WorldWideScience

Sample records for fully microscopical simulation

  1. Fully low voltage and large area searching scanning tunneling microscope

    International Nuclear Information System (INIS)

    Pang, Zongqiang; Wang, Jihui; Lu, Qingyou

    2009-01-01

    We present a novel scanning tunneling microscope (STM), which allows the tip to travel a large distance (millimeters) on the sample and take images (to find microscopic targets) anywhere it reaches without losing atomic resolution. This broad range searching capability, together with the coarse approach and scan motion, is all done with only one single piezoelectric tube scanner as well as with only low voltages (<15 V). Simple structure, low interference and high precision are thus achieved. To this end, a pillar and a tube scanner are mounted in parallel on a base with one ball glued on the pillar top and two balls glued on the scanner top. These three balls form a narrow triangle, which supports a triangular slider piece. By inertial stepping, the scanner can move the slider toward the pillar (coarse approach) or rotate the slider about the pillar (travel along sample surface). Since all the stepping motions are driven by the scanner's lateral bending which is large per unit voltage, high voltages are unnecessary. The technology is also applicable to scanning force microscopes (SFM) such as atomic force microscopes (AFM), etc

  2. Fully Resolved Simulations of 3D Printing

    Science.gov (United States)

    Tryggvason, Gretar; Xia, Huanxiong; Lu, Jiacai

    2017-11-01

    Numerical simulations of Fused Deposition Modeling (FDM) (or Fused Filament Fabrication) where a filament of hot, viscous polymer is deposited to ``print'' a three-dimensional object, layer by layer, are presented. A finite volume/front tracking method is used to follow the injection, cooling, solidification and shrinking of the filament. The injection of the hot melt is modeled using a volume source, combined with a nozzle, modeled as an immersed boundary, that follows a prescribed trajectory. The viscosity of the melt depends on the temperature and the shear rate and the polymer becomes immobile as its viscosity increases. As the polymer solidifies, the stress is found by assuming a hyperelastic constitutive equation. The method is described and its accuracy and convergence properties are tested by grid refinement studies for a simple setup involving two short filaments, one on top of the other. The effect of the various injection parameters, such as nozzle velocity and injection velocity are briefly examined and the applicability of the approach to simulate the construction of simple multilayer objects is shown. The role of fully resolved simulations for additive manufacturing and their use for novel processes and as the ``ground truth'' for reduced order models is discussed.

  3. Simulations of fully deformed oscillating flux tubes

    Science.gov (United States)

    Karampelas, K.; Van Doorsselaere, T.

    2018-02-01

    Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://https://www.aanda.org

  4. Microscopic Simulation of Particle Detectors

    CERN Document Server

    Schindler, Heinrich

    Detailed computer simulations are indispensable tools for the development and optimization of modern particle detectors. The interaction of particles with the sensitive medium, giving rise to ionization or excitation of atoms, is stochastic by its nature. The transport of the resulting photons and charge carriers, which eventually generate the observed signal, is also subject to statistical fluctuations. Together with the readout electronics, these processes - which are ultimately governed by the atomic cross-sections for the respective interactions - pose a fundamental limit to the achievable detector performance. Conventional methods for calculating electron drift lines based on macroscopic transport coefficients used to provide an adequate description for traditional gas-based particle detectors such as wire chambers. However, they are not suitable for small-scale devices such as micropattern gas detectors, which have significantly gained importance in recent years. In this thesis, a novel approach, bas...

  5. Fully Adaptive Radar Modeling and Simulation Development

    Science.gov (United States)

    2017-04-01

    using an object oriented programming (OOP) approach. It includes a FAR engine to control the operation of the perception-action (PA) cycle and...is unlimited 41 NATO North Atlantic Treaty Organization OOP object oriented programming OSU The Ohio State University PA perception-action PDF...development and testing on simulated, previously collected, and real-time streaming data. The architecture is coded in MATLAB using an object oriented

  6. Microscope image based fully automated stomata detection and pore measurement method for grapevines

    Directory of Open Access Journals (Sweden)

    Hiranya Jayakody

    2017-11-01

    Full Text Available Abstract Background Stomatal behavior in grapevines has been identified as a good indicator of the water stress level and overall health of the plant. Microscope images are often used to analyze stomatal behavior in plants. However, most of the current approaches involve manual measurement of stomatal features. The main aim of this research is to develop a fully automated stomata detection and pore measurement method for grapevines, taking microscope images as the input. The proposed approach, which employs machine learning and image processing techniques, can outperform available manual and semi-automatic methods used to identify and estimate stomatal morphological features. Results First, a cascade object detection learning algorithm is developed to correctly identify multiple stomata in a large microscopic image. Once the regions of interest which contain stomata are identified and extracted, a combination of image processing techniques are applied to estimate the pore dimensions of the stomata. The stomata detection approach was compared with an existing fully automated template matching technique and a semi-automatic maximum stable extremal regions approach, with the proposed method clearly surpassing the performance of the existing techniques with a precision of 91.68% and an F1-score of 0.85. Next, the morphological features of the detected stomata were measured. Contrary to existing approaches, the proposed image segmentation and skeletonization method allows us to estimate the pore dimensions even in cases where the stomatal pore boundary is only partially visible in the microscope image. A test conducted using 1267 images of stomata showed that the segmentation and skeletonization approach was able to correctly identify the stoma opening 86.27% of the time. Further comparisons made with manually traced stoma openings indicated that the proposed method is able to estimate stomata morphological features with accuracies of 89.03% for area

  7. Fully microscopic DWBA analyses on 89Y (α, p)92Zr reaction

    International Nuclear Information System (INIS)

    Yuan Jian; Mao Zhiqiang; Zhang Peihua

    1988-01-01

    The differential cross sections have been measured for the 89 Y (α, p) 92 Zr reaction with some low-lying states and the 89 Y (α, α) 8( Y elastic scattering by using 26.1 MeV α beam. A fully microscopic DWBA analyses for 89 Y (α, α) 92 Zr have been performed by using 89 Y and 92 Zr shell-model wavefunction with or without the core excited configuration. With the core excited configuration, relative strengths of the ground state and the first excited state are greatly improved. Finally, the absolute cross sections for 89 (α, p) 92 Zr and importance of shallow well depth of α potential are discussed

  8. Fully kinetic simulations of megajoule-scale dense plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M. [Lawrence Livermore National Laboratory, Livermore California 94550 (United States); Welch, D. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Meehan, B. T.; Hagen, E. C. [National Security Technologies, LLC, Las Vegas, Nevada 89030 (United States)

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  9. A fully microscopic model of 200 MeV proton-12C elastic and inelastic scattering

    International Nuclear Information System (INIS)

    Karataglidis, S.; Dortmans, P.J.; Amos, K.; de Swiniarski, R.

    1996-01-01

    An effective two nucleon (NN) interaction in the nuclear medium is defined from an accurate mapping of the NN g matrices obtained by solving the Brueckner-Bethe-Goldstone equations for infinite nuclear matter. That effective interaction is used in a fully microscopic calculation of the nonlocal effective proton- 12 C interaction from which are obtained predictions of the differential cross section and analysing power for 200 MeV elastic scattering. The relative motion wave functions so found are used as the distorted waves in a distorted wave approximation (DWA) study of select inelastic scattering events. The effective NN interaction is used as the transition operator in those calculations. The relevant nuclear spectroscopy for the elastic and DWA (p, p') calculations is found from a full (0 + 2) ℎω shell model evaluation of the positive parity states while a restricted (1 + 3)ℎω has been used to give the negative parity states. Results are compared with those of the 0p-shell model of Cohen and Kurath or with those based upon axially symmetric, projected Hartree-Fock calculations. The diverse structure model wave functions are assessed by using them in calculations to compare with measured longitudinal, transverse electric and transverse magnetic form factors from electron scattering to many of the excited states of 12 C. Using those models of the structure of 12 C in the completely microscopic model of the elastic and inelastic scattering of 200 MeV protons, good fits have been found to the cross section and analysing power data. 50 refs., 3 tabs., 20 figs

  10. Monte Carlo simulation of fully Markovian stochastic geometries

    International Nuclear Information System (INIS)

    Lepage, Thibaut; Delaby, Lucie; Malvagi, Fausto; Mazzolo, Alain

    2010-01-01

    The interest in resolving the equation of transport in stochastic media has continued to increase these last years. For binary stochastic media it is often assumed that the geometry is Markovian, which is never the case in usual environments. In the present paper, based on rigorous mathematical theorems, we construct fully two-dimensional Markovian stochastic geometries and we study their main properties. In particular, we determine a percolation threshold p c , equal to 0.586 ± 0.0015 for such geometries. Finally, Monte Carlo simulations are performed through these geometries and the results compared to homogeneous geometries. (author)

  11. Examining the mechanical equilibrium of microscopic stresses in molecular simulations

    OpenAIRE

    Torres Sánchez, Alejandro; Vanegas, Juan Manuel; Arroyo Balaguer, Marino

    2015-01-01

    The microscopic stress field provides a unique connection between atomistic simulations and mechanics at the nanoscale. However, its definition remains ambiguous. Rather than a mere theoretical preoccupation, we show that this fact acutely manifests itself in local stress calculations of defective graphene, lipid bilayers, and fibrous proteins. We find that popular definitions of the microscopic stress violate the continuum statements of mechanical equilibrium, and we propose an unambiguous a...

  12. Fully kinetic simulations of magnetic reconnection in partially ionised gases

    Science.gov (United States)

    Innocenti, M. E.; Jiang, W.; Lapenta, G.; Markidis, S.

    2016-12-01

    Magnetic reconnection has been explored for decades as a way to convert magnetic energy into kinetic energy and heat and to accelerate particles in environments as different as the solar surface, planetary magnetospheres, the solar wind, accretion disks, laboratory plasmas. When studying reconnection via simulations, it is usually assumed that the plasma is fully ionised, as it is indeed the case in many of the above-mentioned cases. There are, however, exceptions, the most notable being the lower solar atmosphere. Small ionisation fractions are registered also in the warm neutral interstellar medium, in dense interstellar clouds, in protostellar and protoplanetary accreditation disks, in tokamak edge plasmas and in ad-hoc laboratory experiments [1]. We study here how magnetic reconnection is modified by the presence of a neutral background, i.e. when the majority of the gas is not ionised. The ionised plasma is simulated with the fully kinetic Particle-In-Cell (PIC) code iPic3D [2]. Collisions with the neutral background are introduced via a Monte Carlo plug-in. The standard Monte Carlo procedure [3] is employed to account for elastic, excitation and ionization electron-neutral collisions, as well as for elastic scattering and charge exchange ion-neutral collisions. Collisions with the background introduce resistivity in an otherwise collisionless plasma and modifications of the particle distribution functions: particles (and ions at a faster rate) tend to thermalise to the background. To pinpoint the consequences of this, we compare reconnection simulations with and without background. References [1] E E Lawrence et al. Physical review letters, 110(1):015001, 2013. [2] S Markidis et al. Mathematics and Computers in Simulation, 80(7):1509-1519, 2010. [3] K Nanbu. IEEE Transactions on plasma science, 28(3):971-990, 2000.

  13. Fully resolved simulations of expansion waves propagating into particle beds

    Science.gov (United States)

    Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.

    2017-11-01

    There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  14. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    Science.gov (United States)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  15. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Trembacki, Bradley L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murthy, Jayathi Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Scott Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  16. Fully kinetic particle simulations of high pressure streamer propagation

    Science.gov (United States)

    Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert

    2012-10-01

    Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].

  17. Accurate simulation dynamics of microscopic filaments using "caterpillar" Oseen hydrodynamics

    NARCIS (Netherlands)

    Bailey, A.G.; Lowe, C.P.; Pagonabarraga, I.; Cosentino Lagomarsino, M.

    2009-01-01

    Microscopic semiflexible filaments suspended in a viscous fluid are widely encountered in biophysical problems. The classic example is the flagella used by microorganisms to generate propulsion. Simulating the dynamics of these filaments numerically is complicated because of the coupling between the

  18. Understanding Yield Anomalies in ICF Implosions via Fully Kinetic Simulations

    Science.gov (United States)

    Taitano, William

    2017-10-01

    In the quest towards ICF ignition, plasma kinetic effects are among prime candidates for explaining some significant discrepancies between experimental observations and rad-hydro simulations. To assess their importance, high-fidelity fully kinetic simulations of ICF capsule implosions are needed. Owing to the extremely multi-scale nature of the problem, kinetic codes have to overcome nontrivial numerical and algorithmic challenges, and very few options are currently available. Here, we present resolutions of some long-standing yield discrepancy conundrums using a novel, LANL-developed, 1D-2V Vlasov-Fokker-Planck code iFP. iFP possesses an unprecedented fidelity and features fully implicit time-stepping, exact mass, momentum, and energy conservation, and optimal grid adaptation in phase space, all of which are critically important for ensuring long-time numerical accuracy of the implosion simulations. Specifically, we concentrate on several anomalous yield degradation instances observed in Omega campaigns, with the so-called ``Rygg effect'', or an anomalous yield scaling with the fuel composition, being a prime example. Understanding the physical mechanisms responsible for such degradations in non-ignition-grade Omega experiments is of great interest, as such experiments are often used for platform and diagnostic development, which are then used in ignition-grade experiments on NIF. In the case of Rygg's experiments, effects of a kinetic stratification of fuel ions on the yield have been previously proposed as the anomaly explanation, studied with a kinetic code FPION, and found unimportant. We have revisited this issue with iFP and obtained excellent yield-over-clean agreement with the original Rygg results, and several subsequent experiments. This validates iFP and confirms that the kinetic fuel stratification is indeed at the root of the observed yield degradation. This work was sponsored by the Metropolis Postdoctoral Fellowship, LDRD office, Thermonuclear Burn

  19. On microscopic simulations of systems with model chemical reactions

    International Nuclear Information System (INIS)

    Gorecki, J.; Gorecka, J.N.

    1998-01-01

    Large scale computer simulations of model chemical systems play the role of idealized experiments in which theories may be tested. In this paper we present two applications of microscopic simulations based on the reactive hard sphere model. We investigate the influence of internal fluctuations on an oscillating chemical system and observe how they modify the phase portrait of it. Another application, we consider, is concerned with the propagation of a chemical wave front associated with a thermally activated reaction. It is shown that the nonequilibrium effects increase the front velocity if compared with the velocity of the front generated by a nonactivated process characterized by the same rate constant. (author)

  20. A fully microscopic model of 200 MeV proton-{sup 12}C elastic and inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Karataglidis, S; Dortmans, P J; Amos, K; de Swiniarski, R

    1996-03-01

    An effective two nucleon (NN) interaction in the nuclear medium is defined from an accurate mapping of the NN g matrices obtained by solving the Brueckner-Bethe-Goldstone equations for infinite nuclear matter. That effective interaction is used in a fully microscopic calculation of the nonlocal effective proton-{sup 12}C interaction from which are obtained predictions of the differential cross section and analysing power for 200 MeV elastic scattering. The relative motion wave functions so found are used as the distorted waves in a distorted wave approximation (DWA) study of select inelastic scattering events. The effective NN interaction is used as the transition operator in those calculations. The relevant nuclear spectroscopy for the elastic and DWA (p, p`) calculations is found from a full (0 + 2) {Dirac_h}{omega} shell model evaluation of the positive parity states while a restricted (1 + 3){Dirac_h}{omega} has been used to give the negative parity states. Results are compared with those of the 0p-shell model of Cohen and Kurath or with those based upon axially symmetric, projected Hartree-Fock calculations. The diverse structure model wave functions are assessed by using them in calculations to compare with measured longitudinal, transverse electric and transverse magnetic form factors from electron scattering to many of the excited states of {sup 12}C. Using those models of the structure of {sup 12}C in the completely microscopic model of the elastic and inelastic scattering of 200 MeV protons, good fits have been found to the cross section and analysing power data. 50 refs., 3 tabs., 20 figs.

  1. Multigrid methods for fully implicit oil reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, J.

    1995-12-31

    In this paper, the authors consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations the material balance or continuity equations, and the equation of motion (Darcy`s law). For the numerical solution of this system of nonlinear partial differential equations, there are two approaches: the fully implicit or simultaneous solution method, and the sequential solution method. In this paper, the authors consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations.

  2. Simulation and Experimental Characterization of Microscopically Accessible Hydrodynamic Microvortices

    Directory of Open Access Journals (Sweden)

    Deirdre R. Meldrum

    2012-06-01

    Full Text Available Single-cell studies of phenotypic heterogeneity reveal more information about pathogenic processes than conventional bulk-cell analysis methods. By enabling high-resolution structural and functional imaging, a single-cell three-dimensional (3D imaging system can be used to study basic biological processes and to diagnose diseases such as cancer at an early stage. One mechanism that such systems apply to accomplish 3D imaging is rotation of a single cell about a fixed axis. However, many cell rotation mechanisms require intricate and tedious microfabrication, or fail to provide a suitable environment for living cells. To address these and related challenges, we applied numerical simulation methods to design new microfluidic chambers capable of generating fluidic microvortices to rotate suspended cells. We then compared several microfluidic chip designs experimentally in terms of: (1 their ability to rotate biological cells in a stable and precise manner; and (2 their suitability, from a geometric standpoint, for microscopic cell imaging. We selected a design that incorporates a trapezoidal side chamber connected to a main flow channel because it provided well-controlled circulation and met imaging requirements. Micro particle-image velocimetry (micro-PIV was used to provide a detailed characterization of flows in the new design. Simulated and experimental results demonstrate that a trapezoidal side chamber represents a viable option for accomplishing controlled single cell rotation. Further, agreement between experimental and simulated results confirms that numerical simulation is an effective method for chamber design.

  3. Improving reticle defect disposition via fully automated lithography simulation

    Science.gov (United States)

    Mann, Raunak; Goodman, Eliot; Lao, Keith; Ha, Steven; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2016-03-01

    Most advanced wafer fabs have embraced complex pattern decoration, which creates numerous challenges during in-fab reticle qualification. These optical proximity correction (OPC) techniques create assist features that tend to be very close in size and shape to the main patterns as seen in Figure 1. A small defect on an assist feature will most likely have little or no impact on the fidelity of the wafer image, whereas the same defect on a main feature could significantly decrease device functionality. In order to properly disposition these defects, reticle inspection technicians need an efficient method that automatically separates main from assist features and predicts the resulting defect impact on the wafer image. Analysis System (ADAS) defect simulation system[1]. Up until now, using ADAS simulation was limited to engineers due to the complexity of the settings that need to be manually entered in order to create an accurate result. A single error in entering one of these values can cause erroneous results, therefore full automation is necessary. In this study, we propose a new method where all needed simulation parameters are automatically loaded into ADAS. This is accomplished in two parts. First we have created a scanner parameter database that is automatically identified from mask product and level names. Second, we automatically determine the appropriate simulation printability threshold by using a new reference image (provided by the inspection tool) that contains a known measured value of the reticle critical dimension (CD). This new method automatically loads the correct scanner conditions, sets the appropriate simulation threshold, and automatically measures the percentage of CD change caused by the defect. This streamlines qualification and reduces the number of reticles being put on hold, waiting for engineer review. We also present data showing the consistency and reliability of the new method, along with the impact on the efficiency of in

  4. Microscopic description and simulation of ultracold atoms in optical resonators

    International Nuclear Information System (INIS)

    Niedenzu, W.

    2012-01-01

    Ultracold atoms in optical resonators are an ideal system to investigate the full quantum regime of light-matter interaction. Microscopic insight into the underlying processes can nowadays easily be obtained from numerical calculations, e.g. with Monte Carlo wave function simulations. In the first part we discuss cold atoms in ring resonators, where the modified boundary conditions significantly alter the dynamics as compared to the standing-wave case. Quantum jumps induce momentum correlations and entanglement between the particles. We observe strong non-classical motional correlations, cooling and entanglement heralded by single photon measurements. For deeply trapped particles the complex system Hamiltonian can be mapped onto a generic optomechanical model, allowing for analytical microscopic insight into the dynamics. The rates of cavity-mediated correlated heating and cooling processes are obtained by adiabatically eliminating the cavity field from the dynamics and can be directly related to the steady-state momentum correlation coefficient. The second part is devoted to cooling and self-organisation of a cold gas in a transversally pumped standing-wave resonator, in which the atoms are directly illuminated by a laser beam. Above a certain critical laser intensity the atoms order in a specific pattern, maximising light scattering into the cavity. The particles thus create and sustain their own trap. We derive a nonlinear Fokker-Planck equation for the one-particle distribution function describing the gas dynamics below and above threshold. This kinetic theory predicts dissipation-induced self-organisation and q-Gaussian velocity distributions in steady state. (author)

  5. Simulations of Model Microswimmers with Fully Resolved Hydrodynamics

    Science.gov (United States)

    Oyama, Norihiro; Molina, John J.; Yamamoto, Ryoichi

    2017-10-01

    Swimming microorganisms, which include bacteria, algae, and spermatozoa, play a fundamental role in most biological processes. These swimmers are a special type of active particle, that continuously convert local energy into propulsive forces, thereby allowing them to move through their surrounding fluid medium. While the size, shape, and propulsion mechanism vary from one organism to the next, they share certain general characteristics: they exhibit force-free motion and they swim at a small Reynolds number. To study the dynamics of such systems, we use the squirmer model, which provides an ideal representation of swimmers as spheroidal particles that propel owing to a modified boundary condition at their surface. We have considered the single-particle and many-particle dynamics of swimmers in bulk and confined systems using the smoothed profile method, which allows us to efficiently solve the coupled particle-fluid problem. For the single-particle dynamics, we studied the diffusive behavior caused by the swimming of the particles. At short-time scales, the diffusion is caused by the hydrodynamic interactions, whereas at long-time scales, it is determined by the particle-particle collisions. Thus, the short-time diffusion will be the same for both swimmers and inert tracer particles. We then investigated the dynamics of confined microswimmers using cylindrical and parallel-plate confining walls. For the cylindrical confinement, we find evidence of an order/disorder phase transition which depends on the specific type of swimmers and the size of the cylinder. Under parallel-plane walls, some swimmers exhibit wavelike modes, which lead to traveling density waves that bounce back and forth between the walls. From an analysis of the bulk systems, we can show that this wavelike motion can be understood as a pseudoacoustic mode and is a consequence of the intrinsic swimming properties of the particles. The results presented here, together with the simulation method that

  6. Simulation and Characterization of a Miniaturized Scanning Electron Microscope

    Science.gov (United States)

    Gaskin, Jessica A.; Jerman, Gregory A.; Medley, Stephanie; Gregory, Don; Abbott, Terry O.; Sampson, Allen R.

    2011-01-01

    A miniaturized Scanning Electron Microscope (mSEM) for in-situ lunar investigations is being developed at NASA Marshall Space Flight Center with colleagues from the University of Alabama in Huntsville (UAH), Advanced Research Systems (ARS), the University of Tennessee in Knoxville (UTK) and Case Western Reserve University (CWRU). This effort focuses on the characterization of individual components of the mSEM and simulation of the complete system. SEMs can provide information on the size, shape, morphology and chemical composition of lunar regolith. Understanding these basic properties will allow us to better estimate the challenges associated with In-Situ Resource Utilization and to improve our basic science knowledge of the lunar surface (either precluding the need for sample return or allowing differentiation of unique samples to be returned to Earth.) The main components of the mSEM prototype includes: a cold field emission electron gun (CFEG), focusing lens, deflection/scanning system and backscatter electron detector. Of these, the electron gun development is of particular importance as it dictates much of the design of the remaining components. A CFEG was chosen for use with the lunar mSEM as its emission does not depend on heating of the tungsten emitter (lower power), it offers a long operation lifetime, is orders of magnitude brighter than tungsten hairpin guns, has a small source size and exhibits low beam energy spread.

  7. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    Science.gov (United States)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  8. Study and application of microscopic depletion model in core simulator of COSINE project

    International Nuclear Information System (INIS)

    Hu Xiaoyu; Wang Su; Yan Yuhang; Liu Zhanquan; Chen Yixue; Huang Kai

    2013-01-01

    Microscopic depletion correction is one of the commonly used techniques that could improve the historical effect and attain higher precision of diffusion calculation and alleviate the inaccuracy caused by historical effect. Core simulator of COSINE project (core and system integrated engine for design and analysis) has developed a hybrid macroscopic-microscopic depletion model to track important isotopes during each depletion history and correct the macro cross sections. The basic theory was discussed in this paper. The effect and results of microscopic depletion correction were also analyzed. The preliminary test results demonstrate that the microscopic depletion model is effective and practicable for improving the precision of core calculation. (authors)

  9. Fast simulation options in LHCb from ReDecay to fully parametrised

    CERN Multimedia

    Muller, Dominik

    2017-01-01

    With the steady increase in the precision of flavour physics measurements with data from Run 2 of the LHC, the LHCb experiment requires simulated data samples of ever increasing magnitude to study the detector response in detail. However, relying on an increase of computing resources available for the production of simulated samples will not suffice to achieve this goal. Therefore, multiple efforts are currently being investigated to reduce the time needed to simulate an event. This talk presents a summary of those efforts in LHCb, focusing on the newest developments: re-using parts of previously simulated events and a fully parametric detector description using the DELPHES framework. The former merges a simulation of an underlying event multiple times with signal decays simulated separately, achieving an order of magnitude increase in speed with identical precision. The latter provides a parametric solution replacing the full, GEANT4-based simulation, including the smearing of particles' energies, efficienci...

  10. Use of high voltage electron microscope to simulate radiation damage by neutrons

    International Nuclear Information System (INIS)

    Mayer, R.M.

    1976-01-01

    The use of the high voltage electron microscope to simulate radiation damage by neutrons is briefly reviewed. This information is important in explaining how alloying affects void formation during neutron irradiation

  11. Calibration of a microscopic simulation model for emission calculation

    NARCIS (Netherlands)

    Jie, L.; Zuylen, H. van; Chen, Y.; Viti, F.; Wilmink, I.

    2013-01-01

    Emissions by road traffic can be reduced by optimising traffic control. The impact of this optimisation on emission can be analysed ex ante by simulation. The simulation programs used for this analysis should be valid with respect to the traffic characteristics that determine the emissions. Thus

  12. MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Rakesh K.; Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Christensen, Ulrich R. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Poppenhaeger, Katja, E-mail: rakesh.yadav@cfa.harvard.edu [Astrophysics Research Center, Queen’s University Belfast, Belfast BT7 1NN (United Kingdom)

    2016-12-20

    The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristics of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.

  13. How a Fully Automated eHealth Program Simulates Three Therapeutic Processes: A Case Study.

    Science.gov (United States)

    Holter, Marianne T S; Johansen, Ayna; Brendryen, Håvar

    2016-06-28

    eHealth programs may be better understood by breaking down the components of one particular program and discussing its potential for interactivity and tailoring in regard to concepts from face-to-face counseling. In the search for the efficacious elements within eHealth programs, it is important to understand how a program using lapse management may simultaneously support working alliance, internalization of motivation, and behavior maintenance. These processes have been applied to fully automated eHealth programs individually. However, given their significance in face-to-face counseling, it may be important to simulate the processes simultaneously in interactive, tailored programs. We propose a theoretical model for how fully automated behavior change eHealth programs may be more effective by simulating a therapist's support of a working alliance, internalization of motivation, and managing lapses. We show how the model is derived from theory and its application to Endre, a fully automated smoking cessation program that engages the user in several "counseling sessions" about quitting. A descriptive case study based on tools from the intervention mapping protocol shows how each therapeutic process is simulated. The program supports the user's working alliance through alliance factors, the nonembodied relational agent Endre and computerized motivational interviewing. Computerized motivational interviewing also supports internalized motivation to quit, whereas a lapse management component responds to lapses. The description operationalizes working alliance, internalization of motivation, and managing lapses, in terms of eHealth support of smoking cessation. A program may simulate working alliance, internalization of motivation, and lapse management through interactivity and individual tailoring, potentially making fully automated eHealth behavior change programs more effective.

  14. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  15. Numerical simulation of transformation-induced microscopic residual stress in ferrite-martensite lamellar steel

    International Nuclear Information System (INIS)

    Mikami, Y; Inao, A; Mochizuki, M; Toyoda, M

    2009-01-01

    The effect of transformation-induced microscopic residual stress on fatigue crack propagation behavior of ferrite-martensite lamellar steel was discussed. Fatigue tests of prestrained and non-prestrained specimens were performed. Inflections and branches at ferrite-martensite boundaries were observed in the non-prestrained specimens. On the other hand, less inflections and branches were found in the prestrained specimens. The experimental results showed that the transformation induced microscopic residual stress has influence on the fatigue crack propagation behavior. To estimate the microscopic residual, a numerical simulation method for the calculation of microscopic residual stress stress induced by martensitic transformation was performed. The simulation showed that compressive residual stress was generated in martensite layer, and the result agree with the experimental result that inflections and branches were observed at ferrite-martensite boundaries.

  16. ASPEN: A fully kinetic, reduced-description particle-in-cell model for simulating parametric instabilities

    International Nuclear Information System (INIS)

    Vu, H.X.; Bezzerides, B.; DuBois, D.F.

    1999-01-01

    A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear interactions between low-frequency and high-frequency parametric instabilities are modeled correctly. The model is based on a reduced description where the electromagnetic field is represented by three separate temporal envelopes in order to model parametric instabilities with low-frequency and high-frequency daughter waves. Because temporal envelope approximations are invoked, the simulation can be performed on the electron time scale instead of the time scale of the light waves. The electrons and ions are represented by discrete finite-size particles, permitting electron and ion kinetic effects to be modeled properly. The Poisson equation is utilized to ensure that space-charge effects are included. The RPIC model is fully three dimensional and has been implemented in two dimensions on the Accelerated Strategic Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory, and the resulting simulation code has been named ASPEN. The authors believe this code is the first particle-in-cell code capable of simulating the interaction between low-frequency and high-frequency parametric instabilities in multiple dimensions. Test simulations of stimulated Raman scattering, stimulated Brillouin scattering, and Langmuir decay instability are presented

  17. Lattice Boltzmann simulations of heat transfer in fully developed periodic incompressible flows

    Science.gov (United States)

    Wang, Zimeng; Shang, Helen; Zhang, Junfeng

    2017-06-01

    Flow and heat transfer in periodic structures are of great interest for many applications. In this paper, we carefully examine the periodic features of fully developed periodic incompressible thermal flows, and incorporate them in the lattice Boltzmann method (LBM) for flow and heat transfer simulations. Two numerical approaches, the distribution modification (DM) approach and the source term (ST) approach, are proposed; and they can both be used for periodic thermal flows with constant wall temperature (CWT) and surface heat flux boundary conditions. However, the DM approach might be more efficient, especially for CWT systems since the ST approach requires calculations of the streamwise temperature gradient at all lattice nodes. Several example simulations are conducted, including flows through flat and wavy channels and flows through a square array with circular cylinders. Results are compared to analytical solutions, previous studies, and our own LBM calculations using different simulation techniques (i.e., the one-module simulation vs. the two-module simulation, and the DM approach vs. the ST approach) with good agreement. These simple, however, representative simulations demonstrate the accuracy and usefulness of our proposed LBM methods for future thermal periodic flow simulations.

  18. A scalable fully implicit framework for reservoir simulation on parallel computers

    KAUST Repository

    Yang, Haijian

    2017-11-10

    The modeling of multiphase fluid flow in porous medium is of interest in the field of reservoir simulation. The promising numerical methods in the literature are mostly based on the explicit or semi-implicit approach, which both have certain stability restrictions on the time step size. In this work, we introduce and study a scalable fully implicit solver for the simulation of two-phase flow in a porous medium with capillarity, gravity and compressibility, which is free from the limitations of the conventional methods. In the fully implicit framework, a mixed finite element method is applied to discretize the model equations for the spatial terms, and the implicit Backward Euler scheme with adaptive time stepping is used for the temporal integration. The resultant nonlinear system arising at each time step is solved in a monolithic way by using a Newton–Krylov type method. The corresponding linear system from the Newton iteration is large sparse, nonsymmetric and ill-conditioned, consequently posing a significant challenge to the fully implicit solver. To address this issue, the family of additive Schwarz preconditioners is taken into account to accelerate the convergence of the linear system, and thereby improves the robustness of the outer Newton method. Several test cases in one, two and three dimensions are used to validate the correctness of the scheme and examine the performance of the newly developed algorithm on parallel computers.

  19. A scalable fully implicit framework for reservoir simulation on parallel computers

    KAUST Repository

    Yang, Haijian; Sun, Shuyu; Li, Yiteng; Yang, Chao

    2017-01-01

    The modeling of multiphase fluid flow in porous medium is of interest in the field of reservoir simulation. The promising numerical methods in the literature are mostly based on the explicit or semi-implicit approach, which both have certain stability restrictions on the time step size. In this work, we introduce and study a scalable fully implicit solver for the simulation of two-phase flow in a porous medium with capillarity, gravity and compressibility, which is free from the limitations of the conventional methods. In the fully implicit framework, a mixed finite element method is applied to discretize the model equations for the spatial terms, and the implicit Backward Euler scheme with adaptive time stepping is used for the temporal integration. The resultant nonlinear system arising at each time step is solved in a monolithic way by using a Newton–Krylov type method. The corresponding linear system from the Newton iteration is large sparse, nonsymmetric and ill-conditioned, consequently posing a significant challenge to the fully implicit solver. To address this issue, the family of additive Schwarz preconditioners is taken into account to accelerate the convergence of the linear system, and thereby improves the robustness of the outer Newton method. Several test cases in one, two and three dimensions are used to validate the correctness of the scheme and examine the performance of the newly developed algorithm on parallel computers.

  20. Efficient uncertainty quantification in fully-integrated surface and subsurface hydrologic simulations

    Science.gov (United States)

    Miller, K. L.; Berg, S. J.; Davison, J. H.; Sudicky, E. A.; Forsyth, P. A.

    2018-01-01

    Although high performance computers and advanced numerical methods have made the application of fully-integrated surface and subsurface flow and transport models such as HydroGeoSphere common place, run times for large complex basin models can still be on the order of days to weeks, thus, limiting the usefulness of traditional workhorse algorithms for uncertainty quantification (UQ) such as Latin Hypercube simulation (LHS) or Monte Carlo simulation (MCS), which generally require thousands of simulations to achieve an acceptable level of accuracy. In this paper we investigate non-intrusive polynomial chaos for uncertainty quantification, which in contrast to random sampling methods (e.g., LHS and MCS), represents a model response of interest as a weighted sum of polynomials over the random inputs. Once a chaos expansion has been constructed, approximating the mean, covariance, probability density function, cumulative distribution function, and other common statistics as well as local and global sensitivity measures is straightforward and computationally inexpensive, thus making PCE an attractive UQ method for hydrologic models with long run times. Our polynomial chaos implementation was validated through comparison with analytical solutions as well as solutions obtained via LHS for simple numerical problems. It was then used to quantify parametric uncertainty in a series of numerical problems with increasing complexity, including a two-dimensional fully-saturated, steady flow and transient transport problem with six uncertain parameters and one quantity of interest; a one-dimensional variably-saturated column test involving transient flow and transport, four uncertain parameters, and two quantities of interest at 101 spatial locations and five different times each (1010 total); and a three-dimensional fully-integrated surface and subsurface flow and transport problem for a small test catchment involving seven uncertain parameters and three quantities of interest at

  1. Macroscopic/microscopic simulation of nuclear reactions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-01-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. The model simulates events for reactions close to the fusion barrier (5-10 MeV/A) up to higher energy (100 MeV/A) and it gives access to the phase-space explored during the collision. The development of HIPSE has been largely influenced by experimental observations. We have separated the reaction into 4 steps: contact, fragment formation, chemical freeze-out, and in-flight deexcitation. HIPSE will be useful for a study of various mechanisms such as neck fragmentation or multi-fragmentation

  2. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu Lin; Xueyi Wang; Liu Chen; Zhihong Lin

    2009-08-11

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence

  3. Gyrokinetic Electron and Fully Kinetic Ion Particle Simulation of Collisionless Plasma Dynamics

    International Nuclear Information System (INIS)

    Lin, Yu; Wang, Xueyi; Chen, Liu; Lin, Zhihong

    2009-01-01

    Fully kinetic-particle simulations and hybrid simulations have been utilized for decades to investigate various fundamental plasma processes, such as magnetic reconnection, fast compressional waves, and wave-particle interaction. Nevertheless, due to disparate temporal and spatial scales between electrons and ions, existing fully kinetic-particle codes have to employ either unrealistically high electron-to-ion mass ratio, me/mi, or simulation domain limited to a few or a few ten's of the ion Larmor radii, or/and time much less than the global Alfven time scale in order to accommodate available computing resources. On the other hand, in the hybrid simulation, the ions are treated as fully kinetic particles but the electrons are treated as a massless fluid. The electron kinetic effects, e.g., wave-particle resonances and finite electron Larmor radius effects, are completely missing. Important physics, such as the electron transit time damping of fast compressional waves or the triggering mechanism of magnetic reconnection in collisionless plasmas is absent in the hybrid codes. Motivated by these considerations and noting that dynamics of interest to us has frequencies lower than the electron gyrofrequency, we planned to develop an innovative particle simulation model, gyrokinetic (GK) electrons and fully kinetic (FK) ions. In the GK-electron and FK-ion (GKe/FKi) particle simulation model, the rapid electron cyclotron motion is removed, while keeping finite electron Larmor radii, realistic me/mi ratio, wave-particle interactions, and off-diagonal components of electron pressure tensor. The computation power can thus be significantly improved over that of the full-particle codes. As planned in the project DE-FG02-05ER54826, we have finished the development of the new GK-electron and FK-ion scheme, finished its benchmark for a uniform plasma in 1-D, 2-D, and 3-D systems against linear waves obtained from analytical theories, and carried out a further convergence test

  4. A parallel code named NEPTUNE for 3D fully electromagnetic and pic simulations

    International Nuclear Information System (INIS)

    Dong Ye; Yang Wenyuan; Chen Jun; Zhao Qiang; Xia Fang; Ma Yan; Xiao Li; Sun Huifang; Chen Hong; Zhou Haijing; Mao Zeyao; Dong Zhiwei

    2010-01-01

    A parallel code named NEPTUNE for 3D fully electromagnetic and particle-in-cell (PIC) simulations is introduced, which could run on the Linux system with hundreds to thousand CPUs. NEPTUNE is suitable to simulate entire 3D HPM devices; many HPM devices are simulated and designed by using it. In NEPTUNE code, the electromagnetic fields are updated by using the finite-difference in time domain (FDTD) method of solving Maxwell equations and the particles are moved by using Buneman-Boris advance method of solving relativistic Newton-Lorentz equation. Electromagnetic fields and particles are coupled by using liner weighing interpolation PIC method, and the electric filed components are corrected by using Boris method of solve Poisson equation in order to ensure charge-conservation. NEPTUNE code could construct many complicated geometric structures, such as arbitrary axial-symmetric structures, plane transforming structures, slow-wave-structures, coupling holes, foils, and so on. The boundary conditions used in NEPTUNE code are introduced in brief, including perfectly electric conductor boundary, external wave boundary, and particle boundary. Finally, some typical HPM devices are simulated and test by using NEPTUNE code, including MILO, RBWO, VCO, and RKA. The simulation results are with correct and credible physical images, and the parallel efficiencies are also given. (authors)

  5. A fully coupled finite element framework for thermal fracturing simulation in subsurface cold CO2 injection

    Directory of Open Access Journals (Sweden)

    Shunde Yin

    2018-03-01

    Simulation of thermal fracturing during cold CO2 injection involves the coupled processes of heat transfer, mass transport, rock deforming as well as fracture propagation. To model such a complex coupled system, a fully coupled finite element framework for thermal fracturing simulation is presented. This framework is based on the theory of non-isothermal multiphase flow in fracturing porous media. It takes advantage of recent advances in stabilized finite element and extended finite element methods. The stabilized finite element method overcomes the numerical instability encountered when the traditional finite element method is used to solve the convection dominated heat transfer equation, while the extended finite element method overcomes the limitation with traditional finite element method that a model has to be remeshed when a fracture is initiated or propagating and fracturing paths have to be aligned with element boundaries.

  6. Fully-kinetic Ion Simulation of Global Electrostatic Turbulent Transport in C-2U

    Science.gov (United States)

    Fulton, Daniel; Lau, Calvin; Bao, Jian; Lin, Zhihong; Tajima, Toshiki; TAE Team

    2017-10-01

    Understanding the nature of particle and energy transport in field-reversed configuration (FRC) plasmas is a crucial step towards an FRC-based fusion reactor. The C-2U device at Tri Alpha Energy (TAE) achieved macroscopically stable plasmas and electron energy confinement time which scaled favorably with electron temperature. This success led to experimental and theoretical investigation of turbulence in C-2U, including gyrokinetic ion simulations with the Gyrokinetic Toroidal Code (GTC). A primary objective of TAE's new C-2W device is to explore transport scaling in an extended parameter regime. In concert with the C-2W experimental campaign, numerical efforts have also been extended in A New Code (ANC) to use fully-kinetic (FK) ions and a Vlasov-Poisson field solver. Global FK ion simulations are presented. Future code development is also discussed.

  7. Development of the tunneling junction simulation environment for scanning tunneling microscope evaluation

    International Nuclear Information System (INIS)

    Gajewski, Krzysztof; Piasecki, Tomasz; Kopiec, Daniel; Gotszalk, Teodor

    2017-01-01

    Proper configuration of scanning tunneling microscope electronics plays an important role in the atomic scale resolution surface imaging. Device evaluation in the tunneling contact between scanning tip and sample may be prone to the surface quality or mechanical disturbances. Thus the use of tunneling junction simulator makes electronics testing more reliable and increases its repeatability. Here, we present the theoretical background enabling the proper selection of electronic components circuitry used as a tunneling junction simulator. We also show how to simulate mechanics related to the piezoelectric scanner, which is applied in real experiments. Practical use of the proposed simulator and its application in metrological characterization of the developed scanning tunneling microscope is also shown. (paper)

  8. Improved social force model based on exit selection for microscopic pedestrian simulation in subway station

    Institute of Scientific and Technical Information of China (English)

    郑勋; 李海鹰; 孟令云; 许心越; 陈旭

    2015-01-01

    An improved social force model based on exit selection is proposed to simulate pedestrians’ microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.

  9. Fully implicit two-phase reservoir simulation with the additive schwarz preconditioned inexact newton method

    KAUST Repository

    Liu, Lulu

    2013-01-01

    The fully implicit approach is attractive in reservoir simulation for reasons of numerical stability and the avoidance of splitting errors when solving multiphase flow problems, but a large nonlinear system must be solved at each time step, so efficient and robust numerical methods are required to treat the nonlinearity. The Additive Schwarz Preconditioned Inexact Newton (ASPIN) framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this paper, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size.

  10. Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks

    Science.gov (United States)

    Hu, Youjun; Chen, Yang; Parker, Scott

    2017-10-01

    A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.

  11. A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus.

    Science.gov (United States)

    Figl, Michael; Ede, Christopher; Hummel, Johann; Wanschitz, Felix; Ewers, Rolf; Bergmann, Helmar; Birkfellner, Wolfgang

    2005-11-01

    Ever since the development of the first applications in image-guided therapy (IGT), the use of head-mounted displays (HMDs) was considered an important extension of existing IGT technologies. Several approaches to utilizing HMDs and modified medical devices for augmented reality (AR) visualization were implemented. These approaches include video-see through systems, semitransparent mirrors, modified endoscopes, and modified operating microscopes. Common to all these devices is the fact that a precise calibration between the display and three-dimensional coordinates in the patient's frame of reference is compulsory. In optical see-through devices based on complex optical systems such as operating microscopes or operating binoculars-as in the case of the system presented in this paper-this procedure can become increasingly difficult since precise camera calibration for every focus and zoom position is required. We present a method for fully automatic calibration of the operating binocular Varioscope M5 AR for the full range of zoom and focus settings available. Our method uses a special calibration pattern, a linear guide driven by a stepping motor, and special calibration software. The overlay error in the calibration plane was found to be 0.14-0.91 mm, which is less than 1% of the field of view. Using the motorized calibration rig as presented in the paper, we were also able to assess the dynamic latency when viewing augmentation graphics on a mobile target; spatial displacement due to latency was found to be in the range of 1.1-2.8 mm maximum, the disparity between the true object and its computed overlay represented latency of 0.1 s. We conclude that the automatic calibration method presented in this paper is sufficient in terms of accuracy and time requirements for standard uses of optical see-through systems in a clinical environment.

  12. Demonstration of fully coupled simplified extended station black-out accident simulation with RELAP-7

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Anders, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC) system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.

  13. Molecular dynamics simulations of a fully hydrated dipalmitoyl phosphatidylcholine bilayer with different macroscopic boundary conditions and parameters

    NARCIS (Netherlands)

    Tieleman, D.P; Berendsen, H.J.C.

    1996-01-01

    We compared molecular dynamics simulations of a bilayer of 128 fully hydrated phospholipid (DPPC) molecules, using different parameters and macroscopic boundary conditions. The same system was studied under constant pressure, constant volume, and constant surface tension boundary conditions, with

  14. Fully three dimensional simulations of rotating convection at low Prandtl number

    Science.gov (United States)

    Kaplan, E.; Schaeffer, N.; Cardin, P.

    2016-12-01

    Rotating thermal convection in spheres or spherical shells has been extensively studied for Prandtl number unity.However, planetary cores are made of liquid metals which have low Prandtl numbers Pr ≤ 0.1. Recently, using a quasi-geostrophic approximation, Guervilly & Cardin (2016) have studied nonlinear convection in rotating full sphere with internal heating at low Prandtl (0.01 ≤ Pr ≤ 0.1) and Ekman (10-8 ≤ Ek ≤ 10-5 ) numbers. They have found a bifurcation between a weak branch characterized by thermal Rossby waves and a strong branch characterized by a strong zonal flow with multiple jets. In these quasi-geostrophic simulations, where vorticity is defined to be constant along the axis of rotation, these bifurcations could be super- or sub-critical or exhibit hysteresis depending on the Ek and Prnumbers of the simulations. Here we present fully three dimensional simulations carried out over a portion of the parameter space (down to Ek = 10-6, Pr = 0.01) that confirm the scaling and bifurcations of the weak and strong branches found in the QG models. Additionally, by modeling the full flow we get information about the full meridional circulation of the convective fluid. The vigorous flows of the sub-critical strong branch may help to generate powerful dynamos before an inner-core has been formed, with a heat flux extracted from the mantle very close to the adiabatic flux.

  15. 18/20 T high magnetic field scanning tunneling microscope with fully low voltage operability, high current resolution, and large scale searching ability.

    Science.gov (United States)

    Li, Quanfeng; Wang, Qi; Hou, Yubin; Lu, Qingyou

    2012-04-01

    We present a home-built 18/20 T high magnetic field scanning tunneling microscope (STM) featuring fully low voltage (lower than ±15 V) operability in low temperatures, large scale searching ability, and 20 fA high current resolution (measured by using a 100 GOhm dummy resistor to replace the tip-sample junction) with a bandwidth of 3.03 kHz. To accomplish low voltage operation which is important in achieving high precision, low noise, and low interference with the strong magnetic field, the coarse approach is implemented with an inertial slider driven by the lateral bending of a piezoelectric scanner tube (PST) whose inner electrode is axially split into two for enhanced bending per volt. The PST can also drive the same sliding piece to inertial slide in the other bending direction (along the sample surface) of the PST, which realizes the large area searching ability. The STM head is housed in a three segment tubular chamber, which is detachable near the STM head for the convenience of sample and tip changes. Atomic resolution images of a graphite sample taken under 17.6 T and 18.0001 T are presented to show its performance. © 2012 American Institute of Physics

  16. Osborne Reynolds pipe flow: direct numerical simulation from laminar to fully-developed turbulence

    Science.gov (United States)

    Adrian, R. J.; Wu, X.; Moin, P.; Baltzer, J. R.

    2014-11-01

    Osborne Reynolds' pipe experiment marked the onset of modern viscous flow research, yet the detailed mechanism carrying the laminar state to fully-developed turbulence has been quite elusive, despite notable progress related to dynamic edge-state theory. Here, we continue our direct numerical simulation study on this problem using a 250R long, spatially-developing pipe configuration with various Reynolds numbers, inflow disturbances, and inlet base flow states. For the inlet base flow, both fully-developed laminar profile and the uniform plug profile are considered. Inlet disturbances consist of rings of turbulence of different width and radial location. In all the six cases examined so far, energy norms show exponential growth with axial distance until transition after an initial decay near the inlet. Skin-friction overshoots the Moody's correlation in most, but not all, the cases. Another common theme is that lambda vortices amplified out of susceptible elements in the inlet disturbances trigger rapidly growing hairpin packets at random locations and times, after which infant turbulent spots appear. Mature turbulent spots in the pipe transition are actually tight concentrations of hairpin packets looking like a hairpin forest. The plug flow inlet profile requires much stronger disturbances to transition than the parabolic profile.

  17. A fully magnetohydrodynamic simulation of three-dimensional non-null reconnection

    International Nuclear Information System (INIS)

    Pontin, D.I.; Galsgaard, K.; Hornig, G.; Priest, E.R.

    2005-01-01

    A knowledge of the nature of fully three-dimensional magnetic reconnection is crucial in understanding a great many processes in plasmas. It has been previously shown that in the kinematic regime the evolution of magnetic flux in three-dimensional reconnection is very different from two dimensions. In this paper a numerical fully magnetohydrodynamic simulation is described, in which this evolution is investigated. The reconnection takes place in the absence of a magnetic null point, and the nonideal region is localized in the center of the domain. The effect of differently prescribed resistivities is considered. The magnetic field is stressed by shear boundary motions, and a current concentration grows within the volume. A stagnation-point flow develops, with strong outflow jets emanating from the reconnection region. The behavior of the magnetic flux matches closely that discovered in the kinematic regime. In particular, it is found that no unique field line velocity exists, and that as a result field lines change their connections continually and continuously throughout the nonideal region. In order to describe the motion of magnetic flux within the domain, it is therefore necessary to use two different field line velocities. The importance of a component of the electric field parallel to the magnetic field is also demonstrated

  18. Fully coupled numerical simulation of fire in tunnels: From fire scenario to structural response

    Directory of Open Access Journals (Sweden)

    Pesavento F.

    2013-09-01

    Full Text Available In this paper we present an efficient tool for simulation of a fire scenario in a tunnel. The strategy adopted is based on a 3D-2D coupling technique between the fluid domain and the solid one. So, the thermally driven CFD part is solved in a three dimensional cavity i.e. the tunnel, and the concrete part is solved on 2D sections normal to the tunnel axis, at appropriate intervals. The heat flux and temperature values, which serve as coupling terms between the fluid and the structural problem, are interpolated between the sections. Between the solid and the fluid domain an interface layer is created for the calculation of the heat flux exchange based on a “wall law”. In the analysis of the concrete structures, concrete is treated as a multiphase porous material. Some examples of application of this fully coupled tool will be shown.

  19. Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter

    2013-01-01

    This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.

  20. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    Science.gov (United States)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  1. MODFLOW-OWHM v2: The next generation of fully integrated hydrologic simulation software

    Science.gov (United States)

    Boyce, S. E.; Hanson, R. T.; Ferguson, I. M.; Reimann, T.; Henson, W.; Mehl, S.; Leake, S.; Maddock, T.

    2016-12-01

    The One-Water Hydrologic Flow Model (One-Water) is a MODFLOW-based integrated hydrologic flow model designed for the analysis of a broad range of conjunctive-use and climate-related issues. One-Water fully links the movement and use of groundwater, surface water, and imported water for consumption by agriculture and natural vegetation on the landscape, and for potable and other uses within a supply-and-demand framework. One-Water includes linkages for deformation-, flow-, and head-dependent flows; additional observation and parameter options for higher-order calibrations; and redesigned code for facilitation of self-updating models and faster simulation run times. The next version of One-Water, currently under development, will include a new surface-water operations module that simulates dynamic reservoir operations, a new sustainability analysis package that facilitates the estimation and simulation of reduced storage depletion and captured discharge, a conduit-flow process for karst aquifers and leaky pipe networks, a soil zone process that adds an enhanced infiltration process, interflow, deep percolation and soil moisture, and a new subsidence and aquifer compaction package. It will also include enhancements to local grid refinement, and additional features to facilitate easier model updates, faster execution, better error messages, and more integration/cross communication between the traditional MODFLOW packages. By retaining and tracking the water within the hydrosphere, One-Water accounts for "all of the water everywhere and all of the time." This philosophy provides more confidence in the water accounting by the scientific community and provides the public a foundation needed to address wider classes of problems. Ultimately, more complex questions are being asked about water resources, so they require a more complete answer about conjunctive-use and climate-related issues.

  2. Osborne Reynolds pipe flow: Direct simulation from laminar through gradual transition to fully developed turbulence.

    Science.gov (United States)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J; Baltzer, Jon R

    2015-06-30

    The precise dynamics of breakdown in pipe transition is a century-old unresolved problem in fluid mechanics. We demonstrate that the abruptness and mysteriousness attributed to the Osborne Reynolds pipe transition can be partially resolved with a spatially developing direct simulation that carries weakly but finitely perturbed laminar inflow through gradual rather than abrupt transition arriving at the fully developed turbulent state. Our results with this approach show during transition the energy norms of such inlet perturbations grow exponentially rather than algebraically with axial distance. When inlet disturbance is located in the core region, helical vortex filaments evolve into large-scale reverse hairpin vortices. The interaction of these reverse hairpins among themselves or with the near-wall flow when they descend to the surface from the core produces small-scale hairpin packets, which leads to breakdown. When inlet disturbance is near the wall, certain quasi-spanwise structure is stretched into a Lambda vortex, and develops into a large-scale hairpin vortex. Small-scale hairpin packets emerge near the tip region of the large-scale hairpin vortex, and subsequently grow into a turbulent spot, which is itself a local concentration of small-scale hairpin vortices. This vortex dynamics is broadly analogous to that in the boundary layer bypass transition and in the secondary instability and breakdown stage of natural transition, suggesting the possibility of a partial unification. Under parabolic base flow the friction factor overshoots Moody's correlation. Plug base flow requires stronger inlet disturbance for transition. Accuracy of the results is demonstrated by comparing with analytical solutions before breakdown, and with fully developed turbulence measurements after the completion of transition.

  3. Computational simulation for creep fracture properties taking microscopic mechanism into account

    International Nuclear Information System (INIS)

    Tabuchi, Masaaki

    2003-01-01

    Relationship between creep crack growth rate and microscopic fracture mechanism i.e., wedge-type intergranular, transgranular and cavity-type intergranular crack growth, has been investigated. The growth rate of wedge-type and transgranular creep crack could be characterized by creep ductility. Creep damages formed ahead of the cavity-type crack tip accelerated the crack growth rate. Based on the experimental results, FEM code that simulates creep crack growth has been developed by taking the fracture mechanism into account. The effect of creep ductility and void formation ahead of the crack tip on creep crack growth behavior could be simulated. (author)

  4. A comparative analysis of currently used microscopic and macroscopic traffic simulation software

    International Nuclear Information System (INIS)

    Ratrout Nedal T; Rahman Syed Masiur

    2009-01-01

    The significant advancements of information technology have contributed to increased development of traffic simulation models. These include microscopic models and broadening the areas of applications ranging from the modeling of specific components of the transportation system to a whole network having different kinds of intersections and links, even in a few cases combining travel demand models. This paper mainly reviews the features of traditionally used macroscopic and microscopic traffic simulation models along with a comparative analysis focusing on freeway operations, urban congested networks, project-level emission modeling, and variations in delay and capacity estimates. The models AIMSUN, CORSIM, and VISSIM are found to be suitable for congested arterials and freeways, and integrated networks of freeways and surface streets. The features of AIMSUN are favorable for creating large urban and regional networks. The models AIMSUN, PARAMICS, INTEGRATION, and CORSIM are potentially useful for Intelligent Transportation System (ITS). There are a few simulation models which are developed focusing on ITS such as MITSIMLab. The TRAF-family and HUTSIM models attempt a system-level simulation approach and develop open environments where several analysis models can be used interactively to solve traffic simulation problems. In Saudi Arabia, use of simulation software with the capability of analyzing an integrated system of freeways and surface streets has not been reported. Calibration and validation of simulation software either for freeways or surface streets has been reported. This paper suggests that researchers evaluate the state-of-the-art simulation tools and find out the suitable tools or approaches for the local conditions of Saudi Arabia. (author)

  5. Mixed finite element-based fully conservative methods for simulating wormhole propagation

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu; Wu, Yuanqing

    2015-01-01

    Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.

  6. A fully kinetic, self-consistent particle simulation model of the collisionless plasma--sheath region

    International Nuclear Information System (INIS)

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C.

    1990-01-01

    A fully kinetic particle-in-cell (PIC) model is used to self-consistently determine the steady-state potential profile in a collisionless plasma that contacts a floating, absorbing boundary. To balance the flow of particles to the wall, a distributed source region is used to inject particles into the one-dimensional system. The effect of the particle source distribution function on the source region and collector sheath potential drops, and particle velocity distributions is investigated. The ion source functions proposed by Emmert et al. [Phys. Fluids 23, 803 (1980)] and Bissell and Johnson [Phys. Fluids 30, 779 (1987)] (and various combinations of these) are used for the injection of both ions and electrons. The values of the potential drops obtained from the PIC simulations are compared to those from the theories of Emmert et al., Bissell and Johnson, and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)], all of which assume that the electron density is related to the plasma potential via the Boltzmann relation. The values of the source region and total potential drop are found to depend on the choice of the electron source function, as well as the ion source function. The question of an infinite electric field at the plasma--sheath interface, which arises in the analyses of Bissell and Johnson and Scheuer and Emmert, is also addressed

  7. Mixed finite element-based fully conservative methods for simulating wormhole propagation

    KAUST Repository

    Kou, Jisheng

    2015-10-11

    Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.

  8. A fully automated system for ultrasonic power measurement and simulation accordingly to IEC 61161:2006

    International Nuclear Information System (INIS)

    Costa-Felix, Rodrigo P B; Alvarenga, Andre V; Hekkenberg, Rob

    2011-01-01

    The ultrasonic power measurement, worldwide accepted, standard is the IEC 61161, presently in its 2nd edition (2006), but under review. To fulfil its requirements, considering that a radiation force balance is to be used as ultrasonic power detector, a large amount of raw data (mass measurement) shall be collected as function of time to perform all necessary calculations and corrections. Uncertainty determination demands calculation effort of raw and processed data. Although it is possible to be undertaken in an old-fashion way, using spread sheets and manual data collection, automation software are often used in metrology to provide a virtually error free environment concerning data acquisition and repetitive calculations and corrections. Considering that, a fully automate ultrasonic power measurement system was developed and comprehensively tested. A 0,1 mg of precision balance model CP224S (Sartorius, Germany) was used as measuring device and a calibrated continuous wave ultrasound check source (Precision Acoustics, UK) was the device under test. A 150 ml container filled with degassed water and containing an absorbing target at the bottom was placed on the balance pan. Besides the feature of automation software, a routine of power measurement simulation was implemented. It was idealized as a teaching tool of how ultrasonic power emission behaviour is with a radiation force balance equipped with an absorbing target. Automation software was considered as an effective tool for speeding up ultrasonic power measurement, while allowing accurate calculation and attractive graphical partial and final results.

  9. Improving Precision and Reducing Runtime of Microscopic Traffic Simulators through Stratified Sampling

    Directory of Open Access Journals (Sweden)

    Khewal Bhupendra Kesur

    2013-01-01

    Full Text Available This paper examines the application of Latin Hypercube Sampling (LHS and Antithetic Variables (AVs to reduce the variance of estimated performance measures from microscopic traffic simulators. LHS and AV allow for a more representative coverage of input probability distributions through stratification, reducing the standard error of simulation outputs. Two methods of implementation are examined, one where stratification is applied to headways and routing decisions of individual vehicles and another where vehicle counts and entry times are more evenly sampled. The proposed methods have wider applicability in general queuing systems. LHS is found to outperform AV, and reductions of up to 71% in the standard error of estimates of traffic network performance relative to independent sampling are obtained. LHS allows for a reduction in the execution time of computationally expensive microscopic traffic simulators as fewer simulations are required to achieve a fixed level of precision with reductions of up to 84% in computing time noted on the test cases considered. The benefits of LHS are amplified for more congested networks and as the required level of precision increases.

  10. Large Eddy Simulation of Turbulence Modification and Particle Dispersion in a Fully-Developed Pipe Flow

    Science.gov (United States)

    Rani, Sarma; Pratap Vanka, Surya

    1999-11-01

    A LES study of the modification of turbulence in a fully-developed turbulent pipe flow by dispersed heavy particles at Re_τ = 360 is presented. A 64 (radial) x 64 (azimuthal) x 128 (axial) grid has been used. An Eulerian-Lagrangian approach has been used for treating the continuous and the dispersed phases respectively. The particle equation of motion included only the drag force. Three different LES models are used in the continuous fluid simulation: (i) A “No-Model” LES (coarse-grid DNS) (ii) Smagorinsky’s model and (iii) Schumann’s model . The motivation behind employing the Schumann’s model is to study the impact of sub-grid-scale fluctuations on the particle motion and their (SGS fluctuations) modulation, in turn, by the particles. The effect of particles on fluid turbulence is investigated by tracking 100000 particles of different diameters. Our studies confirm the preferential concentration of particles in the near wall region. It is observed that the inclusion of two-way coupling reduces the preferential concentration of particles. In addition, it was found that two-way coupling attenuates the fluid turbulence. However, we expect the above trends to differ depending upon the particle diameter, volumetric and mass fractions. The effect of SGS fluctuations on the particle dispersion and turbulence modulation is also being investigated. Other relevant statistics for the continuous and the dispersed phases are collected for the cases of one-way and two-way coupling. These statistics are compared to study the modulation of turbulence by the particles.

  11. Analysis of macroscopic and microscopic rotating motions in rotating jets: A direct numerical simulation

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-05-01

    Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.

  12. Report Viewgraphs for IC Project: Fully-coupled climate simulations with an eddy-permitting ocean component

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, Carmela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    Two sets of simulations were performed within this allocation: 1) a 12-year fully-coupled experiment in pre-industrial conditions, using the CICE4 version of the sea-ice model; 2) a set of multi-decadal ocean-ice-only experiments, forced with CORE-I atmospheric fields and using the CICE5 version of the sea-ice model.

  13. Simulation of electron displacement damage in a high voltage electron microscope

    International Nuclear Information System (INIS)

    Ono, Susumu; Kanaya, Koichi

    1979-01-01

    By applying the fundamental theory of the neutron cooling to the conservation law of energy and momentum, the threshold energies of incident electrons for displacing atoms are calculated and illustrated periodically for the atomic number. And the observable damage due to the secondary action of displaced atoms in the practical use of a high voltage electron microscope is described for several materials and accelerating voltages. The trajectories of incident electrons and displaced atoms in several materials are simulated by a Monte-Carlo method, using rigorous formulas of electron scattering events, i.e. elastic and inelastic scattering cross-sections, ionization loss and plasmon excitation. The simulation results are substantially agreement with experiments. (author)

  14. Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations

    KAUST Repository

    Flegg, Mark B.; Hellander, Stefan; Erban, Radek

    2015-01-01

    © 2015 Elsevier Inc. In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step δ. t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered:. (i)δt→0 and h is fixed;(ii)δt→0 and h→0 such that δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  15. Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations

    KAUST Repository

    Flegg, Mark B.

    2015-05-01

    © 2015 Elsevier Inc. In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step δ. t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered:. (i)δt→0 and h is fixed;(ii)δt→0 and h→0 such that δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

  16. Measurement with microscopic MRI and simulation of flow in different aneurysm models

    Energy Technology Data Exchange (ETDEWEB)

    Edelhoff, Daniel, E-mail: daniel.edelhoff@tu-dortmund.de; Frank, Frauke; Heil, Marvin; Suter, Dieter [Experimental Physics III, TU Dortmund University, Otto-Hahn-Street 4, Dortmund 44227 (Germany); Walczak, Lars; Weichert, Frank [Computer Science VII, TU Dortmund University, Otto-Hahn-Street 16, Dortmund 44227 (Germany); Schmitz, Inge [Institute for Pathology, Ruhr Universität Bochum, Bürkle-de-la-Camp-Platz 1, Bochum 44789 (Germany)

    2015-10-15

    Purpose: The impact and the development of aneurysms depend to a significant degree on the exchange of liquid between the regular vessel and the pathological extension. A better understanding of this process will lead to improved prediction capabilities. The aim of the current study was to investigate fluid-exchange in aneurysm models of different complexities by combining microscopic magnetic resonance measurements with numerical simulations. In order to evaluate the accuracy and applicability of these methods, the fluid-exchange process between the unaltered vessel lumen and the aneurysm phantoms was analyzed quantitatively using high spatial resolution. Methods: Magnetic resonance flow imaging was used to visualize fluid-exchange in two different models produced with a 3D printer. One model of an aneurysm was based on histological findings. The flow distribution in the different models was measured on a microscopic scale using time of flight magnetic resonance imaging. The whole experiment was simulated using fast graphics processing unit-based numerical simulations. The obtained simulation results were compared qualitatively and quantitatively with the magnetic resonance imaging measurements, taking into account flow and spin–lattice relaxation. Results: The results of both presented methods compared well for the used aneurysm models and the chosen flow distributions. The results from the fluid-exchange analysis showed comparable characteristics concerning measurement and simulation. Similar symmetry behavior was observed. Based on these results, the amount of fluid-exchange was calculated. Depending on the geometry of the models, 7% to 45% of the liquid was exchanged per second. Conclusions: The result of the numerical simulations coincides well with the experimentally determined velocity field. The rate of fluid-exchange between vessel and aneurysm was well-predicted. Hence, the results obtained by simulation could be validated by the experiment. The

  17. Evaluation and development the routing protocol of a fully functional simulation environment for VANETs

    Science.gov (United States)

    Ali, Azhar Tareq; Warip, Mohd Nazri Mohd; Yaakob, Naimah; Abduljabbar, Waleed Khalid; Atta, Abdu Mohammed Ali

    2017-11-01

    Vehicular Ad-hoc Networks (VANETs) is an area of wireless technologies that is attracting a great deal of interest. There are still several areas of VANETS, such as security and routing protocols, medium access control, that lack large amounts of research. There is also a lack of freely available simulators that can quickly and accurately simulate VANETs. The main goal of this paper is to develop a freely available VANETS simulator and to evaluate popular mobile ad-hoc network routing protocols in several VANETS scenarios. The VANETS simulator consisted of a network simulator, traffic (mobility simulator) and used a client-server application to keep the two simulators in sync. The VANETS simulator also models buildings to create a more realistic wireless network environment. Ad-Hoc Distance Vector routing (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) were initially simulated in a city, country, and highway environment to provide an overall evaluation.

  18. Report Viewgraphs for IC project: Fully-coupled climate simulations with an eddy-permitting ocean component

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, Carmela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    Two sets of simulations were performed within this allocation: 1) a 12-year fully-coupled experiment in preindustrial conditions, using the CICE4 version of the sea-ice model; 2) a set of multi-decadal ocean-ice-only experiments, forced with CORE-I atmospheric fields and using the CICE5 version of the sea-ice model. Results from simulation 1) are presented in Figures 1-3, and specific results from a simulation in 2) with tracer releases are presented in Figure 4.

  19. Microscopic Rate Constants of Crystal Growth from Molecular Dynamic Simulations Combined with Metadynamics

    Directory of Open Access Journals (Sweden)

    Dániel Kozma

    2012-01-01

    Full Text Available Atomistic simulation of crystal growth can be decomposed into two steps: the determination of the microscopic rate constants and a mesoscopic kinetic Monte Carlo simulation. We proposed a method to determine kinetic rate constants of crystal growth. We performed classical molecular dynamics on the equilibrium liquid/crystal interface of argon. Metadynamics was used to explore the free energy surface of crystal growth. A crystalline atom was selected at the interface, and it was displaced to the liquid phase by adding repulsive Gaussian potentials. The activation free energy of this process was calculated as the maximal potential energy density of the Gaussian potentials. We calculated the rate constants at different interfacial structures using the transition state theory. In order to mimic real crystallization, we applied a temperature difference in the calculations of the two opposite rate constants, and they were applied in kinetic Monte Carlo simulation. The novelty of our technique is that it can be used for slow crystallization processes, while the simple following of trajectories can be applied only for fast reactions. Our method is a possibility for determination of elementary rate constants of crystal growth that seems to be necessary for the long-time goal of computer-aided crystal design.

  20. Charge Transport and Phase Behavior of Imidazolium-Based Ionic Liquid Crystals from Fully Atomistic Simulations.

    Science.gov (United States)

    Quevillon, Michael J; Whitmer, Jonathan K

    2018-01-02

    Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.

  1. Numerical simulation of water exit of an initially fully submerged buoyant spheroid in an axisymmetric flow

    Energy Technology Data Exchange (ETDEWEB)

    Ni, B Y; Wu, G X, E-mail: g.wu@ucl.ac.uk [College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-08-15

    The free water exit of an initially fully submerged buoyant spheroid in an axisymmetric flow, which is driven by the difference between the vertical fluid force and gravity, is investigated. The fluid is assumed to be incompressible and inviscid, and the flow to be irrotational. The velocity potential theory is adopted together with fully nonlinear boundary conditions on the free surface. The surface tension is neglected and the pressure is taken as constant on the free surface. The acceleration of the body at each time step is obtained as part of the solution. Its nonlinear mutual dependence on the fluid force is decoupled through the auxiliary function method. The free-surface breakup by body penetration and water detachment from the body are treated through numerical conditions. The slender body theory based on the zero potential assumption on the undisturbed flat free surface is adopted, through which a condition for full water exit of a spheroid is obtained. Comparison is made between the results from the slender body theory and from the fully nonlinear theory through the boundary-element method, and good agreement is found when the spheroid is slender. Extensive case studies are undertaken to investigate the effects of body density, dimensions and the initial submergence. (paper)

  2. Fully implicit Particle-in-cell algorithms for multiscale plasma simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, Luis [Los Alamos National Laboratory

    2015-07-16

    The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PIC only, reduced dimensionality). The approach is free of numerical instabilities: ωpeΔt >> 1, and Δx >> λD. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing NFE, leading to an optimal algorithm.

  3. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    International Nuclear Information System (INIS)

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  4. Spectral-element simulation of two-dimensional elastic wave propagation in fully heterogeneous media on a GPU cluster

    Science.gov (United States)

    Rudianto, Indra; Sudarmaji

    2018-04-01

    We present an implementation of the spectral-element method for simulation of two-dimensional elastic wave propagation in fully heterogeneous media. We have incorporated most of realistic geological features in the model, including surface topography, curved layer interfaces, and 2-D wave-speed heterogeneity. To accommodate such complexity, we use an unstructured quadrilateral meshing technique. Simulation was performed on a GPU cluster, which consists of 24 core processors Intel Xeon CPU and 4 NVIDIA Quadro graphics cards using CUDA and MPI implementation. We speed up the computation by a factor of about 5 compared to MPI only, and by a factor of about 40 compared to Serial implementation.

  5. Development and Verification of a Fully Coupled Simulator for Offshore Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.; Buhl, M. L. Jr.

    2007-01-01

    This report outlines the development of an analysis tool capable of analyzing a variety of wind turbine, support platform, and mooring system configurations.The simulation capability was tested by model-to-model comparisons to ensure its correctness.

  6. Numerical Investigation of the Microscopic Heat Current Inside a Nanofluid System Based on Molecular Dynamics Simulation and Wavelet Analysis.

    Science.gov (United States)

    Jia, Tao; Gao, Di

    2018-04-03

    Molecular dynamics simulation is employed to investigate the microscopic heat current inside an argon-copper nanofluid. Wavelet analysis of the microscopic heat current inside the nanofluid system is conducted. The signal of the microscopic heat current is decomposed into two parts: one is the approximation part; the other is the detail part. The approximation part is associated with the low-frequency part of the signal, and the detail part is associated with the high-frequency part of the signal. Both the probability distributions of the high-frequency and the low-frequency parts of the signals demonstrate Gaussian-like characteristics. The curves fit to data of the probability distribution of the microscopic heat current are established, and the parameters including the mean value and the standard deviation in the mathematical formulas of the curves show dramatic changes for the cases before and after adding copper nanoparticles into the argon base fluid.

  7. Multi-Agent Based Microscopic Simulation Modeling for Urban Traffic Flow

    Directory of Open Access Journals (Sweden)

    Xianyan Kuang

    2014-10-01

    Full Text Available Traffic simulation plays an important role in the evaluation of traffic decisions. The movement of vehicles essentially is the operating process of drivers, in order to reproduce the urban traffic flow from the micro-aspect on computer, this paper establishes an urban traffic flow microscopic simulation system (UTFSim based on multi-agent. The system is seen as an intelligent virtual environment system (IVES, and the four-layer structure of it is built. The road agent, vehicle agent and signal agent are modeled. The concept of driving trajectory which is divided into LDT (Lane Driving Trajectory and VDDT (Vehicle Dynamic Driving Trajectory is introduced. The “Link-Node” road network model is improved. The driving behaviors including free driving, following driving, lane changing, slowing down, vehicle stop, etc. are analyzed. The results of the signal control experiments utilizing the UTFSim developed in the platform of Visual Studio. NET indicates that it plays a good performance and can be used in the evaluation of traffic management and control.

  8. Dehydrogenation of aromatic molecules under a scanning tunneling microscope: pathways and inelastic spectroscopy simulations.

    Science.gov (United States)

    Lesnard, Hervé; Bocquet, Marie-Laure; Lorente, Nicolas

    2007-04-11

    We have performed a theoretical study on the dehydrogenation of benzene and pyridine molecules on Cu(100) induced by a scanning tunneling microscope (STM). Density functional theory calculations have been used to characterize benzene, pyridine, and different dehydrogenation products. The adiabatic pathways for single and double dehydrogenation have been evaluated with the nudge elastic band method. After identification of the transition states, the analysis of the electronic structure along the reaction pathway yields interesting information on the electronic process that leads to H-scission. The adiabatic barriers show that the formation of double dehydrogenated fragments is difficult and probably beyond reach under the actual experimental conditions. However, nonadiabatic processes cannot be ruled out. Hence, in order to identify the final dehydrogenation products, the inelastic spectra are simulated and compared with the experimental ones. We can then assign phenyl (C6H5) and alpha-pyridil (alpha-C5H4N) as the STM-induced dehydrogenation products of benzene and pyridine, respectively. Our simulations permit us to understand why phenyl, pyridine, and alpha-pyridil present tunneling-active C-H stretch modes in opposition to benzene.

  9. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. The development of fully dynamic rotating machine models for nuclear training simulators

    International Nuclear Information System (INIS)

    Birsa, J.J.

    1990-01-01

    Prior to beginning the development of an enhanced set of electrical plant models for several nuclear training simulators, an extensive literature search was conducted to evaluate and select rotating machine models for use on these simulators. These models include the main generator, diesel generators, in-plant electric power distribution and off-side power. Form the results of this search, various models were investigated and several were selected for further evaluation. Several computer studies were performed on the selected models in order to determine their suitability for use in a training simulator environment. One surprising result of this study was that a number of established, classical models could not be made to reproduce actual plant steady-state data over the range necessary for a training simulator. This evaluation process and its results are presented in this paper. Various historical, as well as contemporary, electrical models of rotating machines are discussed. Specific criteria for selection of rotating machine models for training simulator use are presented

  11. A multi-species exchange model for fully fluctuating polymer field theory simulations.

    Science.gov (United States)

    Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H

    2014-11-07

    Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.

  12. Mechanical characterization of diesel soot nanoparticles: in situ compression in a transmission electron microscope and simulations

    Science.gov (United States)

    Jenei, Istvan Zoltan; Dassenoy, Fabrice; Epicier, Thierry; Khajeh, Arash; Martini, Ashlie; Uy, Dairene; Ghaednia, Hamed; Gangopadhyay, Arup

    2018-02-01

    Incomplete fuel burning inside an internal combustion engine results in the creation of soot in the form of nanoparticles. Some of these soot nanoparticles (SNP) become adsorbed into the lubricating oil film present on the cylinder walls, which adversely affects the tribological performance of the lubricant. In order to better understand the mechanisms underlying the wear caused by SNPs, it is important to understand the behavior of SNPs and to characterize potential changes in their mechanical properties (e.g. hardness) caused by (or during) mechanical stress. In this study, the behavior of individual SNPs originating from diesel engines was studied under compression. The experiments were performed in a transmission electron microscope using a nanoindentation device. The nanoparticles exhibited elasto-plastic behavior in response to consecutive compression cycles. From the experimental data, the Young’s modulus and hardness of the SNPs were calculated. The Young’s modulus and hardness of the nanoparticles increased with the number of compression cycles. Using an electron energy loss spectroscopy technique, it was shown that the sp2/sp3 ratio within the compressed nanoparticle decreases, which is suggested to be the cause of the increase in elasticity and hardness. In order to corroborate the experimental findings, molecular dynamics simulations of a model SNP were performed. The SNP model was constructed using carbon and hydrogen atoms with morphology and composition comparable to those observed in the experiment. The model SNP was subjected to repeated compressions between two virtual rigid walls. During the simulation, the nanoparticle exhibited elasto-plastic behavior like that in the experiments. The results of the simulations confirm that the increase in the elastic modulus and hardness is associated with a decrease in the sp2/sp3 ratio.

  13. Quasi-dynamic versus fully dynamic simulations of earthquakes and aseismic slip with and without enhanced coseismic weakening

    Science.gov (United States)

    Thomas, Marion Y.; Lapusta, Nadia; Noda, Hiroyuki; Avouac, Jean-Philippe

    2014-03-01

    Physics-based numerical simulations of earthquakes and slow slip, coupled with field observations and laboratory experiments, can, in principle, be used to determine fault properties and potential fault behaviors. Because of the computational cost of simulating inertial wave-mediated effects, their representation is often simplified. The quasi-dynamic (QD) approach approximately accounts for inertial effects through a radiation damping term. We compare QD and fully dynamic (FD) simulations by exploring the long-term behavior of rate-and-state fault models with and without additional weakening during seismic slip. The models incorporate a velocity-strengthening (VS) patch in a velocity-weakening (VW) zone, to consider rupture interaction with a slip-inhibiting heterogeneity. Without additional weakening, the QD and FD approaches generate qualitatively similar slip patterns with quantitative differences, such as slower slip velocities and rupture speeds during earthquakes and more propensity for rupture arrest at the VS patch in the QD cases. Simulations with additional coseismic weakening produce qualitatively different patterns of earthquakes, with near-periodic pulse-like events in the FD simulations and much larger crack-like events accompanied by smaller events in the QD simulations. This is because the FD simulations with additional weakening allow earthquake rupture to propagate at a much lower level of prestress than the QD simulations. The resulting much larger ruptures in the QD simulations are more likely to propagate through the VS patch, unlike for the cases with no additional weakening. Overall, the QD approach should be used with caution, as the QD simulation results could drastically differ from the true response of the physical model considered.

  14. Fully-Coupled Thermo-Electrical Modeling and Simulation of Transition Metal Oxide Memristors

    Energy Technology Data Exchange (ETDEWEB)

    Mamaluy, Denis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Xujiao [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tierney, Brian David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Marinella, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mickel, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tierney, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Transition metal oxide (TMO) memristors have recently attracted special attention from the semiconductor industry and academia. Memristors are one of the strongest candidates to replace flash memory, and possibly DRAM and SRAM in the near future. Moreover, memristors have a high potential to enable beyond-CMOS technology advances in novel architectures for high performance computing (HPC). The utility of memristors has been demonstrated in reprogrammable logic (cross-bar switches), brain-inspired computing and in non-CMOS complementary logic. Indeed, the potential use of memristors as logic devices is especially important considering the inevitable end of CMOS technology scaling that is anticipated by 2025. In order to aid the on-going Sandia memristor fabrication effort with a memristor design tool and establish a clear physical picture of resistance switching in TMO memristors, we have created and validated with experimental data a simulation tool we name the Memristor Charge Transport (MCT) Simulator.

  15. The ISS as a platform for a fully simulated mars voyage

    Science.gov (United States)

    Narici, Livio; Reitz, Guenther

    2016-07-01

    The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable "analogue" for deep space exploration. NASA has indeed suggested a 'full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays & autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final "analogue", performing a real 'dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage. This Mars ISS dry run (ISS4Mars) would last 500-800 days, mimicking most of the challenges which will be undertaken such as length, isolation, food provision, decision making, time delays, health monitoring diagnostic and therapeutic actions and more: not a collection of "single experiments", but a complete exploration simulation were all the pieces will come together for the first in space simulated Mars voyage. Most of these challenges are the same that those that will be encountered during a Moon voyage, with the most evident exceptions being the duration and the communication delay. At the time of the Mars ISS dry run all the science and technological challenges will have to be mostly solved by dedicated works. These solutions will be synergistically deployed in the dry run which will simulate all the different aspects of the voyage, the trip to Mars, the permanence on the planet and the return to Earth. During the dry run i) There will be no arrivals/departure of spacecrafts; 2) Proper communications delay with ground will be simulated; 3) Decision processes will migrate from Ground to ISS; 4) Permanence on Mars will be simulated. Mars ISS dry run will use just a portion of the ISS which will be totally isolated from the rest of the ISS, leaving to the other ISS portions the task to provide the

  16. A fully-implicit Particle-In-Cell Monte Carlo Collision code for the simulation of inductively coupled plasmas

    Science.gov (United States)

    Mattei, S.; Nishida, K.; Onai, M.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2017-12-01

    We present a fully-implicit electromagnetic Particle-In-Cell Monte Carlo collision code, called NINJA, written for the simulation of inductively coupled plasmas. NINJA employs a kinetic enslaved Jacobian-Free Newton Krylov method to solve self-consistently the interaction between the electromagnetic field generated by the radio-frequency coil and the plasma response. The simulated plasma includes a kinetic description of charged and neutral species as well as the collision processes between them. The algorithm allows simulations with cell sizes much larger than the Debye length and time steps in excess of the Courant-Friedrichs-Lewy condition whilst preserving the conservation of the total energy. The code is applied to the simulation of the plasma discharge of the Linac4 H- ion source at CERN. Simulation results of plasma density, temperature and EEDF are discussed and compared with optical emission spectroscopy measurements. A systematic study of the energy conservation as a function of the numerical parameters is presented.

  17. Fully kinetic simulation of ion acoustic and dust-ion acoustic waves

    International Nuclear Information System (INIS)

    Hosseini Jenab, S. M.; Kourakis, I.; Abbasi, H.

    2011-01-01

    A series of numerical simulations is presented, based on a recurrence-free Vlasov kinetic model using kinetic phase point trajectories. All plasma components are modeled kinetically via a Vlasov evolution equation, then coupled through Poisson's equation. The dynamics of ion acoustic waves in an electron-ion and in a dusty (electron-ion-dust) plasma configuration are investigated, focusing on wave decay due to Landau damping and, in particular, on the parametric dependence of the damping rate on the dust concentration and on the electron-to-ion temperature ratio. In the absence of dust, the occurrence of damping was observed, as expected, and its dependence to the relative magnitude of the electron vs ion temperature(s) was investigated. When present, the dust component influences the charge balance, enabling dust-ion acoustic waves to survive Landau damping even in the extreme regime where T e ≅ T i . The Landau damping rate is shown to be minimized for a strong dust concentration or/and for a high value of the electron-to-ion temperature ratio. Our results confirm earlier theoretical considerations and contribute to the interpretation of experimental observations of dust-ion acoustic wave characteristics.

  18. Direct comparison of quantum and simulated annealing on a fully connected Ising ferromagnet

    Science.gov (United States)

    Wauters, Matteo M.; Fazio, Rosario; Nishimori, Hidetoshi; Santoro, Giuseppe E.

    2017-08-01

    We compare the performance of quantum annealing (QA, through Schrödinger dynamics) and simulated annealing (SA, through a classical master equation) on the p -spin infinite range ferromagnetic Ising model, by slowly driving the system across its equilibrium, quantum or classical, phase transition. When the phase transition is second order (p =2 , the familiar two-spin Ising interaction) SA shows a remarkable exponential speed-up over QA. For a first-order phase transition (p ≥3 , i.e., with multispin Ising interactions), in contrast, the classical annealing dynamics appears to remain stuck in the disordered phase, while we have clear evidence that QA shows a residual energy which decreases towards zero when the total annealing time τ increases, albeit in a rather slow (logarithmic) fashion. This is one of the rare examples where a limited quantum speedup, a speedup by QA over SA, has been shown to exist by direct solutions of the Schrödinger and master equations in combination with a nonequilibrium Landau-Zener analysis. We also analyze the imaginary-time QA dynamics of the model, finding a 1 /τ2 behavior for all finite values of p , as predicted by the adiabatic theorem of quantum mechanics. The Grover-search limit p (odd )=∞ is also discussed.

  19. FULLY GENERAL RELATIVISTIC SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE WITH AN APPROXIMATE NEUTRINO TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Takami; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Takiwaki, Tomoya [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2012-08-10

    We present results from the first generation of multi-dimensional hydrodynamic core-collapse simulations in full general relativity (GR) that include an approximate treatment of neutrino transport. Using an M1 closure scheme with an analytic variable Eddington factor, we solve the energy-independent set of radiation energy and momentum based on the Thorne's momentum formalism. Our newly developed code is designed to evolve the Einstein field equation together with the GR radiation hydrodynamic equations. We follow the dynamics starting from the onset of gravitational core collapse of a 15 M{sub Sun} star, through bounce, up to about 100 ms postbounce in this study. By computing four models that differ according to 1D to 3D and by switching from special relativistic (SR) to GR hydrodynamics, we study how the spacial multi-dimensionality and GR would affect the dynamics in the early postbounce phase. Our 3D results support the anticipation in previous 1D results that the neutrino luminosity and average neutrino energy of any neutrino flavor in the postbounce phase increase when switching from SR to GR hydrodynamics. This is because the deeper gravitational well of GR produces more compact core structures, and thus hotter neutrino spheres at smaller radii. By analyzing the residency timescale to the neutrino-heating timescale in the gain region, we show that the criterion to initiate neutrino-driven explosions can be most easily satisfied in 3D models, irrespective of SR or GR hydrodynamics. Our results suggest that the combination of GR and 3D hydrodynamics provides the most favorable condition to drive a robust neutrino-driven explosion.

  20. Orientationally ordered phase produced by fully antinematic interactions: A simulation study

    Science.gov (United States)

    Romano, Silvano; de Matteis, Giovanni

    2011-07-01

    We consider here a classical model, consisting of D2h symmetric particles, whose centers of mass are associated with a three-dimensional simple-cubic lattice; the pair potential is isotropic in orientation space, and restricted to nearest neighbors. Two orthonormal triads define orientations of a pair of interacting particles; the simplest potential models proposed in the literature can be written as a linear combination involving the squares of the scalar products between corresponding unit vectors only, thus depending on three parameters, and making the interaction model rather versatile. A coupling constant with negative sign tends to keep the two interacting unit vectors parallel to each other, whereas a positive sign tends to keep them mutually orthogonal (antinematic coupling). We address here a special, extreme case of the above family, involving only antinematic couplings: more precisely, three antinematic terms whose coefficients are set to a common positive value (hence the name PPP model). The model under investigation produces a doubly degenerate pair ground state; the nearest-neighbor range of the interaction and the bipartite character of the lattice can propagate the pair ground state and increase the overall degeneracy, but without producing frustration. The model was investigated by a simplified molecular field treatment as well as by Monte Carlo simulation, whose results suggested a second-order transition to a low-temperature biaxially ordered phase; ground-state configurations producing orientational order have been selected by thermal fluctuations. The molecular field treatment also predicted a continuous transition, and was found to overestimate the transition temperature by a factor 2.

  1. Toward fully self-consistent simulation of the interaction of E-Clouds and beams with WARP-POSINST

    International Nuclear Information System (INIS)

    Furman, M.A.; Furman, M.A.; Celata, C.M.; Sonnad, K.; Venturini, M.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Vay, J.-L.

    2007-01-01

    To predict the evolution of electron clouds and their effect on the beam, the high energy physics community has relied so far on the complementary use of 'buildup' and 'single/multi-bunch instability' reduced descriptions. The former describes the evolution of electron clouds at a given location in the ring, or 'station', under the influence of prescribed beams and external fields [1], while the latter (sometimes also referred as the 'quasi-static' approximation [2]) follows the interaction between the beams and the electron clouds around the accelerator with prescribed initial distributions of electrons, assumed to be concentrated at a number of discrete 'stations' around the ring. Examples of single bunch instability codes include HEADTAIL [3], QuickPIC [4, 5], and PEHTS [6]. By contrast, a fully self-consistent approach, in which both the electron cloud and beam distributions evolve simultaneously under their mutual influence without any restriction on their relative motion, is required for modeling the interaction of high-intensity beams with electron clouds for heavy-ion beam-driven fusion and warm-dense matter science. This community has relied on the use of Particle-In-Cell (PIC) methods through the development and use of the WARP-POSINST code suite [1, 7, 8]. The development of novel numerical techniques (including adaptive mesh refinement, and a new 'drift-Lorentz' particle mover for tracking charged particles in magnetic fields using large time steps) has enabled the first application of WARP-POSINST to the fully self-consistent modeling of beams and electron clouds in high energy accelerators [9], albeit for only a few betatron oscillations. It was recently observed [10] that there exists a preferred frame of reference which minimizes the number of computer operations needed to simulate the interaction of relativistic objects. This opens the possibility of reducing the cost of fully self-consistent simulations for the interaction of ultrarelativistic

  2. Implementation of a Monte Carlo simulation environment for fully 3D PET on a high-performance parallel platform

    CERN Document Server

    Zaidi, H; Morel, Christian

    1998-01-01

    This paper describes the implementation of the Eidolon Monte Carlo program designed to simulate fully three-dimensional (3D) cylindrical positron tomographs on a MIMD parallel architecture. The original code was written in Objective-C and developed under the NeXTSTEP development environment. Different steps involved in porting the software on a parallel architecture based on PowerPC 604 processors running under AIX 4.1 are presented. Basic aspects and strategies of running Monte Carlo calculations on parallel computers are described. A linear decrease of the computing time was achieved with the number of computing nodes. The improved time performances resulting from parallelisation of the Monte Carlo calculations makes it an attractive tool for modelling photon transport in 3D positron tomography. The parallelisation paradigm used in this work is independent from the chosen parallel architecture

  3. Modeling a Miniaturized Scanning Electron Microscope Focusing Column - Lessons Learned in Electron Optics Simulation

    Science.gov (United States)

    Loyd, Jody; Gregory, Don; Gaskin, Jessica

    2016-01-01

    This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM

  4. Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation

    Directory of Open Access Journals (Sweden)

    M Pomarède

    2016-09-01

    Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].

  5. Fully 3D tomographic reconstruction by Monte Carlo simulation of the system matrix in preclinical PET with iodine 124

    International Nuclear Information System (INIS)

    Moreau, Matthieu

    2014-01-01

    Immuno-PET imaging can be used to assess the pharmacokinetic in radioimmunotherapy. When using iodine-124, PET quantitative imaging is limited by physics-based degrading factors within the detection system and the object, such as the long positron range in water and the complex spectrum of gamma photons. The objective of this thesis was to develop a fully 3D tomographic reconstruction method (S(MC)2PET) using Monte Carlo simulations for estimating the system matrix, in the context of preclinical imaging with iodine-124. The Monte Carlo simulation platform GATE was used for that respect. Several complexities of system matrices were calculated, with at least a model of the PET system response function. Physics processes in the object was either neglected or taken into account using a precise or a simplified object description. The impact of modelling refinement and statistical variance related to the system matrix elements was evaluated on final reconstructed images. These studies showed that a high level of complexity did not always improve qualitative and quantitative results, owing to the high-variance of the associated system matrices. (author)

  6. Fully predictive simulation of real-scale cable tray fire based on small-scale laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Beji, Tarek; Merci, Bart [Ghent Univ. (Belgium). Dept. of Flow, Heat and Combustion Mechanics; Bonte, Frederick [Bel V, Brussels (Belgium)

    2015-12-15

    This paper presents a computational fluid dynamics (CFD)-based modelling strategy for real-scale cable tray fires. The challenge was to perform fully predictive simulations (that could be called 'blind' simulations) using solely information from laboratory-scale experiments, in addition to the geometrical arrangement of the cables. The results of the latter experiments were used (1) to construct the fuel molecule and the chemical reaction for combustion, and (2) to estimate the overall pyrolysis and burning behaviour. More particularly, the strategy regarding the second point consists of adopting a surface-based pyrolysis model. Since the burning behaviour of each cable could not be tracked individually (due to computational constraints), 'groups' of cables were modelled with an overall cable surface area equal to the actual value. The results obtained for one large-scale test (a stack of five horizontal trays) are quite encouraging, especially for the peak Heat Release Rate (HRR) that was predicted with a relative deviation of 3 %. The time to reach the peak is however overestimated by 4.7 min (i.e. 94 %). Also, the fire duration is overestimated by 5 min (i.e. 24 %). These discrepancies are mainly attributed to differences in the HRRPUA (heat release rate per unit area) profiles between the small-scale and large-scale. The latter was calculated by estimating the burning area of cables using video fire analysis (VFA).

  7. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik

    2012-09-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  8. Isogeometric variational multiscale large-eddy simulation of fully-developed turbulent flow over a wavy wall

    KAUST Repository

    Chang, Kyungsik; Hughes, Thomas Jr R; Calo, Victor M.

    2012-01-01

    We report on the isogeometric residual-based variational multiscale (VMS) large eddy simulation of a fully developed turbulent flow over a wavy wall. To assess the predictive capability of the VMS modeling framework, we compare its predictions against the results from direct numerical simulation (DNS) and large eddy simulation (LES) and, when available, against experimental measurements. We use C 1 quadratic B-spline basis functions to represent the smooth geometry of the sinusoidal lower wall and the solution variables. The Reynolds numbers of the flows considered are 6760 and 30,000 based on the bulk velocity and average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the streamwise, wall-normal and spanwise directions, respectively. For the Re=6760 case, mean averaged quantities, including velocity and pressure profiles, and the separation/reattachment points in the recirculation region, are compared with DNS and experimental data. The turbulent kinetic energy and Reynolds stress are in good agreement with benchmark data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-criterion and show similar features to those previously reported in the literature. Comparable accuracy to DNS solutions is obtained with at least one order of magnitude fewer degrees of freedom. For the Re=30,000 case, good agreement was obtained for mean wall shear stress and velocity profiles compared with available LES results reported in the literature. © 2012 Elsevier Ltd.

  9. Modeling and simulation of deformation and fracture behavior of components made of fully lamellar {gamma}TiAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Mohammad Rizviul [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-07-01

    The present work deals with the modeling and simulation of deformation and fracture behavior of fully lamellar {gamma}TiAl alloy; focusing on understanding the variability of local material properties and their influences on translamellar fracture. Afracture model has been presented that takes the inhomogeneity of the local deformation behavior of the lamellar colonies as well as the variability in fracture strength and toughness into consideration. To obtain the necessary model parameters, a hybrid methodology of experiments and simulations has been adopted. The experiments were performed at room temperature that demonstrates quasi-brittle response of the TiAl polycrystal. Aremarkable variation in stress-strain curves has been found in the tensile tests. Additional fracture tests showed significant variations in crack initiation and propagation during translamellar fracture. Analyzing the fracture surfaces, the micromechanical causes of these macroscopic scatter have been explained. The investigation shows that the global scatter in deformation and fracture response is highly influenced by the colony orientation and tilting angle with respect to the loading axis. The deformation and fracture behavior have been simulated by a finite element model including the material decohesion process described by a cohesive model. In order to capture the scatter of the macroscopic behavior, a stochastic approach is chosen. The local variability of stressstrain in the polycrystal and the variability of fracture parameters of the colonies are implemented in the stochastic approach of the cohesive model. It has been shown that the proposed approach is able to predict the stochastic nature of crack initiation and propagation as observed from the experiments. The global specimen failure with stable or unstable crack propagation can be explained in terms of the local variation of material properties. (orig.)

  10. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.

    Science.gov (United States)

    Walczak, Karl; Chen, Yikai; Karp, Christoph; Beeman, Jeffrey W; Shaner, Matthew; Spurgeon, Joshua; Sharp, Ian D; Amashukeli, Xenia; West, William; Jin, Jian; Lewis, Nathan S; Xiang, Chengxiang

    2015-02-01

    A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of

  11. Microscopic properties of ionic liquid/organic semiconductor interfaces revealed by molecular dynamics simulations.

    Science.gov (United States)

    Yokota, Yasuyuki; Miyamoto, Hiroo; Imanishi, Akihito; Takeya, Jun; Inagaki, Kouji; Morikawa, Yoshitada; Fukui, Ken-Ichi

    2018-05-09

    Electric double-layer transistors based on ionic liquid/organic semiconductor interfaces have been extensively studied during the past decade because of their high carrier densities at low operation voltages. Microscopic structures and the dynamics of ionic liquids likely determine the device performance; however, knowledge of these is limited by a lack of appropriate experimental tools. In this study, we investigated ionic liquid/organic semiconductor interfaces using molecular dynamics to reveal the microscopic properties of ionic liquids. The organic semiconductors include pentacene, rubrene, fullerene, and 7,7,8,8-tetracyanoquinodimethane (TCNQ). While ionic liquids close to the substrate always form the specific layered structures, the surface properties of organic semiconductors drastically alter the ionic dynamics. Ionic liquids at the fullerene interface behave as a two-dimensional ionic crystal because of the energy gain derived from the favorable electrostatic interaction on the corrugated periodic substrate.

  12. Simulating and optimizing compound refractive lens-based X-ray microscopes

    DEFF Research Database (Denmark)

    Simons, Hugh; Ahl, Sonja Rosenlund; Poulsen, Henning Friis

    2017-01-01

    A comprehensive optical description of compound refractive lenses (CRLs) in condensing and full-field X-ray microscopy applications is presented. The formalism extends ray-transfer matrix analysis by accounting for X-ray attenuation by the lens material. Closed analytical expressions for critical......-lens limit. This limit may be satisfied by a range of CRL geometries, suggesting alternative approaches to improving the resolution and efficiency of CRLs and X-ray microscopes....

  13. Dynamics of water and ions in clays of type montmorillonite by microscopic simulation and quasi-elastic neutron scattering

    International Nuclear Information System (INIS)

    Malikova, N.

    2005-09-01

    Montmorillonite clays in low hydration states, with Na + and Cs + compensating counter ions, are investigated by a combination of microscopic simulation and quasi-elastic neutron scattering to obtain information on the local structure and dynamics of water and ions in the interlayer. At first predictions of simulation into the dynamics of water and ions at elevate temperatures are shown (0 deg C 80 deg C, pertinent for the radioactive waste disposal scenario) Marked difference is observed between the modes of diffusion of the Na + and C + counter ions. In water dynamics, a significant step towards bulk water behaviour is seen on transition from the mono- to bilayer states. Secondly, a detailed comparison between simulation and quasi-elastic neutron scattering (Neutron Spin Echo and Time-of-Flight) regarding ambient temperature water dynamics is presented. Overall, the approaches are found to be in good agreement with each other and limitations of each of the methods are clearly shown. (author)

  14. Microscopic structure of liquid 1-1-1-2-tetrafluoroethane (R134a) from Monte Carlo simulation.

    Science.gov (United States)

    Do, Hainam; Wheatley, Richard J; Hirst, Jonathan D

    2010-10-28

    1-1-1-2-tetrafluoroethane (R134a) is one of the most commonly used refrigerants. Its thermophysical properties are important for evaluating the performance of refrigeration cycles. These can be obtained via computer simulation, with an insight into the microscopic structure of the liquid, which is not accessible to experiment. In this paper, vapour-liquid equilibrium properties of R134a and its liquid microscopic structure are investigated using coupled-decoupled configurational-bias Monte Carlo simulation in the Gibbs ensemble, with a recent potential [J. Phys. Chem. B 2009, 113, 178]. We find that the simulations agree well with the experimental data, except at the vicinity of the critical region. Liquid R134a packs like liquid argon, with a coordination number in the first solvation shell of 12 at 260 K. The nearest neighbours prefer to be localized in three different spaces around the central molecule, in such a manner that the dipole moments are in a parallel alignment. Analysis of the pair interaction energy shows clear association of R134a molecules, but no evidence for C-HF type hydrogen bonding is found. The above findings should be of relevance to a broad range of fluoroalkanes.

  15. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr [Bio Imaging and Signal Processing Laboratory, Department of Bio and Brain Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Taewon; Cho, Seungryong [Medical Imaging and Radiotherapeutics Laboratory, Department of Nuclear and Quantum Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Seong, Younghun; Lee, Jongha; Jang, Kwang Eun [Samsung Advanced Institute of Technology, Samsung Electronics, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803 (Korea, Republic of); Choi, Jaegu; Choi, Young Wook [Korea Electrotechnology Research Institute (KERI), 111, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-170 (Korea, Republic of); Kim, Hak Hee; Shin, Hee Jung; Cha, Joo Hee [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736 (Korea, Republic of)

    2015-09-15

    Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue composition for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite

  16. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    Science.gov (United States)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  17. The singing comet 67P: utilizing fully kinetic simulations to study its interaction with the solar wind plasma

    Science.gov (United States)

    Deca, J.; Divin, A. V.; Horanyi, M.; Henri, P.

    2016-12-01

    We present preliminary results of the first 3-D fully kinetic and electromagnetic simulations of the solar wind interaction with 67P/Churyumov-Gerasimenko at 3 AU, before the comet transitions into its high-activity phase. We focus on the global cometary environment and the electron-kinetic activity of the interaction. In addition to the background solar wind plasma flow, our model includes also plasma-driven ionization of cometary neutrals and collisional effects. We approximate mass loading of cold cometary oxygen and hydrogen using a hyperbolic relation with distance to the comet. We consider two primary cases: a weak outgassing comet (with the peak ion density 10x the solar wind density) and a moderately outgassing comet (with the peak ion density 50x the solar wind density). The weak comet is characterized by the formation of a narrow region containing a compressed solar wind (the density of the solar wind ion population is 3x the value far upstream of the comet) and a magnetic barrier ( 2x to 4x the interplanetary magnetic field). Blobs of plasma are detached continuously from this sheath region. Standing electromagnetic waves are excited in the cometary wake due to a strong anisotropy in the plasma pressure, as the density and the magnetic field magnitude are anti-correlated.The moderate mass-loading case shows more dynamics at the dayside region. The stagnation of the solar wind flow is accompanied by the formation of elongated density stripes, indicating the presence of a Rayleigh-Taylor instability. These density cavities are elongated in the direction of the magnetic field and encompass the dayside ionopause. To conclude, we believe that our results provide vital information to disentangle the observations made by the Rosetta spacecraft and compose a global solar wind - comet interaction model.

  18. Microscopic Car Modeling for Intelligent Traffic and Scenario Generation in the UCF Driving Simulator : Year 2

    Science.gov (United States)

    2000-01-01

    A multi-year project was initiated to introduce autonomous vehicles in the University of Central Florida (UCF) Driving Simulator for real-time interaction with the simulator vehicle. This report describes the progress during the second year. In the f...

  19. Investigation of voltages and electric fields in silicon semi 3D radiation detectors using Silvaco/ATLAS simulation tool and a scanning electron microscope

    CERN Document Server

    Palviainen, T; Tuuva, T; Eranen, S; Härkönen, J; Luukka, P; Tuovinen, E

    2006-01-01

    The structure of silicon semi three-dimensional radiation detector is simulated on purpose to find out its electrical characteristics such as the depletion voltage and electric field. Two-dimensional simulation results are compared to voltage and electric field measurements done by a scanning electron microscope.

  20. NATO Advanced Study Institute on Microscopic Simulations of Complex Hydrodynamic Phenomena

    CERN Document Server

    Holian, Brad

    1992-01-01

    This volume contains the proceedings of a NATO Advanced Study Institute which was held in Alghero, Sardinia, in July 1991. The development of computers in the recent years has lead to the emergence of unconventional ideas aiming at solving old problems. Among these, the possibility of computing directly fluid flows from the trajectories of constituent particles has been much exploited in the last few years: lattice gases cellular automata and more generally Molecular Dynamics have been used to reproduce and study complex flows. Whether or not these methods may someday compete with more traditional approaches is a question which cannot be answered at the present time: it will depend on the new computer architectures as well as on the possibility to develop very simple models to reproduce the most complex phenomena taking place in the approach of fully developed turbulence or plastic flows. In any event, these molecular methods are already used, and sometimes in an applied engineering context, to study strong s...

  1. Microscopic simulations of shock propagation in condensed media: comparison between real time and frequency domains

    International Nuclear Information System (INIS)

    Karo, A.M.; Hardy, J.R.; Mehlman, M.H.

    1985-07-01

    Computer molecular dynamics (CMD) is now recognized as a very powerful technique for examining the microscopic details of a wide variety of chemical and physical phenomena, including the shock-induced fast decomposition processes that characterize the shock-initiation of energetic materials. The purpose of the present paper is to describe some results obtained by new methods of post processing of CMD data. First we present a pictorial history of a canonical system which is bonded with identical potentials and has identical atomic masses. We then present Fourier transforms of the energy components of different units judiciously chosen to show the ''frequency fingerprint'' of the shock impact and passage through specific units of the system, including, e.g., the behavior of spalled fragments. To complement these studies, we also display the behavior of our canonical system when defect (point or line) are present. In these studies we monitor the motion of diatoms above and below a line defect consisting of heavy masses. The Fourier transform techniques provide optimum compromise histories which present neither too much nor too little detail

  2. Connecting macroscopic observables and microscopic assembly events in amyloid formation using coarse grained simulations.

    Directory of Open Access Journals (Sweden)

    Noah S Bieler

    Full Text Available The pre-fibrillar stages of amyloid formation have been implicated in cellular toxicity, but have proved to be challenging to study directly in experiments and simulations. Rational strategies to suppress the formation of toxic amyloid oligomers require a better understanding of the mechanisms by which they are generated. We report Dynamical Monte Carlo simulations that allow us to study the early stages of amyloid formation. We use a generic, coarse-grained model of an amyloidogenic peptide that has two internal states: the first one representing the soluble random coil structure and the second one the [Formula: see text]-sheet conformation. We find that this system exhibits a propensity towards fibrillar self-assembly following the formation of a critical nucleus. Our calculations establish connections between the early nucleation events and the kinetic information available in the later stages of the aggregation process that are commonly probed in experiments. We analyze the kinetic behaviour in our simulations within the framework of the theory of classical nucleated polymerisation, and are able to connect the structural events at the early stages in amyloid growth with the resulting macroscopic observables such as the effective nucleus size. Furthermore, the free-energy landscapes that emerge from these simulations allow us to identify pertinent properties of the monomeric state that could be targeted to suppress oligomer formation.

  3. Challenging fission cross section simulation with long standing macro-microscopic model of nucleus potential energy surface

    International Nuclear Information System (INIS)

    Tamagno, Pierre

    2015-01-01

    The work presented here aims to improve models used in the fission cross section evaluation. The results give insights for a significant breakthrough in this field and yielded large extensions of the evaluation code CONRAD. Partial cross sections are inherently strongly correlated together as of the competition of the related reactions must yield the total cross section. Therefore improving fission cross section benefits to all partial cross sections. A sound framework for the simulation of competitive reactions had to be settled in order to further investigate on the fission reaction; this was implemented using the TALYS reference code as guideline. After ensuring consistency and consistency of the framework, focus was made on fission. Perspective resulting from the use of macroscopic-microscopic models such as the FRDM and FRLDM were analyzed; these models have been implemented and validated on experimental data and benchmarks. To comply with evaluation requirements in terms of computation time, several specific numerical methods have been used and parts of the program were written to run on GPU. These macroscopic-microscopic models yield potential energy surfaces that can be used to extract a one-dimensional fission barrier. This latter can then be used to obtained fission transmission coefficients that can be used in a Hauser-Feshbach model. This method has been finally tested for the calculation of the average fission cross section for 239 Pu(n,f). (author) [fr

  4. Market Ecology, Pareto Wealth Distribution and Leptokurtic Returns in Microscopic Simulation of the LLS Stock Market Model

    Science.gov (United States)

    Solomon, Sorin; Levy, Moshe

    2001-06-01

    The LLS stock market model (see Levy Levy and Solomon Academic Press 2000 "Microscopic Simulation of Financial Markets; From Investor Behavior to Market Phenomena" for a review) is a model of heterogeneous quasi-rational investors operating in a complex environment about which they have incomplete information. We review the main features of this model and several of its extensions. We study the effects of investor heterogeneity and show that predation, competition, or symbiosis may occur between different investor populations. The dynamics of the LLS model lead to the empirically observed Pareto wealth distribution. Many properties observed in actual markets appear as natural consequences of the LLS dynamics: - truncated Levy distribution of short-term returns, - excess volatility, - a return autocorrelation "U-shape" pattern, and - a positive correlation between volume and absolute returns.

  5. Probing the inhibitory potency of epigallocatechin gallate against human γB-crystallin aggregation: Spectroscopic, microscopic and simulation studies

    Science.gov (United States)

    Chaudhury, Susmitnarayan; Dutta, Anirudha; Bag, Sudipta; Biswas, Pranandita; Das, Amit Kumar; Dasgupta, Swagata

    2018-03-01

    Aggregation of human ocular lens proteins, the crystallins is believed to be one of the key reasons for age-onset cataract. Previous studies have shown that human γD-crystallin forms amyloid like fibres under conditions of low pH and elevated temperature. In this article, we have investigated the aggregation propensity of human γB-crystallin in absence and presence of epigallocatechin gallate (EGCG), in vitro, when exposed to stressful conditions. We have used different spectroscopic and microscopic techniques to elucidate the inhibitory effect of EGCG towards aggregation. The experimental results have been substantiated by molecular dynamics simulation studies. We have shown that EGCG possesses inhibitory potency against the aggregation of human γB-crystallin at low pH and elevated temperature.

  6. Membrane Fusion Involved in Neurotransmission: Glimpse from Electron Microscope and Molecular Simulation

    Directory of Open Access Journals (Sweden)

    Zhiwei Yang

    2017-06-01

    Full Text Available Membrane fusion is one of the most fundamental physiological processes in eukaryotes for triggering the fusion of lipid and content, as well as the neurotransmission. However, the architecture features of neurotransmitter release machinery and interdependent mechanism of synaptic membrane fusion have not been extensively studied. This review article expounds the neuronal membrane fusion processes, discusses the fundamental steps in all fusion reactions (membrane aggregation, membrane association, lipid rearrangement and lipid and content mixing and the probable mechanism coupling to the delivery of neurotransmitters. Subsequently, this work summarizes the research on the fusion process in synaptic transmission, using electron microscopy (EM and molecular simulation approaches. Finally, we propose the future outlook for more exciting applications of membrane fusion involved in synaptic transmission, with the aid of stochastic optical reconstruction microscopy (STORM, cryo-EM (cryo-EM, and molecular simulations.

  7. Membrane Fusion Involved in Neurotransmission: Glimpse from Electron Microscope and Molecular Simulation

    Science.gov (United States)

    Yang, Zhiwei; Gou, Lu; Chen, Shuyu; Li, Na; Zhang, Shengli; Zhang, Lei

    2017-01-01

    Membrane fusion is one of the most fundamental physiological processes in eukaryotes for triggering the fusion of lipid and content, as well as the neurotransmission. However, the architecture features of neurotransmitter release machinery and interdependent mechanism of synaptic membrane fusion have not been extensively studied. This review article expounds the neuronal membrane fusion processes, discusses the fundamental steps in all fusion reactions (membrane aggregation, membrane association, lipid rearrangement and lipid and content mixing) and the probable mechanism coupling to the delivery of neurotransmitters. Subsequently, this work summarizes the research on the fusion process in synaptic transmission, using electron microscopy (EM) and molecular simulation approaches. Finally, we propose the future outlook for more exciting applications of membrane fusion involved in synaptic transmission, with the aid of stochastic optical reconstruction microscopy (STORM), cryo-EM (cryo-EM), and molecular simulations. PMID:28638320

  8. Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives

    Science.gov (United States)

    Azevedo, C. D. R.; González-Díaz, D.; Biagi, S. F.; Oliveira, C. A. B.; Henriques, C. A. O.; Escada, J.; Monrabal, F.; Gómez-Cadenas, J. J.; Álvarez, V.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; Gutiérrez, R. M.; Hauptman, J.; Hernandez, A. I.; Morata, J. A. Hernando; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; Lopez-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Vidal, J. Muñoz; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Serra, L.; Shuman, D.; Simón, A.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.

    2018-01-01

    We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology.

  9. Microscopic distribution functions, structure, and kinetic energy of liquid and solid neon: Quantum Monte Carlo simulations

    International Nuclear Information System (INIS)

    Neumann, Martin; Zoppi, Marco

    2002-01-01

    We have performed extensive path integral Monte Carlo simulations of liquid and solid neon, in order to derive the kinetic energy as well as the single-particle and pair distribution functions of neon atoms in the condensed phases. From the single-particle distribution function n(r) one can derive the momentum distribution and thus obtain an independent estimate of the kinetic energy. The simulations have been carried out using mostly the semiempirical HFD-C2 pair potential by Aziz et al. [R. A. Aziz, W. J. Meath, and A. R. Allnatt, Chem. Phys. 79, 295 (1983)], but, in a few cases, we have also used the Lennard-Jones potential. The differences between the potentials, as measured by the properties investigated, are not very large, especially when compared with the actual precision of the experimental data. The simulation results have been compared with all the experimental information that is available from neutron scattering. The overall agreement with the experiments is very good

  10. Microscopic analysis and simulation of check-mark stain on the galvanized steel strip

    Science.gov (United States)

    So, Hongyun; Yoon, Hyun Gi; Chung, Myung Kyoon

    2010-11-01

    When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of adhered zinc film is controlled by plane impinging air gas jet referred to as "air-knife system". In such a gas-jet wiping process, stain of check-mark or sag line shape frequently appears. The check-mark defect is caused by non-uniform zinc coating and the oblique patterns such as "W", "V" or "X" on the coated surface. The present paper presents a cause and analysis of the check-mark formation and a numerical simulation of sag lines by using the numerical data produced by Large Eddy Simulation (LES) of the three-dimensional compressible turbulent flow field around the air-knife system. It was found that there is alternating plane-wise vortices near the impinging stagnation region and such alternating vortices move almost periodically to the right and to the left sides on the stagnation line due to the jet flow instability. Meanwhile, in order to simulate the check-mark formation, a novel perturbation model has been developed to predict the variation of coating thickness along the transverse direction. Finally, the three-dimensional zinc coating surface was obtained by the present perturbation model. It was found that the sag line formation is determined by the combination of the instantaneous coating thickness distribution along the transverse direction near the stagnation line and the feed speed of the steel strip.

  11. Simulations and measurements in scanning electron microscopes at low electron energy

    Czech Academy of Sciences Publication Activity Database

    Walker, C.; Frank, Luděk; Müllerová, Ilona

    2016-01-01

    Roč. 38, č. 6 (2016), s. 802-818 ISSN 0161-0457 R&D Projects: GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 EU Projects: European Commission(XE) 606988 - SIMDALEE2 Institutional support: RVO:68081731 Keywords : Monte Carlo modeling * scanned probe * computer simulation * electron-solid interactions * surface analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.345, year: 2016

  12. Understanding the microscopic moisture migration in pore space using DEM simulation

    Directory of Open Access Journals (Sweden)

    Yuan Guo

    2015-04-01

    Full Text Available The deformation of soil skeleton and migration of pore fluid are the major factors relevant to the triggering of and damages by liquefaction. The influence of pore fluid migration during earthquake has been demonstrated from recent model experiments and field case studies. Most of the current liquefaction assessment models are based on testing of isotropic liquefiable materials. However the recent New Zealand earthquake shows much severer damages than those predicted by existing models. A fundamental cause has been contributed to the embedded layers of low permeability silts. The existence of these silt layers inhibits water migration under seismic loads, which accelerated liquefaction and caused a much larger settlement than that predicted by existing theories. This study intends to understand the process of moisture migration in the pore space of sand using discrete element method (DEM simulation. Simulations were conducted on consolidated undrained triaxial testing of sand where a cylinder sample of sand was built and subjected to a constant confining pressure and axial loading. The porosity distribution was monitored during the axial loading process. The spatial distribution of porosity change was determined, which had a direct relationship with the distribution of excess pore water pressure. The non-uniform distribution of excess pore water pressure causes moisture migration. From this, the migration of pore water during the loading process can be estimated. The results of DEM simulation show a few important observations: (1 External forces are mainly carried and transmitted by the particle chains of the soil sample; (2 Porosity distribution during loading is not uniform due to non-homogeneous soil fabric (i.e. the initial particle arrangement and existence of particle chains; (3 Excess pore water pressure develops differently at different loading stages. At the early stage of loading, zones with a high initial porosity feature higher

  13. Scanning probe microscope simulator for the assessment of noise in scanning probe microscopy controllers

    International Nuclear Information System (INIS)

    Wutscher, T.; Niebauer, J.; Giessibl, F. J.

    2013-01-01

    We present an electronic circuit that allows to calibrate and troubleshoot scanning probe microscopy (SPM) controllers with respect to their noise performance. The control signal in an SPM is typically highly nonlinear—the tunneling current in scanning tunneling microscopy (STM) varies exponentially with distance. The exponential current-versus-voltage characteristics of diodes allow to model the current dependence in STM. Additional inputs allow to simulate the effects of external perturbations and the reactions of the control electronics. We characterized the noise performance of the feedback controller using the apparent topography roughness of recorded images. For a comparison of different STM controllers, an optimal gain parameter was determined by exploring settling times through a rectangular perturbation signal. We used the circuit to directly compare the performance of two types of SPM controllers used in our laboratory

  14. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Q., E-mail: qwan2@sheffield.ac.uk [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Masters, R.C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Lidzey, D. [Department of Physics and Astronomy, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Abrams, K.J. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Dapor, M. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT-FBK) and Trento Institute for Fundamental Physics and Applications (TIFPA-INFN), via Sommarive 18, I-38123 Trento (Italy); Plenderleith, R.A. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Rimmer, S. [Department of Chemistry, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Claeyssens, F.; Rodenburg, C. [Department of Material Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-12-15

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  15. Angle selective backscattered electron contrast in the low-voltage scanning electron microscope: Simulation and experiment for polymers

    International Nuclear Information System (INIS)

    Wan, Q.; Masters, R.C.; Lidzey, D.; Abrams, K.J.; Dapor, M.; Plenderleith, R.A.; Rimmer, S.; Claeyssens, F.; Rodenburg, C.

    2016-01-01

    Recently developed detectors can deliver high resolution and high contrast images of nanostructured carbon based materials in low voltage scanning electron microscopes (LVSEM) with beam deceleration. Monte Carlo Simulations are also used to predict under which exact imaging conditions purely compositional contrast can be obtained and optimised. This allows the prediction of the electron signal intensity in angle selective conditions for back-scattered electron (BSE) imaging in LVSEM and compares it to experimental signals. Angle selective detection with a concentric back scattered (CBS) detector is considered in the model in the absence and presence of a deceleration field, respectively. The validity of the model prediction for both cases was tested experimentally for amorphous C and Cu and applied to complex nanostructured carbon based materials, namely a Poly(N-isopropylacrylamide)/Poly(ethylene glycol) Diacrylate (PNIPAM/PEGDA) semi-interpenetration network (IPN) and a Poly(3-hexylthiophene-2,5-diyl) (P3HT) film, to map nano-scale composition and crystallinity distribution by avoiding experimental imaging conditions that lead to a mixed topographical and compositional contrast - Highlights: • An optimised model for nano-scale analysis of beam sensitive materials by LVSEM. • Simulation and separation of composition and topography in a CBS detector. • Selective angle backscattered electron collection for mapping of polymers.

  16. Radionuclide content of simulated and fully radioactive SRLLL waste glasses: comparison of results from ICP-MS, gamma spectrometry and alpha spectrometry

    International Nuclear Information System (INIS)

    Wolf, S.F.; Bates, J.K.

    1995-01-01

    We have measured the transuranic content of two transuranic=doped, simulated waste glasses, using inductively coupled plasma-mass spectrometry (ICP-MS), γ-spectrometry, and α-spectrometry. Average concentrations measured by each technique were within ± 10% of the as-doped concentrations. We also report the transuranic content of three fully radioactive SRL waste glasses that were determined using γ- and α-spectrometry measurements to deconvolute isobaric interferences present in the ICP-MS analyses

  17. A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

    Science.gov (United States)

    Spandan, Vamsi; Meschini, Valentina; Ostilla-Mónico, Rodolfo; Lohse, Detlef; Querzoli, Giorgio; de Tullio, Marco D.; Verzicco, Roberto

    2017-11-01

    In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.

  18. Microscopic mechanism of amino silicone oil modification and modification effect with different amino group contents based on molecular dynamics simulation

    Science.gov (United States)

    He, Liping; Li, Wenjun; Chen, Dachuan; Yuan, Jianmin; Lu, Gang; Zhou, Dianwu

    2018-05-01

    The microscopic mechanism of amino silicone oil (ASO) modification of natural fiber was investigated for the first time using molecular dynamics (MD) simulation at the atomic and molecular levels. The MD simulation results indicated that the ASO molecular interacted with the cellulose molecular within the natural fiber, mainly by intermolecular forces of Nsbnd Hsbnd O and Osbnd Hsbnd N hydrogen bonds and the molecular chain of ASO absorbed onto the natural fiber in a selective orientation, i.e., the hydrophobic alkyl groups (sbnd CnH2n+1) project outward and the polar amino groups (sbnd NH2) point to the surface of natural fiber. Consequently, the ASO modification changed the surface characteristic of natural fiber from hydrophilic to hydrophobic. Furthermore, the modification effects of the ASO modification layer with different amino group contents (m:n ratio) were also evaluated in this study by calculating the binding energy between the ASO modifier and natural fiber, and the cohesive energy density and free volume of the ASO modification layer. The results showed that the binding energy reached a maximum when the m:n ratio of ASO was of 8:4, suggesting that a good bonding strength was achieved at this m:n ratio. It was also found that the cohesive energy density enhanced with the increase in the amino group content, and the higher the cohesive energy density, the easier the formation of the ASO modification layer. However, the fraction free volume decreased with the increase in the amino group content. This is good for improving the water-proof property of natural fiber. The present work can provide an effective method for predicting the modification effects and designing the optimized m:n ratio of ASO modification.

  19. Simulation of wind-induced snow transport in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2013-06-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It couples directly the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. A detailed representation of the first meters of the atmosphere allows a fine reproduction of the erosion and deposition process. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). For this purpose, a blowing snow event without concurrent snowfall has been selected and simulated. Results show that the model captures the main structures of atmospheric flow in alpine terrain, the vertical profile of wind speed and the snow particles fluxes near the surface. However, the horizontal resolution of 50 m is found to be insufficient to simulate the location of areas of snow erosion and deposition observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction in deposition of 5.3%. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  20. Simulation of wind-induced snow transport and sublimation in alpine terrain using a fully coupled snowpack/atmosphere model

    Science.gov (United States)

    Vionnet, V.; Martin, E.; Masson, V.; Guyomarc'h, G.; Naaim-Bouvet, F.; Prokop, A.; Durand, Y.; Lac, C.

    2014-03-01

    In alpine regions, wind-induced snow transport strongly influences the spatio-temporal evolution of the snow cover throughout the winter season. To gain understanding on the complex processes that drive the redistribution of snow, a new numerical model is developed. It directly couples the detailed snowpack model Crocus with the atmospheric model Meso-NH. Meso-NH/Crocus simulates snow transport in saltation and in turbulent suspension and includes the sublimation of suspended snow particles. The coupled model is evaluated against data collected around the experimental site of Col du Lac Blanc (2720 m a.s.l., French Alps). First, 1-D simulations show that a detailed representation of the first metres of the atmosphere is required to reproduce strong gradients of blowing snow concentration and compute mass exchange between the snowpack and the atmosphere. Secondly, 3-D simulations of a blowing snow event without concurrent snowfall have been carried out. Results show that the model captures the main structures of atmospheric flow in alpine terrain. However, at 50 m grid spacing, the model reproduces only the patterns of snow erosion and deposition at the ridge scale and misses smaller scale patterns observed by terrestrial laser scanning. When activated, the sublimation of suspended snow particles causes a reduction of deposited snow mass of 5.3% over the calculation domain. Total sublimation (surface + blowing snow) is three times higher than surface sublimation in a simulation neglecting blowing snow sublimation.

  1. Dissipative dynamics with the corrected propagator method. Numerical comparison between fully quantum and mixed quantum/classical simulations

    International Nuclear Information System (INIS)

    Gelman, David; Schwartz, Steven D.

    2010-01-01

    The recently developed quantum-classical method has been applied to the study of dissipative dynamics in multidimensional systems. The method is designed to treat many-body systems consisting of a low dimensional quantum part coupled to a classical bath. Assuming the approximate zeroth order evolution rule, the corrections to the quantum propagator are defined in terms of the total Hamiltonian and the zeroth order propagator. Then the corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The evolution of the primary part is governed by the corrected propagator yielding the exact quantum dynamics. The method has been tested on two model systems coupled to a harmonic bath: (i) an anharmonic (Morse) oscillator and (ii) a double-well potential. The simulations have been performed at zero temperature. The results have been compared to the exact quantum simulations using the surrogate Hamiltonian approach.

  2. Coupled lattice Boltzmann method for numerical simulations of fully coupled heart and torso bidomain system in electrocardiology

    OpenAIRE

    Corre , Samuel; Belmiloudi , Aziz

    2016-01-01

    International audience; In this work, a modified coupling Lattice Boltzmann Model (LBM) in simulation of cardiac electrophysiology is developed in order to capture the detailed activities of macro- to micro-scale transport processes. The propagation of electrical activity in the human heart through torso is mathematically modeled by bidomain type systems. As transmembrane potential evolves, we take into account domain anisotropical properties using intracellular and extracellular conductivity...

  3. GPU accelerated fully space and time resolved numerical simulations of self-focusing laser beams in SBS-active media

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, Sarah; Colin de Verdière, Guillaume [CEA-DAM, DIF, 91297 Arpajon (France); Bergé, Luc, E-mail: luc.berge@cea.fr [CEA-DAM, DIF, 91297 Arpajon (France); Skupin, Stefan [Max Planck Institute for the Physics of Complex Systems, 01187 Dresden (Germany); Friedrich Schiller University, Institute of Condensed Matter Theory and Optics, 07743 Jena (Germany)

    2013-02-15

    A computer cluster equipped with Graphics Processing Units (GPUs) is used for simulating nonlinear optical wave packets undergoing Kerr self-focusing and stimulated Brillouin scattering in fused silica. We first recall the model equations in full (3+1) dimensions. These consist of two coupled nonlinear Schrödinger equations for counterpropagating optical beams closed with a source equation for light-induced acoustic waves seeded by thermal noise. Compared with simulations on a conventional cluster of Central Processing Units (CPUs), GPU-based computations allow us to use a significant (16 times) larger number of mesh points within similar computation times. Reciprocally, simulations employing the same number of mesh points are between 3 and 20 times faster on GPUs than on the same number of classical CPUs. Performance speedups close to 45 are reported for isolated functions evaluating, e.g., the optical nonlinearities. Since the field intensities may reach the ionization threshold of silica, the action of a defocusing electron plasma is also addressed.

  4. GPU accelerated fully space and time resolved numerical simulations of self-focusing laser beams in SBS-active media

    International Nuclear Information System (INIS)

    Mauger, Sarah; Colin de Verdière, Guillaume; Bergé, Luc; Skupin, Stefan

    2013-01-01

    A computer cluster equipped with Graphics Processing Units (GPUs) is used for simulating nonlinear optical wave packets undergoing Kerr self-focusing and stimulated Brillouin scattering in fused silica. We first recall the model equations in full (3+1) dimensions. These consist of two coupled nonlinear Schrödinger equations for counterpropagating optical beams closed with a source equation for light-induced acoustic waves seeded by thermal noise. Compared with simulations on a conventional cluster of Central Processing Units (CPUs), GPU-based computations allow us to use a significant (16 times) larger number of mesh points within similar computation times. Reciprocally, simulations employing the same number of mesh points are between 3 and 20 times faster on GPUs than on the same number of classical CPUs. Performance speedups close to 45 are reported for isolated functions evaluating, e.g., the optical nonlinearities. Since the field intensities may reach the ionization threshold of silica, the action of a defocusing electron plasma is also addressed

  5. vECTlab-A fully integrated multi-modality Monte Carlo simulation framework for the radiological imaging sciences

    International Nuclear Information System (INIS)

    Peter, Joerg; Semmler, Wolfhard

    2007-01-01

    Alongside and in part motivated by recent advances in molecular diagnostics, the development of dual-modality instruments for patient and dedicated small animal imaging has gained attention by diverse research groups. The desire for such systems is high not only to link molecular or functional information with the anatomical structures, but also for detecting multiple molecular events simultaneously at shorter total acquisition times. While PET and SPECT have been integrated successfully with X-ray CT, the advance of optical imaging approaches (OT) and the integration thereof into existing modalities carry a high application potential, particularly for imaging small animals. A multi-modality Monte Carlo (MC) simulation approach at present has been developed that is able to trace high-energy (keV) as well as optical (eV) photons concurrently within identical phantom representation models. We show that the involved two approaches for ray-tracing keV and eV photons can be integrated into a unique simulation framework which enables both photon classes to be propagated through various geometry models representing both phantoms and scanners. The main advantage of such integrated framework for our specific application is the investigation of novel tomographic multi-modality instrumentation intended for in vivo small animal imaging through time-resolved MC simulation upon identical phantom geometries. Design examples are provided for recently proposed SPECT-OT and PET-OT imaging systems

  6. Thermal behaviour of pressure tube under fully and partially voided heating conditions using 19 pin fuel element simulator

    International Nuclear Information System (INIS)

    Yadav, Ashwini K.; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, B.; Mukhopadhya, D.; Lele, H.G.

    2011-01-01

    In a nuclear reactor temperature can rise drastically during LOCA due to failure of heat transportation system and subsequently leads to mechanical deformations like sagging, ballooning and breaching of pressure tube. To understand the phenomenon an experiment has been carried out using 19 pin fuel element simulator. Main purpose of the experiment was to trace temperature profiles over the pressure tube, calandria tube and clad tubes of 220 MWe Indian Pressurised Heavy Water Reactor (IPHWR). The symmetrical heating of pressure tube of 1 m length was done through resistance heating of 19 pins under 13.5 kW power using a rectifier and the variation of temperatures over the circumference of pressure tube (PT), calandria tube (CT) and clad tubes were measured. The sagging of pressure tube was initiated at 460 deg C temperature and highest temperature attained was 650 deg C. The highest temperature attained by clad tubes was 680 deg C (over outer ring) and heat is dissipated to calandria vessel mainly due to radiation and natural convection. Again to simulate partially voided conditions, asymmetrical heating of pressure was carried out by injecting 8 kW power to upper 8 pins of fuel simulator. A maximum temperature difference of 295 deg C was observed over the circumference of pressure tube which highlights the magnitude of thermal stresses and its role in breaching of pressure tube under partially voided conditions. Integrity of pressure tube was retained during both symmetrical and asymmetrical heatup conditions. (author)

  7. Status of the development of a fully integrated code system for the simulation of high temperature reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Kasselmann, Stefan, E-mail: s.kasselmann@fz-juelich.de [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Druska, Claudia [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Herber, Stefan [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany); Jühe, Stephan [Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany); Keller, Florian; Lambertz, Daniela; Li, Jingjing; Scholthaus, Sarah; Shi, Dunfu [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Xhonneux, Andre; Allelein, Hans-Josef [Institute of Energy and Climate Research, Nuclear Waste Management and Reactor Safety (IEK-6), Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Lehrstuhl für Reaktorsicherheit und -technik, RWTH Aachen, 52062 Aachen (Germany)

    2014-05-01

    The HTR code package (HCP) is a new code system, which couples a variety of stand-alone codes for the simulation of different aspects of HTR. HCP will allow the steady-state and transient operating conditions of a 3D reactor core to be simulated including new features such as spatially resolved fission product release calculations or production and transport of graphite dust. For this code the latest programming techniques and standards are applied. As a first step an object-oriented data model was developed which features a high level of readability because it is based on problem-specific data types like Nuclide, Reaction, ReactionHandler, CrossSectionSet, etc. Those classes help to encapsulate and therefore hide specific implementations, which are not relevant with respect to physics. HCP will make use of one consistent data library for which an automatic generation tool was developed. The new data library consists of decay information, cross sections, fission yields, scattering matrices etc. for all available nuclides (e.g. ENDF/B-VII.1). The data can be stored in different formats such as binary, ASCII or XML. The new burn up code TNT (Topological Nuclide Transmutation) applies graph theory to represent nuclide chains and to minimize the calculation effort when solving the burn up equations. New features are the use of energy-dependent fission yields or the calculation of thermal power for decay, fission and capture reactions. With STACY (source term analysis code system) the fission product release for steady state as well as accident scenarios can be simulated for each fuel batch. For a full-core release calculation several thousand fuel elements are tracked while passing through the core. This models the stochastic behavior of a pebble bed in a realistic manner. In this paper we report on the current status of the HCP and present first results, which prove the applicability of the selected approach.

  8. Explicit and implicit springback simulation in sheet metal forming using fully coupled ductile damage and distortional hardening model

    Science.gov (United States)

    Yetna n'jock, M.; Houssem, B.; Labergere, C.; Saanouni, K.; Zhenming, Y.

    2018-05-01

    The springback is an important phenomenon which accompanies the forming of metallic sheets especially for high strength materials. A quantitative prediction of springback becomes very important for newly developed material with high mechanical characteristics. In this work, a numerical methodology is developed to quantify this undesirable phenomenon. This methodoly is based on the use of both explicit and implicit finite element solvers of Abaqus®. The most important ingredient of this methodology consists on the use of highly predictive mechanical model. A thermodynamically-consistent, non-associative and fully anisotropic elastoplastic constitutive model strongly coupled with isotropic ductile damage and accounting for distortional hardening is then used. An algorithm for local integration of the complete set of the constitutive equations is developed. This algorithm considers the rotated frame formulation (RFF) to ensure the incremental objectivity of the model in the framework of finite strains. This algorithm is implemented in both explicit (Abaqus/Explicit®) and implicit (Abaqus/Standard®) solvers of Abaqus® through the users routine VUMAT and UMAT respectively. The implicit solver of Abaqus® has been used to study spingback as it is generally a quasi-static unloading. In order to compare the methods `efficiency, the explicit method (Dynamic Relaxation Method) proposed by Rayleigh has been also used for springback prediction. The results obtained within U draw/bending benchmark are studied, discussed and compared with experimental results as reference. Finally, the purpose of this work is to evaluate the reliability of different methods predict efficiently springback in sheet metal forming.

  9. On the kinematic criterion for the inception of breaking in surface gravity waves: Fully nonlinear numerical simulations and experimental verification

    Science.gov (United States)

    Khait, A.; Shemer, L.

    2018-05-01

    The evolution of unidirectional wave trains containing a wave that gradually becomes steep is evaluated experimentally and numerically using the Boundary Element Method (BEM). The boundary conditions for the nonlinear numerical simulations corresponded to the actual movements of the wavemaker paddle as recorded in the physical experiments, allowing direct comparison between the measured in experiments' characteristics of the wave train and the numerical predictions. The high level of qualitative and quantitative agreement between the measurements and simulations validated the kinematic criterion for the inception of breaking and the location of the spilling breaker, on the basis of the BEM computations and associated experiments. The breaking inception is associated with the fluid particle at the crest of the steep wave that has been accelerated to match and surpass the crest velocity. The previously observed significant slow-down of the crest while approaching breaking is verified numerically; both narrow-/broad-banded wave trains are considered. Finally, the relative importance of linear and nonlinear contributions is analyzed.

  10. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  11. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    Science.gov (United States)

    Schwinger, Jörg; Tjiputra, Jerry; Goris, Nadine; Six, Katharina D.; Kirkevåg, Alf; Seland, Øyvind; Heinze, Christoph; Ilyina, Tatiana

    2017-08-01

    We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS) production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong) sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K) towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr-1 or 31 % (11.5 Tg S yr-1 or 48 %). The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by -0. 041 K per 1 Tg S yr-1 change in sea-air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K) is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea-air DMS fluxes by about 9 % (15 %), which counteracts the reduction due to ocean acidification.

  12. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    Directory of Open Access Journals (Sweden)

    J. Schwinger

    2017-08-01

    Full Text Available We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr−1 or 31 % (11.5 Tg S yr−1 or 48 %. The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by −0. 041 K per 1 Tg S yr−1 change in sea–air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea–air DMS fluxes by about 9 % (15 %, which counteracts the reduction due to ocean acidification.

  13. FEM Based Multi-Criterion Design and Implementation of a PM Synchronous Wind Generator by Fully Coupled Co-Simulation

    Directory of Open Access Journals (Sweden)

    OCAK, C.

    2018-02-01

    Full Text Available This study deals with analyzing, designing and fabricating of a 1 kW PM synchronous generator for gearless and direct drive off-grid wind turbines. Performance characteristics of this generator have been calculated analytically in collaboration with dynamic transient coupled-field analysis. All specifications of the PMSG have been investigated and optimized by using finite element method and parametric multi-criterion design approach. At the end of research, a prototype has been fabricated based on the optimized dimensions. Furthermore, the analytical calculations present along with experimental studies carried out for different shaft speeds and load levels. The comparative experimental studies have verified effectiveness of the optimized designing and dynamic co-simulations.

  14. The utility of sparse 2D fully electronically steerable focused ultrasound phased arrays for thermal surgery: a simulation study

    International Nuclear Information System (INIS)

    Ellens, Nicholas; Pulkkinen, Aki; Song Junho; Hynynen, Kullervo

    2011-01-01

    Sparse arrays are widely used in diagnostic ultrasound for their strong performance and relative technical simplicity. This simulation study assessed the efficacy of phased arrays of varied sparseness for thermal surgery, especially with regard to power consumption and near-field heating. It employs a linear ultrasound propagation model and a semi-analytical solution to the Pennes' bioheat transfer equation. The basic design had 4912 cylindrical transducers (500 kHz) arranged on a flat 12 cm disk (1.5 mm spacing). This array was compared to randomly-thinned sparse arrays with 75%, 50% and 25% populations. Temperature elevations of 60 and 70 deg. C were induced in sonication times of 5-20 s, at foci spanning depths of 50-150 mm and radii of 0-60 mm. The sparse arrays produced nearly indistinguishable focal patterns but, averaged across the foci, required 132%, 200% and 393% of the power of the full array, respectively, applied through fewer transducer elements. Comparable results were found at 1 MHz from equivalent arrays. Simulated lesions were formed (thermal dose ≥ 240 equivalent minutes at 43 deg. C (T 43 )) and 'transition' and 'unsafe' regions (both defined as 5 min 43 < 240 min) were identified, the former immediately surrounding the lesion and the latter anywhere else. At a depth of 100 mm, sparse arrays were found to produce comparable lesions to the full array at the focus, but 'unsafe', over-heated near-field regions after some ablated lesion volume: about 12 mL for the 25% array, around 100 mL for the 50% array, while the 75% and full arrays produced 150 mL lesions safely.

  15. Modeling vehicle fuel consumption and emissions at signalized intersection approaches : integrating field-collected data into microscopic simulation.

    Science.gov (United States)

    2012-07-01

    Microscopic models produce emissions and fuel consumption estimates with higher temporal resolution than other scales of : models. Most emissions and fuel consumption models were developed with data from dynamometer testing which are : sufficiently a...

  16. Fully automatic guidance and control for rotorcraft nap-of-the-Earth flight following planned profiles. Volume 1: Real-time piloted simulation

    Science.gov (United States)

    Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.

    1991-01-01

    Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.

  17. UT simulation using a fully automated 3D hybrid model: Application to planar backwall breaking defects inspection

    Science.gov (United States)

    Imperiale, Alexandre; Chatillon, Sylvain; Darmon, Michel; Leymarie, Nicolas; Demaldent, Edouard

    2018-04-01

    The high frequency models gathered in the CIVA software allow fast computations and provide satisfactory quantitative predictions in a wide range of situations. However, the domain of validity of these models is limited since they do not accurately predict the ultrasound response in configurations involving subwavelength complex phenomena. In addition, when modelling backwall breaking defects inspection, an important challenge remains to capture the propagation of the creeping waves that are generated at the critical angle. Hybrid models combining numerical and asymptotic methods have already been shown to be an effective strategy to overcome these limitations in 2D [1]. However, 3D simulations remain a crucial issue for industrial applications because of the computational cost of the numerical solver. A dedicated three dimensional high order finite element model combined with a domain decomposition method has been recently proposed to tackle 3D limitations [2]. In this communication, we will focus on the specific case of planar backwall breaking defects, with an adapted coupling strategy in order to efficiently model the propagation of creeping waves. Numerical and experimental validations will be proposed on various configurations.

  18. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  19. Insights in time dependent cross compartment sensitivities from ensemble simulations with the fully coupled subsurface-land surface-atmosphere model TerrSysMP

    Science.gov (United States)

    Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens

    2017-04-01

    Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.

  20. Fully non-linear multi-species Fokker-Planck-Landau collisions for gyrokinetic particle-in-cell simulations of fusion plasma

    Science.gov (United States)

    Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.

    2015-11-01

    We describe the implementation, and application of a time-dependent, fully nonlinear multi-species Fokker-Planck-Landau collision operator based on the single-species work of Yoon and Chang [Phys. Plasmas 21, 032503 (2014)] in the full-function gyrokinetic particle-in-cell codes XGC1 [Ku et al., Nucl. Fusion 49, 115021 (2009)] and XGCa. XGC simulations include the pedestal and scrape-off layer, where significant deviations of the particle distribution function from a Maxwellian can occur. Thus, in order to describe collisional effects on neoclassical and turbulence physics accurately, the use of a non-linear collision operator is a necessity. Our collision operator is based on a finite volume method using the velocity-space distribution functions sampled from the marker particles. Since the same fine configuration space mesh is used for collisions and the Poisson solver, the workload due to collisions can be comparable to or larger than the workload due to particle motion. We demonstrate that computing time spent on collisions can be kept affordable by applying advanced parallelization strategies while conserving mass, momentum, and energy to reasonable accuracy. We also show results of production scale XGCa simulations in the H-mode pedestal and compare to conventional theory. Work supported by US DOE OFES and OASCR.

  1. Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks

    Science.gov (United States)

    Steen, Kim Arild; Green, Ole; Karstoft, Henrik

    2017-01-01

    Optimal fertilization of clover-grass fields relies on knowledge of the clover and grass fractions. This study shows how knowledge can be obtained by analyzing images collected in fields automatically. A fully convolutional neural network was trained to create a pixel-wise classification of clover, grass, and weeds in red, green, and blue (RGB) images of clover-grass mixtures. The estimated clover fractions of the dry matter from the images were found to be highly correlated with the real clover fractions of the dry matter, making this a cheap and non-destructive way of monitoring clover-grass fields. The network was trained solely on simulated top-down images of clover-grass fields. This enables the network to distinguish clover, grass, and weed pixels in real images. The use of simulated images for training reduces the manual labor to a few hours, as compared to more than 3000 h when all the real images are annotated for training. The network was tested on images with varied clover/grass ratios and achieved an overall pixel classification accuracy of 83.4%, while estimating the dry matter clover fraction with a standard deviation of 7.8%. PMID:29258215

  2. Comparison between a coupled 1D-2D model and a fully 2D model for supercritical flow simulation in crossroads

    KAUST Repository

    Ghostine, Rabih

    2014-12-01

    In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D shallow water model and a fully two-dimensional (2D) model is presented. The paper explores the ability of a coupled model to simulate the flow processes during supercritical flows in crossroads. This combination leads to a significant reduction in the computational time, as a 1D approach is used in branches and a 2D approach is employed in selected areas only where detailed flow information is essential. Overall, the numerical results suggest that the coupled model is able to accurately simulate the main flow processes. In particular, hydraulic jumps, recirculation zones, and discharge distribution are reasonably well reproduced and clearly identified. Overall, the proposed model leads to a 30% reduction in run times. © 2014 International Association for Hydro-Environment Engineering and Research.

  3. Microscopic Polyangiitis

    Science.gov (United States)

    ... body, specifically the feet, lower legs and, in bed-ridden patients, the buttocks. The skin findings of cutaneous ... that are in contact with the lungs’ microscopic air sacs – the condition may quickly pose a threat ...

  4. Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

    Directory of Open Access Journals (Sweden)

    Kyoung-Rok Lee

    2013-12-01

    Full Text Available A floating Oscillating Water Column (OWC wave energy converter, a Backward Bent Duct Buoy (BBDB, was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

  5. Computer simulation for precipitation process of θ (Ni3V) and γ' (Ni3Al) with microscopic phase-field method

    Institute of Scientific and Technical Information of China (English)

    HOU Hua; XU Hong; ZHAO Yu-hong

    2006-01-01

    With the microscopic phase-field model, the precipitation process of aged alloys was explored by computer simulation, which could clarify some discussional views on the precipitation mechanisms of alloys. The precipitation process of Ni75Al2.5V22.5 alloy was studied. From the simulated atomic pictures, calculated order parameters and volume fraction of different precipitates, it's found that the θ ordered phase precipitates earlier than γ' ordered phase by congruent ordering+spinodal decomposition mechanism and thus produces a nonstoicheometric θ single ordered phase. Then, the nonstoicheometric γ' phase is precipitated by a non-classical nucleation and growth mechanism at the APBS of θ phases. Meanwhile, both of them transform to stoicheometric ordered phases.

  6. Martian Microscope

    Science.gov (United States)

    2004-01-01

    The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.

  7. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models.

    Science.gov (United States)

    Palsson, Sirus; Hickling, Timothy P; Bradshaw-Pierce, Erica L; Zager, Michael; Jooss, Karin; O'Brien, Peter J; Spilker, Mary E; Palsson, Bernhard O; Vicini, Paolo

    2013-09-28

    The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The

  8. Coupling microscopic and mesoscopic scales to simulate chemical equilibrium between a nanometric carbon cluster and detonation products fluid.

    Science.gov (United States)

    Bourasseau, Emeric; Maillet, Jean-Bernard

    2011-04-21

    This paper presents a new method to obtain chemical equilibrium properties of detonation products mixtures including a solid carbon phase. In this work, the solid phase is modelled through a mesoparticle immersed in the fluid, such that the heterogeneous character of the mixture is explicitly taken into account. Inner properties of the clusters are taken from an equation of state obtained in a previous work, and interaction potential between the nanocluster and the fluid particles is derived from all-atoms simulations using the LCBOPII potential (Long range Carbon Bond Order Potential II). It appears that differences in chemical equilibrium results obtained with this method and the "composite ensemble method" (A. Hervouet et al., J. Phys. Chem. B, 2008, 112.), where fluid and solid phases are considered as non-interacting, are not significant, underlining the fact that considering the inhomogeneity of such system is crucial.

  9. Modeling, Simulation, and Measurement of Balanced Antipodal Vivaldi (BAV) Antennas for Fully Polarimetric Forward-Looking Ground-Penetrating Radar (FLGPR) Receive Channels

    Science.gov (United States)

    2017-08-01

    Current Vivaldi Elements and Replacement Antennas Considered The majority of the design process was conducted through modeling and simulation ...ARL-TR-8111 ● AUG 2017 US Army Research Laboratory Modeling, Simulation , and Measurement of Balanced Antipodal Vivaldi (BAV...ARL-TR-8111 ● AUG 2017 US Army Research Laboratory Modeling, Simulation , and Measurement of Balanced Antipodal Vivaldi (BAV) Antennas for

  10. Microscopic Moves.

    Science.gov (United States)

    Zurcher, Sandra L.

    1991-01-01

    Presents lessons to stimulate children's interest in science and develop communication skills by having students simulate the locomotion of an ameba, a paramecium, and an Euglena, and the cyclosis in the pondweed Elodea. Students practice communication skills by demonstrating their organism to the remainder of the class. (MDH)

  11. Microscopic modelling of doped manganites

    International Nuclear Information System (INIS)

    Weisse, Alexander; Fehske, Holger

    2004-01-01

    Colossal magneto-resistance manganites are characterized by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting two conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low-energy physics. Focusing on short-range electron-lattice and spin-orbital correlations we supplement the modelling with numerical simulations

  12. Collective dynamic dipole moment and orientation fluctuations, cooperative hydrogen bond relaxations, and their connections to dielectric relaxation in ionic acetamide deep eutectics: Microscopic insight from simulations

    Energy Technology Data Exchange (ETDEWEB)

    Das, Suman [Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Biswas, Ranjit, E-mail: ranjit@bose.res.in, E-mail: biswaroop.mukherjee@gmail.com [Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Thematic Unit for Excellence – Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Mukherjee, Biswaroop, E-mail: ranjit@bose.res.in, E-mail: biswaroop.mukherjee@gmail.com [Thematic Unit for Excellence – Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India)

    2016-08-28

    The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO{sub 3}), lithium bromide (LiBr), and lithium perchlorate (LiClO{sub 4}). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The present study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li{sup +} complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.

  13. Numerical simulation of head top coal's stability control of fully mechanized longwall mining with sublevel caving face in large dip seam

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Wan, Z.; Jiang, F.; Jia, P. [Beijing Science and Technology University, Beijing (China)

    2008-07-01

    Stability control of the head face's top-coal is one of the key techniques of realising high production and high efficiency in coal mining in fully mechanized top-coal caving face. The characteristics of the stress in the overlying strata of the fully mechanized top-coal caving face and the top coal were analysed using FLAC{sup 3D}. The results show that the tip-to-face top-coal generates a large deformation while it is in the stress-relaxed area. The top-coal in the front of the wall appears to be the failure area for the effect of the abutment pressure that spreads over the coal seam. The surrounding rock of the upper face end is the key part strengthened the control of the rib spalling. The first and frequent appearing phenomenon of losing stability of the powered supports is that the back base of the hydraulic power supports in the top of the face slips. Increasing the quality of support and so on can maintain the stability of surrounding rock. 4 refs., 7 figs., 1 tab.

  14. Microscopic Theory of Transconductivity

    Directory of Open Access Journals (Sweden)

    A. P. Jauho

    1998-01-01

    Full Text Available Measurements of momentum transfer between two closely spaced mesoscopic electronic systems, which couple via Coulomb interaction but where tunneling is inhibited, have proven to be a fruitful method of extracting information about interactions in mesoscopic systems. We report a fully microscopic theory for transconductivity σ12, or, equivalently, momentum transfer rate between the system constituents. Our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which are topologically related, but not equivalent to, the Azlamazov-Larkin and Maki-Thompson diagrams known for superconductivity. In the present paper the magnetic field dependence of σ12 is discussed, and we find that σ12(B is strongly enhanced over its zero field value, and it displays strong features, which can be understood in terms of a competition between density-of-states and screening effects.

  15. Effects of Groundwater Dynamics on Hydrometeorological Conditions over South America: Analysis of Offline NoahMP and Fully-coupled WRF-NoahMP Simulations

    Science.gov (United States)

    Martinez-Agudelo, J. A.; Dominguez, F.; Miguez-Macho, G.

    2014-12-01

    Renalysis data suggests that nearly 20% of the atmospheric moisture over the La Plata basin comes from Amazonian Evapotranspiration (ET). However, these estimates of ET are model dependent. Simulations using land-surface models (LSMs) in off-line mode (i.e. with prescribed atmospheric forcing) have shown that Amazonian ET depends on the groundwater dynamics. In this study we use the NoahMP LSM in off-line mode and the coupled system WRF-NoahMP to assess the role of groundwater on South American ET. In particular, we study the role of the groundwater in sustaining ET during the dry season in the southern Amazon and the La Plata basin. We compare simulations that do not account for the groundwater reservoir (free drainage approach) with simulations that include the Miguez-Macho and Fan parameterization to represent the groundwater storage, its lateral flow, and its interaction with the unsaturated zone. The off-line simulations show the effects associated solely with groundwater dynamics (as opposed to coupled land-atmosphere processes), while the coupled simulations provide information about the regulation and/or response from the atmosphere. Preliminary results from the coupled system suggest that the largest effects of the groundwater on ET are observed during the austral dry season. ET is larger over regions of Bolivia, Paraguay and Argentina when groundwater is included, due to the existence of a relatively shallow water table over these regions, which via upward capillary fluxes reduces drainage during the rainy season and increases soil moisture availability in the dry season. These differences in the simulated ET could have an impact on the estimates of the transport of atmospheric moisture to La Plata basin.

  16. Numerical simulations of heat transfer in an annular fuel channel with three-dimensional spacer ribs set up periodically under a fully developed turbulent flow

    International Nuclear Information System (INIS)

    Takase, Kazuyuki; Akino, Norio

    1996-06-01

    Thermal-hydraulic characteristics of an annular fuel channel with spacer ribs for high temperature gas-cooled reactors were analyzed numerically by three-dimensional heat transfer computations under a fully developed turbulent flow. The two-equations κ-ε turbulence model was applied to the present turbulent analysis. In particular, the κ-ε turbulence model constants and the turbulent Prandtl number were improved from the previous standard values proposed by Jones and Launder in order to obtain heat transfer predictions with higher accuracy. Consequently, heat transfer coefficients and friction factors in the spacer-ribbed fuel channel were predicted with sufficient accuracy in the range of Reynolds number exceeding 3000. It was clarified quantitatively from the present study that main mechanism for the heat transfer augmentation in the spacer-ribbed fuel channel was combined effects of the turbulence promoter effect by the spacer ribs and the velocity acceleration effect by a reduction in the channel cross-section. (author)

  17. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  18. Multiple-correction hybrid k-exact schemes for high-order compressible RANS-LES simulations on fully unstructured grids

    Science.gov (United States)

    Pont, Grégoire; Brenner, Pierre; Cinnella, Paola; Maugars, Bruno; Robinet, Jean-Christophe

    2017-12-01

    A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family of k-exact Godunov schemes is developed by recursively correcting the truncation error of the piecewise polynomial representation of the primitive variables. The keystone of the proposed approach is a quasi-Green gradient operator which ensures consistency on general meshes. In addition, a high-order single-point quadrature formula, based on high-order approximations of the successive derivatives of the solution, is developed for flux integration along cell faces. The proposed family of schemes is compact in the algorithmic sense, since it only involves communications between direct neighbors of the mesh cells. The numerical properties of the schemes up to fifth-order are investigated, with focus on their resolvability in terms of number of mesh points required to resolve a given wavelength accurately. Afterwards, in the aim of achieving the best possible trade-off between accuracy, computational cost and robustness in view of industrial flow computations, we focus more specifically on the third-order accurate scheme of the family, and modify locally its numerical flux in order to reduce the amount of numerical dissipation in vortex-dominated regions. This is achieved by switching from the upwind scheme, mostly applied in highly compressible regions, to a fourth-order centered one in vortex-dominated regions. An analytical switch function based on the local grid Reynolds number is adopted in order to warrant numerical stability of the recentering process. Numerical applications demonstrate the accuracy and robustness of the proposed methodology for compressible scale-resolving computations. In particular, supersonic RANS/LES computations of the flow over a cavity are presented to show the capability of the scheme to predict flows with shocks

  19. Microscopic cross sections: An utopia?

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)

    2010-07-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  20. Microscopic cross sections: An utopia?

    International Nuclear Information System (INIS)

    Hilaire, S.; Koning, A.J.; Goriely, S.

    2010-01-01

    The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations.While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)

  1. Transmission positron microscopes

    International Nuclear Information System (INIS)

    Doyama, Masao; Kogure, Yoshiaki; Inoue, Miyoshi; Kurihara, Toshikazu; Yoshiie, Toshimasa; Oshima, Ryuichiro; Matsuya, Miyuki

    2006-01-01

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons

  2. Fully portable blood irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1980-01-01

    A fully portable blood irradiator was developed using the beta emitter thulium-170 as the radiation source and vitreous carbon as the body of the irradiator, matrix for isotope encapsulation, and blood interface material. These units were placed in exteriorized arteriovenous shunts in goats, sheep, and dogs and the effects on circulating lymphocytes and on skin allograft retention times measured. The present work extends these studies by establishing baseline data for skin graft rejection times in untreated animals

  3. The Scanning Optical Microscope.

    Science.gov (United States)

    Sheppard, C. J. R.

    1978-01-01

    Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.

  4. Fully Quantum Fluctuation Theorems

    Science.gov (United States)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  5. Android Fully Loaded

    CERN Document Server

    Huddleston, Rob

    2012-01-01

    Fully loaded with the latest tricks and tips on your new Android! Android smartphones are so hot, they're soaring past iPhones on the sales charts. And the second edition of this muscular little book is equally impressive--it's packed with tips and tricks for getting the very most out of your latest-generation Android device. Start Facebooking and tweeting with your Android mobile, scan barcodes to get pricing and product reviews, download your favorite TV shows--the book is positively bursting with practical and fun how-tos. Topics run the gamut from using speech recognition, location-based m

  6. The use of the JEM 1250 high voltage electron microscope (HVEM) of the university of Antwerp (RUCA) as an instrument for void swelling simulation experiments

    International Nuclear Information System (INIS)

    Snijkers, M.; Janssens, C.

    1978-01-01

    The working procedure has been established for the use of the high voltage electron microscope of the University of Antwerp (RUCA) as an apparatus for testing the swelling behavior of ferritic and austenitic stainless steels. The local temperature increase of the specimen due to beam heating was measured. The results are in good agreement with measurements done in other laboratories. The intensity of the transmitted beam has been measured as a function of specimen thickness (for thicknesses smaller than a few μ) The operation conditions are described for carrying out irradiation experiments and for taking stereo pairs. (author)

  7. Fully electric waste collection

    CERN Multimedia

    Anaïs Schaeffer

    2015-01-01

    Since 15 June, Transvoirie, which provides waste collection services throughout French-speaking Switzerland, has been using a fully electric lorry for its collections on the CERN site – a first for the region!   Featuring a motor powered by electric batteries that charge up when the brakes are used, the new lorry that roams the CERN site is as green as can be. And it’s not only the motor that’s electric: its waste compactor and lifting mechanism are also electrically powered*, making it the first 100% electric waste collection vehicle in French-speaking Switzerland. Considering that a total of 15.5 tonnes of household waste and paper/cardboard are collected each week from the Meyrin and Prévessin sites, the benefits for the environment are clear. This improvement comes as part of CERN’s contract with Transvoirie, which stipulates that the firm must propose ways of becoming more environmentally friendly (at no extra cost to CERN). *The was...

  8. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  9. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  10. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  11. The Homemade Microscope.

    Science.gov (United States)

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  12. Mailing microscope slides

    Science.gov (United States)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  13. Fully transparent LHC

    CERN Multimedia

    2008-01-01

    Thanks to the first real signals received from the LHC while in operation before the incident, the experiments are now set to make the best use of the data they have collected. Report from the LHCC open session.The September open session of the LHCC (LHC Experiments Committee) came just a few days after the incident that occurred at the LHC. The packed auditorium was a testament to the huge interest raised by Lyn Evans’ talk about the status of the machine and the plans for the future. After being told that the actual consequences of the incident will be clear only once Sector 3-4 has been warmed up, the audience focussed on the reports from the experiments. For the first time, the reports showed performance results of the various detectors with particles coming from the machine and not just from cosmic rays or tests and simulations. "The first days of LHC beam exceeded all expectations and the experiments made extensive and rapid use of the data they collected", says ...

  14. CMOS current controlled fully balanced current conveyor

    International Nuclear Information System (INIS)

    Wang Chunhua; Zhang Qiujing; Liu Haiguang

    2009-01-01

    This paper presents a current controlled fully balanced second-generation current conveyor circuit (CF-BCCII). The proposed circuit has the traits of fully balanced architecture, and its X-Y terminals are current controllable. Based on the CFBCCII, two biquadratic universal filters are also proposed as its applications. The CFBCCII circuits and the two filters were fabricated with chartered 0.35-μm CMOS technology; with ±1.65 V power supply voltage, the total power consumption of the CFBCCII circuit is 3.6 mW. Comparisons between measured and HSpice simulation results are also given.

  15. Fully developed turbulence via Feigenbaum's period-doubling bifurcations

    International Nuclear Information System (INIS)

    Duong-van, M.

    1987-08-01

    Since its publication in 1978, Feigenbaum's predictions of the onset of turbulence via period-doubling bifurcations have been thoroughly borne out experimentally. In this paper, Feigenbaum's theory is extended into the regime in which we expect to see fully developed turbulence. We develop a method of averaging that imposes correlations in the fluctuating system generated by this map. With this averaging method, the field variable is obtained by coarse-graining, while microscopic fluctuations are preserved in all averaging scales. Fully developed turbulence will be shown to be a result of microscopic fluctuations with proper averaging. Furthermore, this model preserves Feigenbaum's results on the physics of bifurcations at the onset of turbulence while yielding additional physics both at the onset of turbulence and in the fully developed turbulence regime

  16. Scanning Auger Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...

  17. Microscopic approach to polaritons

    DEFF Research Database (Denmark)

    Skettrup, Torben

    1981-01-01

    contrary to experimental experience. In order to remove this absurdity the semiclassical approach must be abandoned and the electromagnetic field quantized. A simple microscopic polariton model is then derived. From this the wave function for the interacting exciton-photon complex is obtained...... of light of the crystal. The introduction of damping smears out the excitonic spectra. The wave function of the polariton, however, turns out to be very independent of damping up to large damping values. Finally, this simplified microscopic polariton model is compared with the exact solutions obtained...... for the macroscopic polariton model by Hopfield. It is seen that standing photon and exciton waves must be included in an exact microscopic polariton model. However, it is concluded that for practical purposes, only the propagating waves are of importance and the simple microscopic polariton wave function derived...

  18. Ab initio simulations of scanning-tunneling-microscope images with embedding techniques and application to C58-dimers on Au(111).

    Science.gov (United States)

    Wilhelm, Jan; Walz, Michael; Stendel, Melanie; Bagrets, Alexei; Evers, Ferdinand

    2013-05-14

    We present a modification of the standard electron transport methodology based on the (non-equilibrium) Green's function formalism to efficiently simulate STM-images. The novel feature of this method is that it employs an effective embedding technique that allows us to extrapolate properties of metal substrates with adsorbed molecules from quantum-chemical cluster calculations. To illustrate the potential of this approach, we present an application to STM-images of C58-dimers immobilized on Au(111)-surfaces that is motivated by recent experiments.

  19. Microscopic Theory of Fission

    International Nuclear Information System (INIS)

    Younes, W; Gogny, D

    2008-01-01

    In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented

  20. Infrared microscope inspection apparatus

    Science.gov (United States)

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  1. Multipartite fully nonlocal quantum states

    International Nuclear Information System (INIS)

    Almeida, Mafalda L.; Cavalcanti, Daniel; Scarani, Valerio; Acin, Antonio

    2010-01-01

    We present a general method for characterizing the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully nonlocal according to a given partition, as well as being (genuinely) multipartite fully nonlocal, are derived. These conditions allow us to identify all completely connected graph states as multipartite fully nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully nonlocal.

  2. Proton microscope design for 9 GeV pRad facility

    International Nuclear Information System (INIS)

    Barminova, H.Y.; Turtikov, V.I.

    2016-01-01

    The proton microscope design for 9 GeV proton radiography facility is described. Basic principles of proton microscope development are discussed. Two variants of microscope optical scheme are proposed. Simulation of the proton beam dynamics is carried out, the results showing the possibility to obtain the microscope spatial resolution not worse than 10 μ m.

  3. Lowest order in inelastic tunneling approximation : efficient scheme for simulation of inelastic electron tunneling data

    NARCIS (Netherlands)

    Rossen, E.T.R.; Flipse, C.F.J.; Cerda, J.I.

    2013-01-01

    We have developed an efficient and accurate formalism which allows the simulation at the ab initio level of inelastic electron tunneling spectroscopy data under a scanning tunneling microscope setup. It exploits fully the tunneling regime by carrying out the structural optimization and vibrational

  4. Electron microscope studies

    International Nuclear Information System (INIS)

    Crewe, A.V.; Kapp, O.H.

    1992-01-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations

  5. Electron microscope studies

    Energy Technology Data Exchange (ETDEWEB)

    Crewe, A.V.; Kapp, O.H.

    1992-07-01

    This is a report covering the research performed in the Crewe laboratory between 1964 and 1992. Because of limitations of space we have provided relatively brief summaries of the major research directions of the facility during these years. A complete bibliography has been included and we have referenced groups of pertinent publications at the beginning of each section. This report summarizes our efforts to develop better electron microscopes and chronicles many of the experimental programs, in materials science and biology, that acted both as a stimulus to better microscope design and also as a testing ground for many instrumental innovations.

  6. Microscopic Description of Le Chatelier's Principle

    Science.gov (United States)

    Novak, Igor

    2005-01-01

    A simple approach that "demystifies" Le Chatelier's principle (LCP) and simulates students to think about fundamental physical background behind the well-known principles is presented. The approach uses microscopic descriptors of matter like energy levels and populations and does not require any assumption about the fixed amount of substance being…

  7. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges...

  8. Microscope on Mars

    Science.gov (United States)

    2004-01-01

    This image taken at Meridiani Planum, Mars by the panoramic camera on the Mars Exploration Rover Opportunity shows the rover's microscopic imager (circular device in center), located on its instrument deployment device, or 'arm.' The image was acquired on the ninth martian day or sol of the rover's mission.

  9. The scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salvan, F.

    1986-01-01

    A newly conceived microscope, based on a pure quantum phenomenon, is an ideal tool to study atom by atom the topography and properties of surfaces. Applications are presented: surface ''reconstruction'' of silicon, lamellar compound study, etc... Spectroscopy by tunnel effect will bring important information on electronic properties; it is presented with an application on silicon [fr

  10. Scanning electron microscope

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The principle underlying the design of the scanning electron microscope (SEM), the design and functioning of SEM are described. Its applications in the areas of microcircuitry and materials science are outlined. The development of SEM in India is reviewed. (M.G.B.)

  11. Variable temperature superconducting microscope

    Science.gov (United States)

    Cheng, Bo; Yeh, W. J.

    2000-03-01

    We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.

  12. Neuromorphic Data Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Naegle, John H.; Suppona, Roger A.; Aimone, James Bradley; James, Conrad D.; Follett, David R.; Townsend, Duncan C.M.; Follett, Pamela L.; Karpman, Gabe D.

    2017-08-01

    In 2016, Lewis Rhodes Labs, (LRL), shipped the first commercially viable Neuromorphic Processing Unit, (NPU), branded as a Neuromorphic Data Microscope (NDM). This product leverages architectural mechanisms derived from the sensory cortex of the human brain to efficiently implement pattern matching. LRL and Sandia National Labs have optimized this product for streaming analytics, and demonstrated a 1,000x power per operation reduction in an FPGA format. When reduced to an ASIC, the efficiency will improve to 1,000,000x. Additionally, the neuromorphic nature of the device gives it powerful computational attributes that are counterintuitive to those schooled in traditional von Neumann architectures. The Neuromorphic Data Microscope is the first of a broad class of brain-inspired, time domain processors that will profoundly alter the functionality and economics of data processing.

  13. Microscopic dynamical Casimir effect

    Science.gov (United States)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2018-03-01

    We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs, which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating macroscopic metallic mirror.

  14. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  15. Microscopic enteritis: Bucharest consensus.

    Science.gov (United States)

    Rostami, Kamran; Aldulaimi, David; Holmes, Geoffrey; Johnson, Matt W; Robert, Marie; Srivastava, Amitabh; Fléjou, Jean-François; Sanders, David S; Volta, Umberto; Derakhshan, Mohammad H; Going, James J; Becheanu, Gabriel; Catassi, Carlo; Danciu, Mihai; Materacki, Luke; Ghafarzadegan, Kamran; Ishaq, Sauid; Rostami-Nejad, Mohammad; Peña, A Salvador; Bassotti, Gabrio; Marsh, Michael N; Villanacci, Vincenzo

    2015-03-07

    Microscopic enteritis (ME) is an inflammatory condition of the small bowel that leads to gastrointestinal symptoms, nutrient and micronutrient deficiency. It is characterised by microscopic or sub-microscopic abnormalities such as microvillus changes and enterocytic alterations in the absence of definite macroscopic changes using standard modern endoscopy. This work recognises a need to characterize disorders with microscopic and submicroscopic features, currently regarded as functional or non-specific entities, to obtain further understanding of their clinical relevance. The consensus working party reviewed statements about the aetiology, diagnosis and symptoms associated with ME and proposes an algorithm for its investigation and treatment. Following the 5(th) International Course in Digestive Pathology in Bucharest in November 2012, an international group of 21 interested pathologists and gastroenterologists formed a working party with a view to formulating a consensus statement on ME. A five-step agreement scale (from strong agreement to strong disagreement) was used to score 21 statements, independently. There was strong agreement on all statements about ME histology (95%-100%). Statements concerning diagnosis achieved 85% to 100% agreement. A statement on the management of ME elicited agreement from the lowest rate (60%) up to 100%. The remaining two categories showed general agreement between experts on clinical presentation (75%-95%) and pathogenesis (80%-90%) of ME. There was strong agreement on the histological definition of ME. Weaker agreement on management indicates a need for further investigations, better definitions and clinical trials to produce quality guidelines for management. This ME consensus is a step toward greater recognition of a significant entity affecting symptomatic patients previously labelled as non-specific or functional enteropathy.

  16. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  17. Numerical stability of finite difference algorithms for electrochemical kinetic simulations: Matrix stability analysis of the classic explicit, fully implicit and Crank-Nicolson methods and typical problems involving mixed boundary conditions

    DEFF Research Database (Denmark)

    Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter

    1995-01-01

    The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention...... has been paid to the effect of the discretization of the mixed, linear boundary condition with time-dependent coefficients on stability, assuming the two-point forward-difference approximations for the gradient at the left boundary (electrode). Under accepted assumptions one obtains the usual...... stability criteria for the classic explicit and fully implicit methods. The Crank-Nicolson method turns out to be only conditionally stable in contrast to the current thought regarding this method....

  18. Virtual pinhole confocal microscope

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Rector, D.M.; Ranken, D.M. [Los Alamos National Lab., NM (United States). Biophysics Group; Peterson, B. [SciLearn Inc. (United States); Kesteron, J. [VayTech Inc. (United States)

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  19. Thimble microscope system

    Science.gov (United States)

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.

    2016-12-01

    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  20. Hamiltonian mechanics limits microscopic engines

    Science.gov (United States)

    Anglin, James; Gilz, Lukas; Thesing, Eike

    2015-05-01

    We propose a definition of fully microscopic engines (micro-engines) in terms of pure mechanics, without reference to thermodynamics, equilibrium, or cycles imposed by external control, and without invoking ergodic theory. This definition is pragmatically based on the observation that what makes engines useful is energy transport across a large ratio of dynamical time scales. We then prove that classical and quantum mechanics set non-trivial limits-of different kinds-on how much of the energy that a micro-engine extracts from its fuel can be converted into work. Our results are not merely formal; they imply manageable design constraints on micro-engines. They also suggest the novel possibility that thermodynamics does not emerge from mechanics in macroscopic regimes, but rather represents the macroscopic limit of a generalized theory, valid on all scales, which governs the important phenomenon of energy transport across large time scale ratios. We propose experimental realizations of the dynamical mechanisms we identify, with trapped ions and in Bose-Einstein condensates (``motorized bright solitons'').

  1. Physics of fully ionized regions

    International Nuclear Information System (INIS)

    Flower, D.

    1975-01-01

    In this paper the term fully ionised regions is taken to embrace both planetary nebulae and the so-called 'H II' regions referred to as H + regions. Whilst these two types of gaseous nebulae are very different from an evolutionary standpoint, they are physically very similar, being characterised by photoionisation of a low-density plasma by a hot star. (Auth.)

  2. A frameless stereotaxic operating microscope for neurosurgery

    International Nuclear Information System (INIS)

    Friets, E.M.; Strohbehn, J.W.; Hatch, J.F.; Roberts, D.W.

    1989-01-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given

  3. A frameless stereotaxic operating microscope for neurosurgery.

    Science.gov (United States)

    Friets, E M; Strohbehn, J W; Hatch, J F; Roberts, D W

    1989-06-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given.

  4. Fully implicit kinetic modelling of collisional plasmas

    International Nuclear Information System (INIS)

    Mousseau, V.A.

    1996-05-01

    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method

  5. Collective effects in microscopic transport models

    International Nuclear Information System (INIS)

    Greiner, Carsten

    2003-01-01

    We give a reminder on the major inputs of microscopic hadronic transport models and on the physics aims when describing various aspects of relativistic heavy ion collisions at SPS energies. We then first stress that the situation of particle ratios being reproduced by a statistical description does not necessarily mean a clear hint for the existence of a fully isotropic momentum distribution at hydrochemical freeze-out. Second, a short discussion on the status of strangeness production is given. Third we demonstrate the importance of a new collective mechanism for producing (strange) antibaryons within a hardonic description, which guarantees sufficiently fast chemical equilibration

  6. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  7. Solid state optical microscope

    Science.gov (United States)

    Young, Ian T.

    1983-01-01

    A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

  8. Electron microscope phase enhancement

    Science.gov (United States)

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  9. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  10. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  11. Dynamics of water and ions in clays of type montmorillonite by microscopic simulation and quasi-elastic neutron scattering; Dynamique de l'eau et des ions dans des argiles de type montmorillonite par simulation microscopique et diffusion quasi-elastique des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Malikova, N

    2005-09-15

    Montmorillonite clays in low hydration states, with Na{sup +} and Cs{sup +} compensating counter ions, are investigated by a combination of microscopic simulation and quasi-elastic neutron scattering to obtain information on the local structure and dynamics of water and ions in the interlayer. At first predictions of simulation into the dynamics of water and ions at elevate temperatures are shown (0 deg C 80 deg C, pertinent for the radioactive waste disposal scenario) Marked difference is observed between the modes of diffusion of the Na{sup +} and C{sup +} counter ions. In water dynamics, a significant step towards bulk water behaviour is seen on transition from the mono- to bilayer states. Secondly, a detailed comparison between simulation and quasi-elastic neutron scattering (Neutron Spin Echo and Time-of-Flight) regarding ambient temperature water dynamics is presented. Overall, the approaches are found to be in good agreement with each other and limitations of each of the methods are clearly shown. (author)

  12. Axiomatisation of fully probabilistic design

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Kroupa, Tomáš

    2012-01-01

    Roč. 186, č. 1 (2012), s. 105-113 ISSN 0020-0255 R&D Projects: GA MŠk(CZ) 2C06001; GA ČR GA102/08/0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian decision making * Fully probabilistic design * Kullback–Leibler divergence * Unified decision making Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.643, year: 2012 http://library.utia.cas.cz/separaty/2011/AS/karny-0367271.pdf

  13. Imaging arrangement and microscope

    Science.gov (United States)

    Pertsinidis, Alexandros; Chu, Steven

    2015-12-15

    An embodiment of the present invention is an imaging arrangement that includes imaging optics, a fiducial light source, and a control system. In operation, the imaging optics separate light into first and second tight by wavelength and project the first and second light onto first and second areas within first and second detector regions, respectively. The imaging optics separate fiducial light from the fiducial light source into first and second fiducial light and project the first and second fiducial light onto third and fourth areas within the first and second detector regions, respectively. The control system adjusts alignment of the imaging optics so that the first and second fiducial light projected onto the first and second detector regions maintain relatively constant positions within the first and second detector regions, respectively. Another embodiment of the present invention is a microscope that includes the imaging arrangement.

  14. Microscopic entropy and nonlocality

    International Nuclear Information System (INIS)

    Karpov, E.; Ordonets, G.; Petroskij, T.; Prigozhin, I.

    2003-01-01

    We have obtained a microscopic expression for entropy in terms of H function based on nonunitary Λ transformation which leads from the time evolution as a unitary group to a Markovian dynamics and unifies the reversible and irreversible aspects of quantum mechanics. This requires a new representation outside the Hilbert space. In terms of H, we show the entropy production and the entropy flow during the emission and absorption of radiation by an atom. Analyzing the time inversion experiment, we emphasize the importance of pre- and postcollisional correlations, which break the symmetry between incoming and outgoing waves. We consider the angle dependence of the H function in a three-dimensional situation. A model including virtual transitions is discussed in a subsequent paper

  15. A microscope for Fermi gases

    International Nuclear Information System (INIS)

    Omran, Ahmed

    2016-01-01

    This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can

  16. Physics of fully depleted CCDs

    International Nuclear Information System (INIS)

    Holland, S E; Bebek, C J; Kolbe, W F; Lee, J S

    2014-01-01

    In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photo-generated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully depleted substrates arising from resistivity variations inherent to the growth of the high-resistivity silicon used to fabricate the CCDs

  17. Femtosecond photoelectron point projection microscope

    International Nuclear Information System (INIS)

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-01-01

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect

  18. Proper alignment of the microscope.

    Science.gov (United States)

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights

  19. Transmission electron microscope CCD camera

    Science.gov (United States)

    Downing, Kenneth H.

    1999-01-01

    In order to improve the performance of a CCD camera on a high voltage electron microscope, an electron decelerator is inserted between the microscope column and the CCD. This arrangement optimizes the interaction of the electron beam with the scintillator of the CCD camera while retaining optimization of the microscope optics and of the interaction of the beam with the specimen. Changing the electron beam energy between the specimen and camera allows both to be optimized.

  20. Communication: Fully coherent quantum state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu [University of California, Irvine, California 92697-2025 (United States)

    2015-10-14

    In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

  1. Scanning Electron Microscope Analysis System

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides the capability to examine surfaces microscopically with high resolution (5 nanometers), perform micro chemical analyses of these surfaces, and...

  2. A high resolution ion microscope for cold atoms

    International Nuclear Information System (INIS)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-01-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μ m. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation. (paper)

  3. The new Isidore microscope

    International Nuclear Information System (INIS)

    Rabouille, O.; Viard, J.; Menard, M.; Allegre, S.

    2001-01-01

    In the frame of the refurbishment of LECI hot laboratory in Saclay, it was decided to renew one of the two metallography lines of the building. This line is located at one end of the Isidore line of lead-shielded hot cells. The work started by the cleaning of 5 aout of 9 cells in Isidore line. Two were 2 m x 1.5 m cells, whereas the 3 others were smaller. Decontamination was difficult in both larger cells, because a lot of metallographic preparation had been performed there and because the cleaning of the lower parts of the cell, below the working area, was uneasy by remote manipulators. The refurbishment of the cells included: - Changing the windows, because old windows were made of glass panels sperated by oil, which is now prohibited by safety requirements. - Putting of a new pair of manipulators on one large cell, and adding bootings on manipulators on one large cell, and adding bootings on manipulators on both large cells. - Changing all the ventilation systems in these cells (new types of filters, new air-ducts), - Modifying and changing metallic pieces constituting the working are inside the cell - Increasing the hight of the small cells in order to add a manipulator for charging the sample on microscope or on hardness machine. - Simplifying the electrical wiring in order to decrease the fire risk in the hot cell line. - Add a better fire protection between the working area and the transfer area, i. e. between the front and the rear part of the cells. The scientific equipments fot these cells are: An Olympus microscope, modified by Optique Peter (company based in Lyons), equipped with a motorised sample holder (100 x 200 mm), maximum size of sample: O. D.=100 mm, 6 magnifications: x 12.5, x50, x100, x200, x500 and x1000, two microhardness positions: Vickers and Knoop. Polaroid image and digital camera with SIS image analysis system. A new periscope manufactured by Optique Peter. magnification x2 and x9, digital image and SIS system, and old periscope

  4. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  5. The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations

    Science.gov (United States)

    Strassmann, Kuno M.; Joos, Fortunat

    2018-05-01

    The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  6. The Bern Simple Climate Model (BernSCM v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle–climate simulations

    Directory of Open Access Journals (Sweden)

    K. M. Strassmann

    2018-05-01

    Full Text Available The Bern Simple Climate Model (BernSCM is a free open-source re-implementation of a reduced-form carbon cycle–climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs. The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate–carbon cycle response simulated by more complex and detailed models. Model code (in Fortran was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle–climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs, for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  7. Infrared up-conversion microscope

    DEFF Research Database (Denmark)

    2014-01-01

    There is presented an up-conversion infrared microscope (110) arranged for imaging an associated object (130), wherein the up-conversion infrared microscope (110) comprises a non-linear crystal (120) arranged for up-conversion of infrared electromagnetic radiation, and wherein an objective optical...

  8. Isotope analysis in the transmission electron microscope.

    Science.gov (United States)

    Susi, Toma; Hofer, Christoph; Argentero, Giacomo; Leuthner, Gregor T; Pennycook, Timothy J; Mangler, Clemens; Meyer, Jannik C; Kotakoski, Jani

    2016-10-10

    The Ångström-sized probe of the scanning transmission electron microscope can visualize and collect spectra from single atoms. This can unambiguously resolve the chemical structure of materials, but not their isotopic composition. Here we differentiate between two isotopes of the same element by quantifying how likely the energetic imaging electrons are to eject atoms. First, we measure the displacement probability in graphene grown from either 12 C or 13 C and describe the process using a quantum mechanical model of lattice vibrations coupled with density functional theory simulations. We then test our spatial resolution in a mixed sample by ejecting individual atoms from nanoscale areas spanning an interface region that is far from atomically sharp, mapping the isotope concentration with a precision better than 20%. Although we use a scanning instrument, our method may be applicable to any atomic resolution transmission electron microscope and to other low-dimensional materials.

  9. Development of a transmission positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Matsuya, M., E-mail: matsuya@jeol.co.jp [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Jinno, S. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan); Ootsuka, T.; Inoue, M. [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Kurihara, T. [High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Doyama, M.; Inoue, M. [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0913 (Japan); Fujinami, M. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan)

    2011-07-21

    A practical transmission positron microscope (TPM) JEM-1011B has been developed to survey differences in the interaction of positron and electron beams with materials, and is installed in the Slow Positron Facility of High Energy Accelerator Research Organization (KEK). The TPM can share positron and electron beams, and can also be used as a transmission electron microscope (TEM). Positron transmission images up to magnification 10,000x (resolution: 50 nm) and positron diffraction patterns up to 044 family were successfully obtained by the TPM comparing them with those of electrons. The differences in material transmittances for both beams have been measured, and can be explained by the calculated results of the Monte Carlo simulation code PENELOPE-2008.

  10. Manipulation of magnetic Skyrmions with a Scanning Tunneling Microscope

    OpenAIRE

    Wieser, R.

    2016-01-01

    The dynamics of a single magnetic Skyrmion in an atomic spin system under the influence of Scanning Tunneling Microscope is investigated by computer simulations solving the Landau-Lifshitz-Gilbert equation. Two possible scenarios are described: manipulation with aid of a spin-polarized tunneling current and by an electric field created by the scanning tunneling microscope. The dynamics during the creation and annihilation process is studied and the possibility to move single Skyrmions is showed.

  11. Restaurant No. 1 fully renovated

    CERN Document Server

    2007-01-01

    The Restaurant No. 1 team. After several months of patience and goodwill on the part of our clients, we are delighted to announce that the major renovation work which began in September 2006 has now been completed. From 21 May 2007 we look forward to welcoming you to a completely renovated restaurant area designed with you in mind. The restaurant team wishes to thank all its clients for their patience and loyalty. Particular attention has been paid in the new design to creating a spacious serving area and providing a wider choice of dishes. The new restaurant area has been designed as an open-plan space to enable you to view all the dishes before making your selection and to move around freely from one food access point to another. It comprises user-friendly areas that fully comply with hygiene standards. From now on you will be able to pick and choose to your heart's content. We invite you to try out wok cooking or some other speciality. Or select a pizza or a plate of pasta with a choice of two sauces fr...

  12. Fully Employing Software Inspections Data

    Science.gov (United States)

    Shull, Forrest; Feldmann, Raimund L.; Seaman, Carolyn; Regardie, Myrna; Godfrey, Sally

    2009-01-01

    Software inspections provide a proven approach to quality assurance for software products of all kinds, including requirements, design, code, test plans, among others. Common to all inspections is the aim of finding and fixing defects as early as possible, and thereby providing cost savings by minimizing the amount of rework necessary later in the lifecycle. Measurement data, such as the number and type of found defects and the effort spent by the inspection team, provide not only direct feedback about the software product to the project team but are also valuable for process improvement activities. In this paper, we discuss NASA's use of software inspections and the rich set of data that has resulted. In particular, we present results from analysis of inspection data that illustrate the benefits of fully utilizing that data for process improvement at several levels. Examining such data across multiple inspections or projects allows team members to monitor and trigger cross project improvements. Such improvements may focus on the software development processes of the whole organization as well as improvements to the applied inspection process itself.

  13. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproductive microscopes and microscope... Devices § 884.6190 Assisted reproductive microscopes and microscope accessories. (a) Identification. Assisted reproduction microscopes and microscope accessories (excluding microscope stage warmers, which are...

  14. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable p...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  15. The head-mounted microscope.

    Science.gov (United States)

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  16. Atomic force microscope with integrated optical microscope for biological applications

    OpenAIRE

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Segerink, Franciscus B.; Greve, Jan

    1992-01-01

    Since atomic force microscopy (AFM) is capable of imaging nonconducting surfaces, the technique holds great promises for high‐resolution imaging of biological specimens. A disadvantage of most AFMs is the fact that the relatively large sample surface has to be scanned multiple times to pinpoint a specific biological object of interest. Here an AFM is presented which has an incorporated inverted optical microscope. The optical image from the optical microscope is not obscured by the cantilever...

  17. Mobile microscope complex GIB-1

    International Nuclear Information System (INIS)

    Belyakov, A.V.; Gorbachev, A.N.

    2002-01-01

    To study microstructure in operating pipelines of power units a mobile microscope system is developed and successfully used. The system includes a portable microscope, a monitor, power supply and a portable computer. The monitor is used for surveying images from a video camera mounted on the microscope. The magnification on visual examination constitutes x 100 and x 500. Diameters of pipelines examined should not be less than 130 mm. Surface preparation for microstructural studies includes routine mechanical rough grinding and polishing with subsequent etching [ru

  18. The deuteron microscopic optical potential

    International Nuclear Information System (INIS)

    Lu Congshan; Zhang Jingshang; Shen Qingbiao

    1991-01-01

    The two particle Green's function is introduced. When the direct interaction between two nucleons is neglected, the first and second order mass operators of two particles are the sum of those for each particle. The nucleon microscopic optical potential is calculated by applying nuclear matter approximation and effective Skyrme interaction. Then the deuteron microscopic optical potential (DMOP) is calculated by using fold formula. For improvement of the theory, the two particle polarization diagram contribution to the imaginary part of the deuteron microscopic optical potential is studied

  19. The fully Mobile City Government Project (MCity)

    DEFF Research Database (Denmark)

    Scholl, Hans; Fidel, Raya; Mai, Jens Erik

    2006-01-01

    The Fully Mobile City Government Project, also known as MCity, is an interdisciplinary research project on the premises, requirements, and effects of fully mobile, wirelessly connected applications (FWMC). The project will develop an analytical framework for interpreting the interaction and inter......The Fully Mobile City Government Project, also known as MCity, is an interdisciplinary research project on the premises, requirements, and effects of fully mobile, wirelessly connected applications (FWMC). The project will develop an analytical framework for interpreting the interaction...

  20. Quantitative Imaging with a Mobile Phone Microscope

    Science.gov (United States)

    Skandarajah, Arunan; Reber, Clay D.; Switz, Neil A.; Fletcher, Daniel A.

    2014-01-01

    Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone–based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications. PMID:24824072

  1. Quantitative imaging with a mobile phone microscope.

    Directory of Open Access Journals (Sweden)

    Arunan Skandarajah

    Full Text Available Use of optical imaging for medical and scientific applications requires accurate quantification of features such as object size, color, and brightness. High pixel density cameras available on modern mobile phones have made photography simple and convenient for consumer applications; however, the camera hardware and software that enables this simplicity can present a barrier to accurate quantification of image data. This issue is exacerbated by automated settings, proprietary image processing algorithms, rapid phone evolution, and the diversity of manufacturers. If mobile phone cameras are to live up to their potential to increase access to healthcare in low-resource settings, limitations of mobile phone-based imaging must be fully understood and addressed with procedures that minimize their effects on image quantification. Here we focus on microscopic optical imaging using a custom mobile phone microscope that is compatible with phones from multiple manufacturers. We demonstrate that quantitative microscopy with micron-scale spatial resolution can be carried out with multiple phones and that image linearity, distortion, and color can be corrected as needed. Using all versions of the iPhone and a selection of Android phones released between 2007 and 2012, we show that phones with greater than 5 MP are capable of nearly diffraction-limited resolution over a broad range of magnifications, including those relevant for single cell imaging. We find that automatic focus, exposure, and color gain standard on mobile phones can degrade image resolution and reduce accuracy of color capture if uncorrected, and we devise procedures to avoid these barriers to quantitative imaging. By accommodating the differences between mobile phone cameras and the scientific cameras, mobile phone microscopes can be reliably used to increase access to quantitative imaging for a variety of medical and scientific applications.

  2. Soft control of scanning probe microscope with high flexibility.

    Science.gov (United States)

    Liu, Zhenghui; Guo, Yuzheng; Zhang, Zhaohui; Zhu, Xing

    2007-01-01

    Most commercial scanning probe microscopes have multiple embedded digital microprocessors and utilize complex software for system control, which is not easily obtained or modified by researchers wishing to perform novel and special applications. In this paper, we present a simple and flexible control solution that just depends on software running on a single-processor personal computer with real-time Linux operating system to carry out all the control tasks including negative feedback, tip moving, data processing and user interface. In this way, we fully exploit the potential of a personal computer in calculating and programming, enabling us to manipulate the scanning probe as required without any special digital control circuits and related technical know-how. This solution has been successfully applied to a homemade ultrahigh vacuum scanning tunneling microscope and a multiprobe scanning tunneling microscope.

  3. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  4. Microscopic Procedures for Plant Meiosis.

    Science.gov (United States)

    Braselton, James P.

    1997-01-01

    Describes laboratory techniques designed to familiarize students with meiosis and how microscopic preparations of meiosis are made. These techniques require the use of fresh or fixed flowers. Contains 18 references. (DDR)

  5. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  6. Microscopic approach to nuclear anharmonicities

    International Nuclear Information System (INIS)

    Matsuo, Masayuki; Shimizu, Yoshifumi; Matsuyanagi, Kenichi

    1985-01-01

    Present status of microscopic study of nuclear anharmonicity phenomena is reviewed from the viewpoint of the time-dependent Hartree-Bogoliubov approach. Both classical- and quantum-mechanical aspects of this approach are discussed. The Bohr-Mottelson-type collective Hamiltonian for anharmonic gamma vibrations is microscopically derived by means of the self-consistent-collective-coordinate method, and applied to the problem of two-phonon states of 168 Er. (orig.)

  7. Deuteron microscopic optical model potential

    International Nuclear Information System (INIS)

    Guo Hairui; Han Yinlu; Shen Qingbiao; Xu Yongli

    2010-01-01

    A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular distributions for some target nuclei in the mass range 6≤A≤208 with incident deuteron energies up to 200 MeV. The calculated results are compared with the experimental data.

  8. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  9. Traffic management simulation development.

    Science.gov (United States)

    2011-01-03

    Microscopic simulation can provide significant support to traffic management center (TMC) operations. However, traffic simulation applications require data that are expensive and time-consuming to collect. Data collected by TMCs can be used as a prim...

  10. STM-SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-01-01

    We have developed a STM-SQUID probe microscope. A high T C SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio

  11. A new memory effect (MSD) in fully depleted SOI MOSFETs

    Science.gov (United States)

    Bawedin, M.; Cristoloveanu, S.; Yun, J. G.; Flandre, D.

    2005-09-01

    We demonstrate that the transconductance and drain current of fully depleted MOSFETs can display an interesting time-dependent hysteresis. This new memory effect, called meta-stable dip (MSD), is mainly due to the long carrier generation lifetime in the silicon film. Our parametric analysis shows that the memory window can be adjusted in view of practical applications. Various measurement conditions and devices with different doping, front oxide and silicon film thicknesses are systematically explored. The MSD effect can be generalized to several fully depleted CMOS technologies. The MSD mechanism is discussed and validated by two-dimensional simulations results.

  12. A Fully Implantable, NFC Enabled, Continuous Interstitial Glucose Monitor.

    Science.gov (United States)

    Anabtawi, Nijad; Freeman, Sabrina; Ferzli, Rony

    2016-02-01

    This work presents an integrated system-on-chip (SoC) that forms the core of a long-term, fully implantable, battery assisted, passive continuous glucose monitor. It integrates an amperometric glucose sensor interface, a near field communication (NFC) wireless front-end and a fully digital switched mode power management unit for supply regulation and on board battery charging. It uses 13.56 MHz (ISM) band to harvest energy and backscatter data to an NFC reader. System was implemented in 14nm CMOS technology and validated with post layout simulations.

  13. PVT Panels. Fully renewable and competitive

    International Nuclear Information System (INIS)

    Bakker, M.; Strootman, K.J.; Jong, M.J.M.

    2003-10-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. PVT panels generate more solar energy per unit surface area than a combination of separate PV panels and solar thermal collectors, and share the aesthetic advantage of PV. After several years of research, PVT panels have been developed into a product that is now ready for market introduction. One of the most promising system concepts, consisting of 25 m 2 of PVT panels and a ground coupled heat pump, has been simulated in TRNSYS, and has been found to be able to fully cover both the building related electricity and heat consumption, while keeping the long-term average ground temperature constant. The cost and payback time of such a system have been determined; it has been found that the payback time of this system is approximately two-thirds of the payback time of an identical system but with 21 m 2 of PV panels and 4 m 2 of solar thermal collectors. Finally, by looking at the expected growth in the PV and solar thermal collector market, the market potential for for PVT panels has been found to be very large

  14. Fully inkjet-printed microwave passive electronics

    KAUST Repository

    McKerricher, Garret

    2017-01-30

    Fully inkjet-printed three-dimensional (3D) objects with integrated metal provide exciting possibilities for on-demand fabrication of radio frequency electronics such as inductors, capacitors, and filters. To date, there have been several reports of printed radio frequency components metallized via the use of plating solutions, sputtering, and low-conductivity pastes. These metallization techniques require rather complex fabrication, and do not provide an easily integrated or versatile process. This work utilizes a novel silver ink cured with a low-cost infrared lamp at only 80 °C, and achieves a high conductivity of 1×107 S m−1. By inkjet printing the infrared-cured silver together with a commercial 3D inkjet ultraviolet-cured acrylic dielectric, a multilayer process is demonstrated. By using a smoothing technique, both the conductive ink and dielectric provide surface roughness values of <500 nm. A radio frequency inductor and capacitor exhibit state-of-the-art quality factors of 8 and 20, respectively, and match well with electromagnetic simulations. These components are implemented in a lumped element radio frequency filter with an impressive insertion loss of 0.8 dB at 1 GHz, proving the utility of the process for sensitive radio frequency applications.

  15. Fully inkjet-printed microwave passive electronics

    KAUST Repository

    McKerricher, Garret; Vaseem, Mohammad; Shamim, Atif

    2017-01-01

    Fully inkjet-printed three-dimensional (3D) objects with integrated metal provide exciting possibilities for on-demand fabrication of radio frequency electronics such as inductors, capacitors, and filters. To date, there have been several reports of printed radio frequency components metallized via the use of plating solutions, sputtering, and low-conductivity pastes. These metallization techniques require rather complex fabrication, and do not provide an easily integrated or versatile process. This work utilizes a novel silver ink cured with a low-cost infrared lamp at only 80 °C, and achieves a high conductivity of 1×107 S m−1. By inkjet printing the infrared-cured silver together with a commercial 3D inkjet ultraviolet-cured acrylic dielectric, a multilayer process is demonstrated. By using a smoothing technique, both the conductive ink and dielectric provide surface roughness values of <500 nm. A radio frequency inductor and capacitor exhibit state-of-the-art quality factors of 8 and 20, respectively, and match well with electromagnetic simulations. These components are implemented in a lumped element radio frequency filter with an impressive insertion loss of 0.8 dB at 1 GHz, proving the utility of the process for sensitive radio frequency applications.

  16. Fully hadronic ttbar cross section measurement with ATLAS detector

    CERN Document Server

    Bertella, C; The ATLAS collaboration

    2011-01-01

    The top quark pair production cross section in the fully hadronic final state is characterized by a six jet topology, two of which could be identified as originating from a b-quark using ATLAS b-tagging algorithms. Compared to other decay channels, this final state presents an advantageous larger branching ratio; on the other hand it suffers from a very large QCD multi-jet background, generally difficult to estimate from Monte Carlo simulation and therefore evaluated using data-driven techniques. It is essential, to efficiently trigger on these fully hadronic ttbar events, to use dedicated triggers. An overview of the analysis for ttbar production cross section measurement in the fully hadronic final state and the state-of-the-art of the b-jet trigger performance estimation are presented in this contribution.

  17. Axiomatic electrodynamics and microscopic mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1981-04-01

    A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)

  18. Epoxy replication for Wolter x-ray microscope fabrication

    International Nuclear Information System (INIS)

    Priedhorsky, W.

    1981-01-01

    An epoxy replica of a test piece designed to simulate a Wolter x-ray microscope geometry showed no loss of x-ray reflectivity or resolution, compared to the original. The test piece was a diamond-turned cone with 1.5 0 half angle. A flat was fly-cut on one side, then super- and conventionally polished. The replica was separated at the 1.5 0 -draft angle, simulating a shallow angle Wolter microscope geometry. A test with 8.34 A x rays at 0.9 0 grazing angle showed a reflectivity of 67% for the replica flat surface, and 70% for the original. No spread of the reflected beam was observed with a 20-arc second wide test beam. This test verifies the epoxy replication technique for production of Wolter x-ray microscopes

  19. Fully 3D refraction correction dosimetry system

    International Nuclear Information System (INIS)

    Manjappa, Rakesh; Makki, S Sharath; Kanhirodan, Rajan; Kumar, Rajesh; Vasu, Ram Mohan

    2016-01-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  20. Fully 3D refraction correction dosimetry system.

    Science.gov (United States)

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  1. Microscopic collective models of nuclei

    International Nuclear Information System (INIS)

    Lovas, Rezsoe

    1985-01-01

    Microscopic Rosensteel-Rowe theory of the nuclear collective motion is described. The theoretical insufficiency of the usual microscopic establishment of the collective model is pointed. The new model treating exactly the degrees of freedom separates the coordinates describing the collective motion and the internal coordinates by a consistent way. Group theoretical methods analyzing the symmetry properties of the total Hamiltonian are used defining the collective subspaces transforming as irreducible representations of the group formed by the collective operators. Recent calculations show that although the results of the usual collective model are approximately correct and similar to those of the new microscopic collective model, the underlying philosophy of the old model is essentially erroneous. (D.Gy.)

  2. Microscope and method of use

    Science.gov (United States)

    Bongianni, Wayne L.

    1984-01-01

    A method and apparatus for electronically focusing and electronically scanning microscopic specimens are given. In the invention, visual images of even moving, living, opaque specimens can be acoustically obtained and viewed with virtually no time needed for processing (i.e., real time processing is used). And planar samples are not required. The specimens (if planar) need not be moved during scanning, although it will be desirable and possible to move or rotate nonplanar specimens (e.g., laser fusion targets) against the lens of the apparatus. No coupling fluid is needed, so specimens need not be wetted. A phase acoustic microscope is also made from the basic microscope components together with electronic mixers.

  3. Atomic force microscope featuring an integrated optical microscope

    NARCIS (Netherlands)

    Putman, C.A.J.; Putman, Constant A.J.; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1992-01-01

    The atomic force microscope (AFM) is used to image the surface of both conductors and nonconductors. Biological specimens constitute a large group of nonconductors. A disadvantage of most AFM's is the fact that relatively large areas of the sample surface have to be scanned to pinpoint a biological

  4. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called textbook multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  5. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    KAUST Repository

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.

  6. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    KAUST Repository

    Adams, Mark F.

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.

  7. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  8. Microscopic picture of the aqueous solvation of glutamic acid

    NARCIS (Netherlands)

    Leenders, E.J.M.; Bolhuis, P.G.; Meijer, E.J.

    2008-01-01

    We present molecular dynamics simulations of glutamic acid and glutamate solvated in water, using both density functional theory (DFT) and the Gromos96 force field. We focus on the microscopic aspects of the solvation−particularly on the hydrogen bond structures and dynamics−and investigate the

  9. Theory of nanolaser devices: Rate equation analysis versus microscopic theory

    DEFF Research Database (Denmark)

    Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels

    2013-01-01

    A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...

  10. Devil's staircase in a fully frustrated superconducting array

    International Nuclear Information System (INIS)

    Kim, S.; Choi, M.Y.

    1993-01-01

    A two-dimensional fully frustrated superconducting array with a combined direct and alternating applied current is studied both analytically and numerically. At zero temperature equations of motion can be reduced through the use of the translational symmetry present in the system. Remarkably, we find a series of subharmonic steps in addition to standard integer and half-integer giant Shapiro steps, leading to devil's staircase structure. We also present results of detailed numerical simulations, which indeed reveal such subharmonic fine structure. (orig.)

  11. 14O+p elastic scattering in a microscopic cluster model

    International Nuclear Information System (INIS)

    Descouvemont, P.; Baye, D.; Leo, F.

    2006-01-01

    The 14O+p elastic scattering is analyzed in a fully microscopic cluster model. With the Resonating Group Method associated with the microscopic R-matrix theory, phase shifts and cross sections are calculated. Data on 16O+p are used to test the precision of the model. For the 14O+p elastic scattering, an excellent agreement is found with recent experimental data. Resonances properties in 15F are discussed

  12. Towards a Fully Conservative Water Balance

    Science.gov (United States)

    Rodriguez, L. B.; Vionnet, C. A.; Younger, P. L.; Parkin, G.

    2001-12-01

    Hydrological modeling is nowadays an essential tool in many aspects of water resources assessment and management. For practical purposes, hydrological models may be defined as mathematical procedures, which transform meteorological input data such as precipitation and evapotranspiration into hydrological output values such as riverflows. Conceptual water balance models are one kind of hydrological models still quite popular among engineers and scientists for three main reasons: firstly the "book-keeping" procedure they are based upon makes them computationally inexpensive, secondly, they require far less data than any physically based model, and thirdly, once calibrated and validated, they can yield the proper order of magnitude of the water cycle component on the basin under investigation. A common criticism of water balance models is their lack of sound theoretical basis. In this work a fully conservative water balance model for basin applications which takes into account physical processes is presented. The two-storage level model contains four calibration parameters: a, b, l and Umax. The saturated storage component resembles the abcd model by Thomas, corrected by the presence of the aquifer storativity coefficient s and the river-aquifer interface conductance l. The resulting model is capable of estimating monthly basin-average of actual evapotranspiration, soil moisture, effective groundwater recharge, groundwater level fluctuations, baseflows and direct runoff using an integral form of the mass conservation law in the saturated/unsaturated layers. The model was applied to a 600 Km2 catchment in the United Kingdom. An eight-year record was used for calibration, while a similar record was reserved for validation of model results. Total streamflows as well as baseflows calculated by the model were compared with observed and estimated data. A quite good agreement was obtained. Finally, simulated groundwater levels were compared with observation data collected at

  13. Scanning tunneling microscope nanoetching method

    Science.gov (United States)

    Li, Yun-Zhong; Reifenberger, Ronald G.; Andres, Ronald P.

    1990-01-01

    A method is described for forming uniform nanometer sized depressions on the surface of a conducting substrate. A tunneling tip is used to apply tunneling current density sufficient to vaporize a localized area of the substrate surface. The resulting depressions or craters in the substrate surface can be formed in information encoding patterns readable with a scanning tunneling microscope.

  14. Microscopic description of nuclear reactions

    International Nuclear Information System (INIS)

    Gorbatov, A.M.

    1992-01-01

    The genealogical series method has been extended to the continuous spectrum of the many-body systems. New nonlinear integral equations have been formulated to perform the microscopical description of the nuclear reactions with arbitrary number of particles. The way to solve them numerically is demonstrated

  15. Microscope sterility during spine surgery.

    Science.gov (United States)

    Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J

    2012-04-01

    Prospective study. Assess the contamination rates of sterile microscope drapes after spine surgery. The use of the operating microscope has become more prevalent in certain spine procedures, providing superior magnification, visualization, and illumination of the operative field. However, it may represent an additional source of bacterial contamination and increase the risk of developing a postoperative infection. This study included 25 surgical spine cases performed by a single spine surgeon that required the use of the operative microscope. Sterile culture swabs were used to obtain samples from 7 defined locations on the microscope drape after its use during the operation. The undraped technician's console was sampled in each case as a positive control, and an additional 25 microscope drapes were swabbed immediately after they were applied to the microscope to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates using a semiquantitative technique. No growth was observed on any of the 25 negative control drapes. In contrast, 100% of preoperative and 96% of postoperative positive controls demonstrated obvious contamination. In the postoperative group, all 7 sites of evaluation were found to be contaminated with rates of 12% to 44%. Four of the 7 evaluated locations were found to have significant contamination rates compared with negative controls, including the shafts of the optic eyepieces on the main surgeon side (24%, P = 0.022), "forehead" portion on both the main surgeon (24%, P = 0.022) and assistant sides (28%, P = 0.010), and "overhead" portion of the drape (44%, P = 0.0002). Bacterial contamination of the operative microscope was found to be significant after spine surgery. Contamination was more common around the optic eyepieces, likely due to inadvertent touching of unsterile portions. Similarly, all regions above the eyepieces also have a propensity for contamination because of unknown contact

  16. Evaluating Red Reflex and Surgeon Preference Between Nearly-Collimated and Focused Beam Microscope Illumination Systems.

    Science.gov (United States)

    Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David

    2015-08-01

    To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.

  17. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device.

    Science.gov (United States)

    Hahn, Paul; Migacz, Justin; O'Donnell, Rachelle; Day, Shelley; Lee, Annie; Lin, Phoebe; Vann, Robin; Kuo, Anthony; Fekrat, Sharon; Mruthyunjaya, Prithvi; Postel, Eric A; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board-approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole

  18. A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast.

    Science.gov (United States)

    Stemmer, A

    1995-04-01

    The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.

  19. Comparison of Microscopic Drivers' Probabilistic Lane-changing Models With Real Traffic Microscopic Data

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Sadat Hoseini

    2011-07-01

    Full Text Available The difficulties of microscopic-level simulation models to accurately reproduce real traffic phenomena stem not only from the complexity of calibration and validation operations, but also from the structural inadequacies of the sub-models themselves. Both of these drawbacks originate from the scant information available on real phenomena because of the difficulty in gathering accurate field data. This paper studies the traffic behaviour of individual drivers utilizing vehicle trajectory data extracted from digital images collected from freeways in Iran. These data are used to evaluate the four proposed microscopic traffic models. One of the models is based on the traffic regulations in Iran and the three others are probabilistic models that use a decision factor for calculating the probability of choosing a position on the freeway by a driver. The decision factors for three probabilistic models are increasing speed, decreasing risk of collision, and increasing speed combined with decreasing risk of collision. The models are simulated by a cellular automata simulator and compared with the real data. It is shown that the model based on driving regulations is not valid, but that other models appear useful for predicting the driver’s behaviour on freeway segments in Iran during noncongested conditions.

  20. Comparison of skin responses from macroscopic and microscopic UV challenges

    Science.gov (United States)

    Seo, InSeok; Bargo, Paulo R.; Chu, Melissa; Ruvolo, Eduardo; Kollias, Nikiforos

    2011-03-01

    The minimal erythema dose induced by solar-simulated radiation is a useful measure of UV sensitivity of skin. Most skin phototests have been conducted by projecting a flat field of UV radiation onto the skin in an area greater than 15 cm × 15 cm with an increment of radiation doses. In this study, we investigated the responses of human skin to solar-simulated radiation of different field sizes. Twelve human subjects of skin phototype I-IV were exposed to solar-simulated radiation (SSR) on their upper inner arm or on their lower back with a series of doses in increments of 20% in order to determine the threshold dose to induce a minimal perceptible erythema response (MED). Each dose was delivered with a liquid light guide (8 mm diameter on the back or 6 mm on the upper inner arm) and with quartz optical fibers of 200 μm diameter. The resulting skin responses were evaluated visually and investigated with a reflectance confocal microscope and imaging. The erythema response to the microscopic challenge was always diffuse with no clear boundaries extending to several times the exposed site diameter at doses greater than 2 MED. The skin returned to normal appearance from the microscopic challenge after two weeks of exposure while change in appearance for the larger areas persisted for several weeks to months. This new modality of testing provides the possibility to study skin at the microscopic level with a rapid recovery following challenge.

  1. System modelling of a lateral force microscope

    International Nuclear Information System (INIS)

    Michal, Guillaume; Lu, Cheng; Kiet Tieu, A

    2008-01-01

    To quantitatively analyse lateral force microscope measurements one needs to develop a model able to relate the photodiode signal to the force acting on the tip apex. In this paper we focus on the modelling of the interaction between the cantilever and the optical chain. The laser beam is discretized by a set of rays which propagates in the system. The analytical equation of a single ray's position on the optical sensor is presented as a function of the reflection's state on top of the cantilever. We use a finite element analysis on the cantilever to connect the optical model with the force acting on the tip apex. A first-order approximation of the constitutive equations are derived along with a definition of the system's crosstalk. Finally, the model is used to analytically simulate the 'wedge method' in the presence of crosstalk in 2D. The analysis shows how the torsion loop and torsion offset signals are affected by the crosstalk.

  2. Differential magnetic force microscope imaging.

    Science.gov (United States)

    Wang, Ying; Wang, Zuobin; Liu, Jinyun; Hou, Liwei

    2015-01-01

    This paper presents a method for differential magnetic force microscope imaging based on a two-pass scanning procedure to extract differential magnetic forces and eliminate or significantly reduce background forces with reversed tip magnetization. In the work, the difference of two scanned images with reversed tip magnetization was used to express the local magnetic forces. The magnetic sample was first scanned with a low lift distance between the MFM tip and the sample surface, and the magnetization direction of the probe was then changed after the first scan to perform the second scan. The differential magnetic force image was obtained through the subtraction of the two images from the two scans. The theoretical and experimental results have shown that the proposed method for differential magnetic force microscope imaging is able to reduce the effect of background or environment interference forces, and offers an improved image contrast and signal to noise ratio (SNR). © Wiley Periodicals, Inc.

  3. Duties to Extraterrestrial Microscopic Organisms

    Science.gov (United States)

    Cockell, C. S.

    Formulating a normative axiology for the treatment of extraterrestrial microscopic organisms, should they ever be found, requires an extension of environmental ethics to beyond the Earth. Using an ethical framework for the treatment of terrestrial micro-organisms, this paper elaborates a similar ethic for the treatment of extraterrestrial microscopic organisms. An ethic of `teloempathy' allows for the moral considerability of any organism that has `interests', based on rudimentary qualities of conativism, and therefore allows for an identical treatment of all life, related or not related to life on Earth. Although, according to this ethic, individual extraterrestrial microscopic organisms have a good of their own and even `rights', at this level the ethic can only be theoretical, allowing for the inevitable destruction of many individual organisms during the course of human exploratory missions, similarly to the daily destruction of microbes by humans on Earth. A holistic teloempathy, an operative ethic, not only provides a framework for human exploration, but it also has important implications for planetary protection and proposals to implement planetary-scale atmospheric alterations on other bodies. Even prior to the discovery of extraterrestrial life, or the discovery of a complete absence of such life, this exercise yields important insights into the moral philosophy that guides our treatment of terrestrial micro-organisms.

  4. Microscopic imaging through turbid media Monte Carlo modeling and applications

    CERN Document Server

    Gu, Min; Deng, Xiaoyuan

    2015-01-01

    This book provides a systematic introduction to the principles of microscopic imaging through tissue-like turbid media in terms of Monte-Carlo simulation. It describes various gating mechanisms based on the physical differences between the unscattered and scattered photons and method for microscopic image reconstruction, using the concept of the effective point spread function. Imaging an object embedded in a turbid medium is a challenging problem in physics as well as in biophotonics. A turbid medium surrounding an object under inspection causes multiple scattering, which degrades the contrast, resolution and signal-to-noise ratio. Biological tissues are typically turbid media. Microscopic imaging through a tissue-like turbid medium can provide higher resolution than transillumination imaging in which no objective is used. This book serves as a valuable reference for engineers and scientists working on microscopy of tissue turbid media.

  5. Laser speckle contrast imaging using light field microscope approach

    Science.gov (United States)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  6. Literature survey on microscopic friction modeling

    NARCIS (Netherlands)

    Hol, J.

    2010-01-01

    To better understand contact and friction conditions, experimental and theoretical studies have been performed in order to take microscopic dependencies into account. Friction is developed on microscopic level by adhesion between contacting asperities, the ploughing effect between asperities and the

  7. Microscopic Analysis of Activated Sludge. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on the use of a compound microscope to analyze microscope communities, present in wastewater treatment processes, for operational control. Course topics include: sampling techniques, sample handling, laboratory analysis, identification of organisms, data interpretation, and use of the compound microscope.…

  8. A Student-Built Scanning Tunneling Microscope

    Science.gov (United States)

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  9. Fully Depleted Charge-Coupled Devices

    International Nuclear Information System (INIS)

    Holland, Stephen E.

    2006-01-01

    We have developed fully depleted, back-illuminated CCDs that build upon earlier research and development efforts directed towards technology development of silicon-strip detectors used in high-energy-physics experiments. The CCDs are fabricated on the same type of high-resistivity, float-zone-refined silicon that is used for strip detectors. The use of high-resistivity substrates allows for thick depletion regions, on the order of 200-300 um, with corresponding high detection efficiency for near-infrared and soft x-ray photons. We compare the fully depleted CCD to the p-i-n diode upon which it is based, and describe the use of fully depleted CCDs in astronomical and x-ray imaging applications

  10. Microscopic nuclear dissipation. Pt. 2

    International Nuclear Information System (INIS)

    Yannouleas, C.; Dworzecka, M.; Griffin, J.J.

    1983-01-01

    We have formulated a microscopic, nonperturbative, time reversible model which exhibits a dissipative decay of collective motion for times short compared to the system's Poincare time. The model assumes an RPA approximate description of the initial collective state within a restricted subspace, then traces its time evolution when an additional subspace is coupled to the restricted subspace by certain simplified matrix elements. It invokes no statistical assumptions. The damping of the collective motion occurs via real transitions from the collective state to other more complicated nuclear states of the same energy. It corresponds therefore to the so called 'one-body' long mean free path limit of nuclear dissipation when the collective state describes a surface vibration. When the simplest RPA approximation is used, this process associates the dissipation with the escape width for direct particle emission to the continuum. When the more detailed second RPA is used, it associates the dissipation with the spreading width for transitions to the 2p-2h components of the nuclear compound states as well. The energy loss rate for sharp n-phonon initial states is proportional to the total collective energy, unlike the dissipation of a classical damped oscillator, where it is proportional to the kinetic energy only. However, for coherent, multi-phonon wave packets, which explicitly describe the time-dependent oscillations of the mean field, dissipation proportional only to the kinetic energy is obtained. Canonical coordinates for the collective degree of freedom are explicitly introduced and a nonlinear frictional hamiltonian to describe such systems is specified by the requirement that it yield the same time dependence for the collective motion as the microscopic model. Thus, for the first time a descriptive nonlinear hamiltonian is derived explicitly from the underlying microscopic model of a nuclear system. (orig.)

  11. Microscopically Based Nuclear Energy Functionals

    International Nuclear Information System (INIS)

    Bogner, S. K.

    2009-01-01

    A major goal of the SciDAC project 'Building a Universal Nuclear Energy Density Functional' is to develop next-generation nuclear energy density functionals that give controlled extrapolations away from stability with improved performance across the mass table. One strategy is to identify missing physics in phenomenological Skyrme functionals based on our understanding of the underlying internucleon interactions and microscopic many-body theory. In this contribution, I describe ongoing efforts to use the density matrix expansion of Negele and Vautherin to incorporate missing finite-range effects from the underlying two- and three-nucleon interactions into phenomenological Skyrme functionals.

  12. Microscopic structure for light nuclei

    International Nuclear Information System (INIS)

    Sharma, V.K.

    1995-01-01

    The microscopic structure for light nuclei e.g. 4 He, 7 Li and 8 Be is considered in the frame work of the generator coordinate method (GCM). The physical interpretation of our GCM is also discussed. The GC amplitudes are used to calculate the various properties like charge and magnetic RMS radii, form factors, electromagnetic moments, astrophysical S-factor, Bremsstrahlung weighted cross sections, relative wavefunctions and vertex functions etc. All the calculated quantities agree well with the values determined experimentally. (author). 30 refs., 10 figs., 2 tabs

  13. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

    Science.gov (United States)

    Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.

    2018-05-01

    Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

  14. Nonlinear optical response in condensed phases : A microscopic theory using the multipolar Hamiltonian

    NARCIS (Netherlands)

    Knoester, Jasper; Mukamel, Shaul

    1990-01-01

    A general scheme is presented for calculating the nonlinear optical response in condensed phases that provides a unified picture of excitons, polaritons, retardation, and local-field effects in crystals and in disordered systems. A fully microscopic starting point is taken by considering the

  15. Fully exponentially correlated wavefunctions for small atoms

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Frank E. [Department of Physics, University of Utah, Salt Lake City, UT 84112 and Quantum Theory Project, University of Florida, P.O. Box 118435, Gainesville, FL 32611 (United States)

    2015-01-22

    Fully exponentially correlated atomic wavefunctions are constructed from exponentials in all the interparticle coordinates, in contrast to correlated wavefunctions of the Hylleraas form, in which only the electron-nuclear distances occur exponentially, with electron-electron distances entering only as integer powers. The full exponential correlation causes many-configuration wavefunctions to converge with expansion length more rapidly than either orbital formulations or correlated wavefunctions of the Hylleraas type. The present contribution surveys the effectiveness of fully exponentially correlated functions for the three-body system (the He isoelectronic series) and reports their application to a four-body system (the Li atom)

  16. Shear viscosity coefficient from microscopic models

    International Nuclear Information System (INIS)

    Muronga, Azwinndini

    2004-01-01

    The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the ultrarelativistic quantum molecular dynamics (UrQMD), using the Green-Kubo formulas. Molecular-dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of π,η,ω,ρ,φ with a uniform phase-space distribution, the evolution takes place through elastic collisions, production, and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green-Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer equilibration times

  17. Wolter x-ray microscope calibration

    International Nuclear Information System (INIS)

    Gerassimenko, M.

    1986-06-01

    A 22 x Wolter microscope was calibrated after several months of operation in the Lawrence Livermore National laboratory (LLNL) Inertial Confinement Fusion program. Placing a point x-ray source at the microscope focus, I recorded the image plane spectrum, as well as the direct spectrum, and from the ratio of these two spectra derived an accurate estimate of the microscope solid angle in the 1 to 4 keV range. The solid angle was also calculated using the microscope geometry and composition. Comparison of this calculated value with the solid angle that was actually measured suggests contamination of the microscope surface

  18. Wolter x-ray microscope calibration

    International Nuclear Information System (INIS)

    Gerassimenko, M.

    1986-01-01

    A 22 x Wolter microscope was calibrated after several months of operation in the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion program. Placing a point x-ray source at the microscope focus, I recorded the image plane spectrum, as well as the direct spectrum, and from the ratio of these two spectra derived an accurate estimate of the microscope solid angle in the 1-4 keV range. The solid angle was also calculated using the microscope geometry and composition. Comparison of this calculated value with the solid angle that was actually measured suggests contamination of the microscope surface

  19. Application of ANNs approach for solving fully fuzzy polynomials system

    Directory of Open Access Journals (Sweden)

    R. Novin

    2017-11-01

    Full Text Available In processing indecisive or unclear information, the advantages of fuzzy logic and neurocomputing disciplines should be taken into account and combined by fuzzy neural networks. The current research intends to present a fuzzy modeling method using multi-layer fuzzy neural networks for solving a fully fuzzy polynomials system. To clarify the point, it is necessary to inform that a supervised gradient descent-based learning law is employed. The feasibility of the method is examined using computer simulations on a numerical example. The experimental results obtained from the investigation of the proposed method are valid and delivers very good approximation results.

  20. The impact of loupes and microscopes on vision in endodontics.

    Science.gov (United States)

    Perrin, P; Neuhaus, K W; Lussi, A

    2014-05-01

    To report on an intraradicular visual test in a simulated clinical setting under different optical conditions. Miniaturized visual tests with E-optotypes (bar distance from 0.01 to 0.05 mm) were fixed inside the root canal system of an extracted maxillary molar at different locations: at the orifice, a depth of 5 mm and the apex. The tooth was mounted in a phantom head for a simulated clinical setting. Unaided vision was compared with Galilean loupes (2.5× magnification) with integrated light source and an operating microscope (6× magnification). The influence of the dentists' age within two groups was evaluated: endodontic instruments. Dentists over 40 years of age were dependent on the microscope to inspect the root canal system. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  1. Elastically driven intermittent microscopic dynamics in soft solids

    Science.gov (United States)

    Bouzid, Mehdi; Colombo, Jader; Barbosa, Lucas Vieira; Del Gado, Emanuela

    2017-06-01

    Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin to the ones in supercooled liquids or glasses. Nevertheless, time- and space-resolved measurements have provided contrasting evidence: dynamics faster than exponential, intermittency and abrupt structural changes. Here we use 3D computer simulations of a microscopic model to reveal that the timescales governing stress relaxation, respectively, through thermal fluctuations and elastic recovery are key for the aging dynamics. When thermal fluctuations are too weak, stress heterogeneities frozen-in upon solidification can still partially relax through elastically driven fluctuations. Such fluctuations are intermittent, because of strong correlations that persist over the timescale of experiments or simulations, leading to faster than exponential dynamics.

  2. Microscopical advances in assisted reproduction.

    Science.gov (United States)

    Baccetti, B

    2004-01-01

    In a series of papers carried out by this laboratory it was demonstrated that the quality of sterile males sperm, assessed submicroscopically and mathematically, is closely correlated with the success of the various procedures of assisted reproduction. If we attempt to select hypothetically optimal spermatozoa destined to the ICSI by light inverted microscopy, a considerable amount of ultrastructural information is lost and our selection is merely based on the motility. In this study we apply polarization microscopy to the ICSI technique, introducing polarizing and analyzing lenses in an inverted microscope model, operating in a transparent container. The retardation of the birefringence in the various organelles is evaluated by compensators, and the images are transmitted to a video system, and stored in a computer. Spermatozoa are maintained alive and perfectly motile in this polarizing inverted microscope, and the character of the birefringence is the same as in fixed and sectioned biological material examined by polarization microscopy. The birefringence of the sperm structures allows a sperm analysis closer to TEM than to phase contrast light microscopy analysis.

  3. Visualizing 3-D microscopic specimens

    Science.gov (United States)

    Forsgren, Per-Ola; Majlof, Lars L.

    1992-06-01

    The confocal microscope can be used in a vast number of fields and applications to gather more information than is possible with a regular light microscope, in particular about depth. Compared to other three-dimensional imaging devices such as CAT, NMR, and PET, the variations of the objects studied are larger and not known from macroscopic dissections. It is therefore important to have several complementary ways of displaying the gathered information. We present a system where the user can choose display techniques such as extended focus, depth coding, solid surface modeling, maximum intensity and other techniques, some of which may be combined. A graphical user interface provides easy and direct control of all input parameters. Motion and stereo are available options. Many three- dimensional imaging devices give recordings where one dimension has different resolution and sampling than the other two which requires interpolation to obtain correct geometry. We have evaluated algorithms with interpolation in object space and in projection space. There are many ways to simplify the geometrical transformations to gain performance. We present results of some ways to simplify the calculations.

  4. Robotic autopositioning of the operating microscope.

    Science.gov (United States)

    Oppenlander, Mark E; Chowdhry, Shakeel A; Merkl, Brandon; Hattendorf, Guido M; Nakaji, Peter; Spetzler, Robert F

    2014-06-01

    Use of the operating microscope has become pervasive since its introduction to the neurosurgical world. Neuronavigation fused with the operating microscope has allowed accurate correlation of the focal point of the microscope and its location on the downloaded imaging study. However, the robotic ability of the Pentero microscope has not been utilized to orient the angle of the microscope or to change its focal length to hone in on a predefined target. To report a novel technology that allows automatic positioning of the operating microscope onto a set target and utilization of a planned trajectory, either determined with the StealthStation S7 by using preoperative imaging or intraoperatively with the microscope. By utilizing the current motorized capabilities of the Zeiss OPMI Pentero microscope, a robotic autopositioning feature was developed in collaboration with Surgical Technologies, Medtronic, Inc. (StealthStation S7). The system is currently being tested at the Barrow Neurological Institute. Three options were developed for automatically positioning the microscope: AutoLock Current Point, Align Parallel to Plan, and Point to Plan Target. These options allow the microscope to pivot around the lesion, hover in a set plane parallel to the determined trajectory, or rotate and point to a set target point, respectively. Integration of automatic microscope positioning into the operative workflow has potential to increase operative efficacy and safety. This technology is best suited for precise trajectories and entry points into deep-seated lesions.

  5. Quantum Fully Homomorphic Encryption with Verification

    DEFF Research Database (Denmark)

    Alagic, Gorjan; Dulek, Yfke; Schaffner, Christian

    2017-01-01

    Fully-homomorphic encryption (FHE) enables computation on encrypted data while maintaining secrecy. Recent research has shown that such schemes exist even for quantum computation. Given the numerous applications of classical FHE (zero-knowledge proofs, secure two-party computation, obfuscation, e...

  6. Fully conditional specification in multivariate imputation

    NARCIS (Netherlands)

    van Buuren, S.; Brand, J. P.L.; Groothuis-Oudshoorn, C. G.M.; Rubin, D. B.

    2006-01-01

    The use of the Gibbs sampler with fully conditionally specified models, where the distribution of each variable given the other variables is the starting point, has become a popular method to create imputations in incomplete multivariate data. The theoretical weakness of this approach is that the

  7. Fully Integrated Biochip Platforms for Advanced Healthcare

    Directory of Open Access Journals (Sweden)

    Giovanni De Micheli

    2012-08-01

    Full Text Available Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

  8. Fully integrated biochip platforms for advanced healthcare.

    Science.gov (United States)

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

  9. Equipment for fully automatic radiographic pipe inspection

    International Nuclear Information System (INIS)

    Basler, G.; Sperl, H.; Weinschenk, K.

    1977-01-01

    The patent describes a device for fully automatic radiographic testing of large pipes with longitudinal welds. Furthermore the invention enables automatic marking of films in radiographic inspection with regard to a ticketing of the test piece and of that part of it where testing took place. (RW) [de

  10. Faster Fully-Dynamic minimum spanning forest

    DEFF Research Database (Denmark)

    Holm, Jacob; Rotenberg, Eva; Wulff-Nilsen, Christian

    2015-01-01

    We give a new data structure for the fully-dynamic minimum spanning forest problem in simple graphs. Edge updates are supported in O(log4 n/log logn) expected amortized time per operation, improving the O(log4 n) amortized bound of Holm et al. (STOC’98, JACM’01).We also provide a deterministic data...

  11. Microscopic dynamics of charge separation at the aqueous electrochemical interface

    OpenAIRE

    Kattirtzi, John A.; Limmer, David T.; Willard, Adam P.

    2017-01-01

    We have used molecular simulation and methods of importance sampling to study the thermodynamics and kinetics of ionic charge separation at a liquid water-metal interface. We have considered this process using canonical examples of two different classes of ions: a simple alkali-halide pair, Na$^+$I$^-$, or classical ions, and the products of water autoionization, H$_3$O$^+$OH$^-$, or water ions. We find that for both ion classes, the microscopic mechanism of charge separation, including water...

  12. Fully hadronic ttbar cross section measurement with ATLAS detector

    CERN Document Server

    Bertella, Claudia

    2011-01-01

    The top quark pair production cross section in the fully hadronic final state is characterized by a six jet topology, two of which could be identified as originating from a b-quark using ATLAS b-tagging algorithms. Compared to other decay channels, this final state presents an advantageous larger branching ratio; on the other hand it suffers from a very large QCD multi-jet background, generally difficult to estimate from Monte Carlo simulation and therefore evaluated using data-driven techniques. The analysis is performed using 36pb-1 of pp collisions produced at the LHC with a center-of-mass energy of 7 TeV. The observed upper limit is set at 261 pb at 95% confidence level, where the expected Standard Model cross-section for the ttbar process is 165+11-16 pb. In the future, when the LHC luminosity increases, it is essential, to efficiently trigger on these fully hadronic ttbar events, to use dedicated triggers. An overview of the analysis for ttbar production cross section measurement in the fully hadronic f...

  13. Microscopic Abrams-Strogatz model of language competition

    OpenAIRE

    Stauffer, Dietrich; Castello, Xavier; Eguiluz, Victor M.; Miguel, Maxi San

    2006-01-01

    The differential equation of Abrams and Strogatz for the competition between two languages is compared with agent based Monte Carlo simulations for fully connected networks as well as for lattices in one, two and three dimensions, with up to 10^9 agents. In the case of socially equivalent languages, agent-based models and a mean field approximation give grossly different results.

  14. 76 FR 36176 - Fully Developed Claim (Fully Developed Claims-Applications for Compensation, Pension, DIC, Death...

    Science.gov (United States)

    2011-06-21

    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0747] Fully Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC, Death Pension, and/or Accrued Benefits); Correction AGENCY: Veterans Benefits Administration, Department of Veterans Affairs. ACTION: Notice; correction...

  15. Gromita: a fully integrated graphical user interface to gromacs 4.

    Science.gov (United States)

    Sellis, Diamantis; Vlachakis, Dimitrios; Vlassi, Metaxia

    2009-09-07

    Gromita is a fully integrated and efficient graphical user interface (GUI) to the recently updated molecular dynamics suite Gromacs, version 4. Gromita is a cross-platform, perl/tcl-tk based, interactive front end designed to break the command line barrier and introduce a new user-friendly environment to run molecular dynamics simulations through Gromacs. Our GUI features a novel workflow interface that guides the user through each logical step of the molecular dynamics setup process, making it accessible to both advanced and novice users. This tool provides a seamless interface to the Gromacs package, while providing enhanced functionality by speeding up and simplifying the task of setting up molecular dynamics simulations of biological systems. Gromita can be freely downloaded from http://bio.demokritos.gr/gromita/.

  16. Motorization of a surgical microscope for intra-operative navigation and intuitive control.

    Science.gov (United States)

    Finke, M; Schweikard, A

    2010-09-01

    During surgical procedures, various medical systems, e.g. microscope or C-arm, are used. Their precise and repeatable manual positioning can be very cumbersome and interrupts the surgeon's work flow. Robotized systems can assist the surgeon but they require suitable kinematics and control. However, positioning must be fast, flexible and intuitive. We describe a fully motorized surgical microscope. Hardware components as well as implemented applications are specified. The kinematic equations are described and a novel control concept is proposed. Our microscope combines fast manual handling with accurate, automatic positioning. Intuitive control is provided by a small remote control mounted to one of the surgical instruments. Positioning accuracy and repeatability are system assists the surgeon, so that he can position the microscope precisely and repeatedly without interrupting the clinical workflow. The combination of manual und automatic control guarantees fast and flexible positioning during surgical procedures. Copyright 2010 John Wiley & Sons, Ltd.

  17. Modulus design multiwavelength polarization microscope for transmission Mueller matrix imaging.

    Science.gov (United States)

    Zhou, Jialing; He, Honghui; Chen, Zhenhua; Wang, Ye; Ma, Hui

    2018-01-01

    We have developed a polarization microscope based on a commercial transmission microscope. We replace the halogen light source by a collimated LED light source module of six different colors. We use achromatic polarized optical elements that can cover the six different wavelength ranges in the polarization state generator (PSG) and polarization state analyzer (PSA) modules. The dual-rotating wave plate method is used to measure the Mueller matrix of samples, which requires the simultaneous rotation of the two quarter-wave plates in both PSG and PSA at certain angular steps. A scientific CCD detector is used as the image receiving module. A LabView-based software is developed to control the rotation angels of the wave plates and the exposure time of the detector to allow the system to run fully automatically in preprogrammed schedules. Standard samples, such as air, polarizers, and quarter-wave plates, are used to calibrate the intrinsic Mueller matrix of optical components, such as the objectives, using the eigenvalue calibration method. Errors due to the images walk-off in the PSA are studied. Errors in the Mueller matrices are below 0.01 using air and polarizer as standard samples. Data analysis based on Mueller matrix transformation and Mueller matrix polarization decomposition is used to demonstrate the potential application of this microscope in pathological diagnosis. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  19. Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick; Wendt, Fabian; Musial, Walter; Finucane, Z.; Hulliger, L.; Chilka, S.; Dolan, D.; Cushing, J.; O' Connell, D.; Falk, S.

    2017-06-19

    The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, the turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.

  20. Rainwater drained through fully filled pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, B; Koestel, P

    1989-02-01

    The conventional rainwater drainage system according to DIN 1986 always seems to be a point of problemacy in the building services as far as the occupancy of installation shafts and ducts is at stake. The excavation work and the necessary gravity lines are considered to be expensive. The consideration of the necessary slope complicates the installation additionally. Basing on those considerations, the raindraining system with fully filled pipes has been developed. DIN 1986, edition June 1988, part 1, point 6.1.1 allows to install rainwater pipes operated as planned, fully filled without slope. An enterprise specialised in building services investigated all system laws because only by a hydraulically exact balance, the function of the rainwater drainage system operated by negative and positive pressure can be insured. The results of those investigations are integrated in a computer program developed for this purpose.

  1. Developments towards a fully automated AMS system

    International Nuclear Information System (INIS)

    Steier, P.; Puchegger, S.; Golser, R.; Kutschera, W.; Priller, A.; Rom, W.; Wallner, A.; Wild, E.

    2000-01-01

    The possibilities of computer-assisted and automated accelerator mass spectrometry (AMS) measurements were explored. The goal of these efforts is to develop fully automated procedures for 'routine' measurements at the Vienna Environmental Research Accelerator (VERA), a dedicated 3-MV Pelletron tandem AMS facility. As a new tool for automatic tuning of the ion optics we developed a multi-dimensional optimization algorithm robust to noise, which was applied for 14 C and 10 Be. The actual isotope ratio measurements are performed in a fully automated fashion and do not require the presence of an operator. Incoming data are evaluated online and the results can be accessed via Internet. The system was used for 14 C, 10 Be, 26 Al and 129 I measurements

  2. Characterization of fully functional spray-on antibody thin films

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Jhon [Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5250 (United States); Magaña, Sonia; Lim, Daniel V. [Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-7115 (United States); Schlaf, Rudy, E-mail: schlaf@eng.usf.edu [Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5101 (United States)

    2014-02-15

    The authors recently demonstrated that fully functional Escherichia coli O157:H7 antibody thin films can be prepared using a simple pneumatic nebulizer on glass surface [1]. This paper focuses on the investigation of the morphology and physical properties of these films with the aim to better understand their performance. A series of E. coli O157:H7 antibody spray-on thin films were investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), immunoassays, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), fluorescence microscopy, atomic force microscope (AFM) and contact angle analysis. These data were compared to measurements on films prepared with the biotin–avidin covalent bonding scheme. The investigation showed that films created by a 2 min pneumatic spray deposition time can capture antigens similar as the avidin–biotin wet-chemical method. The results also suggests that an influential factor for the comparable capture cell ability between sprayed and covalent films is an increased antibody surface coverage for the sprayed films (non-equilibrium technique), which compensates for the lack of its antibody orientation. There was no significant antibody denaturation detected on any of the sprayed films. Both techniques led to the formation of cluster-aggregates, a factor that seems unavoidable due to the natural tendency of protein to cluster. The avidin–biotin bridge films generally had a higher roughness, which manifested itself in a higher wettability compared to the sprayed films.

  3. FMFT. Fully massive four-loop tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Pikelner, Andrey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2017-07-15

    We present FMFT - a package written in FORM that evaluates four-loop fully massive tadpole Feynman diagrams. It is a successor of the MATAD package that has been successfully used to calculate many renormalization group functions at three-loop order in a wide range of quantum field theories especially in the Standard Model. We describe an internal structure of the package and provide some examples of its usage.

  4. Fully NLO Parton Shower in QCD

    International Nuclear Information System (INIS)

    Skrzypek, M.; Jadach, S.; Slawinska, M.; Gituliar, O.; Kusina, A.; Placzek, W.

    2011-01-01

    The project of constructing a complete NLO-level Parton Shower Monte Carlo for the QCD processes developed in IFJ PAN in Krakow is reviewed. Four issues are discussed: (1) the extension of the standard inclusive collinear factorization into a new, fully exclusive scheme; (2) reconstruction of the LO Parton Shower in the new scheme; (3) inclusion of the exclusive NLO corrections into the hard process and (4) inclusion of the exclusive NLO corrections into the evolution (ladder) part. (authors)

  5. FMFT: fully massive four-loop tadpoles

    Science.gov (United States)

    Pikelner, Andrey

    2018-03-01

    We present FMFT - a package written in FORM that evaluates four-loop fully massive tadpole Feynman diagrams. It is a successor of the MATAD package that has been successfully used to calculate many renormalization group functions at three-loop order in a wide range of quantum field theories especially in the Standard Model. We describe an internal structure of the package and provide some examples of its usage.

  6. Fully probabilistic design of hierarchical Bayesian models

    Czech Academy of Sciences Publication Activity Database

    Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine

    2016-01-01

    Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross-entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016 http://library.utia.cas.cz/separaty/2016/AS/karny-0463052.pdf

  7. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    Science.gov (United States)

    Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy

    2015-01-01

    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.

  8. Design of a transmission electron positron microscope

    International Nuclear Information System (INIS)

    Doyama, Masao; Inoue, M.; Kogure, Y.; Hayashi, Y.; Yoshii, T.; Kurihara, T.; Tsuno, K.

    2003-01-01

    This paper reports the plans and design of positron-electron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan. A used electron microscope is altered. The kinetic energies of positrons produced by accelerators or by nuclear decays are not a unique value but show a spread over in a wide range. Positron beam is guided to a transmission electron microscope (JEM100SX). Positrons are moderated by a tungsten foil, are accelerated and are focused on a nickel sheet. The monochromatic focused beam is injected into an electron microscope. The focusing and aberration of positrons are the same as electrons in a magnetic system which are used in commercial electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (author)

  9. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  10. Foldscope: origami-based paper microscope.

    Directory of Open Access Journals (Sweden)

    James S Cybulski

    Full Text Available Here we describe an ultra-low-cost origami-based approach for large-scale manufacturing of microscopes, specifically demonstrating brightfield, darkfield, and fluorescence microscopes. Merging principles of optical design with origami enables high-volume fabrication of microscopes from 2D media. Flexure mechanisms created via folding enable a flat compact design. Structural loops in folded paper provide kinematic constraints as a means for passive self-alignment. This light, rugged instrument can survive harsh field conditions while providing a diversity of imaging capabilities, thus serving wide-ranging applications for cost-effective, portable microscopes in science and education.

  11. Microscopic description of magnetized plasma: quasiparticle concept

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Decyk, V.K.

    1993-01-01

    A quasiparticle concept is developed systematically, from first principles, within the context of microscopic description of magnetized plasma. It is argued that the zeroth velocity-gyroangle harmonic of the microscopic particle distribution function under the gyrokinetic change of variables can be taken as a microscopic quasi-particle density in a reduced phase space. The nature of quasiparticles is discussed and equations of their motion are derived within both exact and reduced microscopic descriptions. The reduced one employs explicitly the separation of interesting time scales. (orig.)

  12. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  13. Microscopic transport model animation visualisation on KML base

    Science.gov (United States)

    Yatskiv, I.; Savrasovs, M.

    2012-10-01

    By reading classical literature devoted to the simulation theory it could be found that one of the greatest possibilities of simulation is the ability to present processes inside the system by animation. This gives to the simulation model additional value during presentation of simulation results for the public and authorities who are not familiar enough with simulation. That is why most of universal and specialised simulation tools have the ability to construct 2D and 3D representation of the model. Usually the development of such representation could take much time and there must be put a lot forces into creating an adequate 3D representation of the model. For long years such well-known microscopic traffic flow simulation software tools as VISSIM, AIMSUN and PARAMICS have had a possibility to produce 2D and 3D animation. But creation of realistic 3D model of the place where traffic flows are simulated, even in these professional software tools it is a hard and time consuming action. The goal of this paper is to describe the concepts of use the existing on-line geographical information systems for visualisation of animation produced by simulation software. For demonstration purposes the following technologies and tools have been used: PTV VISION VISSIM, KML and Google Earth.

  14. Microscopic thermal characterization of HTR particle layers

    International Nuclear Information System (INIS)

    Rochais, D.; Le Meur, G.; Basini, V.; Domingues, G.

    2008-01-01

    This paper presents thermal diffusivity measurements of HTR fuel particle pyrolytic carbon layers at room temperature. The photoreflectance microscopy (PM) technique is used to characterize particle layers at a microscopic scale. Nevertheless, buffer layer needs a particular analysis due to its porous structure. Indeed, measurements by PM on this material only permit to obtain the thermal diffusivity of the solid skeleton, whose homogeneous zones surface does not exceed 100 μm 2 . These characteristics make, on the one hand, delicate the use of PM, and on the other hand, require the use of a numerical homogenization technique. This model takes into account the properties of gas confined in the pores, to simulate the conduction heat flux traveling through the layer in relation with its microstructure and to estimate an effective thermal conductivity of the entire layer. This approach is validated by infrared microscopy measurement of the effective thermal diffusivity of the especially elaborated thicker buffer layer. Last, the first tests to characterize the silicon carbide layer are presented

  15. Features of microscopic pedestrian movement in a panic situation based on cellular automata model

    Science.gov (United States)

    Ibrahim, Najihah; Hassan, Fadratul Hafinaz

    2017-10-01

    Pedestrian movement is the one of the subset for the crowd management under simulation objective. During panic situation, pedestrian usually will create a microscopic movement that lead towards the self-organization. During self-organizing, the behavioral and physical factors had caused the mass effect on the pedestrian movement. The basic CA model will create a movement path for each pedestrian over a time step. However, due to the factors immerge, the CA model needs some enhancement that will establish a real simulation state. Hence, this concept paper will discuss on the enhanced features of CA model for microscopic pedestrian movement during panic situation for a better pedestrian simulation.

  16. Spectral Interferometry with Electron Microscopes

    Science.gov (United States)

    Talebi, Nahid

    2016-01-01

    Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932

  17. Mice embryology: a microscopic overview.

    Science.gov (United States)

    Salvadori, Maria Letícia Baptista; Lessa, Thais Borges; Russo, Fabiele Baldino; Fernandes, Renata Avancini; Kfoury, José Roberto; Braga, Patricia Cristina Baleeiro Beltrão; Miglino, Maria Angélica

    2012-10-01

    In this work, we studied the embryology of mice of 12, 14, and 18 days of gestation by gross observation, light microscopy, and scanning electron microscopy. Grossly, the embryos of 12 days were observed in C-shaped region of the brain, eye pigmentation of the retina, first, second, and third pharyngeal arches gill pit nasal region on the fourth ventricle brain, cervical curvature, heart, liver, limb bud thoracic, spinal cord, tail, umbilical cord, and place of the mesonephric ridge. Microscopically, the liver, cardiovascular system and spinal cord were observed. In the embryo of 14 days, we observed structures that make up the liver and heart. At 18 days of gestation fetuses, it was noted the presence of eyes, mouth, and nose in the cephalic region, chest and pelvic region with the presence of well-developed limbs, umbilical cord, and placenta. Scanning electron microscopy in 18 days of gestation fetuses evidenced head, eyes closed eyelids, nose, vibrissae, forelimb, heart, lung, kidney, liver, small bowel, diaphragm, and part of the spine. The results obtained in this work describe the internal and external morphology of mice, provided by an integration of techniques and review of the morphological knowledge of the embryonic development of this species, as this animal is of great importance to scientific studies. Copyright © 2012 Wiley Periodicals, Inc.

  18. Scanning Microscopes Using X Rays and Microchannels

    Science.gov (United States)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  19. Diffusion and spectroscopy of water and lipids in fully hydrated dimyristoylphosphatidylcholine bilayer membranes

    International Nuclear Information System (INIS)

    Yang, J.; Martí, J.; Calero, C.

    2014-01-01

    Microscopic structure and dynamics of water and lipids in a fully hydrated dimyristoylphosphatidylcholine phospholipid lipid bilayer membrane in the liquid-crystalline phase have been analyzed with all-atom molecular dynamics simulations based on the recently parameterized CHARMM36 force field. The diffusive dynamics of the membrane lipids and of its hydration water, their reorientational motions as well as their corresponding spectral densities, related to the absorption of radiation, have been considered for the first time using the present force field. In addition, structural properties such as density and pressure profiles, a deuterium-order parameter, surface tension, and the extent of water penetration in the membrane have been analyzed. Molecular self-diffusion, reorientational motions, and spectral densities of atomic species reveal a variety of time scales playing a role in membrane dynamics. The mechanisms of lipid motion strongly depend on the time scale considered, from fast ballistic translation at the scale of picoseconds (effective diffusion coefficients of the order of 10 −5 cm 2 /s) to diffusive flow of a few lipids forming nanodomains at the scale of hundreds of nanoseconds (diffusion coefficients of the order of 10 −8 cm 2 /s). In the intermediate regime of sub-diffusion, collisions with nearest neighbors prevent the lipids to achieve full diffusion. Lipid reorientations along selected directions agree well with reported nuclear magnetic resonance data and indicate two different time scales, one about 1 ns and a second one in the range of 2–8 ns. We associated the two time scales of reorientational motions with angular distributions of selected vectors. Calculated spectral densities corresponding to lipid and water reveal an overall good qualitative agreement with Fourier transform infrared spectroscopy experiments. Our simulations indicate a blue-shift of the low frequency spectral bands of hydration water as a result of its interaction

  20. Diffusion and spectroscopy of water and lipids in fully hydrated dimyristoylphosphatidylcholine bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Martí, J., E-mail: jordi.marti@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia (Spain); Calero, C. [Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia (Spain); Center for Polymer Studies, Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States)

    2014-03-14

    Microscopic structure and dynamics of water and lipids in a fully hydrated dimyristoylphosphatidylcholine phospholipid lipid bilayer membrane in the liquid-crystalline phase have been analyzed with all-atom molecular dynamics simulations based on the recently parameterized CHARMM36 force field. The diffusive dynamics of the membrane lipids and of its hydration water, their reorientational motions as well as their corresponding spectral densities, related to the absorption of radiation, have been considered for the first time using the present force field. In addition, structural properties such as density and pressure profiles, a deuterium-order parameter, surface tension, and the extent of water penetration in the membrane have been analyzed. Molecular self-diffusion, reorientational motions, and spectral densities of atomic species reveal a variety of time scales playing a role in membrane dynamics. The mechanisms of lipid motion strongly depend on the time scale considered, from fast ballistic translation at the scale of picoseconds (effective diffusion coefficients of the order of 10{sup −5} cm{sup 2}/s) to diffusive flow of a few lipids forming nanodomains at the scale of hundreds of nanoseconds (diffusion coefficients of the order of 10{sup −8} cm{sup 2}/s). In the intermediate regime of sub-diffusion, collisions with nearest neighbors prevent the lipids to achieve full diffusion. Lipid reorientations along selected directions agree well with reported nuclear magnetic resonance data and indicate two different time scales, one about 1 ns and a second one in the range of 2–8 ns. We associated the two time scales of reorientational motions with angular distributions of selected vectors. Calculated spectral densities corresponding to lipid and water reveal an overall good qualitative agreement with Fourier transform infrared spectroscopy experiments. Our simulations indicate a blue-shift of the low frequency spectral bands of hydration water as a result of

  1. Argentina to fully privatize state owned YPF

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Argentina's Congress has voted to fully privatize state petroleum company Yacimientos Petroliferos Fiscales (YPF), a move the government expects to net at least $8 billion. Despite some political opposition, the vote was 119-10 in favor, with one abstention and opposition party members refusing to participate in the vote. Argentina's President Carlos Menem had threatened to authorize YPF privatization by decree if there was no quorum for a vote. YPF is responsible for 40% of Argentina's oil production. The country h as been self-sufficient in crude since 1982. Current production is 563,472 b/d, and proved reserves of oil and gas are valued at $7 billion

  2. A transmission positron microscope and a scanning positron microscope being built at KEK, Japan

    International Nuclear Information System (INIS)

    Doyama, M.; Inoue, M.; Kogure, Y.; Kurihara, T.; Yagishita, A.; Shidara, T.; Nakahara, K.; Hayashi, Y.; Yoshiie, T.

    2001-01-01

    This paper reports the plans of positron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan improving used electron microscopes. The kinetic energies of positron produced by accelerators or by nuclear decays have not a unique value but show a spread over in a wide range. Positron beam will be guided near electron microscopes, a transmission electron microscope (JEM100S) and a scanning electron microscope (JSM25S). Positrons are slowed down by a tungsten foil, accelerated and focused on a nickel sheet. The monochromatic focused beam will be injected into an electron microscope. The focusing of positrons and electrons is achieved by magnetic system of the electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (orig.)

  3. On the way to a microscopic derivation of covariant density functionals in nuclei

    Science.gov (United States)

    Ring, Peter

    2018-02-01

    Several methods are discussed to derive covariant density functionals from the microscopic input of bare nuclear forces. In a first step there are semi-microscopic functionals, which are fitted to ab-initio calculations of nuclear matter and depend in addition on very few phenomenological parameters. They are able to describe nuclear properties with the same precision as fully phenomenological functionals. In a second step we present first relativistic Brueckner-Hartree-Fock calculations in finite nuclei in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.

  4. A microscopic model of triangular arbitrage

    Science.gov (United States)

    Aiba, Yukihiro; Hatano, Naomichi

    2006-11-01

    We introduce a microscopic model which describes the dynamics of each dealer in multiple foreign exchange markets, taking account of the triangular arbitrage transaction. The model reproduces the interaction among the markets well. We explore the relation between the parameters of the present microscopic model and the spring constant of a macroscopic model that we proposed previously.

  5. Quantum theory and microscopic mechanics. I

    International Nuclear Information System (INIS)

    Yussouff, M.

    1984-08-01

    The need for theoretical descriptions and experimental observations on 'small' individual systems is emphasized. It is shown that the mathematical basis for microscopic mechanics is very simple in one dimension. The square well problem is discussed to clarify general points about stationary states and the continuity of (p'/p) across potential boundaries in the applications of microscopic mechanics. (author)

  6. Electron Microscope Center Opens at Berkeley.

    Science.gov (United States)

    Robinson, Arthur L.

    1981-01-01

    A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)

  7. Fully 3D GPU PET reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L., E-mail: joaquin@nuclear.fis.ucm.es [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Cal-Gonzalez, J. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Vaquero, J.J. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Desco, M. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)

    2011-08-21

    Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.

  8. Fully 3D GPU PET reconstruction

    International Nuclear Information System (INIS)

    Herraiz, J.L.; Espana, S.; Cal-Gonzalez, J.; Vaquero, J.J.; Desco, M.; Udias, J.M.

    2011-01-01

    Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.

  9. Fully populated VCM or the hidden parameter

    Directory of Open Access Journals (Sweden)

    Kermarrec G.

    2017-11-01

    Full Text Available Least-squares estimates are trustworthy with minimal variance if the correct stochastic model is used. Due to computational burden, diagonal models that neglect correlations are preferred to describe the elevation dependency of the variance of GPS observations. In this contribution, an improved stochastic model based on a parametric function to take correlations between GPS phase observations into account is presented. Built on an adapted and flexible Mátern function accounting for spatiotemporal variabilities, its parameters can be fixed thanks to Maximum Likelihood Estimation or chosen apriori to model turbulent tropospheric refractivity fluctuations. In this contribution, we will show in which cases and under which conditions corresponding fully populated variance covariance matrices (VCM replace the estimation of a tropospheric parameter. For this equivalence “augmented functional versus augmented stochastic model” to hold, the VCM should be made sufficiently largewhich corresponds to computing small batches of observations. A case study with observations from a medium baseline of 80 km divided into batches of 600 s shows improvement of up to 100 mm for the 3Drms when fully populated VCM are used compared with an elevation dependent diagonal model. It confirms the strong potential of such matrices to improve the least-squares solution, particularly when ambiguities are let float.

  10. Fully CMOS-compatible titanium nitride nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Justin A., E-mail: jabriggs@stanford.edu [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Naik, Gururaj V.; Baum, Brian K.; Dionne, Jennifer A. [Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Petach, Trevor A.; Goldhaber-Gordon, David [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States)

    2016-02-01

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  11. Fully coupled opto-electronic modelling of organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, Nils A.; Haeusermann, Roger; Huber, Evelyne; Moos, Michael [ZHAW, Institute of Comp. Physics (Germany); Flatz, Thomas [Fluxim AG (Switzerland); Ruhstaller, Beat [ZHAW, Institute of Comp. Physics (Germany); Fluxim AG (Switzerland)

    2009-07-01

    Record solar power conversion efficiencies of up to 5.5 % for single junction organic solar cells (OSC) are encouraging but still inferior to values of inorganic solar cells. For further progress, a detailed analysis of the mechanisms that limit the external quantum efficiency is crucial. It is widely believed that the device physics of OSCs can be reduced to the processes, which take place at the donor/acceptor-interface. Neglecting transport, trapping and ejection of charge carriers at the electrodes raises the question of the universality of such a simplification. In this study we present a fully coupled opto-electronic simulator, which calculates the spatial and spectral photon flux density inside the OSC, the formation of the charge transfer state and its dissociation into free charge carriers. Our simulator solves the drift- diffusion equations for the generated charge carriers as well as their ejection at the electrodes. Our results are in good agreement with both steady-state and transient OSC characteristics. We address the influence of physical quantities such as the optical properties, film-thicknesses, the recombination rate and charge carrier mobilities on performance figures. For instance the short circuit current can be enhanced by 15% to 25% when using a silver instead of an aluminium cathode. Our simulations lead to rules of thumb, which help to optimise a given OSC structure.

  12. The Current Status of Microscopical Hair Comparisons

    Directory of Open Access Journals (Sweden)

    Walter F. Rowe

    2001-01-01

    Full Text Available Although the microscopical comparison of human hairs has been accepted in courts of law for over a century, recent advances in DNA technology have called this type of forensic examination into question. In a number of cases, post-conviction DNA testing has exonerated defendants who were convicted in part on the results of microscopical hair comparisons. A federal judge has held a Daubert hearing on the microscopical comparison of human hairs and has concluded that this type of examination does not meet the criteria for admission of scientific evidence in federal courts. A review of the available scientific literature on microscopical hair comparisons (including studies conducted by the Royal Canadian Mounted Police and the Federal Bureau of Investigation leads to three conclusions: (1 microscopical comparisons of human hairs can yield scientifically defensible conclusions that can contribute to criminal investigations and criminal prosecutions, (2 the reliability of microscopical hair comparisons is strongly affected by the training of the forensic hair examiner, (3 forensic hair examiners cannot offer estimates of the probability of a match of a questioned hair with a hair from a randomly selected person. In order for microscopical hair examinations to survive challenges under the U.S. Supreme Court’s Daubert decision, hair microscopists must be better trained and undergo frequent proficiency testing. More research on the error rates of microscopical hair comparisons should be undertaken, and guidelines for the permissible interpretations of such comparisons should be established. Until these issues have been addressed and satisfactorily resolved, microscopical hair comparisons should be regarded by law enforcement agencies and courts of law as merely presumptive in nature, and all microscopical hair comparisons should be confirmed by nuclear DNA profiling or mitochondrial DNA sequencing.

  13. Microscopic theory for dynamics in entangled polymer nanocomposites

    Science.gov (United States)

    Yamamoto, Umi

    New microscopic theories for describing dynamics in polymer nanocomposites are developed and applied. The problem is addressed from two distinct perspectives and using two different theoretical approaches. The first half of this dissertation studies the long-time and intermediate-time dynamics of nanoparticles in entangled and unentangled polymer melts for dilute particle concentrations. Using a combination of mode-coupling, Brownian motion, and polymer physics ideas, the nanoparticle long-time diffusion coefficients is formulated in terms of multiple length-scales, packing microstructures, and spatially-resolved polymer density fluctuation dynamics. The key motional mechanism is described via the parallel relaxation of the force exerted on the particle controlled by collective polymer constraint-release and the particle self-motion. A sharp but smooth crossover from the hydrodynamic to the non-hydrodynamic regime is predicted based on the Stokes-Einstein violation ratio as a function of all the system variables. Quantitative predictions are made for the recovery of the Stokes-Einstein law, and the diffusivity in the crossover regime agrees surprisingly well with large-scale molecular dynamics simulations for all particle sizes and chain lengths studied. The approach is also extended to address intermediate-time anomalous transport of a single nanoparticle and two-particle relative diffusion. The second half of this dissertation focuses on developing a novel dynamical theory for a liquid of infinitely-thin rods in the presence of hard spherical obstacles, aiming at a technical and conceptual extension of the existing paradigm for entangled polymer dynamics. As a fundamental theoretical development, the two-component generalization of a first-principles dynamic meanfield approach is presented. The theory enforces inter-needle topological uncrossability and needlesphere impenetrability in a unified manner, leading to a generalized theory of entanglements that

  14. Noise emission corrections at intersections based on microscopic traffic simulation

    NARCIS (Netherlands)

    Coensel, B.de; Vanhove, F.; Logghe, S.; Wilmink, I.; Botteldooren, D.

    2006-01-01

    One of the goals of the European IMAGINE project, is to formulate strategies to improve traffic modelling for application in noise mapping. It is well known that the specific deceleration and acceleration dynamics of traffic at junctions can influence local noise emission. However, macroscopic

  15. Efficient simulation of autofluorescence effects in microscopic lenses

    DEFF Research Database (Denmark)

    Gross, Herbert; Rodenko, Olga; Esslinger, Moritz

    2015-01-01

    The use of fluorescence in microscopy is a well known technology today. Due to the autofluorescence of the materials of the optical system components, the contrast of the images is degraded. The calculation of autofluorescense usually is performed by brute force methods as volume scattering...... of the domains are determined by simple tracing of the limiting rays of the light cone of the source as well as the pixel area under consideration. The small overlap of both domains can be estimated by geometrical considerations. The correct photometric scaling and the discretization of the volumes must...

  16. Fully Printed Flexible and Stretchable Electronics

    Science.gov (United States)

    Zhang, Suoming

    Through this thesis proposal, the author has demonstrated series of flexible or stretchable sensors including strain gauge, pressure sensors, display arrays, thin film transistors and photodetectors fabricated by a direct printing process. By adopting the novel serpentine configuration with conventional non-stretchable materials silver nanoparticles, the fully printed stretchable devices are successfully fabricated on elastomeric substrate with the demonstration of stretchable conductors that can maintain the electrical properties under strain and the strain gauge, which could be used to measure the strain in desired locations and also to monitor individual person's finger motion. And by investigating the intrinsic stretchable materials silver nanowires (AgNWs) with the conventional configuration, the fully printed stretchable conductors are achieved on various substrates including Si, glass, Polyimide, Polydimethylsiloxane (PDMS) and Very High Bond (VHB) tape with the illustration of the capacitive pressure sensor and stretchable electroluminescent displays. In addition, intrinsically stretchable thin-film transistors (TFTs) and integrated logic circuits are directly printed on elastomeric PDMS substrates. The printed devices utilize carbon nanotubes and a type of hybrid gate dielectric comprising PDMS and barium titanate (BaTiO3) nanoparticles. The BaTiO3/PDMS composite simultaneously provides high dielectric constant, superior stretchability, low leakage, as well as good printability and compatibility with the elastomeric substrate. Both TFTs and logic circuits can be stretched beyond 50% strain along either channel length or channel width directions for thousands of cycles while showing no significant degradation in electrical performance. Finally, by applying the SWNTs as the channel layer of the thin film transistor, we successfully fabricate the fully printed flexible photodetector which exhibits good electrical characteristics and the transistors exhibit

  17. Fully connected network of superconducting qubits in a cavity

    International Nuclear Information System (INIS)

    Tsomokos, Dimitris I; Ashhab, Sahel; Nori, Franco

    2008-01-01

    A fully connected qubit network is considered, where every qubit interacts with every other one. When the interactions between the qubits are homogeneous, the system is a special case of the finite Lipkin-Meshkov-Glick (LMG) model. We propose a natural implementation of this model using superconducting qubits in state-of-the-art circuit QED. The ground state, the low-lying energy spectrum and the dynamical evolution are investigated. We find that, under realistic conditions, highly entangled states of Greenberger-Horne-Zeilinger (GHZ) and W types can be generated. We also comment on the influence of disorder on the system and discuss the possibility of simulating complex quantum systems, such as Sherrington-Kirkpatrick (SK) spin glasses, with superconducting qubit networks.

  18. Fully automatic AI-based leak detection system

    Energy Technology Data Exchange (ETDEWEB)

    Tylman, Wojciech; Kolczynski, Jakub [Dept. of Microelectronics and Computer Science, Technical University of Lodz in Poland, ul. Wolczanska 221/223, Lodz (Poland); Anders, George J. [Kinectrics Inc., 800 Kipling Ave., Toronto, Ontario M8Z 6C4 (Canada)

    2010-09-15

    This paper presents a fully automatic system intended to detect leaks of dielectric fluid in underground high-pressure, fluid-filled (HPFF) cables. The system combines a number of artificial intelligence (AI) and data processing techniques to achieve high detection capabilities for various rates of leaks, including leaks as small as 15 l per hour. The system achieves this level of precision mainly thanks to a novel auto-tuning procedure, enabling learning of the Bayesian network - the decision-making component of the system - using simulated leaks of various rates. Significant new developments extending the capabilities of the original leak detection system described in and form the basis of this paper. Tests conducted on the real-life HPFF cable system in New York City are also discussed. (author)

  19. A Fully Automated Penumbra Segmentation Tool

    DEFF Research Database (Denmark)

    Nagenthiraja, Kartheeban; Ribe, Lars Riisgaard; Hougaard, Kristina Dupont

    2012-01-01

    Introduction: Perfusion- and diffusion weighted MRI (PWI/DWI) is widely used to select patients who are likely to benefit from recanalization therapy. The visual identification of PWI-DWI-mismatch tissue depends strongly on the observer, prompting a need for software, which estimates potentially...... salavageable tissue, quickly and accurately. We present a fully Automated Penumbra Segmentation (APS) algorithm using PWI and DWI images. We compare automatically generated PWI-DWI mismatch mask to mask outlined manually by experts, in 168 patients. Method: The algorithm initially identifies PWI lesions......) at 600∙10-6 mm2/sec. Due to the nature of thresholding, the ADC mask overestimates the DWI lesion volume and consequently we initialized level-set algorithm on DWI image with ADC mask as prior knowledge. Combining the PWI and inverted DWI mask then yield the PWI-DWI mismatch mask. Four expert raters...

  20. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  1. Lidar Cloud Detection with Fully Convolutional Networks

    Science.gov (United States)

    Cromwell, E.; Flynn, D.

    2017-12-01

    The vertical distribution of clouds from active remote sensing instrumentation is a widely used data product from global atmospheric measuring sites. The presence of clouds can be expressed as a binary cloud mask and is a primary input for climate modeling efforts and cloud formation studies. Current cloud detection algorithms producing these masks do not accurately identify the cloud boundaries and tend to oversample or over-represent the cloud. This translates as uncertainty for assessing the radiative impact of clouds and tracking changes in cloud climatologies. The Atmospheric Radiation Measurement (ARM) program has over 20 years of micro-pulse lidar (MPL) and High Spectral Resolution Lidar (HSRL) instrument data and companion automated cloud mask product at the mid-latitude Southern Great Plains (SGP) and the polar North Slope of Alaska (NSA) atmospheric observatory. Using this data, we train a fully convolutional network (FCN) with semi-supervised learning to segment lidar imagery into geometric time-height cloud locations for the SGP site and MPL instrument. We then use transfer learning to train a FCN for (1) the MPL instrument at the NSA site and (2) for the HSRL. In our semi-supervised approach, we pre-train the classification layers of the FCN with weakly labeled lidar data. Then, we facilitate end-to-end unsupervised pre-training and transition to fully supervised learning with ground truth labeled data. Our goal is to improve the cloud mask accuracy and precision for the MPL instrument to 95% and 80%, respectively, compared to the current cloud mask algorithms of 89% and 50%. For the transfer learning based FCN for the HSRL instrument, our goal is to achieve a cloud mask accuracy of 90% and a precision of 80%.

  2. A novel fully integrated handheld gamma camera

    International Nuclear Information System (INIS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-01-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  3. A novel fully integrated handheld gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Massari, R.; Ucci, A.; Campisi, C. [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy); Scopinaro, F. [University of Rome “La Sapienza”, S. Andrea Hospital, Rome (Italy); Soluri, A., E-mail: alessandro.soluri@ibb.cnr.it [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy)

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  4. Microscopic modeling of multi-lane highway traffic flow

    Science.gov (United States)

    Hodas, Nathan O.; Jagota, Anand

    2003-12-01

    We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.

  5. Atomic Force Microscope Mediated Chromatography

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  6. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  7. Development and applications of the positron microscope

    International Nuclear Information System (INIS)

    1991-01-01

    Progress on the positron microscope during the past year has been steady, and we currently project that initial microscope images can be collected during mid to late summer of 1992. Work during the year has mainly been divided among four areas of effort: hardware construction; power supply and control system development; radioactive source fabrication; and planning of initial experimental projects. Details of progress in these areas will be given below. An initial optical design of the microscope was completed during 1990, but during the past year, significant improvements have been made to this design, and several limiting cases of microscope performance have been evaluated. The results of these evaluations have been extremely encouraging, giving us strong indications that the optical performance of the microscope will be better than originally anticipated. In particular, we should be able to explore ultimate performance capabilities of positron microscopy using our currently planned optical system, with improvements only in the image detector system, and the positron-source/moderator configuration. We should be able to study imaging reemission microscopy with resolutions approaching 10 Angstrom and be able to produce beam spots for rastered microscope work with diameters below the 1000 Angstrom diffusion limit. Because of these exciting new possibilities, we have decided to upgrade several microscope subsystems to levels consistent with ultimate performance earlier in our construction schedule than we had previously intended. In particular, alignment facilities in the optical system, vibration isolation, and power supply and control system flexibility have all been upgraded in their design over the past year

  8. ATLAS simulated black hole event

    CERN Multimedia

    Pequenão, J

    2008-01-01

    The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  9. Towards vortex imaging with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Fuchs, Dan T.

    1994-02-01

    A low temperature, Besocke beetle type scanning tunneling microscope, with a scan range of 10 by 10 microns was built. The scanning tunneling microscope was calibrates for various temperatures and tested on several samples. Gold monolayers evaporated at 400 deg C were resolved and their dynamic behavior observed. Atomic resolution images of graphite were obtained. The scanning tunneling microscope was designed for future applications of vortex imaging in superconductors. The special design considerations for this application are discussed and the physics underlying it reviewed. (author)

  10. Confocal scanning microscope for nuclear photoemulsion

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Kovalev, Yu.S.; Soroko, L.M.

    2005-01-01

    The application of the confocal scanning microscope to the objects in the nuclear photoemulsion is described. An array of 27 microtomograms of single silver grain is shown. The cross sections of the same particle track of diameter 1 μm, detected by means of the confocal scanning microscope with open and annular apertures, are presented. It was shown that the confocal scanning microscope opens indeed new opportunities for the nuclear photoemulsion technique to get previously inaccessible information for physics of the short-living particles

  11. CO Depletion: A Microscopic Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, S. [Faculty of Aerospace Engineering, Delft University of Technology, Delft (Netherlands); Martín-Doménech, R.; Caro, G. M. Muñoz; Díaz, C. González [Centro de Astrobiología (INTA-CSIC), Ctra. de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain); Chen, Y. J. [Department of Physics, National Central University, Jhongli City, 32054, Taoyuan County, Taiwan (China)

    2017-11-10

    In regions where stars form, variations in density and temperature can cause gas to freeze out onto dust grains forming ice mantles, which influences the chemical composition of a cloud. The aim of this paper is to understand in detail the depletion (and desorption) of CO on (from) interstellar dust grains. Experimental simulations were performed under two different (astrophysically relevant) conditions. In parallel, Kinetic Monte Carlo simulations were used to mimic the experimental conditions. In our experiments, CO molecules accrete onto water ice at temperatures below 27 K, with a deposition rate that does not depend on the substrate temperature. During the warm-up phase, the desorption processes do exhibit subtle differences, indicating the presence of weakly bound CO molecules, therefore highlighting a low diffusion efficiency. IR measurements following the ice thickness during the TPD confirm that diffusion occurs at temperatures close to the desorption. Applied to astrophysical conditions, in a pre-stellar core, the binding energies of CO molecules, ranging between 300 and 850 K, depend on the conditions at which CO has been deposited. Because of this wide range of binding energies, the depletion of CO as a function of A{sub V} is much less important than initially thought. The weakly bound molecules, easily released into the gas phase through evaporation, change the balance between accretion and desorption, which result in a larger abundance of CO at high extinctions. In addition, weakly bound CO molecules are also more mobile, and this could increase the reactivity within interstellar ices.

  12. Quantum simulation of a quantum stochastic walk

    Science.gov (United States)

    Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.

    2017-03-01

    The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born-Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.

  13. Engineering aspects of a fully mirrored endoscope

    International Nuclear Information System (INIS)

    Terra, A.; Huber, A.; Schweer, B.; Mertens, Ph.; Arnoux, G.; Balshaw, N.; Brezinsek, S.; Egner, S.; Hartl, M.; Kampf, D.; Klammer, J.; Lambertz, H.T.; Morlock, C.; Murari, A.; Reindl, M.; Sanders, S.; Sergienko, G.; Spencer, G.

    2013-01-01

    Highlights: ► Replacement of JET diagnostics to match the new ITER-like Wall. ► The endoscope test ITER-like design with only mirror based optics. ► Withstanding and diagnostic capability during Plasma operation and disruptions. ► Engineering process from design to installation and procurement. -- Abstract: The development of optical diagnostics, like endoscopes, compatible with the ITER environment (metallic plasma facing components, neutron proof optics, etc.) is a challenge, but current tokamaks such as JET provide opportunities to test fully working concepts. This paper describes the engineering aspects of a fully mirrored endoscope that has recently been designed, procured and installed on JET. The system must operate in a very strict environment with high temperature, high magnetic fields up to B = 4 T and rapid field variations (∂B/∂t ∼ 100 T/s) that induce high stresses due to eddy currents in the front mirror assembly. It must be designed to withstand high mechanical loads especially during disruptions, which lead to acceleration of about 7 g at 14 Hz. For the JET endoscope, when the plasma thermal loading, direct and indirect, was added to the assumed disruption loads, the reserve factor, defined as a ratio of yield strength over summed up von Mises stresses, was close to 1 for the mirror components. To ensure reliable operation, several analyses were performed to evaluate the thermo-mechanical performance of the endoscope and a final validation was obtained from mechanical and thermal tests, before the system's final installation in May 2011. During the tests, stability of the field of view angle variation was kept below 1° despite the high thermal gradient on endoscope head (∂T/∂x ∼ 500 K/m). In parallel, to ensure long time operation and to prevent undesirable performance degradation, a shutter system was also implemented in order to reduce impurity deposition on in-vessel mirrors but also to allow in situ transmission calibration

  14. Microscopic analysis of Hopper flow with ellipsoidal particles

    Science.gov (United States)

    Liu, Sida; Zhou, Zongyan; Zou, Ruiping; Pinson, David; Yu, Aibing

    2013-06-01

    Hoppers are widely used in process industries. With such widespread application, difficulties in achieving desired operational behaviors have led to extensive experimental and mathematical studies in the past decades. Particularly, the discrete element method has become one of the most important simulation tools for design and analysis. So far, most studies are on spherical particles for computational convenience. In this work, ellipsoidal particles are used as they can represent a large variation of particle shapes. Hopper flow with ellipsoidal particles is presented highlighting the effect of particle shape on the microscopic properties.

  15. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  16. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  17. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi; Shimada, Takashi; Ogushi, Fumiko; Ito, Nobuyasu

    2009-01-01

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  18. Development of a super-resolution optical microscope for directional dark matter search experiment

    International Nuclear Information System (INIS)

    Alexandrov, A.; Asada, T.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; Di Crescenzo, A.; Di Marco, N.; Furuya, S.; Hakamata, K.; Ishikawa, M.; Katsuragawa, T.; Kuwabara, K.; Machii, S.; Naka, T.; Pupilli, F.; Sirignano, C.; Tawara, Y.; Tioukov, V.; Umemoto, A.; Yoshimoto, M.

    2016-01-01

    Nuclear emulsion is a perfect choice for a detector for directional DM search because of its high density and excellent position accuracy. The minimal detectable track length of a recoil nucleus in emulsion is required to be at least 100 nm, making the resolution of conventional optical microscopes insufficient to resolve them. Here we report about the R&D on a super-resolution optical microscope to be used in future directional DM search experiments with nuclear emulsion as a detector media. The microscope will be fully automatic, will use novel image acquisition and analysis techniques, will achieve the spatial resolution of the order of few tens of nm and will be capable of reconstructing recoil tracks with the length of at least 100 nm with high angular resolution.

  19. Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS

    Science.gov (United States)

    Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.

    2000-01-01

    At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.

  20. phytochemical and microscopical evaluation of desmodium velutinum

    African Journals Online (AJOL)

    USER

    2015-06-01

    Jun 1, 2015 ... and observed under the compound microscope for the presence of cell inclusions such as cellulose, starch, oil ... opportunity of providing useful medicinal compounds. (Gill, 1992). ..... Medical Properties of African. Plants of.

  1. Understanding and caring for an operating microscope

    Directory of Open Access Journals (Sweden)

    Ismael Cordero

    2014-04-01

    Full Text Available An operating or surgical microscope is an optical instrument that provides the surgeon with a stereoscopic, high quality magnified and illuminated image of the small structures in the surgical area.

  2. A pragmatic guide to multiphoton microscope design

    Science.gov (United States)

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  3. A new fully automated TLD badge reader

    International Nuclear Information System (INIS)

    Kannan, S.; Ratna, P.; Kulkarni, M.S.

    2003-01-01

    At present personnel monitoring in India is being carried out using a number of manual and semiautomatic TLD badge Readers and the BARC TL dosimeter badge designed during 1970. Of late the manual TLD badge readers are almost completely replaced by semiautomatic readers with a number of performance improvements like use of hot gas heating to reduce the readout time considerably. PC based design with storage of glow curve for every dosimeter, on-line dose computation and printout of dose reports, etc. However the semiautomatic system suffers from the lack of a machine readable ID code on the badge and the physical design of the dosimeter card not readily compatible for automation. This paper describes a fully automated TLD badge Reader developed in the RSS Division, using a new TLD badge with machine readable ID code. The new PC based reader has a built-in reader for reading the ID code, in the form of an array of holes, on the dosimeter card. The reader has a number of self-diagnostic features to ensure a high degree of reliability. (author)

  4. The first LHC sector is fully interconnected

    CERN Multimedia

    2006-01-01

    Sector 7-8 is the first sector of the LHC to become fully operational. All the magnets, cryogenic line, vacuum chambers and services are interconnected. The cool down of this sector can soon commence. LHC project leader Lyn Evans, the teams from CERN's AT/MCS, AT/VAC and AT/MEL groups, and the members of the IEG consortium celebrate the completion of the first LHC sector. The 10th of November was a red letter day for the LHC accelerator teams, marking the completion of the first sector of the machine. The magnets of sector 7-8, together with the cryogenic line, the vacuum chambers and the distribution feedboxes (DFBs) are now all completely interconnected. Sector 7-8 has thus been closed and is the first LHC sector to become operational. The interconnection work required several thousand electrical, cryogenic and insulating connections to be made on the 210 interfaces between the magnets in the arc, the 30 interfaces between the special magnets and the interfaces with the cryogenic line. 'This represent...

  5. A fully implantable rodent neural stimulator

    Science.gov (United States)

    Perry, D. W. J.; Grayden, D. B.; Shepherd, R. K.; Fallon, J. B.

    2012-02-01

    The ability to electrically stimulate neural and other excitable tissues in behaving experimental animals is invaluable for both the development of neural prostheses and basic neurological research. We developed a fully implantable neural stimulator that is able to deliver two channels of intra-cochlear electrical stimulation in the rat. It is powered via a novel omni-directional inductive link and includes an on-board microcontroller with integrated radio link, programmable current sources and switching circuitry to generate charge-balanced biphasic stimulation. We tested the implant in vivo and were able to elicit both neural and behavioural responses. The implants continued to function for up to five months in vivo. While targeted to cochlear stimulation, with appropriate electrode arrays the stimulator is well suited to stimulating other neurons within the peripheral or central nervous systems. Moreover, it includes significant on-board data acquisition and processing capabilities, which could potentially make it a useful platform for telemetry applications, where there is a need to chronically monitor physiological variables in unrestrained animals.

  6. Microaneurysm detection using fully convolutional neural networks.

    Science.gov (United States)

    Chudzik, Piotr; Majumdar, Somshubra; Calivá, Francesco; Al-Diri, Bashir; Hunter, Andrew

    2018-05-01

    Diabetic retinopathy is a microvascular complication of diabetes that can lead to sight loss if treated not early enough. Microaneurysms are the earliest clinical signs of diabetic retinopathy. This paper presents an automatic method for detecting microaneurysms in fundus photographies. A novel patch-based fully convolutional neural network with batch normalization layers and Dice loss function is proposed. Compared to other methods that require up to five processing stages, it requires only three. Furthermore, to the best of the authors' knowledge, this is the first paper that shows how to successfully transfer knowledge between datasets in the microaneurysm detection domain. The proposed method was evaluated using three publicly available and widely used datasets: E-Ophtha, DIARETDB1, and ROC. It achieved better results than state-of-the-art methods using the FROC metric. The proposed algorithm accomplished highest sensitivities for low false positive rates, which is particularly important for screening purposes. Performance, simplicity, and robustness of the proposed method demonstrates its suitability for diabetic retinopathy screening applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Effects of cold worked and fully annealed claddings on fuel failure behaviour

    International Nuclear Information System (INIS)

    Saito, Shinzo; Hoshino, Hiroaki; Shiozawa, Shusaku; Yanagihara, Satoshi

    1979-12-01

    Described are the results of six differently heat-treated Zircaloy clad fuel rod tests in NSRR experiments. The purpose of the test is to examine the extent of simulating irradiated claddings in mechanical properties by as-cold worked ones and also the effect of fully annealing on the fuel failure bahaviour in a reactivity initiated accident (RIA) condition. As-cold worked cladding does not properly simulated the embrittlement of the irradiated one in a RIA condition, because the cladding is fully annealed before the fuel failure even in the short transient. Therefore, the fuel behaviour such as fuel failure threshold energy, failure mechanism, cladding deformation and cladding oxidation of the fully annealed cladding fuel, as well as that of the as-cold worked cladding fuel, are not much different from that of the standard stress-relieved cladding fuel. (author)

  8. Wireless Performance of a Fully Passive Neurorecording Microsystem Embedded in Dispersive Human Head Phantom

    Science.gov (United States)

    Schwerdt, Helen N.; Chae, Junseok; Miranda, Felix A.

    2012-01-01

    This paper reports the wireless performance of a biocompatible fully passive microsystem implanted in phantom media simulating the dispersive dielectric properties of the human head, for potential application in recording cortical neuropotentials. Fully passive wireless operation is achieved by means of backscattering electromagnetic (EM) waves carrying 3rd order harmonic mixing products (2f(sub 0) plus or minus f(sub m)=4.4-4.9 GHZ) containing targeted neuropotential signals (fm approximately equal to 1-1000 Hz). The microsystem is enclosed in 4 micrometer thick parylene-C for biocompatibility and has a footprint of 4 millimeters x 12 millimeters x 500 micrometers. Preliminary testing of the microsystem implanted in the lossy biological simulating media results in signal-to-noise ratio's (SNR) near 22 (SNR approximately equal to 38 in free space) for millivolt level neuropotentials, demonstrating the potential for fully passive wireless microsystems in implantable medical applications.

  9. Multi-compartment microscopic diffusion imaging

    OpenAIRE

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2016-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microsco...

  10. Microscopic and macroscopic models for pedestrian crowds

    OpenAIRE

    Makmul, Juntima

    2016-01-01

    This thesis is concerned with microscopic and macroscopic models for pedes- trian crowds. In the first chapter, we consider pedestrians exit choices and model human behaviour in an evacuation process. Two microscopic models, discrete and continuous, are studied in this chapter. The former is a cellular automaton model and the latter is a social force model. Different numerical test cases are investigated and their results are compared. In chapter 2, a hierarchy of models for...

  11. IMIS: An intelligence microscope imaging system

    Science.gov (United States)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  12. Microscopic origin of the fast blue-green luminescence of chemically synthesized non-oxidized silicon quantum dots

    NARCIS (Netherlands)

    Dohnalova, K.; Fucikova, A.; Umesh, C.P.; Humpolickova, J.; Paulusse, Jos Marie Johannes; Valenta, J.; Zuilhof, H.

    2012-01-01

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL

  13. Microscopic Origin of the Fast Blue-Green Luminescence from Chemically Synthesized Non-Oxidized Silicon Quantum Dots

    NARCIS (Netherlands)

    Dohnalová, K.; Gregorkiewicz, T.; Fucíková, A.; Valenta, J.; Umesh, C.; Paulusse, J.M.J.; Zuilhof, H.; Humpolícková, J.; Hof, van M.

    2012-01-01

    The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL

  14. Microscopic model analyses of proton elastic scattering from diverse targets in the energy range 65 to 400 MeV

    International Nuclear Information System (INIS)

    Dortmans, P.J.; Amos, K.

    1997-01-01

    Two nucleon (NN) effective interactions based upon two-nucleon g matrices have been used in fully microscopic calculations of nonlocal proton-nucleus optical potentials for protons with energies between 65 and 400 MeV. Excellent predictions of the differential cross sections, analysing powers and spin rotations for scattering angles to 60 deg result. (authors)

  15. A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2017-01-01

    •Aerodynamic modeling of floating VAWTs is established using the Actuator Cylinder (AC) flow method.•A fully coupled aero-hydro-servo-elastic simulation tool, i.e. SIMO-RIFLEX-AC, is developed for floating VAWTs.•The developedsimulation tool is verified to be accurate by a series of code-to-code ...

  16. Local control on precipitation in a fully coupled climate-hydrology model

    DEFF Research Database (Denmark)

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin

    2016-01-01

    simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface...

  17. Band to Band Tunneling (BBT) Induced Leakage Current Enhancement in Irradiated Fully Depleted SOI Devices

    Science.gov (United States)

    Adell, Phillipe C.; Barnaby, H. J.; Schrimpf, R. D.; Vermeire, B.

    2007-01-01

    We propose a model, validated with simulations, describing how band-to-band tunneling (BBT) affects the leakage current degradation in some irradiated fully-depleted SOI devices. The dependence of drain current on gate voltage, including the apparent transition to a high current regime is explained.

  18. A Comparison of Ultimate Loads from Fully and Sequentially Coupled Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Fabian F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Damiani, Rick R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-14

    This poster summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between two modeling approaches (fully coupled and sequentially coupled) through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.

  19. Rail-to-rail low-power fully differential OTA utilizing adaptive biasing and partial feedback

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    consumption. The DC-gain of the proposed OTA is improved by adding a partial feedback loop. A Common-Mode Feedback (CMFB) circuit is required for fully differential rail-to-rail operation. Simulations show that the OTA topology has a low stand-by power consumption of 96μW and a high FoM of 3.84 [(V...

  20. Towards Realization of Intelligent Medical Treatment at Nanoscale by Artificial Microscopic Swarm Control Systems

    Directory of Open Access Journals (Sweden)

    Alireza Rowhanimanesh

    2017-07-01

    Full Text Available Background: In this paper, the novel concept of artificial microscopic swarm control systems is proposed as a promising approach towards realization of intelligent medical treatment at nanoscale. In this new paradigm, treatment is done autonomously at nanoscale within the patient’s body by the proposed swarm control systems.Methods: From control engineering perspective, medical treatment can be considered as a control problem, in which the ultimate goal is to find the best feasible way to change the state of diseased tissue from unhealthy to healthy in presence of uncertainty. Although a living tissue is a huge swarm of microscopic cells, nearly all of the common treatment methods are based on macroscopic centralized control paradigm. Inspired by natural microscopic swarm control systems such as nervous, endocrine and immune systems that work based on swarm control paradigm, medical treatment needs a paradigm shift from macroscopic centralized control to microscopic swarm control. An artificial microscopic swarm control system consists of a huge number of very simple autonomous microscopic agents that exploit swarm intelligence to realize sense, control (computing and actuation at nanoscale in local, distributed and decentralized manner. This control system can be designed based on mathematical analysis and computer simulation.Results: The proposed approach is used for treatment of atherosclerosis and cancer based on mathematical analysis and in-silico study.Conclusion: The notion of artificial microscopic swarm control systems opens new doors towards realization of autonomous and intelligent medical treatment at nanoscale within the patient’s body.

  1. Macular photostress and visual experience between microscope and intracameral illumination during cataract surgery.

    Science.gov (United States)

    Seo, Hyejin; Nam, Dong Heun; Lee, Jong Yeon; Park, Su Jin; Kim, Yu Jeong; Kim, Seong-Woo; Chung, Tae-Young; Inoue, Makoto; Kim, Terry

    2018-02-01

    To evaluate macular photostress and visual experience between coaxial microscope illumination versus oblique intracameral illumination during cataract surgery. Gachon University Gil Hospital, Incheon, South Korea. Prospective case series. Consecutive patients who had cataract surgery using microscope illumination and intracameral illumination were included. The patients were asked to complete a questionnaire (seeing strong lights, feeling photophobia, feeling startled (fright) when seeing lights, seeing any colors, seeing any instruments or surgical procedures, and estimating intraoperative visual function) designed to describe their cataract surgery experience. The images projected on the retina of the model eye (rear view) with artificial opaque fragments in the anterior chamber during simulating cataract surgery were compared between the 2 illumination types. Sixty patients completed the questionnaire. Scores for strong lights, photophobia, fright, and color perception were significantly higher with microscope illumination than with intracameral illumination (all P microscope illumination (13 [21.7%]). In the rear-view images created in a model eye, only the bright microscope light in the center was seen without any lens image in the microscope illumination. However, in the intracameral illumination, the less bright light from the light pipe in the periphery and the lens fragments were seen more clearly. In a view of the patients' visual experience, oblique intracameral illumination caused less subjective photostress and was preferred over coaxial microscope illumination. Objective findings from the model-eye experiment correlated to the result of visual experience. Copyright © 2018 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  2. Microscopic observations of sonoporation mechanisms

    Science.gov (United States)

    Zeghimi, Aya; Escoffre, Jean-Michel; Bouakaz, Ayache

    2017-03-01

    time to be fully resorbed 60 min post-sonoporation, consequently the cells still metabolically active. Moreover, flow cytometry results show a positive correlation between membrane permeabilization and the number of these electron dense structures. Indeed, 60% of SYTOX® Green incorporation is achieved immediately after sonoporation, to decay over time and therefore as a function of the presence of these permeant structures on the cell membrane. These structures are named here "permeation structures". To define the nature of the TPS structures the cells were treated with Genistein, an inhibitor of caveolae-mediated endocytosis. Scanning Electron microscopy images showed a significant diminution of the number of TPS for cells incubated with Genistein, suggesting that a large part of these structures are caveolae still open. Moreover, immunofluorescence analysis showed a depolymerization of actin and tubulin cytoskeleton, immediately after sonoporation. This depolymerization is accompanied with a massive uptake of SYTOX® Green, while the use of cytochalasin D and nocodazole (inhibitors of actin and tubulin polymerization) induced a decrease in the percentage of SYTOX® Green incorporation. Conclusion In conclusion, our findings reveal the reversibility of sonoporation effects on the cell membrane, and show that the caveolae-mediated endocytosis is a dominant pathway involved in the sonoporation process of U-87 MG cells, with a probable involvement of other endocytic and non-endocytic pathways. Otherwise, the study of sonoporation on cytoskeleton gives evidence on the involvement of endocytosis during the sonoporation process (entry and transport of molecules).

  3. Highly efficient fully transparent inverted OLEDs

    Science.gov (United States)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  4. 7 CFR 718.304 - Failure to fully comply.

    Science.gov (United States)

    2010-01-01

    ... authorized in accordance with § 718.305 if the participant made a good faith effort to comply fully with the... FSA approval official to have made a good faith effort to comply fully with the terms and conditions...

  5. Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S

    2009-06-03

    This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.

  6. Application of fully ceramic microencapsulated fuels in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, C.; George, N.; Maldonado, I. [Dept. of Nuclear Engineering, Univ. of Tennessee-Knoxville, Knoxville, TN 37996-2300 (United States); Godfrey, A.; Terrani, K.; Gehin, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO{sub 2} rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  7. Application of fully ceramic microencapsulated fuels in light water reactors

    International Nuclear Information System (INIS)

    Gentry, C.; George, N.; Maldonado, I.; Godfrey, A.; Terrani, K.; Gehin, J.

    2012-01-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO 2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  8. Application of Fully Ceramic Microencapsulated Fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Cole A [ORNL; George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Godfrey, Andrew T [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL

    2012-01-01

    This study aims to perform a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in Light Water Reactors (LWRs). In particular pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor. Using uranium-based fuel and transuranic (TRU) based fuel in TRistructural ISOtropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher physical density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design would need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the TRU based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, feasibility of core designs fully loaded with TRU FCM lattices was demonstrated using the NESTLE three-dimensional core simulator.

  9. Designs for a quantum electron microscope.

    Science.gov (United States)

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Microscopic study of rock for estimating long-term behavior

    International Nuclear Information System (INIS)

    Ichikawa, Yasuaki

    2004-02-01

    Micro-structure of rock plays an essential role for their long-term behavior. For understanding long-term characteristics of granite we here present the followings: 1) observation of microcrack initiation and propagation by Conforcal Laser Scanning Microscope (CLSM) under uniaxial compression (before loading and at each loading stage), 2) characterization of the mechanism of microcrack initiation and propagation observed by stereoscopic microscope under uniaxial/triaxial compression and relaxation tests, and 3) a study of strong discontinuity analysis included in the homogenization theory to predict the long-term behavior of micro/macro-level stress for granite. First, CLSM was used to acquire clearly focused three-dimensional images of granite specimens, and observed the change of microscale structure including the mineral configuration under applying uniaxial compression stress. Then though microcracks have ever thought to be initiated and propagated on intergranular boundaries, we understand through the CLSM observation that new microcracks are generated from the ends of pre-existing cracks which are distributed in quartz and biotite. Second, we showed the results of stress-relaxation test of granite specimens observed by an optical microscope under water-saturated triaxial compression condition. Since microcrack generation and propagation play an essential role to predict the long-term behavior of rock, we managed the experiments with careful attention of 1) keeping constant edge-displacement and constant strain in the whole specimen accurately, and 2) measuring the relaxed stress exactly. Next, in order to simulate the experimental results which indicate that initiation and propagation of microcracks control the stress-relaxation phenomenon, we introduce a homogenization analysis procedure together with the strong discontinuity analysis which has recently established the mechanical implication and mathematical foundation. The numerical results show that we can

  11. New approach to solve symmetric fully fuzzy linear systems

    Indian Academy of Sciences (India)

    concepts of fuzzy set theory and then define a fully fuzzy linear system of equations. .... To represent the above problem as fully fuzzy linear system, we represent x .... Fully fuzzy linear systems can be solved by Linear programming approach, ...

  12. Optical modeling of Fresnel zoneplate microscopes

    International Nuclear Information System (INIS)

    Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-01-01

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  13. Miniaturized integration of a fluorescence microscope

    Science.gov (United States)

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  14. The optics of microscope image formation.

    Science.gov (United States)

    Wolf, David E

    2013-01-01

    Although geometric optics gives a good understanding of how the microscope works, it fails in one critical area, which is explaining the origin of microscope resolution. To accomplish this, one must consider the microscope from the viewpoint of physical optics. This chapter describes the theory of the microscope-relating resolution to the highest spatial frequency that a microscope can collect. The chapter illustrates how Huygens' principle or construction can be used to explain the propagation of a plane wave. It is shown that this limit increases with increasing numerical aperture (NA). As a corollary to this, resolution increases with decreasing wavelength because of how NA depends on wavelength. The resolution is higher for blue light than red light. Resolution is dependent on contrast, and the higher the contrast, the higher the resolution. This last point relates to issues of signal-to-noise and dynamic range. The use of video and new digital cameras has necessitated redefining classical limits such as those of Rayleigh's criterion. Copyright © 2007 Elsevier Inc. All rights reserved.

  15. Determination of the parameters of a microscopic object from a complex response of a differential microscope

    International Nuclear Information System (INIS)

    Baranov, D V; Egorov, Alexander A; Zolotov, Evgenii M; Svidzinsky, K K

    1998-01-01

    An analysis of the amplitude and phase of a complex response of a heterodyne differential microscope was used to demonstrate experimentally the feasibility of determination of the parameters of a composite microscopic object representing a combination of a step with a groove. (laser applications and other topics in quantum electronics)

  16. Massive hybrid parallelism for fully implicit multiphysics

    International Nuclear Information System (INIS)

    Gaston, D. R.; Permann, C. J.; Andrs, D.; Peterson, J. W.

    2013-01-01

    As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided. (authors)

  17. Massive hybrid parallelism for fully implicit multiphysics

    Energy Technology Data Exchange (ETDEWEB)

    Gaston, D. R.; Permann, C. J.; Andrs, D.; Peterson, J. W. [Idaho National Laboratory, 2525 N. Fremont Ave., Idaho Falls, ID 83415 (United States)

    2013-07-01

    As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided. (authors)

  18. MASSIVE HYBRID PARALLELISM FOR FULLY IMPLICIT MULTIPHYSICS

    Energy Technology Data Exchange (ETDEWEB)

    Cody J. Permann; David Andrs; John W. Peterson; Derek R. Gaston

    2013-05-01

    As hardware advances continue to modify the supercomputing landscape, traditional scientific software development practices will become more outdated, ineffective, and inefficient. The process of rewriting/retooling existing software for new architectures is a Sisyphean task, and results in substantial hours of development time, effort, and money. Software libraries which provide an abstraction of the resources provided by such architectures are therefore essential if the computational engineering and science communities are to continue to flourish in this modern computing environment. The Multiphysics Object Oriented Simulation Environment (MOOSE) framework enables complex multiphysics analysis tools to be built rapidly by scientists, engineers, and domain specialists, while also allowing them to both take advantage of current HPC architectures, and efficiently prepare for future supercomputer designs. MOOSE employs a hybrid shared-memory and distributed-memory parallel model and provides a complete and consistent interface for creating multiphysics analysis tools. In this paper, a brief discussion of the mathematical algorithms underlying the framework and the internal object-oriented hybrid parallel design are given. Representative massively parallel results from several applications areas are presented, and a brief discussion of future areas of research for the framework are provided.

  19. On the microscopic foundation of scattering theory

    International Nuclear Information System (INIS)

    Moser, T.

    2007-01-01

    The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics ψ in and ψ out can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics

  20. Microscopic hydrodynamics study with nuclear track membrane

    International Nuclear Information System (INIS)

    Shilun Guo; Yuhua Zhao; Yulan Wang; Hiuhong Hao; Brandt, R.; Vater, P.

    1988-01-01

    Microscopic hydrodynamics has been studied using different liquids and nuclear track membranes with pores perpendicularly piercing through them. The flow rate of water and alcohol has been studied with polycarbonate track membranes with pore diameters 1.48 micrometres and 1.08 micrometres. It has been shown that the flow rate both for water and alcohol on a microscopic scale can be determined by the Poiseuille law which characterizes macroscopic laminar flow. The Reynolds number used in macroscopic fluid flow has been calculated from the flow rate and parameters of the liquids and the geometry of the pores. It has been shown that this Reynolds number can also be used to characterize microscopic flow. Based on the above results, the filtration capacity (or limit) of polycarbonate track microfilters for water had been calculated. Some possible limits on the application of the calculation are pointed out and discussed. (author)

  1. Scanning laser microscope for imaging nanostructured superconductors

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-01-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  2. Smartphone Magnification Attachment: Microscope or Magnifying Glass

    Science.gov (United States)

    Hergemöller, Timo; Laumann, Daniel

    2017-09-01

    Today smartphones and tablets do not merely pervade our daily life, but also play a major role in STEM education in general, and in experimental investigations in particular. Enabling teachers and students to make use of these new techniques in physics lessons requires supplying capable and affordable applications. Our article presents the improvement of a low-cost technique turning smartphones into powerful magnifying glasses or microscopes. Adding only a 3D-printed clip attached to the smartphone's camera and inserting a small glass bead in this clip enables smartphones to take pictures with up to 780x magnification (see Fig. 1). In addition, the construction of the smartphone attachments helps to explain and examine the differences between magnifying glasses and microscopes, and shows that the widespread term "smartphone microscope" for this technique is inaccurate from a physics educational perspective.

  3. Handy Microscopic Close-Range Videogrammetry

    Science.gov (United States)

    Esmaeili, F.; Ebadi, H.

    2017-09-01

    The modeling of small-scale objects is used in different applications such as medicine, industry, and cultural heritage. The capability of modeling small-scale objects using imaging with the help of hand USB digital microscopes and use of videogrammetry techniques has been implemented and evaluated in this paper. Use of this equipment and convergent imaging of the environment for modeling, provides an appropriate set of images for generation of three-dimensional models. The results of the measurements made with the help of a microscope micrometer calibration ruler have demonstrated that self-calibration of a hand camera-microscope set can help obtain a three-dimensional detail extraction precision of about 0.1 millimeters on small-scale environments.

  4. Scanning laser microscope for imaging nanostructured superconductors

    Science.gov (United States)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  5. Environmental TEM in an Aberration Corrected Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    ‐resolution imaging. A gaseous atmosphere in the pole‐piece gap of the objective lens of the microscope alters both the incoming electron wave prior to interaction with the sample and the outgoing wave below the sample. Whereas conventional TEM samples are usually thin (below 10‐20 nm), the gas in the environmental...... the microscope column. The effects of gas on the electron wave in the objective lens are not well understood and needs further attention. Imaging samples with a simple geometry, such as gold particles on a flat graphene substrate and analyzing the variations in contrast, provides a means for understanding...... results from imaging in various elemental as well as di‐molecular gases and their effect on imaging and spectroscopy in the environmental transmission electron microscope....

  6. Image processing for HTS SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, T.; Koetitz, R.; Itozaki, H.; Ishikawa, T.; Kawabe, U.

    2005-01-01

    An HTS SQUID probe microscope has been developed using a high-permeability needle to enable high spatial resolution measurement of samples in air even at room temperature. Image processing techniques have also been developed to improve the magnetic field images obtained from the microscope. Artifacts in the data occur due to electromagnetic interference from electric power lines, line drift and flux trapping. The electromagnetic interference could successfully be removed by eliminating the noise peaks from the power spectrum of fast Fourier transforms of line scans of the image. The drift between lines was removed by interpolating the mean field value of each scan line. Artifacts in line scans occurring due to flux trapping or unexpected noise were removed by the detection of a sharp drift and interpolation using the line data of neighboring lines. Highly detailed magnetic field images were obtained from the HTS SQUID probe microscope by the application of these image processing techniques

  7. Neutron relativistic phenomenological and microscopic optical potential

    International Nuclear Information System (INIS)

    Shen Qing-biao; Feng Da-chun; Zhuo Yi-zhong

    1991-01-01

    In this paper, both the phenomenological and microscopic neutron relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies E n =20--1000 MeV has been obtained through an automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing the effective Lagrangian based on the popular Walecka model. Through comparison between the theoretical results and experimental data we shed some insight into both the RMOP and RPOP. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in the RPOP is suggested

  8. Microscopic saw mark analysis: an empirical approach.

    Science.gov (United States)

    Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles

    2015-01-01

    Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.

  9. Rail-to-rail low-power fully differential OTA utilizing adaptive biasing and partial feedback

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    A fully differential rail-to-rail Operational Transconductance Amplifier (OTA) with improved DC-gain and reduced power consumption is proposed in this paper. By using the adaptive biasing circuit and two differential inputs, a low stand-by current can be obtained together with reduced power...... consumption. The DC-gain of the proposed OTA is improved by adding a partial feedback loop. A Common-Mode Feedback (CMFB) circuit is required for fully differential rail-to-rail operation. Simulations show that the OTA topology has a low stand-by power consumption of 96μW and a high FoM of 3.84 [(V...

  10. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    Science.gov (United States)

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  11. Criterion for traffic phases in single vehicle data and empirical test of a microscopic three-phase traffic theory

    International Nuclear Information System (INIS)

    Kerner, Boris S; Klenov, Sergey L; Hiller, Andreas

    2006-01-01

    Based on empirical and numerical microscopic analyses, the physical nature of a qualitatively different behaviour of the wide moving jam phase in comparison with the synchronized flow phase-microscopic traffic flow interruption within the wide moving jam phase-is found. A microscopic criterion for distinguishing the synchronized flow and wide moving jam phases in single vehicle data measured at a single freeway location is presented. Based on this criterion, empirical microscopic classification of different local congested traffic states is performed. Simulations made show that the microscopic criterion and macroscopic spatiotemporal objective criteria lead to the same identification of the synchronized flow and wide moving jam phases in congested traffic. Microscopic models in the context of three-phase traffic theory have been tested based on the microscopic criterion for the phases in congested traffic. It is found that microscopic three-phase traffic models can explain both microscopic and macroscopic empirical congested pattern features. It is obtained that microscopic frequency distributions for vehicle speed difference as well as fundamental diagrams and speed correlation functions can depend on the spatial co-ordinate considerably. It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic states are qualitatively different. The reason for this is that important spatiotemporal features of congested traffic patterns are lost in these as well as in many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models, specifically, cellular automata traffic flow models

  12. Expectations for neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Date, M.

    1993-01-01

    Neutrons have been used as microscopic probes to study structural and dynamical properties of various materials. In this paper I shall give a comparative study of the neutron research in the condensed matter physics with other typical microscopic methods such as X-rays, laser optics, magnetic resonances, Moessbauer effect and μSR. It is emphasized that the neutron study will extensively be important in future beyond the condensed matter physics. Chemistry, biology, earth sciences, material engineerings and medical sciences will become new frontiers for neutron study. (author)

  13. An innovative approach in microscopic endodontics

    Science.gov (United States)

    Mittal, Sunandan; Kumar, Tarun; Sharma, Jyotika; Mittal, Shifali

    2014-01-01

    The introduction of the dental operating microscope was a turning point in the history of dentistry. It triggered a rapid transition from the conventional world of macro-dentistry to the precise, detailed world of micro-dentistry. However, working at these higher-power magnifications brings the clinician into the realm where even slight hand movements are disruptive. Physiologic hand tremor is a problem resulting in difficulty in mouth mirror placement. Hence, in this paper, a new instrument was designed to overcome the drawback of hand tremors during microscopic endodontics. PMID:24944459

  14. Microscopic tunneling theory of long Josephson junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm

    1992-01-01

    We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...

  15. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...... the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible...

  16. Small-size low-temperature scanning tunnel microscope

    International Nuclear Information System (INIS)

    Al'tfeder, I.B.; Khajkin, M.S.

    1989-01-01

    A small-size scanning tunnel microscope, designed for operation in transport helium-filled Dewar flasks is described. The microscope design contains a device moving the pin to the tested sample surface and a piezoelectric fine positioning device. High vibration protection of the microscope is provided by its suspension using silk threads. The small-size scanning tunnel microscope provides for atomic resolution

  17. Science 101: How Does an Electron Microscope Work?

    Science.gov (United States)

    Robertson, Bill

    2013-01-01

    Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…

  18. Microscopic nuclear structure with sub-nucleonic degrees of freedom

    International Nuclear Information System (INIS)

    Sauer, P.U.

    1986-01-01

    The paper reviews microscopic theories of nuclear structure. The subject is discussed under the topic headings: microscopic nuclear structure with nucleons only; microscopic nuclear structure with nucleons, isobars and mesons; and microscopic nuclear structure with nucleons, mesons and dibaryons. (U.K.)

  19. A fully dynamic magneto-rheological fluid damper model

    International Nuclear Information System (INIS)

    Jiang, Z; Christenson, R E

    2012-01-01

    Control devices can be used to dissipate the energy of a civil structure subjected to dynamic loading, thus reducing structural damage and preventing failure. Semiactive control devices have received significant attention in recent years. The magneto-rheological (MR) fluid damper is a promising type of semiactive device for civil structures due to its mechanical simplicity, inherent stability, high dynamic range, large temperature operating range, robust performance, and low power requirements. The MR damper is intrinsically nonlinear and rate-dependent, both as a function of the displacement across the MR damper and the command current being supplied to the MR damper. As such, to develop control algorithms that take maximum advantage of the unique features of the MR damper, accurate models must be developed to describe its behavior for both displacement and current. In this paper, a new MR damper model that includes a model of the pulse-width modulated (PWM) power amplifier providing current to the damper, a proposed model of the time varying inductance of the large-scale 200 kN MR dampers coils and surrounding MR fluid—a dynamic behavior that is not typically modeled—and a hyperbolic tangent model of the controllable force behavior of the MR damper is presented. Validation experimental tests are conducted with two 200 kN large-scale MR dampers located at the Smart Structures Technology Laboratory (SSTL) at the University of Illinois at Urbana-Champaign and the Lehigh University Network for Earthquake Engineering Simulation (NEES) facility. Comparison with experimental test results for both prescribed motion and current and real-time hybrid simulation of semiactive control of the MR damper shows that the proposed MR damper model can accurately predict the fully dynamic behavior of the large-scale 200 kN MR damper. (paper)

  20. Fully controlled 5-phase, 10-pulse, line commutated rectifier

    Directory of Open Access Journals (Sweden)

    Mahmoud I. Masoud

    2015-12-01

    Full Text Available The development and production of multiphase machines either generators or motors, specially five-phase, offers improved performance compared to three-phase counterpart. Five phase generators could generate power in applications such as, but not limited to, wind power generation, electric vehicles, aerospace, and oil and gas. The five-phase generator output requires converter system such as ac–dc converters. In this paper, a fully controlled 10-pulse line commutated rectifier, suitable to be engaged with wind energy applications, fed from five-phase source is introduced. A shunt active power filter (APF is used to improve power factor and supply current total harmonic distortion (THD. Compared to three-phase converters, 6-pulse or 12-pulse rectifiers, the 10-pulse rectifier engaged with 5-phase source alleviate their drawbacks such as high dc ripples and no need for electric gear or phase shifting transformer. MATLAB/SIMULINK platform is used as a simulation tool to investigate the performance of the proposed rectifier.

  1. Fully autonomous navigation for the NASA cargo transfer vehicle

    Science.gov (United States)

    Wertz, James R.; Skulsky, E. David

    1991-01-01

    A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.

  2. Countermeasures to Avoid Noncooperation in Fully Self-Organized VANETs

    Directory of Open Access Journals (Sweden)

    Jezabel Molina-Gil

    2014-01-01

    Full Text Available The secure and efficient exchange of information in vehicular ad hoc networks (VANETs involves more challenges than in any other type of ad hoc networks. This paper proposes a new vehicular communication system based on mobile phones for fully distributed and decentralized networks. In these networks, communications depend on individual nodes, which could decrease the efficiency and reliability of transmitted information. Besides, the limitation in the resources of mobile devices is an additional obstacle in the forwarding problem, and the content of the information generated by individual nodes must be considered inherently unreliable. In particular, this paper proposes the application of groups as a basis structure for a cooperation mechanism useful in event generation and in packet retransmission. Its aim is to promote the involvement of nodes in network performance. Given that such participation involves consumption of node resources, a group-based structure is here used not only to reduce communication overload but also to prevent sending false information and to encourage nodes in relaying packets. Several simulations of the proposal have been done, and the results have confirmed that this is a promising approach to increase network efficiency and trust in transmitted information, while reducing the number of selfish nodes in VANETs.

  3. Countermeasures to Avoid Noncooperation in Fully Self-Organized VANETs

    Science.gov (United States)

    Molina-Gil, Jezabel; Caballero-Gil, Pino; Caballero-Gil, Cándido

    2014-01-01

    The secure and efficient exchange of information in vehicular ad hoc networks (VANETs) involves more challenges than in any other type of ad hoc networks. This paper proposes a new vehicular communication system based on mobile phones for fully distributed and decentralized networks. In these networks, communications depend on individual nodes, which could decrease the efficiency and reliability of transmitted information. Besides, the limitation in the resources of mobile devices is an additional obstacle in the forwarding problem, and the content of the information generated by individual nodes must be considered inherently unreliable. In particular, this paper proposes the application of groups as a basis structure for a cooperation mechanism useful in event generation and in packet retransmission. Its aim is to promote the involvement of nodes in network performance. Given that such participation involves consumption of node resources, a group-based structure is here used not only to reduce communication overload but also to prevent sending false information and to encourage nodes in relaying packets. Several simulations of the proposal have been done, and the results have confirmed that this is a promising approach to increase network efficiency and trust in transmitted information, while reducing the number of selfish nodes in VANETs. PMID:25089293

  4. Enhancing the performance of the light field microscope using wavefront coding.

    Science.gov (United States)

    Cohen, Noy; Yang, Samuel; Andalman, Aaron; Broxton, Michael; Grosenick, Logan; Deisseroth, Karl; Horowitz, Mark; Levoy, Marc

    2014-10-06

    Light field microscopy has been proposed as a new high-speed volumetric computational imaging method that enables reconstruction of 3-D volumes from captured projections of the 4-D light field. Recently, a detailed physical optics model of the light field microscope has been derived, which led to the development of a deconvolution algorithm that reconstructs 3-D volumes with high spatial resolution. However, the spatial resolution of the reconstructions has been shown to be non-uniform across depth, with some z planes showing high resolution and others, particularly at the center of the imaged volume, showing very low resolution. In this paper, we enhance the performance of the light field microscope using wavefront coding techniques. By including phase masks in the optical path of the microscope we are able to address this non-uniform resolution limitation. We have also found that superior control over the performance of the light field microscope can be achieved by using two phase masks rather than one, placed at the objective's back focal plane and at the microscope's native image plane. We present an extended optical model for our wavefront coded light field microscope and develop a performance metric based on Fisher information, which we use to choose adequate phase masks parameters. We validate our approach using both simulated data and experimental resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

  5. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope.

    Science.gov (United States)

    Wang, Ye; He, Honghui; Chang, Jintao; Zeng, Nan; Liu, Shaoxiong; Li, Migao; Ma, Hui

    2015-12-01

    Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Spin microscope based on optically detected magnetic resonance

    Science.gov (United States)

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  7. Microscopic polyangeitis, report of a case

    International Nuclear Information System (INIS)

    Malagon, Patricia; Suarez, Martha Lucia

    1998-01-01

    Polyarteritis or microscopic polyangeitis is a systemic necrotizing vasculitis associated with the lung-kidney syndrome. It presents with diffuse alveolar hemorrhage and necrotizing glomerulonephritis with multisystem involvement. A case is presented of a 50 years old male with its clinical and imaging findings

  8. MACROSCOPICAL AND MICROSCOPICAL STUDIES ON THE ...

    African Journals Online (AJOL)

    Caesalpinia crista leaves are bipinnate of about six pairs with alternate leaflets while the stem us fibrous, cylindrical hollow and prickly. Microscopical examination revealed the presence of strained cuticle, straight-walled epidermal cells, paracytic stomata, unicellular covering trichomes, fibres, prisms as well as cluster of ...

  9. Microscopic Cluster Theory for Exotic Nuclei

    International Nuclear Information System (INIS)

    Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S

    2006-01-01

    For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory

  10. Study of Scanning Tunneling Microscope control electronics

    International Nuclear Information System (INIS)

    Oliva, A.J.; Pancarobo, M.; Denisenko, N.; Aguilar, M.; Rejon, V.; Pena, J.L.

    1994-01-01

    A theoretical study of Scanning Tunneling Microscope control electronics is made. The knowledge of its behaviour allows us to determine accurately the region where the unstable operation could effect the measurements, and also to set the optimal working parameters. Each feedback circuitry compound is discussed as well as their mutual interaction. Different working conditions analysis and results are presented. (Author) 12 refs

  11. Remote Controlling and Monitoring of Microscopic Slides

    International Nuclear Information System (INIS)

    Mustafa, G.; Qadri, M.T.; Daraz, U.

    2016-01-01

    Remotely controlled microscopic slide was designed using especial Graphical User Interface (GUI) which interfaces the user at remote location with the real microscope using site and the user can easily view and control the slide present on the microscope's stage. Precise motors have been used to allow the movement in all the three dimensions required by a pathologist. The pathologist can easily access these slides from any remote location and so the physical presence of the pathologist is now made easy. This invention would increase the health care efficiency by reducing the time and cost of diagnosis, making it very easy to get the expert's opinion and supporting the pathologist to relocate himself for his work. The microscope is controlled with computer with an attractive Graphical User Interface (GUI), through which a pathologist can easily monitor, control and record the image of the slide. The pathologist can now do his work regardless of his location, time, cost and physically presence of lab equipment. The technology will help the specialist in viewing the patients slide from any location in the world. He would be able to monitor and control the stage. This will also help the pathological laboratories in getting opinion from senior pathologist who are present at any far location in the world. This system also reduces the life risks of the patients. (author)

  12. The Titan Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal; Jinschek, Jörg R.

    2009-01-01

    University of Denmark (DTU) provides a unique combination of techniques for studying materials of interest to the catalytic as well as the electronics and other communities [5]. DTU’s ETEM is based on the FEI Titan platform providing ultrahigh microscope stability pushing the imaging resolution into the sub...

  13. Mesooptical microscope as a tomographical device

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1989-01-01

    It is shown that there are at least four regions which are common for the mesooptical microscopes, on the one hand, and for the reconstructed tomography, on the other hand. The following characteristics of the mesooptical microscope show the tomographical properties: the structure of the output data concerning the orientation and the position in space of the straight-line objects going at small angles with the perpendicular to the given tomographic plane, the behaviour of the two-dimensional fourier-transform of the straight-line object in the course of the rotation of this object with respect to the specified axis in space, the scanning algorithm of the nuclear emulsion volume by the fence-like illuminated region in the mesooptical microscope for searching for particle tracks going parallel to the optical axis of the microscope, and, finally, the fact that the mesooptical images of the straight-line particle tracks with a common vertex in the nuclear emulsion lie on the sinogram. 12 refs.; 16 figs

  14. Exploring the environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Wagner, Jakob B.; Cavalca, Filippo; Damsgaard, Christian D.

    2012-01-01

    of the opportunities that the environmental TEM (ETEM) offers when combined with other in situ techniques will be explored, directly in the microscope, by combining electron-based and photon-based techniques and phenomena. In addition, application of adjacent setups using sophisticated transfer methods...

  15. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  16. Microscopic approaches to quantum nonequilibriumthermodynamics and information

    Science.gov (United States)

    2018-02-09

    perspective on quantum thermalization for Science [8]. Wrote a joint experiment- theory paper on studying connections between quantum and classical chaos in...on the random matrix theory (eigenstate thermalization) and macroscopic phenomena (both equilibrium and non-equilibrium). Understanding thermodynamics...information. Specific questions to be addressed: connections of microscopic description of quantum chaotic systems based on the random matrix theory

  17. Reasoning about Magnetism at the Microscopic Level

    Science.gov (United States)

    Cheng, Meng-Fei; Cheng, Yufang; Hung, Shuo-Hsien

    2014-01-01

    Based on our experience of teaching physics in middle and senior secondary school, we have found that students have difficulty in reasoning at the microscopic level. Their reasoning is limited to the observational level so they have problems in developing scientific models of magnetism. Here, we suggest several practical activities and the use of…

  18. A fully automated algorithm of baseline correction based on wavelet feature points and segment interpolation

    Science.gov (United States)

    Qian, Fang; Wu, Yihui; Hao, Peng

    2017-11-01

    Baseline correction is a very important part of pre-processing. Baseline in the spectrum signal can induce uneven amplitude shifts across different wavenumbers and lead to bad results. Therefore, these amplitude shifts should be compensated before further analysis. Many algorithms are used to remove baseline, however fully automated baseline correction is convenient in practical application. A fully automated algorithm based on wavelet feature points and segment interpolation (AWFPSI) is proposed. This algorithm finds feature points through continuous wavelet transformation and estimates baseline through segment interpolation. AWFPSI is compared with three commonly introduced fully automated and semi-automated algorithms, using simulated spectrum signal, visible spectrum signal and Raman spectrum signal. The results show that AWFPSI gives better accuracy and has the advantage of easy use.

  19. Fundamental limits to frequency estimation: a comprehensive microscopic perspective

    Science.gov (United States)

    Haase, J. F.; Smirne, A.; Kołodyński, J.; Demkowicz-Dobrzański, R.; Huelga, S. F.

    2018-05-01

    We consider a metrology scenario in which qubit-like probes are used to sense an external field that affects their energy splitting in a linear fashion. Following the frequency estimation approach in which one optimizes the state and sensing time of the probes to maximize the sensitivity, we provide a systematic study of the attainable precision under the impact of noise originating from independent bosonic baths. Specifically, we invoke an explicit microscopic derivation of the probe dynamics using the spin-boson model with weak coupling of arbitrary geometry. We clarify how the secular approximation leads to a phase-covariant (PC) dynamics, where the noise terms commute with the field Hamiltonian, while the inclusion of non-secular contributions breaks the PC. Moreover, unless one restricts to a particular (i.e., Ohmic) spectral density of the bath modes, the noise terms may contain relevant information about the frequency to be estimated. Thus, by considering general evolutions of a single probe, we study regimes in which these two effects have a non-negligible impact on the achievable precision. We then consider baths of Ohmic spectral density yet fully accounting for the lack of PC, in order to characterize the ultimate attainable scaling of precision when N probes are used in parallel. Crucially, we show that beyond the semigroup (Lindbladian) regime the Zeno limit imposing the 1/N 3/2 scaling of the mean squared error, recently derived assuming PC, generalises to any dynamics of the probes, unless the latter are coupled to the baths in the direction perfectly transversal to the frequency encoding—when a novel scaling of 1/N 7/4 arises. As our microscopic approach covers all classes of dissipative dynamics, from semigroup to non-Markovian ones (each of them potentially non-phase-covariant), it provides an exhaustive picture, in which all the different asymptotic scalings of precision naturally emerge.

  20. Microsphere-based super-resolution scanning optical microscope.

    Science.gov (United States)

    Huszka, Gergely; Yang, Hui; Gijs, Martin A M

    2017-06-26

    High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm 2 , where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼10 4 μm 2 . Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

  1. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  2. Design and performance of a high-resolution frictional force microscope with quantitative three-dimensional force sensitivity

    International Nuclear Information System (INIS)

    Dienwiebel, M.; Kuyper, E. de; Crama, L.; Frenken, J.W.M.; Heimberg, J.A.; Spaanderman, D.-J.; Glatra van Loon, D.; Zijlstra, T.; Drift, E. van der

    2005-01-01

    In this article, the construction and initial tests of a frictional force microscope are described. The instrument makes use of a microfabricated cantilever that allows one to independently measure the lateral forces in X and Y directions as well as the normal force. We use four fiber-optic interferometers to detect the motion of the sensor in three dimensions. The properties of our cantilevers allow easy and accurate normal and lateral force calibration, making it possible to measure the lateral force on a fully quantitative basis. First experiments on highly oriented pyrolytic graphite demonstrate that the microscope is capable of measuring lateral forces with a resolution down to 15 pN

  3. Toward a microscopic theory of detonations in energetic crystals

    International Nuclear Information System (INIS)

    Peyrard, M.; Odiot, S.

    1991-01-01

    Investigations of microscopic structure of detonation waves are useful for extending our basic understanding of the solid state. In a detonation wave, a crystal cell can be compressed to one-half of its equilibrium size. As a result, detonations probe regions of the atom-atom interaction potential curves that can hardly be investigated by any other means. In this paper the authors describe the first investigations of energetic materials after discussing briefly the molecular dynamics techniques themselves and presenting their application to shock waves in solids. We then focus on two particular topics in which molecular dynamics has brought new insights to the propagation of a detonation wave in a crystal, the role of the crystal structure, and the effects of the different steps in the chemistry. Section V presents a new approach that combines a model for the chemistry with standard molecular dynamics techniques, an approach that extends the domain of investigation of the numerical simulations and provides a step toward a microscopic theory of the propagation of a detonation wave. Section VI discusses the results and the future of these approaches

  4. Microscopic Electron Variations Measured Simultaneously By The Cluster Spacecraft

    Science.gov (United States)

    Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Beloff, N.

    Data is used from the Particle Correlator experiments running on each of the four Cluster spacecraft so as to determine common microscopic behaviour in the elec- tron population observed over the macroscopic Cluster separations. The Cluster par- ticle correlator experiments operate by forming on board Auto Correlation Functions (ACFs) generated from short time series of electron counts obtained, as a function of electron energy, from the PEACE HEEA sensor. The information on the microscopic variation of the electron flux covers the frequency range DC up to 41 kHz (encom- passing typical electron plasma frequencies and electron gyro frequencies and their harmonics), the electron energy range is that covered by the PEACE HEEA sensor (within the range 1 eV to 26 keV). Results are presented of coherent electron struc- tures observed simultaneously by the four spacecraft in the differing plasma interac- tion regions and boundaries encountered by Cluster. As an aid to understanding the plasma interactions, use is made of numerical simulations which model both the un- derlying statistical properties of the electrons and also the manner in which particle correlator experiments operate.

  5. Consistent microscopic and phenomenological analysis of composite particle opticle potential

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sheela; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    A microscopic calculation of composits particle optical potential has been done using a realistic nucleon-helion interaction and folding it with the density distribution of the targets. The second order effects were simulated by introducing a scaling factor which was searched on to reproduce the experimental scattering results. Composite particle optical potential was also derived from the nucleon-nucleus optical potential. The second order term was explicitly treated as a parameter. Elastic scattering of 20 MeV 3 H on targets ranging from 40 Ca to 208 Pb to 208 Pb have also been analysed using phenomenological optical model. Agreement of these results with the above calculations verified the consistency of the microscopic theory. But the equivalent sharp radius calculated with n-helion interaction was observed to be smaller than phenomenological value. This was attributed to the absence of saturation effects in the density-independent interaction used. Saturation has been introduced by a density dependent term of the form (1-c zetasup(2/3)), where zeta is the compound density of the target helion system. (author)

  6. Exchange bias and asymmetric hysteresis loops from a microscopic model of core/shell nanoparticles

    International Nuclear Information System (INIS)

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amilcar

    2007-01-01

    We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromagnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscopic origin of exchange bias observed experimentally. We have found loop shifts in the field direction as well as displacements along the magnetization axis that increase in magnitude when increasing the interfacial exchange coupling. Overlap functions computed from the spin configurations along the loops have been obtained to explain the origin and magnitude of these features microscopically

  7. Influence of the atomic force microscope tip on the multifractal analysis of rough surfaces

    International Nuclear Information System (INIS)

    Klapetek, Petr; Ohlidal, Ivan; Bilek, Jindrich

    2004-01-01

    In this paper, the influence of atomic force microscope tip on the multifractal analysis of rough surfaces is discussed. This analysis is based on two methods, i.e. on the correlation function method and the wavelet transform modulus maxima method. The principles of both methods are briefly described. Both methods are applied to simulated rough surfaces (simulation is performed by the spectral synthesis method). It is shown that the finite dimensions of the microscope tip misrepresent the values of the quantities expressing the multifractal analysis of rough surfaces within both the methods. Thus, it was concretely shown that the influence of the finite dimensions of the microscope tip changed mono-fractal properties of simulated rough surface to multifractal ones. Further, it is shown that a surface reconstruction method developed for removing the negative influence of the microscope tip does not improve the results obtained in a substantial way. The theoretical procedures concerning both the methods, i.e. the correlation function method and the wavelet transform modulus maxima method, are illustrated for the multifractal analysis of randomly rough gallium arsenide surfaces prepared by means of the thermal oxidation of smooth gallium arsenide surfaces and subsequent dissolution of the oxide films

  8. Temperature fluctuations in fully-developed turbulent channel flow with heated upper wall

    Science.gov (United States)

    Bahri, Carla; Mueller, Michael; Hultmark, Marcus

    2013-11-01

    The interactions and scaling differences between the velocity field and temperature field in a wall-bounded turbulent flow are investigated. In particular, a fully developed turbulent channel flow perturbed by a step change in the wall temperature is considered with a focus on the details of the developing thermal boundary layer. For this specific study, temperature acts as a passive scalar, having no dynamical effect on the flow. A combination of experimental investigation and direct numerical simulation (DNS) is presented. Velocity and temperature data are acquired with high accuracy where, the flow is allowed to reach a fully-developed state before encountering a heated upper wall at constant temperature. The experimental data is compared with DNS data where simulations of the same configuration are conducted.

  9. Asymptotic Normality of the Maximum Pseudolikelihood Estimator for Fully Visible Boltzmann Machines.

    Science.gov (United States)

    Nguyen, Hien D; Wood, Ian A

    2016-04-01

    Boltzmann machines (BMs) are a class of binary neural networks for which there have been numerous proposed methods of estimation. Recently, it has been shown that in the fully visible case of the BM, the method of maximum pseudolikelihood estimation (MPLE) results in parameter estimates, which are consistent in the probabilistic sense. In this brief, we investigate the properties of MPLE for the fully visible BMs further, and prove that MPLE also yields an asymptotically normal parameter estimator. These results can be used to construct confidence intervals and to test statistical hypotheses. These constructions provide a closed-form alternative to the current methods that require Monte Carlo simulation or resampling. We support our theoretical results by showing that the estimator behaves as expected in simulation studies.

  10. Designs for a quantum electron microscope

    International Nuclear Information System (INIS)

    Kruit, P.; Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R.; Hammer, J.; Thomas, S.; Weber, P.; Klopfer, B.; Kohstall, C.; Juffmann, T.; Kasevich, M.A.; Hommelhoff, P.; Berggren, K.K.

    2016-01-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This ‘quantum weirdness’ could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or “quantum electron microscope”. A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. - Highlights: • Quantum electron microscopy has the potential of reducing radiation damage. • QEM requires a fraction of the electron wave to pass through the sample

  11. Designs for a quantum electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kruit, P., E-mail: p.kruit@tudelft.nl [Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hammer, J.; Thomas, S.; Weber, P. [Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Staudtstrasse 1, d-91058 Erlangen (Germany); Klopfer, B.; Kohstall, C.; Juffmann, T.; Kasevich, M.A. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Hommelhoff, P. [Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Staudtstrasse 1, d-91058 Erlangen (Germany); Berggren, K.K. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-05-15

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This ‘quantum weirdness’ could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or “quantum electron microscope”. A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. - Highlights: • Quantum electron microscopy has the potential of reducing radiation damage. • QEM requires a fraction of the electron wave to pass through the sample

  12. Simulation of FRET dyes allows quantitative comparison against experimental data

    Science.gov (United States)

    Reinartz, Ines; Sinner, Claude; Nettels, Daniel; Stucki-Buchli, Brigitte; Stockmar, Florian; Panek, Pawel T.; Jacob, Christoph R.; Nienhaus, Gerd Ulrich; Schuler, Benjamin; Schug, Alexander

    2018-03-01

    Fully understanding biomolecular function requires detailed insight into the systems' structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.

  13. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    Science.gov (United States)

    Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren

    2013-01-01

      To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice.   A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope.   The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.

  14. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  15. The trajectories of secondary electrons in the scanning electron microscope.

    Science.gov (United States)

    Konvalina, Ivo; Müllerová, Ilona

    2006-01-01

    Three-dimensional simulations of the trajectories of secondary electrons (SE) in the scanning electron microscope have been performed for plenty of real configurations of the specimen chamber, including all its basic components. The primary purpose was to evaluate the collection efficiency of the Everhart-Thornley detector of SE and to reveal fundamental rules for tailoring the set-ups in which efficient signal acquisition can be expected. Intuitive realizations about the easiness of attracting the SEs towards the biased front grid of the detector have shown themselves likely as false, and all grounded objects in the chamber have been proven to influence the spatial distribution of the signal-extracting field. The role of the magnetic field penetrating from inside the objective lens is shown to play an ambiguous role regarding possible support for the signal collection.

  16. Constitutive modelling of an arterial wall supported by microscopic measurements

    Directory of Open Access Journals (Sweden)

    Vychytil J.

    2012-06-01

    Full Text Available An idealized model of an arterial wall is proposed as a two-layer system. Distinct mechanical response of each layer is taken into account considering two types of strain energy functions in the hyperelasticity framework. The outer layer, considered as a fibre-reinforced composite, is modelled using the structural model of Holzapfel. The inner layer, on the other hand, is represented by a two-scale model mimicing smooth muscle tissue. For this model, material parameters such as shape, volume fraction and orientation of smooth muscle cells are determined using the microscopic measurements. The resulting model of an arterial ring is stretched axially and loaded with inner pressure to simulate the mechanical response of a porcine arterial segment during inflation and axial stretching. Good agreement of the model prediction with experimental data is promising for further progress.

  17. Design of a statically balanced fully compliant grasper

    NARCIS (Netherlands)

    Lamers, A.J.; Gallego Sanchez, J.A.; Herder, Justus Laurens

    2015-01-01

    Monolithic and thus fully compliant surgical graspers are promising when they provide equal or better force feedback than conventional graspers. In this work for the first time a fully compliant grasper is designed to exhibit zero stiffness and zero operation force. The design problem is addressed

  18. Portable smartphone based quantitative phase microscope

    Science.gov (United States)

    Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2018-01-01

    To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.

  19. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  20. Electron microscopic radioautography of the cell

    International Nuclear Information System (INIS)

    Sarkisov, D.S.; Pal'tsyn, A.A.; Vtyurin, B.V.

    1980-01-01

    This monograph is the first one in the world literature that gives th generalised experience in application of the up-to-date method of structural and functional analysis, i.e. of electron-microscopic autography to study the dynamics of intracellular processes under normal conditions as well as under some pathogenic effects. Given herein are the data on synthesis of DNA and RNA in various structures of the nucleus, particularly in nucleoli, the regularities of the synthesis processes in the organellae of the same name are discussed; illustrated are the possibilities of structure analysis of biosynthesis intensity variations in the nucleus and cytoplasma in cells of liver miocardium, granulation tissue at different stages of morphological process; the results of electron-microscopic radioautography application in study of clinical biopsy material are given and the data obtained are discussed in the light of general pathology problems