations recently reported in foodstuffs sampled in the United States.

  12. An evaluation of changes and recovery in the olfactory epithelium in mice after inhalation exposure to methylethylketoxime.

    Science.gov (United States)

    Newton, Paul E; Bolte, Henry F; Derelanko, Michael J; Hardisty, Jerry F; Rinehart, William E

    2002-12-01

    Methylethylketoxime, also known as MEKO or 2-butanone oxime (CAS No. 96-29-7), is a clear, colorless to light yellow liquid at room temperature. It is an industrial antioxidant used as an antiskinning agent in alkyd paint, an industrial blocking agent for urethane polymers, and a corrosion inhibitor in industrial boilers, and can be found in some adhesives and silicone caulking products. Male CD-1 mice were exposed 6 h/day, 5 days/wk, for 1, 2, 4, or 13 wk via whole-body inhalation exposures to MEKO vapor concentrations of 0, 3 +/- 0.1, 10 +/- 0.3, 30 +/- 1, or 100 +/- 2 ppm (10 mice/group/interval). Satellite animals were removed after 1, 2, 4, or 13 wk of exposure and allowed to recover for 4 or 13 wk (5 mice/group/interval). After termination, the nasal turbinates were evaluated microscopically, and cross-sectional nasal maps of the lesions were prepared. At the end of the 1-, 2-, 4-, and 13-wk exposure periods, degeneration of the olfactory epithelium lining the dorsal meatus was seen in the anterior region of the nasal cavity. In a few instances, the olfactory epithelium covering the tips of the nasoturbinal scrolls projecting into the dorsal region of the nasal cavity was also degenerated. Large areas of olfactory epithelium lying laterally and posteriorly were unaffected. In general, approximately 10% or less of the total olfactory tissue was affected. In several instances, the degenerated olfactory epithelium was reepithelialized by squamous/squamoid and/or respiratory types of epithelium. Degeneration, which was dose related in incidence and severity, was seen in mice exposed to 30 and 100 ppm after 1 wk of exposure and in several mice exposed to 10 ppm after 13 wk of exposure. The incidence and severity of the degeneration present after 1 wk of exposure did not increase with the longer exposures. The olfactory degeneration was reversible. Recovery was complete within 4 wk following exposures at 10 ppm and nearly complete within 13 wk after exposures at 30

  13. The effects of exposure to diesel fumes, low-level radiation and respirable dust and quartz on cancer mortality in coalminers

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Buchanan, D.; Hurley, J.F.; Robertson, A.; Hutchison, P.A.; Kidd, M.W.; Pilkington, A.; Soutar, C.A.

    1997-07-01

    Following findings of the British National Coal Board's Pneumoconiosis Field Research (PFR) major research programme into the health effects of respirable coal mine dust, a new programme was set up to identify and quantify any relationships between mortality from lung, stomach and other cancers, and exposure to respirable dust and quartz, diesel exhaust particulates from underground vehicles, and radon and thoron daughters. The cohort for analysis was 18,166 men, entering follow-up at various surveys from the 2nd to 6th round of the PFR programme. These contributed over 408,000 person-years at risk up to the end of 1992, and 7002 deaths. Investigations of exposure-response relationships for specific causes of death were based on comparisons within the cohort, using the general framework of Cox's proportional hazard regression models to adjust for age, smoking hazards, periods of cohort entry etc. Mortality from pneumoconiosis showed a clear relationship with exposure to respirable dust, which was a better predictor of risk than respirable quartz. Neither bladder cancer or leukaemia showed a significant relationship with any of the exposures. Stomach cancer risks were not related to dust or quartz exposure, nor to time spent in the industry, suggesting that the explanation for the raised Standardised Mortality Ratio lies elsewhere than in the conditions of work. In most of the analyses of lung cancer, there was no strong evidence of exposure effects. In one series of analyses, exposure to respirable quartz was related to lung cancer mortality at conventional levels of statistical significance, but the effect was strongly confounded with pit differences. A similar but weaker effect was observed with radiation exposures. These findings could be artefacts of other factors which differed between the working practices or surrounding environments of the collieries involved.

  14. Personal exposure to grass pollen: relating inhaled dose to background concentration

    DEFF Research Database (Denmark)

    Peel, Robert George; Hertel, Ole; Smith, Matt

    2013-01-01

    Background: Very few studies on human exposure to allergenic pollen have been conducted using direct methods, with background concentrations measured at city center monitoring stations typically taken as a proxy for exposure despite the inhomogeneous nature of atmospheric pollen concentrations. A...

  15. A Method for Quantifying the Acute Health Impacts of Residential Non-Biological Exposure Via Inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Bret C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    The inability to monetize the health costs of acute exposures in homes and the benefits of various control options is a barrier to justifying policies and approaches that can reduce exposure and improve health.We synthesized relationships between short-term outdoor concentration changes and health outcomes to estimate the health impacts of short-term in-home exposures. Damage and cost impacts of specific health outcomes were taken from the literature. We assessed the impact of vented and non-vented residential natural gas cooking burners on Southern California occupants for two pollutants (NO2 and CO).

  16. ESTIMATED RATE OF FATAL AUTOMOBILE ACCIDENTS ATTRIBUTABLE TO ACUTE SOLVENT EXPOSURE AT LOW INHALED CONCENTRATIONS

    Science.gov (United States)

    Acute solvent exposures may contribute to automobile accidents because they increase reaction time and decrease attention, in addition to impairing other behaviors. These effects resemble those of ethanol consumption, both with respect to behavioral effects and neurological mecha...

  17. Lung tumor production and tissue metal distribution after exposure to manual metal ARC-stainless steel welding fume in A/J and C57BL/6J mice.

    Science.gov (United States)

    Zeidler-Erdely, Patti C; Battelli, Lori A; Salmen-Muniz, Rebecca; Li, Zheng; Erdely, Aaron; Kashon, Michael L; Simeonova, Petia P; Antonini, James M

    2011-01-01

    Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative.

  18. Butyrylcholinesterase in guinea pig lung lavage: a novel biomarker to assess lung injury following inhalation exposure to nerve agent VX.

    Science.gov (United States)

    Graham, Jacob R; Wright, Benjamin S; Rezk, Peter E; Gordon, Richard K; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2006-06-01

    Respiratory disturbances play a central role in chemical warfare nerve agent (CWNA) induced toxicity; they are the starting point of mass casualty and the major cause of death. We developed a microinstillation technique of inhalation exposure to nerve agent VX and assessed lung injury by biochemical analysis of the bronchoalveolar lavage fluid (BALF). Here we demonstrate that normal guinea pig BALF has a significant amount of cholinesterase activity. Treatment with Huperzine A, a specific inhibitor of acetylcholinesterase (AChE), showed that a minor fraction of BALF cholinesterase is AChE. Furthermore, treatment with tetraisopropyl pyrophosphoramide (iso-OMPA), a specific inhibitor of butyrylcholinesterase (BChE), inhibited more than 90% of BChE activity, indicating the predominance of BChE in BALF. A predominance of BChE expression in the lung lavage was seen in both genders. Substrate specific inhibition indicated that nearly 30% of the cholinesterase in lung tissue homogenate is AChE. BALF and lung tissue AChE and BChE activities were strongly inhibited in guinea pigs exposed for 5 min to 70.4 and 90.4 microg/m3 VX and allowed to recover for 15 min. In contrast, BALF AChE activity was increased 63% and 128% and BChE activity was increased 77% and 88% after 24 h of recovery following 5 min inhalation exposure to 70.4 microg/m3 and 90.4 mg/m3 VX, respectively. The increase in BALF AChE and BChE activity was dose dependent. Since BChE is synthesized in the liver and present in the plasma, an increase in BALF indicates endothelial barrier injury and leakage of plasma into lung interstitium. Therefore, a measure of increased levels of AChE and BChE in the lung lavage can be used to determine the chronology of barrier damage as well as the extent of lung injury following exposure to chemical warfare nerve agents.

  19. The Pozzolanic reaction of silica fume

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2012-01-01

    Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone. In the ...... of activation of the pozzolanic reaction of silica fume is estimated. The results show that the pozzolanic reaction of silica fume has notable differences from Portland cement hydration.......Silica fume is a very important supplementary cementitious binder in High-Performance and Ultra High-Performance Concretes. Through its pozzolanic reaction the silica fume densifies the concrete micro-structure, in particular it strengthens the paste-aggregate interfacial transition zone....... In the present paper different aspects of the pozzolanic reaction of silica fume are investigated. These include chemical shrinkage, isothermal heat development and strength development. Key data for these are given and compared with theoretical calculations, and based on presented measurements the energy...

  20. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    Science.gov (United States)

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these

  1. Cellulosic building insulation versus mineral wool, fiberglass or perlite: installer's exposure by inhalation of fibers, dust, endotoxin and fire-retardant additives.

    Science.gov (United States)

    Breum, N O; Schneider, T; Jørgensen, O; Valdbjørn Rasmussen, T; Skibstrup Eriksen, S

    2003-11-01

    A task-specific exposure matrix was designed for workers installing building insulation materials. A priori, a matrix element was defined by type of task (installer or helper), type of work area (attic spaces or wall cavities) and type of insulation material (slabs from mineral wool, fiberglass or flax; loose-fill cellulosic material or perlite). In the laboratory a mock-up (full scale) of a one-family house was used for simulated installation of insulation materials (four replicates per matrix element). Personal exposure to dust and fibers was measured. The dust was analyzed for content of endotoxin and some trace elements (boron and aluminum) from fire-retardant or mold-resistant additives. Fibers were characterized as WHO fibers or non-WHO fibers. In support of the exposure matrix, the dustiness of all the materials was measured in a rotating drum tester. For installers in attic spaces, risk of exposure was low for inhalation of dust and WHO fibers from slab materials of mineral wool or fiberglass. Slab materials from flax may cause high risk of exposure to endotoxin. The risk of exposure by inhalation of dust from loose-fill materials was high for installers in attic spaces and for some of the materials risk of exposure was high for boron and aluminum. Exposure by inhalation of cellulosic WHO fibers was high but little is known about the health effects and a risk assessment is not possible. For the insulation of walls, the risk of installers' exposure by inhalation of dust and fibers was low for the slab materials, while a high risk was observed for loose-fill materials. The exposure to WHO fibers was positively correlated to the dust exposure. A dust level of 6.1 mg/m3 was shown to be useful as a proxy for screening exposure to WHO fibers in excess of 10(6) fibers/m3. In the rotating drum, slabs of insulation material from mineral wool or fiberglass were tested as not dusty. Cellulosic loose-fill materials were tested as very dusty, and perlite proved to be

  2. Selective Cognitive Deficits in Adult Rats after Prenatal Exposure to Inhaled Ethanol

    Science.gov (United States)

    Increased use of ethanol blends in gasoline suggests a need to assess the potential public health risks of exposure to these fuels. Ethanol consumed during pregnancy is a teratogen. However, little is known about the potential developmental neurotoxicity of ethanol delivered by i...

  3. Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure

    NARCIS (Netherlands)

    Jong, W.H. de; Arts, J.H.E.; Klerk, A. de; Schijf, M.A.; Ezendam, J.; Kuper, C.F.; Loveren, H. van

    2009-01-01

    There are currently no validated animal models that can identify low molecular weight (LMW) respiratory sensitizers. The Local Lymph Node Assay (LLNA) is a validated animal model developed to detect contact sensitizers using skin exposure, but all LMW respiratory sensitizers tested so far were also

  4. Cerium Oxide Nanoparticle Nose-Only Inhalation Exposures Using a Low-Sample-Consumption String Generator

    Science.gov (United States)

    There is a critical need to assess the health effects associated with exposure of commercially produced NPs across the size ranges reflective of that detected in the industrial sectors that are generating, as well as incorporating, NPs into products. Generation of stable and low ...

  5. Contact and respiratory sensitizers can be identified by cytokine profiles following inhalation exposure

    NARCIS (Netherlands)

    Jong, W.H. de; Arts, J.H.E.; Klerk, A. de; Schijf, M.A.; Ezendam, J.; Kuper, C.F.; Loveren, H. van

    2009-01-01

    There are currently no validated animal models that can identify low molecular weight (LMW) respiratory sensitizers. The Local Lymph Node Assay (LLNA) is a validated animal model developed to detect contact sensitizers using skin exposure, but all LMW respiratory sensitizers tested so far were also

  6. Air pollution impacts on avian species via inhalation exposure and associated outcomes

    Science.gov (United States)

    Sanderfoot, Olivia V.; Holloway, Tracey

    2017-08-01

    Despite the well-established links between air pollution and human health, vegetation, and aquatic ecosystems, less attention has been paid to the potential impact of reactive atmospheric gases and aerosols on avian species. In this literature review, we summarize findings published since 1950 regarding avian responses to air pollution and discuss knowledge gaps that could be addressed in future studies. We find consistent evidence for adverse health impacts on birds attributable to exposure to gas-phase and particulate air pollutants, including carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), smoke, and heavy metals, as well as mixtures of urban and industrial emissions. Avian responses to air pollution include respiratory distress and illness, increased detoxification effort, elevated stress levels, immunosuppression, behavioral changes, and impaired reproductive success. Exposure to air pollution may furthermore reduce population density, species diversity, and species richness in bird communities.

  7. Effects of inhalation exposure to SRC-II heavy and middle distillates

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.L.; Miller, R.A.; Weimer, W.C.; Ragan, H.A.; Buschbom, R.L.; Mahlum, D.D.

    1984-11-01

    To expand the data base on potential health effects of coal liquefaction materials, we have performed studies with both solvent refined coal (SRC)-II heavy distillate (HD) and middle distillate (MD). Weight gain for exposed animals was less than that of controls and was dose-related, ranging from no significant difference for animals in the low-exposure group to failure to gain in the high-dose animals. Liver weights increased significantly over controls, and thymus weights decreased for animals sacrificed at 5 and 13 weeks. After both exposure periods, there were significant treatment-related decreases in erythrocyte parameters and in certain types of white blood cells (WBC). Bone marrow cellularity, and numbers of megakaryocytes consistently decreased, suggesting that bone marrow is a target tissue for high-boiling coal liquids. Microscopic evaluation of tissue indicated exposure-related changes is listed. In contrast to the reported mutagenic and carcinogenic effects observed for the high-boiling coal liquids, middle-boiling-range materials lacked such activity in these assays. These data demonstrate a great deal of similarity in the kinds of effects observed following exposure to middle- and high-boiling-range coal liquids. However, the significance of changes in organ weights and peripheral blood parameters are not always readily apparent following a subchronic study. Because of this, we exposed animals to HD in a manner similar to that for the subchronic experiment and have followed these animals throughout their lives for the development of adverse effects such as reduced longevity and the appearance of tumors. Results from this study will be available for mice in FY 1985 and for rats in FY 1986.

  8. Dust inhalation exposures from the handling of small volumes of powders.

    Science.gov (United States)

    Cowherd, C; Grelinger, M A; Wong, K F

    1989-03-01

    Worker exposure to airborne particulates was stimulated in a laboratory under controlled conditions. Small volumes, 3.8 L (1 gal.), of finely divided powders were transferred at 1-min intervals to 23-L (6-gal.) containers over 30-min time intervals. A high-volume filter array in the exit vent of the specially designed exposure laboratory was used both to control the ventilation rate and to determine the emission factor of the pouring operation. The room ventilation rate, method of transfer, and drop height were varied, and the resulting particulate concentrations were monitored by personal and area samplers. The four powders studied were talc, sodium chloride, Portland cement, and Direct Yellow 4 dye. Based on this study, a model was developed to predict potential worker exposure from the pouring of small volumes of powders. The model is based on the following major conclusions. First, the space- and time-averaged concentration of suspended particulate matter at breathing height agrees well with the mean concentration of suspended particulate matter in the room air effluent. Second, material-specific suspended particulate emission factors vary approximately in direct proportion to the drop height. Third, emission factors for scooping/dumping operations agree well with factors for pouring operations for a given drop height. Fourth, emission factors compare well with dustiness indexes that were determined using a bench-scale dustiness test chamber described in a companion paper. Parameters of the exposure model include dustiness index, drop height of the pouring operation, total quantity of material poured, averaging time, and the fraction of respirable material. For the validation of the model, additional data would be necessary.

  9. Allergic inflammation in the upper respiratory tract of the rat upon repeated inhalation exposure to the contact allergen dinitrochlorobenzene (DNCB).

    NARCIS (Netherlands)

    Triel, J.J. van; Arts, J.H.; Muijser, H.; Kuper, C.F.

    2010-01-01

    Previously, the contact allergen dinitrochlorobenzene (DNCB) was identified as a sensitizer by inhalation in BALB/c mice; in addition, DNCB induced a lymphocytic infiltrate in the larynx of dermally sensitized Th1-prone Wistar rats upon a single inhalation challenge. In the present study, repeated

  10. Allergic inflammation in the upper respiratory tract of the rat upon repeated inhalation exposure to the contact allergen dinitrochlorobenzene (DNCB).

    NARCIS (Netherlands)

    Triel, J.J. van; Arts, J.H.; Muijser, H.; Kuper, C.F.

    2010-01-01

    Previously, the contact allergen dinitrochlorobenzene (DNCB) was identified as a sensitizer by inhalation in BALB/c mice; in addition, DNCB induced a lymphocytic infiltrate in the larynx of dermally sensitized Th1-prone Wistar rats upon a single inhalation challenge. In the present study, repeated i

  11. Method for determining the lung burden of talc in rats and mice after inhalation exposure to talc aerosols.

    Science.gov (United States)

    Hanson, R L; Benson, J M; Henderson, T R; Carpenter, R L; Pickrell, J A; Brown, S C

    1985-10-01

    A method has been developed to quantitate talc lung burdens in rats and mice after inhalation exposure to talc aerosols. The method is based on acid-insoluble magnesium (Mg) determination by flame atomic absorption. Precipitating protein from homogenates of lungs of unexposed rodents with 5% perchloric acid and washing with 5% trichloroacetic acid removed the soluble and naturally occurring Mg. This resulted in residual Mg content averaging 0.43 micrograms Mg per g lung in rats and less than 0.1 microgram Mg per g lung in mice for young rodents less than 12 weeks old. Rodents 12-18 months old had residual mean (+/- SD) Mg contents of 3.4 +/- 2.0 micrograms Mg per g rat lung (n = 17) and 6.5 +/- 2.9 micrograms Mg per g mouse lung (n = 12). Thus, the background residual acid-insoluble Mg content in rodent lungs appears to increase with age. Negligible quantities of Mg were extracted directly from the talc treated by these procedures. Adding 50-2000 micrograms talc to lungs from unexposed rodents, followed by the sample treatment, gave mean (+/- SD) Mg recoveries of 89 +/- 12% (n = 19) for rat lungs and 96 +/- 26% (n = 15) for mouse lungs. The lung burden of talc in rodents exposed to talc aerosols for 6 h per day, 5 days per week for 4 weeks was determined. Mean lung burdens in rats were 77, 187, and 806 micrograms talc per g lung (n = 10) for exposures at 2.3, 4.3, and 17 mg talc m-3, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Inhalation study of polymethyl methacrylate following radiologist exposure during percutaneous vertebroplasty.

    Science.gov (United States)

    Amoretti, Nicolas; Coco, Lucia; Nouri, Yasir; Marcy, Pierre-Yves; Ianessi, Antoine; Amoretti, Marie-Eve; Hauger, Olivier

    2013-02-01

    To assess the atmospheric concentrations of methyl methacrylate (MMA) vapors during percutaneous vertebroplasty for the interventional radiologist and the other operating room staff. During percutaneous vertebroplasty, a polymethyl methacrylate (PMMA) mixture (about 20 mL) was prepared with a mixing system in a normally ventilated room. Atmospheric concentrations of MMA vapors were measured by a gas absorbent badge for individual exposure (GABIE) passive sampler attached to the surgical gowns of the interventional radiologist and the other operating room staff over a period of 460 min. Active sampling was performed over 15 min with an individual pump placed near the breathing zone of the radiologist. MMA vapor concentrations were then measured using gas chromatography and activated charcoal tubes. Mean MMA vapor concentrations measured by the GABIEs over the period of 460 min were 0.51 parts per million (ppm) for the radiologist and 0.22 ppm for the other operating room staff. The emission peaks measured by using charcoal tubes over 15 min were 3.7 ppm. MMA vapor concentrations during percutaneous vertebroplasty were well below the recommended maximum exposure of 100 ppm over the course of an 8-h workday.

  13. Impact of some field factors on inhalation exposure levels to bitumen emissions during road paving operations.

    Science.gov (United States)

    Deygout, François; Auburtin, Guy

    2015-03-01

    Variability in occupational exposure levels to bitumen emissions has been observed during road paving operations. This is due to recurrent field factors impacting the level of exposure experienced by workers during paving. The present study was undertaken in order to quantify the impact of such factors. Pre-identified variables currently encountered in the field were monitored and recorded during paving surveys, and were conducted randomly covering current applications performed by road crews. Multivariate variance analysis and regressions were then used on computerized field data. The statistical investigations were limited due to the relatively small size of the study (36 data). Nevertheless, the particular use of the step-wise regression tool enabled the quantification of the impact of several predictors despite the existing collinearity between variables. The two bitumen organic fractions (particulates and volatiles) are associated with different field factors. The process conditions (machinery used and delivery temperature) have a significant impact on the production of airborne particulates and explain up to 44% of variability. This confirms the outcomes described by previous studies. The influence of the production factors is limited though, and should be complemented by studying factors involving the worker such as work style and the mix of tasks. The residual volatile compounds, being part of the bituminous binder and released during paving operations, control the volatile emissions; 73% of the encountered field variability is explained by the composition of the bitumen batch.

  14. Polymorphisms in miR-135a-2, miR-219-2 and miR-211 as well as their interaction with cooking oil fume exposure on the risk of lung cancer in Chinese nonsmoking females: a case-control study.

    Science.gov (United States)

    Yin, Zhihua; Cui, Zhigang; Li, Hang; Ren, Yangwu; Qian, Biyun; Rothman, Nathaniel; Lan, Qing; Zhou, Baosen

    2016-09-23

    The associations between microRNAs and lung cancer have received increasing attention. This study assess the association between polymorphisms in miR-135a-2, miR-219-2 and miR-211 genes and the risk of lung cancer, as well as the gene-environment interaction between these polymorphisms and cooking oil fume exposure. A case-control study featuring 268 cases and 266 controls was conducted. The associations of miR-135a-2 rs10459194, miR-219-2 rs10988341 and miR-211 rs1514035 polymorphisms with the risk of lung cancer were analyzed. The gene-environment interactions were also reported on both additive and multiplicative scales. There were no statistically significant associations between the single-nucleotide polymorphisms (SNPs) and lung cancer or lung adenocarcinoma. The individuals with both a risk genotype of miRNA SNPs and exposure to a risk factor (cooking oil fumes) were at higher risk of lung cancer than those with only one of these two risk factors (odd ratios of 2.208, 1.285 and 1.813 for miR-135a-2 rs10459194; 2.164, 1.209 and 1.806 for miR-219-2 rs10988341; and 2.122, 1.146 and 1.725 for miR-211 rs1514035, respectively). However, the measures of biological interaction indicate that there was no such interaction between the three SNPs and exposure to cooking oil fumes on an additive scale. Logistic regression models also suggested that the gene-environment interactions were not statistically significant on a multiplicative scale. There were no significant associations between the polymorphisms in miRNAs (miR-26a-1 rs7372209, miR-605 rs2043556 and miR-16-1 rs1022960) and the risk of lung cancer in the Chinese nonsmoking female population. The interactions between these polymorphisms in miRNAs and cooking oil fume exposure were also not statistically significant.

  15. Combined Inhaled Diesel Exhaust Particles and Allergen Exposure Alter Methylation of T Helper Genes and IgE Production In Vivo

    Science.gov (United States)

    Liu, Jinming; Ballaney, Manisha; Al-alem, Umaima; Quan, Chunli; Jin, Ximei; Perera, Frederica; Chen, Lung-Chi; Miller, Rachel L.

    2008-01-01

    Changes in methylation of CpG sites at the interleukin (IL)-4 and interferon (IFN)-γ promoters are associated with T helper (Th) 2 polarization in vitro. No previous studies have examined whether air pollution or allergen exposure alters methylation of these two genes in vivo. We hypothesized that diesel exhaust particles (DEP) would induce hypermethylation of the IFN-γ promoter and hypomethylation of IL-4 in CD4+ T cells among mice sensitized to the fungus allergen Aspergillus fumigatus.We also hypothesized that DEP-induced methylation changes would affect immunoglobulin (Ig) E regulation. BALB/c mice were exposed to a 3-week course of inhaled DEP exposure while undergoing intranasal sensitization to A. fumigatus. Purified DNA from splenic CD4+ cells underwent bisulfite treatment, PCR amplification, and pyrosequencing. Sera IgE levels were compared with methylation levels at several CpG sites in the IL-4 and IFN-γ promoter. Total IgE production was increased following intranasal sensitization A. fumigatus. IgE production was augmented further following combined exposure to A. fumigatus and DEP exposure. Inhaled DEP exposure and intranasal A. fumigatus induced hypermethylation at CpG−45, CpG−53, CpG−205 sites of the IFN-γ promoter and hypomethylation at CpG−408 of the IL-4 promoter. Altered methylation of promoters of both genes was correlated significantly with changes in IgE levels. This study is the first to demonstrate that inhaled environmental exposures influence methylation of Th genes in vivo, supporting a new paradigm in asthma pathogenesis. PMID:18042818

  16. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment.

    Science.gov (United States)

    Fujitani, Yuji; Kobayashi, Takahiro; Arashidani, Keiichi; Kunugita, Naoki; Suemura, Kouji

    2008-06-01

    Assessment of human exposure is important for the elucidation of potential health risks. However, there is little information available on particle number concentrations and number size distributions, including those of nanoparticles, in the working environments of factories producing engineered nanomaterials. The authors used a scanning mobility particle sizer and an optical particle counter to measure the particle number size distributions of particles ranging in diameter (D(p)) from 10 nm to >5000 nm in a fullerene factory and used scanning electron microscopy to examine the morphology of the particles. Comparisons of particle size distributions and morphology during non-work periods, during work periods, during an agitation process, and in the nearby outdoor air were conducted to identify the sources of the particles and to determine their physical properties. A modal diameter of 25 nm was found in the working area during the non-work period; this result was probably influenced by ingress of outdoor air. During the removal of fullerenes from a storage tank for bagging and/or weighing, the particle number concentration at D(p)1000 nm was greater during the non-work period. When a vacuum cleaner was in use, the particle number concentration at D(p)1000 nm was no greater. Scanning electron microscopy revealed that the coarse particles emitted during bagging and/or weighing were aggregates/agglomerates of fullerenes; although origin of particles with D(p)<50 nm is unclear.

  17. Assessment of Exposure to Polybrominated Dipheny Ethers via Inhalation and Diet in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CAO Dan; LI Lu Xi; ZHAO Yan; XIE Chang Ming; ZHANG Yun Hui

    2014-01-01

    Objective This paper is to assess the current status of polybrominated diphenyl ethers (PBDEs) contamination in the environment in China and estimate the exposure to PBDEs in non-occupational populations. Methods A total of 80 research papers published from January 2001 to October 2013 were selected. Geographic information system (GIS) was used in mapping PBDE concentrations and distributions in environmental media. Ni’s model was applied to calculate∑PBDE-intake via the intakes of contaminated food, water and air in the Pearl River Delta and Yangtze River Delta. Results BDE-209 was found to be the major PBDE congener in the environmental media and food in China. PBDE concentrations varied among different areas, among which the contamination in Guangdong Province was most serious. Daily intake of∑PBDEs was 225.1-446.0 ng/d for adults in the Pearl River Delta, which was higher than the intake for those living in the Yangtze River Delta (148.9-369.8 ng/d). Conclusion PBDEs are ubiquitous in the environment of China. The estimated PBDEs daily dietary intake is comparable with that in European countries.

  18. Lessons learned from case studies of inhalation exposures of workers to radioactive aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, M.D.; Fencl, A.F.; Newton, G.J. [and others

    1995-12-01

    Various Department of Energy requirements, rules, and orders mandate that lessons learned be identified, evaluated, shared, and incorporated into current practices. The recently issued, nonmandatory DOE standard for Development of DOE Lessons Learned Program states that a DOE-wide lessons learned program will {open_quotes}help to prevent recurrences of negative experiences, highlight best practices, and spotlight innovative ways to solve problems or perform work more safely, efficiently, and cost effectively.{close_quotes} Additional information about the lessons learned program is contained in the recently issued DOE handbook on Implementing U.S. Department of Energy Lessons Learned Programs and in October 1995 DOE SAfety Notice on Lessons Learned Programs. This report summarizes work in progress at ITRI to identify lessons learned for worker exposures to radioactive aerosols, and describes how this work will be incorporated into the DOE lessons learned program, including a new technical guide for measuring, modeling, and mitigating airborne radioactive particles. Follow-on work is focusing on preparation of {open_quotes}lessons learned{close_quotes} training materials for facility designers, managers, health protection professionals, line supervisors, and workers.

  19. Differential electrocardiogram efffects in normal and hypertensive rats after inhalation exposure to transition metal rich particulate matter

    Science.gov (United States)

    Inhalation of particulate matter (PM) associated with air pollution causes adverse effects on cardiac function including heightened associations with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. Some of these effects have been attributable to transitio...

  20. Differential effects of inhalation exposure to PM2.5 on hypothalamic monoamines and corticotrophin releasing hormone in lean and obese rats.

    Science.gov (United States)

    Balasubramanian, Priya; Sirivelu, Madhu P; Weiss, Kathryn A; Wagner, James G; Harkema, Jack R; Morishita, Masako; Mohankumar, P S; Mohankumar, Sheba M J

    2013-05-01

    Acute exposure to airborne pollutants, especially particulate matter (PM2.5) is known to increase hospital admissions for cardiovascular conditions, increase cardiovascular related mortality and predispose the elderly and obese individuals to cardiovascular conditions. The mechanisms by which PM2.5 exposure affects the cardiovascular system is not clear. Since the autonomic system plays an important role in cardiovascular regulation, we hypothesized that PM2.5 exposure most likely activates the paraventricular nucleus (PVN) of the hypothalamus to cause an increase in sympathetic nervous system and/or stress axis activity. We also hypothesized that these changes may be sustained in obese rats predisposing them to higher cardiovascular risk. To test this, adult male Brown Norway (BN) rats were subjected to one day or three days of inhalation exposures to filtered air (FA) or concentrated air particulate (CAP) derived from ambient PM2.5. Corpulent JCR-LA rats were exposed to FA or CAP for four days. Animals were sacrificed 24h after the last inhalation exposure. Their brains were removed, frozen and sectioned. The PVN and median eminence (ME) were microdissected. PVN was analyzed for norepinephrine (NE), dopamine (DA) and 5-hydroxy-indole acetic acid (5-HIAA) levels using HPLC-EC. ME was analyzed for corticotrophin releasing hormone (CRH) levels by ELISA. One day exposure to CAP increased NE levels in the PVN and CRH levels in the ME of BN rats. Repeated exposures to CAP did not affect NE levels in the PVN of BN rats, but increased NE levels in JCR/LA rats. A similar pattern was observed with 5-HIAA levels. DA levels on the other hand, were unaffected in both BN and JCR/LA strains. These data suggest that repeated exposures to PM2.5 continue to stimulate the PVN in obese animals but not lean rats.

  1. Mutagenicity of bitumen and asphalt fumes.

    Science.gov (United States)

    Heikkilä, P R; Väänänen, V; Hämeilä, M; Linnainmaa, K

    2003-08-01

    The mutagenicity of asphalt fumes was tested with the Salmonella bioassays. The aim was to investigate if recycled additives modify the genotoxicity of emissions. Recycling of old asphalt is increasing, and we studied also the mutagenicity of emissions sampled during the re-use of asphalt. The composition of vapours and fumes were analysed by gas chromatography and by liquid chromatography. Bitumens containing coal fly ash (CFA) or waste plastics were heated to the paving temperatures in the laboratory. In the field, bitumen fumes were collected during paving of stone mastic asphalts (lime or CFA as a filler), remixing of stone mastic asphalt (lime or CFA as a filler), and of asphalt concrete. All the lab-generated vapour fractions were non-mutagenic. The particulate fractions were mutagenic with TA98 in the presence of the S9 activation. In addition, the lab-fumes from bitumen containing waste plastics were positive with both strains without S9. Only particulate fractions sampled in the field were tested. They were mutagenic with and without metabolic activation with both strains. The mutagenic potency of the field samples was higher than that of the lab-generated fumes without S9, and the remixing fumes were more mutagenic than the normal paving and lab-generated fumes with S9. The use of inorganic additive, CFA, did not change the mutagenicity of the fumes, whereas the organic additive, waste plastics, increased the mutagenicity of the laboratory emissions significantly.

  2. Inhalation Injuries

    Science.gov (United States)

    ... you can inhale that can cause acute internal injuries. Particles in the air from fires and toxic ... and lung diseases worse. Symptoms of acute inhalation injuries may include Coughing and phlegm A scratchy throat ...

  3. No genotoxicity in rat blood cells upon 3- or 6-month inhalation exposure to CeO2 or BaSO4 nanomaterials.

    Science.gov (United States)

    Cordelli, Eugenia; Keller, Jana; Eleuteri, Patrizia; Villani, Paola; Ma-Hock, Lan; Schulz, Markus; Landsiedel, Robert; Pacchierotti, Francesca

    2017-01-01

    In the course of a 2-year combined chronic toxicity-carcinogenicity study performed according to Organisation for Economic Co-operation and Development (OECD) Test Guideline 453, systemic (blood cell) genotoxicity of two OECD representative nanomaterials, CeO2 NM-212 and BaSO4 upon 3- or 6-month inhalation exposure to rats was assessed. DNA effects were analysed in leukocytes using the alkaline Comet assay, gene mutations and chromosome aberrations were measured in erythrocytes using the flow cytometric Pig-a gene mutation assay and the micronucleus test (applying both microscopic and flow cytometric evaluation), respectively. Since nano-sized CeO2 elicited lung effects at concentrations of 5mg/m(3) (burdens of 0.5mg/lung) in the preceding range-finding study, whereas nano-sized BaSO4 did not induce any effect, female rats were exposed to aerosol concentrations of 0.1 up to 3mg/m(3) CeO2 or 50mg/m(3) BaSO4 nanomaterials (6h/day; 5 days/week; whole-body exposure). The blood of animals treated with clean air served as negative control, whereas blood samples from rats treated orally with three doses of 20mg/kg body weight ethylnitrosourea at 24h intervals were used as positive controls. As expected, ethylnitrosourea elicited significant genotoxicity in the alkaline Comet and Pig-a gene mutation assays and in the micronucleus test. By contrast, 3- and 6-month CeO2 or BaSO4 nanomaterial inhalation exposure did not elicit significant findings in any of the genotoxicity tests. The results demonstrate that subchronic inhalation exposure to different low doses of CeO2 or to a high dose of BaSO4 nanomaterials does not induce genotoxicity on the rat hematopoietic system at the DNA, gene or chromosome levels.

  4. Inhalation toxicity of Cyclosarin (GF) vapor in rats as a function of exposure concentration and duration: potency comparison to sarin (GB).

    Science.gov (United States)

    Anthony, J Steven; Haley, M; Manthei, J; Way, R; Burnett, D; Gaviola, B; Sommerville, D; Crosier, R; Mioduszewski, R; Thomson, S; Crouse, C; Matson, K

    2004-02-01

    The inhalation toxicity of cyclohexyl methylphosphonofluoridate (GF) was examined in male and female Sprague-Dawley rats exposed by whole body in a dynamic 750-L chamber. The objectives of this study were to (1) generate GF vapor in a dynamic inhalation chamber system, starting in the lethal to near-lethal concentration range, (2) examine dose-response effects of inhaled GF vapor and analyze the relationship between concentration (C) and exposure duration (T) in determining probability of lethality, and (3) establish a lethal potency ratio between GF and the more volatile agent Sarin (GB). Using a syringe pump, GF vapor concentrations were generated for exposure times of 10, 60, and 240 min. Dose-response curves with associated slopes were determined for each exposure duration by the Bliss probit method. GF vapor exposures were associated with sublethal clinical signs such as tremors, convulsions, salivation, and miosis. Concentration-exposure time values for lethality in 50% of the exposed population (LCT(50)) were calculated for 24-h and 14-day postexposure periods for 10-, 60-, and 240-min exposures. In general, LCT(50) values were lower in female rats than males and increased with exposure duration; that is, CT was not constant over time. The GF LCT(50) values for female rats were 253 mg min/m(3) at 10 min, 334 mg min/m(3) at 60 min, and 533 mg min/m(3) at 240 min, while the values for males were 371, 396, and 585 mg min/m(3), respectively. The GB LCT(50) values for female rats were 235 mg min/m(3) at 10 min, 355 mg min/m(3) at 60 min, and 840 mg min/m(3) at 240 min, while the values for males were 316, 433, and 1296 mg min/m(3), respectively. At longer exposure durations, the LCT(50) for GF was less than that found for GB but at shorter exposure durations, the LCT(50) for GF was more than that found for GB. Empirical models, consisting of the toxic load model plus higher order terms, were developed and successfully fit to the data.

  5. Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heated cooking oils produced in Taiwan.

    Science.gov (United States)

    Chiang, T A; Wu, P F; Wang, L F; Lee, H; Lee, C H; Ko, Y C

    1997-11-28

    According to epidemiologic studies, exposure of women to fumes from cooking oils appears to be an important risk factor for lung cancer. Fume samples from three different commercial cooking oils frequently used in Taiwan were collected and analyzed for mutagenicity in the Salmonella/microsome assay. Polycyclic aromatic hydrocarbons were extracted from the samples and identified by HPLC chromatography. Extracts from three cooking oil fumes were found to be mutagenic in the presence of S9 mix. All samples contained dibenz[a,h]anthracene (DB[a,h]A) and benz[a]anthracene (B[a]A). Concentration of DB[a,h]A and B[a]A were 1.9 and 2.2 micrograms/m3 in fumes from lard oil, 2.1 and 2.3 micrograms/m3 in soybean oil, 1.8 and 1.3 micrograms/m3 in peanut oil, respectively. Benzo[a]pyrene (B[a]P) was identified in fume samples of soybean and peanut oil, in concentrations of 19.6 and 18.3 micrograms/m3, in this order. These results provide experimental evidence and support the findings of epidemiologic observations, in which women exposed to the emitted fumes of cooking oils are at increased risk of contracting lung cancer.

  6. Biological characterization of radiation exposure and dose estimates for inhaled uranium milling effluents. Annual progress report April 1, 1982-March 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Eidson, A.F.

    1984-05-01

    The problems addressed are the protection of uranium mill workers from occupational exposure to uranium through routine bioassay programs and the assessment of accidental worker exposures. Comparisons of chemical properties and the biological behavior of refined uranium ore (yellowcake) are made to identify important properties that influence uranium distribution patterns among organs. These studies will facilitate calculations of organ doses for specific exposures and associated health risk estimates and will identify important bioassay procedures to improve evaluations of human exposures. A quantitative analytical method for yellowcake was developed based on the infrared absorption of ammonium diuranate and U/sub 3/O/sub 8/ mixtures in KBr. The method was applied to yellowcake samples obtained from six operating mills. The composition of yellowcake from the six mills ranged from nearly pure ammonium diuranate to nearly pure U/sub 3/O/sub 8/. The composition of yellowcake samples taken from lots from the same mill was only somewhat less variable. Because uranium mill workers might be exposed to yellowcake either by contamination of a wound or by inhalation, a study of retention and translocation of uranium after subcutaneous implantation in rats was done. The results showed that 49% of the implanted yellowcake cleared from the body with a half-time (T sub 1/2) in the body of 0.3 days, and the remainder was cleared with a T sub 1/2 of 11 to 30 days. Exposures of Beagle dogs by nose-only inhalation to aerosols of commercial yellowcake were completed. Biochemical indicators of kidney dysfunction that appeared in blood and urine 4 to 8 days after exposure to the more soluble yellowcake showed significant changes in dogs, but levels returned to normal by 16 days after exposure. No biochemical evidence of kidney dysfunction was observed in dogs exposed to the less soluble yellowcake form. 18 figures, 9 tables.

  7. Response of the mouse lung transcriptome to welding fume: effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Antonini James M

    2010-06-01

    Full Text Available Abstract Background Debate exists as to whether welding fume is carcinogenic, but epidemiological evidence suggests that welders are an at risk population for the development of lung cancer. Recently, we found that exposure to welding fume caused an acutely greater and prolonged lung inflammatory response in lung tumor susceptible A/J versus resistant C57BL/6J (B6 mice and a trend for increased tumor incidence after stainless steel (SS fume exposure. Here, our objective was to examine potential strain-dependent differences in the regulation and resolution of the lung inflammatory response induced by carcinogenic (Cr and Ni abundant or non-carcinogenic (iron abundant metal-containing welding fumes at the transcriptome level. Methods Mice were exposed four times by pharyngeal aspiration to 5 mg/kg iron abundant gas metal arc-mild steel (GMA-MS, Cr and Ni abundant GMA-SS fume or vehicle and were euthanized 4 and 16 weeks after the last exposure. Whole lung microarray using Illumina Mouse Ref-8 expression beadchips was done. Results Overall, we found that tumor susceptibility was associated with a more marked transcriptional response to both GMA-MS and -SS welding fumes. Also, Ingenuity Pathway Analysis revealed that gene regulation and expression in the top molecular networks differed between the strains at both time points post-exposure. Interestingly, a common finding between the strains was that GMA-MS fume exposure altered behavioral gene networks. In contrast, GMA-SS fume exposure chronically upregulated chemotactic and immunomodulatory genes such as CCL3, CCL4, CXCL2, and MMP12 in the A/J strain. In the GMA-SS-exposed B6 mouse, genes that initially downregulated cellular movement, hematological system development/function and immune response were involved at both time points post-exposure. However, at 16 weeks, a transcriptional switch to an upregulation for neutrophil chemotactic genes was found and included genes such as S100A8, S100A9 and

  8. Four weeks' inhalation exposure of Long Evans rats to 4-tert-butyltoluene: Effect on evoked potentials, behaviour and brain neurochemistry

    DEFF Research Database (Denmark)

    Lam, Henrik Rye; Ladefoged, Ole; Østergaard, Grete

    2000-01-01

    Long-lasting central nervous system (CNS) neurotoxicity of 4-tert-butyltoluene (TBT) has been investigated using electrophysiology, behaviour, and neurochemistry in Long Evans rats exposed by inhalation to 0, 20, or 40 p.p.m. TBT 6 hr/day, 7 days/week for 4 weeks. Flash evoked potentials...... and somatosensory evoked potentials were not affected by TBT In Auditory Brain Stem Response there was no shift in hearing threshold, but the amplitude of the first wave was increased in both exposed groups at high stimulus levels. Three to four months after the end of exposure, behavioural studies in Morris water...... maze and eight-arm maze failed to demonstrate any TBT induced effects. Exposure was followed by a 5 months exposure-free period prior to gross regional and subcellular (synaptosomal) neurochemical investigations of the brain. TBT reduced the NA concentration in whole brain minus cerebellum...

  9. Systemic inflammatory responses following welding inhalation challenge test

    Directory of Open Access Journals (Sweden)

    Paula Kauppi

    2015-01-01

    Conclusions: Exposure to MS and SS welding fume resulted in a mild systemic inflammatory response. The particle concentration from the breathing zones correlated with the measurements inside the welding face shields.

  10. Alteration of brain levels of neurotransmitters and amino acids in male F344 rats induced by three-week repeated inhalation exposure to 1-bromopropane.

    Science.gov (United States)

    Suda, Megumi; Honma, Takeshi; Miyagawa, Muneyuki; Wang, Rui-Sheng

    2008-08-01

    The present study investigated the effects of 1-bromopropane (1BP) on brain neuroactive substances of rats to determine the extent of its toxicity to the central nervous system (CNS). We measured the changes in neurotransmitters (acetylcholine, catecholamine, serotonin and amino acids) and their metabolites or precursors in eight brain regions after inhalation exposure to 1BP at 50 to 1,000 ppm for 8 h per day for 7 d per week for 3 wk. Rats were sacrificed at 2 h (Case 1), or at 19 h (Case 2) after the end of exposure. In Case 1, the level of 5-hydroxyindoleacetic acid (5HIAA) was lowered in some brain regions by 1BP exposure. The decrease of 5HIAA in the frontal cortex was statistically significant at 50 ppm 1BP exposure. In Case 2, gamma-amino butyric acid (GABA) and taurine were decreased in many brain regions of exposed rats, and a significant decrease of taurine in the midbrain occurred at 50 ppm 1BP exposure. In both cases of 2-h and 19-h intervals from the end of exposure to sacrifice, aspartate and glutamine levels were elevated in many brain regions, but the acetylcholine level did not change in any brain region. Three-week repeated exposure to 1BP produced significantly changes in amino acid contents of rat brains, particularly at 1,000 ppm.

  11. Studies on the Inhalation Toxicity of Dyes Present in Colored Smoke Munitions. Phase III, Studies: Four-Week Inhalation Exposures of Rats to Dye Aerosols.

    Science.gov (United States)

    1984-09-10

    response in rats exposed to the highest concentration (Table 21). The elevation in cytoplasmic enzymes in SAL (lactate dehydrogenase (L0H), glutathion ...reductase, and glutathione Speroxidase) indicates the SY/SG dye mixture caused some cell damage. The * Increased activity of the lysosomal enzyme, p...a renal infarct, and testicular atrophy. In brief, a mild exposure-related lesion was observed around the terminal airways in the lungs of all rats

  12. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure

    NARCIS (Netherlands)

    Gosens, Ilse; Cassee, Flemming R|info:eu-repo/dai/nl/143038990; Zanella, Michela; Manodori, Laura; Brunelli, Andrea; Costa, Anna Luisa; Bokkers, Bas G H|info:eu-repo/dai/nl/304847062; de Jong, Wim H; Brown, David; Hristozov, Danail; Stone, Vicki

    2016-01-01

    INTRODUCTION: Increased use of nanomaterials has raised concerns about the potential for undesirable human health and environmental effects. Releases into the air may occur and, therefore, the inhalation route is of specific interest. Here we tested copper oxide nanoparticles (CuO NPs) after

  13. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure

    NARCIS (Netherlands)

    Gosens, Ilse; Cassee, Flemming R; Zanella, Michela; Manodori, Laura; Brunelli, Andrea; Costa, Anna Luisa; Bokkers, Bas G H; de Jong, Wim H; Brown, David; Hristozov, Danail; Stone, Vicki

    2016-01-01

    INTRODUCTION: Increased use of nanomaterials has raised concerns about the potential for undesirable human health and environmental effects. Releases into the air may occur and, therefore, the inhalation route is of specific interest. Here we tested copper oxide nanoparticles (CuO NPs) after repeate

  14. Differential Responses upon Inhalation Exposure to Biodiesel versus Diesel Exhaust on Oxidative Stress, Inflammatory and Immune Outcomes

    Science.gov (United States)

    Biodiesel (BD) exhaust may have reduced adverse health effects due to lower mass emissions and reduced production of hazardous compounds compared to diesel exhaust. To investigate this possibility, we compared adverse effects in lungs and liver of BALB/cJ mice after inhalation ex...

  15. A Simple, Transparent Fume Hood

    Science.gov (United States)

    Fredericks, John

    1998-10-01

    An inexpensive transparent fume hood can be constructed from a clear-plastic two-liter soft drink bottle that is cut just above the base. A length of vacuum tubing is secured to the opening of the bottle using black electrical tape. The tubing is then connected to a water aspirator. Beakers or flasks easily fit inside the bottle, and the bottle may be secured with a clamp and ring stand for added stability. This device has been used to collect the noxious NO2 gas generated from the reaction of copper metal with nitric acid. It also may be used in the collection of other gases. It should not be used to collect gases that are not water-soluble or in experiments that involve open flames.

  16. How safe are chemical fume hoods for the chemists?%排风柜的实验安全防护效率

    Institute of Scientific and Technical Information of China (English)

    Dominique Laloux

    2013-01-01

    The long term danger of inhaling chemicals in a chemistry laboratory is widely undermined,and the safety of fume hoods, supposed to protect against the inhalation of chemicals is much more complexthan users think. Intends to help chemists understanding what safety level they should expect from a ducted fume hood and from ductless filtering fume hoods recirculating air into the laboratory room.%实验员在实验过程中吸入的化学气体将导致健康危害.排风柜作为实验室基础防护设备,远比想象的复杂.主要帮助实验员了解传统外排式排风柜和无风管自净型排风柜在安全防护方面应达到的标准.

  17. Use of sulfur hexafluoride airflow studies to determine the appropriate number and placement of air monitors in an alpha inhalation exposure laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Newton, G.J.; Hoover, M.D.

    1995-12-01

    Determination of the appropriate number and placement of air monitors in the workplace is quite subjective and is generally one of the more difficult tasks in radiation protection. General guidance for determining the number and placement of air sampling and monitoring instruments has been provided by technical reports such as Mishima, J. These two documents and other published guidelines suggest that some insight into sampler placement can be obtained by conducting airflow studies involving the dilution and clearance of the relatively inert tracer gas sulfur hexafluoride (SF{sub 6}) in sampler placement studies and describes the results of a study done within the ITRI alpha inhalation exposure laboratories. The objectives of the study were to document an appropriate method for conducting SF{sub 6} dispersion studies, and to confirm the appropriate number and placement of air monitors and air samplers within a typical ITRI inhalation exposure laboratory. The results of this study have become part of the technical bases for air sampling and monitoring in the test room.

  18. Contribution of time-activity pattern and microenvironment to black carbon (BC) inhalation exposure and potential internal dose among elementary school children

    Science.gov (United States)

    Jeong, Hyeran; Park, Donguk

    2017-09-01

    The aims of this study were to quantify the contributions of activities or microenvironments (MEs) to daily total exposure to and potential dose of black carbon (BC). Daily BC exposures (24-h) were monitored using a micro-aethalometer micoAeth AE51 with forty school-aged children living in an urban area in Korea from August 2015 to January 2016. The children's time-activity patterns and the MEs they visited were investigated by means of a time-activity diary (TAD) and follow-up interviews with the children and their parents. Potential inhaled dose was estimated by multiplying the airborne BC concentrations (μg/m3) we monitored for the time the children spent in a particular ME by the inhalation rate (IR, m3/h) for the time-activity performed. The contribution of activities and MEs to overall daily exposure to and potential dose of BC was quantified. Overall mean daily potential dose was equal to 24.1 ± 10.6 μg/day (range: 6.6-46.3 μg/day). The largest contribution to BC exposure and potential dose (51.9% and 41.7% respectively) occurred in the home thanks to the large amount of time spent there. Transportation was where children received the most intense exposure to (14.8%) and potential dose (20.2%) of BC, while it accounted for 7.6% of daily time. School on weekdays during the semester was responsible for 20.3% of exposure and 22.5% of potential dose. Contribution to BC exposure and potential dose was altered by several time-activity parameters, such as type of day (weekdays vs. weekends; school days vs. holidays), season, and gender. Traveling by motor vehicle and subway showed more elevated exposure or potential dose intensity on weekdays or school days, probably influenced by the increased surrounding traffic volumes on these days compared to on weekends or holidays. This study may be used to prioritize targets for minimizing children's exposure to BC and to indicate outcomes of BC control strategies.

  19. Design for a Miniature Portable Fume Hood.

    Science.gov (United States)

    Bailey, Ronald A.; Wait, Samuel C., Jr.

    1999-01-01

    Describes the design of undergraduate chemical laboratory fume hoods. Proves that folding the sides and top permit the hood and its duct hose to be stored in a standard 18-inch-wide laboratory cabinet. (WRM)

  20. Genotoxic effects of fumes from asphalt modified with waste plastic and tall oil pitch.

    Science.gov (United States)

    Lindberg, Hanna K; Väänänen, Virpi; Järventaus, Hilkka; Suhonen, Satu; Nygren, Jonas; Hämeilä, Mervi; Valtonen, Jarkko; Heikkilä, Pirjo; Norppa, Hannu

    2008-05-31

    As the use of recycled materials and industrial by-products in asphalt mixtures is increasing, we investigated if recycled additives modify the genotoxicity of fumes emitted from asphalt. Fumes were generated in the laboratory at paving temperature from stone-mastic asphalt (SMA) and from SMA modified with waste plastic (90% polyethylene, 10% polypropylene) and tall oil pitch (SMA-WPT). In addition, fumes from SMA, SMA-WPT, asphalt concrete (AC), and AC modified with waste plastic and tall oil pitch (AC-WPT) were collected at paving sites. The genotoxicity of the fumes was studied by analysis of DNA damage (measured in the comet assay) and micronucleus formation in human bronchial epithelial BEAS 2B cells in vitro and by counting mutations in Salmonella typhimurium strains TA98 and YG1024. DNA damage was also assessed in buccal leukocytes from road pavers before and after working with SMA, SMA-WPT, AC, and AC-WPT. The chemical composition of the emissions was analysed by gas chromatography/mass spectrometry. The SMA-WPT fume generated in the laboratory induced a clear increase in DNA damage in BEAS 2B cells without metabolic activation. The laboratory-generated SMA fume increased the frequency of micronucleated BEAS 2B cells without metabolic activation. None of the asphalt fumes collected at the paving sites produced DNA damage with or without metabolic activation. Fumes from SMA and SMA-WPT from the paving sites increased micronucleus frequency without metabolic activation. None of the asphalt fumes studied showed mutagenic activity in Salmonella. No statistically significant differences in DNA damage in buccal leukocytes were detected between the pre- and post-shift samples collected from the road pavers. However, a positive correlation was found between DNA damage and the urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) after work shift, which suggested an association between occupational exposures during road paving and genotoxic effects. Our

  1. Repeated inhalation exposure to octamethylcyclotetrasiloxane produces hepatomegaly, transient hepatic hyperplasia, and sustained hypertrophy in female Fischer 344 rats in a manner similar to phenobarbital.

    Science.gov (United States)

    McKim, J M; Kolesar, G B; Jean, P A; Meeker, L S; Wilga, P C; Schoonhoven, R; Swenberg, J A; Goodman, J I; Gallavan, R H; Meeks, R G

    2001-04-15

    Octamethylcyclotetrasiloxane (D4) has been described as a phenobarbital-like inducer of hepatic enzymes. Phenobarbital (PB) and phenobarbital-like chemicals induce transient hepatic and thyroid hyperplasia and sustained hypertrophy in rats and mice. The extent to which these processes are involved with D4-induced hepatomegaly is not known. The present study has evaluated the effects of repeated inhalation exposure to D4 vapors on hepatic and thyroid cell proliferation and hypertrophy with respect to time and exposure concentration. Female Fischer 344 rats were exposed via whole body inhalation to 0 ppm D4, 700 ppm D4 vapors (6 h/day; 5 days/week), or 0.05% PB in drinking water over a 4-week period. Incorporation of 5'-bromo-2-deoxyuridine (BrdU) and the abundance of proliferating cell nuclear antigen were used as indicators of cell proliferation. Designated animals from each treatment group were euthanized on study days 6, 13, and 27. The effect of D4 exposure concentration on hepatic cell proliferation was evaluated at 0, 7, 30, 70, 150, 300, or 700 ppm. Liver-to-body weight ratios in animals exposed to 700 ppm D4 were increased 18, 20, and 22% over controls while PB-treated animals showed increases of 33, 27, and 27% over controls on days 6, 13, and 27 respectively. Hepatic incorporation of BrdU following exposure to D4 was highest on day 6 (labeling index = 15-22%) and was at or below control values by day 27. This pattern of transient hyperplasia was observed in all hepatic lobes examined and was similar to the pattern observed following treatment with PB.

  2. Toxicology and humoral immunity assessment of octamethylcyclotetrasiloxane (D4) following a 28-day whole body vapor inhalation exposure in Fischer 344 rats.

    Science.gov (United States)

    Klykken, P C; Galbraith, T W; Kolesar, G B; Jean, P A; Woolhiser, M R; Elwell, M R; Burns-Naas, L A; Mast, R W; McCay, J A; White, K L; Munson, A E

    1999-11-01

    Octamethylcyclotetrasiloxane, D4, is a low viscosity, silicone fluid consisting of four dimethyl-siloxy units ((CH3)2SiO)4 in a cyclic structure. It is primarily used as a building block in the industrial synthesis of long chain silicone polymers. The combination of D4 with decamethylcyclopentasiloxane (D5) is commonly referred to as cyclomethicone which has a wide range of applications as a formulation aid in personal care products. To extend the existing database regarding the biological activities of D4, a 28 day whole body vapor inhalation study was conducted using Fischer 344 rats at 0 (room air), 7, 20, 60, 180 and 540 ppm for 6 hours/day, 5 days/week. Parameters measured included body weights, organ weights, gross pathology, histopathology, serum chemistries, and urinalysis. In addition to these standard toxicological endpoints, the ability of D4 exposed animals to mount an IgM antibody response was evaluated by a splenic antibody forming cell (AFC) assay and a serum enzyme-linked immunosorbant assay (ELISA). The results of this 28-day inhalation study indicate that D4 exposure caused no adverse effects on body weight, food consumption, or urinalysis parameters. In addition, there were no exposure related histopathological alterations at any site for any exposure group. A statistically significant increase in liver weight and the liver to body weight ratio was observed in both male (180-540 ppm) and female (20-540 ppm) rats, which was not observed in the 14-day recovery group animals. There were no other significant organ weight changes. Although statistically significant changes were observed in several hematological and serum chemistry parameters in both the terminal and 14-day recovery animals, the changes were marginal and within the normal range of values for the rat. Under these experimental conditions, there were no alterations noted in immune system function at any of the D4 exposure levels.

  3. Influence of Silica Fume on Normal Concrete

    Directory of Open Access Journals (Sweden)

    Debabrata Pradhan

    2013-09-01

    Full Text Available The incorporation of silica fume into the normal concrete is a routine one in the present days to produce the tailor made high strength and high performance concrete. The design parameters are increasing with the incorporation of silica fume in conventional concrete and the mix proportioning is becoming complex. The main objective of this paper has been made to investigate the different mechanical properties like compressive strength, compacting factor, slump of concrete incorporating silica fume. In this present paper 5 (five mix of concrete incorporating silica fume are cast to perform experiments. These experiments were carried out by replacing cement with different percentages of silica fume at a single constant water-cementitious materials ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15% and 20% for water-cementitious materials (w/cm ratio for 0.40. For all mixes compressive strengths were determined at 24 hours, 7 and 28 days for 100 mm and 150 mm cubes. Other properties like compacting factor and slump were also determined for five mixes of concrete.

  4. WOOD COLOR CHANGES BY AMMONIA FUMING

    Directory of Open Access Journals (Sweden)

    Josip Miklečić,

    2012-06-01

    Full Text Available This paper studies the influence of ammonia gas on wood color changes in response to an increasing demand for dark colored wood specimens. The darker wood color in ammonia fuming is accomplished through chemical reactions between ammonia gas and wood compounds. We exposed oak, maple, spruce, and larch wood samples to ammonia gas for 16 days. During fuming, the color changes were studied using CIE L*a*b* parameters. After fuming, the changes in extractives content, tannin, and nitrogen content were analyzed. The chemical changes of wood and residues of wood extractives after fuming were analyzed by FTIR spectroscopy. Oak wood reacted intensively with ammonia gas in a very short time, and the darkening was prominent for all the investigated wood species. It was established that tannin had no major influence on color changes of maple and larch wood in the ammonia-fuming process. The FTIR spectra of fumed wood indicated involvement of carbonyl groups, and the FTIR spectra of wood extractives indicated involvement of carbonyl, aromatic, and alcohol groups in reaction with ammonia gas.

  5. Inhaler technique

    DEFF Research Database (Denmark)

    Levy, M L; Dekhuijzen, P R N; Barnes, P J

    2016-01-01

    of this process: the use of inhalers is bewildering enough, particularly with regular introduction of new drugs, devices and ancillary equipment, without unnecessary and pointless adages. We review the evidence, or lack thereof, underlying ten items of inhaler 'lore' commonly passed on by health professionals...

  6. Testing Silica Fume-Based Concrete Composites under Chemical and Microbiological Sulfate Attacks

    Directory of Open Access Journals (Sweden)

    Adriana Estokova

    2016-04-01

    Full Text Available Current design practices based on descriptive approaches to concrete specification may not be appropriate for the management of aggressive environments. In this study, the durability of cement-based materials with and without the addition of silica fume, subjected to conditions that leach calcium and silicon, were investigated. Chemical corrosion was simulated by employing various H2SO4 and MgSO4 solutions, and biological corrosion was simulated using Acidithiobacillus sp. bacterial inoculation, leading to disrupted and damaged surfaces; the samples’ mass changes were studied following both chemical and biological attacks. Different leaching trends were observed via X-ray fluorescence when comparing chemical with biological leaching. Lower leaching rates were found for concrete samples fortified with silica fume than those without silica fume. X-ray diffraction and scanning electron microscopy confirmed a massive sulfate precipitate formation on the concrete surface due to bacterial exposure.

  7. Effects of acute inhalation of aerosols generated during resistance spot welding with mild-steel on pulmonary, vascular and immune responses in rats

    Science.gov (United States)

    Zeidler-Erdely, Patti C.; Meighan, Terence G.; Erdely, Aaron; Fedan, Jeffrey S.; Thompson, Janet A.; Bilgesu, Suzan; Waugh, Stacey; Anderson, Stacey; Marshall, Nikki B.; Afshari, Aliakbar; McKinney, Walter; Frazer, David G.; Antonini, James M.

    2015-01-01

    Spot welding is used in the automotive and aircraft industries, where high-speed, repetitive welding is needed to join thin sections of metal. Epoxy adhesives are applied as sealers to the metal seams. Pulmonary function abnormalities and airway irritation have been reported in spot welders, but no animal toxicology studies exist. Therefore, the goal of this study was to investigate vascular, immune and lung toxicity measures after exposure to these metal fumes in an animal model. Male Sprague-Dawley rats were exposed by inhalation to 25 mg/m3 to either mild-steel spot welding aerosols with sparking (high metal, HM) or without sparking (low metal, LM) for 4 h/d for 3, 8 and 13 d. Shams were exposed to filtered air. Bronchoalveolar lavage (BAL), lung gene expression and ex vivo BAL cell challenge were performed to assess lung toxicity. Lung resistance (RL) was evaluated before and after challenge with inhaled methacholine (MCh). Functional assessment of the vascular endothelium in isolated rat tail arteries and leukocyte differentiation in the spleen and lymph nodes via flow cytometry was also done. Immediately after exposure, baseline RL was significantly elevated in the LM spot welding aerosols, but returned to control level by 24 h postexposure. Airway reactivity to MCh was unaffected. Lung inflammation and cytotoxicity were mild and transient. Lung epithelial permeability was significantly increased after 3 and 8 d, but not after 13 d of exposure to the HM aerosol. HM aerosols also caused vascular endothelial dysfunction and increased CD4+, CD8+ and B cells in the spleen. Only LM aerosols caused increased IL-6 and MCP-1 levels compared with sham after ex vivo LPS stimulation in BAL macrophages. Acute inhalation of mild-steel spot welding fumes at occupationally relevant concentrations may act as an irritant as evidenced by the increased RL and result in endothelial dysfunction, but otherwise had minor effects on the lung. PMID:25140454

  8. Pollution level and inhalation exposure of ambient aerosol fluoride as affected by polymetallic rare earth mining and smelting in Baotou, north China

    Science.gov (United States)

    Zhong, Buqing; Wang, Lingqing; Liang, Tao; Xing, Baoshan

    2017-10-01

    Airborne fluoride associated with total suspended particles (TSP) and respirable particulate (PM10) in the rare earth mining and smelting areas were analyzed during August 2012 and March 2013. In March, average concentrations of fluoride bound to TSP in the mining and smelting areas were 0.598 ± 0.626 μg/m3 and 3.615 ± 4.267 μg/m3, respectively, whereas that in August were 0.699 ± 0.801 μg/m3 and 1.917 ± 2.233 μg/m3, respectively. TSP samples were classified into four categories by different sampling periods and locations using Kohonen's self-organizing map, which demonstrates that high airborne fluoride concentrations in March in the smelting area were probably attributed to industrial emissions from smelting activities and wind-blown dust from tailings pond, influenced by meteorologic parameters such as temperature, relative humidity, precipitation and wind speed. The mean daily amount of fluoride inhaled in the mining and smelting areas were estimated to be in the range of 2.77-57.61 μg/day and 3.39-64.32 μg/day, respectively. These results indicate the high potential exposure level of fluoride inhaled for local residents in the polymetallic mining and smelting areas.

  9. Inhalational Lung Disease

    Directory of Open Access Journals (Sweden)

    S Kowsarian

    2010-01-01

    Full Text Available Inhalational lung diseases are among the most important occupational diseases. Pneumoconiosis refers to a group of lung diseases result from inhalation of usually inorganic dusts such as silicon dioxide, asbestos, coal, etc., and their deposition in the lungs. The resultant pulmonary disorders depend on the susceptibility of lungs; size, concentration, solubility and fibrogenic properties of the inhaled particles; and duration of exposure. Radiographic manifestations of pneumoconiosis become apparent several years after exposure to the particles. However, for certain types of dusts, e.g., silicone dioxide crystal and beryllium, heavy exposure within a short period can cause an acute disease. Pulmonary involvement in asbestosis is usually in the lower lobes. On the contrary, in silicosis and coal worker pneumoconiosis, the upper lobes are involved predominantly. For imaging evaluation of pneumoconiosis, high-resolution computed tomography (CT is superior to conventional chest x-ray. Magnetic resonance imaging (MRI and positron emission tomography (PET scan are helpful in those with suspected tumoral lesions. In this essay, we reviewed the imaging aspects of inhalational lung disease.

  10. Effect of restricted food supply to pregnant rats inhaling carbon monoxide on fetal weight, compared with cigarette smoke exposure

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, N.; Aoyama, M.

    1986-12-01

    Although many studies have shown that cigarette smoking during gestation retarded the intrauterine fetal growth, resulting in the decreased birth weight in babies born to smoking mothers, neither causal substance nor mechanism of action to disturb fetal growth has been firmly established yet. Based on the human and animal studies, researchers have implied that fetal hypoxia induced by carbon monoxide (CO) in the cigarette smoke to be responsible for the event. A shortage in energy intake in smoking mothers also has been suspected to cause the retardation in fetal development. In the previous results (Tachi and Aoyama 1983), the weight increment in CO exposed animals was greater than that in the smoke exposed group. The phenomenon seemed to indicate that the reduction in the food intake occurs in animals which inhale the cigarette smoke, and induces the disturbance of fetal development in association with CO. In the present study, so as to evaluate the role of energy intake upon the fetal development in utero, the experiment of paired feeding with pregnant rats exposed to cigarette smoke is designed in animals which inhale the cigarette smoke, CO, or room air, following after the observation of the quantity of food taken by mothers exposed to cigarette smoke, CO, or room air.

  11. Abdominal bloating and irritable bowel syndrome like symptoms following microinstillation inhalation exposure to chemical warfare nerve agent VX in guinea pigs.

    Science.gov (United States)

    Katos, Alexandre M; Conti, Michele L; Moran, Theodore S; Gordon, Richard K; Doctor, Bhupendra P; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2007-05-01

    While assessing the methylphosphonothioic acid S-(2-(bis(1-methylethyl)amino)ethyl)O-ethyl ester (VX) induced respiratory toxicity and evaluating therapeutics against lung injury, we observed that the animals were experiencing abnormal swelling in the abdominal area. Nerve agent has been known to increase salivary, nasal and gastrointestinal secretion and cause diarrhea. This study was initiated to investigate the effect of VX on the gastrointestinal tract (GI) since abdominal pathology may affect breathing and contribute to the on going respiratory toxicity. The mid-abdominal diameter and the size of the lower left abdomen was measured before and after 27.3 mg/m3 VX exposure by microinstillation and at 30 min intervals up to 2 h post-VX exposure. Both VX and saline exposed animals exhibited a decrease in circumference of the upper abdomen, although the decrease was slightly higher in VX-exposed animals up to 1 h. The waist diameter increased slightly in VX-exposed animals from 60 to 90 min post-VX exposure but was similar to saline controls. The lower left abdomen near to the cecum, 6 cm below and 2cm to the right of the end of the sternum, showed an increase in size at 30-60 min that was significantly increased at 90-120 min post-VX exposure. In addition, VX-exposed animals showed loose fecal matter compared to controls. Necropsy at 24h showed an increased small intestine twisting motility in VX-exposed animals. Body tissue AChE assay showed high inhibition in the esophagus and intestine in VX-exposed animals indicating that a significant amount of the agent is localized to the GI following microinstillation exposure. These results suggest that microinstillatipn inhalation VX exposure induces gastrointestinal disturbances similar to that of irritable bowel syndrome and bloating.

  12. Phthalate esters (PAEs) in indoor PM10/PM2.5 and human exposure to PAEs via inhalation of indoor air in Tianjin, China

    Science.gov (United States)

    Zhang, Leibo; Wang, Fumei; Ji, Yaqin; Jiao, Jiao; Zou, Dekun; Liu, Lingling; Shan, Chunyan; Bai, Zhipeng; Sun, Zengrong

    2014-03-01

    In this study, filter samples of six Phthalate esters (PAEs) in indoor PM10 and PM2.5 were collected from thirteen homes in Tianjin, China. The results showed that the concentrations of Σ6PAEs in indoor PM10 and PM2.5 were in the range of 13.878-1591.277 ng m-3 and 7.266-1244.178 ng m-3, respectively. Dibutyl phthalate (DBP) was the most abundant compounds followed by di-2-ethylhexyl phthalate (DEHP) in indoor PM10 and PM2.5. Whereas DBP and dimethyl phthalate (DMP) were the predominant compounds in indoor air (gas-phase + particle-phase), the median values were 573.467 and 368.364 ng m-3 respectively. The earlier construction time, the lesser indoor area, the old decoration, the very crowded items coated with plastic and a lower frequency of dusting may lead to a higher level of PAEs in indoor environment. The six PAEs in indoor PM10 and PM2.5 were higher in summer than those in winter. The daily intake (DI) of six PAEs for five age groups through air inhalation in indoor air in Tianjin was estimated. The results indicated that the highest exposure dose was DBP in every age group, and infants experienced the highest total DIs (median: 664.332 ng kg-bw-1 day-1) to ∑6PAEs, whereas adults experienced the lowest total DIs (median: 155.850 ng kg-bw-1 day-1) to ∑6PAEs. So, more attention should be paid on infants in the aspect of indoor inhalation exposure to PAEs.

  13. Circulating factors induce coronary endothelial ceIl activation foIlowing exposure to inhaled diesel exhaust and nitrogen dioxide in humans :Evidence from a novel translational in vitro model

    Science.gov (United States)

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  14. Asphalt fume dermal carcinogenicity potential: I. dermal carcinogenicity evaluation of asphalt (bitumen) fume condensates.

    Science.gov (United States)

    Clark, Charles R; Burnett, Donald M; Parker, Craig M; Arp, Earl W; Swanson, Mark S; Minsavage, Gary D; Kriech, Anthony J; Osborn, Linda V; Freeman, James J; Barter, Robert A; Newton, Paul E; Beazley, Shelley L; Stewart, Christopher W

    2011-10-01

    Asphalt (bitumen) fume condensates collected from the headspace above paving and Type III built up roofing asphalt (BURA) tanks were evaluated in two-year dermal carcinogenicity assays in male C3H/HeNCrl mice. A third sample was generated from the BURA using a NIOSH laboratory generation method. Similar to earlier NIOSH studies, the BURA fume condensates were applied dermally in mineral oil twice per week; the paving sample was applied 7 days/week for a total weekly dose of 50 mg/wk in both studies. A single benign papilloma was observed in a group of 80 mice exposed to paving fume condensate at the end of the two-year study and only mild skin irritation was observed. The lab generated BURA fume condensate resulted in statistically significant (P<0.0001) increases in squamous cell carcinomas (35 animals or 55% of animals at risk). The field-matched BURA condensate showed a weaker but significant (P=0.0063) increase (8 carcinomas or 13% of animals) and a longer average latency (90 weeks vs. 76 for the lab fume). Significant irritation was observed in both BURA condensates. It is concluded that the paving fume condensate was not carcinogenic under the test conditions and that the field-matched BURA fume condensate produced a weak tumor response compared to the lab generated sample.

  15. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training.

  16. Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users

    Science.gov (United States)

    Lin, Nan; Chen, Yuanchen; Du, Wei; Shen, Guofeng; Zhu, Xi; Huang, Tianbo; Wang, Xilong; Cheng, Hefa; Liu, Junfeng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy Y.; Xing, Baoshan; Tao, Shu

    2016-12-01

    Polycyclic aromatica hydrocarbons (PAHs) are a group of compounds with carcinogenic potentials and residential solid fuel combustion is one major source of PAHs in most developing countries. Replacement of traditional stoves with improved ones is believed to be a practical approach to reduce pollutant emissions, however, field assessments on the performance and consequent impacts on air quality and human health after adopting improved stoves are rare. The study is the first time to quantify inhalation exposure to PAHs among the residents who adopted wood gasifier stoves. The results were compared to those still burning coals in the region and compared to exposure levels for different fuel/stove users in literature. The results showed that the PAHs exposure levels for the wood gasifier stove users were significantly lower than the values for those using traditional wood stoves reported in literature, and the daily exposure concentrations of BaPeq (Benzo[a]pyrene equivalent concentration) can be reduced by 48%-91% if traditional wood stoves were replaced by wood gasifier stoves. The corresponding Incremental Lifetime Cancer Risk (ILCR) decreased approximately four times from 1.94 × 10-4 to 5.17 × 10-5. The average concentration of the total 26 PAHs for the wood users was 1091 ± 722 ng/m3, which was comparable to 1060 ± 927 ng/m3 for those using anthracite coals, but the composition profiles were considerably different. The average BaPeq were 116 and 25.8 ng/m3 for the wood and coal users, respectively, and the corresponding ILCR of the anthracite coal users was 1.69 × 10-5, which was nearly one third of those using the wood gasifier stoves. The wood users exposed to not only high levels of high molecular weight PAHs, but relatively high fractions of particulate phase PAHs in small particles compared to the coal users, resulting in high exposure risks.

  17. Type I interferon and pattern recognition receptor signaling following particulate matter inhalation

    Directory of Open Access Journals (Sweden)

    Erdely Aaron

    2012-07-01

    Full Text Available Abstract Background Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. Results The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10. In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3 were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88 to inhalation of GMA-SS. Conclusion This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.

  18. Children's phthalate intakes and resultant cumulative exposures estimated from urine compared with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers.

    Directory of Open Access Journals (Sweden)

    Gabriel Bekö

    Full Text Available Total daily intakes of diethyl phthalate (DEP, di(n-butyl phthalate (DnBP, di(isobutyl phthalate (DiBP, butyl benzyl phthalate (BBzP and di(2-ethylhexyl phthalate (DEHP were calculated from phthalate metabolite levels measured in the urine of 431 Danish children between 3 and 6 years of age. For each child the intake attributable to exposures in the indoor environment via dust ingestion, inhalation and dermal absorption were estimated from the phthalate levels in the dust collected from the child's home and daycare center. Based on the urine samples, DEHP had the highest total daily intake (median: 4.42 µg/d/kg-bw and BBzP the lowest (median: 0.49 µg/d/kg-bw. For DEP, DnBP and DiBP, exposures to air and dust in the indoor environment accounted for approximately 100%, 15% and 50% of the total intake, respectively, with dermal absorption from the gas-phase being the major exposure pathway. More than 90% of the total intake of BBzP and DEHP came from sources other than indoor air and dust. Daily intake of DnBP and DiBP from all exposure pathways, based on levels of metabolites in urine samples, exceeded the Tolerable Daily Intake (TDI for 22 and 23 children, respectively. Indoor exposures resulted in an average daily DiBP intake that exceeded the TDI for 14 children. Using the concept of relative cumulative Tolerable Daily Intake (TDI(cum, which is applicable for phthalates that have established TDIs based on the same health endpoint, we examined the cumulative total exposure to DnBP, DiBP and DEHP from all pathways; it exceeded the tolerable levels for 30% of the children. From the three indoor pathways alone, several children had a cumulative intake that exceeded TDI(cum. Exposures to phthalates present in the air and dust indoors meaningfully contribute to a child's total intake of certain phthalates. Such exposures, by themselves, may lead to intakes exceeding current limit values.

  19. Health Effects Associated with Inhalation Exposure to Diesel Emission Generated with and without CeO2 Nano Fuel Additive

    Science.gov (United States)

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...

  20. Does exposure to inhalation anesthesia gases change the ratio of X-bearing sperms and Y-bearing Sperms? A worth exploring project into an uncharted domain.

    Science.gov (United States)

    Gupta, Deepak; Mckelvey, George; Kaminski, Edward; Zestos, Maria Markakis

    2016-09-01

    According to recent surveys performed in United States and India, anesthesia care providers were observed to have sired female offspring in a higher proportion than male offspring as their firstborn progeny; however, the reasons for the skew are not clear. Our hypothesis is that the underlying biological evidence may be elucidated by unraveling differences (if any) between the concentrations of X-bearing sperms and Y-bearing sperms in the semen samples obtained from males exposed to varied levels of anesthetics in their lifetimes. Therefore, the objectives of the envisaged study would be to conduct a three-stage investigative study on in-vitro human semen samples to determine (a) X-bearing sperms and Y-bearing sperms concentrations' ratio in male pediatric anesthesia care providers' semen samples, (b) changes in X-bearing sperms and Y-bearing sperms concentrations' ratios between the pre-rotation and post-rotation semen samples of male medical student volunteers/observers, and (c) changes in X-bearing sperms and Y-bearing sperms concentrations' ratios between the pre-operative and post-operative day-3 semen samples of male patients presenting for outpatient procedures under inhalational anesthesia. The expected outcomes would be (a) linear and positive correlation of the anesthetic gas usage (exposure) with increased X-bearing sperms/Y-bearing sperms ratio in post-anesthesia day 3 sample as compared to the baseline preoperative sample, (b) linear and positive correlation of the anesthetic gas usage (exposure) with increased X-bearing sperms/Y-bearing sperms ratio in post-rotation sample as compared to the baseline sample, and (c) observation of high X-bearing sperms/Y-bearing sperms ratio in the pediatric anesthesia care providers. In summary, effects (if any) of occupational or personal exposure to inhalational anesthetic gases on the X-bearing sperms and Y-bearing sperms ratio is a worthy project wherein lots of questions that have arisen over decades could find

  1. Repeated inhalation exposure of rats to an anionic high molecular weight polymer aerosol: application of prediction models to better understand pulmonary effects and modes of action.

    Science.gov (United States)

    Pauluhn, Jürgen

    2014-08-01

    Opposed to the wealth of information available for kinetic lung overload-related effects of poorly-soluble, low-toxicity particles (PSP), only limited information is available on biodegradable high molecular weight (HMW) organic polymers (molecular weight >20,000 Da). It is hypothesized that such types of polymers may exert a somewhat similar volume displacement-related mode of action in alveolar macrophages as PSP; however, with a differing biokinetics of the material retained in the lung. This polyurethane polymer was examined in single and 2-/13-week repeated exposure rat inhalation bioassays. The design of studies was adapted to that commonly applied for PSP. Rats were nose-only exposed for 6h/day for the respective study duration, followed by 1-, 2- and 4-week postexposure periods in the single, 2- and 13-week studies, respectively. While the findings in bronchoalveolar lavage (BAL) and histopathology were consistent with those typical of PSP, they appear to be superimposed by pulmonary phospholipidosis and a much faster reversibility of pulmonary inflammation. Kinetic modeling designed to estimate the accumulated lung burden of biopersistent PSP was also suitable to simulate the overload-dependent outcomes of this biodegradable polymer as long as the faster than normal elimination kinetics was observed and an additional 'void space volume' was added to adjust for the phagocytosed additional fraction of pulmonary phospholipids. The changes observed following repeated inhalation exposure appear to be consistent with a retention-related etiopathology (kinetic overload). In summary, this study did not reveal evidence of any polymer-specific pulmonary irritation or parenchymal injury. Taking all findings into account, 7 mg polymer/m(3) (exposure 6h/day, 5-days/week on 13 consecutive weeks) constitutes the point of departure for lower respiratory tract findings that represent a transitional state from effects attributable to an overload-dependent pulmonary

  2. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China.

    Science.gov (United States)

    Huang, Ye; Du, Wei; Chen, Yuanchen; Shen, Guofeng; Su, Shu; Lin, Nan; Shen, Huizhong; Zhu, Dan; Yuan, Chenyi; Duan, Yonghong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2017-08-25

    Personal exposure to size-segregated particles among rural residents in Shanxi, China in summer, 2011 were investigated using portable carried samplers (N = 84). Household air pollution was simultaneously studied using stationary samplers in nine homes. Information on household fuel types, cooking activity, smoking behavior, kitchen ventilation conditions etc., were also collected and discussed. The study found that even in the summer period, the daily average concentrations of PM2.5 and PM1.0 in the kitchen were as high as 376 ± 573 and 288 ± 397 μg/m(3) (N = 6), that were nearly 3 times of 114 ± 81 and 97 ± 77 μg/m(3) in the bedroom (N = 8), and significantly higher than those of 64 ± 28 and 47 ± 21 μg/m(3) in the outdoor air (N = 6). The personal daily exposure to PM2.5 and PM1.0 were 98 ± 52 and 77 ± 47 μg/m(3), respectively, that were lower than the concentrations in the kitchen but higher than the outdoor levels. The mass fractions of PM2.5 in TSP were 90%, 72%, 65% and 68% on average in the kitchen, bedroom, outdoor air and personal inhalation exposure, respectively, and moreover, a majority of particles in PM2.5 had diameters less than 1.0 μm. Calculated time-weighted average exposure based on indoor and outdoor air concentrations and time spent indoor and outdoor were positively correlated but, was ∼33% lower than the directly measured exposure. The daily exposure among those burning traditional solid fuels could be lower by ∼41% if the kitchen was equipped with an outdoor chimney, but was still 8-14% higher than those household using cleaning energies, like electricity and gas. With a ventilator in the kitchen, the exposure among the population using clean energies could be further reduced by 10-24%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment.

    Science.gov (United States)

    van Sittert, N J; Boogaard, P J; Natarajan, A T; Tates, A D; Ehrenberg, L G; Törnqvist, M A

    2000-01-17

    Ethylene oxide (EO) is mutagenic in various in vitro and in vivo test systems and carcinogenic in rodents. EO forms different adducts upon reaction with DNA, N7-(2-hydroxyethyl)guanine (N7-HEG) being the main adduct. The major objectives of this study were: (a) to determine the formation and persistence of N7-HEG adducts in liver DNA of adult male rats exposed to 0, 50, 100 and 200 ppm by inhalation (4 weeks, 5 days/week, 6 h/day) and (b) to assess dose-response relationships for Hprt gene mutations and various types of chromosomal changes in splenic lymphocytes.N7-HEG adducts were measured 5, 21, 35 and 49 days after cessation of exposure. By extrapolation, the mean concentrations of N7-HEG immediately after cessation of exposure ('day 0') to 50, 100 and 200 ppm were calculated as 310, 558 and 1202 adducts/10(8) nucleotides, respectively, while the mean concentration in control rats was 2.6 adducts/10(8) nucleotides. At 49 days, N7-HEG values had returned close to background levels. The mean levels of N-(2-hydroxyethylvaline) adducts in haemoglobin were also determined and amounted 61.7, 114 and 247 nmol/g globin, respectively. Statistically significant linear relationships were found between mean N7-HEG levels ('day 0') and Hprt mutant frequencies at expression times 21/22 and 49/50 days and between mean N7-HEG ('day 0') and sister-chromatid exchanges (SCEs) or high frequency cells (HFC) measured 5 days post-exposure. At day 21 post-exposure, SCEs and HFCs in-part persisted and were significantly correlated with persistent N7-HEG adducts. No statistically significant dose effect relationships were observed for induction of micronuclei, nor for chromosome breaks or translocations. In conclusion, this study indicates that following sub-chronic exposure, EO is only weakly mutagenic in adult rats. Using the data of this study to predict cancer risk in man resulting from low level EO exposures in conjunction with other published data, i.e., those on (a) genotoxic

  4. Persistence of Change: Fume Hood Campaign Lessons

    Science.gov (United States)

    Feder, Elah; Robinson, Jennifer; Wakefield, Sarah

    2012-01-01

    Purpose: Sustainability initiatives typically operate for a limited time period, but it is often unclear whether they have lasting effects. The purpose of this paper is to examine a laboratory fume hood campaign, in order to identify factors that might contribute or detract from long-term change persistence. Design/methodology/approach: The…

  5. Radon and Thoron Measured in Petrol and Gas-oil Exhaust Fumes by Using CR-39 and LR-115 II Nuclear Track Detectors: Radiation Doses to the Respiratory Tract of Mechanic Workers.

    Science.gov (United States)

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-06-01

    Mechanic workers are exposed to exhaust fumes when controlling vehicle engines in motion inside repair shops. To assess radiation doses due to radon short-lived progeny from the inhalation of exhaust fumes by mechanic workers, concentrations of these radionuclides were measured in petrol (gasoline) and gas-oil exhaust fumes by evaluating mean critical angles of etching of the CR-39 and LR-115 type II SSNTDs for alpha particles emitted by the radon and thoron decay series. Committed effective doses due to ²¹⁸Po and ²¹⁴Po short-lived radon decay products from the inhalation of petrol and gas-oil exhaust fumes by workers were evaluated. A maximum value of 1.35 mSv y⁻¹ due to radon short-lived decay products from the inhalation of gas-oil exhaust fumes by mechanic workers was found, which is lower than the (3-10 mSv y⁻¹) dose limit interval for workers.

  6. Interaction of exposure concentration and duration in determining the apoptosis of testis in rats after cigarette smoke inhalation

    Directory of Open Access Journals (Sweden)

    Lijuan He

    2016-07-01

    Full Text Available The effects of differences in smoke concentration and exposure duration in Sprague Dawley rats to determine variation in type and severity of the testis apoptosis were evaluated. The daily dosages were 10, 20 and 30 non-filter cigarettes for a period of 2, 4, 6, 8 and 12 weeks. Mainstream smoke exposure suppressed body weight gain in all regimens. A dose-related increase in plasma nicotine concentration was observed in smoke-exposed groups for 4, 6, 8 and 12 week regimens. Histopathological examination of the exposed groups showed disturbances in the stages of spermatogenesis, tubules atrophying and these appeared to be dose-related. Cytoplasmic caspase-3 immunostaining was detected both in Sertoli cells and germ cells in smoke-exposure groups. An increase in TUNEL-positive cells of testicular cells was observed after 6 weeks of cigarette exposure. The results indicate that cigarette exposure concentration and duration have interaction effect to induce apoptosis in the rat testes.

  7. Biodistribution of the GATA-3-specific DNAzyme hgd40 after inhalative exposure in mice, rats and dogs.

    Science.gov (United States)

    Turowska, Agnieszka; Librizzi, Damiano; Baumgartl, Nadja; Kuhlmann, Jens; Dicke, Tanja; Merkel, Olivia; Homburg, Ursula; Höffken, Helmut; Renz, Harald; Garn, Holger

    2013-10-15

    The DNAzyme hgd40 was shown to effectively reduce expression of the transcription factor GATA-3 RNA which plays an important role in the regulation of Th2-mediated immune mechanisms such as in allergic bronchial asthma. However, uptake, biodistribution and pharmacokinetics of hgd40 have not been investigated yet. We examined local and systemic distribution of hgd40 in naive mice and mice suffering from experimental asthma. Furthermore, we evaluated the pharmacokinetics as a function of dose following single and repeated administration in rats and dogs. Using intranasal administration of fluorescently labeled hgd40 we demonstrated that the DNAzyme was evenly distributed in inflamed asthmatic mouse lungs within minutes after single dose application. Systemic distribution was investigated in mice using radioactive labeled hgd40. After intratracheal application, highest amounts of hgd40 were detected in the lungs. High amounts were also detected in the bladder indicating urinary excretion as a major elimination pathway. In serum, low systemic hgd40 levels were detected already at 5 min post application (p.a.), subsequently decreasing over time to non-detectable levels at 2h p.a. As revealed by Single Photon Emission Computed Tomography, trace amounts of hgd40 were detectable in lungs up to 7 days p.a. Also in the toxicologically relevant rats and dogs, hgd40 was detectable in blood only shortly after inhalative application. The plasma pharmacokinetic profile was dose and time dependent. Repeated administration did not lead to drug accumulation in plasma of dogs and rats. These pharmacokinetic of hgd40 provide guidance for clinical development, and support an infrequent and convenient dose administration regimen.

  8. Assessment of the reproductive toxicity of inhalation exposure to ethyl tertiary butyl ether in male mice with normal, low active and inactive ALDH2.

    Science.gov (United States)

    Weng, Zuquan; Ohtani, Katsumi; Suda, Megumi; Yanagiba, Yukie; Kawamoto, Toshihiro; Nakajima, Tamie; Wang, Rui-Sheng

    2014-04-01

    No data are available regarding aldehyde dehydrogenase 2 (ALDH2) polymorphisms related to the reproductive toxicity possibly caused by ethyl tertiary butyl ether (ETBE). In this study, two inhalation experiments were performed in Aldh2 knockout (KO), heterogeneous (HT) and wild type (WT) C57BL/6 male mice exposed to ETBE, and the data about general toxicity, testicular histopathology, sperm head numbers, sperm motility and sperm DNA damage were collected. The results showed that the 13-week exposure to 0, 500, 1,750 and 5,000 ppm ETBE significantly decreased sperm motility and increased levels of sperm DNA strand breaks and 8-hydroxy-deoxyguanosine in both WT and KO mice, the effects were found in 1,750 and 5,000 ppm groups of WT mice, and all of the three exposed groups of KO mice compared to the corresponding control; furthermore, ETBE also caused decrease in the relative weights of testes and epididymides, the slight atrophy of seminiferous tubules of testis and reduction in sperm numbers of KO mice exposed to ≥500 ppm. In the experiment of exposure to lower concentrations of ETBE (0, 50, 200 and 500 ppm) for 9 weeks, the remarkable effects of ETBE on sperm head numbers, sperm motility and sperm DNA damage were further observed in KO and HT mice exposed to 200 ppm ETBE, but not in WT mice. Our findings suggested that only exposure to high concentrations of ETBE might result in reproductive toxicity in mice with normal active ALDH2, while low active and inactive ALDH2 enzyme significantly enhanced the ETBE-induced reproductive toxicity in mice, even exposed to low concentrations of ETBE, mainly due to the accumulation of acetaldehyde as a primary metabolite of ETBE.

  9. Effectiveness of personal protective equipment: Relevance of dermal and inhalation exposure to chlorpyrifos among pest control operators

    NARCIS (Netherlands)

    Jagt, K. van der; Tielemans, E.; Links, I.; Brouwer, D.; Hemmen, J. van

    2004-01-01

    This study assessed the effectiveness of a custom fit personal protective equipment (PPE) program aimed at reducing occupational exposure to pesticides. The intervention study was carried out on 15 pest control operators (PCOs) during mixing/loading and application of chlorpyrifos. Each worker was m

  10. The Study Of Histopathological Effects Of Welding Fumes On Spermatogenesis In Rat

    Directory of Open Access Journals (Sweden)

    Arab M R

    2005-07-01

    Full Text Available Background: Fumes generated during electric welding are one of air pollutants of working place in industrial companies, which can cause some clinical signs and diseases in worker, including mucosal irritation, changing of semen quality and cancer. Chronic exposure of workers with these fumes can cause reduce sperm motility and forward penetration and decrease in normal sperm count. Although a lot of researches were done in this field up to now, there is little information about histopathological effects of these fumes on germinal epithelium. The aim of this study was to identify structural changes of germinal epithelium in Rat as an experimental model after exposure to fumes of electric welding in exposure chamber. Material and Methods: A total number of 60 Sprague Dawley Rats were chosen and divided into experimental (40 and control (20 groups. Each of groups was subdivided into 2, 4, 6 and 8-week subgroups. The number of Rat in each subgroup of experimental and control group was 10 and 5 respectively. Animals were housed in standard situation. After adaptation experimental group were exposed to fumes of electric welding (AMA 2000 electrode, 100 Ampere, 0.1 cm/s speed of electrode welding for 2 hour/day and 5 day/week. The rate of air turn over in exposure chamber was fixed to 12-15/hour. The amount of O3, CO, CO2, NO + NO2 and particulate matter were measured by Galtec detectors and Cellulose acetate filter respectively. According to time table animals were killed and specimens from testis were taken and fixed in formaline buffer solution and processed routinely. Sections with 5-7 micrometer in thickness were stained by H-E, PAS, PNA and Alcian blue pH=2.5. The thickness of germinal epithelium was measured and data were analyzed by Kruskall Wallis test. Results: The results of this study showed a few quantitative and qualitative changes in germinal epithelium. Vasodilatation of vessels in tunica albuginea and interstitial tissue, decreasing of

  11. Local exhaust ventilation for the control of welding fumes in the construction industry--a literature review.

    Science.gov (United States)

    Flynn, Michael R; Susi, Pam

    2012-08-01

    Arc welding is a common unit operation in the construction industry, where frequent changes in location and welding position make it more difficult to control fume exposures than in industries where fixed locations are the norm. Welders may be exposed to a variety of toxic airborne contaminants including manganese (Mn) and hexavalent chromium (CrVI). Local exhaust ventilation (LEV) is a well-known engineering control for welding fumes but has not been adopted widely in the construction industry. This literature review presents data on the performance of a variety of LEV systems for welding fume control from the construction (five references), shipyard (five references), and other industries. The studies indicate that LEV can reduce fume exposures to total particulate, Mn, and CrVI to levels below currently relevant standards. Field studies suggest that 40-50% or more reduction in exposure is possible with portable or fixed LEV systems relative to natural ventilation but that correct positioning of the hood and adequate exhaust flow rates are essential. Successful implementation of extraction guns for gas metal arc welding (GMAW) and flux core arc welding has been demonstrated, indicating that a successful balance between extraction airflow and shielding gas requirements is possible. Work practices are an important part of achieving successful control of fume exposures; in particular, positioning the hood close to the arc, checking exhaust flow rates, and avoiding the plume. Further research is needed on hood size effects for controlling welding fume with portable LEV systems and identifying and overcoming barriers to LEV use in construction.

  12. INTRAUTERINE EXPOSURE TO LEAD MAY ENHANCE SENSITIZATION TO COMMON INHALANT ALLERGENS IN EARLY CHILDHOOD. A PROSPECTIVE PREBIRTH COHORT STUDY

    Science.gov (United States)

    Jedrychowski, Wieslaw; Perera, Frederica; Maugeri, Umberto; Miller, Rachel L.; Rembiasz, Maria; Flak, Elzbieta; Mroz, Elzbieta; Majewska, Renata; Zembala, Marek

    2010-01-01

    Background Several in vivo and in vitro studies have shown that metal-rich particles may enhance allergic responses to house dust mites and induce an increased release of allergy-related cytokines. Objectives The main goal of this analysis is to define the possible association of intrauterine exposure to lead and mercury with the occurrence of skin sensitization to common aeroallergens in early childhood. Material and Methods The present study refers to a sample of 224 women in the second trimester of pregnancy recruited from Krakow inner city area who had full term pregnancies and whose children underwent skin prick testing (SPT) at the age of 5. Lead and mercury levels were assessed in cord blood and retested in children at age of 5 years. Aeroallergen concentrations in house dust were measured at the age of 3 years. The main health outcome (atopic status) was defined as the positive SPT to at least one common aeroallergen (Der f1, Der p1, Can f1 and Fel d1) at the age of 5 years. In the statistical analysis of the association between atopic status of children and exposure to metals, the study considered a set of covariates such as maternal characteristics (age, education, atopy), child’s gender, number of older siblings, prenatal (measured via cord blood cotinine) and postnatal environmental tobacco smoke together with exposure to polycyclic aromatic hydrocarbons (PAH) as measured by PAH-DNA adducts. Results and conclusion In the binary regression analysis, which controlled for the confounders, the risk ratio (RR) estimate for atopic sensitization was significantly associated with the lead exposure (RR =2.25, 95%CI: 1.21–4.19). In conclusion, the data suggest that even very low-level of prenatal lead exposure may be implicated in enhancing sensitization to common aeroallergens in early childhood. PMID:21094490

  13. A novel method for assessing respiratory deposition of welding fume nanoparticles.

    Science.gov (United States)

    Cena, L G; Keane, M J; Chisholm, W P; Stone, S; Harper, M; Chen, B T

    2014-01-01

    Welders are exposed to high concentrations of nanoparticles. Compared to larger particles, nanoparticles have been associated with more toxic effects at the cellular level, including the generation of more reactive oxygen species activity. Current methods for welding-fume aerosol exposures do not differentiate between the nano-fraction and the larger particles. The objectives of this work are to establish a method to estimate the respiratory deposition of the nano-fraction of selected metals in welding fumes and test this method in a laboratory setting. Manganese (Mn), Nickel (Ni), Chromium (Cr), and hexavalent chromium (Cr(VI)) are commonly found in welding fume aerosols and have been linked with severe adverse health outcomes. Inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) were evaluated as methods for analyzing the content of Mn, Ni, Cr, and Cr(VI) nanoparticles in welding fumes collected with nanoparticle respiratory deposition (NRD) samplers. NRD samplers collect nanoparticles at deposition efficiencies that closely resemble physiological deposition in the respiratory tract. The limits of detection (LODs) and quantitation (LOQs) for ICP-MS and IC were determined analytically. Mild and stainless steel welding fumes generated with a robotic welder were collected with NRD samplers inside a chamber. LODs (LOQs) for Mn, Ni, Cr, and Cr(VI) were 1.3 μg (4.43 μg), 0.4 μg (1.14 μg), 1.1 μg (3.33 μg), and 0.4 μg (1.42 μg), respectively. Recovery of spiked samples and certified welding fume reference material was greater than 95%. When testing the method, the average percentage of total mass concentrations collected by the NRD samplers was ~30% for Mn, ~50% for Cr, and ~60% for Ni, indicating that a large fraction of the metals may lie in the nanoparticle fraction. This knowledge is critical to the development of toxicological studies aimed at finding links between exposure to welding fume nanoparticles and adverse health

  14. Release of airborne particles and Ag and Zn compounds from nanotechnology-enabled consumer sprays: Implications for inhalation exposure

    Science.gov (United States)

    Calderón, Leonardo; Han, Taewon T.; McGilvery, Catriona M.; Yang, Letao; Subramaniam, Prasad; Lee, Ki-Bum; Schwander, Stephan; Tetley, Teresa D.; Georgopoulos, Panos G.; Ryan, Mary; Porter, Alexandra E.; Smith, Rachel; Chung, Kian Fan; Lioy, Paul J.; Zhang, Junfeng; Mainelis, Gediminas

    2017-04-01

    The increasing prevalence and use of nanotechnology-enabled consumer products have increased potential consumer exposures to nanoparticles; however, there is still a lack of data characterizing such consumer exposure. The research reported here investigated near-field airborne exposures due to the use of 13 silver (Ag)-based and 5 zinc (Zn)-based consumer sprays. The products were sprayed into a specially designed glove box, and all products were applied with equal spraying duration and frequency. Size distribution and concentration of the released particles were assessed using a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the presence of metals in all investigated products. Spray liquids and airborne particles from select products were examined using transmission electron microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDS). We found that all sprays produced airborne particles ranging in size from nano-sized particles (2.5 μm); however, there was a substantial variation in the released particle concentration depending on a product. The total aerosol mass concentration was dominated by the presence of coarse particles, and it ranged from ∼30 μg/m3 to ∼30,000 μg/m3. The TEM verified the presence of nanoparticles and their agglomerates in liquid and airborne states. The products were found to contain not only Ag and Zn compounds - as advertised on the product labeling - but also a variety of other metals including lithium, strontium, barium, lead, manganese and others. The results presented here can be used as input to model population exposures as well as form a basis for human health effects studies due to the use nanotechnology-enabled products.

  15. Functional evidence of persistent airway obstruction in rats following a two-hour inhalation exposure to methyl isocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M.A.; Fitzgerald, S.; Menache, M.G.; Costa, D.L.; Bucher, J.R.

    1987-06-01

    Pulmonary function was assessed in male, F344 rats 1,2,4,7 and 13 weeks after a single 2-hr exposure to 0, 3, 10, or 30 ppm methyl isocyanate. No significant changes were observed in the rats exposed to 3 ppm through 13 weeks. Diffusing capacity (DL/sub co/), quasistatic lung compliance, and homogeneity of ventilation, as determined by multibreath nitrogen washout, were depressed in the rats exposed to 10 and 30 ppm by 1 week after exposure. None of the rats exposed to 30 ppm survived beyond 1 week. By 13 weeks, dramatic increases in lung volumes were observed in the rats exposed to 10 ppm, while DL/sub co/ and lung compliance were only mildly affected. However, volume-specific DL/sub co/ and compliance were depressed in the rats exposed to 10 ppm, suggesting that lung hyperinflation or other compensatory means of increasing lung size occurred in response to the methyl isocyanate-induced lung lesion. This group also exhibited increased expiratory times during tidal breathing and severely impaired distribution of ventilated air. Collectively, these results suggest the development and likely progression of a severe, obstructive airway lesion with associated gas trapping, and the existence of a pronounced concentration-response relationship between 3 and 10 ppm methyl isocyanate exposures.

  16. Health hazards due to the inhalation of amorphous silica.

    Science.gov (United States)

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  17. Development of linear and threshold no significant risk levels for inhalation exposure to titanium dioxide using systematic review and mode of action considerations.

    Science.gov (United States)

    Thompson, Chad M; Suh, Mina; Mittal, Liz; Wikoff, Daniele S; Welsh, Brian; Proctor, Deborah M

    2016-10-01

    Titanium dioxide (TiO2) has been characterized as a poorly soluble particulate (PSP) with low toxicity. It is well accepted that low toxicity PSPs such as TiO2 induce lung tumors in rats when deposition overwhelms particle clearance mechanisms. Despite the sensitivity of rats to PSPs and questionable relevance of PSP-induced tumors to humans, TiO2 is listed as a possible human carcinogen by some agencies and regulators. Thus, environmental toxicity criteria for TiO2 are needed for stakeholders to evaluate potential risks from environmental exposure and regulatory compliance. A systematic review of the literature was conducted to characterize the available data and identify candidate datasets upon which toxicity values could be derived. Key to this assessment, a survey of mechanistic data relevant for lung cancer was used to support quantitative inhalation risk assessment approaches. A total of 473 human studies were identified, 7 of which were epidemiological studies that met inclusion criteria to quantitatively characterize carcinogenic endpoints in humans. None of these studies supported derivation of toxicity criteria; therefore, animal data were used to derived safety values for TiO2 using different dose-metrics (regional deposited dose ratios, TiO2 particle surface area lung burden, and volumetric overload of alveolar macrophages), benchmark dose modeling, and different low-dose extrapolation approaches. Based on empirical evidence and mechanistic support for nonlinear mode of action involving particle overload, chronic inflammation and cell proliferation, a no significant risk level (NSRL) of 300 μg/day was derived. By comparison, low-dose linear extrapolation from tumor incidence in the rat lung resulted in an NSRL value of 44 μg/day. These toxicity values should be useful for stakeholders interested in assessing risks from environmental exposure to respirable TiO2.

  18. Biotransformation of 2,3,3,3-tetrafluoropropene (HFO-1234yf) in male, pregnant and non-pregnant female rabbits after single high dose inhalation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Tobias [Institut für Toxikologie, Universität Würzburg, Versbacher Str. 9, 97078 Würzburg (Germany); Bertermann, Rüdiger [Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg (Germany); Rusch, George M. [Honeywell, P.O. Box 1057, Morristown, NJ 07962–1057 (United States); Hoffman, Gary M. [Huntingdon Life Sciences., East Millstone, NJ (United States); Dekant, Wolfgang, E-mail: dekant@toxi.uni-wuerzburg.de [Institut für Toxikologie, Universität Würzburg, Versbacher Str. 9, 97078 Würzburg (Germany)

    2012-08-15

    2,3,3,3-Tetrafluoropropene (HFO-1234yf) is a novel refrigerant intended for use in mobile air conditioning. It showed a low potential for toxicity in rodents studies with most NOAELs well above 10,000 ppm in guideline compliant toxicity studies. However, a developmental toxicity study in rabbits showed mortality at exposure levels of 5,500 ppm and above. No lethality was observed at exposure levels of 2,500 and 4,000 ppm. Nevertheless, increased subacute inflammatory heart lesions were observed in rabbits at all exposure levels. Since the lethality in pregnant animals may be due to altered biotransformation of HFO-1234yf and to evaluate the potential risk to pregnant women facing a car crash, this study compared the acute toxicity and biotransformation of HFO-1234yf in male, female and pregnant female rabbits. Animals were exposed to 50,000 ppm and 100,000 ppm for 1 h. For metabolite identification by {sup 19}F NMR and LC/MS-MS, urine was collected for 48 h after inhalation exposure. In all samples, the predominant metabolites were S-(3,3,3-trifluoro-2-hydroxypropanyl)-mercaptolactic acid and N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine. Since no major differences in urinary metabolite pattern were observed between the groups, only N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine excretion was quantified. No significant differences in recovery between non-pregnant (43.10 ± 22.35 μmol) and pregnant female (50.47 ± 19.72 μmol) rabbits were observed, male rabbits exposed to 100,000 ppm for one hour excreted 86.40 ± 38.87 μmol. Lethality and clinical signs of toxicity were not observed in any group. The results suggest that the lethality of HFO-1234yf in pregnant rabbits unlikely is due to changes in biotransformation patterns or capacity in pregnant rabbits. -- Highlights: ► No lethality and clinical signs were observed. ► No differences in metabolic pattern between pregnant and non-pregnant rabbits. ► Rapid and similar metabolite

  19. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.

    Science.gov (United States)

    Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David

    2013-01-01

    Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be

  20. Demographic Variability of Inhalation Mechanics: A Review

    Science.gov (United States)

    2016-12-01

    discussion of findings from the literature review and recommendations for inhalation modeling conclude the section. 4.1. OVERVIEW Gender is an important ...roughly equal between the two genders . Additionally, the literature indicates that there are significant differences in the trachea between women and...influencing inhalation mechanics considered are age, gender , body size and height, ethnicity, smoking, altitude exposure, pregnancy, and lung

  1. Inhaled Corticosteroids

    Directory of Open Access Journals (Sweden)

    Peter J. Barnes

    2010-03-01

    Full Text Available Inhaled corticosteroids (ICS are the most effective controllers of asthma. They suppress inflammation mainly by switching off multiple activated inflammatory genes through reversing histone acetylation via the recruitment of histone deacetylase 2 (HDAC2. Through suppression of airway inflammation ICS reduce airway hyperresponsiveness and control asthma symptoms. ICS are now first-line therapy for all patients with persistent asthma, controlling asthma symptoms and preventing exacerbations. Inhaled long-acting β2-agonists added to ICS further improve asthma control and are commonly given as combination inhalers, which improve compliance and control asthma at lower doses of corticosteroids. By contrast, ICS provide much less clinical benefit in COPD and the inflammation is resistant to the action of corticosteroids. This appears to be due to a reduction in HDAC2 activity and expression as a result of oxidative stress. ICS are added to bronchodilators in patients with severe COPD to reduce exacerbations. ICS, which are absorbed from the lungs into the systemic circulation, have negligible systemic side effects at the doses most patients require, although the high doses used in COPD has some systemic side effects and increases the risk of developing pneumonia.

  2. Pulmonary toxicity of inhaled nanoscale and fine zinc oxide particles: mass and surface area as an exposure metric.

    Science.gov (United States)

    Ho, Meng; Wu, Kuen-Yuh; Chein, Hung-Min; Chen, Lung-Chi; Cheng, Tsun-Jen

    2011-12-01

    The total surface area is known to be an effective exposure metric for predicting the lung toxicity of low solubility nanoparticles (NPs). However, if NPs are dissolved quickly enough in the lungs, the mass may be correlated with the toxicity. Recent studies have found that the toxicity of zinc oxide (ZnO) NPs was caused by the release of zinc ions. Thus, we hypothesized that mass could be used as an exposure metric for the toxicity of ZnO NPs. Healthy Sprague-Dawley rats were exposed to a low, moderate, or high dose of 35 and 250 nm ZnO particles or filtered air. Bronchoalveolar lavage fluid was collected to determine lung inflammation, injury and oxidative stress. The lung inflammation induced by ZnO particles according to different concentration metrics, including number, mass and surface area, was compared. The mass concentration was significantly correlated with the percentage of neutrophils (R(2) = 0.84), number of neutrophils (R(2) = 0.84) and total cells (R(2) = 0.73). Similarly, surface area concentration was significantly correlated with the percentage of neutrophils (R(2) = 0.94), number of neutrophils (R(2) = 0.81) and total cells (R(2) = 0.76). There was no correlation between the number and lung inflammation. We found that both mass and surface area were effective as metrics for the toxicity of ZnO NPs, although only surface area was previously indicated to be an effective metric. Our results are also consistent with recent study results that ZnO NPs and released zinc ions may play a role mediating the toxicity of NPs.

  3. Evaluation of DNA damage by alkaline elution technique after inhalation exposure of rats and mice to 1,3-butadiene.

    Science.gov (United States)

    Vangala, R R; Laib, R J; Bolt, H M

    1993-01-01

    The alkaline filter elution technique was used to evaluate single strand breaks (SSB), DNA-DNA (DDCL) and DNA-protein cross-links (DPCL) in liver and lung of male rats (Sprague-Dawley) and male mice (B6C3F1) after exposure to 2000 ppm 1,3-butadiene (BD) for 7 days (7 h/day and/or to 100, 250, 500, 1000) 2000 ppm BD for 7 h. SSB were detected in liver DNA of both species at 2000 ppm. Cross-links are more pronounced in mouse lung than in mouse liver. Elution rates of lung DNA from mice exposed for 7 h to different concentrations of BD revealed an increase in cross-links between 250 and 500 ppm, and a further increase in cross-links up to 2000 ppm. No such signs of genotoxicity could be observed for the lung of rats. Our data support the involvement of reactive metabolites (epoxybutene and especially diepoxybutane) in butadiene-induced carcinogenesis in the mouse but not to that extent in the rat.

  4. A review of published quantitative experimental studies on factors affecting laboratory fume hood performance.

    Science.gov (United States)

    Ahn, Kwangseog; Woskie, Susan; DiBerardinis, Louis; Ellenbecker, Michael

    2008-11-01

    This study attempted to identify the important factors that affect the performance of a laboratory fume hood and the relationship between the factors and hood performance under various conditions by analyzing and generalizing the results from other studies that quantitatively investigated fume hood performance. A literature search identified 43 studies that were published from 1966 to 2006. For each of those studies, information on the type of test methods used, the factors investigated, and the findings were recorded and summarized. Among the 43 quantitative experimental studies, 21 comparable studies were selected, and then a meta-analysis of the comparable studies was conducted. The exposure concentration variable from the resulting 617 independent test conditions was dichotomized into acceptable or unacceptable using the control level of 0.1 ppm tracer gas. Regression analysis using Cox proportional hazards models provided hood failure ratios for potential exposure determinants. The variables that were found to be statistically significant were the presence of a mannequin/human subject, the distance between a source and breathing zone, and the height of sash opening. In summary, performance of laboratory fume hoods was affected mainly by the presence of a mannequin/human subject, distance between a source and breathing zone, and height of sash opening. Presence of a mannequin/human subject in front of the hood adversely affects hood performance. Worker exposures to air contaminants can be greatly reduced by increasing the distance between the contaminant source and breathing zone and by reducing the height of sash opening. Many other factors can also affect hood performance. Checking face velocity by itself is unlikely to be sufficient in evaluating hood performance properly. An evaluation of the performance of a laboratory fume hood should be performed with a human subject or a mannequin in front of the hood and should address the effects of the activities

  5. [CYP1A1 polymorphisms, lack of glutathione S-transferase M1 (GSTM1), cooking oil fumes and lung cancer risk in non-smoking women].

    Science.gov (United States)

    Zhu, Xiao-Xia; Hu, Cheng-Ping; Gu, Qi-Hua

    2010-11-01

    to study the correlation of polymorphisms of CYP1A1 MspI, GSTM1 null genotype, cooking oil fumes independently and in combination with the risk of non-smoking lung cancer in females. one hundred and sixty female non-smoking patients with primary lung cancer and 160 controls were enrolled from Xiangya Hospital of Central South University. PCR-RELP and PCR were used to detect the distribution of CYP1A1 MspI and GSTM1 genotypes respectively. The correlation of these genes and cooking oil fumes with the susceptibility to lung cancer was analyzed. There was a significant difference in the frequencies of cooking oil fumes exposure between cancer cases and controls (χ(2) = 10.734, P 0.05). The combination of CYP1A1 polymorphisms and cooking oil fumes significantly increased the risk of lung cancer. The frequencies of GSTM1 null genotype was significantly different between cancer cases and controls (χ(2) = 0.518, P cooking fumes had a higher risk of cancer than those with only one of them, the OR being 3.617 (95%CI 1.899 - 6.891). The combination of the two genes significantly increased the risk of lung cancer. cooking oil fumes exposure was a risk factor for non-smoking lung cancer in females. The combination of CYP1A1 with cooking oil fume increased the risk of female lung cancer. GSTM1 null genotype was associated with risk of lung cancer in non-smoking females. The combination of GSTM1 null genotype and cooking oil fumes significantly increased the risk of female lung cancer. The combination of CYP1A1 and GSTM1 significantly increased the risk of lung cancer.

  6. Oxidation of Liquid Silicon in a Medium Scale Induction Furnace: Examination of the Fuming Rate and Fume Composition

    OpenAIRE

    Smith, Nicholas

    2012-01-01

    The aim of this work was to study the effect of flow rate on the fuming rate/silica flux of liquid silicon in order to gain a better understanding of the silica fuming during industrial ladle refining during silicon production. The formation of silica fume is the results when the liquid silicon is exposed to air. This silica fume has been shown to be a health hazard when breathed by plant workers and increased environmental regulations call for its elimination. This work is being done as part...

  7. AN INDUSTRIAL HYGIENE SAMPLING STRATEGY TO QUANTIFY EMPLOYEE EXPOSURE

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aaron L.; Hylko, James M.

    2003-02-27

    Depending on the invasive nature of performing waste management activities, excessive concentrations of mists, vapors, gases, dusts or fumes may be present thus creating hazards to the employee from either inhalation into the lungs or absorption through the skin. To address these hazards, similar exposure groups and an exposure profile result consisting of: (1) a hazard index (concentration); (2) an exposure rating (monitoring results or exposure probabilities); and (3) a frequency rating (hours of potential exposure per week) are used to assign an exposure risk rating (ERR). The ERR determines if the potential hazards pose significant risks to employees linking potential exposure and breathing zone (BZ) monitoring requirements. Three case studies consisting of: (1) a hazard-task approach; (2) a hazard-job classification-task approach; and (3) a hazard approach demonstrate how to conduct exposure assessments using this methodology. Environment, safety and health professionals can then categorize levels of risk and evaluate the need for BZ monitoring, thereby quantifying employee exposure levels accurately.

  8. 41 CFR 50-204.50 - Gases, vapors, fumes, dusts, and mists.

    Science.gov (United States)

    2010-07-01

    ..., and mists. (a) (1) Exposures by inhalation, ingestion, skin absorption, or contact to any material or... do not apply to exposures to airborne asbestos dust. Exposures of employees to airborne asbestos dust... Soapstone 20 Talc 20 Portland cement 50 Graphite (natural) 15 Coat dust (respirable fraction less than 5% Si...

  9. Epigenetic events determine tissue-specific toxicity of inhalational exposure to the genotoxic chemical 1,3-butadiene in male C57BL/6J mice.

    Science.gov (United States)

    Chappell, Grace; Kobets, Tetyana; O'Brien, Bridget; Tretyakova, Natalia; Sangaraju, Dewakar; Kosyk, Oksana; Sexton, Kenneth G; Bodnar, Wanda; Pogribny, Igor P; Rusyn, Ivan

    2014-12-01

    1,3-Butadiene (BD), a widely used industrial chemical and a ubiquitous environmental pollutant, is a known human carcinogen. Although genotoxicity is an established mechanism of the tumorigenicity of BD, epigenetic effects have also been observed in livers of mice exposed to the chemical. To better characterize the diverse molecular mechanisms of BD tumorigenicity, we evaluated genotoxic and epigenotoxic effects of BD exposure in mouse tissues that are target (lung and liver) and non-target (kidney) for BD-induced tumors. We hypothesized that epigenetic alterations may explain, at least in part, the tissue-specific differences in BD tumorigenicity in mice. We evaluated the level of N-7-(2,3,4-trihydroxybut-1-yl)guanine adducts and 1,4-bis-(guan-7-yl)-2,3-butanediol crosslinks, DNA methylation, and histone modifications in male C57BL/6 mice exposed to filtered air or 425 ppm of BD by inhalation (6 h/day, 5 days/week) for 2 weeks. Although DNA damage was observed in all three tissues of BD-exposed mice, variation in epigenetic effects clearly existed between the kidneys, liver, and lungs. Epigenetic alterations indicative of genomic instability, including demethylation of repetitive DNA sequences and alterations in histone-lysine acetylation, were evident in the liver and lung tissues of BD-exposed mice. Changes in DNA methylation were insignificant in the kidneys of treated mice, whereas marks of condensed heterochromatin and transcriptional silencing (histone-lysine trimethylation) were increased. These modifications may represent a potential mechanistic explanation for the lack of tumorigenesis in the kidney. Our results indicate that differential tissue susceptibility to chemical-induced tumorigenesis may be attributed to tissue-specific epigenetic alterations.

  10. Comparative Iron Oxide Nanoparticle Cellular Dosimetry and Response in Mice by the Inhalation and Liquid Cell Culture Exposure Routes

    Energy Technology Data Exchange (ETDEWEB)

    Teeguarden, Justin G.; Mikheev, Vladimir B.; Minard, Kevin R.; Forsythe, William C.; Wang, Wei; Sharma, Gaurav; Karin, Norman J.; Tilton, Susan C.; Waters, Katrina M.; Asgharian, Bahman; Price, Owen; Pounds, Joel G.; Thrall, Brian D.

    2014-01-01

    quantitative comparison of in vitro and in vivo systems advance their use for hazard assessment and extrapolation to humans. The mildly inflammogentic cellular doses experienced by mice were similar those calculated for humans exposed to the same at the existing permissible exposure limit of 10 mg/m3 iron oxide (as Fe).

  11. Genotoxic Evaluation of Mexican Welders Occupationally Exposed to Welding-Fumes Using the Micronucleus Test on Exfoliated Oral Mucosa Cells: A Cross-Sectional, Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Jara-Ettinger

    Full Text Available An estimated 800,000 people worldwide are occupationally exposed to welding-fumes. Previous studies show that the exposure to such fumes is associated with damage to genetic material and increased cancer risk. In this study, we evaluate the genotoxic effect of welding-fumes using the Micronucleus Test on oral mucosa cells of Mexican welders.We conducted a cross-sectional, matched case-control study of n = 66 (33 exposed welders, and 33 healthy controls. Buccal mucosa smears were collected and stained with acridine orange, observed under 100x optical amplification with a fluorescence lamp, and a single-blinded observer counted the number of micronuclei and other nuclear abnormalities per 2,000 observed cells. We compared the frequencies of micronuclei and other nuclear abnormalities, and fitted generalised linear models to investigate the interactions between nuclear abnormalities and the exposure to welding-fumes, while controlling for smoking and age.Binucleated cells and condensed-chromatin cells showed statistically significant differences between cases and controls. The frequency of micronuclei and the rest of nuclear abnormalities (lobed-nuclei, pyknosis, karyolysis, and karyorrhexis did not differ significantly between the groups. After adjusting for smoking, the regression results showed that the occurrence of binucleated cells could be predicted by the exposure to welding-fumes plus the presence of tobacco consumption; for the condensed-chromatin cells, our model showed that the exposure to welding-fumes is the only reliable predictor.Our findings suggest that Mexican welders who are occupationally exposed to welding-fumes have increased counts of binucleated and condensed-chromatin cells. Nevertheless, the frequencies of micronuclei and the rest of nuclear abnormalities did not differ between cases and controls. Further studies should shed more light on this subject.

  12. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.

    Science.gov (United States)

    Cho, Hyun-Woo; Yoon, Chung-Sik; Lee, Jin-Ho; Lee, Seung-Joo; Viner, Andrew; Johnson, Erik W

    2011-07-01

    Respirators are used to help reduce exposure to a variety of contaminants in workplaces. Test aerosols used for certification of particulate respirators (PRs) include sodium chloride (NaCl), dioctyl phthalate, and paraffin oil. These aerosols are generally assumed to be worst case surrogates for aerosols found in the workplace. No data have been published to date on the performance of PRs with welding fumes, a hazardous aerosol that exists in real workplace settings. The aim of this study was to compare the performance of respirators and filters against a NaCl aerosol and a welding fume aerosol and determine whether or not a correlation between the two could be made. Fifteen commercial PRs and filters (seven filtering facepiece, two replaceable single-type filters, and six replaceable dual-type filters) were chosen for investigation. Four of the filtering facepiece respirators, one of the single-type filters, and all of the dual-type filters contained carbon to help reduce exposure to ozone and other vapors generated during the welding process. For the NaCl test, a modified National Institute for Occupational Safety and Health protocol was adopted for use with the TSI Model 8130 automated filter tester. For the welding fume test, welding fumes from mild steel flux-cored arcs were generated and measured with a SIBATA filter tester (AP-634A, Japan) and a manometer in the upstream and downstream sections of the test chamber. Size distributions of the two aerosols were measured using a scanning mobility particle sizer. Penetration and pressure drop were measured over a period of aerosol loading onto the respirator or filter. Photos and scanning electron microscope images of clean and exposed respirators were taken. The count median diameter (CMD) and mass median diameter (MMD) for the NaCl aerosol were smaller than the welding fumes (CMD: 74 versus 216 nm; MMD: 198 versus 528 nm, respectively). Initial penetration and peak penetration were higher with the NaCl aerosol

  13. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, P.W. [Duke Power Company, Huntersville, NC (United States)

    1997-08-01

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  14. High effective silica fume alkali activator

    Indian Academy of Sciences (India)

    Vladimír Živica

    2004-04-01

    Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali activated cements. A significant factor influencing their properties is alkali activator used. In this paper we present a new high effective alkali activator prepared from silica fume and its effectiveness. According to the results obtained this activator seems to be more effective than currently used activators like natrium hydroxide, natrium carbonate, and water glass.

  15. Evaluation of the fate and pathological response in the lung and pleura of brake dust alone and in combination with added chrysotile compared to crocidolite asbestos following short-term inhalation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, D.M., E-mail: davidb@itox.ch [Consultant in Toxicology, Geneva (Switzerland); Rogers, R.A., E-mail: rarogers5@yahoo.com [Rogers Imaging, Needham, MA (United States); Sepulveda, R. [Rogers Imaging, Needham, MA (United States); Kunzendorf, P., E-mail: Peter.Kunzendorf@GSA-Ratingen.de [GSA Gesellschaft für Schadstoffanalytik mbH, Ratingen (Germany); Bellmann, B. [Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover (Germany); Ernst, H., E-mail: Heinrich.ernst@item.fraunhofer.de [Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover (Germany); Creutzenberg, O. [Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover (Germany); Phillips, J.I., E-mail: jim.phillips@nioh.nhls.ac.za [National Institute for Occupational Health, National Health Laboratory Service, Johannesburg South Africa and Department of Biomedical Technology, Faculty of Health Sciences, University of Johannesburg, Johannesburg (South Africa)

    2015-02-15

    This study was designed to provide an understanding of the biokinetics and potential toxicology in the lung and pleura following inhalation of brake dust following short term exposure in rats. The deposition, translocation and pathological response of brake-dust derived from brake pads manufactured with chrysotile were evaluated in comparison to the amphibole, crocidolite asbestos. Rats were exposed by inhalation 6 h/day for 5 days to either brake-dust obtained by sanding of brake-drums manufactured with chrysotile, a mixture of chrysotile and the brake-dust or crocidolite asbestos. The chrysotile fibers were relatively biosoluble whereas the crocidolite asbestos fibers persisted through the life-time of the animal. This was reflected in the lung and the pleura where no significant pathological response was observed at any time point in the brake dust or chrysotile/brake dust exposure groups through 365 days post exposure. In contrast, crocidolite asbestos produced a rapid inflammatory response in the lung parenchyma and the pleura, inducing a significant increase in fibrotic response in both of these compartments. Crocidolite fibers were observed embedded in the diaphragm with activated mesothelial cells immediately after cessation of exposure. While no chrysotile fibers were found in the mediastinal lymph nodes, crocidolite fibers of up to 35 μm were observed. These results provide support that brake-dust derived from chrysotile containing brake drums would not initiate a pathological response in the lung or the pleural cavity following short term inhalation. - Highlights: • Evaluated brake dust w/wo added chrysotile in comparison to crocidolite asbestos. • Persistence, translocation, pathological response in the lung and pleural cavity. • Chrysotile cleared rapidly from the lung while the crocidolite asbestos persisted. • No significant pathology in lung or pleural cavity observed at any time point in the brake-dust groups. • Crocidolite quickly

  16. HYDRAULIC CONDUCTIVITY OF GCL WITH BENTONITE – SILICA FUME MATRIX

    Directory of Open Access Journals (Sweden)

    Mudimby Andal

    2012-12-01

    Full Text Available This paper presents the influence of partial replacement of bentonite by silica fume which is used in the manufacture of Geosynthetic Clay Liner (GCL. Geosynthetic Clay Liners consist bentonite (Sodium Based sandwiched between two geotextile. Benotinite, having low permeability imparts better hydraulic performance to the GCL to act as liner. In this investigation, an attempt has been made to study the hydraulic conductivity of GCL with modified Bentonite. The bentonite is partially replaced by silica fume, a waste product of ferroalloy industries. Silica fume reduces the cracking characteristics of bentonite on desiccation. The replacement levels varied from 0% to 50% at a gradual increment of 5%. The test results indicated that partial replacement of bentonite by silica fume did not affected the permeability of bentonite even at 30%. Beyond 45% replacement levels the bentonite- silica fume mixtures showed increased permeability. This increased permeability also well within permeability limits of liners 1×10-9 m/sec.

  17. HYDRAULIC CONDUCTIVITY OF GCL WITH BENTONITE - SILICA FUME MATRIX

    Directory of Open Access Journals (Sweden)

    M. Andal

    2012-01-01

    Full Text Available This paper presents the influence of partial replacement of bentonite by silica fume which is used in the manufacture of Geosynthetic Clay Liner (GCL. Geosynthetic Clay Liners consist bentonite (Sodium Based sandwiched between two geotextile. Benotinite, having low permeability imparts better hydraulic performance to the GCL to act as liner. In this investigation, an attempt has been made to study the hydraulic conductivity of GCL with modified Bentonite. The bentonite is partially replaced by silica fume, a waste product of ferroalloy industries. Silica fume reduces the cracking characteristics of bentonite on desiccation. The replacement levels varied from 0% to 50% at a gradual increment of 5%. The test results indicated that partial replacement of bentonite by silica fume did not affected the permeability of bentonite even at 30%. Beyond 45% replacement levels the bentonite- silica fume mixtures showed increased permeability. This increased permeability also well within permeability limits of liners 1×10-9m/sec.

  18. Effect of process parameters upon the dopamine and lipid peroxidation activity of selected MIG welding fumes as a marker of potential neurotoxicity.

    Science.gov (United States)

    Hudson, N J; Evans, A T; Yeung, C K; Hewitt, P J

    2001-04-01

    There is growing concern over the neurotoxic effects of chronic occupational exposure to metal fume produced by welding. Elevated iron and manganese levels in the brain have been linked to an increase in lipid peroxidation, dopamine depletion and predisposition to the development of a Parkinson's type condition in advanced cases. Chemical and toxicological analysis of selected welding fumes, generated by model processes, were used in order to evaluate their potential to release solutes that promote oxidation of dopamine and peroxidation of brain lipids in cell free assays. This study compared the effect of shield gas, electrode type and voltage/currect upon the dopamine and brain lipid peroxidation potential of selected welding fume, obtained from metal inert gas (MIG) welding systems. Overall, fume extracts were found to enhance dopamine oxidation and inhibit lipid peroxidation. Significant differences were also found in the oxidising potential of fume generated under differing process conditions; it may therefore be possible to determine the potential neurotoxicity of fumes using this system.

  19. Fatal and non-fatal burn injuries with electrical weapons and explosive fumes.

    Science.gov (United States)

    Kroll, Mark W; Ritter, Mollie B; Williams, Howard E

    2017-08-01

    While generally reducing morbidity and mortality, electrical weapons have risks associated with their usage, including eye injuries and falls. With the presence of explosive fumes or fuels there also exists the possibility of burn injury. We searched for cases of fatal and non-fatal major burns with TASER(®) electrical weapon usage where there was a possibility that the weapon ignited the explosion. We confirmed 6 cases of fatal burn injury and 4 cases of major non-fatal burns out of 3.17 million field uses. The mean age was 35.5 ± 9.7 years which is consistent with the typical arrest-related death. Moderate, minor, and noninjurious fires - typically due to a cigarette lighters in a pocket, petrol, recreational inhalants, or body spray were also noted. The use of electrical weapons presents a small but real risk of death from fatal burn injury. It also presents a small risk of major non-fatal burn injury. The ignition of petrol fumes dominates these cases of major fatal and nonfatal burns. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  20. Maintenance and Testing of Fume Cupboard

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Falah H.; Al-Dahhan, Wedad H.; Al-Zuhairi, Ali Jassim; Rodda, Kabrena E.; Yousif, Emad

    2017-01-01

    Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript highlights the importance of periodic maintenance on fume cupboards, and is the fourth in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. In this study, we describe a situation in which the ventilation capacity of the fume cupboard in the undergraduate chemistry laboratories at Al-Nahrain University had decreased to an unacceptable level. The CSS Committee investigated and found the ducting system had been blocked by plastic sheets and dead birds. All the ducts have since been cleaned, and four extra ventilation fans have been installed to further increase ventilation capacity. By openly sharing what happened along with the lessons learned from the accident, we hope to minimize the possibility of another researcher being injured in a similar incident in the future.

  1. Substance use -- inhalants

    Science.gov (United States)

    ... rags or toilet paper soaked with the chemical. Effects of Inhalants on the Brain When inhaled, the chemicals are absorbed by the ... to replace the ones that involved inhalant use. Exercise and eat healthy ... the harmful effects of inhalants. Avoid triggers. These triggers can be ...

  2. [Analysis on oil fume particles in catering industry cooking emission].

    Science.gov (United States)

    Tan, De-Sheng; Kuang, Yuan-Cheng; Liu, Xin; Dai, Fei-Hong

    2012-06-01

    By measuring the particulate matter of oil fume which is over 10 microm or below 10 microm separately and using microradiography and Electrical Low Pressure Impactor (ELPI), it is found out the distributing characteristic of oil fume particles in catering industry cooking emission. The result shows that the diameter of the oil fume particles which was sedimentated in the kitchen is between 10-400 microm, the concentration peak value is between 10-100 microm. The diameter of oil fume aerosol is mostly smaller than 1 microm, while the concentration peak value is between 0.063-0.109 microm. In addition, the mass concentration peak value is between 6.560-9.990 microm. Through the analysis to the physical characteristics of oil fume from catering industry cooking emissions, the eigenvalue of the oil fume has been found and the feature matter for monitoring the oil fume has been discovered to provide a reasonable standard for controlling and monitoring the catering industry cooking emission.

  3. 烹调油烟多环芳烃暴露与职业接触人群DNA氧化性损伤%Association of cooking oil fumes exposure and oxidative DNA damage among occupational exposed populations

    Institute of Scientific and Technical Information of China (English)

    柯跃斌; 徐新云; 袁建辉; 房师松; 刘益民; 邬堂春

    2010-01-01

    Objective To investigate the urinary excretion of a marker for oxidative DNA damage, 8-hydroxydeoxyguanosine (8-OHdG), in different groups of cooks and different exposure groups, and to study the association between 8-OHdG and 1-hydroxypyrene(1-OHP), a biological marker for PAH exposure. Methods Urine samples were collected from different groups of cooks (n=86) and from unexposed controls (n=36), all were male with similar age and smoking habits. The health status, occupational history, smoking, and alcohol consumption 24 hours prior to sampling was estimated from questionnaires. The urinary samples were frozen for later analysis of 8-OHdG and 1-OHP by high performance liquid chromatography. Results Excretion in urine of 8-OHdG was similar for controls (mean 1.2 μmol/mol creatinine, n=36), and for those who had been in the kitchen room with exhaust hood operation (mean 1.5 μmol/mol creatinine, n=45 ). COF exposed cooks without exhaust hood operation had increased excretion of 8-OHdG (mean 2.3 μmol/mol creatinine, n= 18). The differ-ence between this group and the unexposed controls was significant. The urinary levels of In 1-OHP and In 8-OHdG were still significantly correlated in a multiple regression analysis. Conclusion The exposure to PAH or possibly other compounds in COF may cause oxidative DNA damage.%目的 通过调查不同组别厨师和非暴露组尿中8-羟基脱氧鸟苷(8-OHdG)的排泄量,研究8-OHdG和1-羟基芘(1-OHP)之间的关系.方法 采集不同组别厨师组(n=86)和非暴露对照组(n=36)的尿液样本,观察对象均为年龄22~28岁男性,并有相似的吸烟习惯.在采样之前24 h内,以问卷调查的形式对研究对象的身体健康状况、职业史、吸烟习惯和酒精消费量进行评估.冷藏尿液样本,随后通过高效液相色谱法分析8-OHdG和1-OHP水平.结果 对照组尿液中8-OHdG的排泄量(平均1.2μmo1/mol肌酐,n=36)与厨房里有排烟设备运转的厨师组相似(平均1.5

  4. The precancerous effect of emitted cooking oil fumes on precursor lesions of cervical cancer.

    Science.gov (United States)

    Lee, Chien-Hung; Yang, Sheau-Fang; Peng, Chiung-Yu; Li, Ruei-Nian; Chen, Yu-Chieh; Chan, Te-Fu; Tsai, Eing-Mei; Kuo, Fu-Chen; Huang, Joh-Jong; Tsai, Hsiu-Ting; Hung, Yu-Hsiu; Huang, Hsiao-Ling; Tsai, Sharon; Wu, Ming-Tsang

    2010-08-15

    Although cooking emission from high-temperature frying has been deemed a Group 2A carcinogen by the International Agency for Research on Cancer, little is known about its impact on cervical tumorigenesis. To investigate the precancerous consequence of cooking oil fumes on cervical intraepithelial neoplasm (CIN), a community-based case-control study, which takes all known risk factors into consideration, was conducted in Taiwan. From 2003 to 2008, in a Pap smear screening and biopsy examination network, 206 pathology-verified women with inflammations/atypical squamous cells of undetermined significance or CIN grade-1 (CIN1) and 73 with CIN2-3 (defined as low-grade squamous intraepithelial lesions (LGSIL) and high-grade squamous intraepithelial lesions (HGSIL), respectively); and 1,200 area-and-age-matched controls with negative cytology were recruited. Multinomial logistic regression was applied in the multivariate analysis to determine the likelihood of contracting LGSIL or HGSIL. The risks of the two lesions increased with the increase of carcinogenic high-risk human papillomavirus DNA load, with a clear dose-response relationship. Chefs were observed to experience a 7.9-fold elevated HGSIL risk. Kitchens with poor fume ventilation during the main cooking life-stage correlated to a 3.7-fold risk of HGSIL, but not for LGSIL. More than 1 hr of daily cooking in kitchens with poor fume conditions appeared to confer an 8.4-fold HGSIL risk, with an 8.3-fold heterogeneously higher odds ratio than that (aOR = 1.0) for LGSIL. Similar risk pattern has been reproduced among never-smoking women. Our findings demonstrate the association between indoor exposure to cooking fumes from heated oil and the late development of cervical precancerous lesions. This final conclusion needs to be verified by future research.

  5. Welding-fume-induced transmission loss in tapered optical fibers

    Science.gov (United States)

    Yi, Ji-Haeng

    2015-09-01

    This paper presents a method for sensing welding fumes in real time. This method is based on the results of nanoparticle-induced optical-fiber loss experiments that show that the losses are determined by the nanoparticle density and the taper waist. The tapered fiber is obtained by applying heat radiated from hot quartz, and monitoring is done in real time. First, the durability of the tapered fiber during the welding process is proven. Then, the loss is categorized by using the sizes of welding fume particles. The sensitivity to welding fumes increases with increasing size of the particles; consequently, the dimension of the taper waist decreases.

  6. Assessment of DNA damage in WBCs of workers occupationally exposed to fumes and aerosols of bitumen.

    Science.gov (United States)

    Marczynski, Boleslaw; Raulf-Heimsoth, Monika; Preuss, Ralf; Kappler, Martin; Schott, Klaus; Pesch, Beate; Zoubek, Gerd; Hahn, Jens-Uwe; Mensing, Thomas; Angerer, Jürgen; Käfferlein, Heiko U; Brüning, Thomas

    2006-04-01

    We conducted a cross-shift study with 66 bitumen-exposed mastic asphalt workers and 49 construction workers without exposure to bitumen. Exposure was assessed using personal monitoring of airborne bitumen exposure, urinary 1-hydroxypyrene (1-OHP), and the sum of 1-, 2 + 9-,3-,4-hydroxyphenanthrene (OHPH). Genotoxic effects in WBC were determined with nonspecific DNA adduct levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and the formation of DNA strand breaks and alkali-labile sites. Concentration of fumes and aerosols of bitumen correlated significantly with the concentrations of 1-OHP and OHPH after shift (r(s) = 0.27; P = 0.03 and r(s) = 0.55; P Bitumen-exposed workers had more DNA strand breaks than the reference group (P bitumen nor with urinary metabolite concentrations. Significantly more DNA adducts were observed after shift not only in bitumen-exposed workers but also in the reference group. Only low-exposed workers had significantly elevated 8-oxodGuo adduct levels before as well as after shift (P = 0.0002 and P = 0.02, respectively). Our results show that exposure to fumes and aerosols of bitumen may contribute to an increased DNA damage assessed with strand breaks.

  7. Whole Body Inhalation Exposure to 1-Bromopropane Suppresses the IgM Response to Sheep Red Blood Cells in Female B6C3F1 Mice and Fisher 344/N Rats

    Science.gov (United States)

    Anderson, Stacey. E.; Munson, Albert E.; Butterworth, Leon F.; Germolec, Dori; Morgan, Daniel L.; Roycroft, Joseph A.; Dill, Jeffrey; Meade, B. J.

    2010-01-01

    1-Bromopropane (1-BP) is categorized as a high-production volume chemical currently used in the manufacture of pharmaceuticals, pesticides and other chemicals. Its usage is estimated to be around 5 million pounds/year resulting in the potential for widespread exposure in the workplace. Case reports and animal studies have suggested exposure to this compound may cause adverse reproductive and neurological effects. Using a battery of immunological assays, the immunotoxicity of 1-BP after whole body inhalation exposure in both mice and rats was evaluated. Significant decreases in the spleen IgM response to SRBC were observed in both mice (125-500 ppm) and rats (1000 ppm) after exposure to 1-BP for 10 weeks. In addition, total spleen cells and T-cells were significantly decreased after approximately 4 weeks of 1-BP exposure in both mice (125-500 ppm) and rats (1000 ppm). No change in natural killer (NK) cell activity was observed. The observed alterations in spleen cellularity, phenotypic subsets and impairment of humoral immune function across species, raises further concern about human exposure to 1-BP and demonstrates the need for additional investigations into potential adverse health effects. PMID:20041805

  8. Whole-body inhalation exposure to 1-bromopropane suppresses the IgM response to sheep red blood cells in female B6C3F1 mice and Fisher 344/N rats.

    Science.gov (United States)

    Anderson, Stacey E; Munson, Albert E; Butterworth, Leon F; Germolec, Dori; Morgan, Daniel L; Roycroft, Joseph A; Dill, Jeffrey; Meade, B J

    2010-02-01

    1-Bromopropane (1-BP) is categorized as a high-production-volume chemical and is currently used in the manufacture of pharmaceuticals, pesticides, and other chemicals. Its usage is estimated to be around 5 million pounds per year, resulting in the potential for widespread exposure in the workplace. Case reports and animal studies have suggested exposure to this compound may cause adverse reproductive and neurological effects. Using a battery of immunological assays, the immunotoxicity of 1-BP after whole body inhalation exposure in both mice and rats was evaluated. Significant decreases in the spleen immunoglobulin (Ig) M response to sheep red blood cells (SRBC) were observed in both mice (125-500 ppm) and rats (1000 ppm) after exposure to 1-BP for 10 wk. In addition, total spleen cells and T cells were significantly decreased after approximately 4 wk of 1-BP exposure in both mice (125-500 ppm) and rats (1000 ppm). No change in natural killer (NK) cell activity was observed. The observed alterations in spleen cellularity, phenotypic subsets, and impairment of humoral immune function across species raise further concern about human exposure to 1-BP and demonstrate the need for additional investigations into potential adverse health effects.

  9. Irritative effects of fumes and aerosols of bitumen on the airways: results of a cross-shift study

    Energy Technology Data Exchange (ETDEWEB)

    Raulf-Heimsoth, Monika; Pesch, Beate; Kappler, Martin; Marczynski, Boleslaw; Rihs, Hans Peter; Merget, Rolf; Bruening, Thomas [Institut der Ruhr-Universitaet Bochum, Berufsgenossenschaftliches Forschungsinstitut fuer Arbeitsmedizin (BGFA), Bochum (Germany); Schott, Klaus [Berufsgenossenschaft der Bauwirtschaft (BG BAU), Munich (Germany); Preuss, Ralf; Angerer, Juergen [Universitaet Erlangen, Institut und Poliklinik fuer Arbeits-, Sozial- und Umweltmedizin (IPASUM), Erlangen (Germany); Hahn, Jens Uwe [Berufsgenossenschaftliches Institut fuer Arbeitsschutz (BGIA), Sankt Augustin (Germany)

    2007-01-15

    Possible health hazards of fumes and aerosols of bitumen are in discussion, and data on their adverse effects on human airways under current exposure conditions are limited. To assess the irritative effects of exposure to fumes and aerosols of bitumen on the airways, a cross-sectional cross-shift study was conducted including external and internal exposure measurements, spirometry and especially non-invasive methods like nasal lavage collection and induction of sputum in order to identify and evaluate more precisely inflammatory process in the upper and lower airways. The cross-shift study comprised 74 mastic asphalt workers who were exposed to fumes and aerosols of bitumen and 49 construction workers without this exposure as reference group. Questionnaire, spirometry, ambient monitoring and urinary analysis were performed. Humoral and cellular parameters were measured in nasal lavage fluid (NALF) and induced sputum. For data analysis, a mixed linear model was performed on the different outcomes with exposure group, time of measurement (pre-, post-shift), current smoking, German nationality and age as fixed factors and subjects as random factor. Based on personal exposure measurements during shift, mastic asphalt workers were classified into a low ({<=}10 mg/m{sup 3}; n = 46) and a high (>10 mg/m{sup 3}; n = 28) exposure group. High exposure was accompanied by significant higher urinary post-shift concentrations of 1-hydroxypyrene and the sum of hydroxyphenanthrenes. Acute respiratory symptoms were reported more frequently in the high exposure group after shift. Significant cross-shift declines in lung function parameters (forced expiratory volume in 1 s [FEV{sub 1} (% predicted)] and forced vital capacity [FVC (% predicted)]) were measured in mastic asphalt workers. Pre-shift FEV{sub 1} (% predicted) and FVC (% predicted) were higher in the low exposure group. In pre- and post-shift NALF samples, interleukin (IL)-1{beta}-, IL-8- and total protein concentrations

  10. Irritative effects of fumes and aerosols of bitumen on the airways: results of a cross-shift study.

    Science.gov (United States)

    Raulf-Heimsoth, Monika; Pesch, Beate; Schott, Klaus; Kappler, Martin; Preuss, Ralf; Marczynski, Boleslaw; Angerer, Jürgen; Rihs, Hans Peter; Hahn, Jens Uwe; Merget, Rolf; Brüning, Thomas

    2007-01-01

    Possible health hazards of fumes and aerosols of bitumen are in discussion, and data on their adverse effects on human airways under current exposure conditions are limited. To assess the irritative effects of exposure to fumes and aerosols of bitumen on the airways, a cross-sectional cross-shift study was conducted including external and internal exposure measurements, spirometry and especially non-invasive methods like nasal lavage collection and induction of sputum in order to identify and evaluate more precisely inflammatory process in the upper and lower airways. The cross-shift study comprised 74 mastic asphalt workers who were exposed to fumes and aerosols of bitumen and 49 construction workers without this exposure as reference group. Questionnaire, spirometry, ambient monitoring and urinary analysis were performed. Humoral and cellular parameters were measured in nasal lavage fluid (NALF) and induced sputum. For data analysis, a mixed linear model was performed on the different outcomes with exposure group, time of measurement (pre-, post-shift), current smoking, German nationality and age as fixed factors and subjects as random factor. Based on personal exposure measurements during shift, mastic asphalt workers were classified into a low (10 mg/m(3); n = 28) exposure group. High exposure was accompanied by significant higher urinary post-shift concentrations of 1-hydroxypyrene and the sum of hydroxyphenanthrenes. Acute respiratory symptoms were reported more frequently in the high exposure group after shift. Significant cross-shift declines in lung function parameters (forced expiratory volume in 1 s [FEV(1) (% predicted)] and forced vital capacity [FVC (% predicted)]) were measured in mastic asphalt workers. Pre-shift FEV(1) (% predicted) and FVC (% predicted) were higher in the low exposure group. In pre- and post-shift NALF samples, interleukin (IL)-1beta-, IL-8- and total protein concentrations were lower in the low exposure group compared to the

  11. Passive inhalation of cannabis smoke

    Energy Technology Data Exchange (ETDEWEB)

    Law, B.; Mason, P.A.; Moffat, A.C.; King, L.J.; Marks, V.

    1984-09-01

    Six volunteers each smoked simultaneously, in a small unventilated room (volume 27 950 liter), a cannabis cigarette containing 17.1 mg delta 9-tetrahydrocannabinol (THC). A further four subjects - passive inhalers - remained in the room during smoking and afterwards for a total of 3 h. Blood and urine samples were taken from all ten subjects and analyzed by radioimmunoassay for THC metabolites. The blood samples from the passive subjects taken up to 3 h after the start of exposure to cannabis smoke showed a complete absence of cannabinoids. In contrast, their urine samples taken up to 6 h after exposure showed significant concentrations of cannabinoid metabolites (less than or equal to 6.8 ng ml-1). These data, taken with the results of other workers, show passive inhalation of cannabis smoke to be possible. These results have important implications for forensic toxicologists who are frequently called upon to interpret cannabinoid levels in body fluids.

  12. Required response time for variable air volume fume hood controllers.

    Science.gov (United States)

    Ekberg, L E; Melin, J

    2000-03-01

    This paper describes results from tests made with the aim of investigating how quickly the exhaust air flow rate through fume hoods needs to be controlled in order to prevent contaminants from leaking out of the fume hood and putting the safety of the laboratory personnel at risk. The measurements were made on a laboratory fume hood in a chemical laboratory. There were no other fume hoods in the laboratory, and the measurements were made without interference from persons entering or leaving the laboratory or walking about in it. A tracer gas method was used with the concentration of dinitrogen oxide (N(2)O) being recorded by a Foxboro Miran 101 infra-red gas analyser. In parallel with the tracer gas measurements, the air velocity through the face opening was also measured, as was the control signal to the damper controlling the air flow rate. The measurements show an increased outward leakage of tracer gas from the fume hood if the air flow rate is not re-established within 1-2 s after the sash is opened. If the delay exceeds 3 s the safety function is temporarily defeated. The measurements were made under virtually ideal conditions. Under more typical conditions, the fume hood could be exposed to various other external perturbations, which means that the control system should re-establish the correct exhaust flow more quickly than indicated by the measurement results obtained under these almost ideal conditions.

  13. Design considerations for fume hoods for process plants.

    Science.gov (United States)

    Goodfellow, H D; Bender, M

    1980-07-01

    Proper design of fume hoods is a necessary requisite for a clean working environment for many industrial processes. Until recently, the design of these hoods has been rather a trial and error approach and not based on sound engineering design principles. Hatch Associates have developed and applied new techniques to establish hood parameters for different industrail processes. The paper reviews the developed techniques and illustrates practical application of these techniques to the solving of difficult and comples fume hood design and operating performance problems. The scope of the paper covers the following subject areas: definitions and general considerations: evaluation of volume and heat flow rates for emission sources; local capture of process emissions; remote capture of process emissions and case studies of fume hood applications. The purpose of the paper is to detail a coherent approach in the analysis of emission problems which will result in the development of an efficient design of a fume capture hood. An efficient fume hood can provide a safe working place as well as a clean external environment. Although the techniques can be applied to smaller sources, the case studies which will be examined will be for fume hoods in the flow design range of 50 000 CFM to +1 000 000 CFM.

  14. Inhalation exposures due to radon and thoron ((222)Rn and (220)Rn): Do they differ in high and normal background radiation areas in India?

    Science.gov (United States)

    Mishra, Rosaline; Sapra, B K; Prajith, R; Rout, R P; Jalaluddin, S; Mayya, Y S

    2015-09-01

    In India, High Background Radiation Areas (HBRAs) due to enhanced levels of naturally occurring radionuclides in soil (thorium and, to a lesser extent, uranium), are located along some parts of the coastal tracts viz. the coastal belt of Kerala, Tamilnadu and Odisha. It is conjectured that these deposits will result in higher emissions of radon isotopes ((222)Rn and (220)Rn) and their daughter products as compared to Normal Background Radiation Areas (NBRAs). While the annual external dose rates contributed by gamma radiations in these areas are about 5-10 times higher, the extent of increase in the inhalation dose rates attributable to (222)Rn and (220)Rn and their decay products is not well quantified. Towards this, systematic indoor surveys were conducted wherein simultaneous measurements of time integrated (222)Rn and (220)Rn gas and their decay product concentrations was carried out in around 800 houses in the HBRAs of Kerala and Odisha to estimate the inhalation doses. All gas measurements were carried out using pin-hole cup dosimeters while the progeny measurements were with samplers and systems based on the Direct radon/thoron Progeny sensors (DRPS/DTPS). To corroborate these passive measurements of decay products concentrations, active sampling was also carried out in a few houses. The results of the surveys provide a strong evidence to conclude that the inhalation doses due to (222)Rn and (220)Rn gas and their decay products in these HBRAs are in the same range as observed in the NBRAs in India.

  15. Inhalational Monkeypox Virus Infection in Cynomolgus Macaques

    Directory of Open Access Journals (Sweden)

    Roy eBarnewall

    2012-09-01

    Full Text Available An inhalation exposure system was characterized to deliver aerosolized monkeypox virus (MPXV, and a nonhuman primate (NHP inhalation monkeypox model was developed in cynomologus macaques. A head-only aerosol exposure system was characterized, and two sampling methods were evaluated: liquid impingement via an impinger and impaction via a gelatin filter. The aerosol concentrations obtained with the gelatin filter and impinger were virtually identical, indicating that either method is acceptable for sampling aerosols containing MPXV. The mass median aerodynamic diameter (MMAD was for individual aerosol tests in the aerosol system characterization and the NHP study ranged from 1.08 to 1.15 µm, indicating that the aerosol particles were of a sufficient size to reach the alveoli. Six cynomolgus macaques (four male and two female were used on study. The animals were aerosol exposed with MPXV and received doses between 2.51 x 104 to 9.28 x 105 plaque forming units (pfu inhaled. Four of the six animals died or were euthanized due to their moribund conditions. Both animals that received the lowest exposure doses survived to the end of the observation period. The inhalation LD50 was determined to be approximately 7.8 x 104 pfu inhaled. These data demonstrate that an inhalation MPXV infection model has been developed in the cynomolgus macaque with disease course and lethal dose similar to previously published data.

  16. Zanamivir Oral Inhalation

    Science.gov (United States)

    ... for inhaling powder) and five Rotadisks (circular foil blister packs each containing four blisters of medication). Zanamivir powder ... put a hole in or open any medication blister pack until inhaling a dose with the Diskhaler.Carefully ...

  17. The three dimensional distribution of chromium and nickel alloy welding fumes.

    Directory of Open Access Journals (Sweden)

    Takeoka,Kiyoshi

    1991-08-01

    Full Text Available In the present study, the fumes generated from manual metal arc (MMA and submerged metal arc (SMA welding of low temperature service steel, and the chromium and nickel percentages in these fumes, were measured at various horizontal distances and vertical heights from the arc in order to obtain a three dimensional distribution. The MMA welding fume concentrations were significantly higher than the SMA welding fume concentrations. The highest fume concentration on the horizontal was shown in the fumes collected directly above the arc. The fume concentration vertically was highest at 50 cm height and reduced by half at 150 cm height. The fume concentration at 250 cm height was scarcely different from that at 150 cm height. The distribution of the chromium concentration vertically was analogous to the fume concentration, and a statistically significant difference in the chromium percentages was not found at the different heights. The nickel concentrations were not statistically significant within the welding processes, but the nickel percentages in the SMA welding fumes were statistically higher than in the MMA welding fumes. The highest nickel concentration on the horizontal was found in the fumes collected directly above the arc. The highest nickel concentration vertically showed in the fume samples collected at 50 cm height, but the greater the height the larger the nickel percentage in the fumes.

  18. Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size.

    Science.gov (United States)

    Pauluhn, Jürgen

    2009-05-01

    Inhaled polydisperse micronsized agglomerated particulates composed of nanosized primary particles may exert their pulmonary toxicity in either form, depending on whether these tightly associated structures are disintegrated within the biological system or not. This hypothesis was tested in a rat bioassay using two calcined aluminum oxyhydroxides (AlOOH) consisting of primary particles in the range of 10-40 nm. Male Wistar rats were nose-only exposed to 0.4, 3, and 28 mg/m(3) in two 4-week (6 h/day, 5 days/week) inhalation studies followed by a 3-month postexposure period. The respective mass median aerodynamic diameter (MMAD) of agglomerated particles in inhalation chambers was 1.7 and 0.6 mum. At serial sacrifices, pulmonary toxicity was characterized by bronchoalveolar lavage (BAL) and histopathology. The retention kinetics of aluminum (Al) was determined in lung tissue, BAL cells, and selected extrapulmonary organs, including lung-associated lymph nodes (LALNs). Significant changes in BAL, lung, and LALN weights occurred at 28 mg/m(3). Histopathology revealed alveolar macrophages with enlarged and foamy appearance, increased epithelial cells, inflammatory cells, and focal septal thickening. The determination of aluminum in lung tissue shows that the cumulative lung dose was higher following exposure to AlOOH-40 nm/MMAD-0.6 mum than to AlOOH-10 nm/MMAD-1.7 mum, despite identical exposure concentrations. The associated pulmonary inflammatory response appears to be principally dependent on the agglomerated rather than primary particle size. Despite high lung burdens, conclusively increased extrapulmonary organ burdens did not occur at any exposure concentration and postexposure time point. Particle-induced pulmonary inflammation was restricted to cumulative doses exceeding approximately 1 mg AlOOH/g lung following 4-week exposure at 28 mg/m(3). It is concluded that the pulmonary toxicity of nanosized, agglomerated AlOOH particles appears to be determined by the

  19. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    Science.gov (United States)

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this

  20. The pathological response and fate in the lung and pleura of chrysotile in combination with fine particles compared to amosite asbestos following short-term inhalation exposure: interim results.

    Science.gov (United States)

    Bernstein, D M; Rogers, R A; Sepulveda, R; Donaldson, K; Schuler, D; Gaering, S; Kunzendorf, P; Chevalier, J; Holm, S E

    2010-09-01

    The pathological response and translocation of a commercial chrysotile product similar to that which was used through the mid-1970s in a joint compound intended for sealing the interface between adjacent wall boards was evaluated in comparison to amosite asbestos. This study was unique in that it presents a combined real-world exposure and was the first study to investigate whether there were differences between chrysotile and amosite asbestos fibers in time course, size distribution, and pathological response in the pleural cavity. Rats were exposed by inhalation 6 h/day for 5 days to either sanded joint compound consisting of both chrysotile fibers and sanded joint compound particles (CSP) or amosite asbestos. Subgroups were examined through 1-year postexposure. No pathological response was observed at any time point in the CSP-exposure group. The long chrysotile fibers (L > 20 microm) cleared rapidly (T(1/2) of 4.5 days) and were not observed in the pleural cavity. In contrast, a rapid inflammatory response occurred in the lung following exposure to amosite resulting in Wagner grade 4 interstitial fibrosis within 28 days. Long amosite fibers had a T(1/2) > 1000 days and were observed in the pleural cavity within 7 days postexposure. By 90 days the long amosite fibers were associated with a marked inflammatory response on the parietal pleural. This study provides support that CSP following inhalation would not initiate an inflammatory response in the lung, and that the chrysotile fibers present do not migrate to, or cause an inflammatory response in the pleural cavity, the site of mesothelioma formation.

  1. Evaluation of the Tobacco Heating System 2.2. Part 4: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects compared with cigarette smoke.

    Science.gov (United States)

    Wong, Ee Tsin; Kogel, Ulrike; Veljkovic, Emilija; Martin, Florian; Xiang, Yang; Boue, Stephanie; Vuillaume, Gregory; Leroy, Patrice; Guedj, Emmanuel; Rodrigo, Gregory; Ivanov, Nikolai V; Hoeng, Julia; Peitsch, Manuel C; Vanscheeuwijck, Patrick

    2016-11-30

    The objective of the study was to characterize the toxicity from sub-chronic inhalation of test atmospheres from the candidate modified risk tobacco product (MRTP), Tobacco Heating System version 2.2 (THS2.2), and to compare it with that of the 3R4F reference cigarette. A 90-day nose-only inhalation study on Sprague-Dawley rats was performed, combining classical and systems toxicology approaches. Reduction in respiratory minute volume, degree of lung inflammation, and histopathological findings in the respiratory tract organs were significantly less pronounced in THS2.2-exposed groups compared with 3R4F-exposed groups. Transcriptomics data obtained from nasal epithelium and lung parenchyma showed concentration-dependent differential gene expression following 3R4F exposure that was less pronounced in the THS2.2-exposed groups. Molecular network analysis showed that inflammatory processes were the most affected by 3R4F, while the extent of THS2.2 impact was much lower. Most other toxicological endpoints evaluated did not show exposure-related effects. Where findings were observed, the effects were similar in 3R4F- and THS2.2-exposed animals. In summary, toxicological changes observed in the respiratory tract organs of THS2.2 aerosol-exposed rats were much less pronounced than in 3R4F-exposed rats while other toxicological endpoints either showed no exposure-related effects or were comparable to what was observed in the 3R4F-exposed rats. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Health hazards due to the inhalation of amorphous silica

    Energy Technology Data Exchange (ETDEWEB)

    Merget, R.; Bruening, T. [Research Institute for Occupational Medicine (BGFA), Bochum (Germany); Bauer, T. [Bergmannsheil, University Hospital, Department of Internal Medicine, Division of Pneumonology, Allergology and Sleep Medicine, Bochum (Germany); Kuepper, H.U.; Breitstadt, R. [Degussa-Huels Corp., Wesseling (Germany); Philippou, S. [Department of Pathology, Augusta Krankenanstalten, Bochum (Germany); Bauer, H.D. [Research Institute for Hazardous Substances (IGF), Bochum (Germany)

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic (''thermal'' or ''fumed'') silica, and (3) chemically or physically modified silica. According to the different physico-chemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or

  3. Evaluation of factors affecting the containment performance of traditional and nanomaterial fume hoods

    Science.gov (United States)

    Dunn, Kevin Holden

    final phase of the project uses CFD to assess the influence of the operator body and arm motion on the CAV and nano hoods. In this study, the presence of the worker did impact the airflow into the fume hood with a stagnation zone forming downstream of the worker. However, this factor in and of itself was not sufficient to result in leakages for either hood. With both the CAV and the nano hood, the recirculation zones result in contaminants being transported to the front of the hood near the inlet boundary. As the particles get near the hood/room interface, the potential for leakage to occur increases due to user motion as well as outside disturbances such as room air currents. The impact of a worker removing arms from the hood was evaluated with a Lagrangian particle tracking scheme. For the nano hood, arm motion caused a much greater disturbance in the overall flow field inside the hood. The procedure of removing the arm from the hood was demonstrated numerically through the steady state model. The flow pattern created by withdrawing the arms caused particles to be dragged out in the vicinity of the arm for the nano hood. Each of these studies illustrates some of the primary issues when using fume hood enclosures for controlling exposures. Complex flow patterns exist in these hoods which serve both to mix contaminants and transport them towards the face of the hood. When these transient patterns are further disturbed by the presence of an operator, the motion of the operator or other external factors such as room ventilation, containment can be compromised. Good operator work practices such as using slow arm motions and waiting to withdraw arms after completion of hood work should be followed. Also, new hoods which incorporate alternative designs need to be evaluated and compared with existing design paradigms. (Abstract shortened by UMI.)

  4. A study to investigate changes in the levels of biomarkers of exposure to selected cigarette smoke constituents in Japanese adult male smokers who switched to a non-combustion inhaler type of tobacco product.

    Science.gov (United States)

    Miura, Naoki; Yuki, Dai; Minami, Naoki; Kakehi, Aoi; Futamura, Yasuyuki

    2015-04-01

    In a clinical study, changes in 14 biomarkers of exposures (BOEs) from 10 tobacco smoke constituents and mutagens detected by the urine mutagenicity test were investigated using a non-combustion inhaler type of tobacco product (NCIT) by switching from a conventional cigarette. This study was conducted in 80 Japanese healthy adult males with a 4-week residential, controlled, open-label, parallel group design. After randomization, 40 smokers used NCIT with approximately 750 aspirations, other 20 smokers smoked approximately 20 pieces of an assigned 1-mg ISO tar conventional cigarette (CC1) every day. Twenty non-smokers (NS) did not use any tobacco product. Under this study condition, switching from cigarette to NCIT showed significant reduction in all BOEs measured. On day 29, the levels of these BOEs were almost the same as those in the NS group, except BOEs of nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). This suggested that the exposure to 8 constituents and mutagens in the NCIT group was similar to that in the NS group, while the exposure to nicotine was higher. Although the precise exposure level to NNK was not estimated because of the long half-life of its BOE, it would be substantially lower in the NCIT group than in the CC1 group. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Part 1. Biologic responses in rats and mice to subchronic inhalation of diesel exhaust from U.S. 2007-compliant engines: report on 1-, 3-, and 12-month exposures in the ACES bioassay.

    Science.gov (United States)

    Mcdonald, Jacob D; Doyle-Eisele, Melanie; Gigliotti, Andrew; Miller, Rodney A; Seilkop, Steve; Mauderly, Joe L; Seagrave, JeanClare; Chow, Judith; Zielinska, Barbara

    2012-09-01

    The Health Effects Institute and its partners conceived and funded a program to characterize the emissions from heavy-duty diesel engines compliant with the 2007 and 2010 on-road emissions standards in the United States and to evaluate indicators of lung toxicity in rats and mice exposed repeatedly to diesel exhaust (DE*) from 2007-compliant engines. The preliminary hypothesis of this Advanced Collaborative Emissions Study (ACES) was that 2007-compliant on-road diesel emissions ". . . will not cause an increase in tumor formation or substantial toxic effects in rats and mice at the highest concentration of exhaust that can be used . . . although some biological effects may occur." This hypothesis is being tested at the Lovelace Respiratory Research Institute (LRRI) by exposing rats by chronic inhalation as a carcinogenicity bioassay, measuring indicators of pulmonary toxicity in rats after 1, 3, 12, and 24-30 months of exposure (final time point depends on the survival of animals), and measuring similar indicators of pulmonary toxicity in mice after 1 and 3 months of exposure. This report provides results of exposures through 3 months in rats and mice. Emissions from a 2007-compliant, 500-horsepower-class engine and aftertreatment system operated on a variable-duty cycle were used to generate the animal inhalation test atmospheres. Four treatment groups were exposed to one of three concentrations (dilutions) of exhaust combined with crankcase emissions, or to clean air as a negative control. Dilutions of exhaust were set to yield average integrated concentrations of 4.2, 0.8, and 0.1 ppm nitrogen dioxide (NO2). Exposure atmospheres were analyzed by daily measurements of key components and periodic detailed physical-chemical characterizations. Exposures were conducted 16 hr/dy (overnight), 5 dy/wk. Rats were evaluated for hematology, serum chemistry, bronchoalveolar lavage (BAL), lung cell proliferation, and histopathology after 1 month of exposure, and the same

  6. Indoor exposure to environmental cigarette smoke, but not other inhaled particulates associates with respiratory symptoms and diminished lung function in adults

    DEFF Research Database (Denmark)

    Hersoug, Lars-Georg; Husemoen, Lise L N; Sigsgaard, Torben

    2010-01-01

    Exposure to particulate matter (PM) can induce airway inflammation and exacerbation of asthma. However, there is limited knowledge about the effects of exposure to indoor sources of PM. We investigated the associations between self-reported exposure to indoor sources of PM and lower airway sympto...

  7. Reactions Involved in Fingerprint Development Using the Cyanoacrylate - Fuming Method

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L.A.

    2001-07-30

    The Learning Objective is to present the basic chemistry research findings to the forensic community regarding development of latent fingerprints using the cyanoacrylate fuming method. Chemical processes involved in the development of latent fingerprints using the cyanoacrylate fuming method have been studied, and will be presented. Two major types of latent prints have been investigated--clean (eccrine) and oily (sebaceous) prints. Scanning electron microscopy (SEM) was used as a tool for determining the morphology of the polymer developed separately on clean and oily prints after cyanoacrylate fuming. A correlation between the chemical composition of an aged latent fingerprint, prior to development, and the quality of a developed fingerprint was observed in the morphology. The moisture in the print prior to fuming was found to be a critical factor for the development of a useful latent print. In addition, the amount of time required to develop a high quality latent print was found to be minimal. The cyanoacrylate polymerization process is extremely rapid. When heat is used to accelerate the fuming process, typically a period of 2 minutes is required to develop the print. The optimum development time is dependent upon the concentration of cyanoacrylate vapors within the enclosure.

  8. PREPARATION AND PROPERTIES OF FUMED SILICA/CYANATE ESTER NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Elhussein A.Taha; Jun-tao Wu; Kai Gao; Lin Guo

    2012-01-01

    Fumed silica/bisphenol A dicyanate ester (BADCy) nanocomposites were prepared by introducing different contents of nano-sized fumed SiO2 into the BADCy matrix.Two different average primary particle diameters of 12 and 40 nm were chosen.Dibutyltindilaurate (DBTDL) catalyst was chosen to catalyze the cyanate ester group into triazine group via cyclotrimerization reaction.The SEM micrographs indicated that the fumed SiO2 particles were homogeneously dispersed in the poly(bisphenol A dicyanate) matrix by means of ultrasonic treatment and the addition of a coupling agent.The FTIR spectroscopy shows that,not only DBTDL catalyzes the polymerization reaction but also-OH groups of the SiO2 particles surface help the catalyst for the complete polymerization of BADCy monomer.The thermal stability of the cured BADCy can be improved by adequate addition of fumed SiO2.A slight increase in the dielectric constant and dielectric loss values were identified by testing the dielectric properties of the prepared nanocomposite samples.By increasing the SiO2 content,there was a slight increasing in the thermal conductivity values of the tested samples.The obtained results proved that the fumed silica/BADCy nanocomposites had good thermal and dielectrical properties and can be used in many applications such as in the thermal insulation field.

  9. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (Final Report)

    Science.gov (United States)

    EPA has finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. This assessment addresses the potential carcinogenicity from long-term inhalation exposure to ethylene oxide. Now final, this assessment updates the carcinogenicity information in EPA’s 1985 Hea...

  10. Neurological risks associated with manganese exposure from welding operations--a literature review.

    Science.gov (United States)

    Flynn, Michael R; Susi, Pam

    2009-09-01

    Exposure to manganese dusts and fumes may cause a clinical neurological syndrome called manganism. Welders are frequently exposed to manganese-containing fumes generated by electric arcs and thermal torches. This paper reviews studies on the association between exposure to such welding fumes and neurological disease. Using the IRSST expert panel criteria, 78 cases of probable/possible, and 19 additional cases of possible occupational manganism were identified in the literature among manganese-exposed workers involved in welding processes. Epidemiological evidence linking welding exposures to Parkinson's disease is still controversial. Although more research is needed to clarify the risks of neurological impairment from welding, control measures including ventilation and adequate respiratory protection, should be implemented to minimize welding fume exposures. The significance of fume transport into the central nervous system via the olfactory nerve, which by-passes the blood-brain barrier, also needs to be assessed.

  11. Reproductive and offspring developmental effects following maternal inhalation exposure to methanol in nonhuman prinates; Methanol no kyunyu bakiuro ga hi hito reichoryi no bosei no seisho ku to kodomo no seicho ni oyobosu eiky

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T. [Japan Automobile Research Institute Inc., Tsukuba (Japan)

    2000-04-01

    The paper summarizes the results of the experimental study on effects of the long-term exposure to methanol on the metabolism and reproduction of grown-up female Macaca and effects of monkeys exposed to methanol in a period of the unborn baby on the development. In this study, grown-up female monkeys (11-12 in each group) were exposed to methanol vapor of concentration 4 (0, 200, 600, 1800ppm) for 2.5 hours/day, for 7 days, and in each period of pre-breeding/in-breeding/in-pregnancy. The concentration of methanol and folic acid in blood was measured, and changes caused by repeated methanol exposures were evaluated which relate to internal dynamic states (inhalation, dispersion, metabolism and excretion) and pregnancy. Also evaluated were the development in the first 9 months after birth of infant monkeys (8-9 in each group) at high concentration and the nervous action development. As a result, there were found no evidences of giving marked effects such as effects of the methanol concentration in blood, formate concentration, folic acid concentration, and internal dynamic states of the pregnant animal, and effects of the methanol exposure before birth on nervous actions of children of nonhuman primates. (NEDO)

  12. Catalytic Disposal of Cooking Fume Discharged from the Restaurant

    Institute of Scientific and Technical Information of China (English)

    WANG; XiangYu

    2001-01-01

    The cooking oil fume pollution have been becoming a serious problem.1 Though several methods on disposal technology of the fume have been developed at home and abroad, such as filtration process, electrostatic process and wet process, practical and effective technology is still needed.2In the present study, we will report a new disposal process of cooking fume, which were turned complete into water and CO2 in the presence of the catalysts.  Catalysts were prepared by the following procedure. First, layer of A12O3 was painted on the inner pore surface of ceramic honeycomb carrier. Second, a solution of platinum and palladium salts in alcohol was used for impregnation in a suitable concentration to obtain a catalyst 0.3% noble metals.  ……

  13. Variations in exposure to inhalable wood dust in the Danish furniture industry. Within- and between-worker and factory components estimated from passive dust sampling.

    Science.gov (United States)

    Vinzents, P S; Schlünssen, V; Feveile, H; Schaumburg, I

    2001-10-01

    Variability of exposure to wood dust at large factories in the Danish furniture industry was studied. Three repeated exposure measurements of 292 workers at 38 factories were included in the study. The measurements were carried out by use of personal passive dust monitors. The components of variance were estimated by means of a random effects ANOVA model. The ratio of within- to between-worker variance was 1.07. Based on this result, and three repeated exposure measurements, the observed relation between health outcome and exposure will be attenuated to 74% of the true value. Grouping by factory showed very poor exposure contrast, as the contrast in exposure level among factories was as low as 0.15.

  14. Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

    Science.gov (United States)

    Dunn, Kevin H; Tsai, Candace Su-Jung; Woskie, Susan R; Bennett, James S; Garcia, Alberto; Ellenbecker, Michael J

    2014-01-01

    The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in

  15. 42 CFR 84.1140 - Dust, fume, and mist respirators; performance requirements; general.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist respirators; performance... Respirators and Combination Gas Masks § 84.1140 Dust, fume, and mist respirators; performance requirements; general. Dust, fume, and mist respirators and the individual components of each such device shall,...

  16. 42 CFR 84.1149 - Airflow resistance tests; all dust, fume, and mist respirators; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance tests; all dust, fume, and mist... RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and Mist; Pesticide; Paint Spray; Powered Air-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1149 Airflow resistance tests; all dust, fume, and...

  17. Behavioral changes in mice following benzene inhalation.

    Science.gov (United States)

    Evans, H L; Dempster, A M; Snyder, C A

    1981-01-01

    Although benzene is an important occupational health hazard and a carcinogen, the possibility that behavioral changes may forewarn of the later-occurring hematological changes has not been investigated. A time-sampling protocol was used to quantify the occurrence of 7 categories of behavior in the homecage following daily 6-hr exposures to two strains of adult mice (CD1 and C57BL/6J). The behavioral categories were stereotypic behavior, sleeping, resting, eating, grooming, locomotion, and fighting. The inhalation exposures were designed to reflect occupational exposure. Dynamic vapor exposure techniques in standard inhalation chambers were employed. Exposure to 300 or 900 ppm benzene increased the occurrence of eating and grooming and reduced the number of mice that were sleeping or resting. The responses to benzene of both the CD1 and the C57 strains were similar. The positive findings with benzene inhalation indicate the utility of behavioral investigations into the toxicology of inhaled organic solvents. The methods described herein illustrate an objective observation of animal behavior that is capable of documenting toxicity and of guiding detailed follow-up studies aimed at mechanism of action.

  18. deFUME: Dynamic exploration of functional metagenomic sequencing data

    DEFF Research Database (Denmark)

    van der Helm, Eric; Geertz-Hansen, Henrik Marcus; Genee, Hans Jasper

    2015-01-01

    Functional metagenomic selections represent a powerful technique that is widely applied for identification of novel genes from complex metagenomic sources. However, whereas hundreds to thousands of clones can be easily generated and sequenced over a few days of experiments, analyzing the data...... to a comprehensive visual data overview that facilitates effortless inspection of gene function, clustering and distribution. The webserver is available at cbs.dtu.dk/services/deFUME/and the source code is distributed at github.com/EvdH0/deFUME....

  19. Inhalant Abuse and Dextromethorphan.

    Science.gov (United States)

    Storck, Michael; Black, Laura; Liddell, Morgan

    2016-07-01

    Inhalant abuse is the intentional inhalation of a volatile substance for the purpose of achieving an altered mental state. As an important, yet underrecognized form of substance abuse, inhalant abuse crosses all demographic, ethnic, and socioeconomic boundaries, causing significant morbidity and mortality in school-aged and older children. This review presents current perspectives on epidemiology, detection, and clinical challenges of inhalant abuse and offers advice regarding the medical and mental health providers' roles in the prevention and management of this substance abuse problem. Also discussed is the misuse of a specific "over-the-counter" dissociative, dextromethorphan.

  20. 64. Study on the DNA damage induced by coal tar pitch fume extracts in rat alveolar macrophage and it's mechanism

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The carcinogenic mechanism of coal tar pitch (CTP) as a recognized carcinogen has been studying. It is widely believed that the carcinogenicity of CTP is based on the genotoxicity of CTP. In the process of carcinogenesis caused by extrinsic chemical substance, the DNA damage mainly occurred in the initiation phase. UP to now, the most sensitive detecting endpoint for DNA damage is to detect DNA single strand breaks. The single cell gel electrophoresis has been rapidly becoming a widely used analytical procedure during the last few years, which can detect DNA strand breaks. The method is a fast, relatively inexpensive, easy to perform, non-radioactive, and very sensitive method. This method suits to different tests in vitro or in vivo. Virtually any eukaryotic cell, which could be made into single cell suspensions, can be processed for analysis of DNA damage using the single cell gel electrophoresis. The aim of the study is to investigate the role of DNA damage induced by CTP fume in rat AM, to examine the changes of ROS, MDA and SOD, and to explore the mechanism of DNA damage by CTP fume. The present study is in favor of studying the mechanism of mutagenesis and carcinogenesis induced by CTP. Method: The healthy male Wistar rats were anesthetized intraperitoneally with 40 mg pentobarbital sodium per kilogram of body weight. The animals were exanguinated by excising femoral, and collected the rat alveolar macrophage by Joseph's method. The concentration of AM had been regulated to 1.5×106 cell/ml. AMs, which had been cultured in 24-well culture plate, were divided into 4 groups. These cells were exposured to 5.0 μg/ml extracts of coal tar pitch fume, and contacted with 500 μM, 1 000 μM, and 2 000 μM of GSH respectively. These cells were divided into 4 groups. After incubation 24 hours, the indexes that had been used above were measured. Results: ①The DNA strand breaks induced by coal tar pitch fume extracts: After undergoing electrophoresis, the

  1. Efficiency of different respiratory protective devices for removal of particulate and gaseous reactive oxygen species from welding fumes.

    Science.gov (United States)

    Chen, Hsiu-Ling; Chung, Shih-Hsiang; Jhuo, Ming-Lin

    2013-01-01

    Ultraviolet (UV) light inherent to welding processes generates ozone (O(3)) with subsequent formation of reactive oxygen species (ROS) through photochemical reactions when UV light is present with O(3). This study aimed to determine the performance of filters used as respiratory protective devices by welding personnel to simultaneously mitigate particulate and gaseous inhalation hazards. Four respiratory protective devices were selected for this study, including a surgical facemask, a cotton-fabric facemask, an activated-carbon facemask, and an N95 respirator. The removal efficiencies for the particulates in welding fumes were all above 98%. For particulate-phase ROS, the removal efficiencies of the different respiratory protective devices ranged from 83.5% to 94.1%; however, the removal efficiencies for gaseous ROS were only 1.3% (active carbon facemask) to 21.1% (N95 respirator). The data indicated that the respiratory protective devices commercially available cannot block the passage of the gas-phase ROS found in welding fumes.

  2. Studying the Risks of Cotton Cooking Oil Fumes on the Lung and Liver of Rats and the Protective Role of (Vitamin E Alphatocopherol

    Directory of Open Access Journals (Sweden)

    Fahmy GAD GAD ELsaid

    2005-12-01

    Full Text Available Fumes emitted from edible vegetable cooking oils during stir- and deep-frying are important contributors to indoor air pollution. Indoor air pollution may be increase the lung and liver cancer in Egypt in 2005. Therefore, the present study was undertaken to investigate the effects of Egyptian cotton cooking oil fumes on rats. The exposed rats for 30 and 60 days to cotton oil fumes showed a significant increase in the lung and liver malondialdehyde levels which accompanied with a significant decrease in glutathione content. Also, there was a significant decrease in lung and liver superoxide dismutase, catalase, glutathione s-transferase activities. As well as, there was a significant decrease in serum amino acids levels, lung and liver nucleic acids and total proteins. These changes were obviously after 60 days than that of 30 days of exposure. DNA change was clear in the lungs of rats after cotton oil fumes exposed as showed by the differential display technique, P53 primer which used to study the expression of the p35 gene as well as to confirm and amplify these changes after oil fumes exposure. Band with different molecular weights were observed after the exposure and in protected groups but not presented in the control. More characterization for the changes had been carried out in the animal on two levels, one the DNA using RAPD-PCR and the other on the protein level using SDS-PAGE techniques. Also, vitamin E ameliorates these abnormalities to extent limit in all cases in this work.

  3. A Cross-Sectional Study of the Cardiovascular Effects of Welding Fumes.

    Directory of Open Access Journals (Sweden)

    Huiqi Li

    Full Text Available Occupational exposure to particulate air pollution has been associated with an increased risk of cardiovascular disease. However, the risk to welders working today remains unclear. We aimed to elucidate the cardiovascular effects of exposure to welding fumes.In a cross-sectional study, structured interviews and biological sampling were conducted for 101 welders and 127 controls (all non-smoking males from southern Sweden. Personal breathing zone sampling of respirable dust was performed. Blood pressure (BP and endothelial function (using peripheral arterial tonometry were measured. Plasma and serum samples were collected from peripheral blood for measurement of C-reactive protein, low-density lipoprotein, homocysteine, serum amyloid A, and cytokines.Welders were exposed to 10-fold higher levels of particles than controls. Welders had significantly higher BP compared to controls, an average of 5 mm Hg higher systolic and diastolic BP (P ≤ 0.001. IL-8 was 3.4 ng/L higher in welders (P=0.010. Years working as a welder were significantly associated with increased BP (β=0.35, 95%CI 0.13 - 0.58, P=0.0024 for systolic BP; β=0.32, 95%CI 0.16 - 0.48, P<0.001 for diastolic BP, adjusted for BMI but exposure to respirable dust was not associated with BP. No clear associations occurred between welding and endothelial function, or other effect markers.A modest increase in BP was found among welders compared to controls suggesting that low-to-moderate exposure to welding fumes remains a risk factor for cardiovascular disease.

  4. Influence of welding fume on systemic iron status.

    Science.gov (United States)

    Casjens, Swaantje; Henry, Jana; Rihs, Hans-Peter; Lehnert, Martin; Raulf-Heimsoth, Monika; Welge, Peter; Lotz, Anne; Gelder, Rainer Van; Hahn, Jens-Uwe; Stiegler, Hugo; Eisele, Lewin; Weiss, Tobias; Hartwig, Andrea; Brüning, Thomas; Pesch, Beate

    2014-11-01

    Iron is the major metal found in welding fumes, and although it is an essential trace element, its overload causes toxicity due to Fenton reactions. To avoid oxidative damage, excess iron is bound to ferritin, and as a result, serum ferritin (SF) is a recognized biomarker for iron stores, with high concentrations linked to inflammation and potentially also cancer. However, little is known about iron overload in welders. Within this study, we assessed the iron status and quantitative associations between airborne iron, body iron stores, and iron homeostasis in 192 welders not wearing dust masks. Welders were equipped with personal samplers in order to determine the levels of respirable iron in the breathing zone during a working shift. SF, prohepcidin and other markers of iron status were determined in blood samples collected after shift. The impact of iron exposure and other factors on SF and prohepcidin were estimated using multiple regression models. Our results indicate that respirable iron is a significant predictor of SF and prohepcidin. Concentrations of SF varied according to the welding technique and respiratory protection used, with a median of 103 μg l(-1) in tungsten inert gas welders, 125 μg l(-1) in those wearing air-purifying respirators, and 161 μg l(-1) in other welders. Compared to welders with low iron stores (SF < 25 μg l(-1)), those with excess body iron (SF ≥ 400 μg l(-1)) worked under a higher median concentration of airborne iron (60 μg m(-3) versus 148 μg m(-3)). Even though air concentrations of respirable iron and manganese were highly correlated, and low iron stores have been reported to increase manganese uptake in the gastrointestinal tract, no correlation was seen between SF and manganese in blood. In conclusion, monitoring SF may be a reasonable method for health surveillance of welders. Respiratory protection with air-purifying respirators can decrease iron exposure and avoid chronically higher SF in welders working with

  5. Airways Hyperresponsiveness Following a Single Inhalation Exposure to Doxorubicin-Induced Heart Failure Prevents Airways Transition Metal-Rich Particulate Matter in Hypertensive Rats

    Science.gov (United States)

    Exposure to particulate matter (PM) air pollution results in airways hyperresponsiveness (AHR), however it also results in adverse cardiovascular effects, particularly in individuals with underlying cardiovascular disease. The impact of pre-existing cardiac deficit on PM-induced ...

  6. Health risk of inhalation exposure to sub-10 µm particulate matter and gaseous pollutants in an urban-industrial area in South Africa: an ecological study

    Science.gov (United States)

    Morakinyo, Oyewale Mayowa; Adebowale, Ayo Stephen; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley

    2017-01-01

    Objective To assess the health risks associated with exposure to particulate matter (PM10), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3). Design The study is an ecological study that used the year 2014 hourly ambient pollution data. Setting The study was conducted in an industrial area located in Pretoria West, South Africa. The area accommodates a coal-fired power station, metallurgical industries such as a coke plant and a manganese smelter. Data and method Estimate of possible health risks from exposure to airborne PM10, SO2, NO2, CO and O3 was performed using the US Environmental Protection Agency human health risk assessment framework. A scenario-assessment approach where normal (average exposure) and worst-case (continuous exposure) scenarios were developed for intermediate (24-hour) and chronic (annual) exposure periods for different exposure groups (infants, children, adults). The normal acute (1-hour) exposure to these pollutants was also determined. Outcome measures Presence or absence of adverse health effects from exposure to airborne pollutants. Results Average annual ambient concentration of PM10, NO2 and SO2 recorded was 48.3±43.4, 11.50±11.6 and 18.68±25.4 µg/m3, respectively, whereas the South African National Ambient Air Quality recommended 40, 40 and 50 µg/m3 for PM10, NO2 and SO2, respectively. Exposure to an hour's concentration of NO2, SO2, CO and O3, an 8-hour concentration of CO and O3, and a 24-hour concentration of PM10, NO2 and SO2 will not likely produce adverse effects to sensitive exposed groups. However, infants and children, rather than adults, are more likely to be affected. Moreover, for chronic annual exposure, PM10, NO2 and SO2 posed a health risk to sensitive individuals, with the severity of risk varying across exposed groups. Conclusions Long-term chronic exposure to airborne PM10, NO2 and SO2 pollutants may result in health risks among the study population. PMID:28289048

  7. Deposition and biokinetics of inhaled nanoparticles

    Directory of Open Access Journals (Sweden)

    Kreyling Wolfgang G

    2010-01-01

    Full Text Available Abstract Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones. The presented approach ranges from inhaled particle deposition probability and retention in the respiratory tract to biokinetics and clearance of particles out of the respiratory tract. Particle transport into the blood circulation (translocation, towards secondary target organs and tissues (accumulation, and out of the body (clearance is considered. The macroscopically assessed amount of particles in the respiratory tract and secondary target organs provides dose estimates for toxicological studies on the level of the whole organism. Complementary, microscopic analyses at the individual particle level provide detailed information about which cells and subcellular components are the target of inhaled particles. These studies contribute to shed light on mechanisms and modes of action eventually leading to adverse health effects by inhaled nanoparticles. We review current methods for macroscopic and microscopic analyses of particle deposition, retention and clearance. Existing macroscopic knowledge on particle biokinetics and microscopic views on particle organ interactions are discussed comparing nanometer and micrometer sized particles. We emphasize the importance for quantitative analyses and the use of particle doses derived from real world exposures.

  8. Deposition and biokinetics of inhaled nanoparticles

    Science.gov (United States)

    2010-01-01

    Particle biokinetics is important in hazard identification and characterization of inhaled particles. Such studies intend to convert external to internal exposure or biologically effective dose, and may help to set limits in that way. Here we focus on the biokinetics of inhaled nanometer sized particles in comparison to micrometer sized ones. The presented approach ranges from inhaled particle deposition probability and retention in the respiratory tract to biokinetics and clearance of particles out of the respiratory tract. Particle transport into the blood circulation (translocation), towards secondary target organs and tissues (accumulation), and out of the body (clearance) is considered. The macroscopically assessed amount of particles in the respiratory tract and secondary target organs provides dose estimates for toxicological studies on the level of the whole organism. Complementary, microscopic analyses at the individual particle level provide detailed information about which cells and subcellular components are the target of inhaled particles. These studies contribute to shed light on mechanisms and modes of action eventually leading to adverse health effects by inhaled nanoparticles. We review current methods for macroscopic and microscopic analyses of particle deposition, retention and clearance. Existing macroscopic knowledge on particle biokinetics and microscopic views on particle organ interactions are discussed comparing nanometer and micrometer sized particles. We emphasize the importance for quantitative analyses and the use of particle doses derived from real world exposures. PMID:20205860

  9. Reasons for Inhalant Use.

    Science.gov (United States)

    Joe, George W.; Simpson, D. Dwayne

    1991-01-01

    Among 110 Mexican-American adolescents in a Texas drug abuse program, initial use of toxicant inhalants was related to availability and sensation-seeking, followed by psychological problems, parental and home problems, and peer influence. Quitting inhalant use was related to social pressures, attitude change, and perceived health risks. (Author/SV)

  10. Levels and predictors of airborne and internal exposure to manganese and iron among welders.

    Science.gov (United States)

    Pesch, Beate; Weiss, Tobias; Kendzia, Benjamin; Henry, Jana; Lehnert, Martin; Lotz, Anne; Heinze, Evelyn; Käfferlein, Heiko Udo; Van Gelder, Rainer; Berges, Markus; Hahn, Jens-Uwe; Mattenklott, Markus; Punkenburg, Ewald; Hartwig, Andrea; Brüning, Thomas

    2012-01-01

    We investigated airborne and internal exposure to manganese (Mn) and iron (Fe) among welders. Personal sampling of welding fumes was carried out in 241 welders during a shift. Metals were determined by inductively coupled plasma mass spectrometry. Mn in blood (MnB) was analyzed by graphite furnace atom absorption spectrometry. Determinants of exposure levels were estimated with multiple regression models. Respirable Mn was measured with a median of 62 (inter-quartile range (IQR) 8.4-320) μg/m(3) and correlated with Fe (r=0.92, 95% CI 0.90-0.94). Inhalable Mn was measured with similar concentrations (IQR 10-340 μg/m(3)). About 70% of the variance of Mn and Fe could be explained, mainly by the welding process. Ventilation decreased exposure to Fe and Mn significantly. Median concentrations of MnB and serum ferritin (SF) were 10.30 μg/l (IQR 8.33-13.15 μg/l) and 131 μg/l (IQR 76-240 μg/l), respectively. Few welders were presented with low iron stores, and MnB and SF were not correlated (r=0.07, 95% CI -0.05 to 0.20). Regression models revealed a significant association of the parent metal with MnB and SF, but a low fraction of variance was explained by exposure-related factors. Mn is mainly respirable in welding fumes. Airborne Mn and Fe influenced MnB and SF, respectively, in welders. This indicates an effect on the biological regulation of both metals. Mn and Fe were strongly correlated, whereas MnB and SF were not, likely due to higher iron stores among welders.

  11. Inhalants in Peru.

    Science.gov (United States)

    Lerner, R; Ferrando, D

    1995-01-01

    In Peru, the prevalence and consequences of inhalant abuse appear to be low in the general population and high among marginalized children. Inhalant use ranks third in lifetime prevalence after alcohol and tobacco. Most of the use appears to be infrequent. Among marginalized children, that is, children working in the streets but living at home or children living in the street, the problem of inhalant abuse is a serious problem. Among children working in the streets but living at home, the lifetime prevalence rate for inhalant abuse is high, ranging from 15 to 45 percent depending on the study being cited. For children living in the streets, the use of inhalant is even more severe. As mentioned earlier in this chapter, most of these street children use inhalants on a daily basis. The lack of research on the problem of inhalant abuse is a serious impediment to development of intervention programs and strategies to address this problem in Peru. Epidemiologic and ethnographic research on the nature and extent of inhalant abuse are obvious prerequisites to targeted treatment and preventive intervention programs. The urgent need for current and valid data is underscored by the unique vulnerability of the youthful population at risk and the undisputed harm that results from chronic abuse of inhalants. Nonetheless, it is important to mention several programs that work with street children. Some, such as the Information and Education Center for the Prevention of Drug Abuse, Generation, and Centro Integracion de Menores en Abandono have shelters where street children are offered transition to a less marginal lifestyle. Teams of street educators provide the children with practical solutions and gain their confidence, as well as offer them alternative socialization experiences to help them survive the streets and avoid the often repressive and counterproductive environments typical of many institutions. Most of the children who go through these programs tend to abandon

  12. Inhalation exposure and health risk levels to BTEX and carbonyl compounds of traffic policeman working in the inner city of Bangkok, Thailand

    Science.gov (United States)

    Kanjanasiranont, Navaporn; Prueksasit, Tassanee; Morknoy, Daisy

    2017-03-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) and carbonyl compounds (CCs) are recognized traffic-related air pollutants in urban environments and are the focus of this study. In Bangkok, the BTEX and CC concentrations in both ambient air and personal exposure samples were studied during two periods (April-May and August-September 2014) at four different sampling sites around the Pathumwan District (three intersections and one T-junction). Traffic policemen, representing the high-exposure group for these toxic air pollutants, were observed, and the health risk to these workers was evaluated. Toluene was the predominant aromatic compound in the ambient and personal exposure samples. The maximum average ambient concentration of BTEX was 2968.96 μg/m3. Formaldehyde and acetaldehyde were the most abundant CCs at all of the sampling sites, with the greatest mean concentrations of these substances being 21.50 μg/m3 and 64.82 μg/m3, respectively. In the personal exposure samples, the highest levels of BTEX, formaldehyde and acetaldehyde concentrations were 2231.85 μg/m3, 10.61 μg/m3, and 16.03 μg/m3, respectively. In terms of risk assessment, benzene posed the greatest cancer risk (at the 95% CI), followed by toluene, acetaldehyde and formaldehyde (1.15E-02, 5.14E-03, 2.84E-04, and 2.52E-04, respectively). Three risk factors were investigated to reduce the total cancer risk levels: reducing the chemical concentration, exposure time and exposure duration. The use of a mask (chemical concentration) was the best way to reduce the risk to traffic police. However, the risk value of benzene (average 1.57E-05) was still higher than an acceptable value when using a mask.

  13. Inhalation toxicity of high flash aromatic naphtha.

    Science.gov (United States)

    Clark, D G; Butterworth, S T; Martin, J G; Roderick, H R; Bird, M G

    1989-05-01

    A petroleum distillate--a high aromatic naphtha--consisting of a 50/50 blended mixture of equivalent products. SHELLSOL A* and SOLVESSO 100**, containing C9 isomers (75 percent) particularly trimethyl benzenes, was examined for systemic toxicity in rats by inhalation exposure. A preliminary 13-week inhalation study with SHELLSOL A had resulted in liver and kidney weight increases in female rats at the high (7400 mg/m3) and medium (3700 mg/m3) exposure levels, and a low grade anaemia in females at all exposure levels (7400, 3700 and 1800 mg/m3). The follow-up 12-month inhalation study in rats described here used atmosphere generated from the SHELLSOL A/SOLVESSO 100 blend of 1800, 900 and 450 mg/m3. Initial reduction in body weight gain occurred in both male and female rats at the higher exposures. Various statistically significant haematological changes were transiently seen in males up to six months, but were not considered biologically significant. High exposure male liver and kidney weights were increased at 6 and 12 months but, in the absence of histopathological changes, were considered to be physiological adaptive responses. No treatment-related histopathological abnormalities were found. It is concluded that chronic exposure to this high aromatic naphtha is without systemic toxicity in rats under the conditions of these studies.

  14. Toxicological Investigation of Acute Carbon Monoxide Poisoning in Four Occupants of a Fuming Sport Utility Vehicle

    Directory of Open Access Journals (Sweden)

    Martin Nnoli

    2014-11-01

    Full Text Available Background: This toxicological investigation involves a report on the death of four occupants of a sport utility vehicle on one of the major busy Federal roads of Nigeria where they were held for up to three hours in a traffic jam while the car was steaming. Methods: Autopsy was executed using the standard procedure and toxicological analysis was done using simple spectrophotometric method to establish the level of carboxyhaemoglobin (HbCO in peripheral blood in the four occupants. Results: The autopsy report indicated generalized cyanosis, sub-conjuctival hemorrhages, marked laryngo-trachea edema with severe hyperemia with frothy fluid discharges characteristic of carbon monoxide poisoning. Toxicological report of the level of HbCO in part per million (ppm in the peripheral blood of the four occupants was A= 650 ppm; B= 500 ppm; C= 480 ppm, and D= 495 ppm against the maximum permissible level of 50 ppm. Conclusion: The sudden death of the four occupants was due to excessive inhalation of the carbon monoxide gas from the exhaust fumes leaking into the cabin of the car. The poor road network, numerous potholes, and traffic jam in most of roads in Nigeria could have exacerbated a leaky exhaust of the smoky second hand SUV car leading to the acute carbon monoxide poisoning.

  15. Evaluation of the Tobacco Heating System 2.2. Part 6: 90-day OECD 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of a mentholated version compared with mentholated and non-mentholated cigarette smoke.

    Science.gov (United States)

    Oviedo, Alberto; Lebrun, Stefan; Kogel, Ulrike; Ho, Jenny; Tan, Wei Teck; Titz, Bjoern; Leroy, Patrice; Vuillaume, Gregory; Bera, Monali; Martin, Florian; Rodrigo, Gregory; Esposito, Marco; Dempsey, Ruth; Ivanov, Nikolai V; Hoeng, Julia; Peitsch, Manuel C; Vanscheeuwijck, Patrick

    2016-11-30

    The toxicity of a mentholated version of the Tobacco Heating System (THS2.2M), a candidate modified risk tobacco product (MRTP), was characterized in a 90-day OECD inhalation study. Differential gene and protein expression analysis of nasal epithelium and lung tissue was also performed to record exposure effects at the molecular level. Rats were exposed to filtered air (sham), to THS2.2M (at 15, 23 and 50 μg nicotine/l), to two mentholated reference cigarettes (MRC) (at 23 μg nicotine/l), or to the 3R4F reference cigarette (at 23 μg nicotine/l). MRCs were designed to meet 3R4F specifications. Test atmosphere analyses demonstrated that aldehydes were reduced by 75%-90% and carbon monoxide by 98% in THS2.2M aerosol compared with MRC smoke; aerosol uptake was confirmed by carboxyhemoglobin and menthol concentrations in blood, and by the quantities of urinary nicotine metabolites. Systemic toxicity and alterations in the respiratory tract were significantly lower in THS2.2M-exposed rats compared with MRC and 3R4F. Pulmonary inflammation and the magnitude of the changes in gene and protein expression were also dramatically lower after THS2.2M exposure compared with MRCs and 3R4F. No menthol-related effects were observed after MRC mainstream smoke-exposure compared with 3R4F. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Immediate and long-term effects in the hematopoietic system and the morphology of the respiratory system in experimental animals under chronic combined action of external gamma exposure and inhalation exposure.

    Science.gov (United States)

    Tatarkin, Sergey; Moukhamedieva, Lana; Aleksandr, Shafirkin; Barantseva, Maria; Ivanova, Svetlana

    The need to solve hygiene problems valuation of environmental factors in the implementation of the projected manned interplanetary missions, determined the relevance of studying the effect of external gamma-irradiation with inhalation of mixtures of chemicals on the parameters of major critical body systems: hematopoiesis and respiratory (morphological and morphometric parameters) in the short and long periods. The study conducted on 504 male mice F1 (CBA × C57BL6) under chronic fractional gamma-irradiation (within 10 weeks at a total dose 350sGr) and then under inhalation by mixtures of chemicals in low concentrations. Duration of the experiment (124 days) and 90 -day recovery period. Displaying adaptive reorganization in hematopoietic system, which was characterized by a tension of regulatory systems of animals and by a proliferation of bone marrow cells and by dynamic changes in amount of lymphoid cells in peripheral blood, elevated levels of the antioxidant activity of red blood cells, and morphological manifestations of "incomplete recovery " of the spleen, which are retained in the recovery period. Morphological changes in the respiratory organs of animals testified about immunogenesis activation and development of structural changes as a chronic inflammatory process. Increase of fibrous connective tissue in the walls of the trachea, bronchus and lung, against reduction of loose fibrous connective tissue (more pronounced in respiratory parts of the respiratory system) in experimental animals, which may indicate a reduction of the functional reserves of the body and increase the risk of adverse long-term effects.

  17. Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats.

    Science.gov (United States)

    Gaté, Laurent; Disdier, Clémence; Cosnier, Frédéric; Gagnaire, François; Devoy, Jérôme; Saba, Wadad; Brun, Emilie; Chalansonnet, Monique; Mabondzo, Aloise

    2017-01-04

    The increasing industrial use of nanoparticles (NPs) has raised concerns about their impact on human health. Since aging and exposure to environmental factors are linked to the risk for developing pathologies, we address the question of TiO2 NPs toxicokinetics in the context of a realistic occupational exposure. We report the biodistribution of titanium in healthy young adults (12-13-week-old) and in elderly rats (19-month-old) exposed to 10mg/m(3) of a TiO2 nanostructured aerosol 6h/day, 5days/week for 4 weeks. We measured Ti content in major organs using inductively coupled plasma mass spectrometry immediately and up to 180days after the end of exposure. Large amounts of titanium were initially found in lung which were slowly cleared during the post-exposure period. From day 28, a small increase of Ti was found in the spleen and liver of exposed young adult rats. Such an increase was however never found in their blood, kidneys or brain. In the elderly group, translocation to extra-pulmonary organs was significant at day 90. Ti recovered from the spleen and liver of exposed elderly rats was higher than in exposed young adults. These data suggest that TiO2 NPs may translocate from the lung to extra-pulmonary organs where they could possibly promote systemic health effects.

  18. Health risk assessment of inhalation exposure of irrigation workers and the public to trihalomethanes from reclaimed water in landscape irrigation in Tianjin, North China.

    Science.gov (United States)

    Wang, Chen-Chen; Niu, Zhi-Guang; Zhang, Ying

    2013-11-15

    To estimate the concentration in air and the cancer risk of irrigation workers and the public exposed to the total trihalomethanes (TTHMs) in reclaimed water used for landscape irrigation, a probabilistic health risk assessment was conducted through the integrated use of one-dimensional (1-D) and two-dimensional (2-D) Monte Carlo simulations. Before the 2-D simulation, a sensitivity analysis corresponding to the 1-D simulation was carried out to identity the factors most affecting the outputs. The results reveal that the TTHM concentration level and cancer risk for workers' exposure is much higher than that for public exposure in landscape irrigation. Moreover, the most influential factors are quite different for workers' exposure and public exposure. The 2-D Monte Carlo risk analysis result for the workers indicated that the lowest-risk, highest-risk and two critical points for irrigation height are 0.7 m, 1.53 m, 1.4m and 1.65 m when the mean value of the risk is selected as the reference statistic for risk management. Based on the risk assessment results, different measures can be suggested for the risk control of different populations. Furthermore, the influential variables should be better characterized to improve the accuracy of health risk assessment. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Ozone inhalation modifies the rat liver proteome

    Directory of Open Access Journals (Sweden)

    Whitney S. Theis

    2014-01-01

    Full Text Available Ozone (O3 is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver. To test this, male Sprague-Dawley rats were exposed to 0.5 ppm O3 for 8 h/day for 5 days. Plasma liver enzyme measurements showed that 5 day O3 exposure did not cause liver cell death. Proteomic and mass spectrometry analysis identified 10 proteins in the liver that were significantly altered in abundance following short-term O3 exposure and these included several stress responsive proteins. Glucose-regulated protein 78 and protein disulfide isomerase increased, whereas glutathione S-transferase M1 was significantly decreased by O3 inhalation. In contrast, no significant changes were detected for the stress response protein heme oxygenase-1 or cytochrome P450 2E1 and 2B in liver of O3 exposed rats compared to controls. In summary, these results show that an environmentally-relevant exposure to inhaled O3 can alter the expression of select proteins in the liver. We propose that O3 inhalation may represent an important unrecognized factor that can modulate hepatic metabolic functions.

  20. Assessing inhalation injury in the emergency room

    Directory of Open Access Journals (Sweden)

    Tanizaki S

    2015-07-01

    Full Text Available Shinsuke Tanizaki Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan Abstract: Respiratory tract injuries caused by inhalation of smoke or chemical products are related to significant morbidity and mortality. While many strategies have been built up to manage cutaneous burn injuries, few logical diagnostic strategies for patients with inhalation injuries exist and almost all treatment is supportive. The goals of initial management are to ensure that the airway allows adequate oxygenation and ventilation and to avoid ventilator-induced lung injury and substances that may complicate subsequent care. Intubation should be considered if any of the following signs exist: respiratory distress, stridor, hypoventilation, use of accessory respiratory muscles, blistering or edema of the oropharynx, or deep burns to the face or neck. Any patients suspected to have inhalation injuries should receive a high concentration of supplemental oxygen to quickly reverse hypoxia and to displace carbon monoxide from protein binding sites. Management of carbon monoxide and cyanide exposure in smoke inhalation patients remains controversial. Absolute indications for hyperbaric oxygen therapy do not exist because there is a low correlation between carboxyhemoglobin levels and the severity of the clinical state. A cyanide antidote should be administered when cyanide poisoning is clinically suspected. Although an ideal approach for respiratory support of patients with inhalation injuries do not exist, it is important that they are supported using techniques that do not further exacerbate respiratory failure. A well-organized strategy for patients with inhalation injury is critical to reduce morbidity and mortality. Keywords: inhalation injury, burn, carbon monoxide poisoning, cyanide poisoning

  1. Epigenetic Events Determine Tissue-Specific Toxicity of Inhalational Exposure to the Genotoxic Chemical 1,3-Butadiene in Male C57BL/6J Mice

    OpenAIRE

    2014-01-01

    1,3-Butadiene (BD), a widely used industrial chemical and a ubiquitous environmental pollutant, is a known human carcinogen. Although genotoxicity is an established mechanism of the tumorigenicity of BD, epigenetic effects have also been observed in livers of mice exposed to the chemical. To better characterize the diverse molecular mechanisms of BD tumorigenicity, we evaluated genotoxic and epigenotoxic effects of BD exposure in mouse tissues that are target (lung and liver) and non-target (...

  2. Interspecies modeling of inhaled particle deposition patterns

    Energy Technology Data Exchange (ETDEWEB)

    Martonen, T.B.; Zhang, Z.; Yang, Y.

    1992-01-01

    To evaluate the potential toxic effects of ambient contaminants or therapeutic effects of airborne drugs, inhalation exposure experiments can be performed with surrogate laboratory animals. Herein, an interspecies particle deposition theory is presented for physiologically based pharmacokinetic modeling. It is derived to improve animal testing protocols. The computer code describes the behavior and fate of particles in the lungs of human subjects and a selected surrogate, the laboratory rat. In the simulations CO2 is integrated with exposure chamber atmospheres, and its concentrations regulated to produce rat breathing profiles corresponding to selected levels of human physical activity. The dosimetric model is used to calculate total, compartmental (i.e., tracheobronchial and pulmonary), and localized distribution patterns of inhaled particles in rats and humans for comparable ventilatory conditions. It is demonstrated that the model can be used to predetermine the exposure conditions necessary to produce deposition patterns in rats that are equivalent to those in humans at prescribed physical activities.

  3. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    Science.gov (United States)

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test

  4. Formoterol Oral Inhalation

    Science.gov (United States)

    ... of lung diseases that includes chronic bronchitis and emphysema) in adults. Formoterol inhalation powder is also used with another medication to treat asthma and to prevent breathing difficulties during exercise in ...

  5. Indacaterol Oral Inhalation

    Science.gov (United States)

    Indacaterol inhalation is used to control wheezing, shortness of breath, coughing, and chest tightness caused by chronic obstructive pulmonary disease (COPD). Indacaterol is in a class of medications called long- ...

  6. Pentamidine Oral Inhalation

    Science.gov (United States)

    Pentamidine is an anti-infective agent that helps to treat or prevent pneumonia caused by the organism ... Pentamidine comes as a solution to be inhaled using a nebulizer. It usually is used once every ...

  7. Insulin Human Inhalation

    Science.gov (United States)

    Insulin inhalation is used in combination with a long-acting insulin to treat type 1 diabetes (condition in which the body does not produce insulin and therefore cannot control the amount of sugar ...

  8. Effects of inhalation of and exposure to gaseous substances to genital organs, and sexual difference. (6). Gas jo busshitsu kyunyu bakuro ni yoru seishokuki eno eikyo oyobi seisa. (6)

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, N.; Mori, K.; Fujishiro, K.; Hori, H. (Univ. of Occupational and Environmental Health, Kitakyushu (Japan). Institute of Industrial Ecological Science)

    1991-01-01

    Results of studies and knowledges therefrom are reported on intermediate materials used in the chemical industry and ethylene oxide used as a sterilizer for medical devices as to how their toxicity affects the different sexes and feminine genital organs. Male and female rats were subjected to inhalation of and exposure to ethylene oxide at a concentration of 250 ppm 6 hours a day, 5 days a week for 17 weeks (some of them for 10 weeks), and chronic toxicity of ethylene oxide was investigated on sexual difference and female genital organs. The female rats showed their estrous cycle extended, and an increase in ratio of the estrous periods accounting for in the entire cycles was idenfified. While no sexual difference was identified in the degree of disorders in peripheral nervous system, strong macrocytic normochromia anemia was observed in female rats. Activity of glutathione reductase in ovaries has decreased, and an increase in glutathione-S-transferase activity was observed. It was made clear from these facts that ethylene oxide affected also female genital organs. 15 refs., 7 figs., 10 tabs.

  9. In vitro studies of the genotoxic effects of bitumen and coal-tar fume condensates: comparison of data obtained by mutagenicity testing and DNA adduct analysis by 32P-postlabelling.

    Science.gov (United States)

    De Méo, M; Genevois, C; Brandt, H; Laget, M; Bartsch, H; Castegnaro, M

    1996-08-14

    Bitumens contain traces of polycyclic aromatic compounds (PACs), a part of which will end up in the fumes emitted during hot handling of bitumen-containing products, e.g. during roadpaving. Although exposure of workers to these fumes is low, it might lead to health problems. Studies on bitumen fume condensates (BFCs) showed weak to moderate mutagenic activities, but studies on DNA adduct formation have not been reported. Therefore, a study was initiated in which fumes were generated from two road grade bitumens, in such a way that they were representative of the fumes produced in the field. The combined vapour/particulates were tested in vitro for their ability to produce DNA adducts and in modified Ames mutation assays, using a number of different strains. An attempt was made to relate the results to chemical data, such as the content of a number of individual polycyclic aromatic hydrocarbons (PAHs) and with a measure for the total PAC content. As a reference material fume condensate from coal-tar (coal-tar pitch volatiles; CTPV) were subjected to the same tests. All fume condensates tested were mutagenic to all strains and induced the formation of DNA adducts. The patterns of DNA adducts, obtained by 32P-postlabelling, arising from the BFCs were qualitatively different from the patterns of adducts obtained from the CTPVs, implying qualitative differences in the nature of the compounds responsible for the formation of these adducts. This is corroborated by the observation that for BFCs quantitative adduct levels are higher than would be expected based on the PAH content. These data thus indicate that the PAHs analysed are not the sole components responsible for adduct formation from BFCs, but that an important contribution comes from other (hetero- and/or substituted-) PACs.

  10. Pulmonary adverse effects of welding fume in automobile assembly welders.

    Science.gov (United States)

    Sharifian, Seyed Akbar; Loukzadeh, Ziba; Shojaoddiny-Ardekani, Ahmad; Aminian, Omid

    2011-01-01

    Welding is one of the key components of numerous manufacturing industries, which has potential physical and chemical health hazards. Many components of welding fumes can potentially affect the lung function. This study investigates the effects of welding fumes on lung function and respiratory symptoms among welders of an automobile manufacturing plant in Iran. This historical cohort study assesses 43 male welders and 129 office workers by a questionnaire to record demographic data, smoking habits, work history and respiratory symptoms as well as lung function status by spirometry. The average pulmonary function values of welders were lower relative to controls with dose-effect relationship between work duration and pulmonary function impairment. The prevalence of chronic bronchitis was higher in welders than controls. Our findings suggest that welders are at risk for pulmonary disease.

  11. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    Science.gov (United States)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-04-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  12. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    Science.gov (United States)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-01-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  13. Determination of naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) in mouse blood and tissue after inhalation exposure to ‘buzz’ smoke by HPLC/MS/MS

    Science.gov (United States)

    Poklis, Justin L.; Amira, Dorra; Wise, Laura E.; Wiebelhaus, Jason M.; Haggerty, Brenda J.; Lichtman, Aron H.; Poklis, Alphonse

    2013-01-01

    The disposition of the cannabimimetic naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) in mice following inhalation of the smoke of the herbal incense product (HIP) ‘Buzz’ is presented. A high-pressure liquid chromatography with electrospray ionization triple quadrupole mass spectrometer (HPLC/MS/MS) method was validated for the analysis of JWH-018 in the specimens using deuterated Δ9-tetrahydrocannabinol (d3-THC) as the internal standard. JWH-018 was isolated by cold acetonitrile liquid–liquid extraction. Chromatographic separation was performed on a Zorbaz eclipse XDB-C18 column. The assay was linear from 1 to 1000 ng/mL. Six C57BL6 mice were sacrificed 20 min after exposure to the smoke of 200 mg ‘Buzz’ containing 5.4% JWH-018. Specimen concentrations of JWH-018 were: blood, 54–166 ng/mL (mean 82 ± 42 ng/mL); brain, 316–708 ng/g (mean 510 ± 166 ng/g); and liver, 1370–3220 ng/mL (mean 1990 ± 752 ng/mL). The mean blood to brain ratio for JWH-018 was 6.8 and ranged from 4.2 to 10.9. After exposure, the responses of the mice were consistent with cannabinoid receptor type 1 activity: body temperatures dropped 7.3 ± 1.1 °C, and catalepsy, hyperreflexia, straub tail and ptosis were observed. The brain concentrations and physiological responses are consistent with the hypothesis that the behavioral effects of ‘Buzz’ are attributable to JWH-018. PMID:22407432

  14. Lack of micronucleus induction activity of ethyl tertiary-butyl ether in the bone marrow of F344 rats by sub-chronic drinking-water treatment, inhalation exposure, or acute intraperitoneal injection.

    Science.gov (United States)

    Noguchi, Tadashi; Kamigaito, Tomoyuki; Katagiri, Taku; Kondou, Hitomi; Yamazaki, Kazunori; Aiso, Shigetoshi; Nishizawa, Tomoshi; Nagano, Kasuke; Fukushima, Shoji

    2013-01-01

    Ethyl tertiary-butyl ether (ETBE) is an oxygenated gasoline additive synthesized from ethanol and isobutene that is used to reduce CO2 emissions. To support the Kyoto Protocol, the production of ETBE has undergone a marked increase. Previous reports have indicated that exposure to ETBE or methyl tertiary-butyl ether resulted in liver and kidney tumors in rats and/or mice. These reports raise concern about the effects of human exposure being brought about by the increased use of ETBE. The present study was conducted to evaluate the genotoxicity of ETBE using micronucleus induction of polychromatic erythrocytes in the bone marrow of male and female rats treated with ETBE in the drinking-water at concentrations of 0, 1,600, 4,000 or 10,000 ppm or exposed to ETBE vapor at 0, 500, 1,500 or 5,000 ppm for 13 weeks. There were no significant increases in micronucleus induction in either the drinking water-administered or inhalation-administered groups at any concentration of ETBE; although, in both groups red blood cells and hemoglobin concentration were slightly reduced in the peripheral blood in rats administered the highest concentration of ETBE. In addition, two consecutive daily intraperitoneal injections of ETBE at doses of 0, 250, 500 or 1,000 mg/kg did not increase the frequency of micronucleated bone marrow cells in either sex; all rats receiving intraperitoneal injections of ETBE at a dose of 2,000 mg/kg died after treatment day 1. These data suggest that ETBE is not genotoxic in vivo.

  15. Persistent increases in inflammatory cytokines, Akt, and MAPK/ERK pathways after inhalation exposure of rats to Libby amphibole (LA) or amosite: comparison to effects after intratracheal exposure to LA or naturally occurring asbestos.

    Science.gov (United States)

    Human exposure to LA and other mined or processed asbestos increases risk of lung inflammation, fibrosis, and cancer. Health risks from exposure to naturally occurring asbestos (NOA) are not as well-understood. Mechanisms of long-term toxicity were compared in male F344 rats expo...

  16. Persistent increases in inflammatory cytokines, Akt, and MAPK/ERK pathways after inhalation exposure of rats to Libby amphibole (LA) or amosite: comparison to effects after intratracheal exposure to LA or naturally occurring asbestos.

    Science.gov (United States)

    Human exposure to LA and other mined or processed asbestos increases risk of lung inflammation, fibrosis, and cancer. Health risks from exposure to naturally occurring asbestos (NOA) are not as well-understood. Mechanisms of long-term toxicity were compared in male F344 rats expo...

  17. HYDRAULIC CONDUCTIVITY OF GCL WITH BENTONITE – SILICA FUME MATRIX

    OpenAIRE

    M. Andal; Chandrasekhar, M.; G. K. Viswanadh

    2012-01-01

    This paper presents the influence of partial replacement of bentonite by silica fume which is used in the manufacture of Geosynthetic Clay Liner (GCL). Geosynthetic Clay Liners consist bentonite (Sodium Based) sandwiched between two geotextile. Benotinite, having low permeability imparts better hydraulic performance to the GCL to act as liner. In this investigation, an attempt has been made to study the hydraulic conductivity of GCL with modified Bentonite. The bentonite is partially replaced...

  18. The injury of fine particulate matter from cooking oil fumes on umbilical cord blood vessels in vitro.

    Science.gov (United States)

    Hou, Lijuan; Zhang, Jian; Zhang, Chao; Xu, Yachun; Zhu, Xiaoxia; Yao, Cijiang; Liu, Ying; Li, Tao; Cao, Jiyu

    2017-01-01

    Cooking oil fumes (COFs) derived PM2.5 is the major source of indoor air pollution in Asia. For this, a pregnant rat model within different doses of cooking oil fumes (COFs) derived PM2.5 was established in pregnancy in our research. Our previous studies have showed that exposure to COFs-derived PM2.5 was related to adverse pregnancy outcomes. However, the mechanisms of signaling pathways remain unknown. Therefore, this study aimed to investigate the underlying mechanisms induced by COFs-derived PM2.5 injury on umbilical cord blood vessels (UCs) in vitro. Exposure to COFs-derived PM2.5 resulted in changing the expression of eNOS, ET-1, ETRA, and ETRB. In additions, western blot analysis indicated that the HIF-1α/iNOS/NO signaling pathway and VEGF/VEGFR1/iNOS signaling pathway were involved in UCs injury triggered by COFs-derived PM2.5. In conclusion, our data suggested that exposure to COFs-derived PM2.5 resulted in increasing of oxidative stress and inflammation, as well as dysfunction of UCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Exposure-response of 1,2:3,4-diepoxybutane-specific N-terminal valine adducts in mice and rats after inhalation exposure to 1,3-butadiene.

    Science.gov (United States)

    Georgieva, Nadia I; Boysen, Gunnar; Bordeerat, Narisa; Walker, Vernon E; Swenberg, James A

    2010-06-01

    1,3-Butadiene (BD) is a known rodent and human carcinogen that is metabolized mainly by P450 2E1 to three epoxides, 1,2-epoxy-3-butene (EB), 1,2:3,4-diepoxybutane (DEB), and 1,2-epoxy-3,4-butanediol. The individual epoxides vary up to 200-fold in their mutagenic potency, with DEB being the most mutagenic metabolite. It is important to understand the internal formation of the individual epoxides to assign the relative risk for each metabolite and to understand the molecular mechanisms responsible for extensive species differences in carcinogenicity. This study presents a comprehensive exposure-response for the formation of the DEB-specific N,N-(2,3-dihydroxy-1,4-butadiyl)valine (pyr-Val) in mice and rats. Using nano-ultra high pressure liquid chromatography-tandem-mass spectrometry allowed analysis of pyr-Val in mice and rats exposed to BD as low as 0.1 and 0.5 ppm BD, respectively, and demonstrated significant differences in the amounts and exposure-response of pyr-Val formation. Mice formed 10- to 60-fold more pyr-Val compared to rats at similar exposures. The formation of pyr-Val increased with exposures, and the formation was most efficient with regard to formation per parts per million BD at low exposures. While formation at higher exposures appeared linear in mice, in rats formation saturated at exposures > or = 200 ppm for 10 days. In rats, amounts of pyr-Val were lower after 20 days than after 10 days of exposure, suggesting that the lifespan of rat erythrocytes may be shortened following exposure to BD. This research supports the hypothesis that the lower susceptibility of rats to BD-induced carcinogenesis results from greatly reduced formation of DEB following exposure to BD.

  20. The effect of thermal loading on laboratory fume hood performance.

    Science.gov (United States)

    Johnston, J D; Chessin, S J; Chesnovar, B W; Lillquist, D R

    2000-11-01

    A modified version of the ANSI/ASHRAE 110-1995 Method of Testing Performance of Laboratory Fume Hoods was used to evaluate the relationship between thermal loading in a laboratory fume hood and subsequent tracer gas leakage. Three types of laboratory burners were used, alone and in combination, to thermally challenge the hood. Heat output from burners was measured in BTU/hr, which was based on the fuel heat capacity and flow rate. Hood leakage was measured between 2824 and 69,342 BTU/hr. Sulfur hexafluoride (SF6) was released at 23.5 LPM for each level of thermal loading. Duct temperature was also measured during the heating process. Results indicate a linear relationship for both BTU/hr vs. hood leakage and duct temperature vs. hood leakage. Under these test conditions, each increase of 10,000 BTU/hr resulted in an additional 4 ppm SF6 in the manikin's breathing zone (r2 = 0.68). An additional 3.1 ppm SF6 was measured for every 25 degrees F increase in duct temperature (r2 = 0.60). Both BTU/hr and duct temperature models showed p hood leakage than duct temperature. The results of this study indicate that heat output may compromise fume hood performance. This finding is consistent with those of previous studies.

  1. Hepatotoxic Alterations Induced by Inhalation of Trichloroethylene (TCE) in Rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Trichloroethylene (TCE) is one of the most potent organic unsaturated solvents being used in dry cleaning, metal degreasing, thinner for paints varnishes and electroplating, etc. and has been reported to be a hepatotoxicant through oral and dermal exposure. However, its inhalation toxicity data is very limited in the literature due to the fact that the exposure levels associated with these effects were usually not reported. Hence, inhalation toxicity study was carried out for hepatotoxic studies. Method Inhalation toxicity studies was carried out by exposing rats to TCE for 8, 12 and 24 weeks in a dynamically operated whole body inhalation chamber. Sham treated control rats were exposed to compressed air in the inhalation chamber for the same period. Results Significant increase in liver weight (liver enlargement) appearance of necrotic lesions with fatty changes and marked necrosis were observed after longer duration (12 and 24 weeks) of TCE exposure. The lysosomal rupture resulted in increased activity of acid and alkaline phosphatase alongwith reduced glutathione content and total increased sulfhydryl content in liver tissue. Conclusion TCE exposure through Inhalation route induces hepatotoxicity in terms of marked necrosis with fatty changes and by modulating the lysosomal enzymes.

  2. Physical and chemical characterization of asphalt (bitumen) paving exposures.

    Science.gov (United States)

    Herrick, Robert F; McClean, Michael D; Meeker, John D; Zwack, Leonard; Hanley, Kevin

    2007-01-01

    The purpose of this research was to characterize the physical and chemical properties of asphalt (bitumen) fume and vapor in hot mix asphalt roadway paving operations. Area and personal air samples were taken using real-time equipment and extractive sampling and analytical methods to determine worker asphalt exposure, as well as to characterize the properties of the particulate and vapor phase components. Analysis of personal inhalation and dermal samples by gas chromatography/mass spectroscopy showed that the polycyclic aromatic hydrocarbon profile is dominated by compounds with molecular weights below 228, and that substituted and heterocyclic polycyclic aromatic hydrocarbons comprised approximately 71% of the detectable mass concentration (vapor and particulate combined). Principal components analysis shows that the polycyclic aromatic hydrocarbons with molecular weights greater than 190 are the driving force behind the polycyclic aromatic compound exposures measured for the dermal and particulate phases; there was no clear trend for the vapor phase Most of the aerosol particles are fine (mass median aerodynamic diameter 1.02 microm; count median diameter 0.24 microm).

  3. Characterization of inhalable, thoracic, and respirable fractions and ultrafine particle exposure during grinding, brazing, and welding activities in a mechanical engineering factory.

    Science.gov (United States)

    Iavicoli, Ivo; Leso, Veruscka; Fontana, Luca; Cottica, Danilo; Bergamaschi, Antonio

    2013-04-01

    To investigate the emission sources of fine and ultrafine particles (UFPs) during brazing, welding, and grinding in a mechanical engineering factory and to characterize UFP exposure by measuring size distributions, number, and surface area concentrations. Samplings lasted 4 hours and were conducted during 5 days using the Grimm 1.109 portable aerosol spectrometer, the Grimm portable NanoCheck™ 1.320, the electrical low pressure impactor, and the nanoparticle aerosol monitor AeroTrak™ 9000. Higher concentrations of fine particles were observed in welding and grinding activities. The highest values of UFP number and alveolar surface area concentrations were detected in the welding booth. Potential emission sources of fine particles and UFPs can be identified by the multifaceted approach outlined in this study. This sampling strategy provides important data on key UFP metrics.

  4. 1-Bromopropane, an alternative to ozone layer depleting solvents, is dose-dependently neurotoxic to rats in long-term inhalation exposure.

    Science.gov (United States)

    Ichihara, G; Kitoh, J; Yu, X; Asaeda, N; Iwai, H; Kumazawa, T; Shibata, E; Yamada, T; Wang, H; Xie, Z; Takeuchi, Y

    2000-05-01

    1-Bromopropane has been newly introduced as an alternative to ozone layer-depleting solvents. We aimed to clarify the dose-dependent effects of 1-bromopropane on the nervous system. Forty-four Wistar male rats were randomly divided into 4 groups of 11 each. The groups were exposed to 200, 400, or 800 ppm of 1-bromopropane or only fresh air 8 h per day for 12 weeks. Grip strength of forelimbs and hind limbs, maximum motor nerve conduction velocity (MCV), and distal latency (DL) of the tail nerve were measured in 9 rats of each group every 4 weeks. The other 2 rats of each group were perfused at the end of the experiment for morphological examinations. The rats of the 800-ppm group showed poor kicking and were not able to stand still on the slope. After a 12-week exposure, forelimb grip strength decreased significantly at 800 ppm and hind limb grip strength decreased significantly at both 400 and 800 ppm or after a 12-week exposure. MCV and DL of the tail nerve deteriorated significantly at 800 ppm. Ovoid or bubble-like debris of myelin sheaths was prominent in the unraveled muscular branch of the posterior tibial nerve in the 800-ppm group. Swelling of preterminal axons in the gracile nucleus increased in a dose-dependent manner. Plasma creatine phosphokinase (CPK) decreased dose-dependently with significant changes at 400 and 800 ppm. 1-Bromopropane induced weakness in the muscle strength of rat limbs and deterioration of MCV and DL in a dose-dependent manner, with morphological changes in peripheral nerve and preterminal axon in the gracile nucleus. 1-Bromopropane may be seriously neurotoxic to humans and should thus be used carefully in the workplace.

  5. Full-scale experimental research on fire fume refluence of sloped long and large curved tunnel

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A full-scale experimental research is conducted on the fire fume refluence of a sloped long and large curved tunnel in the underground plant of a hydraulic and hydropower engineering project under three different fire powers.As a result,the eddy effect and pattern of the fire fume flow in the tunnel in case of fire is discovered and the refluence of the fume layers in case of fire is observed.Through analysis of the temperature measurement resulted in the course of the experiment,the main characteristics and performance of the fire fume refluence are discussed under the three different fire powers.

  6. Hair Manganese as an Exposure Biomarker among Welders.

    Science.gov (United States)

    Reiss, Boris; Simpson, Christopher D; Baker, Marissa G; Stover, Bert; Sheppard, Lianne; Seixas, Noah S

    2016-03-01

    Quantifying exposure and dose to manganese (Mn) containing airborne particles in welding fume presents many challenges. Common biological markers such as Mn in blood or Mn in urine have not proven to be practical biomarkers even in studies where positive associations were observed. However, hair Mn (MnH) as a biomarker has the advantage over blood and urine that it is less influenced by short-term variability of Mn exposure levels because of its slow growth rate. The objective of this study was to determine whether hair can be used as a biomarker for welders exposed to manganese. Hair samples (1cm) were collected from 47 welding school students and individual air Mn (MnA) exposures were measured for each subject. MnA levels for all days were estimated with a linear mixed model using welding type as a predictor. A 30-day time-weighted average MnA (MnA30d) exposure level was calculated for each hair sample. The association between MnH and MnA30d levels was then assessed. A linear relationship was observed between log-transformed MnA30d and log-transformed MnH. Doubling MnA30d exposure levels yields a 20% (95% confidence interval: 11-29%) increase in MnH. The association was similar for hair washed following two different wash procedures designed to remove external contamination. Hair shows promise as a biomarker for inhaled Mn exposure given the presence of a significant linear association between MnH and MnA30d levels.

  7. Assessment of violations of the proteomic profile in blood plasma in children being under inhalation exposure to fine dust containing vanadium

    Directory of Open Access Journals (Sweden)

    N.V. Zaitseva

    2016-03-01

    Full Text Available The results of research and evaluation of the protein profile in blood plasma in children, that have been exposed to long-term effect of fine dust containing vanadium in the zone of influence of metallurgical production sources, are demonstrated. It was established that under conditions of poor air quality in the residential area due to vanadium pentoxide dust content at the level up to 1.2 mean daily MAC (34 RfC chr , by the suspended solids – up to 0.6 mean daily MAC (1.2 RfC chr , there is vanadium concentration in blood of the exposed 4–7 aged children, that exceeds up to 6 times the reference level. The technology of the proteomic analysis showed that children with high content of vanadium in blood have changes in proteomic profile in blood plasma in the type of increase of the relative volume of acid glycoprotein alpha-1; reduction of clusterin, apolipoprotein A-IV, alpha-2-HS-glycoprotein, that are associated with vanadium concentration in blood. In the absence of timely primary and secondary prevention and the preservation of vanadium sustained exposure the revealed cell-molecular abnormalities allow us to predict further development of functional disturbances on tissue and organ levels as the early development of osteoporosis and osteoarticular pathology, atherosclerotic vascular changes, autoimmune allergic processes on the background of disorders of immune regulation, oncology diseases.

  8. Cooking oil fumes and lung cancer: a review of the literature in the context of the U.S. population.

    Science.gov (United States)

    Lee, Trevor; Gany, Francesca

    2013-06-01

    There is growing evidence that exposure to cooking oil fumes (COF) is linked to lung cancer. Existing literature on this risk was reviewed, specifically as it may relate to potentially at-risk populations such as Chinese immigrants and restaurant workers in the United States. Studies were identified by searching the NCBI database with key terms. All studies that examined the significance, prevalence, and/or mechanism(s) of the association between COF exposure and cancer (all types) were included. A majority of epidemiologic studies found associations between lung cancer and COF exposure. All studies that examined the mechanisms underlying the risk found evidence for mutagenic and/or carcinogenic compounds in COF extract and/or molecular mechanisms for COF-induced DNA damage or carcinogenesis. The evidence reviewed underscores the need to thoroughly investigate the association among at-risk groups in the United States, as well as to develop and assess concrete interventions to reduce these risks.

  9. Testicular toxicity induced by inhalation exposure to 1-bromopropane in Wistar rats%1-溴丙烷吸入染毒对Wistar大鼠睾丸毒性研究

    Institute of Scientific and Technical Information of China (English)

    罗巧; 宋向荣; 李宏玲; 刘浩中; 赵娜; 王海兰

    2015-01-01

    Objective To explore the effects of 1-bromopropane (1-BP) inhalation exposure on the testicular structure and the expression of B-cell lymphoma-2 gene (Bcl-2) and Bcl-2 associated X protein (Bax).Methods Twenty-four specific pathogen free healthy male Wistar rats were randomly divided into control group and exposure group, and then separately exposed to 1-BP vapor for 4 weeks (8 h/day, 5 days/week) at the concentrations of 0.00 and 5 000.00 mg/m3 in a dynamic inhalation chamber system.After exposure, the rats’ main organs were dissected and weighed and the organ coefficients were calculated.Histopathologic changes of testis were observed by microscopy, testicular slices were scanned by pathological slice scanner, and quantitative analysis was carried out to measure the average diameter of testicular seminiferous tubule and the proportion of seminiferous tubules containing the sperm.The expressions of Bcl-2 and Bax protein in testicular were determined by immunohistochemical method.Results Compared with the control group, the body weight from the 1st to the 4th week was significantly decreased in the exposure group (P0.05]. The structures of most of the testicular seminiferous tubules were normal in the exposure group, but individual pieces of testicular seminiferous tubules showed obvious morphological changes.The significant difference was not found in average diameter of testicular seminiferous tubule between the exposure and control groups [ ( 279.88 ±15.49 ) vs ( 285.41 ± 12.69) μm;P>0.05].Compared with the control group, the proportion of seminiferous tubules containing the sperm in the testis was significantly decreased in the exposure group [(42.00 ±10.79) %vs (56.05 ±12.72)%;P0.05 ) . Conclusion The inhalation exposure to 1-BP may induce injury of testis in male Wistar rats.The enhancing expression of Bax protein in testis may play a role in the mechanism of testicular toxicity.%目的:探讨1-溴丙烷吸入染毒对Wistar大鼠睾

  10. Know How to Use Your Asthma Inhaler

    Medline Plus

    Full Text Available ... 260 KB] Using a metered dose inhaler (inhaler in mouth) Your browser does not support iframes Using a metered dose inhaler (inhaler in mouth) [PDF - 370 KB] Your browser does not ...

  11. Reactive Airways Dysfunction Syndrome from Acute Inhalation of Dishwasher Detergent Powder

    OpenAIRE

    Timo J Hannu; Riihimäki, Vesa E; Piirilä, Päivi L

    2012-01-01

    Reactive airway dysfunction syndrome, a type of occupational asthma without a latency period, is induced by irritating vapour, fumes or smoke. The present report is the first to describe a case of reactive airway dysfunction syndrome caused by acute exposure to dishwater detergent containing sodium metasilicate and sodium dichloroisocyanurate. The diagnosis was based on exposure data, clinical symptoms and signs, as well as respiratory function tests. A 43-year-old nonatopic male apprentice c...

  12. Oxidative stress effects of thinner inhalation

    OpenAIRE

    2011-01-01

    Thinners are chemical mixtures used as industrial solvents. Humans can come into contact with thinner by occupational exposure or by intentional inhalation abuse. Thinner sniffing causes damage to the brain, kidney, liver, lung, and reproductive system. We discuss some proposed mechanism by which thinner induces damage. Recently, the induction of oxidative stress has been suggested as a possible mechanism of damage. This paper reviews the current evidence for oxidative stress effects induced ...

  13. Effects of inhalation exposure to a binary mixture of benzene and toluene on vitamin a status and humoral and cell-mediated immunity in wild and captive American kestrels.

    Science.gov (United States)

    Olsgard, Mandy L; Bortolotti, Gary R; Trask, Brenda R; Smits, Judit E G

    2008-01-01

    Benzene and toluene are representative volatile organic compounds (VOC) released during production, storage, and transportation associated with the oil and gas industry and are chemicals of concern, as they are released in greater and possibly more biologically significant concentrations than other compounds. Most studies of air pollution in high oil and gas activity areas have neglected to consider risks to birds, including top-level predators. Birds can be used as highly sensitive monitors of air quality and since the avian respiratory tract is physiologically different from a rodent respiratory tract, effects of gases cannot be safely extrapolated from rodent studies. Wild and captive male American kestrels were exposed for approximately 1 h daily for 28 d to high (rodent lowest-observed-adverse-effect level [LOAEL] of 10 ppm and 80 ppm, respectively) or environmentally relevant (0.1 ppm and 0.8 ppm, respectively) levels of benzene and toluene. Altered immune responses characteristic of those seen in mammalian exposures were evident in kestrels. A decreased cell-mediated immunity, measured by delayed-type hypersensitivity testing, was evident in all exposed birds. There was no effect on humoral immunity. Plasma retinol levels as measured by high-performance liquid chromatography (HPLC) analysis were decreased in wild and captive kestrels exposed to the rodent LOAEL for combined benzene and toluene. This study indicates that American kestrels are sensitive to combined benzene and toluene. The study also illustrates the need for reference concentrations for airborne pollutants to be calculated, including sensitive endpoints specific to birds. Based on these findings, future studies need to include immune endpoints to determine the possible increased susceptibility of birds to inhaled toxicants.

  14. Inhaled dust and disease

    Energy Technology Data Exchange (ETDEWEB)

    Holt, P.F.

    1987-01-01

    This book discusses the following: the respiratory system; respirable dust; the fate of inhaled dust; translocation and some general effects of inhaled dust; silicosis; experimental research on silica-related disease; natural fibrous silicates; asbestos dust levels and dust sources; asbestos-related diseases - asbestosis, lung cancer, mesothelioma and other diseases, cancers at sites other than lung and pleura; experimental research relating to asbestos-related diseases; asbestos hazard - mineral types and hazardous occupations, neighbourhood and domestic hazard; silicates other than asbestos-man-made mineral fibres, mineral silicates and cement; metals; coal mine dust, industrial carbon and arsenic; natural and synthetic organic substances; dusts that provoke allergic alveolitis; tobacco smoke.

  15. Inhalation cancer risk assessment of cobalt metal.

    Science.gov (United States)

    Suh, Mina; Thompson, Chad M; Brorby, Gregory P; Mittal, Liz; Proctor, Deborah M

    2016-08-01

    Cobalt compounds (metal, salts, hard metals, oxides, and alloys) are used widely in various industrial, medical and military applications. Chronic inhalation exposure to cobalt metal and cobalt sulfate has caused lung cancer in rats and mice, as well as systemic tumors in rats. Cobalt compounds are listed as probable or possible human carcinogens by some agencies, and there is a need for quantitative cancer toxicity criteria. The U.S. Environmental Protection Agency has derived a provisional inhalation unit risk (IUR) of 0.009 per μg/m(3) based on a chronic inhalation study of soluble cobalt sulfate heptahydrate; however, a recent 2-year cancer bioassay affords the opportunity to derive IURs specifically for cobalt metal. The mechanistic data support that the carcinogenic mode of action (MOA) is likely to involve oxidative stress, and thus, non-linear/threshold mechanisms. However, the lack of a detailed MOA and use of high, toxic exposure concentrations in the bioassay (≥1.25 mg/m(3)) preclude derivation of a reference concentration (RfC) protective of cancer. Several analyses resulted in an IUR of 0.003 per μg/m(3) for cobalt metal, which is ∼3-fold less potent than the provisional IUR. Future research should focus on establishing the exposure-response for key precursor events to improve cobalt metal risk assessment.

  16. 42 CFR 84.1158 - Dust, fume, and mist tests; respirators with filters; minimum requirements; general.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist tests; respirators with...-Purifying High Efficiency Respirators and Combination Gas Masks § 84.1158 Dust, fume, and mist tests; respirators with filters; minimum requirements; general. (a) Three respirators with cartridges containing,...

  17. Numerical investigation of turbulent diffusion in push-pull and exhaust fume cupboards.

    Science.gov (United States)

    Chern, Ming-Jyh; Cheng, Wei-Ying

    2007-08-01

    The aim of this study is to investigate airflow motions and associated pollutant distributions in fume hoods. Currently, most exhaust fume hoods are designed to use an airflow induced by a fan at the top to remove pollutants. Ambient fluids are drawn, flowing toward the opening and subsequently turning to the outlet at the roof. Pollutants are supposedly captured by the airflow and brought out from the cupboard. The present numerical study based on the finite-volume method and the standard k-epsilon turbulence model simulates flow patterns and pollutant distributions in an exhaust fume hood with and without a manikin present. Subsequently, a push-pull air curtain technique is applied to a fume cupboard. To investigate the capturing performance of a push-pull fume cupboard, numerical approaches are used to simulate flow and concentration variations. Numerical results reveal that four characteristic flow modes exist for a variety of speed ratios of push-pull flows and openings. A concave curtain mode which has a fast pull flow and a weak push flow is suggested for the operation of a push-pull fume cupboard. According to ANSI-ASHRAE Standard 110-1995, the local concentration at the specified point is fume cupboard are not affected by a manikin. In terms of those predicted results, it turns out that a push-pull fume cupboard successfully captures pollutants and prevents an operator from breathing pollutants.

  18. Micro Filler Effects of Silica-Fume on the Setting and Hardened Properties of Concrete

    Directory of Open Access Journals (Sweden)

    V.M. Sounthararajan

    2013-08-01

    Full Text Available The use of supplementary cementitious material is gaining much attention owing to its high pozzolanic property and further improvement in strength properties. Silica-fume is one among the widely used pozzolanic material which exhibits high cementing efficiency due to high silica content. This study presents comprehends a detailed insight on the hydration properties of silica fume with cement. Silica fume consists of very fine particle size and contains silica content more than 90%. The cement hydration results in the formation of calcium hydroxide and this is consumed with the addition of silica fume and results in additional calcium silicate hydrate. This compound primarily envisages the strength and improved microstructure of concrete. Addition of silica-fume fills in the spaces between cement grains. The test results showed that higher compressive strength of concrete is obtained by using 8.0% of silica-fume at 7 and 28 days was 48.25 and 55.83 MPa, respectively. This phenomenon is frequently referred to as particle packing or micro-filling. Even if silica fume did not react chemically, the micro-filler effect would lead to significant improvements in the microstructure of concrete. A comprehensive review has been carried out in this study to give a good understanding on the advantages of pozzolanic properties of silica fume in cement concrete.

  19. Indirect Prediction of Welding Fume Diffusion inside a Room Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Sujit Dahal

    2016-05-01

    Full Text Available Welding is an important and widely used process in the manufacturing and maintenance of various works involving metals and alloys. While welding has broad applications, the welding fume generated during the process has impacts on workers’ health, which needs to be addressed. One of the major steps that can be undertaken to take care of this issue is the use of ventilation, which requires knowledge of characteristics and dispersion of the welding fume in the workers’ breathing zone. It is difficult to assess welding fume dispersion from manual measurement due to numerous welding processes and sufficient data requirement. Numerical prediction of welding fume is dubious due to several errors. This paper considers the use of numerically predicted CO2 concentrations to indirectly predict welding fume distribution in workshops. This is based on the assumption that if the particles are sufficiently small size, they follow the diffusion pattern of gases. Experiments are carried out in a room with an opening and a welding fume generation system for measurement of CO2 and fume diffusion. The results show high possibility of predicting welding fume concentration based on Computational Fluid Dynamics (CFD simulated CO2 concentration with a correlation coefficient of 0.74.

  20. Self inflicted death following inhalation and ingestion of Builders Polyurethane expandable foam.

    Science.gov (United States)

    Morgan, D R; Musa, M

    2010-11-01

    Builders Polyurethane (PU) expandable foam is a product used to fill voids and provide insulation in the building industry. It is easily available from DIY and hardware stores. Other uses include pest control. It can produce fumes, while curing, which can be toxic to humans, or induce asthma and there are reports of polyurethane foam being combustible unless a fire retardant is incorporated. Death due to can explosion when heated has occurred. A literature review revealed one definite case of attempted suicide, one possible attempt by ingestion of Builders PU expandable foam and one accidental non fatal injection of such foam into the lower urinary tract. There is one report of accidental non fatal inhalation of foam. To our knowledge this is the first case of fatal inhalation and ingestion of Builders Polyurethane expandable foam.

  1. Pneumococcal infection of respiratory cells exposed to welding fumes; Role of oxidative stress and HIF-1 alpha

    Science.gov (United States)

    Grigg, Jonathan; Miyashita, Lisa

    2017-01-01

    Welders are more susceptible to pneumococcal pneumonia. The mechanisms are yet unclear. Pneumococci co-opt the platelet activating factor receptor (PAFR) to infect respiratory epithelial cells. We previously reported that exposure of respiratory cells to welding fumes (WF), upregulates PAFR–dependent pneumococcal infection. The signaling pathway for this response is unknown, however, in intestinal cells, hypoxia-inducible factor-1 α (HIF 1α) is reported to mediate PAFR-dependent infection. We sought to assess whether oxidative stress plays a role in susceptibility to pneumococcal infection via the platelet activating factor receptor. We also sought to evaluate the suitability of nasal epithelial PAFR expression in welders as a biomarker of susceptibility to infection. Finally, we investigated the generalisability of the effect of welding fumes on pneumococcal infection and growth using a variety of different welding fume samples. Nasal epithelial PAFR expression in welders and controls was analysed by flow cytometry. WF were collected using standard methodology. The effect of WF on respiratory cell reactive oxygen species production, HIF-1α expression, and pneumococcal infection was determined using flow cytometry, HIF-1α knockdown and overexpression, and pneumococcal infection assays. We found that nasal PAFR expression is significantly increased in welders compared with controls and that WF significantly increased reactive oxygen species production, HIF-1α and PAFR expression, and pneumococcal infection of respiratory cells. In unstimulated cells, HIF-1α knockdown decreased PAFR expression and HIF-1α overexpression increased PAFR expression. However, in knockdown cells pneumococcal infection was paradoxically increased and in overexpressing cells infection was unaffected. Nasal epithelial PAFR expression may be used as a biomarker of susceptibility to pneumococcal infection in order to target individuals, particularly those at high risk such as welders

  2. Some engineering properties of heavy concrete added silica fume

    Science.gov (United States)

    Akkaş, Ayşe; Başyiǧit, Celalettin; Esen, Serap

    2013-12-01

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes' added Silica fume have been investigated.

  3. [Inhaled corticosteroids for COPD

    NARCIS (Netherlands)

    Dekhuijzen, P.N.R.

    2003-01-01

    Over 60% of patients with COPD are treated with inhaled corticosteroids (ICS), even though their use is still subject to debate. The inflammatory process in the lungs of patients with COPD is dominated by macrophages, CD8+ T-lymphocytes, neutrophilic granulocytes and mast cells, as well as an increa

  4. Inhalants. Specialized Information Service.

    Science.gov (United States)

    Do It Now Foundation, Phoenix, AZ.

    The document presents a collection of articles about inhalant abuse. Article 1 presents findings on the psychophysiological effects related to the use of amyl or butyl nitrate as a "recreational drug." Article 2 suggests a strong association between chronic sniffing of the solvent toulene and irreversible brain damage. Article 3 warns…

  5. Fume hoods, open canopy type--their ability to capture pollutants in various environments.

    Science.gov (United States)

    Bender, M

    1979-02-01

    Using field observations, modelling techniques and theoretical analysis, parameters describing the performance and collection efficiency of large industrial canopy fume hoods are established for, a) steady state collection of fume and b) collection of plumes with fluctuating flowrates. Hopper and pool type hoods are investigated. A baffle plate arrangement for placement within hoods is proposed. It prevents recirculation and spillage of fume. Temporary storage of fume surges within the hood is shown to be possible. At a cost of $6 per m3/hr ($10 per ft3/min) of installed fume control system capacity the arrangement promises to save millions of dollars on large new installations and to significantly improve the collection efficiency of many existing systems. A practical application of the results is proposed for the design of electric arc furnace canopy hoods.

  6. Synthetic Reference Materials Based on Polymer Films for the Control of Welding Fumes Composition

    Science.gov (United States)

    Kuznetsova, O. V.; Kuznetsova, A. N.; Begunova, L. A.

    2017-04-01

    Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Welders are exposed to a variety of metal fumes, including manganese that may elevate the risk for neurological diseases. The control of metals concentration in the air of the working area is difficult due to the lack of reference materials. The creation of reference materials of welding fumes composition is a challenge due to chemical characteristics of their physical properties. Synthetic samples in a form of the polymer film containing powder particles of welding fumes were create. Studies on the selection of the polymer were done. Experiments proved that the qualitative materials of synthetic welding fumes are obtained by using polyvinyl alcohol. The metals concentration in the samples was determined by X-ray fluorescence analysis. The obtained data demonstrates indirectly the uniform distribution of welding fumes powder particles on the polymer film.

  7. Influence of Silica Fume on Corrosion Behaviour of Reinforced Steel in Different Media

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Electrochemical and corrosion behaviour of reinforced steel embedded in cement pastes incorporating differentamounts of silica fume as a partial replacement of cement has been studied in chloride and sulphate solutionsby using different electrochemical techniques. The results indicate that, while steel passivity degree is Iow in thecontrol samples upon soaking in the corrosive media, it has been high in samples incorporating silica fume andincreased with increasing silica fume content. The improvement effect of silica fume may be attributed to the poresolution structure of the cement paste, which limits the mobility of aggressive ions near the surface of the steel. Themechanism of steel corrosion due to chloride and sulphate attack and passivation effect of silica fume are discussed.

  8. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages.

    Directory of Open Access Journals (Sweden)

    Melissa A Badding

    Full Text Available Welding processes that generate fumes containing toxic metals, such as hexavalent chromium (Cr(VI, manganese (Mn, and nickel (Ni, have been implicated in lung injury, inflammation, and lung tumor promotion in animal models. While federal regulations have reduced permissible worker exposure limits to Cr(VI, this is not always practical considering that welders may work in confined spaces and exhaust ventilation may be ineffective. Thus, there has been a recent initiative to minimize the potentially hazardous components in welding materials by developing new consumables containing much less Cr(VI and Mn. A new nickel (Ni and copper (Cu-based material (Ni-Cu WF is being suggested as a safer alternative to stainless steel consumables; however, its adverse cellular effects have not been studied. This study compared the cytotoxic effects of the newly developed Ni-Cu WF with two well-characterized welding fumes, collected from gas metal arc welding using mild steel (GMA-MS or stainless steel (GMA-SS electrodes. RAW 264.7 mouse macrophages were exposed to the three welding fumes at two doses (50 µg/ml and 250 µg/ml for up to 24 hours. Cell viability, reactive oxygen species (ROS production, phagocytic function, and cytokine production were examined. The GMA-MS and GMA-SS samples were found to be more reactive in terms of ROS production compared to the Ni-Cu WF. However, the fumes from this new material were more cytotoxic, inducing cell death and mitochondrial dysfunction at a lower dose. Additionally, pre-treatment with Ni-Cu WF particles impaired the ability of cells to phagocytize E. coli, suggesting macrophage dysfunction. Thus, the toxic cellular responses to welding fumes are largely due to the metal composition. The results also suggest that reducing Cr(VI and Mn in the generated fume by increasing the concentration of other metals (e.g., Ni, Cu may not necessarily improve welder safety.

  9. Pharmacokinetic Comparison of a Unit Dose Dry Powder Inhaler with a Multidose Dry Powder Inhaler for Delivery of Fluticasone Furoate.

    Science.gov (United States)

    Mehta, Rashmi; Moore, Alison; Riddell, Kylie; Joshi, Shashidhar; Chan, Robert

    2017-05-02

    The unit dose dry powder inhaler (UD-DPI) is being considered as an alternative inhaler platform that, if