Unintegrated double parton distributions
Golec-Biernat, K
2016-01-01
We present the construction of unintegrated double parton distribution functions which include dependence on transverse momenta of partons. We extend the formulation which was used to obtain the single unintegrated parton distributions from the standard, integrated parton distribution functions. Starting from the homogeneous part of the evolution equations for the integrated double parton distributions, we construct the unintegrated double parton distributions as the convolutions of the integrated double distributions and the splitting functions, multiplied by the Sudakov form factors. We show that there exist three domains of external hard scales which require three distinct forms of the unintegrated double distributions. The additional transverse momentum dependence which arises through the Sudakov form factors leads to non-trivial correlations in the parton momenta. We also discuss the non-homogeneous contribution to the unintegrated double parton distributions, which arises due to the splitting of a singl...
The role of unintegrated DNA in HIV infection
Directory of Open Access Journals (Sweden)
Wainberg Mark A
2011-07-01
Full Text Available Abstract Integration of the reverse transcribed viral genome into host chromatin is the hallmark of retroviral replication. Yet, during natural HIV infection, various unintegrated viral DNA forms exist in abundance. Though linear viral cDNA is the precursor to an integrated provirus, increasing evidence suggests that transcription and translation of unintegrated DNAs prior to integration may aid productive infection through the expression of early viral genes. Additionally, unintegrated DNA has the capacity to result in preintegration latency, or to be rescued and yield productive infection and so unintegrated DNA, in some circumstances, may be considered to be a viral reservoir. Recently, there has been interest in further defining the role and function of unintegrated viral DNAs, in part because the use of anti-HIV integrase inhibitors leads to an abundance of unintegrated DNA, but also because of the potential use of non-integrating lentiviral vectors in gene therapy and vaccines. There is now increased understanding that unintegrated viral DNA can either arise from, or be degraded through, interactions with host DNA repair enzymes that may represent a form of host antiviral defence. This review focuses on the role of unintegrated DNA in HIV infection and additionally considers the potential implications for antiviral therapy.
Integrated and Unintegrated Parton Distributions
Institute of Scientific and Technical Information of China (English)
方洁; 阮建红
2011-01-01
We compare the twist-2 and twist-4 parton distributions both in integrated and unintegrated parton distributions. We find that when x decreases the difference between the twist-2 and twist-4 patton distributions become obvious except for the valence quark distributions. We hope the future experiments may distinguish whether the twist-4 correction is needed or not and select a reasonable unintegrated parton distribution model
QCD Factorization, Wilson Loop Space and Unintegrated Gluon Distributions
Cherednikov, Igor O.
2017-03-01
Currently available operator definitions of gauge-invariant unintegrated (transverse momentum dependent) gluon density function available are briefly overviewed, with emphasis on the structure of the associated Wilson lines. A gauge-invariant generating function with maximal path-dependence is proposed, which, as distinct from the common methodology, is based on arbitrary Wilson loops with no reference to any factorization scheme. After the local area differentiation defined in the Wilson loop space, this object can be used to define fully unintegrated gluon distribution functions in a way potentially suitable for the lattice simulations.
Unintegrated Double Parton Distributions - a Summary
Golec-Biernat, Krzysztof
2016-01-01
We present main elements of the construction of unintegrated double parton distribution functions which depend on transverse momenta of partons. We follow the method proposed by Kimber, Martin and Ryskin for a construction of unintegrated single parton distributions from the standard parton distribution functions.
Applicability of Parametrized Form of Fully Dressed Quark Propagator
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
According to extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation with an effective gluon propagator, a parametrized fully dressed confining quark propagator is suggested in this paper. The parametrized quark propagator describes a confined quark propagation in hadron, and is analytic everywhere in complex p2-plane and has no Lehmann representation. The vector and scalar self-energy functions [1 - Af(p2)] and [Bf(p2) - mf], dynamically running effective mass of quark Mf(p2) and the structure of non-local quark vacuum condensates as well as local quark vacuum condensates are predicted by use of the parametrized quark propagator. The results are compatible with other theoretical calculations.
Universality of Unintegrated Gluon Distributions at small x
Energy Technology Data Exchange (ETDEWEB)
Dominguez, Fabio; Marquet, Cyrille; Xiao, Bowen; Yuan, Feng
2011-01-04
We systematically study dijet production in various processes in the small-x limit and establish an effective kt-factorization for hard processes in a system with dilute probes scattering on a dense target. In the large-Nc limit, the unintegrated gluon distributions involved in different processes are shown to be related to two widely proposed ones: the Weizsacker-Williams gluon distribution and the dipole gluon distribution.
Unintegrated gluon distribution and soft pp collisions at LHC
Grinyuk, A A; Lykasov, G I; Lipatov, A V; Zotov, N P
2012-01-01
We found the parameterization of the unintegrated gluon distribution from the best description of the LHC data on the inclusive spectra of hadrons produced in $pp$ collisions at the mid-rapidity region and small transverse momenta. It is different from the one obtained within perturbative QCD only at low intrinsic transverse momenta $k_t$. The application of this distribution to analysis of the $e-p$ DIS allows us to get the results which do not contradict the H1 and ZEUS data on the structure functions at low $x$. So, the connection between the soft processes at LHC and low-$x$ physics at HERA is found.
Row Reduced Echelon Form for Solving Fully Fuzzy System with Unknown Coefficients
Directory of Open Access Journals (Sweden)
Ghassan Malkawi
2014-08-01
Full Text Available This study proposes a new method for finding a feasible fuzzy solution in positive Fully Fuzzy Linear System (FFLS, where the coefficients are unknown. The fully fuzzy system is transferred to linear system in order to obtain the solution using row reduced echelon form, thereafter; the crisp solution is restricted in obtaining the positive fuzzy solution. The fuzzy solution of FFLS is included crisp intervals, to assign alternative values of unknown entries of fuzzy numbers. To illustrate the proposed method, numerical examples are solved, where the entries of coefficients are unknown in right or left hand side, to demonstrate the contributions in this study.
Restriction endonuclease mapping of linear unintegrated proviral DNA of bovine leukemia virus.
Kettmann, R; Couez, D; Burny, A
1981-01-01
A detailed restriction map was deduced for the genome of the exogenous bovine leukemia virus. The cleavage sites for nine restriction enzymes were mapped. The unintegrated linear viral DNA intermediate that is produced by infection of permissive cells with bovine leukemia virus was isolated. The linear viral DNA had a unique restriction map, indicating that it is not a set of random circular permutations of the RNA genome. From hybridization with a 3'-enriched probe, the DNA restriction map w...
Indian Academy of Sciences (India)
Diptiranjan Behera; S Chakraverty
2015-02-01
This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied for the first time in this paper for the present analysis. Using single parametric form, the $n \\times n$ fully fuzzy system of linear equations have been converted to a $2n \\times 2n$ crisp system of linear equations. On the other hand, double parametric form of fuzzy numbers converts the n×n fully fuzzy system of linear equations to a crisp system of same order. Triangular and trapezoidal convex normalized fuzzy sets are used for the present analysis. Known example problems are solved to illustrate the efficacy and reliability of the proposed methods.
Unintegrated gluon distributions in D{sup *{+-}} and dijet associated photoproduction at HERA
Energy Technology Data Exchange (ETDEWEB)
Lipatov, A.V.; Zotov, N.P. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki
2005-12-01
We consider the photoproduction of D{sup *{+-}} mesons associated with two hadron jets at HERA collider in the framework of the k{sub T}-factorization approach. The unintegrated gluon densities in a proton are obtained from the full CCFM, from unified BFKL-DGLAP evolution equations as well as from the Kimber-Martin-Ryskin prescription. Resolved photon contributions are reproduced by the initial-state gluon radiation. We investigate different production rates and make comparison with the recent experimental data taken by the ZEUS collaboration. Special attention is put on the specific dijet correlations which can provide unique information about non-collinear gluon evolution dynamics. (orig.)
Unintegrated gluon distributions in D{sup *{+-}} and dijet associated photoproduction at HERA
Energy Technology Data Exchange (ETDEWEB)
Lipatov, A.V.; Zotov, N.P. [M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation)
2006-09-15
We consider the photoproduction of D{sup *{+-}} mesons associated with two hadron jets at HERA collider in the framework of the k{sub T}-factorization approach. The unintegrated gluon densities in a proton are obtained from the full CCFM, from unified BFKL-DGLAP evolution equations as well as from the Kimber-Martin-Ryskin prescription. Resolved photon contributions are reproduced by the initial-state gluon radiation. We investigate different production rates and make a comparison with the recent experimental data taken by the ZEUS collaboration. Special attention is given to the specific dijet correlations which can provide unique information about non-collinear gluon evolution dynamics. (orig.)
Forward Z-boson production and the unintegrated sea quark density
Hautmann, F; Jung, H
2012-01-01
Drell-Yan production in the forward region at the Large Hadron Collider is sensitive to multiple radiation of QCD partons not collinearly ordered, emitted over large rapidity intervals. We propose a method to take account of these radiative contributions via a factorization formula which depends on the unintegrated, or transverse momentum dependent, splitting function associated with the evolution of the initial-state sea quark distribution. We analyze this formula numerically, and point out kinematic effects from the initial-state transverse momentum on the vector boson spectrum.
A Fully-Coupled Approach for Modelling Plastic Deformation and Liquid Lubrication in Metal Forming
DEFF Research Database (Denmark)
Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris V.;
2016-01-01
This paper presents a new approach for combined modelling of plastic deformation andliquid lubrication in the contact interfaces between material and tooling in metal forming includingsituations where the lubricant is functioning as a pressure carrier. The approach is an alternative toconventiona...... and numerical fundamentals of the proposedapproach and includes selected examples in order to illustrate its advantages and limitations....
New fully empirical calibrations of strong-line metallicity indicators in star forming galaxies
Curti, M; Mannucci, F; Marconi, A; Maiolino, R; Esposito, S
2016-01-01
We derive new empirical calibrations for strong-line diagnostics of gas phase metallicity in local star forming galaxies by uniformly applying the Te method over the full metallicity range probed by the Sloan Digital Sky Survey (SDSS). To measure electron temperatures at high metallicity, where the auroral lines needed are not detected in single galaxies, we stacked spectra of more than 110,000 galaxies from the SDSS in bins of log[O II]/H$\\beta$ and log[O III]/H$\\beta$. This stacking scheme does not assume any dependence of metallicity on mass or star formation rate, but only that galaxies with the same line ratios have the same oxygen abundance. We provide calibrations which span more than 1 dex in metallicity and are entirely defined on a consistent absolute Te metallicity scale for galaxies. We apply our calibrations to the SDSS sample and find that they provide consistent metallicity estimates to within 0.05 dex.
A Fully-Coupled Approach for Modelling Plastic Deformation and Liquid Lubrication in Metal Forming
DEFF Research Database (Denmark)
Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris Valentin
2016-01-01
This paper presents a new approach for combined modelling of plastic deformation andliquid lubrication in the contact interfaces between material and tooling in metal forming includingsituations where the lubricant is functioning as a pressure carrier. The approach is an alternative toconventional...... elements with fictitious small stiffness to physical modelling based on a fullycoupled procedure in which the lubricant flow and the plastic deformation of the metallic materialare solved simultaneously. The approach takes advantage of the intrinsic velocity-pressurecharacteristics of the finite element...... flow formulation which stands on the border line between fluidand solid mechanics and allows treating the lubricants as viscous incompressible (or nearlyincompressible) fluid and the metallic materials as non-Newtonian, high viscous, incompressiblefluids. The presentation is focused on the theoretical...
New fully empirical calibrations of strong-line metallicity indicators in star-forming galaxies
Curti, M.; Cresci, G.; Mannucci, F.; Marconi, A.; Maiolino, R.; Esposito, S.
2017-02-01
We derive new empirical calibrations for strong-line diagnostics of gas-phase metallicity in local star-forming galaxies by uniformly applying the Te method over the full metallicity range probed by the Sloan Digital Sky Survey (SDSS). To measure electron temperatures at high metallicity, where the auroral lines needed are not detected in single galaxies, we stacked spectra of more than 110 000 galaxies from the SDSS in bins of log[O II]/Hβ and log[O III]/Hβ. This stacking scheme does not assume any dependence of metallicity on mass or star formation rate, but only that galaxies with the same line ratios have the same oxygen abundance. We provide calibrations which span more than 1 dex in metallicity and are entirely defined on a consistent absolute Te metallicity scale for galaxies. We apply our calibrations to the SDSS sample and find that they provide consistent metallicity estimates to within 0.05 dex.
Hanson, Jordan C
2016-01-01
The Askaryan effect describes coherent electromagnetic radiation from the collective charge within high-energy cascades in dense media. We present the first fully analytic model of Askaryan radiation that accounts simultaneously for the three-dimensional form factor of the electromagnetic cascade and the Landau-Pomeranchuk-Migdal (LPM) effect. Analytic calculations avoid computationally intensive Monte Carlo simulations of the cascades. Searches for cosmogenic neutrinos in Askaryan- based detectors benefit from computational speed, because neutrino event parameters affect the shape of the electromagnetic field, requiring scans of parameter space. The Askaryan field is derived and verified against Geant4 simulations, and compared with prior numerical and semi-analytic calculations. Finally, two special cases of the model are transformed from the Fourier domain to the time-domain, analytically. Next-generation in situ detectors like ARA and ARIANNA can use analytic time-domain signal models to search for phase ...
Agnew, Lauren R; Cruickshank, Dyanne L; McGlone, Thomas; Wilson, Chick C
2016-05-31
A scalable, transferable, cooling crystallisation route to the elusive, metastable, form II of the API acetaminophen (paracetamol) has been developed using a multicomponent "templating" approach, delivering 100% polymorphic phase pure form II at scales up to 120 g. Favourable solubility and stability properties are found for the form II samples.
Slabý, O
1991-01-01
The nasal apparatus of the squirrel embryo at the optimum stage of the chondrocranium displays simple (though not always primitive) features and individual structures developed largely as in other rodents and even in insectivores. Primitive features include the presence of a cartilago paraseptalis communis and probably the simplicity of the olfactory labyrinth, whose main support in the region as a whole is ethmoturbinale I, whose dorsal and ventral lamella divide off the basic recesses; anterior (frontalis), maxillaris and frontoturbinalis. Completely caudally we find ethmoturbinale I, the frontoturbinalia and the relevant secondary (greatly reduced) recesses. The zona annularis is interrupted by failure of the rostral processes of the lamina transversalis anterior (corresponding to the processes laterales ventrales) to fuse with the capsula nasi ant. or with the anlage of the septum nasi. We did find a fenestra nasi superior (lateralis). The atrioturbinale is well developed, the maxilloturbinale only as a trace, but we have a very striking nasoturbinale. In the rostral region of the olfactory segment, the cartilaginous capsule has a very conspicuous thickening, which in this part is formed of paranasal cartilage. The thickening presents outwardly as the prominentia anterior; cavity of the recessus anterior (frontalis) is formed inside it. The rest of the dorsal and caudal wall of this cavity forms the crista semicircularis, which further caudally circumscribes the foramen olfactorium. A foramen epiphaniale is present. The vestibular region of the epithelial nasal tube is interestingly formed. In cross section it is crescent-shaped; the nasal tube itself opens into the convexity, but the lamina transversalis ant. sends a turbinale into the concavity. A cartilago alaris superior, which develops independently in situ, is present; in our stage it is associated with the wall of the capsule, but ventrolaterally it terminates freely and is not joined to any other
Hanson, Jordan C.; Connolly, Amy L.
2017-05-01
The Askaryan effect describes coherent electromagnetic radiation from high-energy cascades in dense media with a collective charge. We present an analytic model of Askaryan radiation that accounts simultaneously for the three-dimensional form factor of the cascade, and quantum mechanical cascade elongation via the Landau-Pomeranchuk-Migdal effect. These calculations, and the associated open-source code, allow the user to avoid computationally intensive Monte Carlo cascade simulations. Searches for cosmogenic neutrinos in Askaryan-based detectors benefit from computational speed, because scans of Askaryan parameter-space are required to match neutrino signals. The Askaryan field is derived from cascade equations verified with Geant4 simulations, and compared with prior numerical and semi-analytic calculations. Finally, instructive cases of the model are transformed from the Fourier domain to the time-domain. Next-generation in situ detectors like ARA and ARIANNA can use analytic time-domain signal models to search for correlations with event candidates.
Laboure, Vincent Matthieu
In this dissertation, we focus on solving the linear Boltzmann equation -- or transport equation -- using spherical harmonics (PN) expansions with fully-implicit time-integration schemes and Galerkin Finite Element spatial discretizations within the Multiphysics Object Oriented Simulation Environment (MOOSE) framework. The presentation is composed of two main ensembles. On one hand, we study the first-order form of the transport equation in the context of Thermal Radiation Transport (TRT). This nonlinear application physically necessitates to maintain a positive material temperature while the PN approximation tends to create oscillations and negativity in the solution. To mitigate these flaws, we provide a fully-implicit implementation of the Filtered PN (FPN) method and investigate local filtering strategies. After analyzing its effect on the conditioning of the system and showing that it improves the convergence properties of the iterative solver, we numerically investigate the error estimates derived in the linear setting and observe that they hold in the non-linear case. Then, we illustrate the benefits of the method on a standard test problem and compare it with implicit Monte Carlo (IMC) simulations. On the other hand, we focus on second-order forms of the transport equation for neutronics applications. We mostly consider the Self-Adjoint Angular Flux (SAAF) and Least-Squares (LS) formulations, the former being globally conservative but void incompatible and the latter having -- in all generality -- the opposite properties. We study the relationship between these two methods based on the weakly-imposed LS boundary conditions. Equivalences between various parity-based PN methods are also established, in particular showing that second-order filters are not an appropriate fix to retrieve void compatibility. The importance of global conservation is highlighted on a heterogeneous multigroup k-eigenvalue test problem. Based on these considerations, we propose a new
The Fully-Differential Quark Beam Function at NNLO
Gaunt, Jonathan R
2014-01-01
We present the first calculation of a fully-unintegrated parton distribution (beam function) at next-to-next-to-leading order (NNLO). We obtain the fully-differential beam function for quark-initiated processes by matching it onto standard parton distribution functions (PDFs) at two loops. The fully-differential beam function is a universal ingredient in resummed predictions of observables probing both the virtuality as well as the transverse momentum of the incoming quark in addition to its usual longitudinal momentum fraction. For such double-differential observables our result is an important contribution to the resummation of large logarithms related to collinear initial-state radiation (ISR) through N3LL.
Institute of Scientific and Technical Information of China (English)
SONG Hua-ling; WEN Guo-feng; LI Jin-ke
2008-01-01
Analyzed the situations and characteristics of thin coal seam mining and its mining technologies, and introduced the mining innovation technology used by Tianchen Coal Mine of Zhaozhuang Coal Company of China. This innovation technology combined the fully mechanized mining with individual props, and the working face of mining is over length, irregular form and double units. The rotational adjusting mining technology on thin coal seam is also practiced in this new mining technology. The detail technologies, such as outlays of working face and ways, mining methods, equipments of cutting, transporting and sporting, have been introduced. So that, using the synthetic and creative mining tech-nologies, Tianchen Coal Mine solves the mining problems of thin coal seam successfully.
Energy Technology Data Exchange (ETDEWEB)
Aubert, B
2008-08-21
We present a measurement of the CKM matrix element |V{sub cb}| and the form-factor slope {rho}{sup 2} for {bar B} {yields} D{ell}{sup -} {bar {nu}}{sub {ell}} decays based on 417 fb{sup -1} of data collected at the {Upsilon}(4S) resonance with the BABAR detector. The semileptonic decays are selected in B{bar B} events in which the hadronic decay of the second B meson is fully reconstructed. From the measured differential decay rate of the signal decay we determine G(1)|V{sub cb}| = (43.0 {+-} 1.9 {+-} 1.4) x 10{sup -3}, {rho}{sup 2} = 1.20 {+-} 0.09 {+-} 0.04, where G(1) is the hadronic form factor at the point of zero recoil. Using a lattice calculation for G(1) we extract |V{sub cb}| = (39.8 {+-} 1.8 {+-} 1.3 {+-} 0.9) x 10{sup -3}, where the stated errors refer to the statistical, systematic, and form factor uncertainties. We also present a measurement of the exclusive branching fractions, {Beta}(B{sup -} {yields} D{sup 0} {ell}{sup -} {bar {nu}}{sub {ell}}) = (2.31 {+-} 0.08 {+-} 0.07)% and {Beta}({bar B}{sup 0} {yields} D{sup +} {ell}{sup -} {bar {nu}}{sub {ell}}) = (2.23 {+-} 0.11 {+-} 0.08)%.
Aubert, B
2008-01-01
We present a measurement of the CKM matrix element |V_cb| and the form-factor slope rho^2 for Bbar -> D l^- nubar_l decays based on 417 fb-1 of data collected at the Upsilon(4S) resonance with the BaBar detector. The semileptonic decays are selected in BBar events in which the hadronic decay of the second B meson is fully reconstructed. From the measured differential decay rate of the signal decay we determine G(1) |V_cb|= (43.0 +/- 1.9 +/- 1.4) x 10^-3, rho^2 = 1.20 +/- 0.09 +/- 0.04, where G(1) is the hadronic form factor at the point of zero recoil. Using a lattice calculation for G(1) we extract |V_cb|= (39.8 +/- 1.8 +/- 1.3 +/- 0.9) x 10^-3, where the stated errors refer to the statistical, systematic, and form factor uncertainties. We also present a measurement of the exclusive branching fractions, BF(B^- -> D^0 l^- nubar_l) = (2.31 +/- 0.08 +/- 0.07)% and BF (B0bar -> D^+ l^- nubar_l)=(2.23 +/- 0.11 +/- 0.08)%.
Aubert, B
2009-01-01
We present a measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V_cb| and the form-factor slope rho^2 in Bbar -> Dl- nubar decays based on 460 million BBar events recorded at the Upsilon(4S) resonance with the BaBar detector. BBar -> Dl- nubar decays are selected in events in which a hadronic decay of the second B meson is fully reconstructed. We measure the differential decay rate and determine G(1) |V_cb|= (43.0 \\pm 1.9 \\pm 1.4)\\times 10^{-3} and rho^2 = 1.20 \\pm 0.09 \\pm 0.04, where G(1) is the the hadronic form factor at the point of zero recoil. We also determine the exclusive branching fractions and find BF(B^- -> D0l- nubar) = (2.31 \\pm 0.08 \\pm 0.09)% and BF (B0bar -> D+ l^- nubar)=(2.23 \\pm 0.11 \\pm 0.11)%.
Energy Technology Data Exchange (ETDEWEB)
Aubert, Bernard; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison
2011-06-30
We present a measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V{sub cb}| and the form-factor slope {rho}{sup 2} in {bar B} {yields} D{ell}{sup -} {bar {nu}}{sub {ell}} decays based on 460 million B{bar B} events recorded at the {Gamma}(4S) resonance with the BABAR detector. {bar B} {yields} D{ell}{sup -} {bar {nu}}{sub {ell}} decays are selected in events in which a hadronic decay of the second B meson is fully reconstructed. We measure the differential decay rate and determine G(1)|V{sub cb}| = (43.0 {+-} 1.9 {+-} 1.4) x 10{sup -3} and {rho}{sup 2} = 1.20 {+-}0.09 {+-} 0.04, where G(1) is the hadronic form factor at the point of zero recoil. We also determine the exclusive branching fractions and find {Beta}(B{sup -} {yields} D{sup 0} {ell}{sup -}{bar {nu}}{sub {ell}}) = (2.31 {+-} 0.08 {+-} 0.09)% and {Beta}(B{sup 0} {yields} D{sup +} {ell}{sup -} {bar {nu}}{sub {ell}}) = (2.23 {+-} 0.11 {+-} 0.11)%.
Hruška, Vlastimil; Svobodová, Jana; Beneš, Martin; Gaš, Bohuslav
2012-12-07
We introduce a new nonlinear electrophoretic model for complex-forming systems with a fully charged analyte and a neutral ligand. The background electrolyte is supposed to be composed of two constituents, which do not interact with the ligand. In order to characterize the electromigration dispersion (EMD) of the analyte zone we define a new parameter, the nonlinear electromigration mobility slope, S(EMD,A). The parameter can be easily utilized for quantitative prediction of the EMD and for comparisons of the model with the simulated and experimental profiles. We implemented the model to the new version of PeakMaster 5.3 Complex that can calculate some characteristic parameters of the electrophoretic system and can plot the dependence of S(EMD,A) on the concentration of the ligand. Besides S(EMD,A), also the relative velocity slope, S(X), can be calculated. It is commonly used as a measure of EMD in electrophoretic systems. PeakMaster 5.3 Complex software can be advantageously used for optimization of the separation conditions to avoid high EMD in complexing systems. Based on the theoretical model we analyze the S(EMD,A) and reveal that this parameter is composed of six terms. We show that the major factor responsible for the electromigration dispersion in complex-forming electrophoretic systems is the complexation equilibrium and particularly its impact on the effective mobility of the analyte. To prove the appropriateness of the model we showed that there is a very good agreement between peak shapes calculated by PeakMaster 5.3 Complex (plotted using the HVLR function) and the profiles simulated by means of Simul 5 Complex. The detailed experimental verification of the new mode of PeakMaster 5.3 Complex is in the next part IV of the series.
Energy Technology Data Exchange (ETDEWEB)
Kotikov, A.V. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lipatov, A.V. [Department of Physics, M.V. Lomonosov Moscow State University, 119899 Moscow (Russian Federation); Parente, G. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela (Spain); Zotov, N.P. [D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, 119899 Moscow (Russian Federation)
2002-11-01
We calculate the perturbative parts of the structure functions F{sub 2}{sup c} and F{sub L}{sup c} for a gluon target having non-zero transverse momentum squared at order {alpha}{sub s}. The results of the double convolution (with respect to the Bjorken variable x{sub B} and the transverse momentum) of the perturbative part and the unintegrated gluon densities are compared with the HERA experimental data for F{sub 2}{sup c}. The contribution from the F{sub L}{sup c} structure function ranges in 10-30% of that of F{sub 2}{sup c} at the kinematical range of the HERA experiments. (orig.)
Modarres, M; Aminzadeh-Nik, R; Hosseinkhani, H; Olanj, N
2016-01-01
In a series of papers, we have investigated the compatibility of the $Kimber$-$Martin$-$Ryskin$ ($KMR$) and $Martin$-$Ryskin$-$Watt$ ($MRW$) $unintegrated$ parton distribution functions ($UPDF$) as well as the description of the experimental data on the proton structure functions. The present work is a sequel to that survey, via calculation of the transverse momentum distribution of the electro-weak gauge vector bosons in the $k_t$-factorization scheme, by the means of the $KMR$, the $LO\\;MRW$ and the $NLO\\;MRW$ $UPDF$, in the next-to leading order ($NLO$). To this end, we have calculated and aggregated the invariant amplitudes of the corresponding $involved$ diagrams in the $NLO$, and counted the individual contributions in different frameworks. The preparation process for the $UPDF$ utilizes the $PDF$ of $Martin$ et al, $MSTW2008-LO$, $MSTW2008-NLO$, $MMHT2014-LO$ and $MMHT2014-NLO$ as the inputs. Afterwards, the results have been analyzed against each other, as well as the existing experimental data. Our c...
Modarres, M
2016-01-01
The present work is devoted to study the capability in the unintegrated parton distribution functions ($UPDF$) of the $k_t$-factorization framework to describing the high-energy $QCD$ events, such as the di-jet productions from proton-proton inelastic collisions at the $LHC$ in the forward-center and the forward-forward configurations. The $UPDF$ of $Kimber$-$Martin$-$Ryskin$ ($KMR$) and $Martin$-$Ryskin$-$Watt$ ($MRW$) are generated in the leading order ($LO$) and the next-to-leading order ($NLO$), using the $Martin$-$Motylinski$-$Harland-Lang$-$Thorne$ ($MMHT2014$) $PDF$ libraries. While working in the forward-center and the forward-forward rapidity sectors, one can probe the parton densities at very low longitudinal momentum fractions ($x$). Therefore, such a computation can provide a valuable test-field for these $UPDF$. As we have stated in our previous works, it is interesting to point-out that the calculations in the $KMR$ framework illustrate a strong agreement with the experimental data, despite the ...
Beneš, Martin; Svobodová, Jana; Hruška, Vlastimil; Dvořák, Martin; Zusková, Iva; Gaš, Bohuslav
2012-12-07
The complete mathematical model of electromigration dispersion in systems that contain a neutral complex forming agent and a fully charged analyte was introduced in the previous part of this series of papers (Part III - Theory). The model was implemented in the newest version of our simulation program PeakMaster 5.3 that calculates the effective mobility of the analyte and its nonlinear electromigration mobility slope, S(EMD), in the presence of a complex forming agent in the background electrolyte. The mathematical model was verified by both experiments and simulations, which were performed by our dynamic simulator Simul 5 Complex. Three separation systems differing in the chiral selector used (having different values for the complexation constant and the mobility of the complex) were chosen for the verification. The nonlinear electromigration mobility slope values were calculated from the simulations and the experiments that were performed at different complex forming agent concentrations. These data agree very well with those predicted by the mathematical model and provided the foundation for the discussion and explanation of the electromigration dispersion process that occurs in systems which contain a complex forming agent. The new version of PeakMaster 5.3 was shown to be a powerful tool for optimization of the separation conditions by minimizing electromigration dispersion which improves the symmetry of the analyte peaks and their resolution.
Frediani, Luca; Fossgaard, Eirik; Flå, Tor; Ruud, Kenneth
2013-07-01
We have developed and implemented a general formalism for fast numerical solution of time-independent linear partial differential equations as well as integral equations through the application of numerically separable integral operators in d ≥ 1 dimensions using the non-standard (NS) form. The proposed formalism is universal, compact and oriented towards the practical implementation into a working code using multiwavelets. The formalism is applied to the case of Poisson and bound-state Helmholtz operators in d = 3. Our algorithms are fully adaptive in the sense that the grid supporting each function is obtained on the fly while the function is being computed. In particular, when the function g = O f is obtained by applying an integral operator O, the corresponding grid is not obtained by transferring the grid from the input function f. This aspect has significant implications that will be discussed in the numerical section. The operator kernels are represented in a separated form with finite but arbitrary precision using Gaussian functions. Such a representation combined with the NS form allows us to build a sparse, banded representation of Green's operator kernel. We have implemented a code for the application of such operators in a separated NS form to a multivariate function in a finite but, in principle, arbitrary number of dimensions. The error of the method is controlled, while the low complexity of the numerical algorithm is kept. The implemented code explicitly computes all the 22d components of the d-dimensional operator. Our algorithms are described in detail in the paper through pseudo-code examples. The final goal of our work is to be able to apply this method to build a fast and accurate Kohn-Sham solver for density functional theory.
Huddleston, Rob
2012-01-01
Fully loaded with the latest tricks and tips on your new Android! Android smartphones are so hot, they're soaring past iPhones on the sales charts. And the second edition of this muscular little book is equally impressive--it's packed with tips and tricks for getting the very most out of your latest-generation Android device. Start Facebooking and tweeting with your Android mobile, scan barcodes to get pricing and product reviews, download your favorite TV shows--the book is positively bursting with practical and fun how-tos. Topics run the gamut from using speech recognition, location-based m
On Fully Homomorphic Encryption
Fauzi, Prastudy
2012-01-01
Fully homomorphic encryption is an encryption scheme where a party can receive encrypted data and perform arbitrary operations on this data efficiently.The data remains encrypted throughout, but the operations can be done regardless, without having to know the decryption key.Such a scheme would be very advantageous, for example in ensuring the privacy of data that is sent to a third-party service.This is in contrast with schemes like Paillier where you can not perform a multiplication of encr...
Filson, Simon A; Yarhi, Danielle; Ramon, Yitzhak
2016-11-01
The authors present 25 cases and an in-depth 4-minute video of fully awake aesthetic breast reduction, which was made possible by thoracic epidural anesthesia. There are obvious and important advantages to this technique. Not only does this allow for intraoperative patient cooperation (i.e., patient self-positioning and opinion for comparison of breasts), meaning a shorter and more efficient intraoperative time, there also is a reduction in postoperative pain, complications, recovery, and discharge times. The authors have also enjoyed great success and no complications with this technique in over 150 awake abdominoplasty/total body lift patients. The authors feel that the elimination of the need for general anesthesia by thoracic epidural sensorial-only anesthesia is a highly effective and efficient technique, with very few disadvantages/complications, providing advantages to both patients and surgeons. Therapeutic, IV.
Fully electric waste collection
Anaïs Schaeffer
2015-01-01
Since 15 June, Transvoirie, which provides waste collection services throughout French-speaking Switzerland, has been using a fully electric lorry for its collections on the CERN site – a first for the region! Featuring a motor powered by electric batteries that charge up when the brakes are used, the new lorry that roams the CERN site is as green as can be. And it’s not only the motor that’s electric: its waste compactor and lifting mechanism are also electrically powered*, making it the first 100% electric waste collection vehicle in French-speaking Switzerland. Considering that a total of 15.5 tonnes of household waste and paper/cardboard are collected each week from the Meyrin and Prévessin sites, the benefits for the environment are clear. This improvement comes as part of CERN’s contract with Transvoirie, which stipulates that the firm must propose ways of becoming more environmentally friendly (at no extra cost to CERN). *The was...
Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan
2014-08-01
The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.
Parametrization of Fully Dressed Quark Propagator
Institute of Scientific and Technical Information of China (English)
MA Wei-Xing; ZHU Ji-Zhen; ZHOU Li-Juan; SHEN Peng-Nian; HU Zhao-Hui
2005-01-01
Based on an extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized form of the quark propagator is suggested. The corresponding quark selfform of the quark propagator proposed in this work describes a confining quark propagation, and is quite convenient to be used in any numerical calculations.
Institute of Scientific and Technical Information of China (English)
杨培举; 刘长友
2012-01-01
端头液压支架支护强度的确定是支架设计与选型的关键,为此,理论分析了端头区覆岩垮落形态、基本顶的结构运动规律及合理支护强度的确定方法.研究表明:端头区基本顶既可为裂隙带岩层,也可为垮落带岩层,裂隙带基本顶弧形三角块的下沉运动与工作面中部砌体梁相同,垮落带基本顶弧形三角块形可为仅受煤壁支撑与覆岩压力的悬臂梁,或同时与前后弧形三角块铰接形成弧形三角块类砌体梁结构；基本顶弧形三角板不同的结构形式,矿压显现不同,砌体梁结构基本顶活动的压力显现明显,动载系数大,而弧形三角块类砌体梁基本顶活动的压力显现不明显,动载系数较小；端头区支架与围岩作用关系中,支架的工作状态有3种类型:给定变形状态、限定变形状态和给定载荷状态,可根据对应的端头区砌体梁模型、悬臂梁模型和弧形三角块类砌体梁模型估算不同条件下端头支架合理的支护强度.%The determination of face-end hydraulic support resistance is the key to support design and selection. Therefore, theoretical analyses were carried out in this paper to study the collapse of overburden, movenment rules of basic roof structure, and determination method of resonable supporting parameters in the face-end area. The results show that the basic roof can be the fractured or caving rock stratum in the face-end area. The sinking motion of the arc triangular pieces in the fractured zone is the same with the voussoir beam in the middle of the face, while the arc triangular pieces in the caving zone can be regarded as the cantilever beam which is only supported by coal wall and loaded by overburden pressure, or forms the similar voussoir beam structure hinged with the frontal and posterior arc triangular plates mutually. Different triangular plate structures of main roof result in different pressure behavior, that is, the pressure behavior of
Chordal Graphs are Fully Orientable
Lai, Hsin-Hao
2012-01-01
Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let m and M denote the minimum and the maximum of the number of dependent arcs over all acyclic orientations of G. We call G fully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying m <= d <= M. A graph G is called chordal if every cycle in G of length at least four has a chord. We show that all chordal graphs are fully orientable.
Physics of Fully Depleted CCDs
Holland, S E; Kolbe, W F; Lee, J S
2014-01-01
In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photogenerated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully...
Fully integrated, fully automated generation of short tandem repeat profiles
2013-01-01
Background The generation of short tandem repeat profiles, also referred to as ‘DNA typing,’ is not currently performed outside the laboratory because the process requires highly skilled technical operators and a controlled laboratory environment and infrastructure with several specialized instruments. The goal of this work was to develop a fully integrated system for the automated generation of short tandem repeat profiles from buccal swab samples, to improve forensic laboratory process flow as well as to enable short tandem repeat profile generation to be performed in police stations and in field-forward military, intelligence, and homeland security settings. Results An integrated system was developed consisting of an injection-molded microfluidic BioChipSet cassette, a ruggedized instrument, and expert system software. For each of five buccal swabs, the system purifies DNA using guanidinium-based lysis and silica binding, amplifies 15 short tandem repeat loci and the amelogenin locus, electrophoretically separates the resulting amplicons, and generates a profile. No operator processing of the samples is required, and the time from swab insertion to profile generation is 84 minutes. All required reagents are contained within the BioChipSet cassette; these consist of a lyophilized polymerase chain reaction mix and liquids for purification and electrophoretic separation. Profiles obtained from fully automated runs demonstrate that the integrated system generates concordant short tandem repeat profiles. The system exhibits single-base resolution from 100 to greater than 500 bases, with inter-run precision with a standard deviation of ±0.05 - 0.10 bases for most alleles. The reagents are stable for at least 6 months at 22°C, and the instrument has been designed and tested to Military Standard 810F for shock and vibration ruggedization. A nontechnical user can operate the system within or outside the laboratory. Conclusions The integrated system represents the
Fully automated (operational) modal analysis
Reynders, Edwin; Houbrechts, Jeroen; De Roeck, Guido
2012-05-01
Modal parameter estimation requires a lot of user interaction, especially when parametric system identification methods are used and the modes are selected in a stabilization diagram. In this paper, a fully automated, generally applicable three-stage clustering approach is developed for interpreting such a diagram. It does not require any user-specified parameter or threshold value, and it can be used in an experimental, operational, and combined vibration testing context and with any parametric system identification algorithm. The three stages of the algorithm correspond to the three stages in a manual analysis: setting stabilization thresholds for clearing out the diagram, detecting columns of stable modes, and selecting a representative mode from each column. An extensive validation study illustrates the accuracy and robustness of this automation strategy.
Singularities in fully developed turbulence
Energy Technology Data Exchange (ETDEWEB)
Shivamoggi, Bhimsen K., E-mail: bhimsen.shivamoggi@ucf.edu
2015-09-18
Phenomenological arguments are used to explore finite-time singularity (FTS) development in different physical fully-developed turbulence (FDT) situations. Effects of spatial intermittency and fluid compressibility in three-dimensional (3D) FDT and the role of the divorticity amplification mechanism in two-dimensional (2D) FDT and quasi-geostrophic FDT and the advection–diffusion mechanism in magnetohydrodynamic turbulence are considered to provide physical insights into the FTS development in variant cascade physics situations. The quasi-geostrophic FDT results connect with the 2D FDT results in the barotropic limit while they connect with 3D FDT results in the baroclinic limit and hence apparently provide a bridge between 2D and 3D. - Highlights: • Finite-time singularity development in turbulence situations is phenomenologically explored. • Spatial intermittency and compressibility effects are investigated. • Quasi-geostrophic turbulence is shown to provide a bridge between two-dimensional and three-dimensional cases.
Restaurant No. 1 fully renovated
2007-01-01
The Restaurant No. 1 team. After several months of patience and goodwill on the part of our clients, we are delighted to announce that the major renovation work which began in September 2006 has now been completed. From 21 May 2007 we look forward to welcoming you to a completely renovated restaurant area designed with you in mind. The restaurant team wishes to thank all its clients for their patience and loyalty. Particular attention has been paid in the new design to creating a spacious serving area and providing a wider choice of dishes. The new restaurant area has been designed as an open-plan space to enable you to view all the dishes before making your selection and to move around freely from one food access point to another. It comprises user-friendly areas that fully comply with hygiene standards. From now on you will be able to pick and choose to your heart's content. We invite you to try out wok cooking or some other speciality. Or select a pizza or a plate of pasta with a choice of two sauces fr...
The fully Mobile City Government Project (MCity)
DEFF Research Database (Denmark)
Scholl, Hans; Fidel, Raya; Mai, Jens Erik
2006-01-01
The Fully Mobile City Government Project, also known as MCity, is an interdisciplinary research project on the premises, requirements, and effects of fully mobile, wirelessly connected applications (FWMC). The project will develop an analytical framework for interpreting the interaction...
Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods
Energy Technology Data Exchange (ETDEWEB)
Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S
2009-06-03
This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.
DEFF Research Database (Denmark)
Keiding, Tina Bering
2012-01-01
understanding of form per se, or, to use an expression from this text, of form as form. This challenge can be reduced to one question: how can design teaching support students in achieving not only the ability to recognize and describe different form-related concepts in existing design (i.e. analytical...... means that form serves both as the connective value and as the concept for reflection. In other words, form is observed as form, not anything else. The didactical challenge of teaching form as form is accentuated by students’ everyday-based pre-orientation towards function at the expense of form....... In general, students enter design education as far more skilled observers with regards to function than form. They are, in other words, predisposed to observe objects asking ‘what is?’, rather than ‘how is?’. This habit has not only cognitive implications. It is closely intertwined with a rudimentary...
DEFF Research Database (Denmark)
Keiding, Tina Bering
2012-01-01
understanding of form per se, or, to use an expression from this text, of form as form. This challenge can be reduced to one question: how can design teaching support students in achieving not only the ability to recognize and describe different form-related concepts in existing design (i.e. analytical...... means that form serves both as the connective value and as the concept for reflection. In other words, form is observed as form, not anything else. The didactical challenge of teaching form as form is accentuated by students’ everyday-based pre-orientation towards function at the expense of form...... vocabulary of form. Even in cases in which teaching uses terms and phrases from everyday life (for instance, ‘intersection’), the meaning of the word cannot necessarily be transmitted directly from an ordinary vocabulary into a design context. And it is clearly a common issue for the contributions...
Fully Traversable Wormholes Hiding Charge
Guendelman, Eduardo
2012-01-01
The charge-hiding effect by a wormhole, which was studied for the case where gravity/gauge-field system is self-consistently interacting with a charged lightlike brane (LLB) as a matter source, is now studied for the case of a time like brane. From the demand that no surfaces of infinite coordinate time redshift appear in the problem we are lead now to a completly traversable wormhole space, according to not only the traveller that goes through the wormhole (as was the case for the LLB), but also to a static external observer, this requires negative surface energy density for the shell sitting at the throat of the wormhole. We study a gauge field subsystem which is of a special non-linear form containing a square-root of the Maxwell term and which previously has been shown to produce a QCD-like confining gauge field dynamics in flat space-time. The condition of finite energy of the system or asymptotic flatness on one side of the wormhole implies that the charged object sitting at the wormhole throat expels a...
2011-06-21
... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Fully Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC, Death Pension, and/or Accrued Benefits); Correction AGENCY: Veterans Benefits Administration, Department...
The fully nonlinear stratified geostrophic adjustment problem
Coutino, Aaron; Stastna, Marek
2017-01-01
The study of the adjustment to equilibrium by a stratified fluid in a rotating reference frame is a classical problem in geophysical fluid dynamics. We consider the fully nonlinear, stratified adjustment problem from a numerical point of view. We present results of smoothed dam break simulations based on experiments in the published literature, with a focus on both the wave trains that propagate away from the nascent geostrophic state and the geostrophic state itself. We demonstrate that for Rossby numbers in excess of roughly 2 the wave train cannot be interpreted in terms of linear theory. This wave train consists of a leading solitary-like packet and a trailing tail of dispersive waves. However, it is found that the leading wave packet never completely separates from the trailing tail. Somewhat surprisingly, the inertial oscillations associated with the geostrophic state exhibit evidence of nonlinearity even when the Rossby number falls below 1. We vary the width of the initial disturbance and the rotation rate so as to keep the Rossby number fixed, and find that while the qualitative response remains consistent, the Froude number varies, and these variations are manifested in the form of the emanating wave train. For wider initial disturbances we find clear evidence of a wave train that initially propagates toward the near wall, reflects, and propagates away from the geostrophic state behind the leading wave train. We compare kinetic energy inside and outside of the geostrophic state, finding that for long times a Rossby number of around one-quarter yields an equal split between the two, with lower (higher) Rossby numbers yielding more energy in the geostrophic state (wave train). Finally we compare the energetics of the geostrophic state as the Rossby number varies, finding long-lived inertial oscillations in the majority of the cases and a general agreement with the past literature that employed either hydrostatic, shallow-water equation-based theory or
NEW RSW & Wall Medium Fully Tetrahedral Grid
National Aeronautics and Space Administration — New Medium Fully Tetrahedral RSW Grid with viscous wind tunnel wall at the root. This grid is for a node-based unstructured solver. Medium Tet: Quad Surface Faces= 0...
NEW RSW & Wall Fine Fully Tetrahedral Grid
National Aeronautics and Space Administration — NEW RSW Fine Fully Tetrahedral Grid with Viscous Wind Tunnel wall at the root. This grid is for a node-based unstructured solver. Note that the CGNS file is very...
Automated fully-stressed design with NASTRAN
Wallerstein, D. V.; Haggenmacher, G. W.
1976-01-01
An automated strength sizing capability is described. The technique determines the distribution of material among the elements of a structural model. The sizing is based on either a fully stressed design or a scaled feasible fully stressed design. Results obtained from the application of the strength sizing to the structural sizing of a composite material wing box using material strength allowables are presented. These results demonstrate the rapid convergence of the structural sizes to a usable design.
DEFF Research Database (Denmark)
Gunn, Wendy
Gunn asks us to consider beauty as collaborative forms of action generated by moving between design by means of anthropology and anthropology by means of design. Specifically, she gives focus to play-like reflexions on practices of designing energy products, systems and infrastructure. Design...
Institute of Scientific and Technical Information of China (English)
Chuan Qiang CHEN; Bo Wen HU
2013-01-01
We study microscopic spacetime convexity properties of fully nonlinear parabolic partial differential equations.Under certain general structure condition,we establish a constant rank theorem for the spacetime convex solutions of fully nonlinear parabolic equations.At last,we consider the parabolic convexity of solutions to parabolic equations and the convexity of the spacetime second fundamental form of geometric flows.
Fully Distributed Cooperative Motion of Group Robots
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper is focused on the fully distributed cooperative motion of group robots and proposes a new approach. Each robot has a local sensing ability and a simple action selection strategy. Computational complexity is decreased by the fully distributed architecture and the information insufficiency is solved by the interaction between the robots and the environment. Variable loop and random method are used to deal with the fluctuation and equity selection problem and the rapidity and reasonabiliiy are guaranteed. Some simulations have proved the effectiveness of the proposed approach.
Optimality of a Fully Stressed Design
Patnaik, Surya N.; Hopkins, Dale A.
1998-01-01
For a truss a fully stressed state is reached and when all its members are utilized to their full strength capacity. Historically, engineers considered such a design optimum. But recently this optimality has been questioned, especially since the weight of the structure is not explicitly used in fully stressed design calculations. This paper examines optimality of the full stressed design (FSD) with analytical and graphical illustrations. Solutions for a set of examples obtained by using the FSD method and optimization methods numerically confirm the optimality of the FSD. The FSD, which can be obtained with a small amount of calculation, can be extended to displacement constraints and to nontruss-type structures.
Fully localised nonlinear energy growth optimals in pipe flow
Pringle, Chris C T; Kerswell, Rich R
2014-01-01
A new, fully-localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal (Schmid \\& Henningson 1994) is selected, and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes (Pringle et al.\\ 2012) albeit now with full localisation in the streamwise direction. This fully-localised optimal perturbation represents the best approximation yet of the {\\em minimal seed} (the smallest perturbation capable of triggering a turbulent episode) for `real' (laboratory) pipe flows.
Fully Integrated Biochip Platforms for Advanced Healthcare
Directory of Open Access Journals (Sweden)
Giovanni De Micheli
2012-08-01
Full Text Available Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.
Transport properties of fully screened Kondo models
Hörig, Christoph B M; Mora, Christophe; Schuricht, Dirk
2014-01-01
We study the nonequilibrium transport properties of fully (exactly) screened Kondo quantum dots subject to a finite bias voltage or a finite temperature. First, we calculate the Fermi-liquid coefficients of the conductance for models with arbitrary spin, i.e., its leading behavior for small bias vol
A Fully Automated Penumbra Segmentation Tool
DEFF Research Database (Denmark)
Nagenthiraja, Kartheeban; Ribe, Lars Riisgaard; Hougaard, Kristina Dupont
2012-01-01
salavageable tissue, quickly and accurately. We present a fully Automated Penumbra Segmentation (APS) algorithm using PWI and DWI images. We compare automatically generated PWI-DWI mismatch mask to mask outlined manually by experts, in 168 patients. Method: The algorithm initially identifies PWI lesions...
Learner Perspectives on Fully Online Language Learning
Sun, Susan Y. H.
2014-01-01
This study builds on this author's 2011 article in which the author reflects on the pedagogical challenges and resultant changes made while teaching two fully online foreign language papers over a four-year period (Y. H. S. Sun (2011). Online language teaching: The pedagogical challenges. "Knowledge Management & E-Learning: An…
Frozen, Fully-Cooked Products and Botulism--Food Safety Advisory
... Standard Forms FSIS United States Department of Agriculture Food Safety and Inspection Service About FSIS District Offices Careers ... Actions ${title} Loading... Frozen, Fully-Cooked Products & Botulism - Food Safety Advisory In August and September 2001, several cases ...
Mishra, Bhogendra; Susaki, Junichi
2012-10-01
In this paper, an approach is proposed that predicts fully polarimetric data from dual polarimetric data, and then applies selected supervised algorithm for dual polarimetric, pseudo-fully polarimetric and fully polarimetric dataset for the land cover classification comparison. A regression model has been developed to predict the complex variables of VV polarimetric component and amplitude independently using corresponding complex variables and amplitude in HH and HV bands. Support vector machine (SVM)is implemented for the land cover classification. Coherency matrix and amplitude were used for all dataset for the land cover classification independently.They are used to compare the data from different perspective. Finally, a post processing technique is implemented to remove the isolated pixels appeared as a noise. AVNIR-2 optical data over the same area is used as ground truth data to access the classification accuracy.The result from SVM indicates that the fully polarimetric mode gives the maximum classification accuracy followed by pseudo-fully polarimetric and dual polarimetric datasets using coherency matrix input for fully polarimetric image and pseudo-fully polarimetric image and covariance matrix input for dual polarimetric image. Additionally, it is observed that pseudo-fully polarimetric image with amplitude input does not show the significant improvement over dual polarimetric image with same input.
Limiting amplitudes of fully nonlinear interfacial tides and solitons
Aguiar-González, Borja; Gerkema, Theo
2016-08-01
A new two-fluid layer model consisting of forced rotation-modified Boussinesq equations is derived for studying tidally generated fully nonlinear, weakly nonhydrostatic dispersive interfacial waves. This set is a generalization of the Choi-Camassa equations, extended here with forcing terms and Coriolis effects. The forcing is represented by a horizontally oscillating sill, mimicking a barotropic tidal flow over topography. Solitons are generated by a disintegration of the interfacial tide. Because of strong nonlinearity, solitons may attain a limiting table-shaped form, in accordance with soliton theory. In addition, we use a quasi-linear version of the model (i.e. including barotropic advection but linear in the baroclinic fields) to investigate the role of the initial stages of the internal tide prior to its nonlinear disintegration. Numerical solutions reveal that the internal tide then reaches a limiting amplitude under increasing barotropic forcing. In the fully nonlinear regime, numerical experiments suggest that this limiting amplitude in the underlying internal tide extends to the nonlinear case in that internal solitons formed by a disintegration of the internal tide may not reach their table-shaped form with increased forcing, but appear limited well below that state.
Fully resolved simulations of particle sedimentation
Sierakowski, Adam; Wang, Yayun; Prosperetti, Andrea
2014-11-01
Progress in computational capabilities - and specifically in the realm of massively parallel architectures - render possible the simulation of fully resolved fluid-particle systems. This development will drastically improve physical understanding and modelling of these systems when the particle size is not negligible and their concentration appreciable. Using a newly developed GPU-centric implementation of the Physalis method for the solution of the incompressible Navier-Stokes equations in the presence of finite-sized spheres, we carry out fully resolved simulations of more than one thousand sedimenting spheres. We discuss the results of these simulations focusing on statistical aspects such as particle velocity fluctuations, particle pair distribution function, microstructure, and others. Supported by NSF Grant CBET 1335965.
MHD power generation with fully ionized seed
Energy Technology Data Exchange (ETDEWEB)
Yamasaki, H.; Shioda, S.
1977-01-01
Recovery of power density in the regime of fully ionized seed has been demonstrated experimentally using an MHD disk generator with the effective Hall parameter up to 5.0 when the seed was fully ionized. The experiments were conducted with a shock-heated and potassium-seeded argon plasma under the following conditions: stagnation gas pressure = 0.92 atm, stagnation gas temperature = 2750 K, flow Mach number = 2.5, and seed fraction = 1.4 x 10/sup -5/. Measurements of electron-number density and spectroscopic observations of both potassium and argon lines confirmed that the recovery of power output was due to the reduction of ionization instability. This fact indicates that the successful operation of a disk generator utilizing nonequilibrium ionization seems to be possible and that the suppression of ionization instability can also provide higher adiabatic efficiency. Furthermore, the lower seed fraction offers technological advantages related to seed problems.
Fully Adaptive Radar Modeling and Simulation Development
2017-04-01
Organization (NATO) Sensors Electronics Technology (SET)-227 Panel on Cognitive Radar. The FAR M&S architecture developed in Phase I allows for...Air Force’s previously developed radar M&S tools. This report is organized as follows. In Chapter 3, we provide an overview of the FAR framework...AFRL-RY-WP-TR-2017-0074 FULLY ADAPTIVE RADAR MODELING AND SIMULATION DEVELOPMENT Kristine L. Bell and Anthony Kellems Metron, Inc
Image-restoration algorithms for a fully connected architecture.
Abbiss, J B; Brames, B J; Byrne, C L; Fiddy, M A
1990-06-15
We describe the implementation of a technique for achieving image superresolution using a fully connected network of simple processors operating in an iterative mode. We show that an updating scheme can be specified that ensures convergence for the serial (asynchronous) updating case. With the appropriate hardware, parallel (synchronous) updating becomes of particular interest because of the potential for accelerated convergence; it is this approach that we envisage implementing in optical hardware. For this case also, we present a convergent scheme that can be related to a regularized form of the Gerchberg-Papoulis algorithm.
Fully implicit kinetic modelling of collisional plasmas
Energy Technology Data Exchange (ETDEWEB)
Mousseau, V.A.
1996-05-01
This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method.
Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.
2010-12-01
to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.
SYNTHESIS AND CHARACTERIZATION OF FULLY SOLUBLE POLYPHENYLENEVINYLENE
Institute of Scientific and Technical Information of China (English)
Jiang-qing Pan; Zi-kuan Chen; Yang Xiao; Wei Huang
2000-01-01
Fully soluble poly[2-methoxy-5-(2'-ethylhexyl)-oxy)-p-phenylenevinylene] (MEH-PPV) was synthesized by the addition of molecular weight modifiers (chain stopper, free radical scavengers) to a polymerization system containing monomer, catalyst and a solvent. These PPV products synthesized in this work were characterized by IR, NMR, UV-visible spectroscopy and GPC. Results show that the Mw of polyphenylvinylene (PPV) can be controlled by the addition of chain stopper (benzyl bromide) and radical inhibitor (2,6-di-tert-butyl-4-methyl phenol). The polymerization mechanism in the presence of these additives was also discussed. A dual mechanism involving carbene for PPV polymerization was proposed.
The fully differential top decay distribution
Energy Technology Data Exchange (ETDEWEB)
Aguilar-Saavedra, J.A. [Universidad de Granada, Departamento de Fisica Teorica y del Cosmos, Granada (Spain); Boudreau, J.; Mueller, J. [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh, PA (United States); Escobar, C. [CSIC-Universitat de Valencia, Instituto de Fisica Corpuscular, Paterna (Spain)
2017-03-15
We write down the four-dimensional fully differential decay distribution for the top quark decay t → Wb → lνb. We discuss how its eight physical parameters can be measured, either with a global fit or with the use of selected one-dimensional distributions and asymmetries. We give expressions for the top decay amplitudes for a general tbW interaction, and show how the untangled measurement of the two components of the fraction of longitudinal W bosons - those with b quark helicities of 1/2 and -1/2, respectively - could improve the precision of a global fit to the tbW vertex. (orig.)
Fully Coupled FE Analyses of Buried Structures
Directory of Open Access Journals (Sweden)
James T. Baylot
1994-01-01
Full Text Available Current procedures for determining the response of buried structures to the effects of the detonation of buried high explosives recommend decoupling the free-field stress analysis from the structure response analysis. A fully coupled (explosive–soil structure finite element analysis procedure was developed so that the accuracies of current decoupling procedures could be evaluated. Comparisons of the results of analyses performed using this procedure with scale-model experiments indicate that this finite element procedure can be used to effectively evaluate the accuracies of the methods currently being used to decouple the free-field stress analysis from the structure response analysis.
Fully 3D GPU PET reconstruction
Energy Technology Data Exchange (ETDEWEB)
Herraiz, J.L., E-mail: joaquin@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Cal-Gonzalez, J. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Vaquero, J.J. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Desco, M. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)
2011-08-21
Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.
Fully Equipped Dynamic Model of a Bus
Directory of Open Access Journals (Sweden)
I. Kowarska
2014-01-01
Full Text Available Nowadays, the time to market a new vehicle is crucial for every company as it is easier to meet the customers’ needs and expectations. However, designing a new vehicle is a long process which needs to take into account different performances. The most difficult is to predict a dynamic behavior of a vehicle especially when such a big vehicles as urban buses are considered. Therefore, there is a necessity to use a virtual model to investigate different performances. However, there is a lack of urban bus models that can fully reflect a dynamic behavior of the bus. This paper presents a fully equipped urban bus model which can be used to study a dynamic behavior of such vehicles. The model is based on innovative technique called cosimulation, which connects different modeling techniques (3D and 1D. Such a technique allows performing different analyses that require small deformations and large translations and rotations in shorter time and automatic way. The work has been carried out in a project EUREKA CHASING.
Fully CMOS-compatible titanium nitride nanoantennas
Energy Technology Data Exchange (ETDEWEB)
Briggs, Justin A., E-mail: jabriggs@stanford.edu [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Naik, Gururaj V.; Baum, Brian K.; Dionne, Jennifer A. [Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Petach, Trevor A.; Goldhaber-Gordon, David [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States)
2016-02-01
CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.
Fully CMOS-compatible titanium nitride nanoantennas
Briggs, Justin A.; Naik, Gururaj V.; Petach, Trevor A.; Baum, Brian K.; Goldhaber-Gordon, David; Dionne, Jennifer A.
2016-02-01
CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.
Electron Capture in a Fully Ionized Plasma
Widom, A; Srivastava, Y N
2014-01-01
Properties of fully ionized water plasmas are discussed including plasma charge density oscillations and the screening of the Coulomb law especially in the dilute classical Debye regime. A kinetic model with two charged particle scattering events determines the transition rate per unit time for electron capture by a nucleus with the resulting nuclear transmutations. Two corrections to the recent Maiani et al. calculations are made: (i) The Debye screening length is only employed within its proper domain of validity. (ii) The WKB approximation employed by Maiani in the long De Broglie wave length limit is evidently invalid. We replace this incorrect approximation with mathematically rigorous Calogero inequalities in order to discuss the scattering wave functions. Having made these corrections, we find a verification for our previous results based on condensed matter electro-weak quantum field theory for nuclear transmutations in chemical batteries.
A fully quantum model of Big Bang
Maydanyuk, Sergei P; Olkhovsky, Vladislav S
2013-01-01
In the paper the closed Friedmann-Robertson-Walker model with quantization in the presence of the positive cosmological constant and radiation is studied. For analysis of tunneling probability for birth of an asymptotically deSitter, inflationary Universe as a function of the radiation energy a new definition of a "free" wave propagating inside strong fields is proposed. On such a basis, tunneling boundary condition is corrected, penetrability and reflection concerning to the barrier are calculated in fully quantum stationary approach. For the first time non-zero interference between the incident and reflected waves has been taken into account which turns out to play important role inside cosmological potentials and could be explained by non-locality of barriers in quantum mechanics. Inside whole region of energy of radiation the tunneling probability for the birth of the inflationary Universe is found to be close to its value obtained in semiclassical approach. The reflection from the barrier is determined f...
Fully Automatic Expression-Invariant Face Correspondence
Salazar, Augusto; Shu, Chang; Prieto, Flavio
2012-01-01
We consider the problem of computing accurate point-to-point correspondences among a set of human face scans with varying expressions. Our fully automatic approach does not require any manually placed markers on the scan. Instead, the approach learns the locations of a set of landmarks present in a database and uses this knowledge to automatically predict the locations of these landmarks on a newly available scan. The predicted landmarks are then used to compute point-to-point correspondences between a template model and the newly available scan. To accurately fit the expression of the template to the expression of the scan, we use as template a blendshape model. Our algorithm was tested on a database of human faces of different ethnic groups with strongly varying expressions. Experimental results show that the obtained point-to-point correspondence is both highly accurate and consistent for most of the tested 3D face models.
Fully compressive tides in galaxy mergers
Renaud, Florent; Naab, Thorsten; Theis, Christian
2009-01-01
The disruptive effect of galactic tides is a textbook example of gravitational dynamics. However, depending on the shape of the potential, tides can also become fully compressive. When that is the case, they might trigger or strengthen the formation of galactic substructures (star clusters, tidal dwarf galaxies), instead of destroying them. We perform N-body simulations of interacting galaxies to quantify this effect. We demonstrate that tidal compression occurs repeatedly during a galaxy merger, independently of the specific choice of parameterization. With a model tailored to the Antennae galaxies, we show that the distribution of compressive tides matches the locations and timescales of observed substructures. After extending our study to a broad range of parameters, we conclude that neither the importance of the compressive tides (~15% of the stellar mass) nor their duration (~ 10 Myr) are strongly affected by changes in the progenitors' configurations and orbits. Moreover, we show that individual clumps ...
Argentina to fully privatize state owned YPF
Energy Technology Data Exchange (ETDEWEB)
1992-10-05
Argentina's Congress has voted to fully privatize state petroleum company Yacimientos Petroliferos Fiscales (YPF), a move the government expects to net at least $8 billion. Despite some political opposition, the vote was 119-10 in favor, with one abstention and opposition party members refusing to participate in the vote. Argentina's President Carlos Menem had threatened to authorize YPF privatization by decree if there was no quorum for a vote. YPF is responsible for 40% of Argentina's oil production. The country h as been self-sufficient in crude since 1982. Current production is 563,472 b/d, and proved reserves of oil and gas are valued at $7 billion.
A novel fully integrated handheld gamma camera
Energy Technology Data Exchange (ETDEWEB)
Massari, R.; Ucci, A.; Campisi, C. [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy); Scopinaro, F. [University of Rome “La Sapienza”, S. Andrea Hospital, Rome (Italy); Soluri, A., E-mail: alessandro.soluri@ibb.cnr.it [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy)
2016-10-01
In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.
Water diffusion in fully hydrated porcine stratum corneum
Energy Technology Data Exchange (ETDEWEB)
Pieper, J.; Charalambopoulou, G.; Steriotis, Th.; Vasenkov, S.; Desmedt, A.; Lechner, R.E
2003-08-01
The microscopic mechanisms of water diffusion in fully hydrated porcine stratum corneum (SC) have been studied by a combination of incoherent quasielastic neutron scattering (QENS) and pulsed field gradient-nuclear magnetic resonance (PFG-NMR) for two sample orientations. The presence of three types of water in fully hydrated SC is inferred on the basis of water sorption isotherm data, i.e., (a) bound and (b) weakly bound hydration water forming layers between adjacent lipid bilayers of SC, as well as (c) bulk water probably located in the corneocytes and in intercellular regions. Water self-diffusion coefficients for motions parallel and perpendicular to the membrane plane of D{sub parallel}=3.30x10{sup -10} m{sup 2}/s and D{sub perpendicular}=1.56x10{sup -10} m{sup 2}/s, respectively, were determined by PFG-NMR and assigned to the translational diffusion of weakly bound water. QENS measurements have been carried out using different samples hydrated with H{sub 2}O and D{sub 2}O, respectively, in order to separate the contribution of SC from that of the water. The QENS data for both sample orientations and two different energy resolutions can be fitted by a model which accounts for the microscopic dynamics of all three aforementioned types of water. This analysis establishes rotational diffusion coefficients for bound and weakly bound hydration water of 0.025 and 0.030 meV, respectively. Furthermore, the QENS data prove the presence of bulk water in fully hydrated SC samples.
Engineering aspects of a fully mirrored endoscope
Energy Technology Data Exchange (ETDEWEB)
Terra, A., E-mail: a.terra@fz-juelich.de [Institute for Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich GmbH, Assoc. EURATOM-FZJ, Member of the Trilateral Euregio Cluster, D-52425 Jülich (Germany); Huber, A.; Schweer, B.; Mertens, Ph. [Institute for Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich GmbH, Assoc. EURATOM-FZJ, Member of the Trilateral Euregio Cluster, D-52425 Jülich (Germany); Arnoux, G.; Balshaw, N. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Brezinsek, S. [Institute for Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich GmbH, Assoc. EURATOM-FZJ, Member of the Trilateral Euregio Cluster, D-52425 Jülich (Germany); Egner, S.; Hartl, M.; Kampf, D. [Kayser-Threde GmbH, D-81379 Munich (Germany); Klammer, J. [KRP-Mechatec Engineering GbR, D-85748 Garching (Germany); Lambertz, H.T. [Institute for Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich GmbH, Assoc. EURATOM-FZJ, Member of the Trilateral Euregio Cluster, D-52425 Jülich (Germany); Morlock, C.; Murari, A. [EFDA-CSU, D-85748 Garching (Germany); Reindl, M. [KRP-Mechatec Engineering GbR, D-85748 Garching (Germany); Sanders, S. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Sergienko, G. [Institute for Energy and Climate Research IEK-4 (Plasma Physics), Forschungszentrum Jülich GmbH, Assoc. EURATOM-FZJ, Member of the Trilateral Euregio Cluster, D-52425 Jülich (Germany); Spencer, G. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); and others
2013-10-15
Highlights: ► Replacement of JET diagnostics to match the new ITER-like Wall. ► The endoscope test ITER-like design with only mirror based optics. ► Withstanding and diagnostic capability during Plasma operation and disruptions. ► Engineering process from design to installation and procurement. -- Abstract: The development of optical diagnostics, like endoscopes, compatible with the ITER environment (metallic plasma facing components, neutron proof optics, etc.) is a challenge, but current tokamaks such as JET provide opportunities to test fully working concepts. This paper describes the engineering aspects of a fully mirrored endoscope that has recently been designed, procured and installed on JET. The system must operate in a very strict environment with high temperature, high magnetic fields up to B = 4 T and rapid field variations (∂B/∂t ∼ 100 T/s) that induce high stresses due to eddy currents in the front mirror assembly. It must be designed to withstand high mechanical loads especially during disruptions, which lead to acceleration of about 7 g at 14 Hz. For the JET endoscope, when the plasma thermal loading, direct and indirect, was added to the assumed disruption loads, the reserve factor, defined as a ratio of yield strength over summed up von Mises stresses, was close to 1 for the mirror components. To ensure reliable operation, several analyses were performed to evaluate the thermo-mechanical performance of the endoscope and a final validation was obtained from mechanical and thermal tests, before the system's final installation in May 2011. During the tests, stability of the field of view angle variation was kept below 1° despite the high thermal gradient on endoscope head (∂T/∂x ∼ 500 K/m). In parallel, to ensure long time operation and to prevent undesirable performance degradation, a shutter system was also implemented in order to reduce impurity deposition on in-vessel mirrors but also to allow in situ transmission
Fully 3D refraction correction dosimetry system
Manjappa, Rakesh; Sharath Makki, S.; Kumar, Rajesh; Mohan Vasu, Ram; Kanhirodan, Rajan
2016-02-01
The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched
Fully 3D refraction correction dosimetry system.
Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan
2016-02-21
The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched
Fully Mechanically Controlled Automated Electron Microscopic Tomography
Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang
2016-07-01
Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins’ functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000–160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.
Fully printed flexible carbon nanotube photodetectors
Zhang, Suoming; Cai, Le; Wang, Tongyu; Miao, Jinshui; Sepúlveda, Nelson; Wang, Chuan
2017-03-01
Here, we report fully printed flexible photodetectors based on single-wall carbon nanotubes and the study of their electrical characteristics under laser illumination. Due to the photothermal effect and the use of high purity semiconducting carbon nanotubes, the devices exhibit gate-voltage-dependent photoresponse with the positive photocurrent or semiconductor-like behavior (conductivity increases at elevated temperatures) under positive gate biases and the negative photocurrent or metal-like behavior (conductivity decreases at elevated temperatures) under negative gate biases. Mechanism for such photoresponse is attributed to the different temperature dependencies of carrier concentration and carrier mobility, which are two competing factors that ultimately determine the photothermal effect-based photoresponse. The photodetectors built on the polyimide substrate also exhibit superior mechanical compliance and stable photoresponse after thousands of bending cycles down to a curvature radius as small as 3 mm. Furthermore, due to the low thermal conductivity of the plastic substrate, the devices show up to 6.5 fold improvement in responsivity compared to the devices built on the silicon substrate. The results presented here provide a viable path to low cost and high performance flexible photodetectors fabricated entirely by the printing process.
A fully covariant description of CMB anisotropies
Dunsby, P K S
1997-01-01
Starting from the exact non-linear description of matter and radiation, a fully covariant and gauge-invariant formula for the observed temperature anisotropy of the cosmic microwave background (CBR) radiation, expressed in terms of the electric ($E_{ab}$) and magnetic ($H_{ab}$) parts of the Weyl tensor, is obtained by integrating photon geodesics from last scattering to the point of observation today. This improves and extends earlier work by Russ et al where a similar formula was obtained by taking first order variations of the redshift. In the case of scalar (density) perturbations, $E_{ab}$ is related to the harmonic components of the gravitational potential $\\Phi_k$ and the usual dominant Sachs-Wolfe contribution $\\delta T_R/\\bar{T}_R\\sim\\Phi_k$ to the temperature anisotropy is recovered, together with contributions due to the time variation of the potential (Rees-Sciama effect), entropy and velocity perturbations at last scattering and a pressure suppression term important in low density universes. We a...
Fully inkjet-printed microwave passive electronics
Mckerricher, Garret
2017-01-30
Fully inkjet-printed three-dimensional (3D) objects with integrated metal provide exciting possibilities for on-demand fabrication of radio frequency electronics such as inductors, capacitors, and filters. To date, there have been several reports of printed radio frequency components metallized via the use of plating solutions, sputtering, and low-conductivity pastes. These metallization techniques require rather complex fabrication, and do not provide an easily integrated or versatile process. This work utilizes a novel silver ink cured with a low-cost infrared lamp at only 80 °C, and achieves a high conductivity of 1×107 S m−1. By inkjet printing the infrared-cured silver together with a commercial 3D inkjet ultraviolet-cured acrylic dielectric, a multilayer process is demonstrated. By using a smoothing technique, both the conductive ink and dielectric provide surface roughness values of <500 nm. A radio frequency inductor and capacitor exhibit state-of-the-art quality factors of 8 and 20, respectively, and match well with electromagnetic simulations. These components are implemented in a lumped element radio frequency filter with an impressive insertion loss of 0.8 dB at 1 GHz, proving the utility of the process for sensitive radio frequency applications.
Quantum Optimization of Fully Connected Spin Glasses
Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim
2015-07-01
Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.
Quantum Optimization of Fully Connected Spin Glasses
Directory of Open Access Journals (Sweden)
Davide Venturelli
2015-09-01
Full Text Available Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer’s hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave Two^{TM} annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors optimized simulated annealing algorithms.
Fully additive copper metallization on BCB
Energy Technology Data Exchange (ETDEWEB)
Stolle, T. [FhG-IZM Berlin (Germany); Schwencke, B.; Reichl, H.
2000-07-01
A fully additive copper metallization process on benzocyclobutene cyclotene trademark (BCB) has been investigated for application in MCM-D technology. The process consists of surface pretreatment of the BCB basic layer by reactive ion etching (RIE), spin-coating and photopatterning of an organic seed layer by broad-band I-line photolithography followed by developing and activation steps. The metallization of the seed patterns is performed by a 2-step process by means of electroless copper baths. A height of about 5 {mu}m selectively deposited copper can be achieved. The electrical conductivity of patterns is in the range of 80% - 85% of the bulk conductivity of pure copper. Adhesive strength tests during accelerated aging show good adhesion of copper to the BCB surface, which is influenced by RIE pretreatment, exposure dose and thermal load. Shear experiments performed with optimal treated 200 x 200 {mu}m bumps show shear forces > 150 cN. Design rules have to take into account the lateral growth of copper patterns, which is nearly equal to the vertical growth. Real spaces of {>=} 30 {mu}m between copper lines are possible. The process is considered as a low cost technology because of replacing of sputter technique, few process steps and waste reduction. (orig.)
The first LHC sector is fully interconnected
2006-01-01
Sector 7-8 is the first sector of the LHC to become fully operational. All the magnets, cryogenic line, vacuum chambers and services are interconnected. The cool down of this sector can soon commence. LHC project leader Lyn Evans, the teams from CERN's AT/MCS, AT/VAC and AT/MEL groups, and the members of the IEG consortium celebrate the completion of the first LHC sector. The 10th of November was a red letter day for the LHC accelerator teams, marking the completion of the first sector of the machine. The magnets of sector 7-8, together with the cryogenic line, the vacuum chambers and the distribution feedboxes (DFBs) are now all completely interconnected. Sector 7-8 has thus been closed and is the first LHC sector to become operational. The interconnection work required several thousand electrical, cryogenic and insulating connections to be made on the 210 interfaces between the magnets in the arc, the 30 interfaces between the special magnets and the interfaces with the cryogenic line. 'This represent...
Matching fully differential NNLO calculations and parton showers
Energy Technology Data Exchange (ETDEWEB)
Alioli, Simone; Bauer, Christian W.; Berggren, Calvin; Walsh, Jonathan R.; Zuberi, Saba [California Univ., Berkeley, CA (United States). Ernest Orlando Lawrence Berkeley National Laboratory; Tackmann, Frank J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-11-15
We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO+LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input ''Monte Carlo cross sections'' satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.
Matching Fully Differential NNLO Calculations and Parton Showers
Alioli, Simone; Berggren, Calvin; Tackmann, Frank J; Walsh, Jonathan R; Zuberi, Saba
2013-01-01
We present a general method to match fully differential next-to-next-to-leading (NNLO) calculations to parton shower programs. We discuss in detail the perturbative accuracy criteria a complete NNLO+PS matching has to satisfy. Our method is based on consistently improving a given NNLO calculation with the leading-logarithmic (LL) resummation in a chosen jet resolution variable. The resulting NNLO$+$LL calculation is cast in the form of an event generator for physical events that can be directly interfaced with a parton shower routine, and we give an explicit construction of the input "Monte Carlo cross sections" satisfying all required criteria. We also show how other proposed approaches naturally arise as special cases in our method.
Gaia14aae: the First Fully-Eclipsing AM CVn
Green, M. J.; Marsh, T. R.; Steeghs, D. T. H.; Breedt, E.; Campbell, H. C.; Dhillon, V. S.; Hardy, L. K.; Littlefair, S. P.
2017-03-01
AM CVns are a class of cataclysmic variables consisting of a white dwarf accreting H-deficient matter from a donor star. With periods of 5 to 65 minutes, AM CVns include the shortest period binaries containing white dwarfs. AM CVns are believed to form by one of three formation channels which can in principle be distinguished by the nature of the donor star, but are difficult to constrain observationally. Gaia14aae was one of the first transients discovered by the Gaia Science Alerts project. It eclipses on a period of 50 minutes, and is the only known AM CVn in which the white dwarf is fully eclipsed. This makes it an attractive system for parameter studies. We present an update on our attempts to measure these properties, using high-speed multi-colour photometry. Preliminary results suggest that the donor star is not as degenerate as predicted by models of white dwarf donors.
Hydrocarbon characterization experiments in fully turbulent fires.
Energy Technology Data Exchange (ETDEWEB)
Ricks, Allen; Blanchat, Thomas K.
2007-05-01
As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.
Hierarchical structures in fully developed turbulence
Liu, Li
Analysis of the probability density functions (PDFs) of the velocity increment dvl and of their deformation is used to reveal the statistical structure of the intermittent energy cascade dynamics of turbulence. By analyzing a series of turbulent data sets including that of an experiment of fully developed low temperature helium turbulent gas flow (Belin, Tabeling, & Willaime, Physica D 93, 52, 1996), of a three-dimensional isotropic Navier-Stokes simulation with a resolution of 2563 (Cao, Chen, & She, Phys. Rev. Lett. 76, 3711, 1996) and of a GOY shell model simulation (Leveque & She, Phys. Rev. E 55, 1997) of a very big sample size (up to 5 billions), the validity of the Hierarchical Structure model (She & Leveque, Phys. Rev. Lett. 72, 366, 1994) for the inertial-range is firmly demonstrated. Furthermore, it is shown that parameters in the Hierarchical Structure model can be reliably measured and used to characterize the cascade process. The physical interpretations of the parameters then allow to describe differential changes in different turbulent systems so as to address non-universal features of turbulent systems. It is proposed that the above study provides a framework for the study of non-homogeneous turbulence. A convergence study of moments and scaling exponents is also carried out with detailed analysis of effects of finite statistical sample size. A quantity Pmin is introduced to characterize the resolution of a PDF, and hence the sample size. The fact that any reported scaling exponent depends on the PDF resolution suggests that the validation (or rejection) of a model of turbulence needs to carry out a resolution dependence analysis on its scaling prediction.
Highly efficient fully transparent inverted OLEDs
Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.
2007-09-01
One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.
Typhoid Fever and Acute Appendicitis: A Rare Association Not Yet Fully Formed
Directory of Open Access Journals (Sweden)
Daniel J. Sartori
2017-08-01
Full Text Available Infections caused by foodborne enteric pathogens including typhoidal and non-typhoidal Salmonella species can mimic symptoms of acute appendicitis. The association between such bacterial pathogens and pathology-proven acute appendicitis has been described, but this link is poorly understood. Here we describe a case of a young man with typhoid fever presenting with histology-proven acute appendicitis requiring urgent appendectomy, and provide a brief review of relevant literature to prompt more widespread recognition of this rare cause of a common surgical emergency.
Directory of Open Access Journals (Sweden)
Chief Editor
2016-06-01
Full Text Available CONTRIBUTOR FORMManuscript Title:________________________________________________________________________________________________________________________________________________________________________I/we certify that I/we have participated sufficiently in the intellectual content, conception and design of this work or the analysis and interpretation of the data (when applicable, as well as the writing of the manuscript, to take public responsibility for it and have agreed to have my/our name listed as a contributor. I/we believe the manuscript represents valid work. Neither this manuscript nor one with substantially similar content under my/our authorship has been published or is being considered for publication elsewhere, except as described in the covering letter. I/we certify that all the data collected during the study is presented in this manuscript and no data from the study has been or will be published separately. I/we attest that, if requested by the editors, I/we will provide the data/information or will cooperate fully in obtaining and providing the data/information on which the manuscript is based, for examination by the editors or their assignees. I/we also certify that we have taken all necessary permissions from our institution and/or department for conducting and publishing the present work.Financial interests, direct or indirect, that exist or may be perceived to exist for individual contributors in connection with the content of this paper have been disclosed in the cover letter. Sources of outside support of the project are named in the cover letter. I/We hereby transfer(s, assign(s, or otherwise convey(s all copyright ownership, including any and all rights incidental thereto, exclusively to the Journal, in the event that such work is published by the Journal. The Journal shall own the work, including 1 copyright; 2 the right to grant permission to republish the article in whole or in part, with or without fee; 3 the right
Fully idempotent near-rings and sheaf representations
Javed Ahsan; Gordon Mason
1998-01-01
Fully idempotent near-rings are defined and characterized which yields information on the lattice of ideals of fully idempotent rings and near-rings. The space of prime ideals is topologized and a sheaf representation is given for a class of fully idempotent near-rings which includes strongly regular near-rings.
42 CFR 412.340 - Fully prospective payment methodology.
2010-10-01
... 42 Public Health 2 2010-10-01 2010-10-01 false Fully prospective payment methodology. 412.340...-Related Costs § 412.340 Fully prospective payment methodology. A hospital paid under the fully prospective payment methodology receives a payment per discharge based on a proportion of the hospital-specific rate...
Fully ceramic nuclear fuel and related methods
Venneri, Francesco; Katoh, Yutai; Snead, Lance Lewis
2016-03-29
Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.
Indian Academy of Sciences (India)
Santanu Bhattacharya; Saubhik Haldar
2002-06-01
Five novel cationic lipids with fully or partially non-scissile linkage regions between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized. The membrane-forming properties of these new lipids are briefly presented.
Application of fully ceramic microencapsulated fuels in light water reactors
Energy Technology Data Exchange (ETDEWEB)
Gentry, C.; George, N.; Maldonado, I. [Dept. of Nuclear Engineering, Univ. of Tennessee-Knoxville, Knoxville, TN 37996-2300 (United States); Godfrey, A.; Terrani, K.; Gehin, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)
2012-07-01
This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO{sub 2} rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)
Application of Fully Ceramic Microencapsulated Fuels in Light Water Reactors
Energy Technology Data Exchange (ETDEWEB)
Gentry, Cole A [ORNL; George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Godfrey, Andrew T [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL
2012-01-01
This study aims to perform a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in Light Water Reactors (LWRs). In particular pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor. Using uranium-based fuel and transuranic (TRU) based fuel in TRistructural ISOtropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher physical density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design would need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the TRU based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, feasibility of core designs fully loaded with TRU FCM lattices was demonstrated using the NESTLE three-dimensional core simulator.
Engineering Engine/Airframe Integration for Fully Reusable Space Transportation Systems
2010-09-01
Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 1.0 THE APPROACH OF THE GERMAN HYPERSONICS TECHNOLOGY PROGRAM (1988-1995) Fig. 01 SÄNGER/ HTP ...Experimental Flying Testbeds fully Integrated for Propulsion Systems During the German HTP and FESTIP (1988 – 1998) In Europe several experimental flying
Keen, Suzanne
2015-01-01
This revised and expanded handbook concisely introduces narrative form to advanced students of fiction and creative writing, with refreshed references and new discussions of cognitive approaches to narrative, nonfiction, and narrative emotions.
Towards fully integrated wireless impedimetric sensors.
Segura-Quijano, Fredy; Sacristán-Riquelme, Jordi; García-Cantón, Jesús; Osés, Maria Teresa; Baldi, Antonio
2010-01-01
We report on the design and characterization of the building blocks of a single-chip wireless chemical sensor fabricated with a commercial complementary metal-oxide-silicon (CMOS) technology, which includes two types of transducers for impedimetric measurements (4-electrode array and two interdigitated electrodes), instrumentation circuits, and a metal coil and circuits for inductive power and data transfer. The electrodes have been formed with a polycrystalline silicon layer of the technology by a simple post-process that does not require additional deposition or lithography steps, but just etching steps. A linear response to both conductivity and permittivity of solutions has been obtained. Wireless communication of the sensor chip with a readout unit has been demonstrated. The design of the chip was prepared for individual block characterization and not for full system characterization. The integration of chemical transducers within monolithic wireless platforms will lead to smaller, cheaper, and more reliable chemical microsensors, and will open up the door to numerous new applications where liquid mediums that are enclosed in sealed receptacles have to be measured.
Towards Fully Integrated Wireless Impedimetric Sensors
Directory of Open Access Journals (Sweden)
Fredy Segura-Quijano
2010-04-01
Full Text Available We report on the design and characterization of the building blocks of a single-chip wireless chemical sensor fabricated with a commercial complementary metal-oxide-silicon (CMOS technology, which includes two types of transducers for impedimetric measurements (4-electrode array and two interdigitated electrodes, instrumentation circuits, and a metal coil and circuits for inductive power and data transfer. The electrodes have been formed with a polycrystalline silicon layer of the technology by a simple post-process that does not require additional deposition or lithography steps, but just etching steps. A linear response to both conductivity and permittivity of solutions has been obtained. Wireless communication of the sensor chip with a readout unit has been demonstrated. The design of the chip was prepared for individual block characterization and not for full system characterization. The integration of chemical transducers within monolithic wireless platforms will lead to smaller, cheaper, and more reliable chemical microsensors, and will open up the door to numerous new applications where liquid mediums that are enclosed in sealed receptacles have to be measured.
Utilize Vacuum Forming to Make Interdisciplinary Connections
Love, Tyler S.; Valenza, Frank
2011-01-01
The concept of vacuum forming has been around since the 19th century, despite not being fully utilized in industry until the 1950s. In the past, industrial arts classes have used vacuum-forming projects to concentrate solely on the manufacturing process and the final product. However, vacuum forming is not just an old industrial arts activity; it…
Type Synthesis of Fully-decoupled Three-rotational and One-translational Parallel Mechanisms
Directory of Open Access Journals (Sweden)
Yi Cao
2016-04-01
Full Text Available Based on screw theory and the principle of one- leg driving by an independent motor, a methodology for the structural synthesis of fully-decoupled three-rotational and one-translational (3R1T parallel mechanisms is proposed by analysing the characteristics of the input-output relationships for fully-decoupled parallel mechanisms. Firstly, the desired forms for both the direct and the inverse Jacobian matrices of fully-decoupled parallel mechanisms are constructed by virtue of screw theory; this is in order to satisfy the demand that these two Jacobian matrices should be non-zero diagonal matrices. Secondly, the effective screw, the actuated screw and the mobile un-actuated screws of each limb are established via reciprocal screw theory, while all the possible topology structures fulfilling the requirements are obtained, based on different connectivities for each limb. Finally, the desired fully-decoupled parallel mechanisms can be synthesized using the structural synthesis rule, while the structural synthesis of fully-decoupled 3R1T parallel mechanisms can be obtained by exploiting the above-mentioned methodology. Moreover, the Jacobian matrix of a synthesized 3R1T parallel mechanism is deduced to demonstrate the decoupling feature of the parallel mechanism, which also validates the correctness of the methodology for the type synthesis of fully-decoupled 3R1T parallel mechanisms. The contents of this paper provide a reference and possess significant theoretical meanings for the synthesis and development of the 3R1T fully-decoupled parallel mechanisms. Motors are mounted one per leg, with each one of them actuating a one Degree-of-freedom (DoF of the fully-decoupled parallel mechanism through a one-to-one velocity relationship.
Properties of wideband resonant reflectors under fully conical light incidence
Ko, Yeong Hwan; Niraula, Manoj; Lee, Kyu Jin; Magnusson, Robert
2016-01-01
Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors ...
DEFF Research Database (Denmark)
Jensen, Henrik
2006-01-01
Dette Kompendiun er lavet i forbindelse med en workshop i møbeldesign. En række af form-Z's værktøjer til konstruktion af dobbeltkrumme flader gennemgås. Kompendiet kan bruges til selvstudie.......Dette Kompendiun er lavet i forbindelse med en workshop i møbeldesign. En række af form-Z's værktøjer til konstruktion af dobbeltkrumme flader gennemgås. Kompendiet kan bruges til selvstudie....
Fully nonlinear and exact perturbations of the Friedmann world model: non-flat background
Energy Technology Data Exchange (ETDEWEB)
Noh, Hyerim, E-mail: hr@kasi.ac.kr [Korea Astronomy and Space Science Institute, Daejeon, 305-348 (Korea, Republic of)
2014-07-01
We extend the fully non-linear and exact cosmological perturbation equations in a Friedmann background universe to include the background curvature. The perturbation equations are presented in a gauge ready form, so any temporal gauge condition can be adopted freely depending on the problem to be solved. We consider the scalar, and vector perturbations without anisotropic stress. As an application, we analyze the equations in the special case of irrotational zero-pressure fluid in the comoving gauge condition. We also present the fully nonlinear formulation for a minimally coupled scalar field.
Study on dangers of methane in the gob of fully mechanized caving mining
Institute of Scientific and Technical Information of China (English)
LU Guang-li; WU Li-rong; ZOU De-yun
2007-01-01
Divided the gob gas in different types according to falling structure and spatial patterns of gob of the fully mechanized caving mining and analyzed its main form of harm.This passage preliminarily studied the law of unusual gush of gob gas of the fully mechanized caving mining. According to the basic condition for the gas explosion, made comprehensive analysis and appraisal about the oxygen condition, gas concentration distribute and fire source conditions. And find that there is the dangerous district of gas explosion in a certain area of the producing gob and give the three zone theory of gob gas explosion.
Cut-HDMR-based fully equivalent operational model for analysis of unreinforced masonry structures
Indian Academy of Sciences (India)
D Mukherjee; B N Rao; A M Prasad
2012-10-01
Mesoscale models are highly competent for understanding behaviour of unreinforced masonry structures. Their only limitation is large computational expense. Fully Equivalent Operational Model forms an equivalent mathematical model to represent a particular phenomenon where explicit relationship between inputs and outputs are unknown. This paper explores the ability of a major variant of High Dimensional Model Representation (HDMR) technique, namely Cut-HDMR, to construct the most efﬁcient Fully Equivalent Operational Model for nonlinear ﬁnite element analysis of mesoscale model of an unreinforced masonry structure. Conclusions are reached on various aspects such as, suitability of interpolation schemes and order of Cut-HDMR approximation.
Fully nonlinear and exact perturbations of the Friedmann world model: Non-flat background
Noh, Hyerim
2014-01-01
We extend the fully non-linear and exact cosmological perturbation equations in a Friedmann background universe to include the background curvature. The perturbation equations are presented in a gauge ready form, so any temporal gauge condition can be adopted freely depending on the problem to be solved. %The background curvature term explicitly appears only in the energy and momentum constraint equations. We consider the scalar, and vector perturbations without anisotropic stress. As an application, we analyze the equations in the special case of irrotational zero-pressure fluid in the comoving gauge condition. We also present the fully nonlinear formulation for a minimally coupled scalar field.
DEFF Research Database (Denmark)
von Essen, Flemming Brændgaard
systems. For automorphic forms wrt. Hecke triangle groups and Fuchsian groups with no elliptic elements and genus 0, we show that some logarithms of multiplier systems can be interpreted as a linking number. Finally we show a "twisted" version of the prime geodesics theorem, and logarithms of multiplier...
Kleman, Maurice
2011-01-01
The continuous 1D defects of an isotropic homogeneous material in an Euclidean 3D space are classified by a construction method, the Volterra process (VP). We employ the same method to classify the continuous 2D defects (which we call \\textit{cosmic forms}) of a vacuum in a 4D maximally symmetric spacetime. These defects fall into three different classes: i)- $m$-forms, akin to 3D space disclinations, related to ordinary rotations and analogous to Kibble's global cosmic strings (except that being continuous any deficit angle is allowed); ii)- $t$-forms, related to Lorentz boosts (hyperbolic rotations); iii)- $r$-forms, never been considered so far, related to null rotations. A detailed account of their metrics is presented. Their inner structure in many cases appears as a non-singular \\textit{core} separated from the outer part by a timelike hypersurface with distributional curvature and/or torsion, yielding new types of geometrical interactions with cosmic dislocations and other cosmic disclinations. Whereas...
Consolidity analysis for fully fuzzy functions, matrices, probability and statistics
Directory of Open Access Journals (Sweden)
Walaa Ibrahim Gabr
2015-03-01
Full Text Available The paper presents a comprehensive review of the know-how for developing the systems consolidity theory for modeling, analysis, optimization and design in fully fuzzy environment. The solving of systems consolidity theory included its development for handling new functions of different dimensionalities, fuzzy analytic geometry, fuzzy vector analysis, functions of fuzzy complex variables, ordinary differentiation of fuzzy functions and partial fraction of fuzzy polynomials. On the other hand, the handling of fuzzy matrices covered determinants of fuzzy matrices, the eigenvalues of fuzzy matrices, and solving least-squares fuzzy linear equations. The approach demonstrated to be also applicable in a systematic way in handling new fuzzy probabilistic and statistical problems. This included extending the conventional probabilistic and statistical analysis for handling fuzzy random data. Application also covered the consolidity of fuzzy optimization problems. Various numerical examples solved have demonstrated that the new consolidity concept is highly effective in solving in a compact form the propagation of fuzziness in linear, nonlinear, multivariable and dynamic problems with different types of complexities. Finally, it is demonstrated that the implementation of the suggested fuzzy mathematics can be easily embedded within normal mathematics through building special fuzzy functions library inside the computational Matlab Toolbox or using other similar software languages.
Fully correcting the meteor speed distribution for radar observing biases
Moorhead, Althea V.; Brown, Peter G.; Campbell-Brown, Margaret D.; Heynen, Denis; Cooke, William J.
2017-09-01
Meteor radars such as the Canadian Meteor Orbit Radar (CMOR) have the ability to detect millions of meteors, making it possible to study the meteoroid environment in great detail. However, meteor radars also suffer from a number of detection biases; these biases must be fully corrected for in order to derive an accurate description of the meteoroid population. We present a bias correction method for patrol radars that accounts for the full form of ionization efficiency and mass distribution. This is an improvement over previous methods such as that of Taylor (1995), which requires power-law distributions for ionization efficiency and a single mass index. We apply this method to the meteor speed distribution observed by CMOR and find a significant enhancement of slow meteors compared to earlier treatments. However, when the data set is severely restricted to include only meteors with very small uncertainties in speed, the fraction of slow meteors is substantially reduced, indicating that speed uncertainties must be carefully handled.
A fully polarimetric scattering model for a coniferous forest
Karam, M. A.; Fung, A. K.; Lopes, A.; Mougin, E.
1991-01-01
For an elliptically polarized plane wave exciting a coniferous forested canopy a fully polarimetric scattering model has been developed to account for the size and orientation distributions of each forest constituent. A canopy is divided into three layers over a rough interface. The upper two layers represent the crown with its constituents (leaves, stems, and branches). The lower layer stands for the trunks and the rough interface is the canopy-ground interface. For a plane wave exciting the canopy, the explicit expressions for the bistatic scattering coefficient associated with each scattering mechanism are given. For an elliptically polarized incidence wave, the present model can be recast in a form suitable for polarimetric wave synthesis. The model validation is justified by comparing the measured and the calculated values of the backscattering coefficients for a linearly polarized incident wave. The comparison is made over a wide range of frequencies and incident angles. Numerical simulations are conducted to calculate the radar polarization signature of the canopy for different incident frequencies and angles.
A fully atomistic model of the Cx32 connexon.
Directory of Open Access Journals (Sweden)
Sergio Pantano
Full Text Available Connexins are plasma membrane proteins that associate in hexameric complexes to form channels named connexons. Two connexons in neighboring cells may dock to form a "gap junction" channel, i.e. an intercellular conduit that permits the direct exchange of solutes between the cytoplasm of adjacent cells and thus mediate cell-cell ion and metabolic signaling. The lack of high resolution data for connexon structures has hampered so far the study of the structure-function relationships that link molecular effects of disease-causing mutations with their observed phenotypes. Here we present a combination of modeling techniques and molecular dynamics (MD to infer side chain positions starting from low resolution structures containing only C alpha atoms. We validated this procedure on the structure of the KcsA potassium channel, which is solved at atomic resolution. We then produced a fully atomistic model of a homotypic Cx32 connexon starting from a published model of the C alpha carbons arrangement for the connexin transmembrane helices, to which we added extracellular and cytoplasmic loops. To achieve structural relaxation within a realistic environment, we used MD simulations inserted in an explicit solvent-membrane context and we subsequently checked predictions of putative side chain positions and interactions in the Cx32 connexon against a vast body of experimental reports. Our results provide new mechanistic insights into the effects of numerous spontaneous mutations and their implication in connexin-related pathologies. This model constitutes a step forward towards a structurally detailed description of the gap junction architecture and provides a structural platform to plan new biochemical and biophysical experiments aimed at elucidating the structure of connexin channels and hemichannels.
Design of a statically balanced fully compliant grasper
Lamers, A.J.; Gallego Sanchez, J.A.; Herder, J.L.
2015-01-01
Monolithic and thus fully compliant surgical graspers are promising when they provide equal or better force feedback than conventional graspers. In this work for the first time a fully compliant grasper is designed to exhibit zero stiffness and zero operation force. The design problem is addressed b
Generalized entropy theory of glass-formation in fully flexible polymer melts
Xu, Wen-Sheng; Douglas, Jack F.; Freed, Karl F.
2016-12-01
The generalized entropy theory (GET) offers many insights into how molecular parameters influence polymer glass-formation. Given the fact that chain rigidity often plays a critical role in understanding the glass-formation of polymer materials, the GET was originally developed based on models of semiflexible chains. Consequently, all previous calculations within the GET considered polymers with some degree of chain rigidity. Motivated by unexpected results from computer simulations of fully flexible polymer melts concerning the dependence of thermodynamic and dynamic properties on the cohesive interaction strength (ɛ), the present paper employs the GET to explore the influence of ɛ on glass-formation in models of polymer melts with a vanishing bending rigidity, i.e., fully flexible polymer melts. In accord with simulations, the GET for fully flexible polymer melts predicts that basic dimensionless thermodynamic properties (such as the reduced thermal expansion coefficient and isothermal compressibility) are universal functions of the temperature scaled by ɛ in the regime of low pressures. Similar scaling behavior is also found for the configurational entropy density in the GET for fully flexible polymer melts. Moreover, we find that the characteristic temperatures of glass-formation increase linearly with ɛ and that the fragility is independent of ɛ in fully flexible polymer melts, predictions that are again consistent with simulations of glass-forming polymer melts composed of fully flexible chains. Beyond an explanation of these general trends observed in simulations, the GET for fully flexible polymer melts predicts the presence of a positive residual configurational entropy at low temperatures, indicating a return to Arrhenius relaxation in the low temperature glassy state.
Generalized entropy theory of glass-formation in fully flexible polymer melts.
Xu, Wen-Sheng; Douglas, Jack F; Freed, Karl F
2016-12-21
The generalized entropy theory (GET) offers many insights into how molecular parameters influence polymer glass-formation. Given the fact that chain rigidity often plays a critical role in understanding the glass-formation of polymer materials, the GET was originally developed based on models of semiflexible chains. Consequently, all previous calculations within the GET considered polymers with some degree of chain rigidity. Motivated by unexpected results from computer simulations of fully flexible polymer melts concerning the dependence of thermodynamic and dynamic properties on the cohesive interaction strength (ϵ), the present paper employs the GET to explore the influence of ϵ on glass-formation in models of polymer melts with a vanishing bending rigidity, i.e., fully flexible polymer melts. In accord with simulations, the GET for fully flexible polymer melts predicts that basic dimensionless thermodynamic properties (such as the reduced thermal expansion coefficient and isothermal compressibility) are universal functions of the temperature scaled by ϵ in the regime of low pressures. Similar scaling behavior is also found for the configurational entropy density in the GET for fully flexible polymer melts. Moreover, we find that the characteristic temperatures of glass-formation increase linearly with ϵ and that the fragility is independent of ϵ in fully flexible polymer melts, predictions that are again consistent with simulations of glass-forming polymer melts composed of fully flexible chains. Beyond an explanation of these general trends observed in simulations, the GET for fully flexible polymer melts predicts the presence of a positive residual configurational entropy at low temperatures, indicating a return to Arrhenius relaxation in the low temperature glassy state.
A construction of fully diverse unitary space-time codes
Institute of Scientific and Technical Information of China (English)
YU Fei; TONG HongXi
2009-01-01
Fully diverse unitary space-time codes are useful in multiantenna communications,especially in multiantenna differential modulation.Recently,two constructions of parametric fully diverse unitary space-time codes for three antennas system have been introduced.We propose a new construction method based on the constructions.In the present paper,fully diverse codes for systems of odd prime number antennas are obtained from this construction.Space-time codes from present construction are found to have better error performance than many best known ones.
A construction of fully diverse unitary space-time codes
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Fully diverse unitary space-time codes are useful in multiantenna communications, especially in multiantenna differential modulation. Recently, two constructions of parametric fully diverse unitary space-time codes for three antennas system have been introduced. We propose a new construction method based on the constructions. In the present paper, fully diverse codes for systems of odd prime number antennas are obtained from this construction. Space-time codes from present construction are found to have better error performance than many best known ones.
A CODE DESIGN CRITERIA FOR NOT FULLY CONNECTED CHANNEL
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
There are parallel channels which are not fully connected in practice, such as Frequency DivisionMultiplex (FDM or Orthogonal FDM) systems. Conventional space-time codes can be used for such parallelchannels but not the optimal. Based on the derivation of PEP expression for codes transmitted on parallel blockfading channels, criteria of codes design for not fully connected channels are proposed and are compared withTarokh's criteria for fully connected channel. New codes for such channels are provided by systematical andexhaustive search. Simulation results show that these codes offer better performance on parallel FDM channelsthan other known codes.
The cellulose synthase superfamily in fully sequenced plants and algae
Directory of Open Access Journals (Sweden)
Xu Ying
2009-07-01
Full Text Available Abstract Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl families and one cellulose synthase (CesA family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ, providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants.
RSW Fully Tet Medium Cell-Centered Mesh
National Aeronautics and Space Administration — This is the RSW Fully tetrahedral medium cell-centered unstructured grid with a viscous wall. UG3 : Grid File Name = rsw_med_tetcc.b8.ugrid UG3 : Quad Surface Faces=...
Measles: Make Sure Your Child Is Fully Immunized
... this? Submit What's this? Submit Button Past Emails Measles: Make Sure Your Child is Fully Immunized Language: ... also become infected if they are not protected. Measles in the U.S. From January 2 to March ...
Fully Nonlinear Parabolic Equations and the Dini Condition
Institute of Scientific and Technical Information of China (English)
Xiong ZOU; Ya Zhe CHEN
2002-01-01
Interior regularity results for viscosity solutions of fully nonlinear uniformly parabolicequations under the Dini condition, which improve and generalize a result due to Kovats, are obtainedby the use of the approximation lemma.
Fully differential cross sections for heavy particle impact ionization
Energy Technology Data Exchange (ETDEWEB)
McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)
2009-11-15
We describe a procedure for extracting fully differential ionization cross sections from an impact parameter coupled pseudostate treatment of the collision. Some examples from antiproton impact ionization of atomic Hydrogen are given.
ATLAS from Data Research Associates: A Fully Integrated Automation System.
Mellinger, Michael J.
1987-01-01
This detailed description of a fully integrated, turnkey library system includes a complete profile of the system (functions, operational characteristics, hardware, operating system, minimum memory and pricing); history of the technologies involved; and descriptions of customer services and availability. (CLB)
RSW Fully Tet Coarse Cell-Centered Mesh
National Aeronautics and Space Administration — This is the RSW fully tetrahedral unstructured mesh dataset for a cell-centered code, including the viscous wind tunnel wall. UG3 : Grid File Name =...
A relativistic correlationless kinetic equation with radiation reaction fully incorporated
Lai, H. M.
1984-06-01
The Landau-Lifshitz expression for the Lorentz-Dirac equation is used to derive a relativistic correlationless kinetic equation for a system of electrons with radiation reaction fully incorporated. Various situations and possible applications are discussed.
RSW Fully Tet Cell-Centered Fine Mesh
National Aeronautics and Space Administration — This is the RSW dataset for a fine fully tetrahedral grid designed for a cell-centered unstructured solver. UG3 : Grid File Name = rsw_fine_tetcc.b8.ugrid UG3 : Quad...
Lithium Depletion in Fully Convective Pre-Main Sequence Stars
Bildsten, L; Matzner, C D; Ushomirsky, G; Bildsten, Lars; Brown, Edward F.; Matzner, Christopher D.; Ushomirsky, Greg
1996-01-01
We present an analytic calculation of the thermonuclear depletion of lithium in contracting, fully convective, pre-main sequence stars of mass M 0.08 M_sun) and for constraining the masses of lithium depleted stars.
Differentiability at lateral boundary for fully nonlinear parabolic equations
Ma, Feiyao; Moreira, Diego R.; Wang, Lihe
2017-09-01
For fully nonlinear uniformly parabolic equations, the first derivatives regularity of viscosity solutions at lateral boundary is studied under new Dini type conditions for the boundary, which is called Reifenberg Dini conditions and is weaker than usual Dini conditions.
Properties of wideband resonant reflectors under fully conical light incidence
Ko, Yeong Hwan; Niraula, Manoj; Lee, Kyu Jin; Magnusson, Robert
2016-03-01
Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applications demanding wideband reflectors that are efficient and materially sparse.
Properties of wideband resonant reflectors under fully conical light incidence
Ko, Yeong Hwan; Lee, Kyu Jin; Magnusson, Robert
2016-01-01
Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applic...
Optimum Design of Laminates with Aooroximate Fully Isotrooic Behaviors
Institute of Scientific and Technical Information of China (English)
潘星辰
2001-01-01
The paper presents an efficient stiffness optimization approach to fully isotropic laminates with approximate isotropic behaviors respect toboth extensional and bending stiffnesses. Based on the Integral global minimization method, the layer orientation angles andthe layer thickness ratios are chosen as design variablesand the lamination parameters are minimized to get theopthnal designs. Example of laminate with approximatefully isotropic behaviors is presented, which has lessthan one-third the number of plies of a fully isotropiclaminate.
Fully-distributed randomized cooperation in wireless sensor networks
Bader, Ahmed
2015-01-07
When marrying randomized distributed space-time coding (RDSTC) to geographical routing, new performance horizons can be created. In order to reach those horizons however, routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geographical routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes.
Weak Interaction Neutron Production Rates in Fully Ionized Plasmas
Widom, A.; Swain, J.; Srivastava, Y. N.
2013-01-01
Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enha...
Zou, Liang-Hua; Philipps, Arne R; Raabe, Gerhard; Enders, Dieter
2015-01-01
An efficient, highly stereoselective asymmetric synthesis of fully functionalized cyclopentanes bearing an oxindole moiety and several other functional groups in one pot has been developed. Key step is an organocatalytic triple Michael domino reaction forming three C–C bonds and six stereocenters, including a quaternary one. Starting from equimolar amounts of simple substrates, a high molecular complexity can be reached after a Wittig olefination in one pot. The new protocol can easily be scaled up to gram amounts. PMID:25470781
Zeng, Peng; Jiménez Rodríguez, Rafael; Jurado Piña, Rafael
2015-01-01
This paper presents a new approach to identify the fully specified representative slip surfaces (RSSs) of layered soil slopes and to compute their system probability of failure, Pf,s. Spencer's method is used to compute the factors of safety of trial slip surfaces, and the First Order Reliability Method (FORM) is employed to efficiently evaluate their reliability. A custom-designed Genetic Algorithm (GA) is developed to search all the RSSs in only one GA optimization. Taking advantage of the ...
Bolla Pittaluga, M.; Seminara, G.; Tambroni, N.
2003-04-01
We give an overview of some recent investigations on the mechanics of the processes whereby forms develop in tidal environments. The viewpoint taken here is mechanistic. Some of the questions which deserve an answer may be summarised as follows: i) do tidal channels tend to some altimetric long term equilibrium? ii) why are they typically convergent and weakly meandering? iii) how is such equilibrium affected by the hydrodynamics and morphodynamics of tidal inlets? iv) what is the hydrodynamic and morphodynamic role played by tidal flats adjacent to the channels? Some of the above questions have received a considerable attention in the last few years. Schuttelaars and de Swart (1996), Lanzoni and Seminara (2002) and, more recently, Bolla Pittaluga (2003) have investigated the first problem. In particular, the latter two contributions have shown that a straight tidal channel connected to a tidal sea at one end and closed at the other end tends to reach a long term equilibrium profile, which is slightly concave seaward and convex landward where a beach forms. The equilibrium profile is strongly sensitive to the harmonic content of the tidal forcing as well as to the value of sediment concentration established by the coastal hydrodynamics in the far field of the inlet region. Less important are the effect of channel convergence and the role of settling lag in the transport of suspended load. Insufficient attention has been devoted to the understanding of what mechanisms control channel convergence and meandering, though some similarities and differences between tidal and fluvial channels have emerged from some recent works. In particular, free bars form in tidal channels due to an instability mechanism essentially similar to that occurring under steady conditions though the oscillatory character of the flow field makes the bar pattern non migrating (Seminara and Tubino, 2001). Similarly, forced bars in curved tidal channels are driven by the development of
Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication
Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong
2013-01-01
NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to
Solar-type dynamo behaviour in fully convective stars without a tachocline.
Wright, Nicholas J; Drake, Jeremy J
2016-07-28
In solar-type stars (with radiative cores and convective envelopes like our Sun), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in solar-type stars. As the X-ray activity-rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.
Solar-type dynamo behaviour in fully convective stars without a tachocline
Wright, Nicholas J.; Drake, Jeremy J.
2016-07-01
In solar-type stars (with radiative cores and convective envelopes like our Sun), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in solar-type stars. As the X-ray activity-rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.
Characterizing the infrared spectra of small, neutral, fully dehydrogenated PAHs
Mackie, C J; Bauschlicher, C W; Cami, J
2014-01-01
We present the results of a computational study to investigate the infrared spectroscopic properties of a large number of polycyclic aromatic hydrocarbon (PAH) molecules and their fully dehydrogenated counterparts. We constructed a database of fully optimized geometries for PAHs that is complete for eight or fewer fused benzene rings, thus containing 1550 PAHs and 805 fully dehydrogenated aromatics. A large fraction of the species in our database have clearly non-planar or curved geometries. For each species, we determined the frequencies and intensities of their normal modes using density functional theory calculations. Whereas most PAH spectra are fairly similar, the spectra of fully dehydrogenated aromatics are much more diverse. Nevertheless, these fully dehydrogenated species show characteristic emission features at 5.2$\\mu$m, 5.5$\\mu$m and 10.6$\\mu$m; at longer wavelengths, there is a forest of emission features in the 16--30$\\mu$m range that appears as a structured continuum, but with a clear peak cent...
Fully kinetic simulations of megajoule-scale dense plasma focus
Energy Technology Data Exchange (ETDEWEB)
Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M. [Lawrence Livermore National Laboratory, Livermore California 94550 (United States); Welch, D. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Meehan, B. T.; Hagen, E. C. [National Security Technologies, LLC, Las Vegas, Nevada 89030 (United States)
2014-10-15
Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.
Fully nonlocal, monogamous and random genuinely multipartite quantum correlations
Aolita, Leandro; Cabello, Adán; Acín, Antonio
2011-01-01
Local measurements on bipartite maximally entangled states can yield correlations that are maximally nonlocal, monogamous, and associated to fully random outcomes. This makes these states ideal for bipartite cryptographic tasks. Genuine-multipartite nonlocality constitutes a stronger notion of nonlocality that appears in the multipartite case. Maximal genuine-multipartite nonlocality, monogamy and full random outcomes are thus highly desired properties for multipartite correlations in intrinsically genuine-multipartite cryptographic scenarios. We prove that local measurements on Greenberger-Horne-Zeilinger states, for all local dimension and number of parts, can produce correlations that are fully genuine-multipartite nonlocal, monogamous and with fully random outcomes. A key ingredient in our proof is a multipartite chained Bell inequality detecting genuine-multipartite nonlocality, which we introduce. Finally, we discuss the applications of our results for intrinsically genuine-multipartite cryptographic pr...
Fully simulatable quantum-secure coin-flipping and applications
DEFF Research Database (Denmark)
Lunemann, Carolin; Nielsen, Jesper Buus
2011-01-01
We propose a coin-flip protocol which yields a string of strong, random coins and is fully simulatable against poly-sized quantum adversaries on both sides. It can be implemented with quantum-computational security without any set-up assumptions, since our construction only assumes mixed commitment...... schemes which we show how to construct in the given setting. We then show that the interactive generation of random coins at the beginning or during outer protocols allows for quantum-secure realizations of classical schemes, again without any set-up assumptions. As example applications we discuss quantum...... zero-knowledge proofs of knowledge and quantum-secure two-party function evaluation. Both applications assume only fully simulatable coin-flipping and mixed commitments. Since our framework allows to construct fully simulatable coin-flipping from mixed commitments, this in particular shows that mixed...
Fully Implicit Numerical Methods for the Baroclinic Primitive Equations
Cohn, S. E.; Isaacson, E.
1984-01-01
A fully implicit code was developed to solve the three-dimensional primitive equations of atmospheric flow. The scheme is second order accurate in time and fourth order accurate in the horizontal and vertical directions. Furthermore, as a result of being fully implicit, the time step is not restricted by the mesh spacing near the poles, nor by the speed of inertia-gravity waves. Rather, the time step, deltat is determined simply by the requirement that it be small enough to adequately resolve the atmospheric flow of interest. The accuracy and efficiency of current models for fine grids should be significantly improved.
Turning a remotely controllable observatory into a fully autonomous system
Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael
2014-08-01
We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.
Design Study of Fully Superconducting Wind Turbine Generators
DEFF Research Database (Denmark)
Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech
2015-01-01
In this paper, two fully superconducting generators employing MgB2 armature winding, with YBCO and MgB2 field winding respectively, are presented and analyzed. The ac loss in armature winding is estimated, and a simple comparative study is carried out. The results show that both electromagnetic...... designs for fully superconducting generators are promising with respect to the power density. However, the cost of removing ac loss in armature winding is as high as $900 000. It is also noted that with the current price of YBCO tape, the generator employing MgB 2 field winding would have lower cost....
Weak Interaction Neutron Production Rates in Fully Ionized Plasmas
Widom, A; Srivastava, Y N
2013-01-01
Employing the weak interaction reaction wherein a heavy electron is captured by a proton to produce a neutron and a neutrino, the neutron production rate for neutral hydrogen gases and for fully ionized plasmas is computed. Using the Coulomb atomic bound state wave functions of a neutral hydrogen gas, our production rate results are in agreement with recent estimates by Maiani {\\it et al}. Using Coulomb scattering state wave functions for the fully ionized plasma, we find a substantially enhanced neutron production rate. The scattering wave function should replace the bound state wave function for estimates of the enhanced neutron production rate on water plasma drenched cathodes of chemical cells.
Rosam, J.; Jimack, P. K.; Mullis, A.
2007-08-01
A fully implicit numerical method based upon adaptively refined meshes for the simulation of binary alloy solidification in 2D is presented. In addition we combine a second-order fully implicit time discretisation scheme with variable step size control to obtain an adaptive time and space discretisation method. The superiority of this method, compared to widely used fully explicit methods, with respect to CPU time and accuracy, is shown. Due to the high nonlinearity of the governing equations a robust and fast solver for systems of nonlinear algebraic equations is needed to solve the intermediate approximations per time step. We use a nonlinear multigrid solver which shows almost h-independent convergence behaviour.
Towards a fully passive transfemoral prosthesis for normal walking
Ünal, Ramazan; Carloni, Raffaella; Behrens, Sebastiaan Maria; Hekman, Edsko E.G.; Stramigioli, Stefano; Koopman, Hubertus F.J.M.
In this study, we present the principle design of a fully-passive transfemoral prosthesis for normal walking, inspired by the power flow in human natural gait. The working principle of the mechanism is based on three parts, which are responsible of the energetic coupling between the knee and ankle
A fully-implicit model of the global ocean circulation
Weijer, Wilbert; Dijkstra, Henk A.; Öksüzoğlu, Hakan; Wubs, Fred W.; Niet, Arie C. de
2003-01-01
With the recent developments in the solution methods for large-dimensional nonlinear algebraic systems, fully-implicit ocean circulation models are now becoming feasible. In this paper, the formulation of such a three-dimensional global ocean model is presented. With this implicit model, the
Viscosity solutions of fully nonlinear functional parabolic PDE
Directory of Open Access Journals (Sweden)
Liu Wei-an
2005-01-01
Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.
Unsupervised pre-training for fully convolutional neural networks
Wiehman, Stiaan; Kroon, Steve; Villiers, De Hendrik
2017-01-01
Unsupervised pre-training of neural networks has been shown to act as a regularization technique, improving performance and reducing model variance. Recently, fully convolutional networks (FCNs) have shown state-of-the-art results on various semantic segmentation tasks. Unfortunately, there is no ef
In Orbit Performance of a Fully Autonomous Star Tracker
DEFF Research Database (Denmark)
Jørgensen, John Leif
1999-01-01
The Department of Automation at DTU has developed the Advanced Stellar Compass (ASC), a fully autonomous star tracker, for use as high precision attitude reference onboard spacecrafts. The ASC is composed of a CCD-based camera and a powerful microprocessor containing star catalogue, image...
Fully self-consistent GW calculations for molecules
DEFF Research Database (Denmark)
Rostgaard, Carsten; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer
2010-01-01
We calculate single-particle excitation energies for a series of 34 molecules using fully self-consistent GW, one-shot G0W0, Hartree-Fock (HF), and hybrid density-functional theory (DFT). All calculations are performed within the projector-augmented wave method using a basis set of Wannier...
Tracking and disturbance rejection for fully actuated mechanical systems
Jayawardhana, Bayu; Weiss, George
2008-01-01
In this paper, we solve the tracking and disturbance rejection problem for fully actuated passive mechanical systems. We assume that the reference signal r and its first two derivatives r, r are available to the controller and the disturbance signal d can be decomposed into a finite superposition of
Fully permanent magnet atom chip for Bose-Einstein condensation
T. Fernholz; R. Gerritsma; S. Whitlock; I. Barb; R.J.C. Spreeuw
2008-01-01
We describe a proof-of-principle experiment on a fully permanent magnet atom chip. We study ultracold atoms and produce a Bose-Einstein condensate. The magnetic trap is loaded efficiently by adiabatic transport of a magnetic trap via the application of uniform external fields. Radio frequency spectr
VCM Process Design: An ABET 2000 Fully Compliant Project
Benyahia, Farid
2005-01-01
A long experience in undergraduate vinyl chloride monomer (VCM) process design projects is shared in this paper. The VCM process design is shown to be fully compliant with ABET 2000 criteria by virtue of its abundance in chemical engineering principles, integration of interpersonal and interdisciplinary skills in design, safety, economics, and…
Peirce and Rationalism: Is Peirce a Fully Semiotic Philosopher?
Stables, Andrew
2014-01-01
While Peirce is a seminal figure for contemporary semiotic philosophers, it is axiomatic of a fully semiotic perspective that no philosopher or philosophy (semiotics included) can provide any final answer, as signs are always interpreted and the context of interpretation always varies. Semiosis is evolutionary: it may or may not be construed as…
Experimental Study of Fully Developed Wind Turbine Array Boundary Layer
Turner v, John; Wosnik, Martin
2014-11-01
Results from an experimental study of an array of up to 100 model wind turbines with 0.25 m diameter, conducted in the turbulent boundary layer of the 6.0 m wide × 2.7 m tall × 72.0 m long test section of the UNH Flow Physics Facility, are reported. The study aims to address two questions. First, for a given configuration (turbine spacing, initial conditions, etc.), when will the model wind farm reach a ``fully developed'' condition, in which turbulence statistics remain the same from one row to the next within and above the wind turbine array. Second, how is kinetic energy transported in the wind turbine array boundary layer (WTABL). Measurements in the fully developed WTABL can provide valuable insight to the optimization of wind farm energy production. Previous experimental studies with smaller model wind farms were unable to reach the fully developed condition. Due to the size of the UNH facility and the current model array, the fully developed WTABL condition can be achieved. The wind turbine array was simulated by a combination of drag-matched porous disks, used in the upstream part of the array, and by a smaller array of realistic, scaled 3-bladed wind turbines immediately upstream of the measurement location.
Peirce and Rationalism: Is Peirce a Fully Semiotic Philosopher?
Stables, Andrew
2014-01-01
While Peirce is a seminal figure for contemporary semiotic philosophers, it is axiomatic of a fully semiotic perspective that no philosopher or philosophy (semiotics included) can provide any final answer, as signs are always interpreted and the context of interpretation always varies. Semiosis is evolutionary: it may or may not be construed as…
New approach to solve symmetric fully fuzzy linear systems
Indian Academy of Sciences (India)
P Senthilkumar; G Rajendran
2011-12-01
In this paper, we present a method to solve fully fuzzy linear systems with symmetric coefﬁcient matrix. The symmetric coefﬁcient matrix is decomposed into two systems of equations by using Cholesky method and then a solution can be obtained. Numerical examples are given to illustrate our method.
Densified waste form and method for forming
Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina
2015-08-25
Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.
A Fully Gradient Model for Euler-Bernoulli Nanobeams
Directory of Open Access Journals (Sweden)
Raffaele Barretta
2015-01-01
Full Text Available A fully gradient elasticity model for bending of nanobeams is proposed by using a nonlocal thermodynamic approach. As a basic theoretical novelty, the proposed constitutive law is assumed to depend on the axial strain gradient, while existing gradient elasticity formulations for nanobeams contemplate only the derivative of the axial strain with respect to the axis of the structure. Variational equations governing the elastic equilibrium problem of bending of a fully gradient nanobeam and the corresponding differential and boundary conditions are thus provided. Analytical solutions for a nanocantilever are given and the results are compared with those predicted by other theories. As a relevant implication of applicative interest in the research field of nanobeams used in nanoelectromechanical systems (NEMS, it is shown that displacements obtained by the present model are quite different from those predicted by the known gradient elasticity treatments.
The production of fully deacetylated chitosan by compression method
Directory of Open Access Journals (Sweden)
Xiaofei He
2016-03-01
Full Text Available Chitosan’s activities are significantly affected by degree of deacetylation (DDA, while fully deacetylated chitosan is difficult to produce in a large scale. Therefore, this paper introduces a compression method for preparing 100% deacetylated chitosan with less environmental pollution. The product is characterized by XRD, FT-IR, UV and HPLC. The 100% fully deacetylated chitosan is produced in low-concentration alkali and high-pressure conditions, which only requires 15% alkali solution and 1:10 chitosan powder to NaOH solution ratio under 0.11–0.12 MPa for 120 min. When the alkali concentration varied from 5% to 15%, the chitosan with ultra-high DDA value (up to 95% is produced.
Polymeric packaging for fully implantable wireless neural microsensors.
Aceros, Juan; Yin, Ming; Borton, David A; Patterson, William R; Bull, Christopher; Nurmikko, Arto V
2012-01-01
We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O(2)).
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Adams, Mark F. [Columbia Univ., New York, NY (United States); Samtaney, Ravi [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Brandt, Achi [Weizmann Inst. of Science, Rehovot (Israel)
2013-12-14
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
A Flexible Proximity Sensor Fully Fabricated by Inkjet Printing
Directory of Open Access Journals (Sweden)
Chin-Tsan Wang
2010-05-01
Full Text Available A flexible proximity sensor fully fabricated by inkjet printing is proposed in this paper. The flexible proximity sensor is composed of a ZnO layer sandwiched in between a flexible aluminum sheet and a web-shaped top electrode layer. The flexible aluminum sheet serves as the bottom electrode. The material of the top electrode layer is nano silver. Both the ZnO and top electrode layers are deposited by inkjet printing. The fully inkjet printing process possesses the advantages of direct patterning and low-cost. It does not require photolithography and etching processes since the pattern is directly printed on the flexible aluminum sheet. The prototype demonstrates that the presented flexible sensor is sensitive to the human body. It may be applied to proximity sensing or thermal eradiation sensing.
Asteroseismology of pulsating DA white dwarfs with fully evolutionary models
Directory of Open Access Journals (Sweden)
Althaus L.G.
2013-03-01
Full Text Available We present a new approach for asteroseismology of DA white dwarfs that consists in the employment of a large set of non-static, physically sound, fully evolutionary models representative of these stars. We already have applied this approach with success to pulsating PG1159 stars (GW Vir variables. Our white dwarf models, which cover a wide range of stellar masses, effective temperatures, and envelope thicknesses, are the result of fully evolutionary computations that take into account the complete history of the progenitor stars from the ZAMS. In particular, the models are characterized by self-consistent chemical structures from the centre to the surface, a crucial aspect of white dwarf asteroseismology. We apply this approach to an ensemble of 44 bright DAV (ZZ Ceti stars.
Fully phase encrypted memory using cascaded extended fractional Fourier transform
Nishchal, Naveen K.; Joseph, Joby; Singh, Kehar
2003-11-01
In this paper, we implement a fully phase encrypted memory system using cascaded extended fractional Fourier transform (FRT). We encrypt and decrypt a two-dimensional image obtained from an amplitude image. The fully phase image to be encrypted is fractional Fourier transformed three times and random phase masks are placed in the two intermediate planes. Performing the FRT three times increases the key size, at an added complexity of one more lens. The encrypted image is holographically recorded in a photorefractive crystal and is then decrypted by generating through phase conjugation, conjugate of encrypted image. The decrypted phase image is converted into an amplitude image by using phase contrast technique. A lithium niobate crystal has been used as a phase contrast filter to reconstruct the phase image, alleviating the need of alignment in the Fourier plane, thereby making the system rugged.
Simulation of Fully Nonlinear 3-D Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
张晓兔; 滕斌; 宁德志
2004-01-01
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.
Dynamical spacetimes and gravitational radiation in a Fully Constrained Formulation
Cordero-Carrión, Isabel; Ibáñez, José María
2010-01-01
This contribution summarizes the recent work carried out to analyze the behavior of the hyperbolic sector of the Fully Constrained Formulation (FCF) derived in Bonazzola et al. 2004. The numerical experiments presented here allows one to be confident in the performances of the upgraded version of CoCoNuT's code by replacing the Conformally Flat Condition (CFC) approximation of the Einstein equations by the FCF.
Dynamical spacetimes and gravitational radiation in a Fully Constrained Formulation
Energy Technology Data Exchange (ETDEWEB)
Cordero-Carrion, Isabel; Ibanez, Jose MarIa [Departamento de Astronomia y Astrofisica, Universidad de Valencia, C/ Dr. Moliner 50, E-46100 Burjassot, Valencia (Spain); Cerda-Duran, Pablo, E-mail: isabel.cordero@uv.e, E-mail: cerda@mpa-garching.mpg.d, E-mail: jose.m.ibanez@uv.e [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85741 Garching (Germany)
2010-05-01
This contribution summarizes the recent work carried out to analyze the behavior of the hyperbolic sector of the Fully Constrained Formulation (FCF) derived in Bonazzola et al. 2004. The numerical experiments presented here allows one to be confident in the performances of the upgraded version of CoCoNuT's code by replacing the Conformally Flat Condition (CFC) approximation of the Einstein equations by the FCF.
Fully depleted back-illuminated p-channel CCD development
Energy Technology Data Exchange (ETDEWEB)
Bebek, Chris J.; Bercovitz, John H.; Groom, Donald E.; Holland, Stephen E.; Kadel, Richard W.; Karcher, Armin; Kolbe, William F.; Oluseyi, Hakeem M.; Palaio, Nicholas P.; Prasad, Val; Turko, Bojan T.; Wang, Guobin
2003-07-08
An overview of CCD development efforts at Lawrence Berkeley National Laboratory is presented. Operation of fully-depleted, back-illuminated CCD's fabricated on high resistivity silicon is described, along with results on the use of such CCD's at ground-based observatories. Radiation damage and point-spread function measurements are described, as well as discussion of CCD fabrication technologies.
Solving a Fully Fuzzy Linear Programming Problem through Compromise Programming
Haifang Cheng; Weilai Huang; Jianhu Cai
2013-01-01
In the current literatures, there are several models of fully fuzzy linear programming (FFLP) problems where all the parameters and variables were fuzzy numbers but the constraints were crisp equality or inequality. In this paper, an FFLP problem with fuzzy equality constraints is discussed, and a method for solving this FFLP problem is also proposed. We first transform the fuzzy equality constraints into the crisp inequality ones using the measure of the similarity, which is interpreted as t...
A Fully Computerized Method to Backup the Router Configuration File
Directory of Open Access Journals (Sweden)
Ghassan H.Majeed
2007-01-01
Full Text Available This paper presents a fully computerized method to backup the router configuration file. The method consists of a friendly graphical interface programmed by Java programming language The proposed method is compared with the two existing methods, namely: TFTP server method and Copy/Paste method. The comparison reveals that the proposed method has many advantages over the existing ones. The proposed method has been implemented on Cisco routers (series 2500, 2600 and 2800
FASTER: an unsupervised fully automated sleep staging method for mice
Sunagawa, GA; Sei, H; Shimba, S; Urade, Y; Ueda, HR
2013-01-01
Identifying the stages of sleep, or sleep staging, is an unavoidable step in sleep research and typically requires visual inspection of electroencephalography (EEG) and electromyography (EMG) data. Currently, scoring is slow, biased and prone to error by humans and thus is the most important bottleneck for large-scale sleep research in animals. We have developed an unsupervised, fully automated sleep staging method for mice that allows less subjective and high-throughput evaluation of sleep. ...
Schwinger boson approach to the fully screened Kondo model.
Rech, J; Coleman, P; Zarand, G; Parcollet, O
2006-01-13
We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from local moment behavior to a Fermi liquid with a nontrivial Wilson ratio. When applied to the two-impurity model, the mean-field theory describes the "Varma-Jones" quantum phase transition between a valence bond state and a heavy Fermi liquid.
A self-consistent dynamo model for fully convective stars
Yadav, Rakesh Kumar; Christensen, Ulrich; Morin, Julien; Gastine, Thomas; Reiners, Ansgar; Poppenhaeger, Katja; Wolk, Scott J.
2016-01-01
The tachocline region inside the Sun, where the rigidly rotating radiative core meets the differentially rotating convection zone, is thought to be crucial for generating the Sun's magnetic field. Low-mass fully convective stars do not possess a tachocline and were originally expected to generate only weak small-scale magnetic fields. Observations, however, have painted a different picture of magnetism in rapidly-rotating fully convective stars: (1) Zeeman broadening measurements revealed average surface field of several kiloGauss (kG), which is similar to the typical field strength found in sunspots. (2) Zeeman-Doppler-Imaging (ZDI) technique discovered large-scale magnetic fields with a morphology often similar to the Earth's dipole-dominated field. (3) Comparison of Zeeman broadening and ZDI results showed that more than 80% of the magnetic flux resides at small scales. So far, theoretical and computer simulation efforts have not been able to reproduce these features simultaneously. Here we present a self-consistent global model of magnetic field generation in low-mass fully convective stars. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scale fields that carry most of the magnetic flux. The ZDI technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass fully convective stars.
A fully automated multicapillary electrophoresis device for DNA analysis.
Behr, S; Mätzig, M; Levin, A; Eickhoff, H; Heller, C
1999-06-01
We describe the construction and performance of a fully automated multicapillary electrophoresis system for the analysis of fluorescently labeled biomolecules. A special detection system allows the simultaneous spectral analysis of all 96 capillaries. The main features are true parallel detection without any moving parts, high robustness, and full compatibility to existing protocols. The device can process up to 40 microtiter plates (96 and 384 well) without human interference, which means up to 15,000 samples before it has to be reloaded.
Fully automated apparatus for the proximate analysis of coals
Energy Technology Data Exchange (ETDEWEB)
Fukumoto, K.; Ishibashi, Y.; Ishii, T.; Maeda, K.; Ogawa, A.; Gotoh, K.
1985-01-01
The authors report the development of fully-automated equipment for the proximate analysis of coals, a development undertaken with the twin aims of labour-saving and developing robot applications technology. This system comprises a balance, electric furnaces, a sulfur analyzer, etc., arranged concentrically around a multi-jointed robot which automatically performs all the necessary operations, such as sampling and weighing the materials for analysis, and inserting and removing them from the furnaces. 2 references.
Efficient variational diagonalization of fully many-body localized Hamiltonians
Pollmann, Frank; Khemani, Vedika; Cirac, J. Ignacio; Sondhi, S. L.
2016-07-01
We introduce a variational unitary matrix product operator based variational method that approximately finds all the eigenstates of fully many-body localized one-dimensional Hamiltonians. The computational cost of the variational optimization scales linearly with system size for a fixed depth of the UTN ansatz. We demonstrate the usefulness of our approach by considering the Heisenberg chain in a strongly disordered magnetic field for which we compare the approximation to exact diagonalization results.
Nucleon-Nucleon Scattering From Fully-Dynamical Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Konstantinos Orginos; Martin Savage; Paulo Bedaque; Silas Beane
2006-07-01
We present results of the first fully-dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1 S0 channel and 3 S1 - 3 D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with lattice spacing of b = 0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions
A stabilised nodal spectral element method for fully nonlinear water waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele
2016-01-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...
Zou, Liang-Hua; Philipps, Arne R; Raabe, Gerhard; Enders, Dieter
2015-01-12
An efficient, highly stereoselective asymmetric synthesis of fully functionalized cyclopentanes bearing an oxindole moiety and several other functional groups in one pot has been developed. Key step is an organocatalytic triple Michael domino reaction forming three C-C bonds and six stereocenters, including a quaternary one. Starting from equimolar amounts of simple substrates, a high molecular complexity can be reached after a Wittig olefination in one pot. The new protocol can easily be scaled up to gram amounts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fully developed turbulence in slugs of pipe flows
Cerbus, Rory; Liu, Chien-Chia; Sakakibara, Jun; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Despite over a century of research, transition to turbulence in pipe flows remains a mystery. In theory the flow remains laminar for arbitrarily large Reynolds number, Re. In practice, however, the flow transitions to turbulence at a finite Re whose value depends on the disturbance, natural or artificial, in the experimental setup. The flow remains in the transition state for a range of Re ~ 0 (1000) ; for larger Re the flow becomes fully developed. The transition state for Re > 3000 consists of axially segregated regions of laminar and turbulent patches. These turbulent patches, known as slugs, grow as they move downstream. Their lengths span anywhere between a few pipe diameters to the whole length of the pipe. Here we report Stereo Particle Image Velocimetry measurements in the cross-section of the slugs. Notwithstanding the continuous growth of the slugs, we find that the mean velocity and stress profiles in the slugs are indistinguishable from that of statistically-stationary fully-developed turbulent flows. Our results are independent of the length of the slugs. We contrast our results with the well-known work of Wygnanski & Champagne (1973), whose measurements, we argue, are insufficient to draw a clear conclusion regarding fully developed turbulence in slugs.
Building Extraction from Remote Sensing Data Using Fully Convolutional Networks
Bittner, K.; Cui, S.; Reinartz, P.
2017-05-01
Building detection and footprint extraction are highly demanded for many remote sensing applications. Though most previous works have shown promising results, the automatic extraction of building footprints still remains a nontrivial topic, especially in complex urban areas. Recently developed extensions of the CNN framework made it possible to perform dense pixel-wise classification of input images. Based on these abilities we propose a methodology, which automatically generates a full resolution binary building mask out of a Digital Surface Model (DSM) using a Fully Convolution Network (FCN) architecture. The advantage of using the depth information is that it provides geometrical silhouettes and allows a better separation of buildings from background as well as through its invariance to illumination and color variations. The proposed framework has mainly two steps. Firstly, the FCN is trained on a large set of patches consisting of normalized DSM (nDSM) as inputs and available ground truth building mask as target outputs. Secondly, the generated predictions from FCN are viewed as unary terms for a Fully connected Conditional Random Fields (FCRF), which enables us to create a final binary building mask. A series of experiments demonstrate that our methodology is able to extract accurate building footprints which are close to the buildings original shapes to a high degree. The quantitative and qualitative analysis show the significant improvements of the results in contrast to the multy-layer fully connected network from our previous work.
BUILDING EXTRACTION FROM REMOTE SENSING DATA USING FULLY CONVOLUTIONAL NETWORKS
Directory of Open Access Journals (Sweden)
K. Bittner
2017-05-01
Full Text Available Building detection and footprint extraction are highly demanded for many remote sensing applications. Though most previous works have shown promising results, the automatic extraction of building footprints still remains a nontrivial topic, especially in complex urban areas. Recently developed extensions of the CNN framework made it possible to perform dense pixel-wise classification of input images. Based on these abilities we propose a methodology, which automatically generates a full resolution binary building mask out of a Digital Surface Model (DSM using a Fully Convolution Network (FCN architecture. The advantage of using the depth information is that it provides geometrical silhouettes and allows a better separation of buildings from background as well as through its invariance to illumination and color variations. The proposed framework has mainly two steps. Firstly, the FCN is trained on a large set of patches consisting of normalized DSM (nDSM as inputs and available ground truth building mask as target outputs. Secondly, the generated predictions from FCN are viewed as unary terms for a Fully connected Conditional Random Fields (FCRF, which enables us to create a final binary building mask. A series of experiments demonstrate that our methodology is able to extract accurate building footprints which are close to the buildings original shapes to a high degree. The quantitative and qualitative analysis show the significant improvements of the results in contrast to the multy-layer fully connected network from our previous work.
Fully hadronic ttbar cross section measurement with ATLAS detector
Bertella, Claudia
2011-01-01
The top quark pair production cross section in the fully hadronic final state is characterized by a six jet topology, two of which could be identified as originating from a b-quark using ATLAS b-tagging algorithms. Compared to other decay channels, this final state presents an advantageous larger branching ratio; on the other hand it suffers from a very large QCD multi-jet background, generally difficult to estimate from Monte Carlo simulation and therefore evaluated using data-driven techniques. The analysis is performed using 36pb-1 of pp collisions produced at the LHC with a center-of-mass energy of 7 TeV. The observed upper limit is set at 261 pb at 95% confidence level, where the expected Standard Model cross-section for the ttbar process is 165+11-16 pb. In the future, when the LHC luminosity increases, it is essential, to efficiently trigger on these fully hadronic ttbar events, to use dedicated triggers. An overview of the analysis for ttbar production cross section measurement in the fully hadronic f...
Fully Relativistic Calculations of Magneto-Optical Kerr Effect
Li, Ming-Fang; Ariizumi, Toshihiro; Suzuki, Shugo
2007-05-01
We study the magneto-optical Kerr effect using fully relativistic calculations. Spin-orbit coupling is dealt with exactly solving the Dirac equation directly and the matrix elements of the Dirac matrices α are used in a fully relativistic expression of the Kubo formula for the optical conductivity derived with a relativistic sum rule. We also perform approximate calculations of the optical conductivity to examine the accuracy of a partly relativistic expression in which the matrix elements of the momentum operator p are used instead. As an example, we carry out calculations for bcc Fe and fcc Ni using the fully relativistic full-potential linear-combination-of-atomic-orbitals method. It is found that the partly relativistic treatment is good for the diagonal optical conductivity while it is not very good for the off-diagonal optical conductivity, the Kerr rotation angle, and the Kerr ellipticity. The results of the present study are compared to those of experimental and other theoretical studies.
Energy Technology Data Exchange (ETDEWEB)
Baszczyk, M., E-mail: baszczyk@agh.edu.pl [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Dorosz, P.; Glab, S.; Kucewicz, W. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); Mik, L. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland); State Higher Vocational School, Tarnow (Poland); Sapor, M. [AGH University of Science and Technology, Department of Electronics, Krakow (Poland)
2016-07-11
Proposed algorithm compensates the gain by changing the bias voltage of Silicon Photomultipliers (SiPM). The signal from SiPM is amplified in fully differential preamplifier then is formed in time by the fully differential fast shaper. The compensation method was tested with four channels common cathode multi-pixel photon counter from Hamamatsu. The measurement system requires only one high voltage power supply. The polarization voltage is adjusted individually in each channel indirectly by tuning the output common mode voltage (VOCM) of fully differential amplifier. The changes of VOCM affect the input voltage through the feedback network. Actual gain of the SiPM is calculated by measuring the mean amplitude of the signal resulting from detection of single photoelectron. The VOCM is adjusted by DAC so as to reach the desired value of gain by each channel individually. The advantage of the algorithm is the possibility to set the bias of each SiPM in the array independently so they all could operate in very similar conditions (have similar gain and dark count rate). The algorithm can compensate the variations of gain of SiPM by using thermally generated pulses. There is no need to use additional current to voltage conversion which could introduce extra noises.
Solar-type dynamo behaviour in fully convective stars without a tachocline
Wright, Nicholas J
2016-01-01
In solar-type stars (with radiative cores and convective envelopes), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in Sun-like stars. As the X-ray activity - rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dyna...
Baszczyk, M.; Dorosz, P.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.
2016-07-01
Proposed algorithm compensates the gain by changing the bias voltage of Silicon Photomultipliers (SiPM). The signal from SiPM is amplified in fully differential preamplifier then is formed in time by the fully differential fast shaper. The compensation method was tested with four channels common cathode multi-pixel photon counter from Hamamatsu. The measurement system requires only one high voltage power supply. The polarization voltage is adjusted individually in each channel indirectly by tuning the output common mode voltage (VOCM) of fully differential amplifier. The changes of VOCM affect the input voltage through the feedback network. Actual gain of the SiPM is calculated by measuring the mean amplitude of the signal resulting from detection of single photoelectron. The VOCM is adjusted by DAC so as to reach the desired value of gain by each channel individually. The advantage of the algorithm is the possibility to set the bias of each SiPM in the array independently so they all could operate in very similar conditions (have similar gain and dark count rate). The algorithm can compensate the variations of gain of SiPM by using thermally generated pulses. There is no need to use additional current to voltage conversion which could introduce extra noises.
Integrating hydrology within a fully coupled environmental prediction system
Best, Martin; Lewis, Huw; Ashton, Heather; Blyth, Eleanor; Martinez, Alberto
2017-04-01
Historically the hydrological community and the community developing the land surface component of atmospheric models have both been tasked with representing the terrestrial hydrological cycle, but have focused on different ends, namely streamflow and evaporation respectively. To date the lack of computational resources and representative observations have limited the integration of the skills within these two communities. However, this is no longer the case. In addition, the drive toward fully integrated high resolution environmental prediction systems, coupling atmosphere, land and ocean on regional domains, requires an accurate representation for all aspects of terrestrial hydrology. Hence a new focus is emerging to integrate improved hydrological processes within the land surface components of atmospheric models. The UK Environmental Prediction (UKEP) project is a research experiment aimed at understanding the potential benefits for detailed environmental forecasting from a fully coupled atmosphere/land/ocean system at km-scale resolution for the UK. The prototype model utilises the Joint UK Land Environment Simulator (JULES) as its land surface component, coupled to the RFM river flow model. Although JULES has been previously used for climate studies that close the global water cycle, the JULES/RFM system has not been comprehensively evaluated for its ability to simulate river discharge. In this study we attempt some initial evaluation of the JULES/RFM system for all aspects of the terrestrial hydrological cycle, including evaporation, soil moisture and streamflow. In addition, comparisons are made between the results from the fully coupled environmental prediction system and stand alone JULES/RFM simulations forced by atmospheric driving data from the UK weather forecasting model. This provides an opportunity to assess the impact of fully coupled versus a one way coupled response for terrestrial hydrology. Finally we consider the potential for coupling JULES
Against the View that Consciousness and Attention are Fully Dissociable
Marchetti, Giorgio
2012-01-01
In this paper, I will try to show that the idea that there can be consciousness without some form of attention, and high-level top-down attention without consciousness, originates from a failure to notice the varieties of forms that top-down attention and consciousness can assume. I will present evidence that: there are various forms of attention and consciousness; not all forms of attention produce the same kind of consciousness; not all forms of consciousness are produced by the same kind o...
Ability of TiO_{2}(110) Surface to Be Fully Hydroxylated and Fully Reduced
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhitao; Garcia, Juan C.; Deskins, N. A.; Lyubinetsky, Igor
2015-08-06
Many TiO_{2} applications (e.g., in heterogeneous catalysis) involve contact with ambient atmosphere and/or water. The resulting hydroxylation can significantly alter its surface properties. While behavior of single, isolated OH species on the model metal oxide surface of rutile TiO_{2}(110) is relatively well understood, much less is known regarding highly-hydroxylated surfaces and/or whether TiO_{2}(110) could be fully-hydroxylated under ultra-high vacuum conditions. Here we report in situ formation of a well-ordered, fully-hydroxylated TiO_{2}(110)-(1 x 1) surface using an enhanced photochemical approach, key parts of which are pre-dosing of water and multi-step dissociative adsorption and subsequent photolysis of the carboxylic (trimethyl acetic) acid. Combining scanning tunneling microscopy, ultra-violet photoelectron spectroscopy and density functional theory results, we show that the attained “super OH” surface is also fully-reduced, as a result of the photochemical trapping of electrons at the OH groups.
A Functional Programming Technique for Forms in Graphical User Interfaces
Evers, S.; Kuper, J.; Achten, P.M.; Grelck, G.; Huch, F.; Michaelson, G.; Trinder, Ph.W.
2005-01-01
This paper presents FunctionalForms, a new combinator library for constructing fully functioning forms in a concise and flexible way. A form is a part of a graphical user interface (GUI) restricted to displaying a value and allowing the user to modify it. The library is built on top of the medium-le
Modified sequential fully implicit scheme for compositional flow simulation
Moncorgé, A.; Tchelepi, H. A.; Jenny, P.
2017-05-01
The fully implicit (FI) method is widely used for numerical modeling of multiphase flow and transport in porous media. The FI method is unconditionally stable, but that comes at the cost of a low-order approximation and high computational cost. The FI method entails iterative linearization and solution of fully-coupled linear systems with mixed elliptic/hyperbolic character. However, in methods that treat the near-elliptic (flow) and hyperbolic (transport) separately, such as multiscale formulations, sequential solution strategies are used to couple the flow (pressures and velocities) and the transport (saturations/compositions). The most common sequential schemes are: the implicit pressure explicit saturation (IMPES), and the sequential fully implicit (SFI) schemes. Problems of practical interest often involve tightly coupled nonlinear interactions between the multiphase flow and the multi-component transport. For such problems, the IMPES approach usually suffers from prohibitively small timesteps in order to obtain stable numerical solutions. The SFI method, on the other hand, does not suffer from a temporal stability limit, but the convergence rate can be extremely slow. This slow convergence rate of SFI can offset the gains obtained from separate and specialized treatments of the flow and transport problems. In this paper, we analyze the nonlinear coupling between flow and transport for compressible, compositional systems with complex interphase mass transfer. We isolate the nonlinear effects related to transmissibility and compressibility from those due to interphase mass transfer, and we propose a modified SFI (m-SFI) method. The new scheme involves enriching the 'standard' pressure equation with coupling between the pressure and the saturations/compositions. The modification resolves the convergence problems associated with SFI and provides a strong basis for using sequential formulations for general-purpose simulation. For a wide parameter range, we show
Fully differential NLO predictions for the rare muon decay
Pruna, G. M.; Signer, A.; Ulrich, Y.
2017-02-01
Using the automation program GoSam, fully differential NLO corrections were obtained for the rare decay of the muon μ → eν ν bar ee. This process is an important Standard Model background to searches of the Mu3e Collaboration for lepton-flavor violation, as it becomes indistinguishable from the signal μ → 3 e if the neutrinos carry little energy. With our NLO program we are able to compute the branching ratio as well as custom-tailored observables for the experiment. With minor modifications, related decays of the tau can also be computed.
Singular solutions of fully nonlinear elliptic equations and applications
Armstrong, Scott N; Smart, Charles K
2011-01-01
We study the properties of solutions of fully nonlinear, positively homogeneous elliptic equations near boundary points of Lipschitz domains at which the solution may be singular. We show that these equations have two positive solutions in each cone of $\\mathbb{R}^n$, and the solutions are unique in an appropriate sense. We introduce a new method for analyzing the behavior of solutions near certain Lipschitz boundary points, which permits us to classify isolated boundary singularities of solutions which are bounded from either above or below. We also obtain a sharp Phragm\\'en-Lindel\\"of result as well as a principle of positive singularities in certain Lipschitz domains.
Towards Fully Converged GW Calculations for Large Systems
Gao, Weiwei; Gao, Xiang; Zhang, Peihong
2016-01-01
Although the GW approximation is recognized as one of the most accurate theories for predicting materials excited states properties, scaling up conventional GW calculations for large systems remains a major challenge. We present a powerful and simple-to-implement method that can drastically accelerate fully converged GW calculations for large systems. We demonstrate the performance of this new method by calculating the quasiparticle band gap of MgO supercells. A speed-up factor of nearly two orders of magnitude is achieved for a system contaning 256 atoms (1024 velence electrons) with a negligibly small numerical error of $\\pm 0.03$ eV.
A fully woven touchpad sensor based on soft capacitor fibers
Gu, Jian Feng; Skorobogatiy, Maksim
2011-01-01
A novel, highly flexible capacitor fiber (with 100 nF m-1 typical capacitance per length) having a multilayer periodic structure of dielectric and conductive polymer composite films is fabricated by drawing technique. The fiber is used to build a woven touchpad sensor. Then, we study the influence of the fiber length, capacitance and volume resistivity on the touch sensing performance. A theoretical ladder network model of a fiber network is developed. A fully woven textile sample incorporating one-dimension array of the capacitor fibers is fabricated. Finally we show that such an array functions as a two-dimensional touch sensor.
Fully automatized quantum cascade laser design by genetic optimization
Bismuto, A.; Terazzi, R.; Hinkov, B.; Beck, M.; Faist, J.
2012-07-01
Using a transport model based on the density matrix formalism, a fully automatized technique to design quantum cascade structures in the mid-infrared is presented that implements a genetic algorithm where the wallplug efficiency has been used as merit factor. Starting from a reference design, the model converges after few generations on an optimized design that presents a better carrier injection in the upper lasing state. Both the designs have been fabricated using buried heterostructure process and the optimized design shows a pronounced increase in the laser operation range and higher output powers. In good agreement with the simulations, the laser efficiency increases from 5% to 12%.
Continuity waves in fully resolved simulations of settling particles
Willen, Daniel; Sierakowski, Adam; Prosperetti, Andrea
2016-11-01
Fully resolved simulations of 500 to 2,000 particles settling in a fluid have been conducted with the Physalis method. A new approach to the reconstruction of pseudo-continuum fields is described and is used to examine the results with the purpose of identifying concentration waves. The velocity of concentration waves is successfully deduced from the simulations. A comparison of the results with continuity wave theory shows good agreement. Several new insights about the particle microstructure conditionally averaged on volume fraction and velocity are also described. This work is supported by NSF award CBET1335965.
Electronically Tunable Fully Integrated Fractional-Order Resonator
Tsirimokou, Georgia
2017-03-20
A fully integrated implementation of a parallel fractional-order resonator which employs together a fractional order capacitor and a fractional-order inductor is proposed in this paper. The design utilizes current-controlled Operational Transconductance Amplifiers as building blocks, designed and fabricated in AMS 0:35m CMOS process, and based on a second-order approximation of a fractional-order differentiator/ integrator magnitude optimized in the range 10Hz–700Hz. An attractive benefit of the proposed scheme is its electronic tuning capability.
FlashCam: A fully digital camera for CTA telescopes
Pühlhofer, G; Biland, A; Florin, D; Föhr, C; Gadola, A; Hermann, G; Kalkuhl, C; Kasperek, J; Kihm, T; Koziol, J; Manalaysay, A; Marszalek, A; Rajda, P J; Schanz, T; Steiner, S; Straumann, U; Tenzer, C; Vogler, P; Vollhardt, A; Weitzel, Q; Winiarski, K; Zietara, K
2012-01-01
The future Cherenkov Telescope Array (CTA) will consist of several tens of telescopes of different mirror sizes. CTA will provide next generation sensitivity to very high energy photons from few tens of GeV to >100 TeV. Several focal plane instrumentation options are currently being evaluated inside the CTA consortium. In this paper, the current status of the FlashCam prototyping project is described. FlashCam is based on a fully digital camera readout concept and features a clean separation between photon detector plane and signal digitization/triggering electronics.
Mitsunobu Reactions Catalytic in Phosphine and a Fully Catalytic System.
Buonomo, Joseph A; Aldrich, Courtney C
2015-10-26
The Mitsunobu reaction is renowned for its mild reaction conditions and broad substrate tolerance, but has limited utility in process chemistry and industrial applications due to poor atom economy and the generation of stoichiometric phosphine oxide and hydrazine by-products that complicate purification. A catalytic Mitsunobu reaction using innocuous reagents to recycle these by-products would overcome both of these shortcomings. Herein we report a protocol that is catalytic in phosphine (1-phenylphospholane) employing phenylsilane to recycle the catalyst. Integration of this phosphine catalytic cycle with Taniguchi's azocarboxylate catalytic system provided the first fully catalytic Mitsunobu reaction.
Influence of landfill structures on stabilization of fully recycled leachate
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The experiment was conducted to treat the leachate from two simulating columns by recycling to the columns themselves without being discharged into the enviroment. The columns were employed to simulate anaerobic and semi-aerobic landfills separately. The influence of landfill structure on stabilization of fully recycled leachate was studied. The results show that semi-aerobic landfill structure accelerates the stabilization of leachate recycled. The full recycle of leachate in semi-aerobic landfill is a very feasible and effective technology for leachate treatment with low cost and energy saving especially in arid and rare rainfall regions. Meanwhile, the environmental impact of landfill can be greatly minimized.
Fully differential NLO predictions for the rare muon decay
Directory of Open Access Journals (Sweden)
G.M. Pruna
2017-02-01
Full Text Available Using the automation program GoSam, fully differential NLO corrections were obtained for the rare decay of the muon μ→eνν¯ee. This process is an important Standard Model background to searches of the Mu3e Collaboration for lepton-flavor violation, as it becomes indistinguishable from the signal μ→3e if the neutrinos carry little energy. With our NLO program we are able to compute the branching ratio as well as custom-tailored observables for the experiment. With minor modifications, related decays of the tau can also be computed.
Fully integrated wireless inductive tongue computer interface for disabled people.
Struijk, Lotte N S Andreasen; Lontis, Eugen Romulus; Bentsen, Bo; Christensen, Henrik Vie; Caltenco, Hector A; Lund, Morten Enemark
2009-01-01
This work describes a novel fully integrated inductive tongue computer interface for disabled people. The interface consists of an oral unit placed in the mouth, including inductive sensors, related electronics, a system for wireless transmission and a rechargeable battery. The system is activated using an activation unit placed on the tongue, and incorporates 18 inductive sensors, arranged in both a key area and a mouse-pad area. The system's functionality was demonstrated in a pilot experiment, where a typing rate of up to 70 characters/minute was obtained with an error rate of 3%. Future work will include tests with disabled subjects.
Moving towards a Competitive Fully Enzymatic Biodiesel Process
Directory of Open Access Journals (Sweden)
Silvia Cesarini
2015-06-01
Full Text Available Enzymatic biodiesel synthesis can solve several problems posed by the alkaline-catalyzed transesterification but it has the drawback of being too expensive to be considered competitive. Costs can be reduced by lipase improvement, use of unrefined oils, evaluation of soluble/immobilized lipase preparations, and by combination of phospholipases with a soluble lipase for biodiesel production in a single step. As shown here, convenient natural tools have been developed that allow synthesis of high quality FAMEs (EN14214 from unrefined oils in a completely enzymatic single-step process, making it fully competitive.
A novel fully differential telescopic operational transconductance amplifier
Energy Technology Data Exchange (ETDEWEB)
Li Tianwang; Jiang Jinguang [Department of Integrated Circuits and Communication Software, International School of Software, Wuhan University, Wuhan 430079 (China); Ye Bo, E-mail: jgjiang95@yahoo.com.c [Faculty of Computer and Information Engineering, Shanghai University of Electric Power, Shanghai 200090 (China)
2009-08-15
A novel fully differential telescopic operational transconductance amplifier (OTA) is proposed. An additional PMOS differential pair is introduced to improve the unit-gain bandwidth of the telescopic amplifier. At the same time, the slew rate is enhanced by the auxiliary slew rate boost circuits. The proposed OTA is designed in a 0.18{mu}m CMOS process. Simulation results show that there is a 49% improvement in the unit-gain bandwidth compared to that of a conventional OTA; moreover, the DC gain and the slew rate are also enhanced. (semiconductor integrated circuits)
Description and calibration of a fully automated infrared scatterometer
Mainguy, Stephane; Olivier, Michel; Josse, Michel A.; Guidon, Michel
1991-12-01
A fully automated scatterometer, designed for BRDF measurements in the IR at about 10 micrometers , is described. Basically, it works around a reflecting parabola (464 mm diameter, F/0.25) and permits measurements in and out of the plane of incidence. Optical properties of the parabolic mirror are emphasized by a ray-tracing technique which permits determination of the correct illumination on the sample and detection conditions of scattered light. Advantages and drawbacks of such an instrument are discussed, as well as calibration procedures. As a conclusion, we present experimental results to illustrate the instrument capabilities.
Discarding of cod in the Danish Fully Documented Fisheries trials
DEFF Research Database (Denmark)
Ulrich, Clara; Olesen, Hans Jakob; Bergsson, Heidrikur
2015-01-01
Denmarkwas the first nation in Europe to promote the use of Fully Documented Fisheries (FDF) through Remote Electronic Monitoring (REM) and CCTV camera systems, with pilot schemes in place since 2008. In theory, such a scheme could supplement and even potentially replace expensive control...... and monitoring programmes; and when associated with a catch quota management (CQM) system, incentivize positive changes in fishing patterns in a results-based management approach. Newdata flows are, however, required to ensure the practical implementation of such a scheme. This paper reviews the quality...
Design and Analysis of Fully Integrated Differential VCOs
Directory of Open Access Journals (Sweden)
M. Prochaska
2005-01-01
Full Text Available Oscillators play a decisive role for electronic equipment in many fields - like communication, navigation or data processing. Especially oscillators are key building blocks in integrated transceivers for wired and wireless communication systems. In this context the study of fully integrated differential VCOs has received attention. In this paper we present an analytic analysis of the steady state oscillation of integrated differential VCOs which is based on a nonlinear model of the oscillator. The outcomes of this are design formulas for the amplitude as well as the stability of the oscillator which take the nonlinearity of the circuit into account.
Double transitions in the fully frustrated XY model
Jeon, Gun Sang; Park, Sung Yong; Choi, M. Y.
1997-06-01
The fully frustrated XY model is studied via the position-space renormalization group approach. The model is mapped into two coupled XY models, for which the scaling equations are derived. By integrating directly the scaling equations, we observe that there exists a narrow temperature range in which both the vortex and coupling charge fugacities grow large, suggesting double transitions in the system. While the transition at lower temperature is identified to be of the Kosterlitz-Thouless type, the higher-temperature one appears not to be of the Ising universality class.
STS-100 MS Phillips is fully suited up for launch
2001-01-01
KENNEDY SPACE CENTER, Fla. - STS-100 Mission Specialist John L. Phillips is fully suited for launch. The 11-day mission to the International Space Station will deliver and integrate the Spacelab Logistics Pallet/Launch Deployment Assembly, which includes the Space Station Remote Manipulator system and the UHF Antenna, and the Multi-Purpose Logistics Module Raffaello. The mission includes two planned spacewalks for installation of the SSRMS. The mission is also the inaugural flight of Raffaello, carrying resupply stowage racks and resupply/return stowage platforms. Liftoff on mission STS-100 is scheduled at 2:41 p.m. EDT April 19.
Fully vectorial accelerating diffraction-free Helmholtz beams.
Aleahmad, Parinaz; Miri, Mohammad-Ali; Mills, Matthew S; Kaminer, Ido; Segev, Mordechai; Christodoulides, Demetrios N
2012-11-16
We show that new families of diffraction-free nonparaxial accelerating optical beams can be generated by considering the symmetries of the underlying vectorial Helmholtz equation. Both two-dimensional transverse electric and magnetic accelerating wave fronts are possible, capable of moving along elliptic trajectories. Experimental results corroborate these predictions when these waves are launched from either the major or minor axis of the ellipse. In addition, three-dimensional spherical nondiffracting field configurations are presented along with their evolution dynamics. Finally, fully vectorial self-similar accelerating optical wave solutions are obtained via oblate-prolate spheroidal wave functions. In all occasions, these effects are illustrated via pertinent examples.
A fully robust PARAFAC method for analyzing fluorescence data
DEFF Research Database (Denmark)
Engelen, Sanne; Frosch, Stina; Jørgensen, Bo
2009-01-01
Parallel factor analysis (PARAFAC) is a widespread method for modeling fluorescence data by means of an alternating least squares procedure. Consequently, the PARAFAC estimates are highly influenced by outlying excitation–emission landscapes (EEM) and element-wise outliers, like for example Raman......, there still exists no robust method for handling fluorescence data encountering both outlying EEM landscapes and scatter. In this paper, we present an iterative algorithm where the robust PARAFAC method and the scatter identification tool are alternately performed. A fully automated robust PARAFAC method...
A fully adaptive hybrid optimization of aircraft engine blades
Dumas, L.; Druez, B.; Lecerf, N.
2009-10-01
A new fully adaptive hybrid optimization method (AHM) has been developed and applied to an industrial problem in the field of the aircraft engine industry. The adaptivity of the coupling between a global search by a population-based method (Genetic Algorithms or Evolution Strategies) and the local search by a descent method has been particularly emphasized. On various analytical test cases, the AHM method overperforms the original global search method in terms of computational time and accuracy. The results obtained on the industrial case have also confirmed the interest of AHM for the design of new and original solutions in an affordable time.
Procurement of a fully licensed radioisotope thermoelectric generator transportation system
Adkins, Harold E.; Bearden, Thomas E.
1991-01-01
A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable U.S. Department of Transportation regulations without the use of a ``DOE Alternative.'' The U.S. Department of Transportation has special ``double containment'' requirements for plutonium. The system packaging uses a doubly contained ``bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992.
Review on Opinion Mining for Fully Fledged System
Directory of Open Access Journals (Sweden)
Asmita Dhokrat
2016-06-01
Full Text Available Humans communication is generally under the control of emotions and full of opinions. Emotions and their opinions plays an important role in thinking process of mind, influences the human actions too. Sentiment analysis is one of the ways to explore user’s opinion made on any social media and networking site for various commercial applications in number of fields. This paper takes into account the basis requirements of opinion mining to explore the present techniques used to develop a fully fledged system. Is highlights the opportunities or deployment and research of such systems. The available tools used for building such applications have even presented with their merits and limitations.
Gravitational waves in dynamical spacetimes with matter content in the Fully Constrained Formulation
Cordero-Carrión, Isabel; Ibáñez, José María
2011-01-01
The Fully Constrained Formulation (FCF) of General Relativity is a novel framework introduced as an alternative to the hyperbolic formulations traditionally used in numerical relativity. The FCF equations form a hybrid elliptic-hyperbolic system of equations including explicitly the constraints. We present an implicit-explicit numerical algorithm to solve the hyperbolic part, whereas the elliptic sector shares the form and properties with the well known Conformally Flat Condition (CFC) approximation. We show the stability andconvergence properties of the numerical scheme with numerical simulations of vacuum solutions. We have performed the first numerical evolutions of the coupled system of hydrodynamics and Einstein equations within FCF. As a proof of principle of the viability of the formalism, we present 2D axisymmetric simulations of an oscillating neutron star. In order to simplify the analysis we have neglected the back-reaction of the gravitational waves into the dynamics, which is small (<2 %) for ...
A fully automated high-throughput training system for rodents.
Directory of Open Access Journals (Sweden)
Rajesh Poddar
Full Text Available Addressing the neural mechanisms underlying complex learned behaviors requires training animals in well-controlled tasks, an often time-consuming and labor-intensive process that can severely limit the feasibility of such studies. To overcome this constraint, we developed a fully computer-controlled general purpose system for high-throughput training of rodents. By standardizing and automating the implementation of predefined training protocols within the animal's home-cage our system dramatically reduces the efforts involved in animal training while also removing human errors and biases from the process. We deployed this system to train rats in a variety of sensorimotor tasks, achieving learning rates comparable to existing, but more laborious, methods. By incrementally and systematically increasing the difficulty of the task over weeks of training, rats were able to master motor tasks that, in complexity and structure, resemble ones used in primate studies of motor sequence learning. By enabling fully automated training of rodents in a home-cage setting this low-cost and modular system increases the utility of rodents for studying the neural underpinnings of a variety of complex behaviors.
FASTER: an unsupervised fully automated sleep staging method for mice.
Sunagawa, Genshiro A; Séi, Hiroyoshi; Shimba, Shigeki; Urade, Yoshihiro; Ueda, Hiroki R
2013-06-01
Identifying the stages of sleep, or sleep staging, is an unavoidable step in sleep research and typically requires visual inspection of electroencephalography (EEG) and electromyography (EMG) data. Currently, scoring is slow, biased and prone to error by humans and thus is the most important bottleneck for large-scale sleep research in animals. We have developed an unsupervised, fully automated sleep staging method for mice that allows less subjective and high-throughput evaluation of sleep. Fully Automated Sleep sTaging method via EEG/EMG Recordings (FASTER) is based on nonparametric density estimation clustering of comprehensive EEG/EMG power spectra. FASTER can accurately identify sleep patterns in mice that have been perturbed by drugs or by genetic modification of a clock gene. The overall accuracy is over 90% in every group. 24-h data are staged by a laptop computer in 10 min, which is faster than an experienced human rater. Dramatically improving the sleep staging process in both quality and throughput FASTER will open the door to quantitative and comprehensive animal sleep research. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.
Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy
Directory of Open Access Journals (Sweden)
Elżbieta Pociask
2016-01-01
Full Text Available Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement, segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects.
Fully printed flexible and disposable wireless cyclic voltammetry tag.
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-29
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.
Scaffolding Fully Online First Year Computer Literacy Students for Success
Directory of Open Access Journals (Sweden)
Niall Dixon
2013-05-01
Full Text Available This paper reports on the findings of a study of first year students studying a fully online computer literacy module on a Real Estate Agency and Property Economics degree programme at Dublin Institute of Technology, Ireland. In addition to the cohort of entrants to higher education without prior computer literacy skills, there will also be a cohort who are unfamiliar with learning in an online mode. Those students well versed with internet and social media network skills do not necessarily have good office/desktop software skills. "Digital natives" they may be but are they really computer literate? Fully online learning systems in themselves do not foster the type of supportive environments that would encourage students to succeed. In this study a scaffolding approach was adopted with the inclusion of a number of learning supports (ranging from regular e-mails through to face-to-face tutorials to provide a more likely opportunity to succeed. The results indicate that those students who navigated the unfamiliar online terrain and availed of the supports succeeded in this module.
High-resolution fully vectorial scanning Kerr magnetometer.
Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; Vaňatka, Marek; Turčan, Igor; Šikola, Tomáš
2016-05-01
We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-μm-wide magnetic disk.
Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative
Directory of Open Access Journals (Sweden)
Tanya M. S. David
2014-01-01
Full Text Available Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO level of −3.33 eV based on optical energy gap. The polymer was synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.
Modelling the dynamo in fully convective M-stars
Yadav, Rakesh Kumar; Christensen, Ulrich; Morin, Julien; Wolk, Scott; Poppenhaeger, Katja; Reiners, Ansgar; gastine, Thomas
2017-05-01
M-stars are among the most active and numerous stars in our galaxy. Their activity plays a fundamentally important role in shaping the exoplanetary biosphere since the habitable zones are very close to these stars. Therefore, modeling M-star activity has become a focal point in habitability studies. The fully convective members of the M-star population demand more immediate attention due to the discovery of Earth-like exoplanets around our stellar neighbors Proxima Centauri and TRAPPIST-1 which are both fully convective. The activity of these stars is driven by their convective dynamo, which may be fundamentally different from the solar dynamo due the absence of radiative cores. We model this dynamo mechanism using high-resolution 3D anelastic MHD simulations. To understand the evolution of the dynamo mechanism we simulate two cases, one with a fast enough rotation period to model a star in the `saturated' regime of the rotation-activity realtionship and the other with a slower period to represent cases in the `unsaturated' regime. We find the rotation period fundamentally controls the behavior of the dynamo solution: faster rotation promotes strong magnetic fields (of order kG) on both small and large length scales and the dipolar component of the magnetic field is dominant and stable, however, slower rotation leads to weaker magnetic fields which exhibit cyclic behavior. In this talk, I will present the simulation results and discuss how we can use them to interpret several observed features of the M-star activity.
Development of fully Bayesian multiple-time-window source inversion
Kubo, Hisahiko; Asano, Kimiyuki; Iwata, Tomotaka; Aoi, Shin
2016-03-01
In the estimation of spatiotemporal slip models, kinematic source inversions using Akaike's Bayesian Information Criterion (ABIC) and the multiple-time-window method have often been used. However, there are cases in which conventional ABIC-based source inversions do not work well in the determination of hyperparameters when a non-negative slip constraint is used. In order to overcome this problem, a new source inversion method was developed in this study. The new method introduces a fully Bayesian method into the kinematic multiple-time-window source inversion. The multiple-time-window method is one common way of parametrizing a source time function and is highly flexible in terms of the shape of the source time function. The probability distributions of model parameters and hyperparameters can be directly obtained by using the Markov chain Monte Carlo method. These probability distributions are useful for simply evaluating the uniqueness and reliability of the derived model, which is another advantage of a fully Bayesian method. This newly developed source inversion method was applied to the 2011 Ibaraki-oki, Japan, earthquake (Mw 7.9) to demonstrate its usefulness. It was demonstrated that the problem with using the conventional ABIC-based source inversion method for hyperparameter determination appeared in the spatiotemporal source inversion of this event and that the newly developed source inversion could overcome this problem.
Fully Automated Deep Learning System for Bone Age Assessment.
Lee, Hyunkwang; Tajmir, Shahein; Lee, Jenny; Zissen, Maurice; Yeshiwas, Bethel Ayele; Alkasab, Tarik K; Choy, Garry; Do, Synho
2017-08-01
Skeletal maturity progresses through discrete phases, a fact that is used routinely in pediatrics where bone age assessments (BAAs) are compared to chronological age in the evaluation of endocrine and metabolic disorders. While central to many disease evaluations, little has changed to improve the tedious process since its introduction in 1950. In this study, we propose a fully automated deep learning pipeline to segment a region of interest, standardize and preprocess input radiographs, and perform BAA. Our models use an ImageNet pretrained, fine-tuned convolutional neural network (CNN) to achieve 57.32 and 61.40% accuracies for the female and male cohorts on our held-out test images. Female test radiographs were assigned a BAA within 1 year 90.39% and within 2 years 98.11% of the time. Male test radiographs were assigned 94.18% within 1 year and 99.00% within 2 years. Using the input occlusion method, attention maps were created which reveal what features the trained model uses to perform BAA. These correspond to what human experts look at when manually performing BAA. Finally, the fully automated BAA system was deployed in the clinical environment as a decision supporting system for more accurate and efficient BAAs at much faster interpretation time (<2 s) than the conventional method.
Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines
Energy Technology Data Exchange (ETDEWEB)
Damiani, Rick; Wendt, Fabian; Musial, Walter; Finucane, Z.; Hulliger, L.; Chilka, S.; Dolan, D.; Cushing, J.; O' Connell, D.; Falk, S.
2017-06-19
The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, the turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.
Shock Particle Interaction - Fully Resolved Simulations and Modeling
Mehta, Yash; Neal, Chris; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth
2016-11-01
Currently there is a substantial lack of fully resolved data for shock interacting with multiple particles. In this talk we will fill this gap by presenting results of shock interaction with 1-D array and 3-D structured arrays of particles. Objectives of performing fully resolved simulations of shock propagation through packs of multiple particles are twofold, 1) To understand the complicated physical phenomena occurring during shock particle interaction, and 2) To translate the knowledge from microscale simulations in building next generation point-particle models for macroscale simulations that can better predict the motion (forces) and heat transfer for particles. We compare results from multiple particle simulations against the single particle simulations and make relevant observations. The drag history and flow field for multiple particle simulations are markedly different from those of single particle simluations, highlighting the effect of neighboring particles. We propose new models which capture this effect of neighboring particles. These models are called Pair-wise Interaction Extended Point Particle models (PIEP). Effect of multiple neighboring particles is broken down into pair-wise interactions, and these pair-wise interactions are superimposed to get the final model U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
Against the View that Consciousness and Attention are Fully Dissociable
Marchetti, Giorgio
2012-01-01
In this paper, I will try to show that the idea that there can be consciousness without some form of attention, and high-level top-down attention without consciousness, originates from a failure to notice the varieties of forms that top-down attention and consciousness can assume. I will present evidence that: there are various forms of attention and consciousness; not all forms of attention produce the same kind of consciousness; not all forms of consciousness are produced by the same kind of attention; there can be low-level attention (or preliminary attention), whether of an endogenous or exogenous kind, without consciousness; attention cannot be considered the same thing as consciousness. PMID:22363307
Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft
Su, Weihua
This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation
Careers (A Course of Study). Unit V: Forms, Forms, Forms.
Turley, Kay
Designed to enable special needs students to understand and complete various job-related forms, this set of activities devoted to forms encountered before and after one obtains a job is the fifth in a nine-unit secondary level careers course intended to provide handicapped students with the knowledge and tools necessary to succeed in the world of…
Analytical decoupling techniques for fully implicit reservoir simulation
Qiao, Changhe; Wu, Shuhong; Xu, Jinchao; Zhang, Chen-Song
2017-05-01
This paper examines linear algebraic solvers for a given general purpose compositional simulator. In particular, the decoupling stage of the constraint pressure residual (CPR) preconditioner for linear systems arising from the fully implicit scheme is evaluated. An asymptotic analysis of the convergence behavior is given when Δt approaches zero. Based on this analysis, we propose an analytical decoupling technique, from which the pressure equation is directly related to an elliptic equation and can be solved efficiently. We show that this method ensures good convergence behavior of the algebraic solvers in a two-stage CPR-type preconditioner. We also propose a semi-analytical decoupling strategy that combines the analytical method and alternate block factorization method. Numerical experiments demonstrate the superior performance of the analytical and semi-analytical decoupling methods compared to existing methods.
Multiobjective image recognition algorithm in the fully automatic die bonder
Institute of Scientific and Technical Information of China (English)
JIANG Kai; CHEN Hai-xia; YUAN Sen-miao
2006-01-01
It is a very important task to automatically fix the number of die in the image recognition system of a fully automatic die bonder.A multiobjective image recognition algorithm based on clustering Genetic Algorithm (GA),is proposed in this paper.In the evolutionary process of GA,a clustering method is provided that utilizes information from the template and the fitness landscape of the current population..The whole population is grouped into different niches by the clustering method.Experimental results demonstrated that the number of target images could be determined by the algorithm automatically,and multiple targets could be recognized at a time.As a result,time consumed by one image recognition is shortened,the performance of the image recognition system is improved,and the atomization of the system is fulfilled.
A fully superconducting bearing system for flywheel applications
Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.
2016-06-01
A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.
High quality factor, fully switchable terahertz superconducting metasurface
Energy Technology Data Exchange (ETDEWEB)
Scalari, G., E-mail: scalari@phys.ethz.ch; Maissen, C.; Faist, J. [Institute of Quantum Electronics, Eidgenössische Technische Hochschule Zürich (Switzerland); Cibella, S.; Leoni, R. [Istituto di Fotonica e Nanotecnologie (IFN), CNR, via Cineto Romano 42, 00156 Rome (Italy)
2014-12-29
We present a complementary THz metasurface realised with Niobium thin film which displays a quality factor Q = 54 and a fully switchable behaviour as a function of the temperature. The switching behaviour and the high quality factor are due to a careful design of the metasurface aimed at maximising the ohmic losses when the Nb is above the critical temperature and minimising the radiative coupling. The superconductor allows the operation of the cavity with high Q and the use of inductive elements with a high aspect ratio. Comparison with three dimensional finite element simulations highlights the crucial role of the inductive elements and of the kinetic inductance of the Cooper pairs in achieving the high quality factor and the high field enhancement.
A New Wideband, Fully Steerable, Decametric Array at Clark Lake
Erickson, W. C.; Fisher, J. R.
1974-01-01
A fully steerable, decametric array for radio astronomy is under construction at the Clark Lake Radio Observatory near Borrego Springs, California. This array will be a T of 720 conical spiral antennas (teepee-shaped antennas, hence the array is called the TPT), 3.0 km by 1.8 km capable of operating between 15 and 125 MHz. Both its operating frequency and beam position will be adjustable in less than one millisecond, and the TPT will provide a 49-element picture around the central beam position for extended source observations. Considerable experience was gained in the operation of completed portions of the array, and successful operation of the final array is assured. The results are described of the tests which were conducted with the conical spirals, and the planned electronics and data processing systems are described.
Periodic segregation of solute atoms in fully coherent twin boundaries.
Nie, J F; Zhu, Y M; Liu, J Z; Fang, X Y
2013-05-24
The formability and mechanical properties of many engineering alloys are intimately related to the formation and growth of twins. Understanding the structure and chemistry of twin boundaries at the atomic scale is crucial if we are to properly tailor twins to achieve a new range of desired properties. We report an unusual phenomenon in magnesium alloys that until now was thought unlikely: the equilibrium segregation of solute atoms into patterns within fully coherent terraces of deformation twin boundaries. This ordered segregation provides a pinning effect for twin boundaries, leading to a concomitant but unusual situation in which annealing strengthens rather than weakens these alloys. The findings point to a platform for engineering nano-twinned structures through solute atoms. This may lead to new alloy compositions and thermomechanical processes.
Standard specification for glasses, portlight, circular, fully tempered
American Society for Testing and Materials. Philadelphia
1999-01-01
1.1 This specification covers the requirements for circular, fully tempered, high clarity, flat glasses used for portlight applications. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 The following safety hazard caveat pertains only to the test method portion, Section 11, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Fully Retroactive Approximate Range and Nearest Neighbor Searching
Goodrich, Michael T
2011-01-01
We describe fully retroactive dynamic data structures for approximate range reporting and approximate nearest neighbor reporting. We show how to maintain, for any positive constant $d$, a set of $n$ points in $\\R^d$ indexed by time such that we can perform insertions or deletions at any point in the timeline in $O(\\log n)$ amortized time. We support, for any small constant $\\epsilon>0$, $(1+\\epsilon)$-approximate range reporting queries at any point in the timeline in $O(\\log n + k)$ time, where $k$ is the output size. We also show how to answer $(1+\\epsilon)$-approximate nearest neighbor queries for any point in the past or present in $O(\\log n)$ time.
Technology for the fully automated milking of cows
Directory of Open Access Journals (Sweden)
J. Gouws
1994-07-01
Full Text Available Since dairy farming is a very labour intensive, seven-days-per-week activity, increasing emphasis is being placed on the use of advanced technology in dairying throughout the world. Dairy mechanisation has been well established for many years, whereas dairy automation has only started to gain momentum fairly recently. An important milestone was the introduction of systems for automatic animal identification in the 1970’s. That paved the way for all further dairy automation activities. An analysis of the current status of the fully automated milking of cows shows that the automated attachment of a milking machine’s teat cups to a cow ’s teats is the most important task in dairying that remains to be automated.
Application of a Fully Numerical Guidance to Mars Aerocapture
Matz, Daniel A.; Lu, Ping; Mendeck, Gavin F.; Sostaric, Ronald R.
2017-01-01
An advanced guidance algorithm, Fully Numerical Predictor-corrector Aerocapture Guidance (FNPAG), has been developed to perform aerocapture maneuvers in an optimal manner. It is a model-based, numerical guidance that benefits from requiring few adjustments across a variety of different hypersonic vehicle lift-to-drag ratios, ballistic co-efficients, and atmospheric entry conditions. In this paper, FNPAG is first applied to the Mars Rigid Vehicle (MRV) mid lift-to-drag ratio concept. Then the study is generalized to a design map of potential Mars aerocapture missions and vehicles, ranging from the scale and requirements of recent robotic to potential human and precursor missions. The design map results show the versatility of FNPAG and provide insight for the design of Mars aerocapture vehicles and atmospheric entry conditions to achieve desired performance.
Fully automated setup for high temperature Seebeck coefficient measurement
Patel, Ashutosh
2016-01-01
In this work, we report the fabrication of fully automated experimental setup for high temperature Seebeck coefficient ($\\alpha$) measurement. The K-type thermocouples are used to measure the average temperature of the sample and Seebeck voltage (SV) across it. The temperature dependence of the Seebeck coefficients of the thermocouple and its negative leg is taken care by using the integration method. Steady state based differential technique is used for $\\alpha$ measurement. Use of limited component and thin heater simplify the sample holder design and minimize the heat loss. The power supplied to the heater decides temperature difference across the sample and measurement is carried out by achieving the steady state. The LabVIEW based program is built to automize the whole measurement process. The complete setup is fabricated by using commonly available materials in the market. This instrument is standardized for materials with a wide range of $\\alpha$ and for the wide range of $\\Delta T$ across the specimen...
Fully automated algorithm for wound surface area assessment.
Deana, Alessandro Melo; de Jesus, Sérgio Henrique Costa; Sampaio, Brunna Pileggi Azevedo; Oliveira, Marcelo Tavares; Silva, Daniela Fátima Teixeira; França, Cristiane Miranda
2013-01-01
Worldwide, clinicians, dentists, nurses, researchers, and other health professionals need to monitor the wound healing progress and to quantify the rate of wound closure. The aim of this study is to demonstrate, step by step, a fully automated numerical method to estimate the size of the wound and the percentage damaged relative to the body surface area (BSA) in images, without the requirement for human intervention. We included the formula for BSA in rats in the algorithm. The methodology was validated in experimental wounds and human ulcers and was compared with the analysis of an experienced pathologist, with good agreement. Therefore, this algorithm is suitable for experimental wounds and burns and human ulcers, as they have a high contrast with adjacent normal skin.
Fully diagnosing the spatial properties of X-ray lasers
Institute of Scientific and Technical Information of China (English)
杨军; 孙今人; 王韬; 范滇元; 王世绩
2001-01-01
Based on the moiré effect and the Fresnel diffraction theory, a novel technique for diagnosing the beam properties is presented and analyzed, which is especially suitable for X-ray lasers. The method makes it possible, in a one-shot experimental measurement, to determine the beam quality factor M2, the effective radius of curvature, the beam width, the far-field divergence, and the waist location and radius as well as the spatial coherence and its evolution. Numerical simulation proves the validity of the method. Note that the novel moiré technique opens an efficient road, for the first time, to fully diagnose the spatial properties of X-ray lasers.
Modeling supersonic combustion using a fully-implicit numerical method
Maccormack, Robert W.; Wilson, Gregory J.
1990-01-01
A fully-implicit finite-volume algorithm for two-dimensional axisymmetric flows has been coupled to a detailed hydrogen-air reaction mechanism (13 species and 33 reactions) so that supersonic combustion phenomena may be investigated. Numerical computations are compared with ballistic-range shadowgraphs of Lehr (1972) that exhibit two discontinuities caused by a blunt body as it passes through a premixed stoichiometric hydrogen-air mixture. The suitability of the numerical procedure for simulating these double-front flows is shown. The requirements for the physical formulation and the numerical modeling of these flowfields are discussed. Finally, the sensitivity of these external flowfields to changes in certain key reaction rate constants is examined.
Preconditioned fully implicit PDE solvers for monument conservation
Semplice, Matteo
2010-01-01
Mathematical models for the description, in a quantitative way, of the damages induced on the monuments by the action of specific pollutants are often systems of nonlinear, possibly degenerate, parabolic equations. Although some the asymptotic properties of the solutions are known, for a short window of time, one needs a numerical approximation scheme in order to have a quantitative forecast at any time of interest. In this paper a fully implicit numerical method is proposed, analyzed and numerically tested for parabolic equations of porous media type and on a systems of two PDEs that models the sulfation of marble in monuments. Due to the nonlinear nature of the underlying mathematical model, the use of a fixed point scheme is required and every step implies the solution of large, locally structured, linear systems. A special effort is devoted to the spectral analysis of the relevant matrices and to the design of appropriate iterative or multi-iterative solvers, with special attention to preconditioned Krylo...
Adaptive modeling of shallow fully nonlinear gravity waves
Dutykh, Denys; Mitsotakis, Dimitrios
2014-01-01
This paper presents an extended version of the celebrated Serre-Green-Naghdi (SGN) system. This extension is based on the well-known Bona-Smith-Nwogu trick which aims to improve the linear dispersion properties. We show that in the fully nonlinear setting it results in modifying the vertical acceleration. Even if this technique is well-known, the effect of this modification on the nonlinear properties of the model is not clear. The first goal of this study is to shed some light on the properties of solitary waves, as the most important class of nonlinear permanent solutions. Then, we propose a simple adaptive strategy to choose the optimal value of the free parameter at every instance of time. This strategy is validated by comparing the model prediction with the reference solutions of the full Euler equations and its classical counterpart. Numerical simulations show that the new adaptive model provides a much better accuracy for the same computational complexity.
Differential Rotation and Magnetism in Simulations of Fully Convective Stars
Browning, Matthew
2010-01-01
Stars of sufficiently low mass are convective throughout their interiors, and so do not possess an internal boundary layer akin to the solar tachocline. Because that interface figures so prominently in many theories of the solar magnetic dynamo, a widespread expectation had been that fully convective stars would exhibit surface magnetic behavior very different from that realized in more massive stars. Here I describe how recent observations and theoretical models of dynamo action in low-mass stars are partly confirming, and partly confounding, this basic expectation. In particular, I present the results of 3--D MHD simulations of dynamo action by convection in rotating spherical shells that approximate the interiors of 0.3 solar-mass stars at a range of rotation rates. The simulated stars can establish latitudinal differential rotation at their surfaces which is solar-like at ``rapid'' rotation rates (defined within) and anti-solar at slower rotation rates; the differential rotation is greatly reduced by feed...
Discrete neurocognitive subgroups in fully or partially remitted bipolar disorder
DEFF Research Database (Denmark)
Jensen, Johan Høy; Knorr, Ulla; Vinberg, Maj
2016-01-01
BACKGROUND: Neurocognitive impairment in remitted patients with bipolar disorder contributes to functional disabilities. However, the pattern and impact of these deficits are unclear. METHODS: We pooled data from 193 fully or partially remitted patients with bipolar disorder and 110 healthy...... controls. Hierarchical cluster analysis was conducted to determine whether there are discrete neurocognitive subgroups in bipolar disorder. The pattern of the cognitive deficits and the characteristics of patients in these neurocognitive subgroups were examined with analyses of covariance and least...... significance difference pairwise comparison. RESULTS: Three discrete neurocognitive subgroups were detected: one that was cognitively intact (46.1%), one that was selectively impaired with deficits in processing speed (32.6%), and one that was globally impaired across verbal learning, working memory...
Fully Coupled Electromechanical Elastodynamic Model for Guided Wave Propagation Analysis
Borkowski, Luke; Chattopadhyay, Aditi
2013-01-01
Physics-based computational models play a key role in the study of wave propagation for structural health monitoring (SHM) and the development of improved damage detection methodologies. Due to the complex nature of guided waves, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, a fully coupled electromechanical elastodynamic model for wave propagation in a heterogeneous, anisotropic material system is developed. The final framework provides the full three dimensional displacement and electrical potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated theoretically and proven computationally efficient. Studies are performed with surface bonded piezoelectric sensors to gain insight into the physics of experimental techniques used for SHM. Collocated actuation of the fundamental Lamb wave modes is modeled over a range of frequenc...
A dissipative random velocity field for fully developed fluid turbulence
Pereira, Rodrigo M; Chevillard, Laurent
2015-01-01
We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter $\\gamma$ that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments (i.e. the structure functions), including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free...
Shear instabilities in a fully compressible polytropic atmosphere
Witzke, V; Favier, B
2015-01-01
Shear flows have an important impact on the dynamics in an assortment of different astrophysical objects including accreditation discs and stellar interiors. Investigating shear flow instabilities in a polytropic atmosphere provides a fundamental understanding of the motion in stellar interiors where turbulent motions, mixing processes, as well as magnetic field generation takes place. Here, a linear stability analysis for a fully compressible fluid in a two-dimensional Cartesian geometry is carried out. Our study focuses on determining the critical Richardson number for different Mach numbers and the destabilising effects of high thermal diffusion. We find that there is a deviation of the predicted stability threshold for moderate Mach number flows along with a significant effect on the growth rate of the linear instability for small P\\'eclet numbers. We show that in addition to a Kelvin-Helmholtz instability a Holmboe instability can appear and we discuss the implication of this in stellar interiors.
Backward stochastic differential equations from linear to fully nonlinear theory
Zhang, Jianfeng
2017-01-01
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.
Interfacial area concentration in steady fully-developed bubbly flow
Energy Technology Data Exchange (ETDEWEB)
Hibiki, T. [Kyoto Univ., Research Reactor Institute (Japan); Ishii, M. [Purdue Univ., Lafayette, IN (United States). School of Nuclear Engineering
2001-07-01
A simple equation for the interfacial area concentration under steady fully-developed bubbly flow condition has been derived from the interfacial area transport equation. The derived theoretical equation has been modified to obtain experimentally supported predictive correlation. The obtained interfacial area correlation was validated by 204 data sets measured in air-water bubbly flows under various conditions. These data sets covered extensive flow and loop conditions such as channel geometry (circular or rectangular channel), flow direction (vertical or horizontal flow), superficial gas velocity (0,018 m/s - 4,87 m/s), superficial liquid velocity (0,262 m/s - 6,55 m/s) and interfacial area concentration (25,8 m{sup -1} - 1083 m{sup -1} ). An excellent agreement was obtained between the developed semi-theoretical correlation and data within an average relative deviation of 11,1 %. (author)
Tropical Mangrove Mapping Using Fully-Polarimetric Radar Data
Directory of Open Access Journals (Sweden)
Bambang Trisasongko
2009-09-01
Full Text Available Although mangrove is one of important ecosystems in the world, it has been abused and exploited by human for various purposes. Monitoring mangrove is therefore required to maintain a balance between economy and conservation and provides up-to-date information for rehabilitation. Optical remote sensing data have delivered such information, however ever-changing atmospheric disturbance may significantly decrease thematic content. In this research, Synthetic Aperture Radar (SAR fully polarimetric data were evaluated to present an alternative for mangrove mapping. Assessment using three statistical trees was performed on both tonal and textural data. It was noticeable that textural data delivered fairly good improvement which reduced the error rate to around 5-6% at L-band. This suggests that insertion of textural data is more important than any information derived from decomposition algorithm.
Fully-developed heat transfer in annuli with viscous dissipation
Energy Technology Data Exchange (ETDEWEB)
Coelho, P.M. [Universidade do Porto, Porto (Portugal). Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia; Pinho, F.T. [Universidade do Porto, Porto (Portugal). Centro de Estudos de Fenomenos de Transporte, Faculdade de Engenharia
2006-09-15
For Newtonian concentric annular flows analytical solutions are obtained under imposed asymmetric constant wall heat fluxes as well as under imposed asymmetric constant wall temperatures, taking into account viscous dissipation and for fluid dynamic and thermally fully-developed conditions. Results for the special case of the heat flux ratio for identical wall temperatures and the critical Brinkman numbers marking changes of sign in wall heat fluxes are also derived. Equations are presented for the Nusselt numbers at the inner and outer walls, bulk temperature and normalised temperature distribution as a function of all relevant non-dimensional numbers. Given the complexity of the derived equations, simpler exact expressions are presented for the Nusselt numbers for ease of use, with their coefficients given in tables as a function of the radius ratio. (author)
Fully nonlinear and exact perturbations of the Friedmann world model
Hwang, Jai-chan
2012-01-01
In 1988 Bardeen has suggested a pragmatic formulation of cosmological perturbation theory which is powerful in practice to employ various fundamental gauge conditions easily depending on the character of the problem. The perturbation equations are presented without fixing the temporal gauge condition and are arranged so that one can easily impose fundamental gauge conditions by simply setting one of the perturbation variables in the equations equal to zero. In this way one can use the gauge degrees of freedom as an advantage in handling problems. Except for the synchronous gauge condition, all the other fundamental gauge conditions completely fix the gauge mode, and consequently, each variable in such a gauge has a unique gauge invariant counterpart, so that we can identify the variable as the gauge-invariant one. Here, we extend Bardeen's linear formulation to fully nonlinear order in perturbations, with the gauge advantage kept intact. Derived equations are exact, and from these we can easily expand to high...
A Fully Transparent Resistive Memory for Harsh Environments
Yang, Po-Kang
2015-10-12
A fully transparent resistive memory (TRRAM) based on Hafnium oxide (HfO2) with excellent transparency, resistive switching capability, and environmental stability is demonstrated. The retention time measured at 85 °C is over 3 × 104 sec, and no significant degradation is observed in 130 cycling test. Compared with ZnO TRRAM, HfO2 TRRAM shows reliable performance under harsh conditions, such as high oxygen partial pressure, high moisture (relative humidity = 90% at 85 °C), corrosive agent exposure, and proton irradiation. Moreover, HfO2 TRRAM fabricated in cross-bar array structures manifests the feasibility of future high density memory applications. These findings not only pave the way for future TRRAM design, but also demonstrate the promising applicability of HfO2 TRRAM for harsh environments.
Fully Digital Chaotic Differential Equation-based Systems And Methods
Radwan, Ahmed Gomaa Ahmed
2012-09-06
Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.
Fully casted soft power generating triboelectric shoe insole
Haque, Rubaiyet I.; Farine, Pierre-André; Briand, Danick
2016-11-01
Power generating soft triboelectric based shoe insole fully elastomeric and compatible with large-scale fabrication technique has been developed. During the process, film casting and stencil printing techniques were implemented to deposit/pattern elastomeric and soft/flexible materials, such as, polydimethylsiloxane (PDMS) and polyurethane (PU). Carbon- based elastomeric materials were used as electrodes, which were also film casted. The developed triboelectric generator (TENG) was capable of harnessing electrical power effectively from mechanical deformation of the system during walking or running activities. The performance of the device was tested for walking with frequency of 0.9±0.2 Hz. The power (rms value) of 0.25 mW was achieved for load resistance of 100 MΩ,, which corresponded to the power density (rms value) of 1.9 μW/cm2.
Spatiotemporal velocity-velocity correlation function in fully developed turbulence
Canet, Léonie; Wschebor, Nicolás; Balarac, Guillaume
2016-01-01
Turbulence is an ubiquitous phenomenon in natural and industrial flows. Since the celebrated work of Kolmogorov in 1941, understanding the statistical properties of fully developed turbulence has remained a major quest. In particular, deriving the properties of turbulent flows from a mesoscopic description, that is from Navier-Stokes equation, has eluded most theoretical attempts. Here, we provide a theoretical prediction for the {\\it space and time} dependent velocity-velocity correlation function of homogeneous and isotropic turbulence from the field theory associated to Navier-Stokes equation with stochastic forcing. This prediction is the analytical fixed-point solution of Non-Perturbative Renormalisation Group flow equations, which are exact in a certain large wave-number limit. This solution is compared to two-point two-times correlation functions computed in direct numerical simulations. We obtain a remarkable agreement both in the inertial and in the dissipative ranges.
Fully kinetic simulations of magnetic reconnection in partially ionised gases
Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.
2016-12-01
Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.
Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration
Energy Technology Data Exchange (ETDEWEB)
Abdelaziz, Omar [ORNL
2016-01-01
Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heat transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.
Strong dipole magnetic fields in fast rotating fully convective stars
Shulyak, D.; Reiners, A.; Engeln, A.; Malo, L.; Yadav, R.; Morin, J.; Kochukhov, O.
2017-08-01
M dwarfs are the most numerous stars in our Galaxy, with masses between approximately 0.5 and 0.1 solar masses. Many of them show surface activity qualitatively similar to our Sun and generate flares, high X-ray fluxes and large-scale magnetic fields1,2,3,4. Such activity is driven by a dynamo powered by the convective motions in their interiors2,5,6,7,8. Understanding properties of stellar magnetic fields in these stars finds a broad application in astrophysics, including theory of stellar dynamos and environment conditions around planets that may be orbiting these stars. Most stars with convective envelopes follow a rotation-activity relationship where various activity indicators saturate in stars with rotation periods shorter than a few days2,6,8. The activity gradually declines with rotation rate in stars rotating more slowly. It is thought that, due to a tight empirical correlation between X-ray radiance and magnetic flux9, the stellar magnetic fields will also saturate, to values around 4 kG (ref. 10). Here we report the detection of magnetic fields above the presumed saturation limit in four fully convective M dwarfs. By combining results from spectroscopic and polarimetric studies, we explain our findings in terms of bistable dynamo models11,12: stars with the strongest magnetic fields are those in a dipole dynamo state, whereas stars in a multipole state cannot generate fields stronger than about 4 kG. Our study provides observational evidence that the dynamo in fully convective M dwarfs generates magnetic fields that can differ not only in the geometry of their large-scale component, but also in the total magnetic energy.
A fully integrated standalone portable cavity ringdown breath acetone analyzer
Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji
2015-09-01
Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.
DEFF Research Database (Denmark)
Skyum, Sven
1978-01-01
This paper continues the study of ETOL forms and good EOL forms done by Maurer, Salomaa and Wood. It is proven that binary very complete ETOL forms exist, good synchronized ETOL forms exist and that no propagating or synchronized ETOL form can be very complete.......This paper continues the study of ETOL forms and good EOL forms done by Maurer, Salomaa and Wood. It is proven that binary very complete ETOL forms exist, good synchronized ETOL forms exist and that no propagating or synchronized ETOL form can be very complete....
Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy
Bucht, Curry; Söderberg, Per; Manneberg, Göran
2010-02-01
The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor of the corneal endothelium. Pathological conditions and physical trauma may threaten the endothelial cell density to such an extent that the optical property of the cornea and thus clear eyesight is threatened. Diagnosis of the corneal endothelium through morphometry is an important part of several clinical applications. Morphometry of the corneal endothelium is presently carried out by semi automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development and use of fully automated analysis of a very large range of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images, normalizing lights and contrasts. The digitally enhanced images of the corneal endothelium were Fourier transformed, using the fast Fourier transform (FFT) and stored as new images. Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on 292 images captured by CSM. The cell density obtained by the
Fully printable, strain-engineered electronic wrap for customizable soft electronics.
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-03-24
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1995-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential base multiaxial, nonisothermal unified viscoplastic model is obtained. This model possesses one tensorial internal state variable (that is, associated with dislocation substructure) and an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of nonlinear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This nonlinear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated), greatly influences the multiaxial response under non-proportional loading paths, and in the case of nonisothermal histories, introduces an instantaneous thermal softening mechanism proportional to the rate of change in temperature. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. The specific model proposed is characterized for a representative titanium alloy commonly used as the matrix material in SiC fiber reinforced composites, i.e., TIMETAL 21S. Verification of the proposed model is shown using 'specialized' non-standard isothermal and thermomechanical deformation tests.
Li, Siqi; Jiang, Huiyan; Pang, Wenbo
2017-05-01
Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Fully Associative, Non-Linear Kinematic, Unified Viscoplastic Model for Titanium Based Matrices
Arnold, S. M.; Saleeb, A. F.; Castelli, M. G.
1994-01-01
Specific forms for both the Gibb's and complementary dissipation potentials are chosen such that a complete (i.e., fully associative) potential based multiaxial unified viscoplastic model is obtained. This model possesses one tensorial internal state variable that is associated with dislocation substructure, with an evolutionary law that has nonlinear kinematic hardening and both thermal and strain induced recovery mechanisms. A unique aspect of the present model is the inclusion of non-linear hardening through the use of a compliance operator, derived from the Gibb's potential, in the evolution law for the back stress. This non-linear tensorial operator is significant in that it allows both the flow and evolutionary laws to be fully associative (and therefore easily integrated) and greatly influences the multiaxial response under non-proportional loading paths. In addition to this nonlinear compliance operator, a new consistent, potential preserving, internal strain unloading criterion has been introduced to prevent abnormalities in the predicted stress-strain curves, which are present with nonlinear hardening formulations, during unloading and reversed loading of the external variables. Specification of an experimental program for the complete determination of the material functions and parameters for characterizing a metallic matrix, e.g., TIMETAL 21S, is given. The experiments utilized are tensile, creep, and step creep tests. Finally, a comparison of this model and a commonly used Bodner-Partom model is made on the basis of predictive accuracy and numerical efficiency.
Fully printable, strain-engineered electronic wrap for customizable soft electronics
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-03-01
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.
A Well-Balanced and Fully Coupled Noncapacity Model for Dam-Break Flooding
Directory of Open Access Journals (Sweden)
Zhiyuan Yue
2015-01-01
Full Text Available The last two decades have seen great progress in mathematical modeling of fluvial processes and flooding in terms of either approximation of the physical processes or dealing with the numerical difficulties. Yet attention to simultaneously taking advancements of both aspects is rarely paid. Here a well-balanced and fully coupled noncapacity model is presented of dam-break flooding over erodible beds. The governing equations are based on the complete mass and momentum conservation laws, implying fully coupled interactions between the dam-break flow and sediment transport. A well-balanced Godunov-type finite volume method is used to solve the governing equations, facilitating satisfactory representation of the complex flow phenomena. The well-balanced property is attained by using the divergence form of matrix related to the static force for the bottom slope source term. Existing classical tests, including idealized dam-break flooding over irregular topography and experimental dam-break flooding with/without sediment transport, are numerically simulated, showing a satisfactory quantitative performance of this model.
Prediction of Ship Unsteady Maneuvering in Calm Water by a Fully Nonlinear Ship Motion Model
Directory of Open Access Journals (Sweden)
Ray-Qing Lin
2012-01-01
Full Text Available This is the continuation of our research on development of a fully nonlinear, dynamically consistent, numerical ship motion model (DiSSEL. In this study we will report our results in predicting ship motions in unsteady maneuvering in calm water. During the unsteady maneuvering, both the rudder angle, and ship forward speed vary with time. Therefore, not only surge, sway, and yaw motions occur, but roll, pitch and heave motions will also occur even in calm water as heel, trim, and sinkage, respectively. When the rudder angles and ship forward speed vary rapidly with time, the six degrees-of-freedom ship motions and their interactions become strong. To accurately predict the six degrees-of-freedom ship motions in unsteady maneuvering, a universal method for arbitrary ship hull requires physics-based fully-nonlinear models for ship motion and for rudder forces and moments. The numerical simulations will be benchmarked by experimental data of the Pre-Contract DDG51 design and an Experimental Hull Form. The benchmarking shows a good agreement between numerical simulations by the enhancement DiSSEL and experimental data. No empirical parameterization is used, except for the influence of the propeller slipstream on the rudder, which is included using a flow acceleration factor.
Modular Forms and Weierstrass Mock Modular Forms
Directory of Open Access Journals (Sweden)
Amanda Clemm
2016-02-01
Full Text Available Alfes, Griffin, Ono, and Rolen have shown that the harmonic Maass forms arising from Weierstrass ζ-functions associated to modular elliptic curves “encode” the vanishing and nonvanishing for central values and derivatives of twisted Hasse-Weil L-functions for elliptic curves. Previously, Martin and Ono proved that there are exactly five weight 2 newforms with complex multiplication that are eta-quotients. In this paper, we construct a canonical harmonic Maass form for these five curves with complex multiplication. The holomorphic part of this harmonic Maass form arises from the Weierstrass ζ-function and is referred to as the Weierstrass mock modular form. We prove that the Weierstrass mock modular form for these five curves is itself an eta-quotient or a twist of one. Using this construction, we also obtain p-adic formulas for the corresponding weight 2 newform using Atkin’s U-operator.
A Fully Sensorized Cooperative Robotic System for Surgical Interventions
Directory of Open Access Journals (Sweden)
Saúl Tovar-Arriaga
2012-07-01
Full Text Available In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms. The implemented control allows the robot to compensate for small patient movements.
ABS-NET: Fully Decentralized Runtime Adaptation for Distributed Objects
Directory of Open Access Journals (Sweden)
Karl Palmskog
2013-10-01
Full Text Available We present a formalized, fully decentralized runtime semantics for a core subset of ABS, a language and framework for modelling distributed object-oriented systems. The semantics incorporates an abstract graph representation of a network infrastructure, with network endpoints represented as graph nodes, and links as arcs with buffers, corresponding to OSI layer 2 interconnects. The key problem we wish to address is how to allocate computational tasks to nodes so that certain performance objectives are met. To this end, we use the semantics as a foundation for performing network-adaptive task execution via object migration between nodes. Adaptability is analyzed in terms of three Quality of Service objectives: node load, arc load and message latency. We have implemented the key parts of our semantics in a simulator and evaluated how well objectives are achieved for some application-relevant choices of network topology, migration procedure and ABS program. The evaluation suggests that it is feasible in a decentralized setting to continually meet both the objective of a node-balanced task allocation and make headway towards minimizing communication, and thus arc load and message latency.
Fully mechanized latex immunoassay for serum lipoprotein(a).
Abe, A; Yoshimura, Y; Sekine, T; Maeda, S; Yamashita, S; Noma, A
1994-03-01
We have developed a fully automated system to quantify lipoprotein(a) (Lp(a)) in human serum, based on the latex-enhanced turbidimetric immunoassay by application of the Immuno Chemistry Analyzer 501X. This assay was carried out with undiluted serum and was able to detect at Lp(a) levels higher than 4.0 mg/l. When judged to be out of range of the calibration (> 600 mg/l), the sample was automatically re-tested after automatic 10-fold dilution. Within-run C.V.s ranged from 1.9 to 2.1% and between-run C.V.s from 2.7 to 3.9%. Results by the present method were in good agreement with those by the in-house ELISA (r = 0.978) and the commercial ELISA (r = 0.990). The distribution of Lp(a) levels in sera from 508 healthy donors was highly skewed; the mean and median were 158 mg/l and 105 mg/l, respectively.
Seismic wave detection system based on fully distributed acoustic sensing
Jiang, Yue; Xu, Tuanwei; Feng, Shengwen; Huang, Jianfen; Yang, Yang; Guo, Gaoran; Li, Fang
2016-11-01
This paper presents a seismic wave detection system based on fully distributed acoustic sensing. Combined with Φ- OTDR and PGC demodulation technology, the system can detect and acquire seismic wave in real time. The system has a frequency response of 3.05 dB from 5 Hz to 1 kHz, whose sampling interval of each channel of 1 meter on total sensing distance up to 10 km. By comparing with the geophone in laboratory, the data show that in the time domain and frequency domain, two waveforms coincide consistently, and the correlation coefficient could be larger than 0.98. Through the analysis of the data of the array experiment and the oil well experiment, DAS system shows a consistent time domain and frequency domain response and a clearer trail of seismic wave signal as well as a higher signal-noise rate which indicate that the system we proposed is expected to become the next generation of seismic exploration equipment.
Fully automated stroke tissue estimation using random forest classifiers (FASTER).
McKinley, Richard; Häni, Levin; Gralla, Jan; El-Koussy, M; Bauer, S; Arnold, M; Fischer, U; Jung, S; Mattmann, Kaspar; Reyes, Mauricio; Wiest, Roland
2017-08-01
Several clinical trials have recently proven the efficacy of mechanical thrombectomy for treating ischemic stroke, within a six-hour window for therapy. To move beyond treatment windows and toward personalized risk assessment, it is essential to accurately identify the extent of tissue-at-risk ("penumbra"). We introduce a fully automated method to estimate the penumbra volume using multimodal MRI (diffusion-weighted imaging, a T2w- and T1w contrast-enhanced sequence, and dynamic susceptibility contrast perfusion MRI). The method estimates tissue-at-risk by predicting tissue damage in the case of both persistent occlusion and of complete recanalization. When applied to 19 test cases with a thrombolysis in cerebral infarction grading of 1-2a, mean overestimation of final lesion volume was 30 ml, compared with 121 ml for manually corrected thresholding. Predicted tissue-at-risk volume was positively correlated with final lesion volume ( p serve as an alternative method for identifying tissue-at-risk that may aid in treatment selection in ischemic stroke.
Fully dynamic output bounded single source shortest path problem
Energy Technology Data Exchange (ETDEWEB)
Frigioni, D. [Universita di L`Aquila, Coppito (Italy); Marchetti-Spaccamela, A.; Nanni, U. [Universita di Roma (Italy)
1996-12-31
We consider the problem of maintaining the distances and the shortest paths from a single source in either a directed or an undirected graph with positive real edge weights, handling insertions, deletions and cost updates of edges. We propose fully dynamic algorithms with optimal space requirements and query time. The cost of update operations depends on the class of the considered graph and on the number of vertices that, due to an edge modification, either change their distance from the source or change their parent in the shortest path tree. In the case of graphs with bounded genus (including planar graphs), bounded degree graphs, bounded treewidth graphs and O-near-planar graphs with bounded {beta}, the update procedures require O(log n) amortized time per vertex update, while for general graphs with n vertices and m edges they require O({radical}m log n) amortized time per vertex update. The solution is based on a dynamization of Dijkstra`s algorithm and requires simple data structures that are suitable for a practical and straightforward implementation.
Results from the BABAR Fully Inclusive Measurement of B? Xs?
Energy Technology Data Exchange (ETDEWEB)
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.
2005-09-20
We present preliminary results from a lepton-tagged fully-inclusive measurement of B {yields} X{sub s}{gamma} decays, where X{sub s} is any strange hadronic state. Results are based on a BABAR data set of 88.5 million B{bar B} pairs at the {Upsilon}(4S) resonance. We present a reconstructed photon energy spectrum in the {Upsilon}(4S) frame, and partial branching fractions above minimum reconstructed photon energies of 1.9, 2.0, 2.1 and 2.2 GeV. We then convert these to measurements of partial branching fractions and truncated first and second moments of the true photon energy distribution in the B rest frame, above the same minimum photon energy values. The full correlation matrices between the first and second moments are included to allow fitting to any parameterized theoretical calculation. We also measure the direct CP asymmetry {Alpha}{sub CP}(B {yields} X{sub s+d{gamma}}) (based on the charge of the tagging lepton) above a reconstructed photon energy of 2.2 GeV.
Fully Automated Portable Comprehensive 2-Dimensional Gas Chromatography Device.
Lee, Jiwon; Zhou, Menglian; Zhu, Hongbo; Nidetz, Robert; Kurabayashi, Katsuo; Fan, Xudong
2016-10-06
We developed a fully automated portable 2-dimensional (2-D) gas chromatography (GC x GC) device, which had a dimension of 60 cm × 50 cm × 10 cm and weight less than 5 kg. The device incorporated a micropreconcentrator/injector, commercial columns, micro-Deans switches, microthermal injectors, microphotoionization detectors, data acquisition cards, and power supplies, as well as computer control and user interface. It employed multiple channels (4 channels) in the second dimension ((2)D) to increase the (2)D separation time (up to 32 s) and hence (2)D peak capacity. In addition, a nondestructive flow-through vapor detector was installed at the end of the (1)D column to monitor the eluent from (1)D and assist in reconstructing (1)D elution peaks. With the information obtained jointly from the (1)D and (2)D detectors, (1)D elution peaks could be reconstructed with significantly improved (1)D resolution. In this Article, we first discuss the details of the system operating principle and the algorithm to reconstruct (1)D elution peaks, followed by the description and characterization of each component. Finally, 2-D separation of 50 analytes, including alkane (C6-C12), alkene, alcohol, aldehyde, ketone, cycloalkane, and aromatic hydrocarbon, in 14 min is demonstrated, showing the peak capacity of 430-530 and the peak capacity production of 40-80/min.
A Fully Inkjet Printed 3D Honeycomb Inspired Patch Antenna
Mckerricher, Garret
2015-07-16
The ability to inkjet print three-dimensional objects with integrated conductive metal provides many opportunities for fabrication of radio frequency electronics and electronics in general. Both a plastic material and silver conductor are deposited by inkjet printing in this work. This is the first demonstration of a fully 3D Multijet printing process with integrated polymer and metal. A 2.4 GHz patch antenna is successfully fabricated with good performance proving the viability of the process. The inkjet printed plastic surface is very smooth, with less than 100 nm root mean square roughness. The printed silver nanoparticles are laser sintered to achieve adequate conductivity of 1e6 S/m while keeping the process below 80oC and avoiding damage to the polymer. The antenna is designed with a honeycomb substrate which minimizes material consumption. This reduces the weight, dielectric constant and dielectric loss which are all around beneficial. The antenna is entirely inkjet printed including the ground plane conductor and achieves an impressive 81% efficiency. The honeycomb substrate weighs twenty times less than a solid substrate. For comparison the honeycomb antenna provides an efficiency nearly 15% greater than a similarly fabricated antenna with a solid substrate.
The fully integrated engineer combining technical ability and leadership prowess
Cerri, Steven T
2016-01-01
College teaches you to be a good engineer. But it's likely that your college engineering courses didn't have time to teach you how to effectively contribute your ideas or how to transition to management or leadership. This book provides you with those missing tools. This book addresses the differences between being proficient as a technical individual and effectively contributing to and leading a team to effectively contribute to various projects. The Fully Integrated Engineer: Combining Technical Ability and Leadership Prowess shines a light on how the habits learned in school, while contributing to individual short-term success, actually become hindrances in the modern engineering workplace if your goal is to achieve long-term success as either an engineer, a team lead, manager, or leader. The author offers specific ways to address those limiting habits, turning you into an effective team contributor and leader building toward long-term career succes . The author’s approach to retooling less-than-op...
Fully autonomous navigation for the NASA cargo transfer vehicle
Wertz, James R.; Skulsky, E. David
1991-01-01
A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.
A New Approach for Solving Fully Fuzzy Linear Systems
Directory of Open Access Journals (Sweden)
Amit Kumar
2011-01-01
Full Text Available Several authors have proposed different methods to find the solution of fully fuzzy linear systems (FFLSs that is, fuzzy linear system with fuzzy coefficients involving fuzzy variables. But all the existing methods are based on the assumption that all the fuzzy coefficients and the fuzzy variables are nonnegative fuzzy numbers. In this paper a new method is proposed to solve an FFLS with arbitrary coefficients and arbitrary solution vector, that is, there is no restriction on the elements that have been used in the FFLS. The primary objective of this paper is thus to introduce the concept and a computational method for solving FFLS with no non negative constraint on the parameters. The method incorporates the principles of linear programming in solving an FFLS with arbitrary coefficients and is not only easier to understand but also widens the scope of fuzzy linear equations in scientific applications. To show the advantages of the proposed method over existing methods we solve three FFLSs.
Warps and waves in fully cosmological models of galactic discs
Gómez, Facundo A; Grand, Robert J J; Marinacci, Federico; Springel, Volker; Pakmor, Rüdiger
2016-01-01
Recent studies have revealed an oscillating asymmetry in the vertical structure of the Milky Way's disc. Here we analyze 16 high-resolution, fully cosmological simulations of the evolution of individual Milky Way-sized galaxies, carried out with the MHD code AREPO. At redshift zero, about $70\\%$ of our galactic discs show strong vertical patterns, with amplitudes that can exceed 2 kpc. Half of these are typical `integral sign' warps. The rest are oscillations similar to those observed in the Milky Way. Such structures are thus expected to be common. The associated mean vertical motions can be as large as 30 km/s. Cold disc gas typically follows the vertical patterns seen in the stars. These perturbations have a variety of causes: close encounters with satellites, distant flybys of massive objects, accretion of misaligned cold gas from halo infall or from mergers. Tidally induced vertical patterns can be identified in both young and old stellar populations, whereas those originating from cold gas accretion are...
Fully controlled 5-phase, 10-pulse, line commutated rectifier
Directory of Open Access Journals (Sweden)
Mahmoud I. Masoud
2015-12-01
Full Text Available The development and production of multiphase machines either generators or motors, specially five-phase, offers improved performance compared to three-phase counterpart. Five phase generators could generate power in applications such as, but not limited to, wind power generation, electric vehicles, aerospace, and oil and gas. The five-phase generator output requires converter system such as ac–dc converters. In this paper, a fully controlled 10-pulse line commutated rectifier, suitable to be engaged with wind energy applications, fed from five-phase source is introduced. A shunt active power filter (APF is used to improve power factor and supply current total harmonic distortion (THD. Compared to three-phase converters, 6-pulse or 12-pulse rectifiers, the 10-pulse rectifier engaged with 5-phase source alleviate their drawbacks such as high dc ripples and no need for electric gear or phase shifting transformer. MATLAB/SIMULINK platform is used as a simulation tool to investigate the performance of the proposed rectifier.
Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
Abolghasemibizaki, Mehran; Mohammadi, Reza
2017-09-08
Impacting on a superhydrophobic surface, water droplet spreads to a pancake shape and then retracts and bounces off. Although the collision time is mostly in the order of couple of 10ms for millimetric droplets, researchers have shown recently that decorating the superhydrophobic surface with a single macrotexture or intersecting ridge reduces this contact time if the droplet hits the texture or the intersection exactly in the center. Hence, covering the surface with ridges should address this hitting point restriction. Using an extruder-type 3D printer, we fabricated a superhydrophobic surface fully decorated with cylindrical ridges. The dynamic of water droplet impact on this surface at different impact velocities has been studied for varied droplet volumes and ridge sizes. Our data show that regardless of the location of the contact point, when the kinetic energy of the drop is sufficient to completely wet the ridges, the contact time reduces ∼13% as the consequence of ∼20% faster retraction. For higher impact velocity, the contact becomes shorter since the flattened drop splashes from the periphery. Moreover, the simplified, time-efficient and inexpensive method of fabricating the surfaces presented in this paper can be implemented in fabricating many versatile superhydrophobic surfaces with complex geometries. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterization of fully functional spray-on antibody thin films
Energy Technology Data Exchange (ETDEWEB)
Figueroa, Jhon [Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5250 (United States); Magaña, Sonia; Lim, Daniel V. [Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-7115 (United States); Schlaf, Rudy, E-mail: schlaf@eng.usf.edu [Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5101 (United States)
2014-02-15
The authors recently demonstrated that fully functional Escherichia coli O157:H7 antibody thin films can be prepared using a simple pneumatic nebulizer on glass surface [1]. This paper focuses on the investigation of the morphology and physical properties of these films with the aim to better understand their performance. A series of E. coli O157:H7 antibody spray-on thin films were investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), immunoassays, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), fluorescence microscopy, atomic force microscope (AFM) and contact angle analysis. These data were compared to measurements on films prepared with the biotin–avidin covalent bonding scheme. The investigation showed that films created by a 2 min pneumatic spray deposition time can capture antigens similar as the avidin–biotin wet-chemical method. The results also suggests that an influential factor for the comparable capture cell ability between sprayed and covalent films is an increased antibody surface coverage for the sprayed films (non-equilibrium technique), which compensates for the lack of its antibody orientation. There was no significant antibody denaturation detected on any of the sprayed films. Both techniques led to the formation of cluster-aggregates, a factor that seems unavoidable due to the natural tendency of protein to cluster. The avidin–biotin bridge films generally had a higher roughness, which manifested itself in a higher wettability compared to the sprayed films.
Fully Photonic Wireless Link for Transmission of Synchronization Signals
Directory of Open Access Journals (Sweden)
O. Wilfert
2016-04-01
Full Text Available Rapid industrialization and increasing demand of business tools for high-speed communications supports the request for optical communications in free space. Copper cables and related technologies such as cable modems and Digital Subscriber Line (DSL are common in existing networks, but do not meet the bandwidth requirement in the future, which opens the door to optical wireless communication technologies. Research in links for optical wireless communication (Infra Red Line of Sight, IR LOS working in the atmosphere is due to the wide support of its development on the world market. Optical wireless communications research is currently focused on increasing the transmission quality of data links. A promising new trend in data connection through IR LOS includes the transfer of accurate time synchronization pulses (time transmission. The article presents problems of modeling and design of a transmitter and receiver with a fully photonic concept. The analysis of the power levels at the link and drawn a model for determining the connection losses at the receiver caused by optical coupling between a Schmidt-Cassegrain telescope and the receiving optical fiber is shown.
A 16-Bit Fully Functional Single Cycle Processor
Directory of Open Access Journals (Sweden)
Nidhi Maheshwari
2011-08-01
Full Text Available The existing commercial microprocessors are provided as black box units, with which users are unable to monitor internal signals and operation process, neither can they modify the original structure. Inorder to solve this problem 16-bit fully functional single cycle processor is designed in terms of its architecture and its functional capabilities. The procedure of design and verification for a 16-bit processor is introduced in this paper. The key architecture elements are being described, as well as the hardware block diagram and internal structure. The summary of instruction set is presented. This processor is modify as a Very High Speed Integrated Circuit Hardware Description Language (VHDL and gives access to every internal signal. In order to consume fewer resources, the design of arithmetic logical unit (ALU is optimized. The RTL views and verified simulation results of processor are shown in this paper. The synthesis report of the design is also described. The design architecture is written in Very High Speed Integrated Circuit Hardware Description Language (VHDL code using Xilinx ISE 9.2i tool for synthesis and simulation.
Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing
Energy Technology Data Exchange (ETDEWEB)
Terrani, Kurt A [ORNL; Kiggans Jr, James O [ORNL; McMurray, Jake W [ORNL; Jolly, Brian C [ORNL; Hunt, Rodney Dale [ORNL; Trammell, Michael P [ORNL; Snead, Lance Lewis [ORNL
2016-01-01
Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhance heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.
19-vertex version of the fully frustrated XY model
Knops, Yolanda M. M.; Nienhuis, Bernard; Knops, Hubert J. F.; Blöte, Henk W. J.
1994-07-01
We investigate a 19-vertex version of the two-dimensional fully frustrated XY (FFXY) model. We construct Yang-Baxter equations for this model and show that there is no solution. Therefore we have chosen a numerical approach based on the transfer matrix. The results show that a coupled XY Ising model is in the same universality class as the FFXY model. We find that the phase coupling over an Ising wall is irrelevant at criticality. This leads to a correction of earlier determinations of the dimension x*h,Is of the Ising disorder operator. We find x*h,Is=0.123(5) and a conformal anomaly c=1.55(5). These results are consistent with the hypothesis that the FFXY model behaves as a superposition of an Ising model and an XY model. However, the dimensions associated with the energy, xt=0.77(3), and with the XY magnetization xh,XY~=0.17, refute this hypothesis.
A fully automated TerraSAR-X based flood service
Martinis, Sandro; Kersten, Jens; Twele, André
2015-06-01
In this paper, a fully automated processing chain for near real-time flood detection using high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data is presented. The processing chain including SAR data pre-processing, computation and adaption of global auxiliary data, unsupervised initialization of the classification as well as post-classification refinement by using a fuzzy logic-based approach is automatically triggered after satellite data delivery. The dissemination of flood maps resulting from this service is performed through an online service which can be activated on-demand for emergency response purposes (i.e., when a flood situation evolves). The classification methodology is based on previous work of the authors but was substantially refined and extended for robustness and transferability to guarantee high classification accuracy under different environmental conditions and sensor configurations. With respect to accuracy and computational effort, experiments performed on a data set of 175 different TerraSAR-X scenes acquired during flooding all over the world with different sensor configurations confirm the robustness and effectiveness of the proposed flood mapping service. These promising results have been further confirmed by means of an in-depth validation performed for three study sites in Germany, Thailand, and Albania/Montenegro.
Results from the BABAR Fully Inclusive Measurement of B? Xs?
Energy Technology Data Exchange (ETDEWEB)
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.
2005-09-20
We present preliminary results from a lepton-tagged fully-inclusive measurement of B {yields} X{sub s}{gamma} decays, where X{sub s} is any strange hadronic state. Results are based on a BABAR data set of 88.5 million B{bar B} pairs at the {Upsilon}(4S) resonance. We present a reconstructed photon energy spectrum in the {Upsilon}(4S) frame, and partial branching fractions above minimum reconstructed photon energies of 1.9, 2.0, 2.1 and 2.2 GeV. We then convert these to measurements of partial branching fractions and truncated first and second moments of the true photon energy distribution in the B rest frame, above the same minimum photon energy values. The full correlation matrices between the first and second moments are included to allow fitting to any parameterized theoretical calculation. We also measure the direct CP asymmetry {Alpha}{sub CP}(B {yields} X{sub s+d{gamma}}) (based on the charge of the tagging lepton) above a reconstructed photon energy of 2.2 GeV.
Fully automatic recognition of the temporal phases of facial actions.
Valstar, Michel F; Pantic, Maja
2012-02-01
Past work on automatic analysis of facial expressions has focused mostly on detecting prototypic expressions of basic emotions like happiness and anger. The method proposed here enables the detection of a much larger range of facial behavior by recognizing facial muscle actions [action units (AUs)] that compound expressions. AUs are agnostic, leaving the inference about conveyed intent to higher order decision making (e.g., emotion recognition). The proposed fully automatic method not only allows the recognition of 22 AUs but also explicitly models their temporal characteristics (i.e., sequences of temporal segments: neutral, onset, apex, and offset). To do so, it uses a facial point detector based on Gabor-feature-based boosted classifiers to automatically localize 20 facial fiducial points. These points are tracked through a sequence of images using a method called particle filtering with factorized likelihoods. To encode AUs and their temporal activation models based on the tracking data, it applies a combination of GentleBoost, support vector machines, and hidden Markov models. We attain an average AU recognition rate of 95.3% when tested on a benchmark set of deliberately displayed facial expressions and 72% when tested on spontaneous expressions.
Apodized grating coupler using fully-etched nanostructures
Wu, Hua; Li, Chong; Li, Zhi-Yong; Guo, Xia
2016-08-01
A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501, 61335004, and 61505003), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019), the Postdoctoral Science Foundation of Beijing Funded Project, China (Grant No. Q6002012201502), and the Science and Technology Research Project of Jiangxi Provincial Education Department, China (Grant No. GJJ150998).
Optimization Algorithms for Fully Automatic Optimizing Cross-cut Saw
Institute of Scientific and Technical Information of China (English)
LI Xiaochun; DING Qingxin; ZHAO Honglin; SUN Guangbin; XI Jiaxing
2010-01-01
The optimization of boards by grades plays an important role in the production for cross cutting boards, and the outturn rate and utilization of boards are directly affected by the optimization results of boards by grades. At present, the OptiCut series fully automatic optimizing cross-cut saw(FAOCCS) from Germany Weinig Group occupies the main markets in the world, but no report about the relative theories on the optimization technology and its algorithms is available. There exist some disadvantages in woodworking machinery and equipment used for cross cutting boards in China, for example, low sawing precision, outturn rate of boards and productivity, and difficulty in making statistics on the sawing results. Three optimization modes are presented for the optimization algorithms for FAOCCS, namely, optimization of fixed length, optimization of finger-jointed lumber and mixed optimization. Mathematical models are then established for these three optimization modes, and the corresponding software for realizing the optimization is prepared. Finally, Synthetic evaluation on the established mathematical models is presented through three practical examples. The results of synthetic evaluation indicate that FAOCCS using the optimization modes may raise the outturn rate of boards approximately 8% and the productivity obviously, and allows accurate statistics on the cross cut products of boards. The mathematical models of above three optimization modes are useful for increasing the outturn rate and utilization ratio of boards.
A fully cosmological model of a Monoceros-like ring
Gómez, Facundo A; Marinacci, Federico; Slater, Colin T; Grand, Robert J J; Springel, Volker; Pakmor, Rüdiger
2015-01-01
We study the vertical structure of a stellar disk obtained from a fully cosmological high-resolution hydrodynamical simulation of the formation of a Milky Way-like galaxy. At the present day, the disk's mean vertical height shows a well-defined and strong pattern, with amplitudes as large as 3 kpc in its outer regions. This pattern is the result of a satellite - host halo - disk interaction and reproduces, qualitatively, many of the observable properties of the Monoceros Ring. In particular we find disk material at the distance of Monoceros extending far above the mid plane (30$^{\\circ}$) in both hemispheres, as well as well-defined arcs of disk material at heliocentric distances $\\gtrsim 5$ kpc. The pattern was first excited $\\approx 3$ Gyr ago as an $m=1$ mode that later winds up into a leading spiral pattern. Interestingly, the main driver behind this perturbation is a low-mass low-velocity fly-by encounter. The satellite has total mass, pericentre distance and pericentric velocity of $\\sim 5\\%$ of the hos...
Meeting people's needs in a fully interoperable domotic environment.
Miori, Vittorio; Russo, Dario; Concordia, Cesare
2012-01-01
The key idea underlying many Ambient Intelligence (AmI) projects and applications is context awareness, which is based mainly on their capacity to identify users and their locations. The actual computing capacity should remain in the background, in the periphery of our awareness, and should only move to the center if and when necessary. Computing thus becomes 'invisible', as it is embedded in the environment and everyday objects. The research project described herein aims to realize an Ambient Intelligence-based environment able to improve users' quality of life by learning their habits and anticipating their needs. This environment is part of an adaptive, context-aware framework designed to make today's incompatible heterogeneous domotic systems fully interoperable, not only for connecting sensors and actuators, but for providing comprehensive connections of devices to users. The solution is a middleware architecture based on open and widely recognized standards capable of abstracting the peculiarities of underlying heterogeneous technologies and enabling them to co-exist and interwork, without however eliminating their differences. At the highest level of this infrastructure, the Ambient Intelligence framework, integrated with the domotic sensors, can enable the system to recognize any unusual or dangerous situations and anticipate health problems or special user needs in a technological living environment, such as a house or a public space.
Predicting Turbulent Convective Heat Transfer in Fully Developed Duct Flows
Rokni, Masoud; Gatski, Thomas B.
2001-01-01
The performance of an explicit algebraic stress model (EASM) is assessed in predicting the turbulent flow and forced heat transfer in both straight and wavy ducts, with rectangular, trapezoidal and triangular cross-sections, under fully developed conditions. A comparison of secondary flow patterns. including velocity vectors and velocity and temperature contours, are shown in order to study the effect of waviness on flow dynamics, and comparisons between the hydraulic parameters. Fanning friction factor and Nusselt number, are also presented. In all cases. isothermal conditions are imposed on the duct walls, and the turbulent heat fluxes are modeled using gradient-diffusion type models. The formulation is valid for Reynolds numbers up to 10(exp 5) and this minimizes the need for wall functions that have been used with mixed success in previous studies of complex duct flows. In addition, the present formulation imposes minimal demand on the number of grid points without any convergence or stability problems. Criteria in terms of heat transfer and friction factor needed to choose the optimal wavy duct cross-section for industrial applications among the ones considered are discussed.
A Fully Noninductive, ELM-Suppressed Scenario for ITER
Petty, C. C.; Petrie, T. W.; Nazikian, R.; Turco, F.; Lasnier, C.
2016-10-01
An attractive regime with beta, collisionality and plasma shape relevant to the ITER steady-state mission has been attained in DIII-D using the hybrid scenario, including complete ELM suppression using resonant magnetic perturbation (RMP) coils. Fully noninductive hybrids with simultaneous high beta (βN <= 3.1) and high confinement (H98 y 2 <= 1.4) have achieved zero surface loop voltage for up to two current relaxation times using efficient central current drive from ECCD and NBCD. This steady-state regime has been successfully integrated with ELM suppression by applying an odd parity n=3 RMP, which has only a minor impact on the pedestal pressure ( 15 %) and H98 y 2 ( 10 %) In radiating divertor experiments in hybrids, the combination of Argon seeding and strong Deuterium puffing more than doubles the plasma radiative power, up to 55% of the input power, with less than 10% increase in Zeff. IR camera measurements find that the peak heat flux in the upper, outer divertor falls by a factor of 2 (from 4.6 to 2.3 MW /m2). Work supported by USDOE under DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FG02-04ER54761, and DE-AC52-07NA27344.
Countermeasures to avoid noncooperation in fully self-organized VANETs.
Molina-Gil, Jezabel; Caballero-Gil, Pino; Caballero-Gil, Cándido
2014-01-01
The secure and efficient exchange of information in vehicular ad hoc networks (VANETs) involves more challenges than in any other type of ad hoc networks. This paper proposes a new vehicular communication system based on mobile phones for fully distributed and decentralized networks. In these networks, communications depend on individual nodes, which could decrease the efficiency and reliability of transmitted information. Besides, the limitation in the resources of mobile devices is an additional obstacle in the forwarding problem, and the content of the information generated by individual nodes must be considered inherently unreliable. In particular, this paper proposes the application of groups as a basis structure for a cooperation mechanism useful in event generation and in packet retransmission. Its aim is to promote the involvement of nodes in network performance. Given that such participation involves consumption of node resources, a group-based structure is here used not only to reduce communication overload but also to prevent sending false information and to encourage nodes in relaying packets. Several simulations of the proposal have been done, and the results have confirmed that this is a promising approach to increase network efficiency and trust in transmitted information, while reducing the number of selfish nodes in VANETs.
Countermeasures to Avoid Noncooperation in Fully Self-Organized VANETs
Directory of Open Access Journals (Sweden)
Jezabel Molina-Gil
2014-01-01
Full Text Available The secure and efficient exchange of information in vehicular ad hoc networks (VANETs involves more challenges than in any other type of ad hoc networks. This paper proposes a new vehicular communication system based on mobile phones for fully distributed and decentralized networks. In these networks, communications depend on individual nodes, which could decrease the efficiency and reliability of transmitted information. Besides, the limitation in the resources of mobile devices is an additional obstacle in the forwarding problem, and the content of the information generated by individual nodes must be considered inherently unreliable. In particular, this paper proposes the application of groups as a basis structure for a cooperation mechanism useful in event generation and in packet retransmission. Its aim is to promote the involvement of nodes in network performance. Given that such participation involves consumption of node resources, a group-based structure is here used not only to reduce communication overload but also to prevent sending false information and to encourage nodes in relaying packets. Several simulations of the proposal have been done, and the results have confirmed that this is a promising approach to increase network efficiency and trust in transmitted information, while reducing the number of selfish nodes in VANETs.
Study of Pixel Area Variations in Fully Depleted Thick CCD
Energy Technology Data Exchange (ETDEWEB)
Kotov, I.V.; O' Connor, P.; Kotov, A.I.; Frank, J.; Kubanek, P.; Prouza, M.; Radeka, V.; Takacs, P.
2010-06-30
Future wide field astronomical surveys, like Large Synoptic Survey Telescope (LSST), require photometric precision on the percent level. The accuracy of sensor calibration procedures should match these requirements. Pixel size variations found in CCDs from different manufacturers are the source of systematic errors in the flat field calibration procedure. To achieve the calibration accuracy required to meet the most demanding science goals this effect should be taken into account. The study of pixel area variations was performed for fully depleted, thick CCDs produced in a technology study for LSST. These are n-channel, 100 {micro}m thick devices. We find pixel size variations in both row and column directions. The size variation magnitude is smaller in the row direction. In addition, diffusion is found to smooth out electron density variations. It is shown that the characteristic diffusion width can be extracted from the flat field data. Results on pixel area variations and diffusion, data features, analysis technique and modeling technique are presented and discussed.
Fast Computation of Fully Resolved Neuromechanically Simulated Locomotion
Patel, Namu; Patankar, Neelesh A.
2014-11-01
In fish, caudally propagating waves of neural activity produce muscle bending moments. These moments, coupled with forces due to the body's elastic properties and forces due to fluid-body interactions, determine the deformation kinematics for swimming. Fully resolved simulations of neurally-activated swimming can be used to decode activation patterns underlying observed behaviors in a swimming animal. These computations are expensive; the time stepping requirement is onerous due to the canonically used explicit coupling between the elastic body and the fluid. To overcome this barrier, we use our prior result that deformation kinematics closely follow the preferred kinematics due to muscle activation when a swimmer has a sufficiently stiff body. Thus, we can impose the preferred deformation kinematics directly on the body immersed in the fluid. In this way, the need to solve the elastic equations is eliminated. Here, we couple physiochemical and physiomechanical equations to a constraint-based self-propulsion formulation. With this method, we demonstrate how different behaviors, such as turning, emerge from varying the neural signal. This work is supported by NSF: CBET-0828749, CMMI-0941674, CBET-1066575, and DGE-0903637.
Fully Digital: Policy and Process Implications for the AAS
Biemesderfer, Chris
2012-01-01
Over the past two decades, every scholarly publisher has migrated at least the mechanical aspects of their journal publishing so that they utilize digital means. The academy was comfortable with that for a while, but publishers are under increasing pressure to adapt further. At the American Astronomical Society (AAS), we think that means bringing our publishing program to the point of being fully digital, by establishing procedures and policies that regard the digital objects of publication primarily. We have always thought about our electronic journals as databases of digital articles, from which we can publish and syndicate articles one at a time, and we must now put flesh on those bones by developing practices that are consistent with the realities of article at a time publication online. As a learned society that holds the long-term rights to the literature, we have actively taken responsibility for the preservation of the digital assets that constitute our journals, and in so doing we have not forsaken t...
Biofabrication and testing of a fully cellular nerve graft.
Owens, Christopher M; Marga, Francoise; Forgacs, Gabor; Heesch, Cheryl M
2013-12-01
Rupture of a nerve is a debilitating injury with devastating consequences for the individual's quality of life. The gold standard of repair is the use of an autologous graft to bridge the severed nerve ends. Such repair however involves risks due to secondary surgery at the donor site and may result in morbidity and infection. Thus the clinical approach to repair often involves non-cellular solutions, grafts composed of synthetic or natural materials. Here we report on a novel approach to biofabricate fully biological grafts composed exclusively of cells and cell secreted material. To reproducibly and reliably build such grafts of composite geometry we use bioprinting. We test our grafts in a rat sciatic nerve injury model for both motor and sensory function. In particular we compare the regenerative capacity of the biofabricated grafts with that of autologous grafts and grafts made of hollow collagen tubes by measuring the compound action potential (for motor function) and the change in mean arterial blood pressure as consequence of electrically eliciting the somatic pressor reflex. Our results provide evidence that bioprinting is a promising approach to nerve graft fabrication and as a consequence to nerve regeneration.
Fully implicit adaptive mesh refinement algorithm for reduced MHD
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
A dissipative random velocity field for fully developed fluid turbulence
Chevillard, Laurent; Pereira, Rodrigo; Garban, Christophe
2016-11-01
We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments, including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free parameter and derive analytically the spectrum of exponents of the structure functions in a simplified non dissipative case. A perturbative expansion shows that energy transfers indeed take place, justifying the dissipative nature of this random field.
Ovine ear model for fully endoscopic stapedectomy training.
Cordero, A; Benítez, S; Reyes, P; Vaca, M; Polo, R; Pérez, C; Alonso, A; Cobeta, I
2015-09-01
Endoscopic surgery of the middle ear is progressively gaining the interest of otologists, as technological advances have overcome some of its main drawbacks. The long learning curve required to master this technique, urges the search for models to practice it. After the validation of sheep's ear as a proper training model for microscopic stapedectomy, our objective is to demonstrate its adequacy for practicing stapes surgery but performed through a fully endoscopic approach. Endoscopic stapedectomy was performed by two surgeons in 40 sheep ears (20 specimens each). To analyze the effects of the learning curve on surgical success, complication rates and surgical time reduction, the sample was divided in two groups: group 1 being the first ten procedures of each surgeon, and group 2 the second set of stapedectomies. The impact of the operated side and the resection of the chordal spine were also studied. No statistically significant differences were found considering the operated side. A statistically significant improvement in some of the surgical steps was demonstrated comparing both groups and also after the resection of the chordal spine. Mean surgical time declined from 38 to 31.5 min (p sheep ear is an optimal model for endoscopic middle ear surgery, as it allows for the acquisition of the skills required to master this technique.
The pseudoforce approach to fully nonlinear plasma excitations
Akbari-Moghanjoughi, M.
2017-08-01
In this paper, we develop a technique to study the dynamic structure of oscillations in plasmas. We consider the hydrodynamic model and reduce the system of closed equations to the system of differential equations with integrable Hamiltonian. Then, using the analogy of pseudoparticle oscillation in the pseudoforce field, we generalize the Hamiltonian to include the dissipation and external driving force effects. The developed method is used to study various features of electron-ion plasmas with different equations of state for ions. It is shown that this method can be used in the analysis of superposed fully nonlinear oscillations and even the sheath structure of plasmas. The generalized pseudoforce equation is then used to study the dynamics of damped periodically forced nonlinear ion acoustic oscillations in plasmas with adiabatic and isothermal ion fluids. We found striking differences in dynamics of oscillations in these plasmas. The fundamental difference in the dynamic character of oscillations between adiabatic and isothermal ion fluids is described based on the fast ion fluid response to external perturbations in the case of adiabatic ion fluid compression. The current approach may be easily extended to more complex situations with different species and in the presence of electromagnetic interactions.
Development of A Fully Nonlinear Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
陈永平; 李志伟; 张长宽
2004-01-01
A fully nonlinear numerical wave tank (NWT) based on the solution of the σ-transformed Navier-Stokes equation is developed in this study. The numerical wave is generated from the inflow boundary, where the surface elevation and/or velocity are specified by use of the analytical solution or the laboratory data. The Sommerfeld/Orlanski radiation condition in conjunction with an artificial damping zone is applied to reduce wave reflection from the outflow boundary. The whole numerical solution procedures are split into three steps, i.e., advection, diffusion and propagation, and a new method,the Lagrange-Euler Method, instead of the MAC or VOF method, is introduced to solve the free surface elevation at the new time step. Several typical wave cases, including solitary waves, regular waves and irregular waves, are simulated in the wave tank. The robustness and accuracy of the NWT are verified by the good agreement between the numerical results and the linear or nonlinear analytical solutions. This research will be further developed by study of wave-wave, wave-current, wave-structure or wave-jet interaction in the future.
A Fully Sensorized Cooperative Robotic System for Surgical Interventions
Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.
2012-01-01
In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551
3D critical layers in fully-developed turbulent flows
Saxton-Fox, Theresa; McKeon, Beverley
2016-11-01
Recent work has shown that 3D critical layers drive self-sustaining behavior of exact coherent solutions of the Navier-Stokes equations (Wang et al. 2007; Hall and Sherwin 2010; Park and Graham 2015). This study investigates the role of 3D critical layers in fully-developed turbulent flows. 3D critical layer effects are identified in instantaneous snapshots of turbulent boundary layers in both experimental and DNS data (Wu et al. 2014). Additionally, a 3D critical layer effect is demonstrated to appear using only a few resolvent response modes from the resolvent analysis of McKeon and Sharma 2010, with phase relationships appropriately chosen. Connections are sought to the thin shear layers observed in turbulent boundary layers (Klewicki and Hirschi 2004; Eisma et al. 2015) and to amplitude modulation observations (Mathis et al. 2009; Duvvuri and McKeon 2014). This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060. The support of the Center for Turbulence Research (CTR) summer program at Stanford is gratefully acknowledged.
Fully On-line Introductory Physics with a Lab
Schatz, Michael
We describe the development and implementation of a college-level introductory physics (mechanics) course and laboratory that is suited for both on-campus and on-line environments. The course emphasizes a ``Your World is Your Lab'' approach whereby students first examine and capture on video (using cellphones) motion in their immediate surroundings, and then use free, open-source software both to extract data from the video and to apply physics principles to build models that describe, predict, and visualize the observations. Each student reports findings by creating a video lab report and posting it online; these video lab reports are then distributed to the rest of the class for peer review. In this talk, we will discuss the student and instructor experiences in courses offered to three distinct audiences in different venues: (1) a Massively Open On-line Course (MOOC) for off-campus participants, (2) a flipped/blended course for on-campus students, and, most recently, (3) a fully-online course for off-campus students.
Fully-resolved slumping of a pile of spheres in a fluid
Wang, Yayun; Sierakowski, Adam; Prosperetti, Andrea
2015-11-01
Turbidity currents form when a particle-laden fluid propagates into the lighter clear fluid in a predominantly horizontal direction. This work studies some microscopic aspects of the phenomenon by simulating numerically the evolution of a block of several hundred spheres released from an initial roughly cubic pile resting on the bottom of a liquid pool. The motion of the particles as well as the liquid flow are fully resolved by the Physalis method. The process undergoes several stages starting with an initial inertia-dominated one and ending with viscosity-dominated flow. The effects of the particle mass on the evolution of the kinetic energy of the particles and of the fluid, on the viscous energy dissipation and on the velocity of the front of the turbidity current will be analyzed. The study of the pair distribution function and of particle triads and tetrads sheds light on the evolution of the mutual particle arrangement. Supported by NSF award No CBET 1335965.
Reynolds shear stress and heat flux calculations in a fully developed turbulent duct flow
Antonia, R. A.; Kim, J.
1991-01-01
The use of a modified form of the Van Driest mixing length for a fully developed turbulent channel flow leads to mean velocity and Reynolds stress distributions that are in close agreement with data obtained either from experiments or direct numerical simulations. The calculations are then extended to a nonisothermal flow by assuming a constant turbulent Prandtl number, the value of which depends on the molecular Prandtl number. Calculated distributions of mean temperature and lateral heat flux are in reasonable agreement with the simulations. The extension of the calculations to higher Reynolds numbers provides some idea of the Reynolds number required for scaling on wall variables to apply in the inner region of the flow.
Saanouni, Kkemais; Labergère, Carl; Issa, Mazen; Rassineux, Alain
2010-06-01
This work proposes a complete adaptive numerical methodology which uses `advanced' elastoplastic constitutive equations coupling: thermal effects, large elasto-viscoplasticity with mixed non linear hardening, ductile damage and contact with friction, for 2D machining simulation. Fully coupled (strong coupling) thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under large plastic deformation developed for metal forming simulation are presented. The relevant numerical aspects concerning the local integration scheme as well as the global resolution strategy and the adaptive remeshing facility are briefly discussed. Applications are made to the orthogonal metal cutting by chip formation and segmentation under high velocity. The interactions between hardening, plasticity, ductile damage and thermal effects and their effects on the adiabatic shear band formation including the formation of cracks are investigated.
In Pursuit of Fully Flexible Protein-Ligand Docking: Modeling the Bilateral Mechanism of Binding.
Henzler, Angela M; Rarey, Matthias
2010-03-15
Modern structure-based drug design aims at accounting for the intrinsic flexibility of therapeutic relevant targets. Over the last few years a considerable amount of docking approaches that encounter this challenging problem has emerged. Here we provide the readership with an overview of established methods for fully flexible protein-ligand docking and current developments in the field. All methods are based on one of two fundamental models which describe the dynamic behavior of proteins upon ligand binding. Methods for ensemble docking (ED) model the protein conformational change before the ligand is placed, whereas induced-fit docking (IFD) optimizes the protein structure afterwards. A third category of docking approaches is formed by recent approaches that follow both concepts. This categorization allows to comprehensively discover strengths and weaknesses of the individual processes and to extract information for their applicability in real world docking scenarios.
Pion generalized parton distributions within a fully covariant constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Fanelli, Cristiano [Massachusetts Institute of Technology, Cambridge, MA (United States). Lab. for Nuclear Science; Pace, Emanuele [' ' Tor Vergata' ' Univ., Rome (Italy). Physics Dept.; INFN Sezione di TorVergata, Rome (Italy); Romanelli, Giovanni [Rutherford-Appleton Laboratory, Didcot (United Kingdom). STFC; Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Salmistraro, Marco [Rome La Sapienza Univ. (Italy). Physics Dept.; I.I.S. G. De Sanctis, Rome (Italy)
2016-05-15
We extend the investigation of the generalized parton distribution for a charged pion within a fully covariant constituent quark model, in two respects: (1) calculating the tensor distribution and (2) adding the treatment of the evolution, needed for achieving a meaningful comparison with both the experimental parton distribution and the lattice evaluation of the so-called generalized form factors. Distinct features of our phenomenological covariant quark model are: (1) a 4D Ansatz for the pion Bethe-Salpeter amplitude, to be used in the Mandelstam formula for matrix elements of the relevant current operators, and (2) only two parameters, namely a quark mass assumed to be m{sub q} = 220 MeV and a free parameter fixed through the value of the pion decay constant. The possibility of increasing the dynamical content of our covariant constituent quark model is briefly discussed in the context of the Nakanishi integral representation of the Bethe-Salpeter amplitude. (orig.)
A fully customizable MATLAB Framework for MSA based on ISO 5725 Standard
D’Aucelli, Giuseppe Maria; Giaquinto, Nicola; Mannatrizio, Sabino; Savino, Mario
2017-04-01
In this paper, a full featured MATLAB framework for Measurement System Analysis, fully compliant with the ISO 5725 Repeatability and Reproducibility (R&R) assessment is presented. While preserving the operations prescribed in the ISO standard, the software presents distinct improvements. First of all, all computations are made using exact closed-form formulae (instead of statistical tables) allowing a consistent analysis without limitations on the number of participating laboratories and measurements, and using custom significance levels of statistical tests. Second, a double threshold decision system for each test step has been implemented, helping the statistician to decide on the elimination of outliers/stragglers. Third, ANOVA analysis has been included. The software therefore, besides producing quickly and efficiently all the graphical and numerical results required in an inter-laboratory experiment, provide guidelines for properly updating the ISO 5725 standard.
A Stabilised Nodal Spectral Element Method for Fully Nonlinear Water Waves
Engsig-Karup, Allan Peter; Bigoni, Daniele
2015-01-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al (1998) \\cite{CaiEtAl1998}, although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global $L^2$ projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical...
Fractal Potential Flows as an Exact Model for Fully Developed Turbulence
Vass, József
2013-01-01
Fully Developed Turbulence (FDT) occurs at the infinite extreme of the Reynolds spectrum. It is a theoretical phenomenon which can only be approximated experimentally or computationally, and thus its precise properties are only hypothetical, though widely accepted. It is considered to be a chaotic yet steady flow field, with self-similar fractalline features. A number of approximate models exist, often exploiting this self-similarity. We hereby present the exact mathematical model of Fractal Potential Flows, and link it philosophically to the phenomenon of FDT, building on its experimental characteristics. The model hinges on the recursive iteration of a fluid dynamical transfer operator. We show the existence of its unique attractor in an appropriate function space - called the invariant flow - which will serve as our model for the FDT flow field. Its sink singularities are shown to form an IFS fractal, resolving Mandelbrot's Conjecture. Meanwhile we present an isometric isomorphism between flows and probabi...
Structure of the fully modified left-handed cyclohexene nucleic acid sequence GTGTACAC.
Robeyns, Koen; Herdewijn, Piet; Van Meervelt, Luc
2008-02-13
CeNA oligonucleotides consist of a phosphorylated backbone where the deoxyribose sugars are replaced by cyclohexene moieties. The X-ray structure determination and analysis of a fully modified octamer sequence GTGTACAC, which is the first crystal structure of a carbocyclic-based nucleic acid, is presented. This particular sequence was built with left-handed building blocks and crystallizes as a left-handed double helix. The helix can be characterized as belonging to the (mirrored) A-type family. Crystallographic data were processed up to 1.53 A, and the octamer sequence crystallizes in the space group R32. The sugar puckering is found to adopt the 3H2 half-chair conformation which mimics the C3'-endo conformation of the ribose sugar. The double helices stack on top of each other to form continuous helices, and static disorder is observed due to this end-to-end stacking.
Dual RAS Therapy Not on Target, but Fully Alive
Lambers Heerspink, H. J.; de Zeeuw, D.
2010-01-01
Inhibitors of the renin-angiotensin system (RAS) form a cornerstone in the treatment of kidney disease. These drugs lower blood pressure and albuminuria, and afford renal protection. Dual therapy with an angiotensin-converting enzyme inhibitor and angiotensin receptor blocker have been shown to be m
A novel carbon monoxide-releasing molecule fully protects mice from severe malaria.
Pena, Ana C; Penacho, Nuno; Mancio-Silva, Liliana; Neres, Rita; Seixas, João D; Fernandes, Afonso C; Romão, Carlos C; Mota, Maria M; Bernardes, Gonçalo J L; Pamplona, Ana
2012-03-01
Severe forms of malaria infection, such as cerebral malaria (CM) and acute lung injury (ALI), are mainly caused by the apicomplexan parasite Plasmodium falciparum. Primary therapy with quinine or artemisinin derivatives is generally effective in controlling P. falciparum parasitemia, but mortality from CM and other forms of severe malaria remains unacceptably high. Herein, we report the design and synthesis of a novel carbon monoxide-releasing molecule (CO-RM; ALF492) that fully protects mice against experimental CM (ECM) and ALI. ALF492 enables controlled CO delivery in vivo without affecting oxygen transport by hemoglobin, the major limitation in CO inhalation therapy. The protective effect is CO dependent and induces the expression of heme oxygenase-1, which contributes to the observed protection. Importantly, when used in combination with the antimalarial drug artesunate, ALF492 is an effective adjunctive and adjuvant treatment for ECM, conferring protection after the onset of severe disease. This study paves the way for the potential use of CO-RMs, such as ALF492, as adjunctive/adjuvant treatment in severe forms of malaria infection.
FULLY AUTOMATIC IMAGE-BASED REGISTRATION OF UNORGANIZED TLS DATA
Directory of Open Access Journals (Sweden)
M. Weinmann
2012-09-01
Full Text Available The estimation of the transformation parameters between different point clouds is still a crucial task as it is usually followed by scene reconstruction, object detection or object recognition. Therefore, the estimates should be as accurate as possible. Recent developments show that it is feasible to utilize both the measured range information and the reflectance information sampled as image, as 2D imagery provides additional information. In this paper, an image-based registration approach for TLS data is presented which consists of two major steps. In the first step, the order of the scans is calculated by checking the similarity of the respective reflectance images via the total number of SIFT correspondences between them. Subsequently, in the second step, for each SIFT correspondence the respective SIFT features are filtered with respect to their reliability concerning the range information and projected to 3D space. Combining the 3D points with 2D observations on a virtual plane yields 3D-to-2D correspondences from which the coarse transformation parameters can be estimated via a RANSAC-based registration scheme including the EPnP algorithm. After this coarse registration, the 3D points are again checked for consistency by using constraints based on the 3D distance, and, finally, the remaining 3D points are used for an ICP-based fine registration. Thus, the proposed methodology provides a fast, reliable, accurate and fully automatic image-based approach for the registration of unorganized point clouds without the need of a priori information about the order of the scans, the presence of regular surfaces or human interaction.
Computational Investigation of Hemodynamics in Fully Stenosed CABG
Institute of Scientific and Technical Information of China (English)
QIAOAi-ke; LIUYou-jun
2004-01-01
Coronary Artery Bypass Graft (CABG) is an important surgical treatment for critically stenosed arteries. Unfortunately restenosis always occurs after CABG surgery, which bring about surgery failure, lntimal thickening in the CABG distal anastomosis has been implicated as the major cause of restenosis and long-term graft failure. The nonuniform hemodynamics including disturbed flows, recirculation zones, oscillating wall shear stress, and long particle residence time were thought to be the possible etiologies. Numerical simulation was proved to be of great help and guidance meaning for the biofluid mechanics research and the CABG surgical plan. The present study was based on the hypothesis that the geometry configuration of CABG could greatly influence the hemodynamics in the vicinity of anastomosis. The hemodynamic features of two geometry models of end-to-side CABG were studied and compared. One simulated a conventional CABG with 1-way bypass graft, and the other simulated a modified CABG with symmetric 2-way bypass graft. The numerical investigations of hemodynamics in these two models with fully stenosed coronary arteries were accomplished using finite element method. The temporal and spatial distributions of hemodynamics were analyzed and compared. Results showed that the presence of symmetric 2-way bypass graft was of reasonable and favorable hemodynamics than 1-way bypass graft. The modified CABG model created a more hemodynamically efficient streamlined environment with higher mean and maximum axial velocities and lower radial velocities than the conventional 1-way model. Meanwhile, the symmetric 2-way bypass graft was featured with low pressure near the wall, high and uniform WSS in the host artery. All of these were favorable for inhibiting the development of intimal thickening, restenosis, and ultimate failure of the CABG, and it could considerably improve the flow conditions and decrease the probability of intimal hyperplasia and restenosis of CABG.
Fully automated calculation of cardiothoracic ratio in digital chest radiographs
Cong, Lin; Jiang, Luan; Chen, Gang; Li, Qiang
2017-03-01
The calculation of Cardiothoracic Ratio (CTR) in digital chest radiographs would be useful for cardiac anomaly assessment and heart enlargement related disease indication. The purpose of this study was to develop and evaluate a fully automated scheme for calculation of CTR in digital chest radiographs. Our automated method consisted of three steps, i.e., lung region localization, lung segmentation, and CTR calculation. We manually annotated the lung boundary with 84 points in 100 digital chest radiographs, and calculated an average lung model for the subsequent work. Firstly, in order to localize the lung region, generalized Hough transform was employed to identify the upper, lower, and outer boundaries of lung by use of Sobel gradient information. The average lung model was aligned to the localized lung region to obtain the initial lung outline. Secondly, we separately applied dynamic programming method to detect the upper, lower, outer and inner boundaries of lungs, and then linked the four boundaries to segment the lungs. Based on the identified outer boundaries of left lung and right lung, we corrected the center and the declination of the original radiography. Finally, CTR was calculated as a ratio of the transverse diameter of the heart to the internal diameter of the chest, based on the segmented lungs. The preliminary results on 106 digital chest radiographs showed that the proposed method could obtain accurate segmentation of lung based on subjective observation, and achieved sensitivity of 88.9% (40 of 45 abnormalities), and specificity of 100% (i.e. 61 of 61 normal) for the identification of heart enlargements.
Production of Fully Homozygous Genotypes from Various Edible Alliums
Directory of Open Access Journals (Sweden)
A. R. ALAN
2014-06-01
Full Text Available Allium is a very large genus containing over 700 distinct species including the various edible onions, garlics, chives, and leeks. About a dozen of the species are economically important as crops or garden vegetables where as many others are cultivated as ornamental plants. Allium breeding programs generally take very long time with low success due to problems such as long life cycle, sterility, polyploidy, high levels of heterozygosity. Development of inbreed lines is a very difficult process due to severe inbreeding depression. Doubled haploid (DH techniques can be utilized to obtain fully homozygous Allium materials. In Alliums, gynogenesis is the major technique used to produce haploid and DH plants from unfertilized female gamets with reduced chromosome number. We are in the process of developing gynogenesis induction protocols for several edible Allium species. We showed that gynogenic embryos can be obtained from a wide range of Allium materials. About half of the gynogenic embryos continue to grow and become plantlets. In general, gynogenic plantlets are green, but some of them show chlorophyll abnomalities. Results obtained from flow cytometric analysis of nuclei isolated from gynogenic materials indicate that majority of the gynogenic Allium materials are haploid and DH plants. DH onion lines developed in our program are generally vigorous plants with high levels of fecundity. The seeds obtained from DH onions show high germination. Plants of DH onion lines grow uniformly and produce bulbs very uniform in size, shape, color and quality features. These DH lines are excellent inbreds to be used as male parents in the production of F1 hybrid onion lines. Success obtained in DH onion materials indicates that a similar approach can be applied in the breeding programs of other important Alliums.
An unconditionally stable fully conservative semi-Lagrangian method
Lentine, Michael
2011-04-01
Semi-Lagrangian methods have been around for some time, dating back at least to [3]. Researchers have worked to increase their accuracy, and these schemes have gained newfound interest with the recent widespread use of adaptive grids where the CFL-based time step restriction of the smallest cell can be overwhelming. Since these schemes are based on characteristic tracing and interpolation, they do not readily lend themselves to a fully conservative implementation. However, we propose a novel technique that applies a conservative limiter to the typical semi-Lagrangian interpolation step in order to guarantee that the amount of the conservative quantity does not increase during this advection. In addition, we propose a new second step that forward advects any of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving kinetic energy during the advection step, but note that the divergence free projection results in a velocity field which is inconsistent with conservation of kinetic energy (even for inviscid flows where it should be conserved). For compressible flows, we rely on a recently proposed splitting technique that eliminates the acoustic CFL time step restriction via an incompressible-style pressure solve. Then our new method can be applied to conservatively advect mass, momentum and total energy in order to exactly conserve these quantities, and remove the remaining time step restriction based on fluid velocity that the original scheme still had. © 2011 Elsevier Inc.
Accurate, fully-automated NMR spectral profiling for metabolomics.
Directory of Open Access Journals (Sweden)
Siamak Ravanbakhsh
Full Text Available Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid, BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF, defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error, in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of
Fully-coupled hydrometeorological prediction of catastrophic Mediterranean floods
Rebora, N.; Gabellani, S.; Rudari, R.; Silvestro, F.; Parodi, A.; Gochis, D.
2012-12-01
On November 4th, 2011, the city of Genoa, Italy, located between the Tyrrhenian Sea and the Apennine mountains, was witness to a catastrophic flash flood. About 500 millimeters of rain -a third of the average annual rainfall- fell in approximately six hours. The waters that flooded the town center equated to an approximately 300 year flood event. Six people perished, commercial property was inundated, cars were swept away and many trees were uprooted. We analyze the performance of cloud-permitting (1 km) model simulations of the convective system responsible for this extreme event using the Advanced Research Weather and Forecasting Model (ARW-WRF, version 3.3) with its associated hydrological modeling extension ('WRF-Hydro') focusing on the utility of model quantitative precipitation forecasts (QPFs) for flash flood prediction. WRF model skill is assessed with respect to specification of cloud microphysics, convection and land surface physics parameterizations. The QPF results strongly suggest an event dominated by comparatively shallow warm rain processes where local maxima were the product of both synoptic scale dynamics and orographic enhancement over the Apennine mountain range. Land and sea surface temperature forcing was assess but found to be secondary in importance. Streamflow prediction skill from the fully coupled WRF-Hydro modeling system was compared against observations and against offline or 'uncoupled' hydrological model runs, driven by several quantitative precipitation estimate (QPEs) products. The results illustrate the significant sensitivity of the predicted (simulated) streamflow event to QPF (QPE) skill and emphasize the importance of taking into account many factors and sources of error in the hydrometeorological prediction chain. The end product of this study is a comprehensive evaluation and justification for optimal configurations of the WRF-Hydro modeling system for high-impact Mediterranean flood events for use in future forecasting
A fully dynamic magneto-rheological fluid damper model
Jiang, Z.; Christenson, R. E.
2012-06-01
Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper.
Fully Coupled Simulation of Lithium Ion Battery Cell Performance
Energy Technology Data Exchange (ETDEWEB)
Trembacki, Bradley L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murthy, Jayathi Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Scott Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.
Towards a fully printable battery : robocast deposition of separators.
Energy Technology Data Exchange (ETDEWEB)
Atanassov, Plamen Borissov (University of New Mexico); Fenton, Kyle Ross (University of New Mexico); Apblett, Christopher Alan
2010-04-01
to keep the transport rates high within the cell during charge and discharge. In order to evaluate the effect of each layer being printed using the robocasting technique, coin cells using printed separator materials were assembled and cycled vs. Li/Li{sup +}. This allows for the standardization of a test procedure in order to evaluate each layer of a printed cell one layer at a time. A typical charge/discharge curve can be seen in Figure 2 using a printed LiFePO{sub 4} cathode and a printed separator with a commercial Celgard separator. This experiment was run to evaluate the loss in capacity and slowdown of transport within the cell due to the addition of the printed separator. This cell was cycled multiple times and showed a capacity of 75 mAh/g. The ability for this cell to cycle with good capacity indicates that a fully printable separator material is viable for use in a full lithium cell due to the retention of capacity. Most of the fully printed cathode and separator cells exhibit working capacities between 65 and 95 mAh/g up to this point. This capacity should increase as the efficiency of the printed separator increases. The ability to deposit each layer within the cell allows for intimate contact of each layer and ensures for a reduction of interfacial impedance of each layer within the cell. The overall effect of printing multiple layers within the cell will be an overall increase in the ionic conductivity during charge and discharge cycles. Several different polymer membranes have been investigated for use as a printed separator. The disadvantage of using polymer separators or solid electrolyte batteries is that they have relatively low conductivities at room temperature (10{sup -6} - 10{sup -8} S cm{sup -1}). This is orders of magnitude lower than the typically accepted 10{sup -3} S cm{sup -1} needed for proper ionic transport during battery discharge Because of their low conductivity, typical polymer separators such as polyethylene oxide (PEO) have a
A Comparison Theorem for Solution of the Fully Coupled Backward Stochastic Differential Equations
Institute of Scientific and Technical Information of China (English)
郭子君; 吴让泉
2004-01-01
The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.
A novel fully conjugated phenanthroline-appended phthalocyanine: synthesis and characterisation.
Rusanova, Julia; Pilkington, Melanie; Decurtins, Silvio
2002-10-07
The synthetic route to a new fully conjugated phenanthroline appended phthalocyanine is described. This compound has been fully characterised by elemental analysis, UV-VIS, IR, MS and 1H NMR spectroscopy.
Form, its meaning, and dictionary entries
Directory of Open Access Journals (Sweden)
Violetta Koseska-Toszewa
2015-11-01
It is worth stressing that distinguishing between the form and its meaning in comparing the material 6 languages belonging to three different groups of Slavic languages (as is the case in the MONDILEX Project will allow us to avoid numeorus substantiva mistakes and erroneous conclusions. Hence dictionary entries should be verified and made uniform in that respect before they are “digitalized”... Distinction between the form and its meaning in a dictionary entry is fully possible, as shown by works of Z. Saloni (2002 and A.Przepiórkowski (2008.
Rational homotopy theory and differential forms
Griffiths, Phillip
2013-01-01
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham's theorem on simplicial complexes. In addition, Sullivan's results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma*Presentation of a natu
Adaptive municipal electronic forms
Kuiper, Pieter; Dijk, van Betsy; Bondarouk, Tanya; Ruël, Huub; Guiderdoni-Jourdain, Karine; Oiry, Ewan
2009-01-01
Adaptation of electronic forms (e-forms) seems to be a step forward to reduce the burden for people who fill in forms. Municipalities more and more offer e-forms online that can be used by citizens to request a municipal product or service or by municipal employees to place a request on behalf of a
Manufacturing processes 4 forming
Klocke, Fritz
2013-01-01
This book provides essential information on metal forming, utilizing a practical distinction between bulk and sheet metal forming. In the field of bulk forming, it examines processes of cold, warm and hot bulk forming, as well as rolling and a new addition, the process of thixoforming. As for the field of sheet metal working, on the one hand it deals with sheet metal forming processes (deep drawing, flange forming, stretch drawing, metal spinning and bending). In terms of special processes, the chapters on internal high-pressure forming and high rate forming have been revised and refined. On the other, the book elucidates and presents the state of the art in sheet metal separation processes (shearing and fineblanking). Furthermore, joining by forming has been added to the new edition as a new chapter describing mechanical methods for joining sheet metals. The new chapter “Basic Principles” addresses both sheet metal and bulk forming, in addition to metal physics, plastomechanics and computational basics; ...
Energy Technology Data Exchange (ETDEWEB)
Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-04-01
This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.
Toward Fully Automated Multicriterial Plan Generation: A Prospective Clinical Study
Energy Technology Data Exchange (ETDEWEB)
Voet, Peter W.J., E-mail: p.voet@erasmusmc.nl [Department of Radiation Oncology, Erasmus Medical Center–Daniel den Hoed Cancer Center, Groene Hilledijk 301, Rotterdam 3075EA (Netherlands); Dirkx, Maarten L.P.; Breedveld, Sebastiaan; Fransen, Dennie; Levendag, Peter C.; Heijmen, Ben J.M. [Department of Radiation Oncology, Erasmus Medical Center–Daniel den Hoed Cancer Center, Groene Hilledijk 301, Rotterdam 3075EA (Netherlands)
2013-03-01
Purpose: To prospectively compare plans generated with iCycle, an in-house-developed algorithm for fully automated multicriterial intensity modulated radiation therapy (IMRT) beam profile and beam orientation optimization, with plans manually generated by dosimetrists using the clinical treatment planning system. Methods and Materials: For 20 randomly selected head-and-neck cancer patients with various tumor locations (of whom 13 received sequential boost treatments), we offered the treating physician the choice between an automatically generated iCycle plan and a manually optimized plan using standard clinical procedures. Although iCycle used a fixed “wish list” with hard constraints and prioritized objectives, the dosimetrists manually selected the beam configuration and fine tuned the constraints and objectives for each IMRT plan. Dosimetrists were not informed in advance whether a competing iCycle plan was made. The 2 plans were simultaneously presented to the physician, who then selected the plan to be used for treatment. For the patient group, differences in planning target volume coverage and sparing of critical tissues were quantified. Results: In 32 of 33 plan comparisons, the physician selected the iCycle plan for treatment. This highly consistent preference for the automatically generated plans was mainly caused by the improved sparing for the large majority of critical structures. With iCycle, the normal tissue complication probabilities for the parotid and submandibular glands were reduced by 2.4% ± 4.9% (maximum, 18.5%, P=.001) and 6.5% ± 8.3% (maximum, 27%, P=.005), respectively. The reduction in the mean oral cavity dose was 2.8 ± 2.8 Gy (maximum, 8.1 Gy, P=.005). For the swallowing muscles, the esophagus and larynx, the mean dose reduction was 3.3 ± 1.1 Gy (maximum, 9.2 Gy, P<.001). For 15 of the 20 patients, target coverage was also improved. Conclusions: In 97% of cases, automatically generated plans were selected for treatment because of
Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation
Mansingka, Abhinav S.
2012-05-01
This thesis presents a generalized approach for the fully digital design and implementation of chaos generators through the numerical solution of chaotic ordinary differential equations. In particular, implementations use the Euler approximation with a fixed-point twos complement number representation system for optimal hardware and performance. In general, digital design enables significant benefits in terms of power, area, throughput, reliability, repeatability and portability over analog implementations of chaos due to lower process, voltage and temperature sensitivities and easy compatibility with other digital systems such as microprocessors, digital signal processing units, communication systems and encryption systems. Furthermore, this thesis introduces the idea of implementing multidimensional chaotic systems rather than 1-D chaotic maps to enable wider throughputs and multiplier-free architectures that provide significant performance and area benefits. This work focuses efforts on the well-understood family of autonomous 3rd order "jerk" chaotic systems. The effect of implementation precision, internal delay cycles and external delay cycles on the chaotic response are assessed. Multiplexing of parameters is implemented to enable switching between chaotic and periodic modes of operation. Enhanced chaos generators that exploit long-term divergence in two identical systems of different precision are also explored. Digital design is shown to enable real-time controllability of 1D multiscroll systems and 4th order hyperchaotic systems, essentially creating non-autonomous chaos that has thus far been difficult to implement in the analog domain. Seven different systems are mathematically assessed for chaotic properties, implemented at the register transfer level in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA. The statistical properties of the output are rigorously studied using the NIST SP. 800-22 statistical testing suite. The output is
Asteroid 4 Vesta: A Fully Differentiated Dwarf Planet
Mittlefehldt, David
2014-01-01
One conclusion derived from the study of meteorites is that some of them - most irons, stony irons, some achondrites - hail from asteroids that were heated to the point where metallic cores and basaltic crusts were formed. Telescopic observations show that there remains only one large asteroid with a basaltic crust, 4 Vesta; present day mean radius 263 km. The largest clan of achondrites, the howardite, eucrite and diogenite (HED) meteorites, represent the crust of their parent asteroid. Diogenites are cumulate harzburgites and orthopyroxenites from the lower crust whilst eucrites are cumulate gabbros, diabases and basalts from the upper crust. Howardites are impact-engendered breccias of diogenites and eucrites. A strong case can be made that HEDs are derived from Vesta. The NASA Dawn spacecraft orbited Vesta for 14 months returning data allowing geological, mineralogical, compositional and geophysical interpretations of Vesta's surface and structure. Combined with geochemical and petrological observations of HED meteorites, differentiation models for Vesta can be developed. Proto-Vesta probably consisted of primitive chondritic materials. Compositional evidence, primarily from basaltic eucrites, indicates that Vesta was melted to high degree (>=50%) which facilitated homogenization of the silicate phase and separation of immiscible Fe,Ni metal plus Fe sulphide into a core. Geophysical models based on Dawn data support a core of 110 km radius. The silicate melt vigorously convected and initially followed a path of equilibrium crystallization forming a harzburgitic mantle, possibly overlying a dunitic restite. Once the fraction of crystals was sufficient to cause convective lockup, the remaining melt collected between the mantle and the cool thermal boundary layer. This melt undergoes fractional crystallization to form a dominantly orthopyroxenite (diogenite) lower crust. The initial thermal boundary layer of primitive chondritic material is gradually replaced by a
A New Approach to Fully Automatic Mesh Generation
Institute of Scientific and Technical Information of China (English)
闵卫东; 张征明; 等
1995-01-01
Automatic mesh generation is one of the most important parts in CIMS (Computer Integrated Manufacturing System).A method based on mesh grading propagation which automatically produces a triangular mesh in a multiply connected planar region is presented in this paper.The method decomposes the planar region into convex subregions,using algorithms which run in linear time.For every subregion,an algorithm is used to generate shrinking polygons according to boundary gradings and form delaunay triangulation between two adjacent shrinking polygons,both in linear time.It automatically propagates boundary gradings into the interior of the region and produces satisfactory quasi-uniform mesh.
The 5D Fully-Covariant Theory of Gravitation and Its Astrophysical Applications
Directory of Open Access Journals (Sweden)
Tianxi Zhang
2014-12-01
Full Text Available In this paper, we comprehensively review the five-dimensional (5D fully-covariant theory of gravitation developed by Zhang two decades ago and its recent applications in astrophysics and cosmology. This 5D gravity describes not only the fields, but also the matter and its motion in a 5D spacetime. The greatest advantage of this theory is that there does not exist any unknown parameter, so that we can apply it to explain astrophysical and cosmological issues by quantitatively comparing the results obtained from it with observations and to predict new effects that could not be derived from any other gravitational theories. First, the 5D covariant description of matter and its motion enabled Zhang to analytically derive the fifteenth component of the 5D energy-momentum tensor of matter ( T - 44 , which significantly distinguishes this 5D gravity from other 5D gravitational theories that usually assumed a T - 44 with an unknown parameter, called the scalar charge s, and, thus, to split the 5D covariant field equation into (4 + 1 splitting form as the gravitational, electromagnetic, and scalar field equations. The gravitational field equation turns into the 4D Einstein’s field equation of general relativity if the scalar field is equal to unity. Then, Zhang solved the field equations and obtained an exact static spherically-symmetric external solution of the gravitational, electromagnetic and scalar fields, in which all integral constants were completely determined with a perfect set of simple numbers and parameters that only depend on the mass and electric charge of the matter, by comparing with the obtained weak internal solution of the fields at a large radial distance. In the Einstein frame, the exact field solution obtained from the 5D fully-covariant theory of gravitation reduces to the Schwarzschild solution when the matter is electrically neutral and the fields are weak in strength. This guarantees that the four fundamental tests (light
Maass Forms and Quantum Modular Forms
Rolen, Larry
This thesis describes several new results in the theory of harmonic Maass forms and related objects. Maass forms have recently led to a flood of applications throughout number theory and combinatorics in recent years, especially following their development by the work of Bruinier and Funke the modern understanding Ramanujan's mock theta functions due to Zwegers. The first of three main theorems discussed in this thesis concerns the integrality properties of singular moduli. These are well-known to be algebraic integers, and they play a beautiful role in complex multiplication and explicit class field theory for imaginary quadratic fields. One can also study "singular moduli" for special non-holomorphic functions, which are algebraic but are not necessarily algebraic integers. Here we will explain the phenomenon of integrality properties and provide a sharp bound on denominators of symmetric functions in singular moduli. The second main theme of the thesis concerns Zagier's recent definition of a quantum modular form. Since their definition in 2010 by Zagier, quantum modular forms have been connected to numerous different topics such as strongly unimodal sequences, ranks, cranks, and asymptotics for mock theta functions. Motivated by Zagier's example of the quantum modularity of Kontsevich's "strange" function F(q), we revisit work of Andrews, Jimenez-Urroz, and Ono to construct a natural vector-valued quantum modular form whose components. The final chapter of this thesis is devoted to a study of asymptotics of mock theta functions near roots of unity. In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. The theory of mock theta functions has been brought to fruition using the framework of harmonic Maass forms, thanks to Zwegers. Despite this understanding, little attention has been given to Ramanujan's original definition. Here we prove that Ramanujan's examples do indeed satisfy his
Ferruzzo Correa, Diego P.; Bueno, Átila M.; Castilho Piqueira, José R.
2017-04-01
In this paper we investigate stability conditions for small-amplitude periodic solutions emerging near symmetry-preserving Hopf bifurcations in a time-delayed fully-connected N-node PLL network. The study of this type of systems which includes the time delay between connections has attracted much attention among researchers mainly because the delayed coupling between nodes emerges almost naturally in mathematical modeling in many areas of science such as neurobiology, population dynamics, physiology and engineering. In a previous work it has been shown that symmetry breaking and symmetry preserving Hopf bifurcations can emerge in the parameter space. We analyze the stability along branches of periodic solutions near fully-synchronized Hopf bifurcations in the fixed-point space, based on the reduction of the infinite-dimensional space onto a two-dimensional center manifold in normal form. Numerical results are also presented in order to confirm our analytical results.
Fully Sampled Maps of Ices and Silicates in Front of Cepheus A East with Spitzer
Sonnentrucker, P; Gerakines, P A; Bergin, E A; Melnick, G J; Forrest, W J; Pipher, J L; Whittet, D C B
2007-01-01
We report the first fully sampled maps of the distribution of interstellar CO2 ices, H2O ices and total hydrogen nuclei, as inferred from the 9.7 micron silicate feature, toward the star-forming region Cepheus A East with the IRS instrument onboard the Spitzer Space Telescope. We find that the column density distributions for these solid state features all peak at, and are distributed around, the location of HW2, the protostar believed to power one of the outflows observed in this star-forming region. A correlation between the column density distributions of CO2 and water ice with that of total hydrogen indicates that the solid state features we mapped mostly arise from the same molecular clumps along the probed sight lines. We therefore derive average CO2 ice and water ice abundances with respect to the total hydrogen column density of X(CO2)_ice~1.9x10^-5 and X(H2O)_ice~7.5x10^-5. Within errors, the abundances for both ices are relatively constant over the mapped region exhibiting both ice absorptions. The ...
Fully Accessible Ag Nanoparticles within Three-dimensionally Ordered Macroporous SiO2
Institute of Scientific and Technical Information of China (English)
邬泉周; 尹强; 廖菊芳; 邓景衡; 李玉光
2005-01-01
A multi-step process was used for preparation of three-dimensionally ordered macroporous (3DOM) SiO2, in which fully accessible Ag nanoparticles are incorporated. The method involves the processes of assembly of polystyrene colloidal crystal, preparation of 3DOM SiO2, and incorporation of Ag nanoparticles within 3DOM SiO2 through in situ Tollens' reaction. XRD, SEM and EDXS determination show that the Ag particles deposited on the macroporous walls in nano dimension. The results indicate that lower concentration of silver ammoniate and for-maldehyde in the solution is favorable for forming a very narrow size distribution and uniform shape of nanoparticles. However, the higher the concentration of the solution and the more the loading times, the larger the possibility to form un-uniform particles. Ag nanoparticles can be sintered into larger and spheral particles by calcination at 600℃, but can resist sintering owing to their high dispersivity when loading amount is small. The study provided a simple approach to tailor Ag/3DOM SiO2 composite materials with desired morphology and size of Ag particles within the macropores.
Growth of carbon nanotubes on fully processed silicon-on-insulator CMOS substrates.
Haque, M Samiul; Ali, S Zeeshan; Guha, P K; Oei, S P; Park, J; Maeng, S; Teo, K B K; Udrea, F; Milne, W I
2008-11-01
This paper describes the growth of Carbon Nanotubes (CNTs) both aligned and non-aligned on fully processed CMOS substrates containing high temperature tungsten metallization. While the growth method has been demonstrated in fabricating CNT gas sensitive layers for high temperatures SOI CMOS sensors, it can be employed in a variety of applications which require the use of CNTs or other nanomaterials with CMOS electronics. In our experiments we have grown CNTs both on SOI CMOS substrates and SOI CMOS microhotplates (suspended on membranes formed by post-CMOS deep RIE etching). The fully processed SOI substrates contain CMOS devices and circuits and additionally, some wafers contained high current LDMOSFETs and bipolar structures such as Lateral Insulated Gate Bipolar Transistors. All these devices were used as test structures to investigate the effect of additional post-CMOS processing such as CNT growth, membrane formation, high temperature annealing, etc. Electrical characterisation of the devices with CNTs were performed along with SEM and Raman spectroscopy. The CNTs were grown both at low and high temperatures, the former being compatible with Aluminium metallization while the latter being possible through the use of the high temperature CMOS metallization (Tungsten). In both cases we have found that there is no change in the electrical behaviour of the CMOS devices, circuits or the high current devices. A slight degradation of the thermal performance of the CMOS microhotplates was observed due to the extra heat dissipation path created by the CNT layers, but this is expected as CNTs exhibit a high thermal conductance. In addition we also observed that in the case of high temperature CNT growth a slight degradation in the manufacturing yield was observed. This is especially the case where large area membranes with a diameter in excess of 500 microns are used.
DEFF Research Database (Denmark)
Skude, Flemming
2002-01-01
Om den arkitektoniske forms afhængighed af aerodynamik, solens nedbrydning og optimering af materialers holdbarhed.......Om den arkitektoniske forms afhængighed af aerodynamik, solens nedbrydning og optimering af materialers holdbarhed....
... this page please turn Javascript on. Forms of Arthritis Past Issues / Fall 2006 Table of Contents Today, ... of Linda Saisselin Osteoarthritis (OA) — the form of arthritis typically occurring during middle or old age, this ...
Moisã Claudia Olimpia
2011-01-01
Taking into account the suite of motivation that youth has when practicing tourism, it can be said that the youth travel takes highly diverse forms. These forms are educational tourism, volunteer programs and “work and travel”, cultural exchanges or sports tourism and adventure travel. In this article, we identified and analyzed in detail the main forms of youth travel both internationally and in Romania. We also illustrated for each form of tourism the specific tourism products targeting you...
Moore, Paula
1998-01-01
Uses the work of M. C. Escher to instruct upper elementary students in the transformation of flat shape into three-dimensional form. Outlines the lesson as a series of sections: (1) reviewing form drawing; (2) creating three-dimensional effects; (3) imagining the forms in an inhabited world; and (4) using color and shading. (DSK)
Energy Technology Data Exchange (ETDEWEB)
Frederic D. R. Bonnet; Robert G. Edwards; George T. Fleming; Randal Lewis; David Richards
2003-07-22
We have started a program to compute the electromagnetic form factors of mesons. We discuss the techniques used to compute the pion form factor and present preliminary results computed with domain wall valence fermions on MILC asqtad lattices, as well as Wilson fermions on quenched lattices. These methods can easily be extended to rho-to-gamma-pi transition form factors.
Barrel Toroid fully charged to nominal field, and it works!
Herman ten Kate
After a few weeks of testing up to intermediate currents, finally, on Thursday evening November 9, the current in the Barrel Toroid was pushed up to its nominal value of 20500 A and even 500 A beyond this value to prove that we have some margin. It went surprisingly well. Of course, the 8 coils forming the toroid were already tested individually at the surface but still, some surprise may have come from those parts added to the toroid in the cavern for the first time like the 8 cryoring sections linking the coils as well as the valve box at the bottom in sector 13 regulating the helium flow or the current lead cryostat on the top in sector 5. No training quenches, nothing to worry about, and the test was concluded with a fast dump triggered at 00:40 in the very early morning of November 10. (left) The toroid current during the evening and night of November 9. (right) The test crew oscillated between fear and hope while looking at the control panels as the current approached 21kA. Big relief was in the...
Mapping hematopoiesis in a fully regenerative vertebrate: the axolotl.
Lopez, David; Lin, Li; Monaghan, James R; Cogle, Christopher R; Bova, Frank J; Maden, Malcolm; Scott, Edward W
2014-08-21
Hematopoietic stem cell (HSC)-derived cells are involved in wound healing responses throughout the body. Unfortunately for mammals, wound repair typically results in scarring and nonfunctional reparation. Among vertebrates, none display such an extensive ability for adult regeneration as urodele amphibians, including 1 of the more popular models: the axolotl. However, a lack of knowledge of axolotl hematopoiesis hinders the use of this animal for the study of hematopoietic cells in scar-free wound healing and tissue regeneration. We used white and cytomegalovirus:green fluorescent protein(+) transgenic white axolotl strains to map sites of hematopoiesis and develop hematopoietic cell transplant methodology. We also established a fluorescence-activated cell sorter enrichment technique for major blood lineages and colony-forming unit assays for hematopoietic progenitors. The liver and spleen are both active sites of hematopoiesis in adult axolotls and contain transplantable HSCs capable of long-term multilineage blood reconstitution. As in zebrafish, use of the white axolotl mutant allows direct visualization of homing, engraftment, and hematopoiesis in real time. Donor-derived hematopoiesis occurred for >2 years in recipients generating stable hematopoietic chimeras. Organ segregation, made possible by embryonic microsurgeries wherein halves of 2 differently colored embryos were joined, indicate that the spleen is the definitive site of adult hematopoiesis.
Microstructure and fracture analysis of fully ceramic microencapsulated fuel
Energy Technology Data Exchange (ETDEWEB)
Lee, H. G.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, S. J. [KEPCO, Daejeon (Korea, Republic of)
2015-05-15
Nuclear fuel enhancing the accident tolerance is satisfied two parts. First, the performance has to be retained compared to the existing UO{sub 2} nuclear fuel and zircaloy cladding system under the normal operation condition. Second, under the severe accident condition, the high temperature structural integrity has to be kept and the generation rate of hydrogen has to be reduced largely. FCM nuclear fuel is composed of tristructural isotropic(TRISO) fuel particle and SiC ceramic matrix. SiC ceramic matrix play an essential part in protecting fission product. In the FCM fuel concept, fission product is doubly protected by TRISO coating layer and SiC ceramic matrix compared to the current commercial UO{sub 2} fuel system. SiC ceramic has excellent properties for fuel application. SiC ceramic has low neutron absorption cross-section, excellent irradiation resistivity and high thermal conductivity. Additionally, the relative thermal conductivity of the SiC ceramic as compared to UO{sub 2} is quite good, reducing operational release of fission products form the fuel. TRISO coating layer which is deposited on UO{sub 2} kernel is consists of PyC/SiC/PyC trialyer and buffer PyC layer. SiC matrix composite with TRISO particle was fabricated by hot pressing. 3 to 20 wt.% of sintering additives were added to investigate reaction between sintering additives and outer PyC layer of TRISO coating layer. The relative densities of all specimens show above 92%. The reaction between sintering additives and PyC is observed in most TRISO particles, the thickness of reactants shows about ten micrometers. The thermal shock resistance of SiC matrix composite was investigated.
Catani, Stefano; Cieri, Leandro; de Florian, Daniel; Ferrera, Giancarlo; Grazzini, Massimiliano
2012-02-17
We consider direct diphoton production in hadron collisions, and we compute the next-to-next-to-leading order QCD radiative corrections at the fully differential level. Our calculation uses the q(T) subtraction formalism, and it is implemented in a parton-level Monte Carlo program. The program allows the user to apply arbitrary kinematical cuts on the final-state photons and the associated jet activity and to compute the corresponding distributions in the form of bin histograms. We present selected numerical results related to Higgs boson searches at the LHC and corresponding results at the Tevatron.
Lestriez, P.; Cherouat, A.; Saanouni, K.; Mariage, J. F.
2004-06-01
A fully coupled (strong coupling) thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under large plastic deformation developed for metal forming simulation are presented. The relevant numerical aspects concerning either the local integration scheme as well as the global resolution strategy are discussed. This model is implemented into ABAQUS/EXPLICIT using the Vumat user subroutine. Applications are made to the orthogonal metal cutting by chip formation and segmentation. The interaction between hardening plasticity, ductile damage and thermal effects are carefully analyzed. The numerical results obtained with this procedure based on the damage coupling are compared with those obtained with the classical procedure neglecting the damage effect.
2013-01-01
Micro Metal Forming, i. e. forming of parts and features with dimensions below 1 mm, is a young area of research in the wide field of metal forming technologies, expanding the limits for applying metal forming towards micro technology. The essential challenges arise from the reduced geometrical size and the increased lot size. In order to enable potential users to apply micro metal forming in production, information about the following topics are given: tribological behavior: friction between tool and work piece as well as tool wear mechanical behavior: strength and formability of the work piece material, durability of the work pieces size effects: basic description of effects occurring due to the fact, that the quantitative relation between different features changes with decreasing size process windows and limits for forming processes tool making methods numerical modeling of processes and process chains quality assurance and metrology All topics are discussed with respect to the questions relevant to micro...
Cooperative Station History Forms
National Oceanic and Atmospheric Administration, Department of Commerce — Various forms, photographs and correspondence documenting the history of Cooperative station instrumentation, location changes, inspections, and...
Forming of superplastic ceramics
Energy Technology Data Exchange (ETDEWEB)
Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.
1994-05-01
Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.
Electronic Capitalization Asset Form
Department of Transportation — National Automated Capitalization Authorization Form used by ATO Engineering Services, Logistics, Accounting for the purpose of identifying and capturing FAA project...
Domain-wall induced XY disorder in the fully frustrated XY model
Granato, Enzo
1987-02-01
The defect-mediated phase transition in the fully frustrated XY model is discussed. A Migdal-Kadanoff position-space renormalization group analysis is employed to investigate the critical behavior of a similar model in the same universality class as the fully frustrated XY model. The resulting phase diagram shows that XY order cannot co-exist with Ising disorder. This is in agreement with recently suggested phase-transition scenario in the fully frustrated XY model.
Dan, Li; Guo, Li-Xin; Li, Jiang-Ting; Chen, Wei; Yan, Xu; Huang, Qing-Qing
2017-09-01
The expression of complex dielectric permittivity for non-magnetized fully ionized dusty plasma is obtained based on the kinetic equation in the Fokker-Planck-Landau collision model and the charging equation of the statistical theory. The influences of density, average size of dust grains, and balanced charging of the charge number of dust particles on the attenuation properties of electromagnetic waves in fully ionized dusty plasma are investigated by calculating the attenuation constant. In addition, the attenuation characteristics of weakly ionized and fully ionized dusty plasmas are compared. Results enriched the physical mechanisms of microwave attenuation for fully ionized dusty plasma and provide a theoretical basis for future studies.
Kubis, B; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.
1999-01-01
We calculate the form factors of the baryon octet in the framework of heavy baryon chiral perturbation theory. The calculated charge radius of the show that kaon loop effects can play a significant role in the neutron electric form factor. Furthermore. we derive generalized Caldi-Pagels relations between various charge radii which are free of chiral loop effects.
Method of forming nanodielectrics
Tuncer, Enis [Knoxville, TN; Polyzos, Georgios [Oak Ridge, TN
2014-01-07
A method of making a nanoparticle filled dielectric material. The method includes mixing nanoparticle precursors with a polymer material and reacting the nanoparticle mixed with the polymer material to form nanoparticles dispersed within the polymer material to form a dielectric composite.
DEFF Research Database (Denmark)
Brabrand, Claus; Møller, Anders; Ricky, Mikkel
2000-01-01
All uses of HTML forms may benefit from validation of the specified input field values. Simple validation matches individual values against specified formats, while more advanced validation may involve interdependencies of form fields. There is currently no standard for specifying or implementing...
Gupta, Gaurav
2013-01-01
This tutorial will show you how to create stylish forms, not only visually appealing, but interactive and customized, in order to gather valuable user inputs and information.Enhance your skills in building responsive and dynamic web forms using HTML5, CSS3, and related technologies. All you need is a basic understanding of HTML and PHP.
Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock.
Gooch, Van D; Mehra, Arun; Larrondo, Luis F; Fox, Julie; Touroutoutoudis, Melissa; Loros, Jennifer J; Dunlap, Jay C
2008-01-01
We report the complete reconstruction of the firefly luciferase gene, fully codon optimized for expression in Neurospora crassa. This reporter enhances light output by approximately 4 log orders over that with previously available versions, now producing light that is visible to the naked eye and sufficient for monitoring the activities of many poorly expressed genes. Time lapse photography of strains growing in race tubes, in which the frq or eas/ccg-2 promoter is used to drive luciferase, shows the highest levels of luciferase activity near the growth front and newly formed conidial bands. Further, we have established a sorbose medium colony assay that will facilitate luciferase-based screens. The signals from sorbose-grown colonies of strains in which the frq promoter drives luciferase exhibit the properties of circadian rhythms and can be tracked for many days to weeks. This reporter now makes it possible to follow the clock in real time, even in strains or under conditions in which the circadian rhythm in conidial banding is not expressed. This property has been used to discover short, ca. 15-h period rhythms at high temperatures, at which banding becomes difficult to observe in race tubes, and to generate a high-resolution temperature phase-response curve.
On the unsteady wake dynamics behind a circular disk using fully 3D proper orthogonal decomposition
Yang, Jianzhi; Liu, Minghou; Wu, Guang; Gu, Hailin; Yao, Mengyun
2017-02-01
In the present work, the wakes behind a circular disk at various transitional regimes are numerically explored using fully 3D proper orthogonal decomposition (POD). The Reynolds numbers considered in this study (Re = 152, 170, 300 and 3000) cover four transitional states, i.e. the reflectional-symmetry-breaking (RSB) mode, the standing wave (SW) mode, a weakly chaotic state, and a higher-Reynolds-number state. Through analysis of the spatial POD modes at different wake states, it is found that a planar-symmetric vortex shedding mode characterized by the first mode pair is persistent in all the states. When the wake develops into a weakly chaotic state, a new vortex shedding mode characterized by the second mode pair begins to appear and completely forms at the higher-Reynolds-number state of Re = 3000, i.e. planar-symmetry-breaking vortex shedding mode. On the other hand, the coherent structure at Re = 3000 extracted from the first two POD modes shows a good resemblance to the wake configuration in the SW mode, while the coherent structure reconstructed from the first four POD modes shows a good resemblance to the wake configuration in the RSB mode. The present results indicate that the dynamics or flow instabilities observed at transitional RSB and SW modes are still preserved in a higher-Reynolds-number regime.
White, J. A.; Borja, R. I.; Ebel, B. A.; Loague, K.
2009-12-01
This work presents a physics-based framework for continuum modeling of hydrologically-driven slope failure. The analyses employ a mixed finite element formulation for variably-saturated geomaterials undergoing elastoplastic deformations. The deforming soil mass is treated as a multiphase continuum, and the governing mass and momentum balance equations are solved in a fully-coupled manner. This tight coupling is necessary to capture key features of slope behavior. To test the coupled formulation, we present a three-dimensional slope analysis motivated by a 1996 landslide that occurred at a steep experimental catchment (CB1) near Coos Bay, Oregon. Simulations are used to quantify the rainfall-induced slope deformation and assess the failure potential. Results of parametric studies suggest that for a steep hillslope underlain by bedrock, similar to the CB1 site, failure would occur by a multiple slide block mechanism, with progressive failure surfaces forming at the bedrock interface and propagating to the surface. Extensive field observations and experimental measurements made at the CB1 site provide a rich data set to calibrate and evaluate the proposed numerical model. We take the opportunity, however, to point out those features of the model that are not well-constrained by available field data, but which may play an important role in determing the timing and location of failure. These observations are used to assess the current state of predictive capability of the slope simulations, and to inform the design of future field experiments.
Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows
Energy Technology Data Exchange (ETDEWEB)
Xu, X Q; Belli, E; Bodi, K; Candy, J; Chang, C S; Cohen, B I; Cohen, R H; Colella, P; Dimits, A M; Dorr, M R; Gao, Z; Hittinger, J A; Ko, S; Krasheninnikov, S; McKee, G R; Nevins, W M; Rognlien, T D; Snyder, P B; Suh, J; Umansky, M V
2008-09-18
We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.
A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves.
Harb, M S; Yuan, F G
2015-08-01
A rapid, fully non-contact, hybrid system which encompasses an air-coupled transducer (ACT) and a laser Doppler vibrometer (LDV) is presented for profiling A0 Lamb wave dispersion of an isotropic aluminum plate. The ACT generates ultrasonic pressure incident upon the surface of the plate. The pressure waves are partially refracted into the plate. The LDV is employed to measure the out-of-plane velocity of the excited Lamb wave mode at some distances where the Lamb waves are formed in the plate. The influence of the ACT angle of incidence on Lamb wave excitation is investigated and Snell's law is used to directly compute Lamb wave dispersion curves including phase and group velocity dispersion curves in aluminum plates from incident angles found to generate optimal A0 Lamb wave mode. The measured curves are compared to results obtained from a two-dimensional (2-D) Fast Fourier transform (FFT), Morlet wavelet transform (MWT) and theoretical predictions. It was concluded that the experimental results obtained using Snell's law concept are well in accordance with the theoretical solutions. The high degree of accuracy in the measured data with the theoretical results proved a high sensitivity of the air-coupled and laser ultrasound in characterizing Lamb wave dispersion in plate-like structures. The proposed non-contact hybrid system can effectively characterize the dispersive relation without knowledge of neither the materials characteristics nor the mathematical model.
Fully digital controlled A.C. servo engraving machine based on DEC4DA
Shu, Zhibing; Chen, Xianfeng; Zhang, Hairong; Huang, Yiqun; Yan, Caizhong
2005-12-01
A novel engraving machine (NUT-1A) is presented, in which fully digital controlled AC system based on DEC4DA was used to improve the machining precision and sensitivity. This engraving machine was constructed around AC servo motor with encoder, controlled by a servo motor control card - DEC4DA. As the upper unit of AC servo motor, DEC4DA was a numerical control generator, which received pulses form CPU by ISA bus, and these pulses were amplified and converted to drive AC servo actuator. This novel engraving machine can achieve a higher positioning accuracy of +/-0.01mm and positioning repetition of +/-0.005mm, and its resolution is 0.001mm/0.0001mm. Moreover, because of multi-closed loops were used in the system, the steady and transient performances are more excellent. This system ensures a much quicker current regulation in closed-loop operation, of acceleration and braking in both directions, as well as stable speed characteristics. Amplifier boards are protected against excessive current, excessive temperature and short circuiting of the motor supply cables.
Aquila, Iolanda; Fernández-Golfín, Covadonga; Rincon, Luis Miguel; González, Ariana; García Martín, Ana; Hinojar, Rocio; Jimenez Nacher, Jose Julio; Indolfi, Ciro; Zamorano, Jose Luis
2016-12-01
Three-dimensional (3D) transesophageal echocardiography (TEE) is the gold standard for mitral valve (MV) anatomic and functional evaluation. Currently, dedicated MV analysis software has limitations for its use in clinical practice. Thus, we tested here a complete and reproducible evaluation of a new fully automatic software to characterize MV anatomy in different forms of mitral regurgitation (MR) by 3D TEE.Sixty patients were included: 45 with more than moderate MR (28 organic MR [OMR] and 17 functional MR [FMR]) and 15 controls. All patients underwent TEE. 3D MV images obtained using 3D zoom were imported into the new software for automatic analysis. Different MV parameters were obtained and compared. Anatomic and dynamic differences between FMR and OMR were detected. A significant increase in systolic (859.75 vs 801.83 vs 607.78 mm; P = 0.002) and diastolic (1040.60 vs. 1217.83 and 859.74 mm; P software analysis automatically calculates several significant parameters that provide a correct and complete assessment of anatomy and dynamic mitral annulus geometry and displacement in the 3D space. This analysis allows a better characterization of MR pathophysiology and could be useful in designing new devices for MR repair or replacement.
An Improved Nearshore Wave Breaking Model Based on the Fully Nonlinear Boussinesq Equations
Institute of Scientific and Technical Information of China (English)
LI Shao-wu; LI Chun-ying; SHI Zhong; GU Han-bin
2005-01-01
This paper aims to propose an improved numerical model for wave breaking in the nearshore region based on the fully nonlinear form of Boussinesq equations. The model uses the κ equation turbulence scheme to determine the eddy viscosity in the Boussinesq equations. To calculate the turbulence production term in the equation, a new formula is derived based on the concept of surface roller. By use of this formula, the turbulence production in the one-equation turbulence scheme is directly related to the difference between the water particle velocity and the wave celerity. The model is verified by Hansen and Svendsen's experimental data (1979) in terms of wave height and setup and setdown. The comparison between the model and experimental results of wave height and setup and setdown shows satisfactory agreement. The modeled turbulence energy decreases as waves attenuate in the surf zone. The modeled production term peaks at the breaking point and decreases as waves propagate shoreward. It is also suggested that both convection and diffusion play their important roles in the transport of turbulence energy immediately after wave breaking. When waves approach to the shoreline, the production and dissipation of turbulence energy are almost balanced. By use of the slot technique for the simulation of the movable shoreline boundary, wave runup in the swash zone is well simulated by the present model.
de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M
2011-11-01
Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation.
Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark
2013-01-01
Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.
Directory of Open Access Journals (Sweden)
M. Saiful Huq
2013-01-01
Full Text Available A simulation based study of a completely new form of body-weight supported treadmill training (BWSTT technique which is fully passive in nature is presented in this paper. The approach does not require any powered means at the lower limbs and is implemented using a combination of coordinated joint locking/unlocking and flexible torque transfer mechanisms. The hip extension pertaining to the stance phase of the gait cycle is achieved through the stance foot being literally dragged by the treadmill belt while the required manoeuvring of the trunk is expected to be accomplished by the voluntary arm-support from the subject. The swing phase, on the other hand, is initiated through appropriately coupling the swing knee with the contralateral extending hip and eventually achieve full knee extension through switching the treadmill speed to a lower value. Considering adequate support from the able arms, the process effectively turns the frictional force at the foot-treadmill belt interface into an agent causing the required whole body mechanical energy fluctuation during the gait cycle.
Ultrafast transient mid IR to visible spectroscopy of fully reduced flavins.
Zhao, Rui-Kun; Lukacs, Andras; Haigney, Allison; Brust, Richard; Greetham, Gregory M; Towrie, Michael; Tonge, Peter J; Meech, Stephen R
2011-10-21
The light sensing apparatus of many organisms includes a flavoprotein. In any spectroscopic analysis of the photocycle of flavoproteins a detailed knowledge of the spectroscopy and excited state dynamics of potential intermediates is required. Here we correlate transient vibrational and electronic spectra of the two fully reduced forms of flavin adenine dinucleotide (FAD): FADH(-) and FADH(2). Ground and excited state frequencies of the characteristic carbonyl modes are observed and assigned with the aid of DFT calculations. Excited state decay and ground state recovery dynamics of the two states are reported. Excited state decay occurs on the picosecond timescale, in agreement with the low fluorescence yield, and is markedly non single exponential in FADH(-). Further, an unusual 'inverse' isotope effect is observed in the decay time of FADH(-), suggesting the involvement in the radiationless relaxation coordinate of an NH or hydrogen bond mode that strengthens in the excited electronic state. Ground state recovery also occurs on the picosecond time scale, consistent with radiationless decay by internal conversion, but is slower than the excited state decay.
Gates, W. G.
1982-05-01
Bendix product applications require the capability of fabricating heavy gage, high strength materials. Five commercial sources have been identified that have the capability of spin forming metal thicknesses greater than 9.5 mm and four equipment manufacturers produce machines with this capability. Twelve assemblies selected as candidates for spin forming applications require spin forming of titanium, 250 maraging steel, 17-4 pH stainless steel, Nitronic 40 steel, 304 L stainless steel, and 6061 aluminum. Twelve parts have been cold spin formed from a 250 maraging steel 8.1 mm wall thickness machine preform, and six have been hot spin formed directly from 31.8-mm-thick flat plate. Thirty-three Ti-6Al-4V titanium alloy parts and 26 17-4 pH stainless steel parts have been hot spin formed directly from 31.8-mm-thick plate. Hot spin forming directly from plate has demonstrated the feasibility and favorable economics of this fabrication technique for Bendix applications.
Laser assisted forming techniques
Kratky, Alexander
2007-05-01
During forming processes high deformations rates can lead to cracks and rupture very easily. Especially brittle materials like titanium or magnesium make difficulties in forming. Due to the dependence of the yield strength on temperature, forming at elevated temperatures eases processing of such materials. Since forming takes place only at localized areas of the work piece selective heating is suffcient and advantageous in most cases. Selective Laser heating offers a possibility to heat only the areas of the work piece where strongest deformations are required. For this purpose several laser sources have been tested like CO II, Diode and Nd:YAG Lasers and their advantages and disadvantages in localized heating of the work pieces will be discussed. The work presented here summarizes research activities at the Institute for Forming and High Power Laser Technology, Vienna University of Technology, on laser assisted deep drawing, laser assisted bending, wire drawing and so on during the last decade. Recent developments like roll profiling, incremental forming processes and hydro forming are discussed briefly.
Flux form Semi-Lagrangian methods for parabolic problems
Bonaventura, Luca
2015-01-01
A semi-Lagrangian method for parabolic problems is proposed, that extends previous work by the authors to achieve a fully conservative, flux-form discretization of linear and nonlinear diffusion equations. A basic consistency and convergence analysis are proposed. Numerical examples validate the proposed method and display its potential for consistent semi-Lagrangian discretization of advection--diffusion and nonlinear parabolic problems.
DEFF Research Database (Denmark)
Jaeger, Thomas Arvid
2012-01-01
a common professional language like in mathematics, colour and music. The result is a weaker professionalism in the aesthetic competences compared to the professionalism and competences in other areas. A research project [1] on contrasts or opposites in form investigated the phenomenon in the fields...... by this model, and using the knowledge gathered from the other areas, especially perception psychology, it showed to be a possible way to organize contrasts in form, a system of 4 different opposites, geometric, organic, mass and structure: The Circle of Form....
Forms of matter and forms of radiation
Kleman, Maurice
2009-01-01
The theory of defects in ordered and ill-ordered media is a well-advanced part of condensed matter physics. Concepts developed in this field also occur in the study of spacetime singularities, namely: i)- the topological theory of quantized defects (Kibble's cosmic strings) and ii)- the Volterra process for continuous defects, used to classify the Poincar\\'e symmetry breakings. We reassess the classification of Minkowski spacetime defects in the same theoretical frame, starting from the conjecture that these defects fall into two classes, as on they relate to massive particles or to radiation. This we justify on the empirical evidence of the Hubble's expansion. We introduce timelike and null congruences of geodesics treated as ordered media, viz. 'm'-crystals of massive particles and 'r'-crystals of massless particles, with parallel 4-momenta in M^4. Classifying their defects (or 'forms') we find (i) 'm'- and 'r'- Volterra continuous line defects and (ii) quantized topologically stable 'r'-defects, these latt...
A mathematical model for preflush treatment in an oil reservoir using a fully miscible fluid
F.J. Vermolen; G.-J. Pieters; P.L.J. Zitha; J. Bruining
1999-01-01
textabstractIn this paper we propose and analyse a mathematical model for preflush treatment in an oil reservoir. The model is based on two phase flow in which both phases are fully miscible. For the case of constant injection rate condition, fully implicit solutions can be constructed. Saturation p
The innovational mining technology of fully mechanized mining on thin coal seam
Energy Technology Data Exchange (ETDEWEB)
Sheng, G.; Sun, Q.; Song, H. [China Ocean University, Qingdao (China)
2007-03-15
The paper describes the innovational fully mechanized mining technology practised on thin coal seams in Tianchen coal mine. This mining technology combined fully mechanized mining and orthodox working face mining. The technology is suitable for mining of particularly thin coal seams. 7 refs., 1 fig., 1 tab.
Energy recuperation in fully electric vehicles subject to stability and drivability requirements
Ólafsdóttir, J.M.; Lidberg, M.; Falcone, P.; Iersel, S. van; Jansen, S.T.H.
2012-01-01
This paper presents a combined control and estimation framework for energy recuperation in fully electric vehicles. We consider a fully electric powertrain, with a driven front axle operating on low friction road surfaces. Our objective is to find the blending of regenerative and friction braking th
Agrawal, S; Mirabella, E
2011-01-01
We present additions and improvements in Version 7 of FormCalc, most notably analytic tensor reduction, choice of OPP methods, and MSSM initialization via FeynHiggs, as well as a parallelized Cuba library for numerical integration.
... Share Your Story Give Us Feedback - A + A Transplant Center Search Form Welcome to the Blood & Marrow ... transplant centers for patients with a particular disease. Transplant Center login Username: * Password: * Request new password Join ...
National Oceanic and Atmospheric Administration, Department of Commerce — These output tables contain parsed and format validated data from the various VMS forms that are sent from any given vessel, while at sea, from the VMS devices on...
Directory of Open Access Journals (Sweden)
TWC Editor
2014-09-01
Full Text Available This issue showcases a variety of investigations into a myriad of platforms, featuring several essays that switch the focus from content to form and illustrate the importance of a range of different fan engagements.
National Oceanic and Atmospheric Administration, Department of Commerce — The data set contains information from submitted NOAA Form 370s, also known as the Fisheries Certificate of Origin, for imported shipments of frozen and/or processed...
Herzog, Franz; Ueda, Takahiro; Vermaseren, J A M; Vogt, Andreas
2016-01-01
We discuss a number of FORM features that are essential in the automatic processing of very large numbers of diagrams as used in the Forcer program for 4-loop massless propagator diagrams. Most of these features are new.
HR Department
2005-01-01
As announced in Weekly Bulletin 48/2004, from now onwards, the paper MAPS appraisal report form has been replaced by an electronic form, which is available via EDH (on the EDH desktop under Other Tasks / HR & Training) No changes have been made to the contents of the form. Practical information will be available on the web page http://cern.ch/ais/projs/forms/maps/info.htm, and information meetings will be held on the following dates: 18 January 2005: MAIN AUDITORIUM (500-1-001) from 14:00 to 15:30. 20 January 2005: AB AUDITORIUM II (864-1-D02) from14:00 to 15:30. 24 January 2005: AT AUDITORIUM (30-7-018) from 10:00 to 11:30. Human Resources Department Tel. 73566
DEFF Research Database (Denmark)
Hansbøl, Mikala
det vi undersøger på form gennem vores beskrivelser. Paperet tager afsæt i empiriske eksempler fra et postdoc projekt om et såkaldt 'serious game' - Mingoville. Projektet følger circuleringer og etableringer af Mingoville 'på en global markedsplads'. I paperet diskuteres hvordan vi som forskere samler....../performer de fænomener vi forsker i. Aktør-Netværks-Teoretiker Bruno Latour (2005) pointerer at enhver beskrivelse også er en form for forklaring. En form for forklaring, der putter ting ind i et skript og dermed også putter ting på form. Paperet diskuterer to tilgange til at gøre serious games og derved skabe viden om...... engagementer med disse fænomener i serious games forskning: experimentel og etnografisk....
DEFF Research Database (Denmark)
Jensen, Henrik
2002-01-01
Kompendiet gennemgår 3d-modellering, lyssætning og rendering med form-Z. Kurset er opbygget over CAD Clasic skabelonen (se min forskning). Kompendiet kan bruges til selvstudie.......Kompendiet gennemgår 3d-modellering, lyssætning og rendering med form-Z. Kurset er opbygget over CAD Clasic skabelonen (se min forskning). Kompendiet kan bruges til selvstudie....
Achieving form in autobiography
Directory of Open Access Journals (Sweden)
Nicholas (Nick Meihuizen
2014-06-01
Full Text Available This article argues that, unlike biographies which tend to follow patterns based on conventional expectations, salient autobiographies achieve forms unique to themselves. The article draws on ideas from contemporary formalists such as Peter McDonald and Angela Leighton but also considers ideas on significant form stemming from earlier writers and critics such as P.N. Furbank and Willa Cather. In extracting from these writers the elements of what they consider comprise achieved form, the article does not seek to provide a rigid means of objectively testing the formal attributes of a piece of writing. It rather offers qualitative reminders of the need to be alert to the importance of form, even if the precise nature of this importance is not possible to define. Form is involved in meaning, and this continuously opens up possibilities regarding the reader’s relationship with the work in question. French genetic critic Debray Genette distinguishes between ‘semantic effect’ (the direct telling involved in writing and ‘semiological effect’ (the indirect signification involved. It is the latter, the article argues in summation, which gives a work its singular nature, producing a form that is not predictable but suggestive, imaginative.
Evans, Jared A
2016-01-01
This manual describes the usage and structure of FormFlavor, a Mathematica-based tool for computing a broad list of flavor and CP observables in general new physics models. Based on the powerful machinery of FeynArts and FormCalc, FormFlavor calculates the one-loop Wilson coefficients of the dimension 5 and 6 Standard Model effective Lagrangian entirely from scratch. These Wilson coefficients are then evolved down to the low scale using one-loop QCD RGEs, where they are transformed into flavor and CP observables. The last step is accomplished using a model-independent, largely stand-alone package called FFObservables that is included with FormFlavor. The SM predictions in FFObservables include up-to-date references and accurate current predictions. Using the functions and modular structure provided by FormFlavor, it is straightforward to add new observables. Currently, FormFlavor is set up to perform these calculations for the general, non-MFV MSSM, but in principle it can be generalized to arbitrary FeynArts...
Energy Technology Data Exchange (ETDEWEB)
Wald, J.W.; Lokken, R.O.; Shade, J.W.; Rusin, J.M.
1980-12-01
A number of alternative process and waste form options exist for the immobilization of nuclear wastes. Although data exists on the characterization of these alternative waste forms, a straightforward comparison of product properties is difficult, due to the lack of standardized testing procedures. The characterization study described in this report involved the application of the same volatility, mechanical strength and leach tests to ten alternative waste forms, to assess product durability. Bulk property, phase analysis and microstructural examination of the simulated products, whose waste loading varied from 5% to 100% was also conducted. The specific waste forms investigated were as follows: Cold Pressed and Sintered PW-9 Calcine; Hot Pressed PW-9 Calcine; Hot Isostatic Pressed PW-9 Calcine; Cold Pressed and Sintered SPC-5B Supercalcine; Hot Isostatic pressed SPC-5B Supercalcine; Sintered PW-9 and 50% Glass Frit; Glass 76-68; Celsian Glass Ceramic; Type II Portland Cement and 10% PW-9 Calcine; and Type II Portland Cement and 10% SPC-5B Supercalcine. Bulk property data were used to calculate and compare the relative quantities of waste form volume produced at a spent fuel processing rate of 5 metric ton uranium/day. This quantity ranged from 3173 L/day (5280 Kg/day) for 10% SPC-5B supercalcine in cement to 83 L/day (294 Kg/day) for 100% calcine. Mechanical strength, volatility, and leach resistance tests provide data related to waste form durability. Glass, glass-ceramic and supercalcine ranked high in waste form durability where as the 100% PW-9 calcine ranked low. All other materials ranked between these two groupings.
DEFF Research Database (Denmark)
Knudsen, Morten
2011-01-01
and kept out of sight in the decision processes by looking at a specific case study involving the construction of a model intended to control, and render transparent, the quality of health services in Denmark. This paper outlines the forms of inattentiveness which make communication blind to information...... that could question the quality model. Five forms of inattentiveness are identified that function as answers to the question of how communication avoids actualizing relevant but also potentially destructive information. This study documents a considerable amount of blindness to potentially relevant themes...... and it points to activities that produce this blindness as they reduce the probability that potentially destructive subjects are actualized. Information is not only something organizations need, but may also be something they protect themselves against. In that case, the forms of inattentiveness may...
Biffis, Andrea; Dvorakova, Gita; Falcimaigne-Cordin, Aude
2012-01-01
The current state of the art in the development of methodologies for the preparation of MIPs in predetermined physical forms is critically reviewed, with particular attention being paid to the forms most widely employed in practical applications, such as spherical beads in the micro- to nanometer range, microgels, monoliths, membranes. Although applications of the various MIP physical forms are mentioned, the focus of the paper is mainly on the description of the various preparative methods. The aim is to provide the reader with an overview of the latest achievements in the field, as well as with a mean for critically evaluating the various proposed methodologies towards an envisaged application. The review covers the literature up to early 2010, with special emphasis on the developments of the last 10 years.
Energy Technology Data Exchange (ETDEWEB)
Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin
2016-06-21
Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.
Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin
2016-06-21
Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.
Metallurgy and properties of plasma spray formed materials
Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.
1992-01-01
Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.
DEFF Research Database (Denmark)
Thomsen, Bente Dahl; Madsen, Klaus
2011-01-01
Projektet ’Incitament til Form' har identificeret en række tematiske angreb på formstudier - i stærkt papir – som skaber nye former, hvor af en eller flere ofte indeholder stærkere kvaliteter end udgangspunktet. Incitamenter er, i denne sammenhæng, former skabt ved foldning over variationer af lige...... af hans formstudierne gennem dialog og præsentation af incitamenter. Dialogen om form og læringsrums aktiviteter der var centrale for Lynges pædagogik. Dialogen og formeksperimenter kombineres med opfordringer til at søge inspiration i naturen og videnskabelige udredninger. De tematiske angreb er...
Plumpton, C
1968-01-01
Sixth Form Pure Mathematics, Volume 1, Second Edition, is the first of a series of volumes on Pure Mathematics and Theoretical Mechanics for Sixth Form students whose aim is entrance into British and Commonwealth Universities or Technical Colleges. A knowledge of Pure Mathematics up to G.C.E. O-level is assumed and the subject is developed by a concentric treatment in which each new topic is used to illustrate ideas already treated. The major topics of Algebra, Calculus, Coordinate Geometry, and Trigonometry are developed together. This volume covers most of the Pure Mathematics required for t
Backfilling technology and strata behaviors in fully mechanized coal mining working face
Institute of Scientific and Technical Information of China (English)
Zhang Qiang; Zhang Jixiong; Huang Yanli; Ju Feng
2012-01-01
Based on the principle of fully mechanized backfilling and coal mining technology and combined with theXingtai Coal Mine conditions,we mainly optimized the coal mining equipment and adjusted the coal mining method in the Xingtai Coal Mine 7606 working face for implementation this technology,Firstly,we define the practical backfilling process as the "(from backfilling scraper conveyor's) head to tail backfilling,step by step swinging up of the tamping arm.gradual compacting,moving formed backfilling scraper conveyor when the second tamping arm cannot pass and connecting the immediate roof by back material push front material movement".Meanwhile,the stress changes of backfill body in coal mined out area was monitored by stress sensors,and the roof caving law was analyzed by monitoring the dynamic subsidence of -210 west roadway of this face.The site tests results show that using this new backfilling and coal mining integrated technology,the production capacity in the 7606 working face can reach to 283,000 ton a year,and 282,000 ton of solid materials (waste and fly ash) is backfilled,which meets the needs of high production and efficiency.The goaf was compactly backfilled with solid material and the strata behavior was quite desirable,with an actual maximum vertical stress of the backfill body of 5.5 MPa.Backfill body control the movement of overburden within a certain range,and there is no collapses of major areas in the overlying strata upon backfilled gob.The maximum subsidence and speed were 231 mm and 15.75 mm/d respectively,which proved the practical significance of this integrated technology.
The most massive galaxies in clusters are already fully grown at z ∼ 0.5
Oldham, L. J.; Houghton, R. C. W.; Davies, Roger L.
2017-02-01
By constructing scaling relations for galaxies in the massive cluster MACSJ0717.5 at z = 0.545 and comparing with those of Coma, we model the luminosity evolution of the stellar populations and the structural evolution of the galaxies. We calculate magnitudes, surface brightnesses and effective radii using Hubble Space Telescope (HST)/ACS images and velocity dispersions using Gemini/GMOS spectra, and present a catalogue of our measurements for 17 galaxies. We also generate photometric catalogues for ∼3000 galaxies from the HST imaging. With these, we construct the colour-magnitude relation, the Fundamental Plane, the mass-to-light versus mass relation, the mass-size relation and the mass-velocity dispersion relation for both clusters. We present a new, coherent way of modelling these scaling relations simultaneously using a simple physical model in order to infer the evolution in luminosity, size and velocity dispersion as a function of redshift, and show that the data can be fully accounted for with this model. We find that (a) the evolution in size and velocity dispersion undergone by these galaxies between z ∼ 0.5 and z ∼ 0 is mild, with Re(z) ∼ (1 + z)-0.40 ± 0.32 and σ(z) ∼ (1 + z)0.09 ± 0.27, and (b) the stellar populations are old, ∼10 Gyr, with a ∼3 Gyr dispersion in age, and are consistent with evolving purely passively since z ∼ 0.5 with Δ log M/L_B = -0.55_{-0.07}^{+0.15} z. The implication is that these galaxies formed their stars early and subsequently grew dissipationlessly so as to have their mass already in place by z ∼ 0.5, and suggests a dominant role for dry mergers, which may have accelerated the growth in these high-density cluster environments.
A stabilised nodal spectral element method for fully nonlinear water waves
Engsig-Karup, A. P.; Eskilsson, C.; Bigoni, D.
2016-08-01
We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order - possibly adapted - spatial discretisation for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.
Water-Body types identification in urban areas from radarsat-2 fully polarimetric SAR data
Xie, Lei; Zhang, Hong; Wang, Chao; Chen, Fulong
2016-08-01
This paper presents a novel method for supervised water-body extraction and water-body types identification from Radarsat-2 fully polarimetric (FP) synthetic aperture radar (SAR) data in complex urban areas. First, supervised water-body extraction using the Wishart classifier is performed, and the false alarms that are formed in built-up areas are removed using morphological processing methods and spatial contextual information. Then, the support vector machine (SVM), the classification and regression tree (CART), TreeBagger (TB), and random forest (RF) classifiers are introduced for water-body types (rivers, lakes, ponds) identification. In SAR images, certain other objects that are misclassified as water are also considered in water-body types identification. Several shape and polarimetric features of each candidate water-body are used for identification. Radarsat-2 PolSAR data that were acquired over Suzhou city and Dongguan city in China are used to validate the effectiveness of the proposed method, and the experimental results are evaluated at both the object and pixel levels. We compared the water-body types classification results using only shape features and the combination of shape and polarimetric features, the experimental results show that the polarimetric features can eliminate the misclassifications from certain other objects like roads to water areas, and the increasement of classification accuracy embodies at both the object and pixel levels. The experimental results show that the proposed methods can achieve satisfactory accuracies at the object level [89.4% (Suzhou), 95.53% (Dongguan)] and the pixel level [96.22% (Suzhou), 97.95% (Dongguan)] for water-body types classification, respectively.
Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory
Cao, Wenke; Deng, Jingen; Yu, Baohua; Liu, Wei; Tan, Qiang
2017-03-01
Drilling-induced tensile fractures are usually caused when the weight of mud is too high, and the effective tangential stress becomes tensile. It is thus hard to explain why tensile fractures are distributed along the lower part of a hole in an offshore exploration well when the mud weight is low. According to analysis, the reason could be the thermal effect, which cannot be ignored because of the drilling fluid and the cooling action of sea water during circulation. A heat transfer model is set up to obtain the temperature distribution of the wellbore and its formation by the finite difference method. Then, fully coupled poro-thermo-elastic theory is used to study the pore pressure and effective stress around the wellbore. By comparing it with both poroelastic and elastic models, it is indicated that the poroelastic effect is dominant at the beginning of circulation and inhibits tensile fractures from forming; then, the thermal effect becomes more important and decreases the effective tangential stress with the passing of time, so the drilling fluid and the cooling effect of sea water can cause tensile fractures to happen. Meanwhile, tensile fractures are shallow and not likely to lead to mud leakage with lower mud weight, which agrees with the actual drilling process. On the other hand, the fluid cooling effect could increase the strength of the rock and reduce the likelihood of shear failure, which would be beneficial for wellbore stability. So, the thermal effect cannot be neglected in offshore wellbore stability analysis, and mud weight and borehole exposure time should be controlled in the case of mud loss.
Cation selectivity by the CorA Mg2+ channel requires a fully hydrated cation.
Moomaw, Andrea S; Maguire, Michael E
2010-07-27
The CorA Mg(2+) channel is the primary uptake system in about half of all bacteria and archaea. However, the basis for its Mg(2+) selectivity is unknown. Previous data suggested that CorA binds a fully hydrated Mg(2+) ion, unlike other ion channels. The crystal structure of Thermotoga maritima CorA shows a homopentamer with two transmembrane segments per monomer connected by a short periplasmic loop. This highly conserved loop, (281)EFMPELKWS(289) in Salmonella enterica serovar Typhimurium CorA, is the only portion of the channel outside of the cell, suggesting a role in cation selectivity. Mutation of charged residues in the loop, E281 and K287, to any of several amino acids had little effect, demonstrating that despite conservation electrostatic interactions with these residues are not essential. While mutation of the universally conserved E285 gave a minimally functional channel, E285A and E285K mutants were the most functional, again indicating that the negative charge at this position is not a determining factor. Several mutations at K287 and W288 behaved anomalously in a transport assay. Analysis indicated that mutation of K287 and W288 disrupts cooperative interactions between distinct Mg(2+) binding sites. Overall, these results are not compatible with electrostatic interaction of the Mg(2+) ion with the periplasmic loop. Instead, the loop appears to form an initial binding site for hydrated Mg(2+), not for the dehydrated cation. The loop residues may function to accelerate dehydration of the before entry of Mg(2+) into the pore of the channel.
Aquila, Iolanda; Fernández-Golfín, Covadonga; Rincon, Luis Miguel; González, Ariana; García Martín, Ana; Hinojar, Rocio; Jimenez Nacher, Jose Julio; Indolfi, Ciro; Zamorano, Jose Luis
2016-01-01
Abstract Three-dimensional (3D) transesophageal echocardiography (TEE) is the gold standard for mitral valve (MV) anatomic and functional evaluation. Currently, dedicated MV analysis software has limitations for its use in clinical practice. Thus, we tested here a complete and reproducible evaluation of a new fully automatic software to characterize MV anatomy in different forms of mitral regurgitation (MR) by 3D TEE. Sixty patients were included: 45 with more than moderate MR (28 organic MR [OMR] and 17 functional MR [FMR]) and 15 controls. All patients underwent TEE. 3D MV images obtained using 3D zoom were imported into the new software for automatic analysis. Different MV parameters were obtained and compared. Anatomic and dynamic differences between FMR and OMR were detected. A significant increase in systolic (859.75 vs 801.83 vs 607.78 mm2; P = 0.002) and diastolic (1040.60 vs. 1217.83 and 859.74 mm2; P < 0.001) annular sizes was observed in both OMR and FMR compared to that in controls. FMR had a reduced mitral annular contraction compared to degenerative cases of OMR and to controls (17.14% vs 32.78% and 29.89%; P = 0.007). Good reproducibility was demonstrated along with a short analysis time (mean 4.30 minutes). Annular characteristics and dynamics are abnormal in both FMR and OMR. Full 3D software analysis automatically calculates several significant parameters that provide a correct and complete assessment of anatomy and dynamic mitral annulus geometry and displacement in the 3D space. This analysis allows a better characterization of MR pathophysiology and could be useful in designing new devices for MR repair or replacement. PMID:27930514
DEFF Research Database (Denmark)
Bay, Niels
2000-01-01
Lubrication is essential in most metal forming processes. The lubricant film has two basic functions, [1]: i. to separate the work piece and tool surfaces and ii. to cool the workpiece and the tool. Separation of the two surfaces implies lower friction facilitating deformation and lowering the tool...... deformation step to avoid overheating and breakdown of the lubricant....
Gray, Murray
2014-05-01
The Earth's surface has a dynamic and topographically varied natural landscape. In some cases the resulting landforms are given generic names reflecting their form and/or origin, (e.g. sand dunes, eskers, ox-bow lakes) but in many cases the land surface has a more amorphous form and is less easily categorized other than at a landscape scale (e.g. dissected plateau, Chalk downland). Across much of Europe, while the natural vegetation has been removed or radically modified, the natural land form/topography remains in tact. In this context and in terms of geoconservation we ought to be: • allowing the dynamic natural processes that create, carve and modify landscapes to continue to operate; and • retaining natural topographic character and geomorphological authenticity in the face of human actions seeking to remodel the land surface. In this presentation examples of this approach to geoconservation of land form will be given from the UK and other parts of the world. This will include examples of both appropriate and inappropriate topographic modifications.
Berghauser Pont, M.Y.
2011-01-01
For many, the notion of ‘measuring urban form’ will sound disturbing. Urban form is about visual images of cities, experiences, feelings, memories of place, thoughts and intellectual constructs anchored in the realm of the arts and the humanities. Anne Vernez Moudon however gives in the paper Urbani
Supercongruences via modular forms
Osburn, Robert
2009-01-01
We prove two supercongruences for the coefficients of power series expansions in t of modular forms where t is a modular function. As a result, we settle two recent conjectures of Chan, Cooper and Sica. Additionally, we provide a table of supercongruences for numbers which appear in similar power series expansions and in the study of integral solutions of Apery-like differential equations.
Forming of Thermoplastic Composites
Haanappel, S.P.; Sachs, U.; Thije, ten R.H.W.; Rietman, A.D.; Akkerman, R.
2012-01-01
Design and production guidelines for UD reinforced thermoplastic composites are highly desirable. Therefore, forming experiments and simulations with a realistic complex shaped product were conducted. Thermoforming experiments with quasi-isotropic UD carbon/PEEK and 8HS woven glass/PPS composites sh
Cohen, Adam B.
2009-01-01
Psychologists interested in culture have focused primarily on East-West differences in individualism-collectivism, or independent-interdependent self-construal. As important as this dimension is, there are many other forms of culture with many dimensions of cultural variability. Selecting from among the many understudied cultures in psychology,…
On Quadratic Differential Forms
Willems, J.C.; Trentelman, H.L.
1998-01-01
This paper develops a theory around the notion of quadratic differential forms in the context of linear differential systems. In many applications, we need to not only understand the behavior of the system variables but also the behavior of certain functionals of these variables. The obvious cases w
Amo Sanchez, del P.; Raven, H.G.; Snoek, H.; BaBar, Collaboration
2011-01-01
eta((')) transition form factors in the momentum-transfer range from 4 to 40 GeV(2). The analysis is based on 469 fb(-1) of integrated luminosity collected at PEP-II with the BABAR detector at e(+)e(-) center-of-mass energies near 10.6 GeV.
Energy Technology Data Exchange (ETDEWEB)
Koivisto, Tomi S., E-mail: T.Koivisto@ThPhys.Uni-Heidelberg.d [Institute for Theoretical Physics, University of Heidelberg, 69120 (Germany); Nunes, Nelson J. [Institute for Theoretical Physics, University of Heidelberg, 69120 (Germany)
2010-03-01
Cosmology of self-interacting three-forms is investigated. The minimally coupled canonical theory can naturally generate a variety of isotropic background dynamics, including scaling, possibly transient acceleration and phantom crossing. An intuitive picture of the cosmological dynamics is presented employing an effective potential. Numerical solutions and analytical approximations are provided for scenarios which are potentially important for inflation or dark energy.
Institute of Scientific and Technical Information of China (English)
LI Shu-gang; PAN Hong-yu; KONG Ting-ting; ZHANG Zhi-ming; WANG Hong-tao
2009-01-01
The forms of roof break,roof fall,and effects of the region scope in a fully me-chanized top-coal caving (FMTC) face of the 101 fully-mechanized top coal caving face of the Tingnan Coalmine were analyzed by UDEC and FLAC software.The analysis result confirms the phenomenon of roof falling,roof-off-strata,roof breaking,first weighting,pe-riodic weighting and stress concentration,redistributions of surrounding rock and so on.It provides the gist to analyze the law of roof movement,characteristic of confining pressure,and to determine the formative structure forms of the immediate roof and main roof during the caving process.These results and the underground pressure observation results are in agreement.
Energy Technology Data Exchange (ETDEWEB)
Yang, J.; Martí, J., E-mail: jordi.marti@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia (Spain); Calero, C. [Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia (Spain); Center for Polymer Studies, Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States)
2014-03-14
Microscopic structure and dynamics of water and lipids in a fully hydrated dimyristoylphosphatidylcholine phospholipid lipid bilayer membrane in the liquid-crystalline phase have been analyzed with all-atom molecular dynamics simulations based on the recently parameterized CHARMM36 force field. The diffusive dynamics of the membrane lipids and of its hydration water, their reorientational motions as well as their corresponding spectral densities, related to the absorption of radiation, have been considered for the first time using the present force field. In addition, structural properties such as density and pressure profiles, a deuterium-order parameter, surface tension, and the extent of water penetration in the membrane have been analyzed. Molecular self-diffusion, reorientational motions, and spectral densities of atomic species reveal a variety of time scales playing a role in membrane dynamics. The mechanisms of lipid motion strongly depend on the time scale considered, from fast ballistic translation at the scale of picoseconds (effective diffusion coefficients of the order of 10{sup −5} cm{sup 2}/s) to diffusive flow of a few lipids forming nanodomains at the scale of hundreds of nanoseconds (diffusion coefficients of the order of 10{sup −8} cm{sup 2}/s). In the intermediate regime of sub-diffusion, collisions with nearest neighbors prevent the lipids to achieve full diffusion. Lipid reorientations along selected directions agree well with reported nuclear magnetic resonance data and indicate two different time scales, one about 1 ns and a second one in the range of 2–8 ns. We associated the two time scales of reorientational motions with angular distributions of selected vectors. Calculated spectral densities corresponding to lipid and water reveal an overall good qualitative agreement with Fourier transform infrared spectroscopy experiments. Our simulations indicate a blue-shift of the low frequency spectral bands of hydration water as a result of
POSITIVE SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS ON GENERAL BOUNDED DOMAINS
Institute of Scientific and Technical Information of China (English)
Li Meisheng; Bao Jiguang
2001-01-01
We prove the refined ABP maximum principle, comparison principle, and related existence and uniqueness theorem for the positive solutions of the Dirich let problems of second order fully nonlinear elliptic equations on arbitrary bounded domains.
Synchronous state in a fully connected phase-locked loop network
Directory of Open Access Journals (Sweden)
J. R. C. Piqueira
2006-01-01
work, an estimation is analytically obtained for the synchronous state in a generic N-node network. Numerical experiments complete the analysis of the fully connected network relating free-running frequencies, node gains, and propagation delays.
Fully Printed Memristors from Cu-SiO2 Core-Shell Nanowire Composites
Catenacci, Matthew J.; Flowers, Patrick F.; Cao, Changyong; Andrews, Joseph B.; Franklin, Aaron D.; Wiley, Benjamin J.
2017-07-01
This article describes a fully printed memory in which a composite of Cu-SiO2 nanowires dispersed in ethylcellulose acts as a resistive switch between printed Cu and Au electrodes. A 16-cell crossbar array of these memristors was printed with an aerosol jet. The memristors exhibited moderate operating voltages (˜3 V), no degradation over 104 switching cycles, write speeds of 3 μs, and extrapolated retention times of 10 years. The low operating voltage enabled the programming of a fully printed 4-bit memristor array with an Arduino. The excellent performance of these fully printed memristors could help enable the creation of fully printed RFID tags and sensors with integrated data storage.
Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang
2016-12-01
To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties.
National Research Council Canada - National Science Library
Sochor, Jiri; Ryvolova, Marketa; Krystofova, Olga; Salas, Petr; Hubalek, Jaromir; Adam, Vojtech; Trnkova, Libuse; Havel, Ladislav; Beklova, Miroslava; Zehnalek, Josef; Provaznik, Ivo; Kizek, Rene
2010-01-01
The aim of this study was to describe behaviour, kinetics, time courses and limitations of the six different fully automated spectrometric methods--DPPH, TEAC, FRAP, DMPD, Free Radicals and Blue CrO5...
Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint
Energy Technology Data Exchange (ETDEWEB)
Jonkman, J. M.; Buhl, M. L., Jr.
2007-06-01
This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.
Difference schemes for fully nonlinear pseudo-parabolic systems with two space dimensions
Institute of Scientific and Technical Information of China (English)
周毓麟; 袁光伟
1996-01-01
The first boundary value problem for the fully nonlinear pseudoparabolic systems of partial differential equations with two space dimensions by the finite difference method is studied. The existence and uniqueness of the discrete vector solutions for the difference systems are established by the fixed point technique. The stability and convergence of the discrete vector solutions of the difference schemes to the vector solutions of the original boundary problem of the fully nonlinear pseudo-parabolic system are obtained by way of a priori estimation. Here the unique smooth vector solution of the original problems for the fully nonlinear pseudo-parabolic system is assumed. Moreover, by the method used here, it can be proved that analogous results hold for fully nonlinear pseudo-parabolic system with three space dimensions, and improve the known results in the case of one space dimension.
Jiang, Yi; Alberda van Ekenstein, Gerhard; Woortman, Albert J. J.; Loos, Katja
2014-01-01
Fully biobased saturated and unsaturated aliphatic polyesters and oligoesters are successfully prepared by Candida antarctica lipase B (CALB)-catalyzed polycondensations of succinate, itaconate, and 1,4-butanediol. The effects of monomer substrates and polymerization methods on enzymatic polycondens
National Aeronautics and Space Administration — Microcosm proposes to design and develop a fully autonomous Lunar Navigator based on our MicroMak miniature star sensor and a gravity gradiometer similar to one on a...
Fragmentation Control of a Polyatomic Molecule by fully determined Laser-Fields
Directory of Open Access Journals (Sweden)
Varga K.
2013-03-01
Full Text Available Strong-field control of acetylene fragmentation by fully determined few-cycle laser pulses is demonstrated. The control mechanism is shown to be based on electron recollision and inelastic ionization from inner-valence molecular orbitals.
Jiang, Yi; Alberda van Ekenstein, Gerhard; Woortman, Albert J. J.; Loos, Katja
2014-01-01
Fully biobased saturated and unsaturated aliphatic polyesters and oligoesters are successfully prepared by Candida antarctica lipase B (CALB)-catalyzed polycondensations of succinate, itaconate, and 1,4-butanediol. The effects of monomer substrates and polymerization methods on enzymatic
Directory of Open Access Journals (Sweden)
Fred Rovai and Hope Jordan
2004-08-01
Full Text Available Blended learning is a hybrid of classroom and online learning that includes some of the conveniences of online courses without the complete loss of face-to-face contact. The present study used a causal-comparative design to examine the relationship of sense of community between traditional classroom, blended, and fully online higher education learning environments. Evidence is provided to suggest that blended courses produce a stronger sense of community among students than either traditional or fully online courses.
FULLY COUPLED FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH GENERAL MARTINGALE
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it considers Backward Stochastic Differential Equations (BSDEs) with the continuous local martingale. Then, on the basis of it, in the second part it considers the fully coupled FBSDEs with the continuous local martingale.It is proved that their solutions exist and are unique under the monotonicity conditions.
Fully reconfigurable 2x2 optical cross-connect using tunable wavelength switching modules
DEFF Research Database (Denmark)
Liu, Fenghai; Zheng, Xueyan; Pedersen, Rune Johan Skullerud;
2001-01-01
A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels.......A modular tunable wavelength switching module is proposed and used to construct 2x2 fully reconfigurable optical cross-connects. Large size optical switch is avoided in the OXC and it is easy to upgrade to more wavelength channels....
A fully differential OTA with dynamic offset cancellation in 28nm FD-SOI process
Jaworski, Zbigniew
2016-12-01
This papers presents a classic fully differential operational transconductance amplifier (FDOTA) implemented in industrial 28 nm FD-SOI (Fully-Depleted SOI) technology. A novel approach to minimized the FDOTA offset voltage is proposed. The solution employs the unique feature of FD-SOI technology - back-gate biasing - combined with modern compensation methodology. The proposed method results in considerable design overhead. However, this offset cancellation approach is very effective and allows to improve FDOTA performance when classic techniques reach their limits.
Energy Technology Data Exchange (ETDEWEB)
Kniehl, B.A.; Kotikov, A.V.; Merebashvili, Z.V.; Veretin, O.L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2009-05-15
We consider the production of heavy-quark pairs in the collisions of polarized and unpolarized on-shell photons and present, in analytic form, the fully integrated total cross sections for total photon spins J{sub z}=0,{+-}2 at next-to-leading-order in QCD. Phenomenological applications include b anti b production, which represents an irreducible background to standard-model intermediate-mass Higgs-boson production, as well as t anti t production. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Clarke, Kester Diederik [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-07-27
The intent of this report is to document a procedure used at LANL for HIP bonding aluminum cladding to U-10Mo fuel foils using a formed HIP can for the Domestic Reactor Conversion program in the NNSA Office of Material, Management and Minimization, and provide some details that may not have been published elsewhere. The HIP process is based on the procedures that have been used to develop the formed HIP can process, including the baseline process developed at Idaho National Laboratory (INL). The HIP bonding cladding process development is summarized in the listed references. Further iterations with Babcock & Wilcox (B&W) to refine the process to meet production and facility requirements is expected.
Brown, Ryan M; Meah, Christopher J; Heath, Victoria L; Styles, Iain B; Bicknell, Roy
2016-01-01
Angiogenesis involves the generation of new blood vessels from the existing vasculature and is dependent on many growth factors and signaling events. In vivo angiogenesis is dynamic and complex, meaning assays are commonly utilized to explore specific targets for research into this area. Tube-forming assays offer an excellent overview of the molecular processes in angiogenesis. The Matrigel tube forming assay is a simple-to-implement but powerful tool for identifying biomolecules involved in angiogenesis. A detailed experimental protocol on the implementation of the assay is described in conjunction with an in-depth review of methods that can be applied to the analysis of the tube formation. In addition, an ImageJ plug-in is presented which allows automatic quantification of tube images reducing analysis times while removing user bias and subjectivity.
Venerandi, Alessandro; Romice, Ombretta; Porta, Sergio
2014-01-01
Many socioeconomic studies have been carried out to explain the phenomenon of gentrification. Although results of these works shed light on the process around this phenomenon, a perspective which focuses on the relationship between city form and gentrification is still missing. With this paper we try to address this gap by studying and comparing, through classic methods of mathematical statistics, morphological features of five London gentrified neighbourhoods. Outcomes confirm that areas which have undergone gentrification display similar and recognizable morphological patterns in terms of urban type and geographical location of main and local roads as well as businesses. These initial results confirm findings from previous research in urban sociology, and highlight the role of urban form in contributing to shape dynamics of non-spatial nature in cities.
Sleep disorders - resistant forms
Koláčková, Pavla
2016-01-01
Charles University in Prague, Faculty of Pharmacy in Hradec Králové Department of Biological and Medical Sciences Candidate: Pavla Koláčková Supervisor: Doc. RNDr. Vladimír Semecký, CSc. Name of dissertation: Sleep disorders - resistant forms The diploma thesis is about sleep disorders. Sleep disorders are a global problem, lots of people have these problems. This diploma thesis focuses on American International Classification of Sleep Disorders (ICSD) and its application in clinical practice...
Brueckner, Jan K.; Franco, Sofia F.
2015-01-01
This paper analyzes the provision of residential parking in a monocentric city, with the ultimate goal of appraising the desirability and effects of regulations such as a minimum-parking requirement (MPR) per dwelling. The analysis considers three different regimes for provision of parking space: surface parking, underground parking, and structural parking, with the latter two regimes involving capital investment either in the form of an underground parking garage or an above-ground parking s...
Nucleon Electromagnetic Form Factors
Energy Technology Data Exchange (ETDEWEB)
Kees de Jager
2004-08-01
Although nucleons account for nearly all the visible mass in the universe, they have a complicated structure that is still incompletely understood. The first indication that nucleons have an internal structure, was the measurement of the proton magnetic moment by Frisch and Stern (1933) which revealed a large deviation from the value expected for a point-like Dirac particle. The investigation of the spatial structure of the nucleon, resulting in the first quantitative measurement of the proton charge radius, was initiated by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was obtained by scattering thermal neutrons off atomic electrons. The recent revival of its experimental study through the operational implementation of novel instrumentation has instigated a strong theoretical interest. Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum transferred to the nucleon by the virtual photon can be selected to probe different scales of the nucleon, from integral properties such as the charge radius to scaling properties of its internal constituents. Polarization instrumentation, polarized beams and targets, and the measurement of the polarization of the recoiling nucleon have been essential in the accurate separation of the charge and magnetic form factors and in studies of the elusive neutron charge form factor.
Energy Technology Data Exchange (ETDEWEB)
Gentry, Cole A [ORNL; Godfrey, Andrew T [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL; Powers, Jeffrey J [ORNL; Maldonado, G Ivan [ORNL
2014-01-01
An investigation of the utilization of TRistructural- ISOtropic (TRISO)-coated fuel particles for the burning of plutonium/neptunium (Pu/Np) isotopes in typical Westinghouse four-loop pressurized water reactors is presented. Though numerous studies have evaluated the burning of transuranic isotopes in light water reactors (LWRs), this work differentiates itself by employing Pu/Np-loaded TRISO particles embedded within a silicon carbide (SiC) matrix and formed into pellets, constituting the fully ceramic microencapsulated (FCM) fuel concept that can be loaded into standard LWR fuel element cladding. This approach provides the capability of Pu/Np burning and, by virtue of the multibarrier TRISO particle design and SiC matrix properties, will allow for greater burnup of Pu/Np material, plus improved fuel reliability and thermal performance. In this study, a variety of heterogeneous assembly layouts, which utilize a mix of FCM rods and typical UO2 rods, and core loading patterns were analyzed to demonstrate the neutronic feasibility of Pu/Np-loaded TRISO fuel. The assembly and core designs herein reported are not fully optimized and require fine-tuning to flatten power peaks; however, the progress achieved thus far strongly supports the conclusion that with further rod/assembly/core loading and placement optimization, Pu/Np-loaded TRISO fuel and core designs that are capable of balancing Pu/Np production and destruction can be designed within the standard constraints for thermal and reactivity performance in pressurized water reactors.
Xia, Dunzhu; Kong, Lun; Gao, Haiyu
2015-01-01
We present in this paper a novel fully decoupled silicon micromachined tri-axis linear vibratory gyroscope. The proposed gyroscope structure is highly symmetrical and can be limited to an area of about 8.5 mm × 8.5 mm. It can differentially detect three axes' angular velocities at the same time. By elaborately arranging different beams, anchors and sensing frames, the drive and sense modes are fully decoupled from each other. Moreover, the quadrature error correction and frequency tuning functions are taken into consideration in the structure design for all the sense modes. Since there exists an unwanted in-plane rotational mode, theoretical analysis is implemented to eliminate it. To accelerate the mode matching process, the particle swam optimization (PSO) algorithm is adopted and a frequency split of 149 Hz is first achieved by this method. Then, after two steps of manual adjustment of the springs' dimensions, the frequency gap is further decreased to 3 Hz. With the help of the finite element method (FEM) software ANSYS, the natural frequencies of drive, yaw, and pitch/roll modes are found to be 14,017 Hz, 14,018 Hz and 14,020 Hz, respectively. The cross-axis effect and scale factor of each mode are also simulated. All the simulation results are in good accordance with the theoretical analysis, which means the design is effective and worthy of further investigation on the integration of tri-axis accelerometers on the same single chip to form an inertial measurement unit.
2013-09-24
... Internal Revenue Service Proposed Collection; Comment Request for Form 8453-EMP, Form 8453-F, Form 8453-FE, Form 8879-F, and 8879-EMP. AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice and request...- file Return; Form 8453-EMP, Employment Tax Declaration for an IRS e- file Return; Form 8879-EMP, IRS...
Frauendiener, Jörg
2016-01-01
It has recently been demonstrated (Class. Quantum Grav. 31, 085010, 2014) that the conformally invariant wave equation on a Minkowski background can be solved with a fully pseudospectral numerical method. In particular, it is possible to include spacelike infinity into the numerical domain, which is appropriately represented as a cylinder, and highly accurate numerical solutions can be obtained with a moderate number of gridpoints. In this paper, we generalise these considerations to the wave equation on a Schwarzschild background. An important new feature is that logarithmic singularities generally form at the future boundary. We show that we can still obtain very accurate numerical solutions. Moreover, we describe how initial data can be chosen so that the leading-order logarithmic terms are avoided, which further improves the numerical accuracy.
Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators
Mansingka, Abhinav S.
2012-10-07
This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness and positive Lyapunov exponent. Low-significance bits form a PRNG and pass all tests in the NIST SP. 800-22 suite without post-processing. Real-time control of the number of scrolls allows distinct output streams with 2-D and 3-D multiscroll chaos enabling greater controllability. The proposed PRNGs are experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25%, throughput up to 5.25 Gbits/s and up to 512 distinct output streams with low cross-correlation.
Directory of Open Access Journals (Sweden)
P. Ghasemi Moakher
2016-01-01
Full Text Available In this paper, to study the incompressible fully developed flow of a non-Newtonian fourth grade fluid in a flat channel under an externally applied magnetic field, an appropriate analysis has been performed considering the slip condition on the walls. The governing equations, Ohm’s law, continuity and momentum for this problem are reduced to a nonlinear ordinary form. The nonlinear equation with robin mixed boundary condition is solved with collocation (CM and least square (LSM methods. The effects of parameters such as non-Newtonian, magnetic field and slip parameters on dimensionless velocity profiles will be discussed. In the end, the results could bring us to this conclusion that collocation and least square methods can be used for solving nonlinear differential equations with robin mixed condition.
[Adhesive cutaneous pharmaceutical forms].
Gafiţanu, E; Matei, I; Mungiu, O C; Pavelescu, M; Mîndreci, I; Apostol, I; Ionescu, G
1989-01-01
The adhesive cutaneous pharmaceutical forms aimed to local action release the drug substance in view of a dermatological, traumatological, antirheumatic, cosmetic action. Two such preparations were obtained and their stability, consistency and pH were determined. The "in vitro" tests of their bioavailability revealed the dynamics of calcium ions release according to the associations of each preparation. The bioavailability determined by evaluating the pharmacological response demonstrated the antiinflammatory action obtained by the association of calcium ions with the components extracted from poplar muds. The therapeutical efficiency of the studied preparations has proved in the treatment of some sport injuries.
Directory of Open Access Journals (Sweden)
J. Kliber
2016-10-01
Full Text Available Forming is usually the final stage of metallurgical production of steel (90 % of the 1,7 billion tons of total steel production in the world and traditionally also largely of the products made of non-ferrous metals. Many procedures and methods exist and we will focus only on some of them. The aim is usually to achieve ultra-fine grained structure, the proper microstructure and (mechanical / electrical properties in innovative materials. The presented article mentions only some examples.
Kuipers, J; Vermaseren, J A M
2013-01-01
We describe the implementation of output code optimization in the open source computer algebra system FORM. This implementation is based on recently discovered techniques of Monte Carlo tree search to find efficient multivariate Horner schemes, in combination with other optimization algorithms, such as common subexpression elimination. For systems for which no specific knowledge is provided it performs significantly better than other methods we could compare with. Because the method has a number of free parameters, we also show some methods by which to tune them to different types of problems.
Vaz, C; Vaz, Cenalo; Witten, Louis
1995-01-01
A naked singularity is formed by the collapse of a Sine-Gordon soliton in 1+1 dimensional dilaton gravity with a negative cosmological constant. We examine the quantum stress tensor resulting from the formation of the singularity. Consistent boundary conditions require that the incoming soliton is accompanied by a flux of incoming radiation across past null infinity, but neglecting the back reaction of the spacetime leads to the absurd conclusion that the total energy entering the system by the time the observer is able to receive information from the singularity is infinite. We conclude that the back reaction must prevent the formation of the naked singularity.
Rhodes, Mark A.
2008-10-21
A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.
Energy Technology Data Exchange (ETDEWEB)
Paschalidou, Eirini Maria, E-mail: epaschal@unito.it [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy); Scaglione, Federico [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy); Gebert, Annett; Oswald, Steffen [Leibniz Institut für Festkörper- und Werkstoffforschung IFW, Helmholtzstraße 20, 01069, Dresden (Germany); Rizzi, Paola; Battezzati, Livio [Dipartimento di Chimica e Centro Interdipartimentale NIS (Nanostructured Surfaces and Interfaces), Università di Torino, Via Pietro Giuria 7, 10125, Torino (Italy)
2016-05-15
In this work, electrochemical de-alloying of an amorphous alloy, Au{sub 40}Cu{sub 28}Ag{sub 7}Pd{sub 5}Si{sub 20}, cast in ribbon form by melt spinning, has been performed, obtaining self standing nanoporous materials suitable for use as electrodes for electrocatalytic applications. The de-alloying encompasses removal of less noble elements and the crystallization of Au, resulting in interconnected ligaments whose size and morphology are described as a function of time. Depending on de-alloying time, the crystals may contain residual amounts of Cu, Ag and Pd, as shown by Auger Electron Spectroscopy (AES), Energy Dispersive Spectroscopy (EDS) and Cyclic Voltammetry (CV) in a basic solution. Current density peaks in the 0.16–0.28 V range (vs Ag/AgCl) indicate that the porous ribbons are active for the electro-oxidation of methanol. The partially de-alloyed samples, which still partially contain the amorphous phase because of the shorter etching times, have finer ligaments and display peaks at lower potential. However, the current density decreases rapidly during repeated potential scans. This is attributed to the obstruction of Au sites, mainly by the Cu oxides formed during the scans. The fully de-alloyed ribbons display current peaks at about 0.20 V and remain active for hundreds of scans at more than 60% of the initial current density. They can be fully re-activated to achieve the same performance levels after a brief immersion in nitric acid. The good activity is due to trapped Ag and Pd atoms in combination with ligament morphology. - Graphical abstract: Fine ligaments and pores made by de-alloying a glassy ribbon of a Au-based alloy, homogeneously produced across the thickness (25 μm) for studying methanol's electro-oxidation behavior. - Highlights: • Size and composition of nanoporous layers tailored in de-alloying Au-based glassy ribbons. • From amorphous precursor fine crystals occur in ligaments with residual Pd and Ag. • Fully de
Behavior of a Fully-Looped Drainage Network and the Corresponding Dendritic Networks
Directory of Open Access Journals (Sweden)
Yongwon Seo
2015-03-01
Full Text Available Hydraulic and hydrologic analysis in urban catchments is typically accompanied by a number of uncertainties, such as a lack of required information for modeling purposes or complex loops inside a drainage network. In this article, Gibbs’ stochastic network model is utilized in order to achieve a dendritic network that corresponds to a fully looped network in terms of the peak of the runoff hydrograph at the outlet. A synthetic catchment with a drainage network composed of 8 × 8 grids is introduced to investigate the behavior of a fully looped network for a given rainfall event using the Storm Water Management Model. Dendritic networks are generated from the Gibbsian model for a given value of the parameter, β. The results showed that the shape of the hydrograph and the peak flow of a fully looped network are heavily dependent on the catchment slope. Moreover, the results showed that it is possible to find the corresponding dendritic networks generated by the Gibbsian model that match the fully looped network depending on the catchment slope in terms of peak flows. The results of this study imply the potential improvement of drainage network analysis providing a relationship between the catchment slope of a fully looped network and the corresponding dendritic network generated by the Gibbsian model.
Development and evaluation of fully automated demand response in large facilities
Energy Technology Data Exchange (ETDEWEB)
Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie
2004-03-30
This report describes the results of a research project to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve electric grid reliability, manage electricity costs, and ensure that customers receive signals that encourage load reduction during times when the electric grid is near its capacity. The two main drivers for widespread demand responsiveness are the prevention of future electricity crises and the reduction of electricity prices. Additional goals for price responsiveness include equity through cost of service pricing, and customer control of electricity usage and bills. The technology developed and evaluated in this report could be used to support numerous forms of DR programs and tariffs. For the purpose of this report, we have defined three levels of Demand Response automation. Manual Demand Response involves manually turning off lights or equipment; this can be a labor-intensive approach. Semi-Automated Response involves the use of building energy management control systems for load shedding, where a preprogrammed load shedding strategy is initiated by facilities staff. Fully-Automated Demand Response is initiated at a building or facility through receipt of an external communications signal--facility staff set up a pre-programmed load shedding strategy which is automatically initiated by the system without the need for human intervention. We have defined this approach to be Auto-DR. An important concept in Auto-DR is that a facility manager is able to ''opt out'' or ''override'' an individual DR event if it occurs at a time when the reduction in end-use services is not desirable. This project sought to improve the feasibility and nature of Auto-DR strategies in large facilities. The research focused on technology development, testing
Directory of Open Access Journals (Sweden)
Rayco González
2013-11-01
Full Text Available The prophecy is a kind of text holding therefore its own textual marks, differing from other kinds of texts. In order to do a discursive analysis of it, we must bring a semiotic study of its own possible forms. It includes its intertextual connections, as well as the use of typical tropos and topoi. Our aim is to describe the features of a kind of text that seems to appear in every well-known culture. Our analysis is limited to religious prophecies, showing mainly several examples from Judeo-Christian tradition, but also from other cultures, according to our line of argument. Amongst its features we find the use of allusion, forcing to any addressee to expand all possible interpretations. Likewise the prophecy seems to fulfill the double function of threat/promise, depending on each addressee.
Directory of Open Access Journals (Sweden)
Michel Maffesoli
2004-12-01
Full Text Available Non è vero che la natura ha paura del vuoto. Forse addirittura si completa. Il vuoto è anche una modalità dell'essere. È possibile nidificarvisi, avvolgersi pigramente e, così, proteggersi dall'angoscia del tempo che passa. Il vuoto delle apparenze è, in alcuni momenti, una delle forme d'espressione della vita sociale. Oltretutto occorre saperle riconoscere. Certamente, abbiamo tutti un'esistenza personale, ma siamo, ugualmente, i rappresentanti, a volte anche le vittime, di uno "spirito comune", forse anche di un "inconscio collettivo" che si è costituito di secolo in secolo. E, molto spesso, quando crediamo di esprimere le nostre idee, siamo soltanto dei portavoce, comparse di un vasto "theatrum mundi" dalle dimensioni infinite.