Sample records for fully hydrated dispersions

  1. Hydration-controlled bacterial motility and dispersal on surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Wang, G.; Gulez, Gamze


    Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably...... resume motility in response to periodic increases in hydration. We propose a biophysical model that captures key effects of hydration and liquid-film thickness on individual cell velocity and use a simple roughness network model to simulate colony expansion. Model predictions match experimental results...... the costs associated with flagella synthesis and explain the sustained presence of flagellated prokaryotes in partially saturated habitats such as soil surfaces....

  2. Effect of Anion Triiodide on the Main Phase Transition of Fully Hydrated Dipalmitoylphosphatidylcholine Bilayers


    Hobai, S.; Fazakas, Z.


    The paper describes the effect of anion I-3 on thermotropic mesomorphism of fully hydrated dipalmitoylphosphatidylcholine bilayers. The biphasic behaviour of melting temperature - I-3 concentration dependence and the increase of DELTA T values with I-3 concentration (DELTA T = melting temperature - freezing temperature) suggest the appearance of interdigitated phase of bilayers induced by I-3 ions.

  3. Molecular dynamics simulations of a fully hydrated dipalmitoyl phosphatidylcholine bilayer with different macroscopic boundary conditions and parameters

    NARCIS (Netherlands)

    Tieleman, D.P; Berendsen, H.J.C.


    We compared molecular dynamics simulations of a bilayer of 128 fully hydrated phospholipid (DPPC) molecules, using different parameters and macroscopic boundary conditions. The same system was studied under constant pressure, constant volume, and constant surface tension boundary conditions, with

  4. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems (United States)

    Vijayamohan, Prithvi

    As oil/gas subsea fields mature, the amount of water produced increases significantly due to the production methods employed to enhance the recovery of oil. This is true especially in the case of oil reservoirs. This increase in the water hold up increases the risk of hydrate plug formation in the pipelines, thereby resulting in higher inhibition cost strategies. A major industry concern is to reduce the severe safety risks associated with hydrate plug formation, and significantly extending subsea tieback distances by providing a cost effective flow assurance management/safety tool for mature fields. Developing fundamental understanding of the key mechanistic steps towards hydrate plug formation for different multiphase flow conditions is a key challenge to the flow assurance community. Such understanding can ultimately provide new insight and hydrate management guidelines to diminish the safety risks due to hydrate formation and accumulation in deepwater flowlines and facilities. The transportability of hydrates in pipelines is a function of the operating parameters, such as temperature, pressure, fluid mixture velocity, liquid loading, and fluid system characteristics. Specifically, the hydrate formation rate and plugging onset characteristics can be significantly different for water continuous, oil continuous, and partially dispersed systems. The latter is defined as a system containing oil/gas/water, where the water is present both as a free phase and partially dispersed in the oil phase (i.e., entrained water in the oil). Since hydrate formation from oil dispersed in water systems and partially dispersed water systems is an area which is poorly understood, this thesis aims to address some key questions in these systems. Selected experiments have been performed at the University of Tulsa flowloop to study the hydrate formation and plugging characteristics for the partially dispersed water/oil/gas systems as well as systems where the oil is completely dispersed

  5. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. (United States)

    Nagle, J F; Zhang, R; Tristram-Nagle, S; Sun, W; Petrache, H I; Suter, R M


    Bilayer form factors obtained from x-ray scattering data taken with high instrumental resolution are reported for multilamellar vesicles of L alpha phase lipid bilayers of dipalmitoylphosphatidylcholine at 50 degrees C under varying osmotic pressure. Artifacts in the magnitudes of the form factors due to liquid crystalline fluctuations have been eliminated by using modified Caillé theory. The Caillé fluctuation parameter eta 1 increases systematically with increasing lamellar D spacing and this explains why some higher order peaks are unobservable for the larger D spacings. The corrected form factors fall on one smooth continuous transform F(q); this shows that the bilayer does not change shape as D decreases from 67.2 A (fully hydrated) to 60.9 A. The distance between headgroup peaks is obtained from Fourier reconstruction of samples with four orders of diffraction and from electron density models that use 38 independent form factors. By combining these results with previous gel phase results, area AF per lipid molecule and other structural quantities are obtained for the fluid L alpha phase. Comparison with results that we derived from previous neutron diffraction data is excellent, and we conclude from diffraction studies that AF = 62.9 +/- 1.3 A2, which is in excellent agreement with a previous estimate from NMR data.

  6. Dynamics of protein and its hydration water: neutron scattering studies on fully deuterated GFP. (United States)

    Nickels, Jonathan D; O'Neill, Hugh; Hong, Liang; Tyagi, Madhusudan; Ehlers, Georg; Weiss, Kevin L; Zhang, Qiu; Yi, Zheng; Mamontov, Eugene; Smith, Jeremy C; Sokolov, Alexei P


    We present a detailed analysis of the picosecond-to-nanosecond motions of green fluorescent protein (GFP) and its hydration water using neutron scattering spectroscopy and hydrogen/deuterium contrast. The analysis reveals that hydration water suppresses protein motions at lower temperatures (high temperatures. Experimental data demonstrate that the hydration water is harmonic at temperatures high temperatures: on the picosecond-to-nanosecond timescale, the hydration water exhibits diffusive dynamics, while the protein motions are localized to temperatures appears to be stronger in GFP than in other globular proteins. We ascribe this observation to the barrellike structure of GFP. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Self-assembled nanostructures of fully hydrated monoelaidin-elaidic acid and monoelaidin-oleic acid systems. (United States)

    Yaghmur, Anan; Sartori, Barbara; Rappolt, Michael


    In recent years, there has been a surge of interest in exploring the effect of trans-fatty acids (TFAs) on biological membrane properties. The research studies are motivated by an increasing body of evidence suggesting that the consumption of TFAs increases the risk of developing negative health effects such as coronary heart disease and cancer. The ultimate goal of studying the lipid-fatty acid interactions at the molecular level is to predict the biological role of fatty acids in cells. In this regard, it is interesting to elucidate the effect of loading TFAs and their counterpart cis-fatty acids (CFAs) on the physical properties of lipid model membranes. Here, the present study focuses on discussing the following: (1) the effect of mixing monoelaidin (ME, TFA-containing lipid) with its counterpart monoolein (MO, CFA-containing lipid) on modulating the fully hydrated self-assembled structure, and (2) the influence of solubilizing oleic acid (OA) and its trans counterpart elaidic acid (EA) on the fully hydrated ME system. The ME model membrane was selected due to its sensitivity to variations in lipid composition and temperature. Synchrotron small-angle X-ray scattering (SAXS) was applied for studying the temperature-dependent structural behavior of the fully hydrated ME/MO-based system prepared with an equal ME/MO weight ratio and also for characterizing the fully hydrated OA- and EA-loaded ME systems. Wide-angle X-ray (WAXS) experiments were also performed for characterizing the formed crystalline lamellar phases at ambient temperatures. The results demonstrate the significant influence of the partial replacement of ME by MO on the phase behavior. The addition of MO induces the lamellar-nonlamellar phase transitions at ambient temperatures and promotes the formation of the inverted type hexagonal (H(2)) phase above 72 °C. The fully hydrated ME/EA and ME/OA systems with their rich polymorphism exhibit an interesting temperature-dependent complex behavior. The

  8. Small-angle scattering studies of the fully hydrated phospholipid DPPC

    Energy Technology Data Exchange (ETDEWEB)

    Mason, P.C.; Gaulin, B.D. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1 (CANADA); Epand, R.M. [Department of Biochemistry, McMaster University, Hamilton, Ontario, L8N 3Z5 (CANADA); Wignall, G.D.; Lin, J.S. [Center for Small-Angle Scattering Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)


    Small-angle neutron and x-ray scattering studies have been carried out on fully hydrated dipalmitoylphosphatidylcholine (DPPC) multilamellar vesicles. This system is known to exhibit two distinct ripple (P{sub {beta}{sup {prime}}}) phases, which depend on sample history, at temperatures intermediate to its high-temperature liquid crystalline (L{sub {alpha}}), phase, and its low-temperature gel (L{sub {beta}{sup {prime}}}), phase. On cooling from the L{sub {alpha}} phase, the P{sub {beta}{sup {prime}}} phase displays a complex multipeak diffraction pattern that differs significantly from the diffraction pattern seen in the P{sub {beta}{sup {prime}}} phase obtained on warming from the L{sub {beta}{sup {prime}}} phase. Examining the P{sub {beta}{sup {prime}}} phase on cooling using small-angle neutron scattering and x-ray diffraction techniques leads to the conclusion that this phase is characterized by a long wavelength ripple ({lambda}{sub r}{approximately}330thinsp{Angstrom}) and a highly monoclinic unit cell ({gamma}{approximately}125{degree}). As the P{sub {beta}{sup {prime}}} phase is traversed in temperature, the ripple wavelength changes significantly while the monoclinicity remains unchanged. Ripples from the P{sub {beta}{sup {prime}}} phase are seen to persist into the L{sub {beta}{sup {prime}}} phase on cooling, leading to increased small-angle scattering characteristic of a disordered stacking of the lamellae. {copyright} {ital 1999} {ital The American Physical Society}

  9. Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments

    International Nuclear Information System (INIS)

    Moridis, George J.; Sloan, E. Dendy


    In this paper, we evaluate the gas production potential of disperse, low-saturation (S H H hydrate-bearing sediments subject to depressurization-induced dissociation over a 10-year production period. We investigate the sensitivity of items (a)-(c) to the following hydraulic properties, reservoir conditions, and operational parameters: intrinsic permeability, porosity, pressure, temperature, hydrate saturation, and constant pressure at which the production well is kept. The results of this study indicate that, despite wide variations in the aforementioned parameters (covering the entire spectrum of such deposits), gas production is very limited, never exceeding a few thousand cubic meters of gas during the 10-year production period. Such low production volumes are orders of magnitude below commonly accepted standards of economic viability, and are further burdened with very unfavorable gas-to-water ratios. The unequivocal conclusion from this study is that disperse, low-S H hydrate accumulations in oceanic sediments are not promising targets for gas production by means of depressurization-induced dissociation, and resources for early hydrate exploitation should be focused elsewhere

  10. NOISY DISPERSION CURVE PICKING (NDCP): a Matlab friendly suite package for fully control dispersion curve picking (United States)

    Granados, I.; Calo, M.; Ramos, V.


    We developed a Matlab suite package (NDCP, Noisy Dispersion Curve Picking) that allows a full control over parameters to identify correctly group velocity dispersion curves in two types of datasets: correlograms between two stations or surface wave records from earthquakes. Using the frequency-time analysis (FTAN), the procedure to obtain the dispersion curves from records with a high noise level becomes difficult, and sometimes, the picked curve result in a misinterpreted character. For correlogram functions, obtained with cross-correlation of noise records or earthquake's coda, a non-homogeneous noise sources distribution yield to a non-symmetric Green's function (GF); to retrieve the complete information contained in there, NDCP allows to pick the dispersion curve in the time domain both in the causal and non-causal part of the GF. Then the picked dispersion curve is displayed on the FTAN diagram to in order to check if it matches with the maximum of the signal energy avoiding confusion with overtones or spike of noise. To illustrate how NDCP performs, we show exemple using: i) local correlograms functions obtained from sensors deployed into a volcanic caldera (Los Humeros, in Puebla, Mexico), ii) regional correlograms functions between two stations of the National Seismological Service (SSN, Servicio Sismológico Nacional in Spanish), and iii) surface wave seismic record for an earthquake located in the Pacific Ocean coast of Mexico and recorded by the SSN. This work is supported by the GEMEX project (Geothermal Europe-Mexico consortium).

  11. Weighted interior penalty discretization of fully nonlinear and weakly dispersive free surface shallow water flows (United States)

    Di Pietro, Daniele A.; Marche, Fabien


    In this paper, we further investigate the use of a fully discontinuous Finite Element discrete formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dispersive flow regime. We consider a decoupling strategy in which we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects. This source term can be computed through the resolution of elliptic second-order linear sub-problems, which only involve second order partial derivatives in space. We then introduce an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistent way. Similar discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dispersive models. These formulations are validated again several benchmarks involving h-convergence, p-convergence and comparisons with experimental data, showing optimal convergence properties.

  12. Novel method reveals a narrow phylogenetic distribution of bacterial dispersers in environmental communities exposed to low hydration conditions

    DEFF Research Database (Denmark)

    Krüger, U. S.; Bak, F.; Aamand, J.


    ), previously used to monitor dispersal of individual bacterial strains in liquid films at the surface of a porous ceramic disc. The novel procedure targets complex communities and captures the dispersed bacteria on a solid medium for growth and detection. The method was first validated by distinguishing motile......In this study, we developed a method that provides community-level surface dispersal profiles under controlled hydration conditions from environmental samples and enables us to isolate and uncover the diversity of the fastest bacterial dispersers. The method expands on the Porous Surface Model (PSM...... Pseudomonas putida and Flavobacterium johnsoniae strains from their non-motile mutants. Applying the method to soil and lake water bacterial communities showed that community-scale dispersal declined as conditions became drier. However, for both communities, dispersal was detected even under low hydration...

  13. Wireless Performance of a Fully Passive Neurorecording Microsystem Embedded in Dispersive Human Head Phantom (United States)

    Schwerdt, Helen N.; Chae, Junseok; Miranda, Felix A.


    This paper reports the wireless performance of a biocompatible fully passive microsystem implanted in phantom media simulating the dispersive dielectric properties of the human head, for potential application in recording cortical neuropotentials. Fully passive wireless operation is achieved by means of backscattering electromagnetic (EM) waves carrying 3rd order harmonic mixing products (2f(sub 0) plus or minus f(sub m)=4.4-4.9 GHZ) containing targeted neuropotential signals (fm approximately equal to 1-1000 Hz). The microsystem is enclosed in 4 micrometer thick parylene-C for biocompatibility and has a footprint of 4 millimeters x 12 millimeters x 500 micrometers. Preliminary testing of the microsystem implanted in the lossy biological simulating media results in signal-to-noise ratio's (SNR) near 22 (SNR approximately equal to 38 in free space) for millivolt level neuropotentials, demonstrating the potential for fully passive wireless microsystems in implantable medical applications.

  14. A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves. (United States)

    Harb, M S; Yuan, F G


    A rapid, fully non-contact, hybrid system which encompasses an air-coupled transducer (ACT) and a laser Doppler vibrometer (LDV) is presented for profiling A0 Lamb wave dispersion of an isotropic aluminum plate. The ACT generates ultrasonic pressure incident upon the surface of the plate. The pressure waves are partially refracted into the plate. The LDV is employed to measure the out-of-plane velocity of the excited Lamb wave mode at some distances where the Lamb waves are formed in the plate. The influence of the ACT angle of incidence on Lamb wave excitation is investigated and Snell's law is used to directly compute Lamb wave dispersion curves including phase and group velocity dispersion curves in aluminum plates from incident angles found to generate optimal A0 Lamb wave mode. The measured curves are compared to results obtained from a two-dimensional (2-D) Fast Fourier transform (FFT), Morlet wavelet transform (MWT) and theoretical predictions. It was concluded that the experimental results obtained using Snell's law concept are well in accordance with the theoretical solutions. The high degree of accuracy in the measured data with the theoretical results proved a high sensitivity of the air-coupled and laser ultrasound in characterizing Lamb wave dispersion in plate-like structures. The proposed non-contact hybrid system can effectively characterize the dispersive relation without knowledge of neither the materials characteristics nor the mathematical model. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Elastic Dispersion and Attenuation in Fully Saturated Sandstones: Role of Mineral Content, Porosity, and Pressures (United States)

    Pimienta, Lucas; Borgomano, Jan V. M.; Fortin, Jérôme; Guéguen, Yves


    Because measuring the frequency dependence of elastic properties in the laboratory is a technical challenge, not enough experimental data exist to test the existing theories. We report measurements of three fluid-saturated sandstones over a broad frequency band: Wilkenson, Berea, and Bentheim sandstones. Those sandstones samples, chosen for their variable porosities and mineral content, are saturated by fluids of varying viscosities. The samples elastic response (Young's modulus and Poisson's ratio) and hydraulic response (fluid flow out of the sample) are measured as a function of frequency. Large dispersion and attenuation phenomena are observed over the investigated frequency range. For all samples, the variation at lowest frequency relates to a large fluid flow directly measured out of the rock samples. These are the cause (i.e., fluid flow) and consequence (i.e., dispersion/attenuation) of the transition between drained and undrained regimes. Consistently, the characteristic frequency correlates with permeability for each sandstone. Beyond this frequency, a second variation is observed for all samples, but the rocks behave differently. For Berea sandstone, an onset of dispersion/attenuation is expected from both Young's modulus and Poisson's ratio at highest frequency. For Bentheim and Wilkenson sandstones, however, only Young's modulus shows dispersion/attenuation phenomena. For Wilkenson sandstone, the viscoelastic-like dispersion/attenuation response is interpreted as squirt flow. For Bentheim sandstone, the second effect does not fully follow such response, which could be due to a lower accuracy in the measured attenuation or to the occurence of another physical effect in this rock sample.

  16. Large Eddy Simulation of Turbulence Modification and Particle Dispersion in a Fully-Developed Pipe Flow (United States)

    Rani, Sarma; Pratap Vanka, Surya


    A LES study of the modification of turbulence in a fully-developed turbulent pipe flow by dispersed heavy particles at Re_τ = 360 is presented. A 64 (radial) x 64 (azimuthal) x 128 (axial) grid has been used. An Eulerian-Lagrangian approach has been used for treating the continuous and the dispersed phases respectively. The particle equation of motion included only the drag force. Three different LES models are used in the continuous fluid simulation: (i) A “No-Model” LES (coarse-grid DNS) (ii) Smagorinsky’s model and (iii) Schumann’s model . The motivation behind employing the Schumann’s model is to study the impact of sub-grid-scale fluctuations on the particle motion and their (SGS fluctuations) modulation, in turn, by the particles. The effect of particles on fluid turbulence is investigated by tracking 100000 particles of different diameters. Our studies confirm the preferential concentration of particles in the near wall region. It is observed that the inclusion of two-way coupling reduces the preferential concentration of particles. In addition, it was found that two-way coupling attenuates the fluid turbulence. However, we expect the above trends to differ depending upon the particle diameter, volumetric and mass fractions. The effect of SGS fluctuations on the particle dispersion and turbulence modulation is also being investigated. Other relevant statistics for the continuous and the dispersed phases are collected for the cases of one-way and two-way coupling. These statistics are compared to study the modulation of turbulence by the particles.

  17. Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes


    A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... of the evolution of waves. The model is analyzed using random sampling techniques and nonintrusive methods based on generalized polynomial chaos (PC). These methods allow us to accurately and efficiently estimate the probability distribution of the solution and require only the computation of the solution...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...


    Directory of Open Access Journals (Sweden)

    V. N. Yaglov


    Full Text Available Road construction is one of the most material-intensive industrial production. In this context, the urgent task for this branch is the maximum reduction in consumption of materials through usage of effective local materials, decrease energy intensity of processes by using new materials. The developed network of local roads require constant care and maintenance, thus it is advisable to consider the use of protective coatings for such roads on the basis of contactcondensation hardening, which can be obtained on the basis of local raw materials. One of the representatives of such material is disperse hydrated calcium silicate, which found wide practical application as the main components in the production of building materials, glass, glass ceramics and ceramic products. For example, relatively cheap highly dispersed crystalline material is intermediate product of hydrochemical synthesis of wollastonite xonotlite Ca6(Si6O17(OH2. A variety of calcium and silicon-containing raw materials, suitable to obtain various types hydrated calcium silicate, as well as increasing requirements for physical and chemical properties, caused by actuality of problems of search and study the best ways of synthesis hydrated calcium silicate from man-made and natural materials. The theoretical basis of the proposed technology for material production for road pavement lower categories is the ability of silicate dispersed materials transferred in an unstable state, forming a rock-like waterproof body at the time of application of mechanical load. Disperse hydrated calcium silicate are the most typical representatives of contactcondensation hardening binders. It should be noted that the technology of obtaining these binders is not related to high-temperature processes and the synthesis of HCS realized when wet treatment of available cheap raw materials on the standard equipment, what determines their practical significance.


    Directory of Open Access Journals (Sweden)

    Han Wang


    Full Text Available Nano-TiO ₂ and sulphoaluminate cement have been received sustained attention due to their environment-friendly characteristic, respectively. Particular attention was paid to their materials composite. To better understand the effect of nano-TiO ₂ on sulphoaluminate cement hydration and its application in photo-degradation, the composite systems of cement paste (mortar with well-dispersed nano-TiO ₂ were investigated by mechanical analysis, Rietveld/XRD, SEM, porosity analysis and photocatalytic test. The results reveal that nano-TiO ₂ can be well dispersed under ultrasonic treatment of 15min when the sodium hexametaphosphat is chosen as the dispersant. And the well-dispersed nano-TiO ₂, with the dosage of 0.2wt%, has the most significant effect on the mechanical improvement. Micro-analysis show that the mechanical promotion by nano-TiO ₂ is not attributed to the hydration degree increase but microstructure optimization. It is reflected in the decrease of porosity, mainly affecting the transitional pores (D=10~100nm, and spatial structures modification of cement paste where AFt was more likely to form as needle shape with shorter length-diameter ratio. The photocatalytic test demonstrates that the composite system (cement paste has long-term effective photo-degradation property.

  20. Hydration lubrication and shear-induced self-healing of lipid bilayer boundary lubricants in phosphatidylcholine dispersions. (United States)

    Sorkin, Raya; Kampf, Nir; Zhu, Linyi; Klein, Jacob


    Measurements of normal and shear (frictional) forces between mica surfaces across small unilamellar vesicle (SUV) dispersions of the phosphatidylcholine (PC) lipids DMPC (14:0), DPPC (16:0) and DSPC (18:0) and POPC (16:0, 18:1), at physiologically high pressures, are reported. We have previously studied the normal and shear forces between two opposing surfaces bearing PC vesicles across pure water and showed that liposome lubrication ability improved with increasing acyl chain length, and correlated strongly with the SUV structural integrity on the substrate surface (DSPC > DPPC > DMPC). In the current study, surprisingly, we discovered that this trend is reversed when the measurements are conducted in SUV dispersions, instead of pure water. In their corresponding SUV dispersion, DMPC SUVs ruptured and formed bilayers, which were able to provide reversible and reproducible lubrication with extremely low friction (μ lubrication, but with slightly higher friction coefficients (μ = 10(-3)-10(-4)). We believe these differences originate from fast self-healing of the softer surface layers (which are in their liquid disordered phase, POPC, or close to it, DMPC), which renders the robustness of the DPPC or DSPC (both in their solid ordered phase) less important in these conditions. Under these circumstances, the enhanced hydration of the less densely packed POPC and DMPC surface layers is now believed to play an important role, and allows enhanced lubrication via the hydration lubrication mechanism. Our findings may have implications for the understanding of complex biological systems such us biolubrication of synovial joints.

  1. Description of nucleon scattering on 208Pb by a fully Lane-consistent dispersive spherical optical model potential (United States)

    Sun, W. L.; Wang, J.; Soukhovitskii, E. Sh.; Capote, R.; Quesada, J. M.


    A fully Lane-consistent dispersive spherical optical potential is proposed to describe nucleon scattering interaction with doubly magic nucleus 208Pb up to 200 MeV. The experimental neutron total cross sections, elastically scattered nucleon angular distributions and (p,n) data had been used to search the potential parameters. Good agreement between experiments and the calculations with this potential is observed. Meanwhile, the application of the determined optical potential with the same parameters to neighbouring near magic Pb-Bi isotopes is also examined to show the predictive power of this potential.

  2. Fully-automated in-syringe dispersive liquid-liquid microextraction for the determination of caffeine in coffee beverages. (United States)

    Frizzarin, Rejane M; Maya, Fernando; Estela, José M; Cerdà, Víctor


    A novel fully-automated magnetic stirring-assisted lab-in-syringe analytical procedure has been developed for the fast and efficient dispersive liquid-liquid microextraction (DLLME) of caffeine in coffee beverages. The procedure is based on the microextraction of caffeine with a minute amount of dichloromethane, isolating caffeine from the sample matrix with no further sample pretreatment. Selection of the relevant extraction parameters such as the dispersive solvent, proportion of aqueous/organic phase, pH and flow rates have been carefully evaluated. Caffeine quantification was linear from 2 to 75mgL(-1), with detection and quantification limits of 0.46mgL(-1) and 1.54mgL(-1), respectively. A coefficient of variation (n=8; 5mgL(-1)) of a 2.1% and a sampling rate of 16h(-1), were obtained. The procedure was satisfactorily applied to the determination of caffeine in brewed, instant and decaf coffee samples, being the results for the sample analysis validated using high-performance liquid chromatography. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Concretos refratários preparados com alumina hidratável: efeito dos dispersantes Refractory castables prepared with hydratable alumina: the dispersant effect

    Directory of Open Access Journals (Sweden)

    I. R. Oliveira


    Full Text Available Uma alumina de transição capaz de formar fases hidratadas em água tem sido utilizada como ligante hidráulico alternativo para concretos refratários. Entretanto, têm-se observado que a secagem de concretos preparados com este ligante é normalmente mais lenta do que no caso de composições contendo cimento. Essa característica pode favorecer a pressurização do vapor de água gerado no interior do concreto durante a secagem, podendo culminar na explosão do revestimento refratário. O presente trabalho teve como objetivo relacionar o tipo de aditivo utilizado no processamento de concretos refratários com seu comportamento de secagem e resistência mecânica, por meio da atuação do aditivo na dispersão da matriz do concreto e no mecanismo de hidratação do ligante. Embora a dispersão das partículas do ligante mostre-se primordial no desenvolvimento das fases hidratadas, o total recobrimento da superfície das partículas pelo aditivo ácido cítrico desfavoreceu a hidratação gerando defeitos nos corpos e comprometendo a sua aplicação. Por outro lado, os aditivos poliméricos foram apontados como os mais efetivos para conciliar dispersão e desenvolvimento de fases hidratadas com conseqüente ganho de resistência mecânica.A reactive alumina able of forming hydrated phases in water has been used as an alternative hydraulic binder in refractory castables. However, it has been observed that the drying of these materials is usually slower comparing to cement containing compositions. Due to reduction of the permeability, this aspect increases the difficult of the vapor migration and can promote water vapor pressurization inside the structure and, eventually, explosion of refractories. Additives usually used in refractory castables, in order to promote matrix dispersion, are shown to affect the hydratable alumina hydration mechanism. The dispersion of binder particles presents a main role in the development of hydratable phases but

  4. Study of dispersive and nonlinear effects of coastal wave dynamics with a fully nonlinear potential flow model (United States)

    Benoit, Michel; Yates, Marissa L.; Raoult, Cécile


    Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the

  5. Development of fully amorphous dispersions of a low T(g) drug via co-spray drying with hydrophilic polymers. (United States)

    Zhao, Min; Barker, Susan A; Belton, Peter S; McGregor, Caroline; Craig, Duncan Q M


    The aim of the study was to prepare molecular dispersions of a physically highly unstable amorphous drug, paracetamol (acetaminophen with a T(g) of ca. 25°C) via co-spray drying with a variety of polymers. Solid dispersions at a range of drug loadings (10-90%w/w) using hydroxypropyl methylcellulose/acetate succinate (HPMC/HPMC AS), polyvinylpyrrolidone (PVP) and copovidone were produced and characterised by modulated temperature differential scanning calorimetry (MTDSC), thermogravimetric analysis (TGA), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). PVP-based polymers showed a greater tendency than the HPMC-based group to generate temperature-stable dispersions. In particular, copovidone (Plasdone® S-630) was found to be the most effective of the polymers studied and could formulate molecular dispersions at drug loadings up to and including 40%w/w. However, no evidence for direct drug-polymer interactions was found for such systems as a possible stabilising mechanism. The expected relationship of a higher T(g) of the polymer leading to greater stabilisation was not observed, while there was an inverse relationship between viscosity grade and amorphous phase generation. The study has therefore shown that temperature-stable amorphous dispersions of a low T(g) drug may be prepared by co-spray drying, particularly using PVP-based polymers. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Fully automated, wavelength dispersive X-ray fluorescence analysis of uranium and plutonium in reprocessing plant solutions

    International Nuclear Information System (INIS)

    Mainka, E.; Neuber, J.; Wertenbach, H.; Berg, R.; Stojanik, B.; Fueger, B.


    A fully automated, computer-operated X-ray fluorescence system is described. Based on experience gained wih earlier systems, and taking into account a plant operator's requirements, a robust, pneumatically operated modular system was constructed. The problems encountered in adapting the system to glove-boxes; the features of the sample preparation; control of the system; and the calculation of the results, are outlined. A comparison between a scanning and a 7-channel X-ray fluorescence spectrometer was experimentally established. Measurement results are reported. (author)

  7. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-I: Theory and method

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin


    As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained

  8. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко


    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  9. Historical methane hydrate project review (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta


    which have been effectively used to collect invaluable geologic and engineering data on the occurrence of methane hydrates throughout the world. Technologies designed specifically for the collection and analysis of undisturbed methane hydrate samples have included the development of a host of pressure core systems and associated specialty laboratory apparatus. The study and use of both wireline conveyed and logging-­‐while-­‐drilling technologies have also contributed greatly to our understanding of the in-­‐situ nature of hydrate-­‐bearing sediments. Recent developments in borehole instrumentation specifically designed to monitor changes associated with hydrates in nature through time or to evaluate the response of hydrate accumulations to production have also contributed greatly to our understanding of the complex nature and evolution of methane hydrate systems.Our understanding of how methane hydrates occur and behave in nature is still growing and evolving – we do not yet know if methane hydrates can be economically produced, nor do we know fully the role of hydrates as an agent of climate change or as a geologic hazard. But it is known for certain that scientific drilling has contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information to advance our understanding of methane hydrates.

  10. Chloral Hydrate (United States)

    ... if you are allergic to chloral hydrate, aspirin, tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature, away from excess ...

  11. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    Fuels in India’s Energy Future. Workshop on “Alternate Fuels in India’s Energy Future”, held at Hotel International, New Delhi,19 Sept 2006 , Jointly organised by CII,ERM and British High Commission Bangs, N.L., D.S. Sawyer, X. Golovchenko... hydrates: relevance to world margin stability and climatic change, Tutorial book: Gent, Belgium, pp. 1-37. Sloan, E. D., 1998, Clathrate hydrates of natural gases. 2 nd edition: Marcel Dekker, Inc., New York, pp705. Stakes...

  12. Hydration mechanisms of mineral trioxide aggregate. (United States)

    Camilleri, J


    To report the hydration mechanism of white mineral trioxide aggregate (White MTA, Dentsply, Tulsa Dental Products, Tulsa, OK, USA). The chemical constitution of white MTA was studied by viewing the powder in polished sections under the scanning electron microscope (SEM). The hydration of both white MTA and white Portland cement (PC) was studied by characterizing cement hydrates viewed under the SEM, plotting atomic ratios, performing quantitative energy dispersive analyses with X-ray (EDAX) and by calculation of the amount of anhydrous clinker minerals using the Bogue calculation. Un-hydrated MTA was composed of impure tri-calcium and di-calcium silicate and bismuth oxide. The aluminate phase was scarce. On hydration the white PC produced a dense structure made up of calcium silicate hydrate, calcium hydroxide, monosulphate and ettringite as the main hydration products. The un-reacted cement grain was coated with a layer of hydrated cement. In contrast MTA produced a porous structure on hydration. Levels of ettringite and monosulphate were low. Bismuth oxide was present as un-reacted powder but also incorporated with the calcium silicate hydrate. White MTA was deficient in alumina suggesting that the material was not prepared in a rotary kiln. On hydration this affected the production of ettringite and monosulphate usually formed on hydration of PC. The bismuth affected the hydration mechanism of MTA; it formed part of the structure of C-S-H and also affected the precipitation of calcium hydroxide in the hydrated paste. The microstructure of hydrated MTA would likely be weaker when compared with that of PC.

  13. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-II: Applications by coupling with COREDAX

    International Nuclear Information System (INIS)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin


    In Part I of this paper, the two-temperature homogenized model for the fully ceramic microencapsulated fuel, in which tristructural isotropic particles are randomly dispersed in a fine lattice stochastic structure, was discussed. In this model, the fuel-kernel and silicon carbide matrix temperatures are distinguished. Moreover, the obtained temperature profiles are more realistic than those obtained using other models. Using the temperature-dependent thermal conductivities of uranium nitride and the silicon carbide matrix, temperature-dependent homogenized parameters were obtained. In Part II of the paper, coupled with the COREDAX code, a reactor core loaded by fully ceramic microencapsulated fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure is analyzed via a two-temperature homogenized model at steady and transient states. The results are compared with those from harmonic- and volumetric-average thermal conductivity models; i.e., we compare keff eigenvalues, power distributions, and temperature profiles in the hottest single channel at a steady state. At transient states, we compare total power, average energy deposition, and maximum temperatures in the hottest single channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized model for Doppler temperature feedback lead to significant differences

  14. Airborne infection in a fully air-conditioned hospital. IV. Airborne dispersal of Staphylococcus aureus and its nasal acquisition by patients. (United States)

    Lidwell, O M; Brock, B; Shooter, R A; Cooke, E M; Thomas, G E


    Studies in a newly built hospital furnished with complete air conditioning where most of the patients are nursed in 6-bed rooms showed that the transfer of air from one patient room to another was very small, especially when there was substantial flow of air in a consistent direction between the patient rooms and the corridor, and that the direct transfer of airborne particles was even less. There was, however, no evidence of any reduction in the rates of nasal acquisition of Staphylococcus aureus compared with those to be found in naturally ventilated hospitals. The numbers of Staph. aureus found in the air of a given room that appeared to have originated from patient carriers in other rooms were many times greater than could be accounted for by direct airborne transfer. Although there was evidence that many carriers were not detected, detailed study showed that this excess transfer to the air of other rooms was genuine. It seems probable on the basis of investigations in this hospital and elsewhere that this excess transfer occurs indirectly, through dispersal from the clothing of the nursing and medical staff into the air of another room of strains with which their outer clothes have become contaminated while dealing with patients. Reduction in direct airborne transfer of micro-organisms from one room to another, whether by ventilation or other means, can only be of clinical advantage if transfer by other routes is, or can be made, less than that by the direct airborne route.

  15. Study of Formation Mechanisms of Gas Hydrate (United States)

    Yang, Jia-Sheng; Wu, Cheng-Yueh; Hsieh, Bieng-Zih


    observed was located just below the gas-water contact. The open-system dynamic model showed that the hydrates were basically uniformly distributed in a homogeneous porous media at a constant gas migration rate. However, if the gas migration rate was extremely low, the hydrates will tend to concentrate at the bottom of water zone (i.e. at the first contact of the water and the flowed gas) and finally blocked the vertical flow of gas. The models we designed can be scaled up to a field scale, and the research findings from this study can be contributed to the dispersion analysis of an in-situ hydrate reservoir.

  16. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model—I: Theory and Method

    Directory of Open Access Journals (Sweden)

    Yoonhee Lee


    Full Text Available As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1 matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2 preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1 they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2 they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

  17. Fully quantal calculation of H{sub 2} translation-rotation states in the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound

    Energy Technology Data Exchange (ETDEWEB)

    Felker, Peter M., E-mail: [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569 (United States)


    The quantal translation-rotation (TR) states of the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound have been computed. The ten-dimensional problem (in the rigid-cage and rigid-H{sub 2} approximation) is solved by first approximating the H{sub 2} moieties as spherically symmetric and solving for their 6D translational eigenstates. These are then combined with H{sub 2} free rotational states in a product basis that is used to diagonalize the full TR hamiltonian. The computed low-energy eigenstates have translational components that are essentially identical to the 6D translational eigenstates and rotational components that are 99.9% composed of rotationally unexcited H{sub 2} moieties. In other words, TR coupling is minimal for the low-energy states of the species. The low-energy level structure is found to be substantially more congested than that of the more tightly packed (p-H{sub 2}){sub 4}@5{sup 12}6{sup 4} clathrate species. The level structure is also shown to be understandable in terms of a model of (H{sub 2}){sub 2} as a semirigid diatomic species consisting of two spherically symmetric H{sub 2} pseudo-atoms.

  18. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01 (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna


    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  19. Naphthenic acids hydrates of gases: influence of the water/oil interface on the dispersing properties of an acidic crude oil; Acides naphteniques hydrates de gaz de l'interface eau/huile sur les proprietes dispersantes d'un brut acide

    Energy Technology Data Exchange (ETDEWEB)

    Arla, D.


    Nowadays, the development of offshore oil production under increasing water depths (high pressures and low temperatures) has led oil companies to focus on gas hydrates risks. Hydrates are crystals containing gas and water molecules which can plug offshore pipelines. It has been shown that some asphaltenic crude oils stabilize water-in-oil emulsions (W/O) during several months and exhibit very good anti-agglomerant properties avoiding hydrate plugs formation. In this work, we have studied the 'anti-hydrate' properties of a West African acidic crude oil called crude AH. This oil contains naphthenic acids, RCOOH hydrocarbons which are sensitive to both the pH and the salinity of the water phase.The emulsifying properties of the crude AH have firstly been explored. It has been shown that heavy resins and asphaltenes are the main compounds of the crude AH responsible for the long term stability of the W/O emulsions whereas the napthenates RCOO{sup -} lead to less stable W/O emulsions. Dealing with hydrates, the crude AH exhibits moderate anti-agglomerant properties due to the presence of heavy resins and asphaltenes. However, the naphthenates RCOO{sup -} drastically increase the formation of hydrate plugs. Moreover, it has been pointed out that hydrate particles agglomeration accelerates the kinetics of hydrate formation and enhances the water/oil separation. In order to explain these behaviours, a mechanism of agglomeration by 'sticking' between a hydrate particle and a water droplet has been proposed. Finally, we have developed a model which describes the physico-chemical equilibria of the naphthenic acids in the binary system water/crude AH, in order to transpose the results obtained in the laboratory to the real oil field conditions. (author)

  20. Artificial Hydration and Nutrition (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  1. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.


    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...... seven days, dilatometers were manually recorded during at least 56 days. The dispersion model was applied to fit chemical shrinkage results and to estimate the maximum (or ultimate) value for calculation of degree of hydration. Except for a pure Portland cement best fits were obtained by the general...

  2. Gas hydrate and humans (United States)

    Kvenvolden, K.A.


    The potential effects of naturally occurring gas hydrate on humans are not understood with certainty, but enough information has been acquired over the past 30 years to make preliminary assessments possible. Three major issues are gas hydrate as (1) a potential energy resource, (2) a factor in global climate change, and (3) a submarine geohazard. The methane content is estimated to be between 1015 to 1017 m3 at STP and the worldwide distribution in outer continental margins of oceans and in polar regions are significant features of gas hydrate. However, its immediate development as an energy resource is not likely because there are various geological constraints and difficult technological problems that must be solved before economic recovery of methane from hydrate can be achieved. The role of gas hydrate in global climate change is uncertain. For hydrate methane to be an effective greenhouse gas, it must reach the atmosphere. Yet there are many obstacles to the transfer of methane from hydrate to the atmosphere. Rates of gas hydrate dissociation and the integrated rates of release and destruction of the methane in the geo/hydro/atmosphere are not adequately understood. Gas hydrate as a submarine geohazard, however, is of immediate and increasing importance to humans as our industrial society moves to exploit seabed resources at ever-greater depths in the waters of our coastal oceans. Human activities and installations in regions of gas-hydrate occurrence must take into account the presence of gas hydrate and deal with the consequences of its presence.

  3. Hydrate Shell Growth Measured Using NMR. (United States)

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L


    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.

  4. Nanoscale imaging and analysis of fully hydrated materials (United States)

    Jungjohann, Katherine Leigh

    The study of nanomaterials in a liquid environment can provide insight to processes and dynamics with applications to energy storage materials, catalysis, nanomaterial growth and biological structures. For these applications we have developed techniques for the use of a dedicated in situ fluid holder in combination with aberration corrected scanning transmission electron microscopy (STEM) and dynamic transmission electron microscopy for imaging nanomaterials at atomic-scale resolution within a fluid layer. The abilities of the in situ fluid holder for STEM have been tested by comparing the SiN window thicknesses to optimize imaging conditions and the use electron energy loss spectroscopy to accurately measure the fluid path length within the cell and provide chemical analysis. The imaging artifacts caused by the high energy scanning electron beam have been investigated to determine the causes of bubbling, contamination and charging within the fluid cell for strategies to mitigate these effects. The use of the DTEM has demonstrated the growth of lead sulfide nanoparticles from a precursor solution by the sample drive laser separate from the imaging electrons. These techniques present the ideal platform for future studies of biological structures and dynamics at physiological conditions under low dose imaging with high temporal and spatial resolution.

  5. Electrical properties of polycrystalline methane hydrate (United States)

    Du Frane, W. L.; Stern, L.A.; Weitemeyer, K.A.; Constable, S.; Pinkston, J.C.; Roberts, J.J.


    Electromagnetic (EM) remote-sensing techniques are demonstrated to be sensitive to gas hydrate concentration and distribution and complement other resource assessment techniques, particularly seismic methods. To fully utilize EM results requires knowledge of the electrical properties of individual phases and mixing relations, yet little is known about the electrical properties of gas hydrates. We developed a pressure cell to synthesize gas hydrate while simultaneously measuring in situ frequency-dependent electrical conductivity (σ). Synthesis of methane (CH4) hydrate was verified by thermal monitoring and by post run cryogenic scanning electron microscope imaging. Impedance spectra (20 Hz to 2 MHz) were collected before and after synthesis of polycrystalline CH4 hydrate from polycrystalline ice and used to calculate σ. We determined the σ of CH4 hydrate to be 5 × 10−5 S/m at 0°C with activation energy (Ea) of 30.6 kJ/mol (−15 to 15°C). After dissociation back into ice, σ measurements of samples increased by a factor of ~4 and Ea increased by ~50%, similar to the starting ice samples.

  6. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal


    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  7. Gas hydrate in nature (United States)

    Ruppel, Carolyn D.


    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  8. Origins of hydration lubrication. (United States)

    Ma, Liran; Gaisinskaya-Kipnis, Anastasia; Kampf, Nir; Klein, Jacob


    Why is friction in healthy hips and knees so low? Hydration lubrication, according to which hydration shells surrounding charges act as lubricating elements in boundary layers (including those coating cartilage in joints), has been invoked to account for the extremely low sliding friction between surfaces in aqueous media, but not well understood. Here we report the direct determination of energy dissipation within such sheared hydration shells. By trapping hydrated ions in a 0.4-1 nm gap between atomically smooth charged surfaces as they slide past each other, we are able to separate the dissipation modes of the friction and, in particular, identify the viscous losses in the subnanometre hydration shells. Our results shed light on the origins of hydration lubrication, with potential implications both for aqueous boundary lubricants and for biolubrication.

  9. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)



    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  10. Micromechanical cohesion force measurements to determine cyclopentane hydrate interfacial properties. (United States)

    Aman, Zachary M; Joshi, Sanjeev E; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A


    Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Fundamental challenges to methane recovery from gas hydrates (United States)

    Servio, P.; Eaton, M.W.; Mahajan, D.; Winters, W.J.


    The fundamental challenges, the location, magnitude, and feasibility of recovery, which must be addressed to recover methane from dispersed hydrate sources, are presented. To induce dissociation of gas hydrate prior to methane recovery, two potential methods are typically considered. Because thermal stimulation requires a large energy input, it is less economically feasible than depressurization. The new data will allow the study of the effect of pressure, temperature, diffusion, porosity, tortuosity, composition of gas and water, and porous media on gas-hydrate production. These data also will allow one to improve existing models related to the stability and dissociation of sea floor hydrates. The reproducible kinetic data from the planned runs together with sediment properties will aid in developing a process to economically recover methane from a potential untapped hydrate source. The availability of plentiful methane will allow economical and large-scale production of methane-derived clean fuels to help avert future energy crises.

  12. Site Selection for DOE/JIP Gas Hydrate Drilling in the Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Collett, T.S. (USGS); Riedel, M. (McGill Univ., Montreal, Quebec, Canada); Cochran, J.R. (Columbia Univ., Palisades, NY); Boswell, R.M.; Kumar, Pushpendra (Oil and Natural Gas Corporation Ltd., Navi Mumbai, India); Sathe, A.V. (Oil and Natural Gas Corporation Ltd., Uttaranchal, INDIA)


    Studies of geologic and geophysical data from the offshore of India have revealed two geologically distinct areas with inferred gas hydrate occurrences: the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The Indian National Gas Hydrate Program (NGHP) Expedition 01 was designed to study the occurrence of gas hydrate off the Indian Peninsula and along the Andaman convergent margin with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. NGHP Expedition 01 established the presence of gas hydrates in Krishna- Godavari, Mahanadi and Andaman basins. The expedition discovered one of the richest gas hydrate accumulations yet documented (Site 10 in the Krishna-Godavari Basin), documented the thickest and deepest gas hydrate stability zone yet known (Site 17 in Andaman Sea), and established the existence of a fully-developed gas hydrate system in the Mahanadi Basin (Site 19).

  13. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.


    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  14. Gas Hydrate Growth Kinetics: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Remi-Erempagamo Tariyemienyo Meindinyo


    Full Text Available Gas hydrate growth kinetics was studied at a pressure of 90 bars to investigate the effect of temperature, initial water content, stirring rate, and reactor size in stirred semi-batch autoclave reactors. The mixing energy during hydrate growth was estimated by logging the power consumed. The theoretical model by Garcia-Ochoa and Gomez for estimation of the mass transfer parameters in stirred tanks has been used to evaluate the dispersion parameters of the system. The mean bubble size, impeller power input per unit volume, and impeller Reynold’s number/tip velocity were used for analyzing observed trends from the gas hydrate growth data. The growth behavior was analyzed based on the gas consumption and the growth rate per unit initial water content. The results showed that the growth rate strongly depended on the flow pattern in the cell, the gas-liquid mass transfer characteristics, and the mixing efficiency from stirring. Scale-up effects indicate that maintaining the growth rate per unit volume of reactants upon scale-up with geometric similarity does not depend only on gas dispersion in the liquid phase but may rather be a function of the specific thermal conductance, and heat and mass transfer limitations created by the limit to the degree of the liquid phase dispersion is batched and semi-batched stirred tank reactors.

  15. Methane Hydrates: Chapter 8 (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott


    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  16. Methods for Additive Hydration Allowing Observation of Fully Hydrated State of Wet Samples in Environmental SEM

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém


    Roč. 70, č. 2 (2007), s. 95-100 ISSN 1059-910X R&D Projects: GA ČR(CZ) GA102/05/0886; GA AV ČR KJB200650602 Institutional research plan: CEZ:AV0Z20650511 Keywords : agar * natural structure * biological specimens * environmental SEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.644, year: 2007

  17. Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid–Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase


    Sánchez, Raquel; Horstkotte, Burkhard; Fikarová, Kateřina; Sklenářová, Hana; Maestre, Salvador E.; Miró, Manuel; Todolí Torró, José Luis


    A proof of concept study involving the online coupling of automatic dispersive liquid–liquid microextraction (DLLME) to inductively coupled plasma optical emission spectrometry (ICP OES) with direct introduction and analysis of the organic extract is herein reported for the first time. The flow-based analyzer features a lab-in-syringe (LIS) setup with an integrated stirring system, a Meinhard nebulizer in combination with a heated single-pass spray chamber, and a rotary injection valve, used ...

  18. Investigation of C3S hydration mechanism by transmission electron microscope (TEM) with integrated Super-XTMEDS system. (United States)

    Sakalli, Y; Trettin, R


    Tricalciumsilicate (C 3 S, Alite) is the major component of the Portland cement clinker. Hydration of Alite is decisive in influencing the properties of the resulting material. This is due to its high content in cement. The mechanism of the hydration of C 3 S is very complicated and not yet fully understood. There are different models describing the hydration of C 3 S in various ways. In this work for a better understanding of hydration mechanism, the hydrated C 3 S was investigated by using the transmission electron microscope (TEM) and for the first time, the samples for the investigations were prepared by using of focused ion beam from sintered pellets of C 3 S. Also, an FEI Talos F200x with an integrated Super-X EDS system was used for the investigations. FEI Talos F200X combines outstanding high-resolution S/TEM and TEM imaging with energy dispersive X-ray spectroscopy signal detection, and 3D chemical characterization with compositional mapping. TEM is a very powerful tool for material science. A high energy beam of electrons passes through a very thin sample, and the interactions between the electrons and the atoms can be used to observe the structure of the material and other features in the structure. TEM can be used to study the growth of layers and their composition. TEM produces high-resolution, two-dimensional images and will be used for a wide range of educational, science and industry applications. Chemical analysis can also be performed. The purpose of these investigations was to get the information about the composition of the C-S-H phases and some details of the nanostructure of the C-S-H phases. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  19. Molecular analysis of petroleum derived compounds that adsorb onto gas hydrate surfaces

    International Nuclear Information System (INIS)

    Borgund, Anna E.; Hoiland, Sylvi; Barth, Tanja; Fotland, Per; Askvik, Kjell M.


    Field observations have shown that some streams of water, gas and crude oil do not form gas hydrate plugs during petroleum production even when operating within thermodynamic conditions for hydrate formation. Also, when studied under controlled laboratory conditions, some oils are found to form hydrate dispersed systems whereas others form plugs. Oils with low tendency to form hydrate plugs are believed to contain natural hydrate plug inhibiting components (NICs) that adsorb onto the hydrate surface, making them less water-wet and preventing the particles from agglomerating into large hydrate clusters. The molecular structure of the NICs is currently unknown. In this work, hydrate adsorbing components were extracted from crude oils using freon hydrates as an extraction phase. The fractions were found to be enriched in polar material, and more polar material is associated with hydrates generated in biodegraded crude oils than in non-biodegraded oils. Various fractionation schemes and analytical techniques have been applied in the search for molecular characterisation. The average molecular weights were found to be approximately 500 g/mole. GC-MS chromatograms show a large UCM (Unresolved Complex Mixture). Thus, GC-MS has a limited potential for identification of compounds. A commercial biosurfactant was used as a model compound in the search for similar structures in the extracts. The results from analysis of the hydrate adsorbing components suggest that the type and structure are more important for hydrate morphology than the amount of material adsorbed.

  20. Protein hydration and dynamics

    International Nuclear Information System (INIS)

    Nakagawa, Hiroshi; Kataoka, Mikio


    Inelastic neutron scattering can measure the protein thermal fluctuations under the physiological aqueous environment, especially it is powerful to observe the low-energy protein dynamics in THz region, which are revealed theoretically to be coupled with solvations. Neutron enables the selective observation of protein and hydration water by deuteration. The complementary analysis with molecular dynamics simulation is also effective for the study of protein hydration. Some examples of the application toward the understanding of molecular basis of protein functions will be introduced. (author)

  1. Hydration dynamics of protein molecules in aqueous solution: Unity ...

    Indian Academy of Sciences (India)


    Aug 26, 2016 ... Dielectric dispersion and NMRD experiments have revealed that a significant fraction of water molecules in the hydration shell of various proteins do not exhibit any slowing down of dynamics. This is usually attributed to the presence of the hydrophobic residues (HBR) on the surface, although HBRs alone ...

  2. Phosphate vibrations as reporters of DNA hydration (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  3. Manufacture of Methane Hydrate using Carbon Nano Tubes

    International Nuclear Information System (INIS)

    Park, Sung Seek


    Methane hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. More than 99% of naturally produced methane hydrate consists of methane, and is widely dispersed in the continental slope and continental Shelf of the Pacific and the Atlantic, the Antarctica etc. The reserve of fossil fuel is 500 billion carbon ton and the reserve of methane is 360 million carbon ton. The reserve of gas hydrate is more than 1 trillion carbon ton, which is twice the fossil fuel. Therefore, natural gas hydrate as a kind of gas hydrate is expected to replace fossil fuel as new energy source of 21st century. Also 1 m 3 hydrate of pure methane can be decomposed to the maximum of 216 m 3 methane at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18∼25% less than the liquefied transportation. However, when natural gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and increases gas consumption by adding MWCNT and NaCl into pure water. The results show that the equilibrium pressure in seawater is more higher than that in pure water, and methane hydrate could be formed rapidly during pressurization if the subcooling is maintained at 9K or above in seawater and 8K or above in pure water, respectively. Also, amount of consumed gas volume in pure water is more higher that in seawater at the same experimental conditions

  4. Aluminum Sulfate 18 Hydrate (United States)

    Young, Jay A.


    A chemical laboratory information profile (CLIP) of the chemical, aluminum sulfate 18 hydrate, is presented. The profile lists physical and harmful properties, exposure limits, reactivity risks, and symptoms of major exposure for the benefit of teachers and students using the chemical in the laboratory.

  5. Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid-Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase. (United States)

    Sánchez, Raquel; Horstkotte, Burkhard; Fikarová, Kateřina; Sklenářová, Hana; Maestre, Salvador; Miró, Manuel; Todolí, Jose-Luis


    A proof of concept study involving the online coupling of automatic dispersive liquid-liquid microextraction (DLLME) to inductively coupled plasma optical emission spectrometry (ICP OES) with direct introduction and analysis of the organic extract is herein reported for the first time. The flow-based analyzer features a lab-in-syringe (LIS) setup with an integrated stirring system, a Meinhard nebulizer in combination with a heated single-pass spray chamber, and a rotary injection valve, used as an online interface between the microextraction system and the detection instrument. Air-segmented flow was used for delivery of a fraction of the nonwater miscible extraction phase, 12 μL of xylene, to the nebulizer. All sample preparative steps including magnetic stirring assisted DLLME were carried out inside the syringe void volume as a size-adaptable yet sealed mixing and extraction chamber. Determination of trace level concentrations of cadmium, copper, lead, and silver as model analytes has been demonstrated by microextraction as diethyldithiophosphate (DDTP) complexes. The automatic LIS-DLLME method features quantitative metal extraction, even in troublesome sample matrixes, such as seawater, salt, and fruit juices, with relative recoveries within the range of 94-103%, 93-100%, and 92-99%, respectively. Furthermore, no statistically significant differences at the 0.05 significance level were found between concentration values experimentally obtained and the certified values of two serum standard reference materials.

  6. Mesostructure from hydration gradients in demosponge biosilica. (United States)

    Neilson, James R; George, Nathan C; Murr, Meredith M; Seshadri, Ram; Morse, Daniel E


    Organisms of the phylum Porifera, that is, sponges, utilize enzymatic hydrolysis to concatenate bioavailable inorganic silicon to produce lightweight, strong, and often flexible skeletal elements called spicules. In their optical transparency, these remarkable biomaterials resemble fused silica, despite having been formed under ambient marine biological conditions. Although previous studies have elucidated the chemical mechanisms of spicule formation and revealed the extensive hydration of these glasses, their precise composition and local and medium-range structures had not been determined. We have employed a combination of compositional analysis, (1) H and (29) Si solid-state nuclear magnetic resonance spectroscopy, and synchrotron X-ray total scattering to characterize spicule-derived silica produced by the demosponge Tethya aurantia. These studies indicate that the materials are highly hydrated, but in an inhomogeneous manner. The spicule-derived silica is, on average, perfectly dense for the given extent of hydration and regions of fully condensed and unstrained SiO networks persist throughout each monolithic spicule. To accommodate chemical strain and defects, the extensive hydration is concentrated in distinct regions that give rise to mesostructural features. The chemistry responsible for producing spicule silica resembles hydrolytic sol-gel processing, which offers exceptional control over the precise local atomic arrangement of materials. However, the specific processing involved in forming the sponge spicule silica further results in regions of fully condensed silica coexisting with regions of incomplete condensation. This mesostructure suggests a mechanism for atomistic defect tolerance and strain relief that may account for the unusual mechanical properties of the biogenic spicules. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Methane Hydrate Reservoir System (United States)

    Flemings, P. B.; Liu, X.


    We use multi phase flow modeling and field examples (Hydrate Ridge, offshore Oregon and Blake Ridge, offshore North Carolina) to demonstrate that the methane hydrate reservoir system links traditional and non- traditional hydrocarbon system components: free gas flow is a fundamental control on this system. As in a traditional hydrocarbon reservoir, gas migrates into the hydrate reservoir as a separate phase (secondary migration) where it is trapped in a gas column beneath the base of the hydrate layer. With sufficient gas supply, buoyancy forces exceed either the capillary entry pressure of the cap rock or the fracture strength of the cap rock, and gas leaks into the hydrate stability zone, or cap rock. When gas enters the hydrate stability zone and forms hydrate, it becomes a very non traditional reservoir. Free gas forms hydrate, depletes water, and elevates salinity until pore water is too saline for further hydrate formation: salinity and hydrate concentration increase upwards from the base of the regional hydrate stability zone (RHSZ) to the seafloor and the base of the hydrate stability zone has significant topography. Gas chimneys couple the free gas zone to the seafloor through high salinity conduits that are maintained at the three-phase boundary by gas flow. As a result, significant amounts of gaseous methane can bypass the RHSZ, which implies a significantly smaller hydrate reservoir than previously envisioned. Hydrate within gas chimneys lie at the three-phase boundary and thus small increases in temperature or decreases in pressure can immediately transport methane into the ocean. This type of hydrate deposit may be the most economical for producing energy because it has very high methane concentrations (Sh > 70%) located near the seafloor, which lie on the three-phase boundary.

  8. Online coupling of fully automatic in-syringe dispersive liquid-liquid microextraction with oxidative back-extraction to inductively coupled plasma spectrometry for sample clean-up in elemental analysis: A proof of concept. (United States)

    Horstkotte, Burkhard; Fikarová, Kateřina; Cocovi-Solberg, David J; Sklenářová, Hana; Solich, Petr; Miró, Manuel


    A proof of concept of a novel automatic sample cleanup approach for metal assays in troublesome matrixes as a front-end sample pre-treatment to inductively coupled plasma optical emission spectroscopy - ICP-OES - is herein presented. Target metals, namely, copper, lead, and cadmium were complexed in-system quantitatively using ammonium pyrrolidine dithiocarbamate (APDC) and transferred into a minute volume of toluene as extractant employing lab-in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (LIS-MSA-DLLME). After discharge of the sample, the analytes were back-extracted into nitric acid and injected on-line into ICP-OES. To promote and expedite this process in-syringe, advantage was taken from oxidative decomposition of the chelate by potassium iodate, reported in this article for the first time. Experimental conditions for LIS-MSA-DLLME were optimized by Box-Benkhen multivariate analysis using the geometric mean of analyte recoveries as the desirability function. Times of extraction and back-extraction of 300s and 100s, respectively, pH 5.5 at 30mmol/L acetate, 300µL of extraction solvent, and 600µmol/L of APDC were finally applied. Online interfacing to ICP-OES for back-extract analysis yielded average repeatabilities for Cd, Cu, and Pb of 2.9%, 3.5%, and 3.5% with limits of detections (3s) of 1.9, 1.4, and 5.6ng/mL, respectively. Oxidative back-extraction was proven reliable for the determination of metal species in coastal seawater, surrogate digestive fluids and soil leachates with recovery values for Cd, Cu, and Pb ranging from 90% to 118%, 68% to 104%, and 86% to 112%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Structure and Hydration of Highly-Branched, Monodisperse Phytoglycogen Nanoparticles. (United States)

    Nickels, Jonathan D; Atkinson, John; Papp-Szabo, Erzsebet; Stanley, Christopher; Diallo, Souleymane O; Perticaroli, Stefania; Baylis, Benjamin; Mahon, Perry; Ehlers, Georg; Katsaras, John; Dutcher, John R


    Phytoglycogen is a naturally occurring polysaccharide nanoparticle made up of extensively branched glucose monomers. It has a number of unusual and advantageous properties, such as high water retention, low viscosity, and high stability in water, which make this biomaterial a promising candidate for a wide variety of applications. In this study, we have characterized the structure and hydration of aqueous dispersions of phytoglycogen nanoparticles using neutron scattering. Small angle neutron scattering results suggest that the phytoglycogen nanoparticles behave similar to hard sphere colloids and are hydrated by a large number of water molecules (each nanoparticle contains between 250% and 285% of its mass in water). This suggests that phytoglycogen is an ideal sample in which to study the dynamics of hydration water. To this end, we used quasielastic neutron scattering (QENS) to provide an independent and consistent measure of the hydration number, and to estimate the retardation factor (or degree of water slow-down) for hydration water translational motions. These data demonstrate a length-scale dependence in the measured retardation factors that clarifies the origin of discrepancies between retardation factor values reported for hydration water using different experimental techniques. The present approach can be generalized to other systems containing nanoconfined water.

  10. Hydrate plugging or slurry flow : effect of key variables

    Energy Technology Data Exchange (ETDEWEB)

    Dellecase, E.; Geraci, G.; Barrios, L.; Estanga, D.; Domingues, R.; Volk, M. [Tulsa Univ., Tulsa, OK (United States)


    Although oil and gas companies have proven design criteria and proper operating procedures to prevent hydrate plugs from forming, hydrates remain the primary issue in flow assurance. The costs associated with hydrate prevention affect project economics, particularly in deepwater pipelines. As such, there is an interest in developing a technology that allows hydrates to be transported as a slurry, while avoiding plugs. The feasibility of managing such hydrate flow was investigated. This study used a hydrate flow loop to investigate the effects of flow conditions on the transportability of a slurry in both steady-state and restart conditions. For most cases, uninhibited steady-state slurry flow conditions above 25 per cent water-cut were marginal, and most likely not feasible at 50 per cent water-cut or above. Liquid loading and velocity appeared to have a marginal effect on plugging tendency. However, minimum velocity may be needed to guarantee slurry transportation. Some of the important parameters and key variables that determine if a plug will form, particularly in restart conditions, include oil-water dispersion properties; oil-water phase segregation on the plugging tendency of model fluids; the location and state of the water; and the flow pattern. It was concluded that the plugging behaviour of oil systems changes with these variables, and with the oil-water chemistry. As such, specific strategies must be developed for each field. 4 refs., 1 tab., 14 figs.

  11. The Hydrated Electron (United States)

    Herbert, John M.; Coons, Marc P.


    Existence of a hydrated electron as a byproduct of water radiolysis was established more than 50 years ago, yet this species continues to attract significant attention due to its role in radiation chemistry, including DNA damage, and because questions persist regarding its detailed structure. This work provides an overview of what is known in regards to the structure and spectroscopy of the hydrated electron, both in liquid water and in clusters [Formula: see text], the latter of which provide model systems for how water networks accommodate an excess electron. In clusters, the existence of both surface-bound and internally bound states of the excess electron has elicited much debate, whereas in bulk water there are questions regarding how best to understand the structure of the excess electron's spin density. The energetics of the equilibrium species e-(aq) and its excited states, in bulk water and at the air/water interface, are also addressed.

  12. Modeling Hydrates and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Weihua Wang


    Full Text Available Natural gas hydrates, as an important potential fuels, flow assurance hazards, and possible factors initiating the submarine geo-hazard and global climate change, have attracted the interest of scientists all over the world. After two centuries of hydrate research, a great amount of scientific data on gas hydrates has been accumulated. Therefore the means to manage, share, and exchange these data have become an urgent task. At present, metadata (Markup Language is recognized as one of the most efficient ways to facilitate data management, storage, integration, exchange, discovery and retrieval. Therefore the CODATA Gas Hydrate Data Task Group proposed and specified Gas Hydrate Markup Language (GHML as an extensible conceptual metadata model to characterize the features of data on gas hydrate. This article introduces the details of modeling portion of GHML.

  13. Overview: Nucleation of clathrate hydrates (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.


    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  14. Rapid gas hydrate formation process (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.


    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  15. The dead, hardened floral bracts of dispersal units of wild wheat function as storage for active hydrolases and in enhancing seedling vigor.

    Directory of Open Access Journals (Sweden)

    Buzi Raviv

    Full Text Available It is commonly assumed that the dead, hardened floral bracts of the dispersal unit of grasses have been evolved to protect seeds from predation and / or assist in fruit/caryopsis dispersal. While these structures have important agronomical and economical implications, their adaptive value has not been fully explored. We investigated the hypothesis that the maternally derived hardened floral bracts have been evolved not just as a means for caryopsis protection and dispersal, but also as storage for substances that might affect seed germination and seedling vigor. Dead glumes as well as lemmas and paleas of wild emmer wheat (Triticum turgidum var dicoccoides were found to store and release upon hydration active hydrolases including nucleases and chitinases. High nuclease activity was released upon hydration from glumes derived from wild strains of wheat including Triticum urartu and wild emmer wheat, while very low nuclease activity was detected in glumes derived from domesticated, free-threshing wheat cultivars (e.g., durum wheat. Germination from the intact dispersal unit of wild emmer wheat was delayed, but post germination growth was better than those of separated caryopses. Most notable was a significant increase in lateral root production on seedlings germinated from the intact dispersal unit. Proteome analysis of wild emmer wheat glumes revealed many proteins stored and released upon hydration including S1-type nucleases, peptidases, antifungal hydrolases such as chitinases and β-1,3-glucanase as well as pectin acetylesterase, a protein involved in cell wall degradation and remodeling. Also, reactive oxygen species (ROS-detoxifying enzymes such as superoxide dismutase and ascorbate peroxidase were overrepresented in dead glumes of wild emmer wheat. Thus our study highlighted previously unknown features of the dispersal unit in wild wheat in which the dead, hardened floral bracts enclosing the caryopsis store active hydrolases and

  16. Structure and Hydration of Highly Branched, Monodisperse Phytoglycogen Nanoparticles (United States)

    Atkinson, John; Nickels, Jonathan; Stanley, Christopher; Diallo, Souleymane; Katsaras, John; Dutcher, John

    Monodisperse phytoglycogen nanoparticles are a promising, new soft colloidal nanomaterial with many applications in the personal care, food, nutraceutical and pharmaceutical industries. These applications rely on exceptional properties that emerge from the highly branched structure of phytoglycogen and its interaction with water, such as extraordinarily high water retention, and low viscosity and exceptional stability in water. The structure and hydration of the nanoparticles was characterized using small angle neutron scattering (SANS) and quasielastic neutron scattering (QENS). SANS allowed us to determine the size of the nanoparticles, evaluate their radial density profile, quantify the particle-to-particle spacing, and determine their water content. The results show clearly that the nanoparticles are highly hydrated, with each nanoparticle containing 250% of its mass in water, and that aqueous dispersions approach a jamming transition at ~ 25% (w/w). QENS experiments provided an independent and consistent measure of the high level of hydration of the particles.

  17. Impact of admixtures on the hydration kinetics of Portland cement

    International Nuclear Information System (INIS)

    Cheung, J.; Jeknavorian, A.; Roberts, L.; Silva, D.


    Most concrete produced today includes either chemical additions to the cement, chemical admixtures in the concrete, or both. These chemicals alter a number of properties of cementitious systems, including hydration behavior, and it has been long understood by practitioners that these systems can differ widely in response to such chemicals. In this paper the impact on hydration of several classes of chemicals is reviewed with an emphasis on the current understanding of interactions with cement chemistry. These include setting retarders, accelerators, and water reducing dispersants. The ability of the chemicals to alter the aluminate-sulfate balance of cementitious systems is discussed with a focus on the impact on silicate hydration. As a key example of this complex interaction, unusual behavior sometimes observed in systems containing high calcium fly ash is highlighted.

  18. Collective dynamics of hydrated β-lactogloblin by inelastic x-ray scattering (United States)

    Yoshida, Koji; Hosokawa, Shinya; Baron, Alfred Q. R.; Yamaguchi, Toshio


    Inelastic x-ray scattering measurements of hydrated β-lactoglobulin (β-lg) were performed to investigate the collective dynamics of hydration water and hydrated protein on a picosecond time scale. Samples with different hydration levels h [=mass of water (g)/mass of protein (g)] of 0 (dry), 0.5, and 1.0 were measured at ambient temperature. The observed dynamical structure factor S(Q,ω)/S(Q) was analyzed by a model composed of a Lorentzian for the central peak and a damped harmonic oscillator (DHO) for the side peak. The dispersion relation between the excitation energy in the DHO model and the momentum transfer Q was obtained for the hydrated β-lg at both hydration levels, but no DHO excitation was found for the dry β-lg. The high-frequency sound velocity was similar to that previously observed in pure water. The ratio of the high-frequency sound velocity of hydrated β-lg to the adiabatic one of hydrated lysozyme (h =0.41) was estimated as ˜1.6 for h =0.5. The value is significantly smaller than that (˜2) of pure water that has the tetrahedral network structure. The present finding thus suggests that the tetrahedral network structure of water around the β-lg is partially disrupted by the perturbation from protein surface. These results are consistent with those reported from Brillouin neutron spectroscopy and molecular dynamics simulation studies of hydrated ribonuclease A.

  19. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.


    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  20. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 2. Small-strain mechanical properties (United States)

    Lee, J.Y.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.


    The small-strain mechanical properties (e.g., seismic velocities) of hydrate-bearing sediments measured under laboratory conditions provide reference values for calibration of logging and seismic exploration results acquired in hydrate-bearing formations. Instrumented cells were designed for measuring the compressional (P) and shear (S) velocities of sand, silts, and clay with and without hydrate and subject to vertical effective stresses of 0.01 to 2 MPa. Tetrahydrofuran (THF), which is fully miscible in water, was used as the hydrate former to permit close control over the hydrate saturation Shyd and to produce hydrate from dissolved phase, as methane hydrate forms in most natural marine settings. The results demonstrate that laboratory hydrate formation technique controls the pattern of P and S velocity changes with increasing Shyd and that the small-strain properties of hydrate-bearing sediments are governed by effective stress, δ'v and sediment specific surface. The S velocity increases with hydrate saturation owing to an increase in skeletal shear stiffness, particularly when hydrate saturation exceeds Shyd≈ 0.4. At very high hydrate saturations, the small strain shear stiffness is determined by the presence of hydrates and becomes insensitive to changes in effective stress. The P velocity increases with hydrate saturation due to the increases in both the shear modulus of the skeleton and the bulk modulus of pore-filling phases during fluid-to-hydrate conversion. Small-strain Poisson's ratio varies from 0.5 in soft sediments lacking hydrates to 0.25 in stiff sediments (i.e., subject to high vertical effective stress or having high Shyd). At Shyd ≥ 0.5, hydrate hinders expansion and the loss of sediment stiffness during reduction of vertical effective stress, meaning that hydrate-rich natural sediments obtained through pressure coring should retain their in situ fabric for some time after core retrieval if the cores are maintained within the hydrate

  1. Ductile flow of methane hydrate (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.


    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  2. TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George; Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten


    TOUGH+HYDRATE v1.0 is a new code for the simulation of the behavior of hydrate-bearing geologic systems. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH{sub 4}-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.0 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH{sub 4}, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is the first member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  3. Investigation of phonon-like excitation in hydrated protein powders by neutron scattering (United States)

    Chu, Xiang-Qiang (Rosie); Mamontov, Eugene; O'Neill, Hugh; Zhang, Qiu; Kolesnikov, Alexander


    Detecting the phonon dispersion relations in proteins is essential for understanding the intra-protein dynamical behavior. Such study has been attempted by X-ray in recent years. However, for such detections, neutrons have significant advantages in resolution and time-efficiency compare to X-rays. Traditionally the collective motions of atoms in protein molecules are hard to detect using neutrons, because of high incoherent scattering background from intrinsic hydrogen atoms in the protein molecules. The recent availability of a fully deuterated green fluorescent protein (GFP) synthesized by the Bio-deuteration Lab at ORNL opens new possibilities to probe collective excitations in proteins using inelastic neutron scattering. Using a direct time-of-flight Fermi chopper neutron spectrometer, we obtained a full map of the meV phonon-like excitations in the fully deuterated protein. The Q range of the observed excitations corresponds to the length scale close to the size of the secondary structures of proteins and reflects the collective intra-protein motions. Our results show that hydration of GFP seems to harden, not soften, the collective motions. This result is counterintuitive but in agreement with the observations by previous neutron scattering experiments. Sample preparation was supported by facilities operated by the Center for Structural Molecular Biology at ORNL which is supported by the U.S. DOE, Office of Science, Office of Biological and Environmental Research Project ERKP291.

  4. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)


    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  5. Synthesis and characterization of stable aqueous dispersions of ...

    Indian Academy of Sciences (India)

    Abstract. A stable aqueous dispersion (5 mg ml−1) of graphene was synthesized by a simple protocol based on three-step reduction of graphene oxide (GO) dispersion synthesized using the modified version of Hummers and Offeman method. Reduction of GO was carried out using sodium borohydride, hydrazine hydrate ...

  6. Hydration and Temperature in Tennis - A Practical Review


    Kovacs, Mark S.


    Competitive tennis is typically played in warm and hot environments. Because hypohydration will impair tennis performance and increases the risk of heat injury, consumption of appropriate fluid levels is necessary to prevent dehydration and enhance performance. The majority of research in this area has focused on continuous aerobic activity - unlike tennis, which has average points lasting less than ten seconds with rest periods dispersed between each work period. For this reason, hydration a...

  7. Shifting Focus: From Hydration for Performance to Hydration for Health. (United States)

    Perrier, Erica T


    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  8. Android Fully Loaded

    CERN Document Server

    Huddleston, Rob


    Fully loaded with the latest tricks and tips on your new Android! Android smartphones are so hot, they're soaring past iPhones on the sales charts. And the second edition of this muscular little book is equally impressive--it's packed with tips and tricks for getting the very most out of your latest-generation Android device. Start Facebooking and tweeting with your Android mobile, scan barcodes to get pricing and product reviews, download your favorite TV shows--the book is positively bursting with practical and fun how-tos. Topics run the gamut from using speech recognition, location-based m

  9. Fully nonlinear elliptic equations

    CERN Document Server

    Caffarelli, Luis A


    The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equa

  10. The structure of deuterated methane-hydrate (United States)

    Gutt, C.; Asmussen, B.; Press, W.; Johnson, M. R.; Handa, Y. P.; Tse, J. S.


    We present the results of a high-resolution neutron diffraction experiment with a fully deuterated methane hydrate type I at temperatures of 2, 100, and 150 K. Precise crystallographic parameters of the ice-like D2O lattice and the thermal parameters of the encaged methane molecules have been obtained. The parameters of the host lattice differ only slightly from values found for hydrates with asymmetric guests included, which leads to the conclusion that the host lattice of structure I is only a little adaptive. At low temperatures (2 K) the methane molecules in both types of cages present in structure I occupy positions in the center of the cages. At higher temperatures the thermal parameters in both types of cages reflect the surrounding cage geometries or more precisely the translational potentials of the cages. The orientational scattering length density of the CD4 molecules has been analyzed in terms of a multipole expansion with symmetry adapted functions [Press and Hüller, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A29, 252 (1972); Press, ibid. A29, 257 (1972)]. In both types of cages we found only small modulations of a spherically symmetric scattering density accounting for almost free rotations of the methane molecules. The large and asymmetric cage leads to a somewhat more pronounced modulation of the orientational density than in the small dodecahedral cage. The orientational probability distribution function (PDF) remains nearly unchanged from 2 to 150 K. At 200 K we observed the time-resolved decomposition of the hydrate structure I into hexagonal ice Ih.

  11. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kowalsky, Michael B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pruess, Karsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.

  12. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na; Li, Hongxu [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiaoming, E-mail: [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China)


    Highlights: • Nanocrystalline regions in size of ∼5 nm were found in the amorphous C-A-S-H gel. • A hydration model was proposed to clarify the hydration mechanism. • The developed cementitious materials are environmentally acceptable. - Abstract: A deep investigation on the hydration mechanism of bauxite-calcination-method red mud-coal gangue based cementitious materials was conducted from viewpoints of hydration products and hydration heat analysis. As a main hydration product, the microstructure of C-A-S-H gel was observed using high resolution transmission electron microscopy. It was found that the C-A-S-H gel is composed of amorphous regions and nanocrystalline regions. Most of regions in the C-A-S-H gel are amorphous with continuous distribution, and the nanocrystalline regions on scale of ∼5 nm are dispersed irregularly within the amorphous regions. The hydration heat of red mud-coal gangue based cementitious materials is much lower than that of the ordinary Portland cement. A hydration model was proposed for this kind of cementitious materials, and the hydration process mainly consists of four stages which are dissolution of materials, formation of C-A-S-H gels and ettringite, cementation of hydration products, and polycondensation of C-A-S-H gels. There are no strict boundaries among these four basic stages, and they proceed crossing each other. Moreover, the leaching toxicity tests were also performed to prove that the developed red mud-coal gangue based cementitious materials are environmentally acceptable.

  13. Gas Hydrate Research Site Selection and Operational Research Plans (United States)

    Collett, T. S.; Boswell, R. M.


    comprehensive set of logging-while-drilling (LWD) data through expected gas-hydrate-bearing sand reservoirs in seven wells at three sites in the Gulf of Mexico. The discovery of thick hydrate-bearing sands at two of the sites drilled in the Gulf Mexico validated the integrated geological and geophysical approach used in the pre-drill site selection process to identify gas hydrate reservoirs that may be conducive to energy production. The results of the GOM JIP Leg II LWD expedition are also being used to support the selection of sites for a future drilling, logging, and coring program. Operationally, recent drilling programs, such as ODP Leg 204, IODP Expedition 311, the Japanese Toaki-oki to Kumano-nada drilling leg, the Indian NGHP Expedition 01, and the South Korean Gas Hydrate Research and Development Organization Expedition 01 have demonstrated the great benefit of a multi-leg drilling approach, including the initial acquisition of LWD data that was used to then select sites for the drilling of complex core and wireline logging test holes. It is obvious that a fully integrated site selection approach and a “goal based” operational plan, possibly including numerous drill sites and drilling legs, are required considerations for any future gas hydrate research project.

  14. Hydrodynamic disperser

    Energy Technology Data Exchange (ETDEWEB)

    Bulatov, A.I.; Chernov, V.S.; Prokopov, L.I.; Proselkov, Yu.M.; Tikhonov, Yu.P.


    A hydrodynamic disperser is suggested which contains a housing, slit nozzles installed on a circular base arranged opposite from each other, resonators secured opposite the nozzle and outlet sleeve. In order to improve the effectiveness of dispersion by throttling the flow, each resonator is made in the form of a crimped plate with crimpings that decrease in height in a direction towards the nozzle.

  15. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero


    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  16. Hydration water and microstructure in calcium silicate and aluminate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Fratini, Emiliano [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy); Ridi, Francesca [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Baglioni, Piero [Department of Chemistry and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence (Italy)


    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C{sub 3}S, C{sub 2}S) and aluminates (C{sub 3}A, C{sub 4}AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm{sup -1} monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the {sup 1}H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron

  17. Coupled numerical modeling of gas hydrates bearing sediments from laboratory to field-scale conditions (United States)

    Sanchez, M. J.; Santamarina, C.; Gai, X., Sr.; Teymouri, M., Sr.


    Stability and behavior of Hydrate Bearing Sediments (HBS) are characterized by the metastable character of the gas hydrate structure which strongly depends on thermo-hydro-chemo-mechanical (THCM) actions. Hydrate formation, dissociation and methane production from hydrate bearing sediments are coupled THCM processes that involve, amongst other, exothermic formation and endothermic dissociation of hydrate and ice phases, mixed fluid flow and large changes in fluid pressure. The analysis of available data from past field and laboratory experiments, and the optimization of future field production studies require a formal and robust numerical framework able to capture the very complex behavior of this type of soil. A comprehensive fully coupled THCM formulation has been developed and implemented into a finite element code to tackle problems involving gas hydrates sediments. Special attention is paid to the geomechanical behavior of HBS, and particularly to their response upon hydrate dissociation under loading. The numerical framework has been validated against recent experiments conducted under controlled conditions in the laboratory that challenge the proposed approach and highlight the complex interaction among THCM processes in HBS. The performance of the models in these case studies is highly satisfactory. Finally, the numerical code is applied to analyze the behavior of gas hydrate soils under field-scale conditions exploring different features of material behavior under possible reservoir conditions.

  18. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.


    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  19. Fully electric waste collection

    CERN Document Server

    Anaïs Schaeffer


    Since 15 June, Transvoirie, which provides waste collection services throughout French-speaking Switzerland, has been using a fully electric lorry for its collections on the CERN site – a first for the region!   Featuring a motor powered by electric batteries that charge up when the brakes are used, the new lorry that roams the CERN site is as green as can be. And it’s not only the motor that’s electric: its waste compactor and lifting mechanism are also electrically powered*, making it the first 100% electric waste collection vehicle in French-speaking Switzerland. Considering that a total of 15.5 tonnes of household waste and paper/cardboard are collected each week from the Meyrin and Prévessin sites, the benefits for the environment are clear. This improvement comes as part of CERN’s contract with Transvoirie, which stipulates that the firm must propose ways of becoming more environmentally friendly (at no extra cost to CERN). *The was...

  20. Fully reflective photon sieve (United States)

    Sun, Wenbo; Hu, Yongxiang; MacDonnell, David G.; Kim, Hyun Jung; Weimer, Carl; Baize, Rosemary R.


    Photon sieves (PS) have many applications and various designs in focusing light. However, a traditional PS only has a light transmissivity up to ∼25% and a focusing efficiency up to ∼7%, which hinder the application of them in many fields, especially for satellite remote sensing. To overcome these inherent drawbacks of traditional PSs, a concept of reflective photon sieve is developed in this work. This reflective photon sieve is based on a transparent membrane backed by a mirror. The transparent membrane is optimally a fully transparent material sheet with given refractive index and designed geometric thickness which has an optical thickness of a quarter incident wavelength (i.e. an anti-reflective coating). The PS-patterned pinholes are made on the transparent membrane. The design makes the light reflected from pinholes and that from zones of membrane material have 180° phase difference. Thus, light incident on this optical device is reflected and focused on its focal point. This device can have a reflectivity of ∼100% and a focusing efficiency of ∼50% based on numerical simulation. This device functions similar to a concave focusing mirror but can preserve the phase feature of light (such as that for the light with orbital angular momentum). It also has excellent wavelength-dependent property, which can exclude most of the undesired light from the focal point. A thin sheet of this component can perform the joint function of lenses and gratings/etalons in the optical path of a remote sensing system, thus is suitable for controling/filtering light in compact instruments such as satellite sensors. This concept is validated by the finite-difference time domain (FDTD) modeling and a lab prototype in this study.

  1. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu


    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  2. Protons in hydrated protein powders

    International Nuclear Information System (INIS)

    Careri, G.; Bruni, F.; Consolini, G.


    Previous work from this laboratory has shown that hydrated lysozyme powders exhibit a dielectric behaviour, due to proton conductivity, explainable within the frame of percolation theory. Long range proton displacement appears only above the critical hydration for percolation, when the 2-dimensional motion takes place on fluctuating clusters of hydrogen-bonded water molecules adsorbed on the protein surface. The emergence of biological function, enzyme catalysis, was found to coincide with the critical hydration for percolation. More recently, we have evaluated the protonic conductivity of hydrated lysozyme powders, from room down to liquid N 2 temperature. In the high temperature limit a classical isotopic effect can be detected, and the conductivity follows the familiar Arrhenius law for thermally activated hopping. In the low temperature region the conductivity shows a temperature dependence in agreement with prediction by the theory of dissipative quantum tunneling. Below room temperature the static dielectric constant, and the dielectric relaxation time for charge transport showed an increase likely to be identified with the formation of a polaronic-solitonic species as predicted by the theory of proton transport in water chains, a species which displays a larger effective mass and a larger dipole moment that the usual hydrated protonic defects. The purpose of this paper is twofold. In the first section we present a tutorial report of some previous experimental results on proton displacement in slightly hydrated biological systems at room temperature, to show that in these systems the emergence of biological systems at room temperature, to show that in these systems the emergence of biological function coincides with the onset of percolative pathways in the water molecules network adsorbed on the surface of biomolecules. In the second section, we report on preliminary data on the dielectric relaxation of hydrated lysozyme below room temperature, to suggest

  3. Energy resource potential of natural gas hydrates (United States)

    Collett, T.S.


    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  4. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi


    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  5. Investigation of hydrate formation and transportability in multiphase flow systems (United States)

    Grasso, Giovanny A.

    cohesion force (3.32 mN/m). These measurements prove the importance of natural surfactants in crude oil for particle dispersion. An experimental methodology was provided to determine the effectiveness of asphaltenes as a dispersant. Even though hydrate deposition was inferred from the flowloop tests, it could not be verified from these measurements. Custom-made experimental set-ups (a recirculation liquid system, a rocking cell and a lab-scale mini-loop) were used to isolate the hydrate deposi- tion investigation. Besides water, mineral oil 70T and King Ranch condensate were used in combination with water for the deposition investigation. One of the most important deliverables of this thesis was the construction of a lab-scale flowloop that provides insight on deposition phenomenon in multiphase flow, representing the only set-up, reported in the literature, suitable for this investigation. The miniloop can handle gas-liquid flow (maximum flow rates of 10 Nm3/m for gas and 22 GPM for liquid) through a 10 ft. long straight section (2 in. standard tubing). The testing section (30 in. long) was designed to observe hydrate deposition on the wall. Three mechanisms of hydrate deposition were identified: film growth, particles adhering and particle bedding. The maximum water conversions were: 27.5 ml in the rocking cell, 2400 ml in the miniloop with 100 % WC and 250 ml in the miniloop for dispersed water in mineral oil 70T. The measured DP across to the testing section ranged from 0 to 8 in. H2O. Deposits were obtained for different flow regimes, including 100 % LL, stratified, stratified- wavy and slug flow. The maximum deposit thickness was 1.5 in., obtained in the gas flowing section. When deposits form from particle cohesion, they were easy to slough. From all the experimental worked in this thesis, hydrates accumulated depending on the degrees of subcooling of the bulk fluid, film growth (between 3 to 5 F), deposition from a combination of film growth and particle cohesion

  6. Extensive occurrence and genesis of authigenic carbonates from Krishna-Godavari offshore basin (Bay of Bengal): Possible influence of methane hydrates occurrences.

    Digital Repository Service at National Institute of Oceanography (India)

    Kocherla, M.; Pillai, S.; Patil, D.J.

    We report here the extensive occurrences of authigenic carbonate nodules/concretions from gas hydrate bearing sediments. Bulk mineralogical compositions by X-Ray diffractometry and EDS (Energy Dispersive Spectrum) analysis revealed...

  7. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.


    Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...... and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6...

  8. Collective dynamics of protein hydration water by brillouin neutron spectroscopy. (United States)

    Orecchini, Andrea; Paciaroni, Alessandro; De Francesco, Alessio; Petrillo, Caterina; Sacchetti, Francesco


    By a detailed experimental study of THz dynamics in the ribonuclease protein, we could detect the propagation of coherent collective density fluctuations within the protein hydration shell. The emerging picture indicates the presence of both a dispersing mode, traveling with a speed greater than 3000 m/s, and a nondispersing one, characterized by an almost constant energy of 6-7 meV. In agreement with molecular dynamics simulations [Phys. Rev. Lett. 2002, 89, 275501], the features of the dispersion curves closely resemble those observed in pure liquid water [Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2004, 69, 061203]. On the contrary, the observed damping factors are much larger than in bulk water, with the dispersing mode becoming overdamped at Q = 0.6 A(-1) already. Such novel experimental findings are discussed as a dynamic signature of the disordering effect induced by the protein surface on the local structure of water.

  9. Controlled formation of cyclopentane hydrate suspensions via capillary-driven jet break-up (United States)

    Geri, Michela; McKinley, Gareth


    Clathrate hydrates are crystalline compounds that form when a lattice of hydrogen-bonded water molecules is filled by guest molecules sequestered from an adjacent gas or liquid phase. Being able to rapidly produce and transport synthetic hydrates is of great interest given their significant potential as a clean energy source and safe option for hydrogen storage. We propose a new method to rapidly produce cyclopentane hydrate suspensions at ambient pressure with tunable particle size distribution by taking advantage of the Rayleigh-Plateau instability to form a mono-disperse stream of droplets during the controlled break-up of a water jet. The droplets are immediately frozen into ice particles through immersion in a subcooled reservoir and converted into hydrates with a dramatic reduction in the nucleation induction time. By measuring the evolution of the rheological properties with time, we monitor the process of hydrates formation via surface crystallization and agglomeration with different droplet size distributions. This new method enables us to gain new insights into hydrate formation and transport which was previously hindered by uncontrolled droplet formation and hydrate nucleation processes. MITei Chevron Fellowship.

  10. Effect of solidification and peculiarities of hydrate formation

    International Nuclear Information System (INIS)

    Svatovskaya, L.B.; Sychev, M.M.


    Solidification of dispersed systems: of CaCl 2 -H 2 O, SrCl 2 -H 2 O, MgSO 4 -H 2 O, ZnSO 4 -H 2 O, CoSO 4 -H 2 O, FeSO 4 -H 2 O is considered. It is shown that conditions of high ''solid-liquid'' values bring about metastable intermediate phases, which provides the opportunity of using solidification effect to study the mechanism of some inorganic reactions. The data obtained permit to consider hydration reactions in these systems to be additive reactions and to take place according to the associative mechanism. Outlined are correlations between heat of formation of initial and hydrate phases and the strength of artificial stone

  11. Hydrates plugs dissociation in pipelines; Dissociation des bouchons d'hydrates de gaz dans les conduites petrolieres sous-marines

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Hong, D.


    Natural gas hydrates plugs cause problems during drilling, well operations, production, transportation and processing of oil and gas. Especially, it is a very serious problem in off-shore oil transportation where low temperature and high pressure become more and more favourable to gas hydrate formation as the new production wells are more and more deeper. Up to now, although many studies have been developed concerning the possibility of preventing pipe plugging, there is limited information in open literature on hydrate plugs dissociation and all models in literature are numerically complicated. In this study, hydrate plugs are formed from water in n-dodecane mixture with addition of a dispersant E102B in two different experimental apparatus in order to obtain hydrates plugs with different sizes (diameter of 7, 10.75 and 12 cm). Then, the plugs are dissociated by the method of two-sided depressurization. In this paper, we propose a numerical model which describes the dissociation of gas hydrate plugs in pipelines. The numerical model, which is constructed for cylindrical coordinates and for two-sided pressurization, is based on enthalpy method. We present also an approximate analytical model which has an average error 2.7 % in comparison with the numerical model. The excellent agreement between our experimental results, literature data and the two models shows that the models give a good prediction independently of the pipeline diameter, plug porosity and gas. The simplicity of the analytical model will make it easier in industrial applications. (author)

  12. An Introduction to Dispersive Interactions (United States)

    Taddei, M. M.; Mendes, T. N. C.; Farina, C.


    Dispersive forces are a kind of van der Waals intermolecular force which could only be fully understood with the establishment of quantum mechanics and, in particular, of quantum electrodynamics. In this pedagogical paper, we introduce the subject in a more elementary approach, aiming at students with basic knowledge of quantum mechanics. We…

  13. Evaluation of superpave mixtures containing hydrated lime. (United States)


    The use of hydrated lime in Hot-Mix Asphalt (HMA) mixtures can reduce permanent deformation, long-term aging, and moisture : susceptibility of mixtures. In addition, hydrated lime increases the stiffness and fatigue resistance of mixtures. This study...

  14. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina


    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  15. Hydration and temperature in tennis - a practical review. (United States)

    Kovacs, Mark S


    Competitive tennis is typically played in warm and hot environments. Because hypohydration will impair tennis performance and increases the risk of heat injury, consumption of appropriate fluid levels is necessary to prevent dehydration and enhance performance. The majority of research in this area has focused on continuous aerobic activity - unlike tennis, which has average points lasting less than ten seconds with rest periods dispersed between each work period. For this reason, hydration and temperature regulation methods need to be specific to the activity. Tennis players can sweat more than 2.5 L·h(-1) and replace fluids at a slower rate during matches than in practice. Latter stages of matches and tournaments are when tennis players are more susceptible to temperature and hydration related problems. Sodium (Na(+)) depletion, not potassium (K(+)), is a key electrolyte in tennis related muscle cramps. However, psychological and competitive factors also contribute. CHO drinks have been shown to promote fluid absorption to a greater degree than water alone, but no performance benefits have been shown in tennis players in short matches. It is advisable to consume a CHO beverage if practice or matches are scheduled longer than 90-120 minutes. Key PointsAlthough substantial research has been performed on temperature and hydration concerns in aerobic activities, there is little information with regard to tennis performance and safetyTennis athletes should be on an individualized hydration schedule, consuming greater than 200ml of fluid every changeover (approximately 15 minutes).Optimum hydration and temperature regulation will reduce the chance of tennis related muscle cramps and performance decrements.

  16. Field Data and the Gas Hydrate Markup Language

    Directory of Open Access Journals (Sweden)

    Ralf Löwner


    Full Text Available Data and information exchange are crucial for any kind of scientific research activities and are becoming more and more important. The comparison between different data sets and different disciplines creates new data, adds value, and finally accumulates knowledge. Also the distribution and accessibility of research results is an important factor for international work. The gas hydrate research community is dispersed across the globe and therefore, a common technical communication language or format is strongly demanded. The CODATA Gas Hydrate Data Task Group is creating the Gas Hydrate Markup Language (GHML, a standard based on the Extensible Markup Language (XML to enable the transport, modeling, and storage of all manner of objects related to gas hydrate research. GHML initially offers an easily deducible content because of the text-based encoding of information, which does not use binary data. The result of these investigations is a custom-designed application schema, which describes the features, elements, and their properties, defining all aspects of Gas Hydrates. One of the components of GHML is the "Field Data" module, which is used for all data and information coming from the field. It considers international standards, particularly the standards defined by the W3C (World Wide Web Consortium and the OGC (Open Geospatial Consortium. Various related standards were analyzed and compared with our requirements (in particular the Geographic Markup Language (ISO19136, GML and the whole ISO19000 series. However, the requirements demanded a quick solution and an XML application schema readable for any scientist without a background in information technology. Therefore, ideas, concepts and definitions have been used to build up the modules of GHML without importing any of these Markup languages. This enables a comprehensive schema and simple use.

  17. Evaluation of hydration indexes in kale leaves


    Calbo, Adonai G.; Ferreira, Marcos D.


    Hydration indexes are practical variables for quantifying plant water stress and can be useful for agronomic purposes. Three adapted hydration indexes based on relative water content, volumetric hydration, and leaf turgor pressure were evaluated in kale (Brassica oleracea var. acephala) leaf segments. Relative water content and volumetric hydration were measured in leaf segments after a water infiltration procedure with the aim of filling its large intercellular volumes (@18%v/v). The infiltr...

  18. Cardiovascular research: data dispersion issues

    Directory of Open Access Journals (Sweden)

    Roya Atiqi


    Full Text Available Biological processes are full of variations and so are responses to therapy as measured in clinical research. Estimators of clinical efficacy are, therefore, usually reported with a measure of uncertainty, otherwise called dispersion. This study aimed to review both the flaws of data reports without measure of dispersion and those with over-dispersion. Examples of estimators commonly reported without a measure of dispersion include: 1 number needed to treat; 2 reproducibility of quantitative diagnostic tests; 3 sensitivity / specificity; 4 Markov predictors; 5 risk profiles predicted from multiple logistic models. Data with large differences between response magnitudes can be assessed for over-dispersion by goodness of fit tests. The c2 goodness of fit test allows adjustment for over-dispersion. For most clinical estimators, the calculation of standard errors or confidence intervals is possible. Sometimes, the choice is deliberately made not to use the data fully, but to skip the standard errors and to use the summary measures only. The problem with this approach is that it may suggest inflated results. We recommend that analytical methods in clinical research should always attempt to include a measure of dispersion in the data. When large differences exist in the data, the presence of over-dispersion should be assessed and appropriate adjustments made.

  19. Rejuvenating Hydrator: Restoring Epidermal Hyaluronic Acid Homeostasis With Instant Benefits. (United States)

    Narurkar, Vic A; Fabi, Sabrina G; Bucay, Vivian W; Tedaldi, Ruth; Downie, Jeanine B; Zeichner, Joshua A; Butterwick, Kimberly; Taub, Amy; Kadoya, Kuniko; Makino, Elizabeth T; Mehta, Rahul C; Vega, Virginia L


    Skin aging is a combination of multifactorial mechanisms that are not fully understood. Intrinsic and extrinsic factors modulate skin aging, activating distinctive processes that share similar molecular pathways. One of the main characteristics of youthful skin is its large capacity to retain water, and this decreases significantly as we age. A key molecule involved in maintaining skin hydration is hyaluronic acid (HA). Concentration of HA in the skin is determined by the complex balance between its synthesis, deposition, association with cellular structures, and degradation. HA bio-equivalency and bio-compatibility have been fundamental in keeping this macromolecule as the favorite of the skincare industry for decades. Scientific evidence now shows that topically applied HA is unable to penetrate the skin and is rapidly degraded on the skin surface. SkinMedica's HA5 Rejuvenating Hydrator (SkinMedica Inc., an Allergan company, Irvine, CA) promotes restoration of endogenous epidermal HA homeostasis and provides instant smoothing and hydration of the skin. These dual benefits are accomplished through the combination of 2 breakthrough technologies: 1) a unique blend of actives powered by SkinMedica proprietary flower-derived stem cell extract that restores the endogenous production of HA; and 2) a proprietary mix of 5 HA forms that plump the skin, decreasing the appearance of fine lines/wrinkles. Pre-clinical studies demonstrated that HA5 induces expression of key epidermal differentiation and barrier markers as well as epidermal HA synthases. A decrease expression of hyaluronidases was also observed upon HA5 application. Initial clinical studies showed that within 15 minutes of application, HA5 instantly improves the appearance of fine lines/wrinkles and skin hydration. Subjects that continue using HA5 (for 8 weeks) demonstrated significant improvements in fine lines/wrinkles, tactile roughness, and skin hydration. In summary, the blend of these 2 key technologies

  20. Hydration modeling of calcium sulphates

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, H.J.H.; Al-Mattarneh, Hashem; Mustapha, Kamal N.; Nuruddin, Muhd Fadhil


    The CEMHYD3D model has been extended at the University of Twente in the last ten years [1,2]. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the

  1. Is Br2 hydration hydrophobic? (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I


    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  2. Fluids and hydration in prolonged endurance performance. (United States)

    Von Duvillard, Serge P; Braun, William A; Markofski, Melissa; Beneke, Ralph; Leithäuser, Renate


    Numerous studies have confirmed that performance can be impaired when athletes are dehydrated. Endurance athletes should drink beverages containing carbohydrate and electrolyte during and after training or competition. Carbohydrates (sugars) favor consumption and Na(+) favors retention of water. Drinking during competition is desirable compared with fluid ingestion after or before training or competition only. Athletes seldom replace fluids fully due to sweat loss. Proper hydration during training or competition will enhance performance, avoid ensuing thermal stress, maintain plasma volume, delay fatigue, and prevent injuries associated with dehydration and sweat loss. In contrast, hyperhydration or overdrinking before, during, and after endurance events may cause Na(+) depletion and may lead to hyponatremia. It is imperative that endurance athletes replace sweat loss via fluid intake containing about 4% to 8% of carbohydrate solution and electrolytes during training or competition. It is recommended that athletes drink about 500 mL of fluid solution 1 to 2 h before an event and continue to consume cool or cold drinks in regular intervals to replace fluid loss due to sweat. For intense prolonged exercise lasting longer than 1 h, athletes should consume between 30 and 60 g/h and drink between 600 and 1200 mL/h of a solution containing carbohydrate and Na(+) (0.5 to 0.7 g/L of fluid). Maintaining proper hydration before, during, and after training and competition will help reduce fluid loss, maintain performance, lower submaximal exercise heart rate, maintain plasma volume, and reduce heat stress, heat exhaustion, and possibly heat stroke.

  3. Apparatus investigates geological aspects of gas hydrates (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.


    The US Geological Survey (USGS), in response to potential geohazards, energy resource potential, and climate issues associated with marine gas hydrates, has developed a laboratory research system that permits hydrate genesis and dissociation under deep-sea conditions, employing user-selected sediment types and pore fluids.The apparatus, GHASTI (gas hydrate and sediment test laboratory instrument), provides a means to link field studies and theory and serves as a tool to improve gas hydrate recognition and assessment, using remote sensing techniques.GHASTLI's use was proven in an exploration well project led by the Geological Survey of Canada and the Japanese National Oil Corp., collaborating with Japan Petroleum Exploration Co. and the USGS. The site was in the Mackenzie Delta region of the Northwest Territories (Mallik 2L-38 drillsite).From tests on natural methane hydrate-bearing sand recovered at about 1,000 m subsurface, the in situ quantity of hydrate was estimated from acoustic properties, and a substantial increase in shear strength due to the presence of the hydrate was measured.1 2GHASTI can mimic a wide range of geologic settings and processes. Initial goals involve improved recognition and mapping of gas hydrate-bearing sediments, understanding factors that control the occurrence and concentration of gas hydrates, knowledge of hydrate's significance to slope failure and foundation problems, and analysis of gas hydrate's potential use as an energy resource.

  4. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)


    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  5. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao


    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has a charact......For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...

  6. Handbook of gas hydrate properties and occurrence

    Energy Technology Data Exchange (ETDEWEB)

    Kuustraa, V.A.; Hammershaimb, E.C.


    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  7. Glacial Cycles Influence Marine Methane Hydrate Formation (United States)

    Malinverno, A.; Cook, A. E.; Daigle, H.; Oryan, B.


    Methane hydrates in fine-grained continental slope sediments often occupy isolated depth intervals surrounded by hydrate-free sediments. As they are not connected to deep gas sources, these hydrate deposits have been interpreted as sourced by in situ microbial methane. We investigate here the hypothesis that these isolated hydrate accumulations form preferentially in sediments deposited during Pleistocene glacial lowstands that contain relatively large amounts of labile particulate organic carbon, leading to enhanced microbial methanogenesis. To test this hypothesis, we apply an advection-diffusion-reaction model with a time-dependent organic carbon deposition controlled by glacioeustatic sea level variations. In the model, hydrate forms in sediments with greater organic carbon content deposited during the penultimate glacial cycle ( 120-240 ka). The model predictions match hydrate-bearing intervals detected in three sites drilled on the northern Gulf of Mexico continental slope, supporting the hypothesis of hydrate formation driven by enhanced organic carbon burial during glacial lowstands.

  8. Is the Surface of Gas Hydrates Dry?

    Directory of Open Access Journals (Sweden)

    Nobuo Maeda


    Full Text Available Adhesion (cohesion and agglomeration properties of gas hydrate particles have been a key to hydrate management in flow assurance in natural gas pipelines. Despite its importance, the relevant data in the area, such as the surface energy and the interfacial energy of gas hydrates with gas and/or water, are scarce; presumably due to the experimental difficulties involved in the measurements. Here we review what is known about the surface energy and the interfacial energy of gas hydrates to date. In particular, we ask a question as to whether pre-melting can occur on the surface of gas hydrates. Surface thermodynamic analyses show that pre-melting is favoured to occur on the surface of gas hydrates, however, not sufficient data are available to assess its thickness. The effects of the existence of pre-melting layers on the cohesion and friction forces between gas hydrate particles are also discussed.

  9. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies

    Energy Technology Data Exchange (ETDEWEB)

    Costandy, Joseph; Michalis, Vasileios K.; Economou, Ioannis G., E-mail:, E-mail: [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Tsimpanogiannis, Ioannis N., E-mail:, E-mail: [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” 15310 Aghia Paraskevi, Attikis (Greece); Stubos, Athanassios K. [Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” 15310 Aghia Paraskevi, Attikis (Greece)


    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.

  10. Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties (United States)

    Lee, J.Y.; Santamarina, J.C.; Ruppel, C.


    The marked decrease in bulk electrical conductivity of sediments in the presence of gas hydrates has been used to interpret borehole electrical resistivity logs and, to a lesser extent, the results of controlled source electromagnetic surveys to constrain the spatial distribution and predicted concentration of gas hydrate in natural settings. Until now, an exhaustive laboratory data set that could be used to assess the impact of gas hydrate on the electromagnetic properties of different soils (sand, silt, and clay) at different effective stress and with different saturations of hydrate has been lacking. The laboratory results reported here are obtained using a standard geotechnical cell and the hydrate-formed tetrahydrofuran (THF), a liquid that is fully miscible in water and able to produce closely controlled saturations of hydrate from dissolved phase. Both permittivity and electrical conductivity are good indicators of the volume fraction of free water in the sediment, which is in turn dependent on hydrate saturation. Permittivity in the microwave frequency range is particularly predictive of free water content since it is barely affected by ionic concentration, pore structure, and surface conduction. Electrical conductivity (or resistivity) is less reliable for constraining water content or hydrate saturation: In addition to fluid-filled porosity, other factors, such as the ionic concentration of the pore fluid and possibly other conduction effects (e.g., surface conduction in high specific surface soils having low conductivity pore fluid), also influence electrical conductivity.

  11. Lattice dynamics study of low energy guest host coupling in clathrate hydrate (United States)

    Yang, Yue-Hai; Dong, Shun-Le; Wang, Lin


    Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15meV) and yield correct relative intensity. Based on the results, the uncertain profile at ~6 meV is assigned to anharmonic guest modes coupled strongly to small cages. Blue shift is proposed in phonon dispersion sheet in the case of anticrossing and found to be an evident signal for guest-host coupling that explains the anomalous thermal conductivity of clathrate hydrate.

  12. Interrelation of Hydration, Collagen Cross-Linking Treatment, and Biomechanical Properties of the Cornea. (United States)

    Hatami-Marbini, Hamed; Rahimi, Abdolrasol


    The present study was designed to investigate the effects of hydration and collagen cross-linking treatment on biomechanical properties of the cornea. The original corneal collagen cross-linking protocol was used to induce cross-links in bovine corneas. The thickness of samples was used as a measure of their hydration and five different thickness groups (n = 5 each) were considered. The cross-linked corneal strips were allowed to hydrate/dehydrate until their thickness reached 500, 700, 900, 1100, and 1500 μm. The tensile behavior of specimens in each thickness group was characterized by conducting uniaxial tensile experiments. The experiments were done in mineral oil in order to keep the thickness of samples constant and minimize hydration changes. It was observed that collagen cross-linking treatment significantly increased both the maximum tensile stress and the equilibrium (relaxed) stress of the bovine cornea (p  0.99), respectively. Hydration and collagen cross-linking treatment concomitantly affect biomechanical properties of the cornea. Therefore, an accurate estimate of stiffening effects of collagen cross-linking treatment option using uniaxial tensile experiments is only possible if the hydration of specimens is fully controlled.

  13. Dynamics of hydration in hen egg white lysozyme. (United States)

    Sterpone, F; Ceccarelli, M; Marchi, M


    We investigate the hydration dynamics of a small globular protein, hen egg-white lysozyme. Extensive simulations (two trajectories of 9 ns each) were carried out to identify the time-scales and mechanism of water attachment to this protein. The location of the surface and integral water molecules in lysozyme was also investigated. Three peculiar temporal scales of the hydration dynamics can be discerned: two among these, with sub-nanosecond mean residence time, tau(w), are characteristic of surface hydration water; the slower time-scale (tau(w) approximately 2/3 ns) is associated with buried water molecules in hydrophilic pores and in superficial clefts. The computed tau(w) values in the two independent runs fall in a similar range and are consistent with each other, thus adding extra weight to our result. The tau(w) of surface water obtained from the two independent trajectories is 20 and 24 ps. In both simulations only three water molecules are bound to lysozyme for the entire length of the trajectories, in agreement with nuclear magnetic relaxation dispersion estimates. Locations other than those identified in the protein crystal are found to be possible for these long-residing water molecules. The dynamics of the hydration water molecules observed in our simulations implies that each water molecule visits a multitude of residues during the lifetime of its bound with the protein. The number of residues seen by a single water molecule increases with the time-scale of its residence time and, on average, is equal to one only for the water molecules with shorter residence time. Thus, tau(w) values obtained from inelastic neutron scattering and based on jump-diffusion models are likely not to account for the contribution of water molecules with longer residence time. Copyright 2001 Academic Press.

  14. Fundamentals and applications of gas hydrates. (United States)

    Koh, Carolyn A; Sloan, E Dendy; Sum, Amadeu K; Wu, David T


    Fundamental understanding of gas hydrate formation and decomposition processes is critical in many energy and environmental areas and has special importance in flow assurance for the oil and gas industry. These areas represent the core of gas hydrate applications, which, albeit widely studied, are still developing as growing fields of research. Discovering the molecular pathways and chemical and physical concepts underlying gas hydrate formation potentially can lead us beyond flowline blockage prevention strategies toward advancing new technological solutions for fuel storage and transportation, safely producing a new energy resource from natural deposits of gas hydrates in oceanic and arctic sediments, and potentially facilitating effective desalination of seawater. The state of the art in gas hydrate research is leading us to new understanding of formation and dissociation phenomena that focuses on measurement and modeling of time-dependent properties of gas hydrates on the basis of their well-established thermodynamic properties.

  15. Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings. (United States)

    Sojoudi, Hossein; Walsh, Matthew R; Gleason, Karen K; McKinley, Gareth H


    Blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases (also called gas hydrates) can compromise project safety and economics in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Cyclopentane (CyC5) hydrate has attracted interest as a model system for studying natural gas hydrates, because CyC5, like typical natural gas hydrate formers, is almost fully immiscible in water; and thus CyC5 hydrate formation is governed not only by thermodynamic phase considerations but also kinetic factors such as the hydrocarbon/water interfacial area, as well as mass and heat transfer constraints, as for natural gas hydrates. We present a macroscale investigation of the formation and adhesion strength of CyC5 hydrate deposits on bilayer polymer coatings with a range of wettabilities. The polymeric bilayer coatings are developed using initiated chemical vapor deposition (iCVD) of a mechanically robust and densely cross-linked polymeric base layer (polydivinylbenzene or pDVB) that is capped with a covalently attached thin hydrate-phobic fluorine-rich top layer (poly(perfluorodecyl acrylate) or pPFDA). The CyC5 hydrates are formed from CyC5-in-water emulsions, and differential scanning calorimetry (DSC) is used to confirm the thermal dissociation properties of the solid hydrate deposits. We also investigate the adhesion of the CyC5 hydrate deposits on bare and bilayer polymer-coated silicon and steel substrates. Goniometric measurements with drops of CyC5-in-water emulsions on the coated steel substrates exhibit advancing contact angles of 148.3 ± 4.5° and receding contact angles of 142.5 ± 9.8°, indicating the strongly emulsion-repelling nature of the iCVD coatings. The adhesion strength of the CyC5 hydrate deposits is reduced from 220 ± 45 kPa on rough steel substrates to 20 ± 17 kPa on the polymer-coated steel substrates. The measured strength of CyC5 hydrate

  16. Optimum potassium chloride concentration to reduce hydration capacity of clay formations; Concentracao otima de cloreto de potassio para reduzir a capacidade de hidratacao das formacoes argilosas

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Jose Carlos Vieira [PETROBRAS, Salvador, BA (Brazil). Centro de Recursos Humanos Norte-Nordeste. Setor de Programas de Perfuracao; Oliveira, Manoel Martins de [PETROBRAS, BA (Brazil). Distrito de Perfuracao. Div. de Tecnicas de Perfuracao


    An experimental method for ascertaining the optimal concentration of potassium chloride for reducing the hydration and dispersion capacity of clayey formations sensitive to water-based fluids is described. Under this method, filtering time for disperse systems prepared from clayey formation samples is measured. A discussion is offered on theoretical aspects of hydration, expansion, and dispersion of clayey rocks in response to the variations in stress equilibrium states produced by these phenomena when a hole (well) is opened in the rock. The state of the art of this technological branch is also described. (author) 10 refs., 5 figs., 4 tabs.

  17. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj


    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goa...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  18. Natural gas hydrate occurrence and issues (United States)

    Kvenvolden, K.A.


    Naturally occurring gas hydrate is found in sediment of two regions: (1) continental, including continental shelves, at high latitudes where surface temperatures are very cold, and (2) submarine outer continental margins where pressures are very high and bottom-water temperatures are near 0??C. Continental gas hydrate is found in association with onshore and offshore permafrost. Submarine gas hydrate is found in sediment of continental slopes and rises. The amount of methane present in gas hydrate is thought to be very large, but the estimates that have been made are more speculative than real. Nevertheless, at the present time there has been a convergence of ideas regarding the amount of methane in gas hydrate deposits worldwide at about 2 x 1016 m3 or 7 x 1017 ft3 = 7 x 105 Tcf [Tcf = trillion (1012) ft3]. The potentially large amount of methane in gas hydrate and the shallow depth of gas hydrate deposits are two of the principal factors driving research concerning this substance. Such a large amount of methane, if it could be commercially produced, provides a potential energy resource for the future. Because gas hydrate is metastable, changes of surface pressure and temperature affect its stability. Destabilized gas hydrate beneath the sea floor leads to geologic hazards such as submarine mass movements. Examples of submarine slope failures attributed to gas hydrate are found worldwide. The metastability of gas hydrate may also have an effect on climate. The release of methane, a 'greenhouse' gas, from destabilized gas hydrate may contribute to global warming and be a factor in global climate change.

  19. Thermal conductivity of hydrate-bearing sediments (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.


    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  20. Relict gas hydrates as possible reason of gas emission from shallow permafrost at the northern part of West Siberia (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Tumskoy, Vladimir; Istomin, Vladimir; Tipenko, Gennady


    zone) permafrost horizons. The results show that all investigated frozen hydrate-bearing sandy and silty sand samples in the temperature range from -16 °C to -2 °C are characterized by not complete decomposition of pore hydrate at relieving pressure below the equilibrium. It was observed that at typical north Western Siberian permafrost temperature of -6 ° C the safety of pore hydrate in frozen samples can reach 60% at the pressure reducing below the equilibrium. In was found that with increasing temperature and particle size (dispersity) the efficiency of pore hydrate self-preservation is decreased, but even at the temperature of -2 °C there is residual pore methane hydrate content in non-saline sandy samples. All this suggests about high preservation of methane hydrates in frozen sediments at non-equilibrium thermobaric conditions, close to reservoir conditions. Based on the results of mathematical and experimental simulations about the possibility of relic gas hydrates existence on permafrost depth up to 200 m in the northern part of Western Siberia on the less than 200 m due to geological manifestation of the self-preservation effect of gas hydrates. References. 1.Chuvilin EM, Yakushev VS, Perlova EV. Gas and gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. // Polarforschung 68: 215-219, 1998. (erschienen 2000). 2.Yakushev V.S., Chuvilin E.M. 2000. Natural gas and hydrate accumulation within permafrost in Russia. Cold Regions Science and Technology. 31: 189-197. These researches are supported by grant RSF №16-17-00051.

  1. Microscopic Characterization of Brevundimonas diminuta in the Hydrated State. (United States)

    Harp, Gary; Cho, Seok-Jun; Lester, Elisabeth; Rose, David; Sabanyagam, Chandran; Ross, Scott F


    Brevundimonas diminuta is the organism most commonly used for challenge testing of sterilizing-grade filter membranes. ASTM F838-05 and PDA Technical Report 26 rely on B. diminuta ATCC #19146 for standard challenge tests used to designate sterilizing-grade filter performance. Despite the importance and widespread use of B. diminuta in filter testing and validation, information about this microorganism in its native hydrated state is limited. In this work, we measure, for the first time, the mechanical property of modulus for B. diminuta cultured in saline lactose broth (as described in ASTM F838-05) via wet atomic force microscopy. For comparison, we also imaged B. diminuta by the traditional method of electron microscopy after capture on a filter and chemical fixation. The modulus of hydrated B. diminuta cells was ∼193 mPa. To put this result into context, a simple model for pore penetration that correlates the role of the Young's modulus of hydrated cells to the penetration of sterilizing-grade filters is proposed. The model confirms the industry experience that pore size is an essential parameter in preventing the penetration of B. diminuta into sterilizing-grade filters. The small microorganism Brevundimonas diminuta is used to characterize the performance of sterilizing-grade filter membranes used in the manufacturing of sterile drug products. Little is known about the size, shape, or elasticity of living bacterial cells, as it is easier to characterize bacteria after chemical fixation in a dry state. In this work, we use atomic force microscopy to determine the size, shape, and deformability of this important microorganism while it is alive and fully hydrated. Additionally, we compare the physical and mechanical properties of B. diminuta measured in wet and dry states. This information can be used to advance our understanding of how filter membranes remove these organisms from fluid streams. © PDA, Inc. 2015.

  2. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu


    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  3. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods (United States)

    Barlag, Rebecca; Nyasulu, Frazier


    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  4. Methane hydrates as potential energy resource: Part 2 - Methane production processes from gas hydrates

    International Nuclear Information System (INIS)

    Demirbas, Ayhan


    Three processes have been proposed for dissociation of methane hydrates: thermal stimulation, depressurization, and inhibitor injection. The obvious production approaches involve depressurization, heating and their combinations. The depressurization method is lowering the pressure inside the well and encouraging the methane hydrate to dissociate. Its objective is to lower the pressure in the free-gas zone immediately beneath the hydrate stability zone, causing the hydrate at the base of the hydrate stability zone to decompose. The thermal stimulation method is applied to the hydrate stability zone to raise its temperature, causing the hydrate to decompose. In this method, a source of heat provided directly in the form of injected steam or hot water or another heated liquid, or indirectly via electric or sonic means. This causes methane hydrate to decompose and generates methane gas. The methane gas mixes with the hot water and returns to the surface, where the gas and hot water are separated. The chemical inhibition method seeks to displace the natural-gas hydrate equilibrium condition beyond the hydrate stability zone's thermo-dynamic conditions through injection of a liquid inhibitor chemical adjacent to the hydrate. In this method, inhibitor such as methanol is injected from surface down to methane hydrate-bearing layers. The thermal stimulation method is quite expensive. The chemical inhibitor injection method is also expensive. The depressurization method may prove useful to apply more than one production.

  5. Evaluation of the geological relationships to gas hydrate formation and stability

    Energy Technology Data Exchange (ETDEWEB)


    Although there are many publications pertaining to gas hydrates, their formation and stability in various geological conditions are poorly known. Therefore, for the same reasons and because of the very broad scope of our research, limited amount and extremely dispersed information, the study regions are very large. Moreover, almost without exception the geological environments controlling gas hydrates formation and stability of the studied regions are very complex. The regions studied (completed and partially completed - total 17 locations) during the reporting period, particularly the Gulf of Mexico and the Middle America Trench, are the most important in this entire research project. In the past, both of these regions have been extensively studied, the presence of gas hydrates confirmed and samples recovered. In our investigation it was necessary not only to review all previous data and interpretations, but to do a thorough analysis of the basins, and a critical evaluation of an previously reported and publicly available but not published information.

  6. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo


    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  7. Protein dynamics: hydration and cavities

    Directory of Open Access Journals (Sweden)

    Heremans K.


    Full Text Available The temperature-pressure behavior of proteins seems to be unique among the biological macromolecules. Thermodynamic as well as kinetic data show the typical elliptical stability diagram. This may be extended by assuming that the unfolded state gives rise to volume and enthalpy-driven liquid-liquid transitions. A molecular interpretation follows from the temperature and the pressure dependence of the hydration and cavities. We suggest that positron annihilation spectroscopy can provide additional quantitative evidence for the contributions of cavities to the dynamics of proteins. Only mature amyloid fibrils that form from unfolded proteins are very resistant to pressure treatment.

  8. Physics of fully ionized regions

    International Nuclear Information System (INIS)

    Flower, D.


    In this paper the term fully ionised regions is taken to embrace both planetary nebulae and the so-called 'H II' regions referred to as H + regions. Whilst these two types of gaseous nebulae are very different from an evolutionary standpoint, they are physically very similar, being characterised by photoionisation of a low-density plasma by a hot star. (Auth.)

  9. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit


    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  10. Simulation and Characterization of Methane Hydrate Formation (United States)

    Dhakal, S.; Gupta, I.


    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  11. Hydrodynamic dispersion

    International Nuclear Information System (INIS)

    Pryce, M.H.L.


    A dominant mechanism contributing to hydrodynamic dispersion in fluid flow through rocks is variation of travel speeds within the channels carrying the fluid, whether these be interstices between grains, in granular rocks, or cracks in fractured crystalline rocks. The complex interconnections of the channels ensure a mixing of those parts of the fluid which travel more slowly and those which travel faster. On a macroscopic scale this can be treated statistically in terms of the distribution of times taken by a particle of fluid to move from one surface of constant hydraulic potential to another, lower, potential. The distributions in the individual channels are such that very long travel times make a very important contribution. Indeed, while the mean travel time is related to distance by a well-defined transport speed, the mean square is effectively infinite. This results in an asymmetrical plume which differs markedly from a gaussian shape. The distribution of microscopic travel times is related to the distribution of apertures in the interstices, or in the microcracks, which in turn are affected in a complex way by the stresses acting on the rock matrix

  12. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede


    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...

  13. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.


    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  14. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)


    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  15. Free energy of hydration of niobium oxide

    International Nuclear Information System (INIS)

    Plodinec, M.J.


    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium

  16. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    Abstract. Density functional theory based studies have been performed to elucidate the role of methanol as an methane hydrate inhibitor. A methane hydrate pentagonal dodecahedron cage's geometry optimization, natural bond orbital (NBO) analysis, Mullikan charge determination, electrostatic potential evaluation and ...

  17. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.


    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  18. 78 FR 26337 - Methane Hydrate Advisory Committee (United States)


    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Methane.... SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory Committee is to...

  19. 75 FR 9886 - Methane Hydrate Advisory Committee (United States)


    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  20. 76 FR 59667 - Methane Hydrate Advisory Committee (United States)


    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Methane...-5600. SUPPLEMENTARY INFORMATION: Purpose of the Committee: The purpose of the Methane Hydrate Advisory...

  1. 78 FR 37536 - Methane Hydrate Advisory Committee (United States)


    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  2. 77 FR 40032 - Methane Hydrate Advisory Committee (United States)


    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of methane...

  3. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas


    There are essentially two different approaches to producing methane from natural gas hydrate reservoirs, either bring the hydrate out of its thermodynamic stability region or expose the hydrate to a substance that will form a more stable hydrate structure, forcing an in situ swapping of the trapped...... in small hydrate cages, as long as the equilibrium formation pressure of (CO2 + N2) binary gas hydrate is below that of methane hydrate, even though adding nitrogen to carbon dioxide reduces the thermodynamic driving force for the formation of a new hydrate. When other conditions are similar, the methane...


    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis


    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  5. Yolk proteolysis and aquaporin-1o play essential roles to regulate fish oocyte hydration during meiosis resumption.

    NARCIS (Netherlands)

    Fabra, M.; Raldua, D.; Bozzo, M.G.; Deen, P.M.T.; Lubzens, E.; Cerda, J.


    In marine fish, meiosis resumption is associated with a remarkable hydration of the oocyte, which contributes to the survival and dispersal of eggs and early embryos in the ocean. The accumulation of ions and the increase in free amino acids generated from the cleavage of yolk proteins (YPs) provide

  6. Modelling of oceanic gas hydrate instability and methane release in response to climate change

    International Nuclear Information System (INIS)

    Reagan, M.T.; Moridis, G.J.


    Methane releases from oceanic hydrates are thought to have played a significant role in climatic changes that have occurred in the past. In this study, gas hydrate accumulations subjected to temperature changes were modelled in order to assess their potential for future methane releases into the ocean. Recent ocean and atmospheric chemistry studies were used to model 2 climate scenarios. Two types of hydrate accumulations were used to represent dispersed, low-saturation deposits. The 1-D multiphase thermodynamic-hydrological model considered the properties of benthic sediments; ocean depth; sea floor temperature; the saturation and distribution of the hydrates; and the effect of benthic biogeochemical activity. Results of the simulations showed that shallow deposits undergo rapid dissociation and are capable of producing methane fluxes of 2 to 13 mol m 3 per year over a period of decades. The fluxes exceed the ability of the anaerobic sea floor environment to sequester or consume the methane. A large proportion of the methane released in the scenarios emerged in the gas phase. Arctic hydrates may pose a threat to regional and global ecological systems. It was concluded that results of the study will be coupled with global climate models in order to assess the impact of the methane releases in relation to global climatic change. 39 refs., 5 figs

  7. Experimental Setup to Characterize Bentonite Hydration Processes

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.; Pastor, J. M.


    We present an experimental setup to follow-up the hydration process of a bentonite. Clay samples, of 2 cm x 12 cm x 12 cm, were made and introduced in a Hele-Shaw cell with two PMM windows and two steel frames. In hydration experiments, a fluid enters by an orifice in the frame, located both at the top and the bottom of the cell, to perform hydration in both senses. To get a uniform hydration we place a diffuser near the orifice. Volume influxes in hydration cells are registered in time. The evolution of the developed interface was recorded on a videotape. The video cameras was fixed to a holder so that the vertical direction in the monitor was the same as the direction of the larger extension of the cell. (Author) 6 refs

  8. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert


    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  9. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw


    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.


    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell


    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  11. Gas-phase hydration of glyoxylic acid: Kinetics and atmospheric implications. (United States)

    Liu, Ling; Zhang, Xiuhui; Li, Zesheng; Zhang, Yunhong; Ge, Maofa


    Oxocarboxylic acids are one of the most important organic species found in secondary organic aerosols and can be detected in diverse environments. But the hydration of oxocarboxylic acids in the atmosphere has still not been fully understood. Neglecting the hydration of oxocarboxylic acids in atmospheric models may be one of the most important reasons for the significant discrepancies between field measurements and abundance predictions of atmospheric models for oxocarboxylic acids. In the present paper, glyoxylic acid, as the most abundant oxocarboxylic acids in the atmosphere, has been selected as an example to study whether the hydration process can occur in the atmosphere and what the kinetic process of hydration is. The gas-phase hydration of glyoxylic acid to form the corresponding geminal diol and those catalyzed by atmospheric common substances (water, sulfuric acid and ammonia) have been investigated at the CCSD(T)-F12/cc-pVDZ-F12//M06-2X/6-311++G(3df,3pd) level of theory. The contour map of electron density difference of transition states have been further analyzed. It is indicated that these atmospheric common substances can all catalyze on the hydration to some extent and sulfuric acid is the most effective reducing the Gibbs free energy of activation to 9.48 kcal/mol. The effective rate constants combining the overall rate constants and concentrations of the corresponding catalysts have shown that water and sulfuric acid are both important catalysts and the catalysis of sulfuric acid is the most effective for the gas-phase hydration of glyoxylic acid. This catalyzed processes are potentially effective in coastal regions and polluted regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Methane Recovery from Hydrate-bearing Sediments

    Energy Technology Data Exchange (ETDEWEB)

    J. Carlos Santamarina; Costas Tsouris


    Gas hydrates are crystalline compounds made of gas and water molecules. Methane hydrates are found in marine sediments and permafrost regions; extensive amounts of methane are trapped in the form of hydrates. Methane hydrate can be an energy resource, contribute to global warming, or cause seafloor instability. This study placed emphasis on gas recovery from hydrate bearing sediments and related phenomena. The unique behavior of hydrate-bearing sediments required the development of special research tools, including new numerical algorithms (tube- and pore-network models) and experimental devices (high pressure chambers and micromodels). Therefore, the research methodology combined experimental studies, particle-scale numerical simulations, and macro-scale analyses of coupled processes. Research conducted as part of this project started with hydrate formation in sediment pores and extended to production methods and emergent phenomena. In particular, the scope of the work addressed: (1) hydrate formation and growth in pores, the assessment of formation rate, tensile/adhesive strength and their impact on sediment-scale properties, including volume change during hydrate formation and dissociation; (2) the effect of physical properties such as gas solubility, salinity, pore size, and mixed gas conditions on hydrate formation and dissociation, and it implications such as oscillatory transient hydrate formation, dissolution within the hydrate stability field, initial hydrate lens formation, and phase boundary changes in real field situations; (3) fluid conductivity in relation to pore size distribution and spatial correlation and the emergence of phenomena such as flow focusing; (4) mixed fluid flow, with special emphasis on differences between invading gas and nucleating gas, implications on relative gas conductivity for reservoir simulations, and gas recovery efficiency; (5) identification of advantages and limitations in different gas production strategies with

  13. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge


    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  14. Clathrate hydrate tuning for technological purposes (United States)

    di Profio, Pietro; Germani, Raimondo; Savelli, Gianfranco


    Gas hydrates are being increasingly considered as convenient media for gas storage and transportation as the knowledge of their properties increases, in particular as relates to methane and hydrogen. Clathrate hydrates may also represent a feasible sequestration technology for carbon dioxide, due to a well defined P/T range of stability, and several research programs are addressing this possibility. Though the understanding of the molecular structure and supramolecular interactions which are responsible of most properties of hydrates have been elucitated in recent years, the underlying theoretical physico-chemical framework is still poor, especially as relates to the role of "conditioners" (inhibitors and promoters) from the molecular/supramolecular point of view. In the present communication we show some results from our research approach which is mainly focused on the supramolecular properties of clathrate hydrate systems - and their conditioners - as a way to get access to a controlled modulation of the formation, dissociation and stabilization of gas hydrates. In particular, this communication will deal with: (a) a novel, compact apparatus for studying the main parameters of formation and dissociation of gas hydrates in a one-pot experiment, which can be easily and rapidly carried out on board of a drilling ship;[1] (b) the effects of amphiphile molecules (surfactants) as inhibitors or promoters of gas hydrate formation;[2] (c) a novel nanotechnology for a reliable and quick production of hydrogen hydrates, and its application to fuel cells;[3,4] and (d) the development of a clathrate hydrate tecnology for the sequestration and geological storage of man-made CO2, possibly with concomitant recovery of natural gas from NG hydrate fields. Furthermore, the feasibility of catalyzing the reduction of carbon dioxide to energy-rich species by hydrates is being investigated. [1] Di Profio, P., Germani, R., Savelli, G., International Patent Application PCT/IT2006

  15. Material Research on Salt Hydrates for Seasonal Heat Storage Application in a Residential Environment

    Energy Technology Data Exchange (ETDEWEB)

    Ferchaud, C.J.; Zondag, H.A.; De Boer, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)


    Water vapor sorption in salt hydrates is a promising method to realize seasonal solar heat storage in the residential sector. Several materials already showed promising performance for this application. However, the stability of these materials needs to be improved for long-term (30 year) application in seasonal solar heat storages. The purpose of this article is to identify the influence of the material properties of the salt hydrates on the performance and the reaction kinetics of the sorption process. The experimental investigation presented in this article shows that the two salt hydrates Li2SO4.H2O and CuSO4.5H2O can store and release heat under the operating conditions of a seasonal solar heat storage in a fully reversible way. However, these two materials show differences in terms of energy density and reaction kinetics. Li2SO4.H2O can release heat with an energy density of around 0.80 GJ/m{sup 3} within 4 hours of rehydration at 25C, while CuSO4.5H2O needs around 130 hours at the same temperature to be fully rehydrated and reaches an energy density of 1.85 GJ/m{sup 3}. Since the two salts are dehydrated and hydrated under the same conditions, this difference in behavior is directly related to the intrinsic properties of the materials.

  16. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.


    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  17. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU


    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI:

  18. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet


    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  19. Electrical properties of methane hydrate + sediment mixtures (United States)

    Du Frane, Wyatt L.; Stern, Laura A.; Weitemeyer, Karen A.; Constable, Steven; Roberts, Jeffery J.


    As part of our DOE-funded proposal to characterize gas hydrate in the Gulf of Mexico using marine electromagnetic methods, a collaboration between SIO, LLNL, and USGS with the goal of measuring the electrical properties of lab-created methane (CH4) hydrate and sediment mixtures was formed. We examined samples with known characteristics to better relate electrical properties measured in the field to specific gas hydrate concentration and distribution patterns. Here we discuss first-ever electrical conductivity (σ) measurements on unmixed CH4 hydrate (Du Frane et al., 2011): 6 x 10-5 S/m at 5 °C, which is ~5 orders of magnitude lower than seawater. This difference allows electromagnetic (EM) techniques to distinguish highly resistive gas hydrate deposits from conductive water saturated sediments in EM field surveys. More recently, we performed measurements on CH4 hydrate mixed with sediment and we also discuss those initial findings here. Our results on samples free of liquid water are important for predicting conductivity of sediments with pores highly saturated with gas hydrate, and are an essential starting point for comprehensive mixing models.

  20. Prospecting for marine gas hydrate resources (United States)

    Boswell, Ray; Shipp, Craig; Reichel, Thomas; Shelander, Dianna; Saeki, Tetsuo; Frye, Matthew; Shedd, William; Collett, Timothy S.; McConnell, Daniel R.


    As gas hydrate energy assessment matures worldwide, emphasis has evolved away from confirmation of the mere presence of gas hydrate to the more complex issue of prospecting for those specific accumulations that are viable resource targets. Gas hydrate exploration now integrates the unique pressure and temperature preconditions for gas hydrate occurrence with those concepts and practices that are the basis for conventional oil and gas exploration. We have aimed to assimilate the lessons learned to date in global gas hydrate exploration to outline a generalized prospecting approach as follows: (1) use existing well and geophysical data to delineate the gas hydrate stability zone (GHSZ), (2) identify and evaluate potential direct indications of hydrate occurrence through evaluation of interval of elevated acoustic velocity and/or seismic events of prospective amplitude and polarity, (3) mitigate geologic risk via regional seismic and stratigraphic facies analysis as well as seismic mapping of amplitude distribution along prospective horizons, and (4) mitigate further prospect risk through assessment of the evidence of gas presence and migration into the GHSZ. Although a wide range of occurrence types might ultimately become viable energy supply options, this approach, which has been tested in only a small number of locations worldwide, has directed prospect evaluation toward those sand-hosted, high-saturation occurrences that were presently considered to have the greatest future commercial potential.

  1. Axiomatisation of fully probabilistic design

    Czech Academy of Sciences Publication Activity Database

    Kárný, Miroslav; Kroupa, Tomáš


    Roč. 186, č. 1 (2012), s. 105-113 ISSN 0020-0255 R&D Projects: GA MŠk(CZ) 2C06001; GA ČR GA102/08/0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian decision making * Fully probabilistic design * Kullback–Leibler divergence * Unified decision making Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.643, year: 2012

  2. Aspects of Hydrate Management - Deposition Phenomena


    Langen, Heidi


    The purpose of this thesis has been to investigate the factors with the largest influence on the adhesion strength of a hydrate deposit on a solid surface. This has been done through a literature study on the subject, and a thorough experimental project in a laboratory. The experiments involved forming hydrate deposits on a pipe of steel, before removing the deposits and finding the pressure required to do so. The hydrate was formed by a solution of tetrahydrofuran and water in a tank where t...


    Directory of Open Access Journals (Sweden)

    Mark S. Kovacs


    Full Text Available Competitive tennis is typically played in warm and hot environments. Because hypohydration will impair tennis performance and increases the risk of heat injury, consumption of appropriate fluid levels is necessary to prevent dehydration and enhance performance. The majority of research in this area has focused on continuous aerobic activity - unlike tennis, which has average points lasting less than ten seconds with rest periods dispersed between each work period. For this reason, hydration and temperature regulation methods need to be specific to the activity. Tennis players can sweat more than 2.5 L·h-1 and replace fluids at a slower rate during matches than in practice. Latter stages of matches and tournaments are when tennis players are more susceptible to temperature and hydration related problems. Sodium (Na+ depletion, not potassium (K+, is a key electrolyte in tennis related muscle cramps. However, psychological and competitive factors also contribute. CHO drinks have been shown to promote fluid absorption to a greater degree than water alone, but no performance benefits have been shown in tennis players in short matches. It is advisable to consume a CHO beverage if practice or matches are scheduled longer than 90-120 minutes.

  4. Hydration Phenomena of Functionalized Carbon Nanotubes (CNT/Cement Composites

    Directory of Open Access Journals (Sweden)

    Bhuvaneshwari Balasubramaniam


    Full Text Available The exciting features of carbon nanotubes (CNTs, such as high elastic modulus, high thermal and electrical conductivities, robustness, and nanoscopic surface properties make them attractive candidates for the cement industry. They have the potential to significantly enhanceengineering properties. CNTs play an important and critical role as nano-anchors in concrete, which enhance the strength by bridging pores in the composite matrix, thereby ensuring robust mechanical strength. The diameter, dispersion, aspect ratio, and interfacial surface interaction of CNTs affect the physical and mechanical properties of concrete, if due care is not taken. In this paper, the usable amount of CNT is scaled down considerably from 0.5% to 0.025% by weight of the cement and the fluctuation caused by these phenomena is assessed. It is observed that the properties and exact quantities of incorporated CNTs influence the hydration and consistency of the composites. In order to address these issues, the surface functionalization of CNTs and rheological studies of the composites are performed. The hydration products and functional groups are carefully optimized and characterized by using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and a Zeta potential analyzer. For Mixes 6 and 7, the compressive and tensile strength of CNTs incorporated in mortar specimens caused77% and 48% increases in split tensile strength, respectively, and 17% and 35% increases in compressive strength, respectively, after 28 days of curing and compared withthe control Mix.

  5. Study of formation and stability conditions of gas hydrates in drilling fluids; Etude des conditions de formation et de stabilite des hydrates de gaz dans les fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Kharrat, M.


    Drilling fluids are complex media, in which solid particles are in suspension in a water-in-oil emulsion. The formation of gas hydrates in these fluids during off shore drilling operations has been suspected to be the cause of serious accidents. The purpose of this thesis is the study of the formation conditions as well as the stability of gas hydrates in complex fluids containing water-in-oil emulsions. The technique of high-pressure differential scanning calorimetry was used to characterise the conditions of hydrates formation and dissociation. Special attention has first been given to the validation of thermodynamic measurements in homogeneous solutions, in the pressure range 4 to 12 Mpa; the results were found to be in good agreement with literature data, as well as with modelling results. The method was then applied to water-in-oil emulsion, used as a model for real drilling fluids. It was proven that thermodynamics of hydrate stability are not significantly influenced by the state of dispersion of the water phase. On the other hand, the kinetics of formation and the amount of hydrates formed are highly increased by the dispersion. Applying the technique to real drilling fluids confirmed the results obtained in emulsions. Results interpretation allowed giving a representation of the process of hydrate formation in emulsion. Empirical modelling was developed to compute the stability limits of methane hydrate in the presence of various inhibitors, at pressures ranging from ambient to 70 MPa. Isobaric phase diagrams were constructed, that allow predicting the inhibiting efficiency of sodium chloride and calcium chloride at constant pressure, from 0,25 to 70 MPa. (author)

  6. Methane hydrate morphology of natural hydrate-bearing sediment from Nankai trough, Japan (United States)

    Konno, Y.; Jin, Y.; Yoneda, J.; Kida, M.; Nagao, J.


    As a part of MH21, the Research Consortium for Methane Hydrate Resources in Japan, who initiated Japan's Methane Hydrate R&D Program (managed by the Ministry of Economy, Trade, and Industry (METI)), we developed newly pressured hydrate sediment analyzing apparatus (Pressured Non-destructive Analysis Tools, here after PNATs) including an X-ray computed-tomography (CT) system, gamma-ray density measurement system, an instrumented pressure testing chamber (IPTC). The Japanese IPTC was developed with strong cooperation from Georgia Tech and the U.S. Geological Survey. In this study, we investigated the hydrate morphology in natural gas hydrate-bearing (GH) sediment recovered from eastern Nankai trough area under hydro-pressurized condition using PNATs. In addition to P-wave measurement via the IPTC, we assessed hydrate saturation Sh in sediment sample by using our newly ATR-IR probe for the IPTC. Our analysis reveals that the pressurized sample shows load-bearing GH sediment.

  7. Surface modification and characterization of magnesium hydroxide sulfate hydrate nanowhiskers

    Energy Technology Data Exchange (ETDEWEB)

    Gao Chuanhui [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Li Xianguo, E-mail: [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Feng Lijuan; Lu Shaoyan; Liu Jinyan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China)


    In order to enhance the compatibility with plastic polymers, magnesium hydroxide sulfate hydrate (MHSH) nanowhiskers were modified through grafting methyl methacrylate (MMA) on the surface of the nanowhiskers by emulsion polymerization. The influences of the reaction time, MMA monomer content, adding speed of monomer and the reaction temperature on the grafting ratio were investigated. Thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy and surface contact angle measurement were used to characterize the effect of surface modification. The results showed that the MHSH nanowhiskers were uniformly coated by polymethyl methacrylate (PMMA), and a well-defined core-shell hybrid structure of MHSH/PMMA was obtained. The surface contact angle of the hybrid whiskers increased to 87.32 deg. from 12.71 deg. and the whiskers surface was changed from hydrophilic to lipophilic.

  8. Hydrate formation in heterogeneous sediments: To what extent does hydrate distribution record the local environmental history? (United States)

    Rempel, A. W.; VanderBeek, B. P.


    The distribution of methane hydrate in marine sediments reflects the interplay between supply by methanogenesis and far-field transport, and the environmental conditions that set the local methane solubility, which is modulated by the physical properties of the host sediments. We explore the extent to which detailed observations of hydrate distribution and models of hydrate growth, especially in the vicinity of dipping sand layers, can be used to infer the environmental conditions that prevailed during emplacement. Anomalously high hydrate saturations found in association with relatively more coarse-grained strata have been attributed to both enhanced fluid focusing through more permeable sediment layers and to perturbations in phase equilibrium related to pore-space geometry. In order to achieve more accurate predictions of hydrate occurrence, we incorporate treatments for the influence of pore architecture on growth dynamics that have been validated using analog ice-water and water-vapor systems. We demonstrate how pore-size effects on methane solubility and permeability-driven variations in fluid flux can be parameterized into a 1D model for hydrate growth along dipping, coarse-grained layers embedded in a finer-grained sediment package. We show how the vertical distribution of hydrate varies in response to changes in grain size and rates of fluid advection, sedimentation, and in situ methane production. Our modeling shows that sharp gradients in methane solubility, which occur along stratigraphic boundaries, promote the diffusive growth of localized regions of high hydrate saturation while enhanced fluid advection favors more distributed growth throughout high permeability layers. Sedimentation tends to suppress the growth of diffusive hydrate saturation anomalies and can lead to steady-state hydrate saturation profiles. In situ methane production increases hydrate concentrations at shallow depths relative to models where methane is supplied advectively from a

  9. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?


    Cesare Altavilla; Maria Soledad Prats Moya; Pablo Caballero Pérez


    Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration know...

  10. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao


    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  11. Geomechanical property of gas hydrate sediment in the Nankai trough

    Energy Technology Data Exchange (ETDEWEB)

    Hato, M. [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Matsuoka, T.; Ikeda, H. [Kyoto Univ., Kyoto (Japan). Dept. of Civil and Earth Resources Engineering; Inamori, T.; Saeki, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Technology Research Center


    Well logging data and core samples from the Nankai trough area were used to investigate the geomechanical properties and geological history of gas hydrate-bearing sediments. The Coulomb-Mohr failure criterion was used to calculate the mechanical strength of the hydrate sediments. The dynamic Young's modulus was calculated using theoretical and experimental data. The study showed that sediments below the gas hydrate later are mechanically weaker than sediments within the gas hydrate layer. The mechanical strength of the core samples was then measured both before and after dissociation. The study showed that saturated gas hydrates are 4 times stronger than gas hydrate-dissociated cores. It was concluded that hydrate-bearing sediments are mechanically stronger than non-hydrate-bearing sediments. Results of the study will be used to develop methods of predicting risk factors for sea floor deformations and well-bore collapse during gas hydrate extraction processes in hydrate reservoirs. 6 refs., 5 figs.

  12. Exogenous origin of hydration on asteroid (16) Psyche: the role of hydrated asteroid families (United States)

    Avdellidou, C.; Delbo', M.; Fienga, A.


    Asteroid (16) Psyche, which for a long time was the largest M-type with no detection of hydration features in its spectrum, was recently discovered to have a weak 3-μm band and thus it was eventually added to the group of hydrated asteroids. Its relatively high density, in combination with the high radar albedo, led researchers to classify the asteroid as a metallic object. It is believed that it is possibly a core of a differentiated body, a remnant of `hit-and-run' collisions. The detection of hydration is, in principle, inconsistent with a pure metallic origin for this body. Here, we consider the scenario in which the hydration on its surface is exogenous and was delivered by hydrated impactors. We show that impacting asteroids that belong to families whose members have the 3-μm band can deliver hydrated material to Psyche. We developed a collisional model with which we test all dark carbonaceous asteroid families, which contain hydrated members. We find that the major source of hydrated impactors is the family of Themis, with a total implanted mass on Psyche of the order of ˜1014 kg. However, the hydrated fraction could be only a few per cent of the implanted mass, as the water content in carbonaceous chondrite meteorites, the best analogue for the Themis asteroid family, is typically a few per cent of their mass.

  13. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj


    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  14. Proton NMR relaxation of hydrated insulin powder

    International Nuclear Information System (INIS)

    Sanches, R.; Donoso, J.P.; Mascarenhas, S.; Panepucci, H.C.


    Water proton nuclear magnetic relaxation measurements were obtained for hydrated insulin powder as a function of the water content. For samples containing enough water to complete the hydration shell, the data for the spin-lattice and spin-spin relaxation times are consistent with a model in which water molecules exist in two phases, one exhibiting restricted motion and identified with water of hydration and another identified as free water with motions similar to ordinary water. For samples containing only water of hydration, a model for the spin-spin relaxation time is discussed, in which the water molecules relaxation is described in terms for four relaxation times. Estimates are obtained for these relaxation times, in good agreement with the experimental data. (Author) [pt

  15. Polyethylene oxide hydration in grafted layers (United States)

    Dormidontova, Elena; Wang, Zilu

    Hydration of water soluble polymers is one of the key-factors defining their conformation and properties, similar to biopolymers. Polyethylene oxide (PEO) is one of the most important biomedical-applications polymers and is known for its reverse temperature solubility due to hydrogen bonding with water. As in many practical applications PEO chains are grafted to surfaces, e.g. of nanoparticles or planar surfaces, it is important to understand PEO hydration in such grafted layers. Using atomistic molecular dynamic simulations we investigate the details of molecular conformation and hydration of PEO end-grafted to gold surfaces. We analyze polymer and water density distribution as a function of distance from the surface for different grafting densities. Based on a detailed analysis of hydrogen bonding between polymer and water in grafted PEO layers, we will discuss the extent of PEO hydration and its implication for polymer conformation, mobility and layer properties. This research is supported by NSF (DMR-1410928).

  16. Oceanic hydrates: more questions than answers

    International Nuclear Information System (INIS)

    Laherrere, Jean


    Methane hydrates create problems by blocking pipelines and casing; they are also accused of contributing to environmental problems (e.g. global warming). Methane hydrates are also found in permafrost areas and in oceanic sediments where the necessary temperature and pressure for stability occur. Claims for the widespread occurrence in thick oceanic deposits are unfounded: apparently indirect evidence from seismic reflectors, seismic hydrocarbon indicators, logs and free samples is unreliable. At one time, hydrate was seen as a static, biogenic, continuous, huge resource but that view is changing to one of a dynamic, overpressurised, discontinuous and unreliable resource. Only Japan and India are currently showing any serious interest in hydrates. Academic research has raised more questions than answers. It is suggested that more hard exploratory evidence rather than theoretical study is required

  17. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)


    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  18. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N


    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  19. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)


    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  20. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge


    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  1. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores (United States)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael


    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and


    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr


    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and


    Energy Technology Data Exchange (ETDEWEB)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin


    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling

  4. Spectroscopic methods in gas hydrate research. (United States)

    Rauh, Florian; Mizaikoff, Boris


    Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO(2) storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3-20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas

  5. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Directory of Open Access Journals (Sweden)

    Doris E. Braun


    Full Text Available The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis, gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations. Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (dehydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules and (form III differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  6. Exploitation of subsea gas hydrate reservoirs (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge


    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.


    Directory of Open Access Journals (Sweden)

    D. V. Rudenko


    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  8. Seismic evidence of gas hydrates, multiple BSRs and fluid flow offshore Tumbes Basin, Peru (United States)

    Auguy, Constance; Calvès, Gérôme; Calderon, Ysabel; Brusset, Stéphane


    Identification of a previously undocumented hydrate system in the Tumbes Basin, localized off the north Peruvian margin at latitude of 3°20'—4°10'S, allows us to better understand gas hydrates of convergent margins, and complement the 36 hydrate sites already identified around the Pacific Ocean. Using a combined 2D-3D seismic dataset, we present a detailed analysis of seismic amplitude anomalies related to the presence of gas hydrates and/or free gas in sediments. Our observations identify the occurrence of a widespread bottom simulating reflector (BSR), under which we observed, at several sites, the succession of one or two BSR-type reflections of variable amplitude, and vertical acoustic discontinuities associated with fluid flow and gas chimneys. We conclude that the uppermost BSR marks the current base of the hydrate stability field, for a gas composition comprised between 96% methane and 4% of ethane, propane and pure methane. Three hypotheses are developed to explain the nature of the multiple BSRs. They may refer to the base of hydrates of different gas composition, a remnant of an older BSR in the process of dispersion/dissociation or a diagenetically induced permeability barrier formed when the active BSR existed stably at that level for an extended period. The multiple BSRs have been interpreted as three events of steady state in the pressure and temperature conditions. They might be produced by climatic episodes since the last glaciation associated with tectonic activity, essentially tectonic subsidence, one of the main parameters that control the evolution of the Tumbes Basin.

  9. Dispersion engineering for vertical microcavities using subwavelength gratings. (United States)

    Wang, Zhaorong; Zhang, Bo; Deng, Hui


    We show that the energy-momentum dispersion of a vertical semiconductor microcavity can be modified by design using a high-index-contrast subwavelength grating (SWG) as a cavity mirror. We analyze the angular dependence of the reflection phase of the SWG to illustrate the principles of dispersion engineering. We show examples of engineered dispersions such as ones with much reduced or increased energy density of states and one with a double-well-shaped dispersion. This method of dispersion engineering is compatible with maintaining a high cavity quality factor and incorporating fully protected active media inside the cavity, thus enabling the creation of new types of cavity quantum electrodynamics systems.

  10. Raman spectroscopic measurements on fluoromethane clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T. [Hokkaido Univ., Sapporo (Japan). Graduate School of Engineering, Div. of Applied Physics; Ohmura, R. [Keio Univ., Kohoku-ku, Yokohama (Japan). Dept. of Mechanical Engineering; Hori, A. [Kitami Inst. of Technology, Kitami (Japan). Course of Civil Engineering


    The occupation of guest molecules in clathrate-structure cages is of interest to researchers, since this property is involved in the estimation of guest molecule density, the stability of clathrate hydrates, and other features. However, such occupation is known to be non-stoichiometric. It remains difficult to accurately estimate the total amount of natural gases in the hydrates located in the deep ocean or in permafrost. This paper discussed the systematic observations of fluoromethane clathrate hydrates using Raman spectroscopy in conjunction with previously obtained Raman spectra for methane (CH{sub 4}) hydrate. Four types of fluoromethane were utilized as standard guest molecules to investigate cage occupation in the hydrates, as all of them were included in the same crystal structure and shared similar functional groups. The types of fluoromethane that were used included fluoromethane (CH{sub 3}F), difluoromethane (CH{sub 2}F{sub 2}), trifluoromethane (CHF{sub 3}), and tetrafluoromethane (CF{sub 4}). The paper discussed the experimental methods including the temperature and pressure conditions of fluorocarbon hydrate formation. It was concluded that the summary of the Raman peak positions of fluoromethane molecules indicate that the influence of deuterized host molecules on the intramolecular vibration frequencies is less than that suggested by experimental error. The obtained data were confirmed to agree with the empirical model for the Raman peak positions on guest molecules, when the relative position of the guest molecule in a host cage structure is considered. 28 refs., 1 tab., 7 figs.

  11. Hydration induced stress on DNA monolayers grafted on microcantilevers. (United States)

    Domínguez, Carmen M; Kosaka, Priscila M; Mokry, Guillermo; Pini, Valerio; Malvar, Oscar; del Rey, Mercedes; Ramos, Daniel; San Paulo, Alvaro; Tamayo, Javier; Calleja, Montserrat


    Surface tethered single-stranded DNA films are relevant biorecognition layers for oligonucleotide sequence identification. Also, hydration induced effects on these films have proven useful for the nanomechanical detection of DNA hybridization. Here, we apply nanomechanical sensors and atomic force microscopy to characterize in air and upon varying relative humidity conditions the swelling and deswelling of grafted single stranded and double stranded DNA films. The combination of these techniques validates a two-step hybridization process, where complementary strands first bind to the surface tethered single stranded DNA probes and then slowly proceed to a fully zipped configuration. Our results also demonstrate that, despite the slow hybridization kinetics observed for grafted DNA onto microcantilever surfaces, ex situ sequence identification does not require hybridization times typically longer than 1 h, while quantification is a major challenge.

  12. Hydration during intense exercise training. (United States)

    Maughan, R J; Meyer, N L


    Hydration status has profound effects on both physical and mental performance, and sports performance is thus critically affected. Both overhydration and underhydration - if sufficiently severe - will impair performance and pose a risk to health. Athletes may begin exercise in a hypohydrated state as a result of incomplete recovery from water loss induced in order to achieve a specific body mass target or due to incomplete recovery from a previous competition or training session. Dehydration will also develop in endurance exercise where fluid intake does not match water loss. The focus has generally been on training rather than on competition, but sweat loss and fluid replacement in training may have important implications. Hypohydration may impair training quality and may also increase stress levels. It is unclear whether this will have negative effects (reduced training quality, impaired immunity) or whether it will promote a greater adaptive response. Hypohydration and the consequent hyperthermia, however, can enhance the effectiveness of a heat acclimation program, resulting in improved endurance performance in warm and temperate environments. Drinking in training may be important in enhancing tolerance of the gut when athletes plan to drink in competition. The distribution of water between body water compartments may also be important in the initiation and promotion of cellular adaptations to the training stimulus. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  13. Fast parametric relationships for the large-scale reservoir simulation of mixed CH4-CO2 gas hydrate systems (United States)

    Reagan, Matthew T.; Moridis, George J.; Seim, Katie S.


    A recent Department of Energy field test on the Alaska North Slope has increased interest in the ability to simulate systems of mixed CO2-CH4 hydrates. However, the physically realistic simulation of mixed-hydrate simulation is not yet a fully solved problem. Limited quantitative laboratory data leads to the use of various ab initio, statistical mechanical, or other mathematic representations of mixed-hydrate phase behavior. Few of these methods are suitable for inclusion in reservoir simulations, particularly for systems with large number of grid elements, 3D systems, or systems with complex geometric configurations. In this work, we present a set of fast parametric relationships describing the thermodynamic properties and phase behavior of a mixed methane-carbon dioxide hydrate system. We use well-known, off-the-shelf hydrate physical properties packages to generate a sufficiently large dataset, select the most convenient and efficient mathematical forms, and fit the data to those forms to create a physical properties package suitable for inclusion in the TOUGH+ family of codes. The mapping of the phase and thermodynamic space reveals the complexity of the mixed-hydrate system and allows understanding of the thermodynamics at a level beyond what much of the existing laboratory data and literature currently offer.

  14. Synthesis of zirconia colloidal dispersions by forced hydrolysis

    Directory of Open Access Journals (Sweden)



    Full Text Available Different zirconia colloidal dispersions (sols were prepared from zirconyl oxynitrate and zirconyl oxychloride solutions by forced hydrolysis. Vigorously stirred acidic solutions of these salts were refluxed at 102 oC for 24 h. Characterization of the obtained sols (pH, solid phase content, crystal structure was performed by potentiometric, XRD, TGA/DTA and SEM measurements. The prepared sols contained almost spherical monoclinic hydrated zirconia particles 7–10 nm in diameter.

  15. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. (United States)

    Camilleri, Josette; Sorrentino, François; Damidot, Denis


    Novel root-end filling materials are composed of tricalcium silicate (TCS) and radiopacifier as opposed to the traditional mineral trioxide aggregate (MTA) which is made up of clinker derived from Portland cement and bismuth oxide. The aim of this research was to characterize and investigate the hydration of a tricalcium silicate-based proprietary brand cement (Biodentine™) and a laboratory manufactured cement made with a mixture of tricalcium silicate and zirconium oxide (TCS-20-Z) and compare their properties to MTA Angelus™. The materials investigated included a cement containing 80% of TCS and 20% zirconium oxide (TCS-20-Z), Biodentine™ and MTA Angelus™. The specific surface area and the particle size distribution of the un-hydrated cements and zirconium oxide were investigated using a gas adsorption method and scanning electron microscopy. Un-hydrated cements and set materials were tested for mineralogy and microstructure, assessment of bioactivity and hydration. Scanning electron microscopy, X-ray energy dispersive analysis, X-ray fluorescence spectroscopy, X-ray diffraction, Rietveld refined X-ray diffraction and calorimetry were employed. The radiopacity of the materials was investigated using ISO 6876 methods. The un-hydrated cements were composed of tricalcium silicate and a radiopacifier phase; zirconium oxide for both Biodentine™ and TCS-20-Z whereas bismuth oxide for MTA Angelus™. In addition Biodentine™ contained calcium carbonate particles and MTA Angelus™ exhibited the presence of dicalcium silicate, tricalcium aluminate, calcium, aluminum and silicon oxides. TCS and MTA Angelus™ exhibited similar specific surface area while Biodentine™ had a greater specific surface area. The cements hydrated and produced some hydrates located either as reaction rim around the tricalcium silicate grain or in between the grains at the expense of volume containing the water initially present in the mixture. The rate of reaction of tricalcium

  16. The relation between hydration and mechanical behavior of bovine cornea in tension. (United States)

    Hatami-Marbini, Hamed; Rahimi, Abdolrasol


    The cornea is a transparent soft tissue covering the front of the eye. The biomechanical properties of the cornea have been commonly investigated by uniaxial tensile and inflation testing methods. The cornea like many other hydrated tissue swells when immersed in an ionic solution. Previous studies on hydrated tissues have shown that mechanical properties and hydration are closely related. The present study was designed to investigate the effects of thickness (hydration) variation due to swelling/dehydration on non-linear stress-strain response of the bovine cornea. Corneal strips were first air-dried and then soaked in a bathing solution until they reached an average thickness ranging from 0.3mm to 1.1mm. Based on their thickness, the samples were divided into different groups and uniaxial tests were performed to measure tensile properties. All experiments were done in mineral oil to prevent any hydration gain or loss during the tests. It was observed that swollen corneas had softer tensile properties in comparison with dehydrated ones. In particular, there was a significant difference between elastic tangent modulus of different groups (P<0.05). It was also shown that tensile behavior of bovine strips at any thickness within the range of 0.4-1.1mm can be obtained from a single experiment conducted on samples with known thickness (hydration). The findings of the present study confirm that mechanical properties obtained from uniaxial tensile experiments are strongly dependent on thickness (water amount) of samples; therefore, careful attention must be taken in interpreting previous studies which did not fully control the thickness of specimens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Restaurant No. 1 fully renovated

    CERN Multimedia


    The Restaurant No. 1 team. After several months of patience and goodwill on the part of our clients, we are delighted to announce that the major renovation work which began in September 2006 has now been completed. From 21 May 2007 we look forward to welcoming you to a completely renovated restaurant area designed with you in mind. The restaurant team wishes to thank all its clients for their patience and loyalty. Particular attention has been paid in the new design to creating a spacious serving area and providing a wider choice of dishes. The new restaurant area has been designed as an open-plan space to enable you to view all the dishes before making your selection and to move around freely from one food access point to another. It comprises user-friendly areas that fully comply with hygiene standards. From now on you will be able to pick and choose to your heart's content. We invite you to try out wok cooking or some other speciality. Or select a pizza or a plate of pasta with a choice of two sauces fr...

  18. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald


    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  19. Distinguishing between hydrated, partially hydrated or unhydrated clinker in hardened concrete using microscopy

    NARCIS (Netherlands)

    Valcke, S.L.A.; Rooij, M.R. de; Visser, J.H.M.; Nijland, T.G.


    Hydration of clinker particles is since long a topic of interest in both designing and optimizing cement composition and its quantity used in concrete. The interest for carefully observing and also quantifying the type or stage of clinker hydration in hardened cement paste is twofold. Firstly, the

  20. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: Constraints from ODP Leg 204 (United States)

    Trehu, A.M.; Long, P.E.; Torres, M.E.; Bohrmann, G.; Rack, F.R.; Collett, T.S.; Goldberg, D.S.; Milkov, A.V.; Riedel, M.; Schultheiss, P.; Bangs, N.L.; Barr, S.R.; Borowski, W.S.; Claypool, G.E.; Delwiche, M.E.; Dickens, G.R.; Gracia, E.; Guerin, G.; Holland, M.; Johnson, J.E.; Lee, Y.-J.; Liu, C.-S.; Su, X.; Teichert, B.; Tomaru, H.; Vanneste, M.; Watanabe, M. E.; Weinberger, J.L.


    Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30-40% of pore space or 20-26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally change. ?? 2004 Published by Elsevier B.V.

  1. Hydrate-phobic surfaces: fundamental studies in clathrate hydrate adhesion reduction. (United States)

    Smith, J David; Meuler, Adam J; Bralower, Harrison L; Venkatesan, Rama; Subramanian, Sivakumar; Cohen, Robert E; McKinley, Gareth H; Varanasi, Kripa K


    Clathrate hydrate formation and subsequent plugging of deep-sea oil and gas pipelines represent a significant bottleneck for deep-sea oil and gas operations. Current methods for hydrate mitigation are expensive and energy intensive, comprising chemical, thermal, or flow management techniques. In this paper, we present an alternate approach of using functionalized coatings to reduce hydrate adhesion to surfaces, ideally to a low enough level that hydrodynamic shear stresses can detach deposits and prevent plug formation. Systematic and quantitative studies of hydrate adhesion on smooth substrates with varying solid surface energies reveal a linear trend between hydrate adhesion strength and the practical work of adhesion (γ(total)[1 + cos θ(rec)]) of a suitable probe liquid, that is, one with similar surface energy properties to those of the hydrate. A reduction in hydrate adhesion strength by more than a factor of four when compared to bare steel is achieved on surfaces characterized by low Lewis acid, Lewis base, and van der Waals contributions to surface free energy such that the practical work of adhesion is minimized. These fundamental studies provide a framework for the development of hydrate-phobic surfaces, and could lead to passive enhancement of flow assurance and prevention of blockages in deep-sea oil and gas operations.

  2. Hydration interactions and stability of soluble microbial products in aqueous solutions. (United States)

    Wang, Ling-Ling; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing


    Soluble microbial products (SMP) are organic compounds excreted by microorganisms in their metabolism and decay and the main constituents in effluent from biological wastewater treatment systems. They also have an important contribution to the dissolved organic matters in natural aqueous systems. So far the interactions between SMP colloids have not been well explored. In this work, the interactions between SMP colloids in water and salt solutions were studied by using a combination of static and dynamic light scattering, Fourier transform infrared spectra, Zeta potential and acid-base titration techniques. The second osmotic virial coefficient had a larger value in a 750-mM salt solution than that in a 50-mM solution, indicating that repulsion between SMP colloids increased with an increase in salt concentration, which is contrary with the classic Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Such a repulsion was attributed to water structuring and enhanced by the accumulation of hydrophilic counter ions around SMP colloids and the formed hydration force. The repulsion and hydration effect led to the dispersing and deeper draining structure, accompanied by a decreased hydrodynamic radius and increased diffusion coefficient. This hydration force was related to so-called ion specific effect, and electrolyte sodium chloride had a more substantial effect on hydration force than KCl, CsCl, NaBr and NaI. Our results provide an experimental approach to explore the SMP structures, inter-colloid interactions and confirm the non-DLVO forces. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Using seed-tagging methods for assessing post-dispersal seed fate in rodent-dispersed trees

    NARCIS (Netherlands)

    Xiao, ZS; Jansen, PA; Zhang, ZB


    Seed tagging is widely used for tracking seeds during dispersal by seed-caching animals. No studies, however, have fully examined the effects of seed tagging on post-dispersal seed fate. We studied how two seed tagging techniques - thread-marking and wire tin-tagging - affected seed fate by placing

  4. Using seed-tagging methods for assessing post-dispersal seed fate in rodent-dispersed trees.

    NARCIS (Netherlands)

    Xiao, Z.; Jansen, P.A.; Zhang, Z.


    Seed tagging is widely used for tracking seeds during dispersal by seed-caching animals. No studies, however, have fully examined the effects of seed tagging on post-dispersal seed fate. We studied how two seed tagging techniques – thread-marking and wire tin-tagging – affected seed fate by placing

  5. Hydration of urea and alkylated urea derivatives (United States)

    Kaatze, Udo


    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  6. Safety and environmental aspects of zinc--chlorine hydrate batteries for electric-vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, S.; Henriksen, G.L.; Whittlesey, C.C.; Warde, C.J.; Carr, P.; Symons, P.C.


    Public acceptance of high-performance cost-effective zinc--chlorine hydrate batteries for the random-use electric-vehicle application will require meeting stringent safety and environmental requirements. These requirements revolve mainly around the question of accidental release and spread of toxic amounts of chlorine gas, the only potential hazard in this battery system. Available information in the areas of physiological effects, environmental impact, and governmental regulation of chlorine were reviewed. The design, operation, and safety features of a first commercial electric-vehicle battery were conceived and analyzed from the chlorine release aspect. Two types of accident scenarios were analyzed in terms of chlorine release rates, atmospheric dispersion, health hazard, and possible clean-up operations. The worst-case scenario, a quite improbable accident, involves the spillage of chlorine hydrate onto the ground, while the other scenario, a more probable accident, involves the release of chlorine gas from a ruptured battery case. Heat-transfer and chlorine-dispersion models, developed to analyze these scenarios, establish a firm basis for a comprehenive and factual position statement on this topic. The results of this preliminary study suggest that electric vehicles powered by appropriately designed zinc--chlorine hydrate batteries will pose negligible health or environmental hazards on the nation's streets and highways. 8 figures, 14 tables.

  7. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben


    laboratory experiments in a radial cell. We collapse the behavior in the form of a phase diagram fully characterized by two dimensionless groups: a modified capillary number and a ?fracturing number? that reflects the balance between the pressure forces that act to open conduits in the granular pack, and frictional forces that resist it. We use all this small-scale knowledge to propose simple mechanistic models of gas migration and hydrate formation at the geologic bed scale. We propose that methane transport in lake and oceanic sediments is controlled by dynamic conduits, which dilate and release gas as the falling hydrostatic pressure reduces the effective stress below the tensile strength of the sediments. We test our model against a four-month record of hydrostatic load and methane flux in Upper Mystic Lake, Mass., USA, and show that it captures the complex episodicity of methane ebullition. Our quantitative conceptualization opens the door to integrated modeling of methane transport to constrain global methane release from lakes and other methane-rich sediment systems, and to assess its climate feedbacks.

  8. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben


    laboratory experiments in a radial cell. We collapse the behavior in the form of a phase diagram fully characterized by two dimensionless groups: a modified capillary number and a ?fracturing number? that reflects the balance between the pressure forces that act to open conduits in the granular pack, and frictional forces that resist it. We use all this small-scale knowledge to propose simple mechanistic models of gas migration and hydrate formation at the geologic bed scale. We propose that methane transport in lake and oceanic sediments is controlled by dynamic conduits, which dilate and release gas as the falling hydrostatic pressure reduces the effective stress below the tensile strength of the sediments. We test our model against a four-month record of hydrostatic load and methane flux in Upper Mystic Lake, Mass., USA, and show that it captures the complex episodicity of methane ebullition. Our quantitative conceptualization opens the door to integrated modeling of methane transport to constrain global methane release from lakes and other methane-rich sediment systems, and to assess its climate feedbacks.

  9. Genetics of dispersal (United States)

    Bocedi, Greta; Cote, Julien; Legrand, Delphine; Guillaume, Frédéric; Wheat, Christopher W.; Fronhofer, Emanuel A.; Garcia, Cristina; Henry, Roslyn; Husby, Arild; Baguette, Michel; Bonte, Dries; Coulon, Aurélie; Kokko, Hanna; Matthysen, Erik; Niitepõld, Kristjan; Nonaka, Etsuko; Stevens, Virginie M.; Travis, Justin M. J.; Donohue, Kathleen; Bullock, James M.; del Mar Delgado, Maria


    ABSTRACT Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts

  10. The fully Mobile City Government Project (MCity)

    DEFF Research Database (Denmark)

    Scholl, Hans; Fidel, Raya; Mai, Jens Erik


    The Fully Mobile City Government Project, also known as MCity, is an interdisciplinary research project on the premises, requirements, and effects of fully mobile, wirelessly connected applications (FWMC). The project will develop an analytical framework for interpreting the interaction...


    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin


    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  12. Development of hydrate risk quantification in oil and gas production (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  13. Complex admixtures of clathrate hydrates in a water desalination method (United States)

    Simmons, Blake A [San Francisco, CA; Bradshaw, Robert W [Livermore, CA; Dedrick, Daniel E [Berkeley, CA; Anderson, David W [Riverbank, CA


    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  14. Irrigation port hydration in phacoemulsification surgery. (United States)

    Suzuki, Hisaharu; Masuda, Yoichiro; Hamajima, Yuki; Takahashi, Hiroshi


    In most cases, hydration is performed by water injection into the stromal tissue with a needle. The technique is simple, however it is sometimes troublesome. We describe a simple technique for hydrating the corneal stroma in cataract surgery using an irrigation port. The technique began by pushing the irrigation port against the corneal stroma for a few seconds during phacoemulsification, which generated edema in the corneal incision that subsequently prevented leakage. This procedure is called the hydration using irrigation port (HYUIP) technique. A total of 60 eyes were randomized and placed in two groups, 30 eyes underwent surgeries using the HYUIP technique (HYUIP group) and 30 eyes underwent surgeries without the HYUIP technique (control). The three points evaluated during each surgery included 1) the occurrence of anterior chamber collapse during the pulling out of the I/A tip after inserting the intraocular lens, 2) the need for conventional hydration, and 3) watertight completion at the end stage of surgery. The anterior chamber collapse and the need for conventional hydration were significantly smaller in the HYUIP group compared to the control group. Regarding the self-sealing completion, no significant difference was observed between the two groups. The HYUIP technique is an effective method for creating self-sealing wound. In addition, this technique helps to prevent anterior chamber collapse.

  15. Blue LED irradiation to hydration of skin (United States)

    Menezes, Priscila F. C.; Requena, Michelle B.; Lizarelli, Rosane F., Z.; Bagnato, Vanderlei S.


    Blue LED system irradiation shows many important properties on skin as: bacterial decontamination, degradation of endogenous skin chromophores and biostimulation. In this clinical study we prove that the blue light improves the skin hydration. In the literature none authors reports this biological property on skin. Then this study aims to discuss the role of blue light in the skin hydration. Twenty patients were selected to this study with age between 25-35 years old and phototype I, II and III. A defined area from forearm was pre determined (A = 4.0 cm2). The study was randomized in two treatment groups using one blue light device (power of 5.3mW and irradiance of 10.8mW/cm2). The first treatment group was irradiated with 3J/cm2 (277seconds) and the second with 6J/cm2 (555 seconds). The skin hydration evaluations were done using a corneometer. The measurements were collected in 7, 14, 21 and 30 days, during the treatment. Statistical test of ANOVA, Tukey and T-Student were applied considering 5% of significance. In conclusion, both doses were able to improve the skin hydration; however, 6J/cm2 has kept this hydration for 30 days.

  16. Thermodynamic Stability of Ettringite Formed by Hydration of Ye’elimite Clinker

    Directory of Open Access Journals (Sweden)

    Marcela Fridrichová


    Full Text Available In order to save limited natural resources by utilising industrial by-products, this paper focuses on an entirely new application of fluidized bed combustion fly ash (FBCFA into Portland composite cements. It is not currently used because undesirable ettringite, 3CaO·Al2O3·3CaSO4·32H2O, is formed during the hydration of FBCFA. Although the stability of ettringite has been the subject of much research, the solution is not yet fully clear. Ettringite is generally considered to be stable up to a temperature of 110°C; however, some investigators claimed that ettringite may already decompose at even ambient temperatures. To prove these statements, ettringite was prepared by the hydration of ye’elimite, 3CaO·3Al2O3·CaSO4, and the system stored at laboratory temperature in two environments: in laboratory settings and in an environment of saturated water vapour. The mineralogical composition of ettringite was long term (up to 160 days of hydration and was analysed by X-ray diffraction (XRD and differential thermal analysis (DTA. The hydration of ye’elimite is a relatively complex process. Only approximately 30% of ettringite was formed under laboratory conditions that appeared to gradually convert into metaettringite. Within an environment of saturated water vapour, we observed the conversion of ettringite into monosulfate. Original ye’elimite was indicated as the dominant phase of both storages.

  17. The big fat LARS - a LArge Reservoir Simulator for hydrate formation and gas production (United States)

    Beeskow-Strauch, Bettina; Spangenberg, Erik; Schicks, Judith M.; Giese, Ronny; Luzi-Helbing, Manja; Priegnitz, Mike; Klump, Jens; Thaler, Jan; Abendroth, Sven


    Simulating natural scenarios on lab scale is a common technique to gain insight into geological processes with moderate effort and expenses. Due to the remote occurrence of gas hydrates, their behavior in sedimentary deposits is largely investigated on experimental set ups in the laboratory. In the framework of the submarine gas hydrate research project (SUGAR) a large reservoir simulator (LARS) with an internal volume of 425 liter has been designed, built and tested. To our knowledge this is presently a word-wide unique set up. Because of its large volume it is suitable for pilot plant scale tests on hydrate behavior in sediments. That includes not only the option of systematic tests on gas hydrate formation in various sedimentary settings but also the possibility to mimic scenarios for the hydrate decomposition and subsequent natural gas extraction. Based on these experimental results various numerical simulations can be realized. Here, we present the design and the experimental set up of LARS. The prerequisites for the simulation of a natural gas hydrate reservoir are porous sediments, methane, water, low temperature and high pressure. The reservoir is supplied by methane-saturated and pre-cooled water. For its preparation an external gas-water mixing stage is available. The methane-loaded water is continuously flushed into LARS as finely dispersed fluid via bottom-and-top-located sparger. The LARS is equipped with a mantle cooling system and can be kept at a chosen set temperature. The temperature distribution is monitored at 14 reasonable locations throughout the reservoir by Pt100 sensors. Pressure needs are realized using syringe pump stands. A tomographic system, consisting of a 375-electrode-configuration is attached to the mantle for the monitoring of hydrate distribution throughout the entire reservoir volume. Two sets of tubular polydimethylsiloxan-membranes are applied to determine gas-water ratio within the reservoir using the effect of permeability

  18. Lectures on Dispersion Theory (United States)

    Salam, A.


    Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)

  19. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani


    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  20. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane


    We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO-RS) at the Becke-Perdew (BP)/Triple zeta valence with polarization functions...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...... absolute predictions of hydration energies but could be used to investigate trends for several ions, thanks to the low computational cost, in particular for ligand exchange reactions....

  1. THz characterization of hydrated and anhydrous materials (United States)

    Sokolnikov, Andre


    The characterization of anhydrous and hydrated forms of materials is of great importance to science and industry. Water content poses difficulties for successful identification of the material structure by THz radiation. However, biological tissues and hydrated forms of nonorganic substances still may be investigated by THz radiation. This paper outlines the range of possibilities of the above characterization, as well as provides analysis of the physical mechanism that allows or prevents penetration of THz waves through the substance. THz-TDS is used to measure the parameters of the characterization of anhydrous and hydrated forms of organic and nonorganic samples. Mathematical methods (such as prediction models of time-series analysis) are used to help identifying the absorption coefficient and other parameters of interest. The discovered dependencies allow designing techniques for material identification/characterization (e.g. of drugs, explosives, etc. that may have water content). The results are provided.

  2. Method for production of hydrocarbons from hydrates (United States)

    McGuire, Patrick L.


    A method of recovering natural gas entrapped in frozen subsurface gas hydrate formations in arctic regions. A hot supersaturated solution of CaCl.sub.2 or CaBr.sub.2, or a mixture thereof, is pumped under pressure down a wellbore and into a subsurface hydrate formation so as to hydrostatically fracture the formation. The CaCl.sub.2 /CaBr.sub.2 solution dissolves the solid hydrates and thereby releases the gas entrapped therein. Additionally, the solution contains a polymeric viscosifier, which operates to maintain in suspension finely divided crystalline CaCl.sub.2 /CaBr.sub.2 that precipitates from the supersaturated solution as it is cooled during injection into the formation.

  3. Hydration dynamics of hyaluronan and dextran. (United States)

    Hunger, Johannes; Bernecker, Anja; Bakker, Huib J; Bonn, Mischa; Richter, Ralf P


    Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Methane hydrates in nature - Current knowledge and challenges (United States)

    Collett, Timothy S.


    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  5. Dispersing powders in liquids

    CERN Document Server

    Nelson, RD


    This book provides powder technologists with laboratory procedures for selecting dispersing agents and preparing stable dispersions that can then be used in particle size characterization instruments. Its broader goal is to introduce industrial chemists and engineers to the phenomena, terminology, physical principles, and chemical considerations involved in preparing and handling dispersions on a commercial scale. The book introduces novices to: - industrial problems due to improper degree of dispersion; - the nomenclature used in describing particles; - the basic physica

  6. Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates

    Directory of Open Access Journals (Sweden)

    Georg Janicki


    Full Text Available In the medium term, gas hydrate reservoirs in the subsea sediment are intended as deposits for carbon dioxide (CO2 from fossil fuel consumption. This idea is supported by the thermodynamics of CO2 and methane (CH4 hydrates and the fact that CO2 hydrates are more stable than CH4 hydrates in a certain P-T range. The potential of producing methane by depressurization and/or by injecting CO2 is numerically studied in the frame of the SUGAR project. Simulations are performed with the commercial code STARS from CMG and the newly developed code HyReS (hydrate reservoir simulator especially designed for hydrate processing in the subsea sediment. HyReS is a nonisothermal multiphase Darcy flow model combined with thermodynamics and rate kinetics suitable for gas hydrate calculations. Two scenarios are considered: the depressurization of an area 1,000 m in diameter and a one/two-well scenario with CO2 injection. Realistic rates for injection and production are estimated, and limitations of these processes are discussed.

  7. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.


    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  8. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    Directory of Open Access Journals (Sweden)

    Cesare Altavilla


    Full Text Available Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration knowledge. Fluid balance and urine hydration markers were studied during training. Swimmers showed a limited nutrition knowledge (33.26 % ± SD 12.59 and meagre hydration knowledge (28.61 % ± SD 28.59. Females showed lower scores than male swimmers in nutrition and hydration knowledge. Based on urine specific gravity, swimmers started the training close to the euhydrated threshold (1.019 g/mL ± SD 0.008. Although urine specific gravity and urine colour were reduced after the training, there were minimal changes in body mass (-0.12 Kg ± SD 0.31. Sweat loss (2.67 g/min ± SD 3.23 and the net changes in the fluid balance (-0.22 % ± SD 0.59 were low. The poor knowledge in nutrition and hydration encountered in the swimmers can justify the development of a strategy to incorporate nutritional education programmes for this group. Body water deficit from swimming activity seems to be easily replaced with the water intake to maintain hydration. After the training, the urine of swimmers was diluted regardless of their water intake. Dilution of urine did not reflect real hydration state in swimming.

  9. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.


    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  10. Morphology of methane hydrate host sediments (United States)

    Jones, K.W.; Feng, H.; Tomov, S.; Winters, W.J.; Eaton, M.; Mahajan, D.


    The morphological features including porosity and grains of methane hydrate host sediments were investigated using synchrotron computed microtomography (CMT) technique. The sediment sample was obtained during Ocean Drilling Program Leg 164 on the Blake Ridge at water depth of 2278.5 m. The CMT experiment was performed at the Brookhaven National Synchrotron Light Source facility. The analysis gave ample porosity, specific surface area, mean particle size, and tortuosity. The method was found to be highly effective for the study of methane hydrate host sediments.

  11. Arctic Gas hydrate, Environment and Climate (United States)

    Mienert, Jurgen; Andreassen, Karin; Bünz, Stefan; Carroll, JoLynn; Ferre, Benedicte; Knies, Jochen; Panieri, Giuliana; Rasmussen, Tine; Myhre, Cathrine Lund


    Arctic methane hydrate exists on land beneath permafrost regions and offshore in shelf and continental margins sediments. Methane or gas hydrate, an ice-like substrate, consists mainly of light hydrocarbons (mostly methane from biogenic sources but also ethane and propane from thermogenic sources) entrapped by a rigid cage of water molecules. The pressure created by the overlying water and sediments offshore stabilizes the CH4 in continental margins at a temperature range well above freezing point; consequently CH4 exists as methane ice beneath the seabed. Though the accurate volume of Arctic methane hydrate and thus the methane stored in hydrates throughout the Quaternary is still unknown it must be enormous if one considers the vast regions of Arctic continental shelves and margins as well as permafrost areas offshore and on land. Today's subseabed methane hydrate reservoirs are the remnants from the last ice age and remain elusive targets for both unconventional energy and as a natural methane emitter influencing ocean environments and ecosystems. It is still contentious at what rate Arctic warming may govern hydrate melting, and whether the methane ascending from the ocean floor through the hydrosphere reaches the atmosphere. As indicated by Greenland ice core records, the atmospheric methane concentration rose rapidly from ca. 500 ppb to ca. 750 ppb over a short time period of just 150 years at the termination of the younger Dryas period ca. 11600 years ago, but the dissociation of large quantities of methane hydrates on the ocean floor have not been documented yet (Brook et al., 2014 and references within). But with the major projected warming and sea ice melting trend (Knies et al., 2014) one may ask, for how long will CH4 stay trapped in methane hydrates if surface and deep-ocean water masses will warm and permafrost continuous to melt (Portnov et al. 2014). How much of the Arctic methane will be consumed by the micro- and macrofauna, how much will

  12. Hydrate Technology For Transporting Natural Gas


    Dawe, R. A.


    Natural gas hydrate (NGH) is a viable alternative to LNG (Liquefied Natural Gas) or pipelines for the transportation of natural gas from source to demand. It involves three stages: production, transportation and re-gasification. The production of the hydrate occurs at pressures >50 bar at temperatures ~10oC in the presence of water and natural gas (particularly methane, ethane, propane). Transportation is by insulated bulk carrier at around –5 oC and atmospheric pressure or 0 oC at 10 bar, an...

  13. What are gas hydrates?: Chapter 1 (United States)

    Beaudoin, Y.C.; Waite, W.; Boswell, R.; Dallimore, Scott


    The English chemistry pioneer Sir Humphry Davy first combined gas and water to produce a solid substance in his lab in 1810. For more than a century after that landmark moment, a small number of scientists catalogued various solid “hydrates” formed by combining water with an assortment of gases and liquids. Sloan and Koh (2007) review this early research, which was aimed at discerning the chemical structures of gas hydrates (Fig. 1.1), as well as the pressures and temperatures at which they are stable. Because no practical applications were found for these synthetic gas hydrates, they remained an academic curiosity.

  14. Dehydration of plutonium or neptunium trichloride hydrate (United States)

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.


    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  15. Experimental Study of Gas Hydrate Dynamics (United States)

    Fandino, O.; Ruffine, L.


    Important quantities of methane and other gases are trapped below the seafloor and in the permafrost by an ice-like solid, called gas hydrates or clathrate hydrates. The latter is formed when water is mixing with different gases at high pressures and low temperatures. Due to a their possible use as a source of energy [1] or the problematic related to flow assurance failure in pipelines [2] the understanding of their processes of formation/destabilisation of these structures becomes a goal for many laboratories research as well as industries. In this work we present an experimental study on the stochastic behaviour of hydrate formation from a bulk phase. The method used here for the experiments was to repeat several time the same hydrate formation procedure and to notice the different from one experiment to another. A variable-volume type high-pressure apparatus with two sapphire windows was used. This device, already presented by Ruffine et al.[3], allows us to perform both kinetics and phase equilibrium measurements. Three initial pressure conditions were considered here, 5.0 MPa, 7.5 MPa and 10.0 MPa. Hydrates have been formed, then allowed to dissociate by stepwise heating. The memory effect has also been investigated after complete dissociation. It turned out that, although the thermodynamics conditions of formation and/or destabilization were reproducible. An attempt to determine the influence of pressure on the nucleation induction time will be discussed. References 1. Sum, A. K.; Koh, C. A.; Sloan, E. D., Clathrate Hydrates: From Laboratory Science to Engineering Practice. Industrial & Engineering Chemistry Research 2009, 48, 7457-7465. 2. Sloan, E. D., A changing hydrate paradigm-from apprehension to avoidance to risk management. Fluid Phase Equilibria 2005, 228, 67-74. 3. Ruffine, L.; Donval, J. P.; Charlou, J. L.; Cremière, A.; Zehnder, B. H., Experimental study of gas hydrate formation and destabilisation using a novel high-pressure apparatus. Marine

  16. Thermal Conductivity of Methane-Hydrate


    Krivchikov, A. I.; Gorodilov, B. Ya.; Korolyuk, O. A.; Manzhelii, V. G.; Conrad, H.; Press, W.


    The thermal conductivity of the methane hydrate CH4 (5.75 H2O) was measured in the interval 2-140 K using the steady-state technique. The thermal conductivity corresponding to a homogeneous substance was calculated from the measured effective thermal conductivity obtained in the experiment. The temperature dependence of the thermal conductivity is typical for the thermal conductivity of amorphous solids. It is shown that after separation of the hydrate into ice and methane, at 240 K, the ther...

  17. Simulation of subsea gas hydrate exploitation (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge


    The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within

  18. Structure and composition analysis of natural gas hydrates: 13C NMR spectroscopic and gas uptake measurements of mixed gas hydrates. (United States)

    Seo, Yutaek; Kang, Seong-Pil; Jang, Wonho


    Gas hydrates are becoming an attractive way of storing and transporting large quantities of natural gas, although there has been little effort to understand the preferential occupation of heavy hydrocarbon molecules in hydrate cages. In this work, we present the formation kinetics of mixed hydrate based on a gas uptake measurement during hydrate formation, and how the compositions of the hydrate phase are varied under corresponding formation conditions. We also examine the effect of silica gel pores on the physical properties of mixed hydrate, including thermodynamic equilibrium, formation kinetics, and hydrate compositions. It is expected that the enclathration of ethane and propane is faster than that of methane early stage hydrate formation, and later methane becomes the dominant component to be enclathrated due to depletion of heavy hydrocarbons in the vapor phase. The composition of the hydrate phase seems to be affected by the consumed amount of natural gas, which results in a variation of heating value of retrieved gas from mixed hydrates as a function of formation temperature. 13C NMR experiments were used to measure the distribution of hydrocarbon molecules over the cages of hydrate structure when it forms either from bulk water or water in silica gel pores. We confirm that 70% of large cages of mixed hydrate are occupied by methane molecules when it forms from bulk water; however, only 19% of large cages of mixed hydrate are occupied by methane molecules when it forms from water in silica gel pores. This result indicates that the fractionation of the hydrate phase with heavy hydrocarbon molecules is enhanced in silica gel pores. In addition when heavy hydrocarbon molecules are depleted in the vapor phase during the formation of mixed hydrate, structure I methane hydrate forms instead of structure II mixed hydrate and both structures coexist together, which is also confirmed by 13C NMR spectroscopic analysis.

  19. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan


    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  20. Hydration behaviors of calcium silicate-based biomaterials

    Directory of Open Access Journals (Sweden)

    Yuan-Ling Lee


    Conclusion: Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level.

  1. Polymer hydration and stiffness at biointerfaces and related cellular processes. (United States)

    Kerch, Garry


    The direct and indirect (by changing mechanical properties) effects of hydration at interfaces on cellular processes and tissue diseases are reviewed. The essential effect of substrate stiffness on cellular processes was demonstrated in the last decade. The combined effect of surface stiffness and hydration at interfaces has garnered much less attention, though hydration and dehydration play important roles in biological processes. This review focuses on the studies that demonstrate how hydration affects biological processes at interfaces. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. Various types of implant and blood contacting device coatings with varied surface stiffness and hydration have been reported. Effect of hydration on polymer modulus of elasticity and viscoelasticity was discussed taking into account cells adhesion, migration, proliferation, differentiation on surfaces with various degree of hydration. Future directions of research were considered, including the use of nanotechnology to regulate the hydration degree. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Methane hydrates in marine sediments - Untapped source of energy

    Digital Repository Service at National Institute of Oceanography (India)

    Jauhari, P.

    will be required to turn this potential resource into gas reserves while developing technologies to conduct safe petroleum operation in hydrate areas, and defining the role of methane hydrates in global climate....

  3. Risk factors of methane hydrate resource development in the concentrated zones distributed in the eastern Nankai Trough (United States)

    Yamamoto, K.; Nagakubo, S.


    Some environmental and safety concerns on the offshore methane hydrate development have been raised, but the ground of such allegations are sometime not fully reasonable. The risks of methane hydrate resource development to environment and safety should be discussed upon methane hydrate occurrences condition, the production methods, and the designs of production system, under comprehensively scientific manners. In the Phase 1 of the Methane Hydrate Exploitation Program in Japan (FY2001-2008), the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) found methane hydrate concentrated zones in the eastern Nankai Trough that are potential prospects for resource development. The concentrated zones are consisted of turbidite-derived sandy sediments and hydrate crystals in pore spaces of sand grains (pore-filling type structure). The MH21 Research Consortium proposed the depressurization method as prime technique due to its efficiency of gas production in such concentrated zones, and has tried to develop conceptual designs of production systems based on the information of existing devices and facilities. Under the condition and circumstances described above, the authors tried to extract and evaluate some risk factors concerning methane hydrate development using depressurization in the area. Leakage of methane gas, that is less harmful substance to ecosystem than heavier hydrocarbons, from production system can be one possible risk. However, in the case of gas production through wellbore, even if catastrophic damages happen in the subsea production system during gas production, the leakages do not continue because the borehole could be filled by seawater and depressurization is stopped immediately. Another possible risk is a leakage of produced gas through seafloor. If methane hydrate production makes high pressure or temperature zones in sediments, the risk should be considered. However, depressurization method makes opposite condition

  4. A study of the methane hydrate formation by in situ turbidimetry

    Energy Technology Data Exchange (ETDEWEB)

    Herri, J.M.


    The study of the Particle Size Distribution (PSD) during the processes of crystallization is a subject of considerable interest, notably in the offshore exploitation of liquid fuels where the gas hydrate crystallization can plug production, treatment and transport facilities. The classical remedy to this problem is mainly thermodynamic additives such as alcohols or salts, but a new way of research is the use of dispersant additives which avoid crystals formation. In this paper, we show an original apparatus that is able to measure in situ the polychromatic UV-Visible turbidity spectrum in a pressurised reactor. We apply this technology to the calculation of the PSD during the crystallization of methane hydrate particles in a stirred semi-batch tank reactor. We discuss the mathematics treatment of the turbidity spectrum in order to determine the PSD and especially the method of matrix inversion with constraint. Moreover, we give a method to calculate theoretically the refractive index of the hydrate particles and we validate it experimentally with the methane hydrate particles. We apply this technology to the study of the crystallization of methane hydrate from pure liquid water and methane gas into the range of temperature [0-2 deg. C], into the range of pressure [30-100 bars] and into the range of stirring rate [0-600 rpm]. We produce a set of experiments concerning these parameters. Then we realize a model of the crystallization taking into account the processes of nucleation, of growth, of agglomeration and flotation. We compare this model with the experimental results concerning the complex influence of stirring rate at 1 deg. C and 30 bars. Then, we investigate the influence of additives such as Fontainebleau Sand, Potassium Chloride and a surfactant such as Poly-Vinyl-Pyrrolydone. (authors). 133 refs., 210 figs., 54 tabs.

  5. The transformation of uranyl oxide hydrates: The effect of dehydration on synthetic metaschoepite and its alteration to becquerelite

    International Nuclear Information System (INIS)

    Sowder, A.G.; Clark, S.B.; Fjeld, R.A.


    The U(VI) solid phases schoepite, metaschoepite, and dehydrated schoepite are important reservoirs of mobile uranium in the environment. These simple uranyl oxide hydrates result from weathering of uranium minerals and the corrosion of anthropogenic uranium solids. The authors have studied the role of hydrational water among these phases and in subsequent transformation to other secondary metal-U(VI) oxide hydrates. Synthetic metaschoepite (MS, UO 3 ·2.0H 2 O), its dehydrated phases, and its secondary alteration products were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), and high-resolution thermogravimetric analysis (HRTGA). Drying MS at 105 C resulted in the formation of a dehydrated phase (UO 3 ·0.9H 2 O) that was structurally distinct from natural dehydrated schoepite (DS, UO 3 ·0.75H 2 O) reported by others. Unlike natural DS, their dehydrated material was easily rehydrated, although crystallinity of the rehydrated phase was reduced. The rates of transformation of synthetic MS and dehydrated MS in the presence of Ca 2+ to form becquerelite (Ca[(UO 2 ) 6 O 4 (OH) 6 ]·8H 2 O) were determined. Alteration rates were significantly faster when the starting material had been dehydrated. These results are explained in the context of structural aspects of U(VI) solid phases, and the possible impact of hydration on long-term stability of U(VI) oxide hydrates in environmental systems is discussed

  6. Marine Gas Hydrates - An Untapped Non-conventional Energy ...

    Indian Academy of Sciences (India)

    Table of contents. Marine Gas Hydrates - An Untapped Non-conventional Energy Resource · Slide 2 · Slide 3 · Slide 4 · Gas Hydrate Stability Zone · Slide 6 · Slide 7 · Exploration of gas hydrates (seismic) · Characteristics of BSR · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Distribution of Gas Hydrates in KG ...

  7. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon


    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  8. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.


    Formation of hydrates in gas transmission lines due to high pressures and low temperatures is a serious problem in the oil and gas industry with potential hazards and/or economic losses. Kinetic hydrate inhibitors are water soluble polymeric compounds that prevent or delay hydrate formation. This...

  9. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.


    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  10. Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE Pacific Ocean

    DEFF Research Database (Denmark)

    Treude, T.; Boetius, A.; Knittel, K.


    At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate-reducing bac......At Hydrate Ridge (HR), Cascadia convergent margin, surface sediments contain massive gas hydrates formed from methane that ascends together with fluids along faults from deeper reservoirs. Anaerobic oxidation of methane (AOM), mediated by a microbial consortium of archaea and sulfate...... oxidation was extremely low (2.1 mmol m(-2) d(-1)) and was probably due to aerobic oxidation of methane. SR was fueled largely by methane at flow-impacted sites, but exceeded AOM in some cases, most likely due to sediment heterogeneity. At the Acharax field, SR was decoupled from methane oxidation...

  11. Hydration status assessment by multi-frequency bioimpedance in patients with advanced chronic kidney disease. (United States)

    Caravaca, F; Martínez del Viejo, C; Villa, J; Martínez Gallardo, R; Ferreira, F


    Body composition assessment has the potential to improve the care of patients with chronic kidney disease (CKD). Whole-body multiple-frequency bioimpedance spectroscopy (BIS) appears to be a useful and appropriate technique for assessing hydration status and body composition in CKD patients. The aims of this study were to determine the hydration status by BIS in patients with advanced CKD, and to analyse the association of body fluid status with common clinical and biochemical characteristics. The prognostic value of the phase angle at 50 KHz (PA) was also evaluated. The study group consisted of 175 patients (66 ± 14 year, 77 females) with eGFR < 40 ml/min not yet on dialysis. Body composition was assessed by BIS (BCM, Fresenius). Hydration status was expressed as a percentage of the total body water (TBW). Patients were prospectively followed-up for a median of 481 days, and the main determinants of mortality were estimated by Cox regression analysis. The majority of patients (85%) showed a hydration status within ± 5% TBW. Patients with oedemas or uncontrolled arterial hypertension showed mean estimate fluid overload significantly higher than that of the other study patients. Fluid overload was negatively associated with serum albumin levels, body mass index and urinary sodium/potassium ratio; and positively with male gender and diabetes. During the follow-up period, 16 patients died (9%). The main determinants of mortality adjusted for other potential covariates were: Davies comorbidity index (HR = 4.304; P = .001), and PA (per each °; HR = 0.491; P = .026). BIS may help identify changes in hydration status in CKD patients not fully appreciated by clinical or biochemical assessment. PA was a significant predictor of mortality in these patients.

  12. Gel phase in hydrated calcium dipicolinate (United States)

    Rajak, Pankaj; Mishra, Ankit; Sheng, Chunyang; Tiwari, Subodh; Krishnamoorthy, Aravind; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya


    The mineralization of dipicolinic acid (DPA) molecules in bacterial spore cores with Ca2+ ions to form Ca-DPA is critical to the wet-heat resistance of spores. This resistance to "wet-heat" also depends on the physical properties of water and DPA in the hydrated Ca-DPA-rich protoplasm. Using reactive molecular dynamics simulations, we have determined the phase diagram of hydrated Ca-DPA as a function of temperature and water concentration, which shows the existence of a gel phase along with distinct solid-gel and gel-liquid phase transitions. Simulations reveal monotonically decreasing solid-gel-liquid transition temperatures with increasing hydration, which explains the experimental trend of wet-heat resistance of bacterial spores. Our observation of different phases of water also reconciles previous conflicting experimental findings on the state of water in bacterial spores. Further comparison with an unmineralized hydrated DPA system allows us to quantify the importance of Ca mineralization in decreasing diffusivity and increasing the heat resistance of the spore.

  13. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard


    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree of ...

  14. Unraveling halide hydration: A high dilution approach (United States)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola


    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (Δ G^{ominus }_{hyd}[H^+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a Δ G^{ominus }_{hyd}[H^+] value of -1100 kJ mol-1 [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl-, Br-, and I- ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F- ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl-, Br-, and I- ions does not extend beyond the ion first hydration shell, and the structure of water in the F- second shell is also substantially unaffected by the ion.

  15. Gypsum hydration: a theoretical and experimental study

    NARCIS (Netherlands)

    Yu, Qingliang; Brouwers, Jos; de Korte, A.C.J.; Fischer, H.B; Bode, K.A.


    Calcium sulphate dihydrate (CaSO4·2H2O or gypsum) is used widely as building material because of its excellent fire resistance, aesthetics, and low price. Hemihydrate occurs in two formations of α- and β-type. Among them β-hemihydrate is mainly used to produce gypsum plasterboard since the hydration

  16. Gas hydrate resource quantification in Uruguay

    International Nuclear Information System (INIS)

    Tomasini, J.; De Santa Ana, H.; Veroslavsky, G.


    The gas hydrates are crystalline solids formed by natural gas (mostly methane) and water, which are stable in thermobaric conditions given under high pressures and low temperatures. These conditions are given in permafrost zones and continental margin basins offshore in the nature

  17. Gold(III)-Catalyzed Hydration of Phenylacetylene (United States)

    Leslie, J. Michelle; Tzeel, Benjamin A.


    A guided inquiry-based experiment exploring the regioselectivity of the hydration of phenylacetylene is described. The experiment uses an acidic gold(III) catalyst in a benign methanol/water solvent system to introduce students to alkyne chemistry and key principles of green chemistry. The experiment can be easily completed in approximately 2 h,…

  18. A new approach to model mixed hydrates

    Czech Academy of Sciences Publication Activity Database

    Hielscher, S.; Vinš, Václav; Jäger, A.; Hrubý, Jan; Breitkopf, C.; Span, R.


    Roč. 459, March (2018), s. 170-185 ISSN 0378-3812 R&D Projects: GA ČR(CZ) GA17-08218S Institutional support: RVO:61388998 Keywords : gas hydrate * mixture * modeling Subject RIV: BJ - Thermodynamics Impact factor: 2.473, year: 2016 https://www. science science /article/pii/S0378381217304983

  19. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.


    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids sh...

  20. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos


    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  1. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard


    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...

  2. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani


    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.


    Energy Technology Data Exchange (ETDEWEB)



    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2).

  4. Evolution of a gas bubble in porous matrix filled by methane hydrate (United States)

    Tsiberkin, Kirill; Lyubimov, Dmitry; Lyubimova, Tatyana; Zikanov, Oleg


    Behavior of a small isolated hydrate-free inclusion (a bubble) within hydrate-bearing porous matrix is studied analytically and numerically. An infinite porous matrix of uniform properties with pores filled by methane hydrates and either water (excessive water situation) or methane gas (excessive gas situation) is considered. A small spherical hydrate-free bubble of radius R0 exists at initial moment within the matrix due to overheating relative to the surrounding medium. There is no continuing heat supply within the bubble, so new hydrate forms on its boundary, and its radius decreases with time. The process is analysed in the framework of the model that takes into account the phase transition and accompanying heat and mass transport processes and assumes spherical symmetry. It is shown that in the case of small (~ 10-2-10-1 m) bubbles, convective fluxes are negligible and the process is fully described by heat conduction and phase change equations. A spherically symmetric Stefan problem for purely conduction-controlled evolution is solved analytically for the case of equilibrium initial temperature and pressure within the bubble. The self-similar solution is verified, with good results, in numerical simulations based on the full filtration and heat transfer model and using the isotherm migration method. Numerical simulations are also conducted for a wide range of cases not amenable to analytical solution. It is found that, except for initial development of an overheated bubble, its radius evolves with time following the self-similar formula: R(t) ( t)1-2 R0-= 1 - tm- , (1) where tm is the life-time of bubble (time of its complete freezing). The analytical solution shows that tm follows 2 tm ~ (R0-?) , (2) where ? is a constant determined by the temperature difference ΔT between the bubble's interior and far field. We consider implications for natural hydrate deposits. As an example, for a bubble with R0 = 4 cm and ΔT = 0.001 K, we find tm ~ 5.7 ? 106 s (2

  5. Synthesis of a Biglucoside and Its Application as Montmorillonite Hydration Inhibitor

    Directory of Open Access Journals (Sweden)

    Xin-chun Zhang


    Full Text Available A biglucoside (BG was synthesized with glucose and epichlorohydrin as raw materials. The inhibition of BG against montmorillonite swelling was investigated by various methods including montmorillonite linear expansion test, mud ball immersing test, thermogravimetric analysis, and scanning electron microscopy. The results show that the BG has good inhibition ability to the hydration swelling and dispersion of montmorillonite. Under the same condition, the linear expansion ratio of montmorillonite in BG solution is much lower than that of MEG. The particle distribution measurement, thermogravimetric analysis, FT-IR, and scanning electron microscopy results all prove the efficient inhibition of BG.

  6. "Dispersion modeling approaches for near road | Science ... (United States)

    Roadway design and roadside barriers can have significant effects on the dispersion of traffic-generated pollutants, especially in the near-road environment. Dispersion models that can accurately simulate these effects are needed to fully assess these impacts for a variety of applications. For example, such models can be useful for evaluating the mitigation potential of roadside barriers in reducing near-road exposures and their associated adverse health effects. Two databases, a tracer field study and a wind tunnel study, provide measurements used in the development and/or validation of algorithms to simulate dispersion in the presence of noise barriers. The tracer field study was performed in Idaho Falls, ID, USA with a 6-m noise barrier and a finite line source in a variety of atmospheric conditions. The second study was performed in the meteorological wind tunnel at the US EPA and simulated line sources at different distances from a model noise barrier to capture the effect on emissions from individual lanes of traffic. In both cases, velocity and concentration measurements characterized the effect of the barrier on dispersion.This paper presents comparisons with the two datasets of the barrier algorithms implemented in two different dispersion models: US EPA’s R-LINE (a research dispersion modelling tool under development by the US EPA’s Office of Research and Development) and CERC’s ADMS model (ADMS-Urban). In R-LINE the physical features reveal

  7. Molecular simulation of non-equilibrium methane hydrate decomposition process

    Energy Technology Data Exchange (ETDEWEB)

    Bagherzadeh, S.Alireza; Englezos, Peter [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 (Canada); Alavi, Saman, E-mail: [Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario, K1A 0R6 (Canada); Ripmeester, John A., E-mail: [Steacie Institute for Molecular Sciences, National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario, K1A 0R6 (Canada)


    Graphical abstract: Highlights: > Decomposition of methane hydrate is studied with molecular dynamics simulations. > Simulations are performed under adiabatic conditions (no thermostats). > The effects of heat and mass transfer during the decomposition are observed. > Temperature gradients are established as the hydrate decomposes. > Intrinsic reaction kinetics picture of hydrate dissociation is revisited. - Abstract: We recently performed constant energy molecular dynamics simulations of the endothermic decomposition of methane hydrate in contact with water to study phenomenologically the role of mass and heat transfer in the decomposition rate [S. Alavi, J.A. Ripmeester, J. Chem. Phys. 132 (2010) 144703]. We observed that with the progress of the decomposition front temperature gradients are established between the remaining solid hydrate and the solution phases. In this work, we provide further quantitative macroscopic and molecular level analysis of the methane hydrate decomposition process with an emphasis on elucidating microscopic details and how they affect the predicted rate of methane hydrate decomposition in natural methane hydrate reservoirs. A quantitative criterion is used to characterize the decomposition of the hydrate phase at different times. Hydrate dissociation occurs in a stepwise fashion with rows of sI cages parallel to the interface decomposing simultaneously. The correlations between decomposition times of subsequent layers of the hydrate phase are discussed.

  8. Solid state interconversion between anhydrous norfloxacin and its hydrates. (United States)

    Chongcharoen, Wanchai; Byrn, Stephen R; Sutanthavibul, Narueporn


    This work is focused on characterizing and evaluating the solid state interconversion of norfloxacin (NF) hydrates. Four stoichiometric NF hydrates, dihydrate, hemipentahydrate, trihydrate, pentahydrate and a disordered NF state, were generated by various methods and characterized by X-ray powder diffractometry (XRPD), thermal analysis and Karl Fisher titrimetry. XRPD patterns of all NF hydrates exhibited crystalline structures. NF hydrate conversion was studied with respect to mild elevated temperature and various degrees of moisture levels. NF hydrates transformed to anhydrous NF Form A after gentle heating at 60 degrees C for 48 h except dihydrate and trihydrate where mixture in XRPD patterns between anhydrous NF Form A and former structures existed. Desiccation of NF hydrates at 0% RH for 7 days resulted in only partial removal of water molecules from the hydrated structures. The hydrated transitional phase and the disordered NF state were obtained from the incomplete dehydration of NF hydrates after thermal treatment and pentahydrate NF after desiccation, respectively. Anhydrous NF Form A and NF hydrates transformed to pentahydrate NF when exposed to high moisture environment except dihydrate. In conclusion, surrounding moisture levels, temperatures and the duration of exposure strongly influenced the interconversion pathways and stoichiometry of anhydrous NF and its hydrates. (c) 2007 Wiley-Liss, Inc.

  9. Indian National Gas Hydrate Program Expedition 01 report (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V.; ,


    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  10. A method of harvesting gas hydrates from marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Q.; Brill, J.P.; Sarica, C. [Tulsa Univ., Tulsa, OK (United States). Dept. of Petroleum Engineering


    Methane is known to exist in gas hydrates, but low productivity is expected for gas production from gas hydrates in marine sediments because of the shallow depths, low hydrate concentration, low permeability of the gas hydrate stability zone, lack of driving pressure and the slow melting process. This paper presented a newly developed methane harvesting method which aims to overcome technical barriers, maintain cost and energy efficiencies and minimize safety and environmental concerns. The method is based on the concept of capturing the gas released from hydrate dissociation in the sediments. The captured gases can reform hydrates inside and overhead receiver, which once full, can be lifted to shallow warm water for gas collection. This simple and open production system does not require high pressure and does not involve any flow assurance issues. As such, technical difficulties, safety issues and environmental concerns are minimized. The proposed gas harvesting method makes the best use of the nature of hydrates and the subsea pressure and temperature profiles. It combines many new concepts, including electrically adding heat inside the hydrate rich sediments to release gas, using an overhead receiver to capture the gas, allowing the gas to reform hydrates again in the overhead receiver, and lifting produced hydrates to warm water where it can be released and collected. It was concluded that this newly proposed production system enables the development of massive hydrate production fields on the sea bed with high production rates that are economically viable. 4 refs., 7 figs.

  11. Dispersion management with metamaterials (United States)

    Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M.


    An apparatus, system, and method to counteract group velocity dispersion in fibers, or any other propagation of electromagnetic signals at any wavelength (microwave, terahertz, optical, etc.) in any other medium. A dispersion compensation step or device based on dispersion-engineered metamaterials is included and avoids the need of a long section of specialty fiber or the need for Bragg gratings (which have insertion loss).

  12. Methane hydrate in the global organic carbon cycle (United States)

    Kvenvolden, K.A.


    The global occurrence of methane hydrate in outer continental margins and in polar regions, and the magnitude of the amount of methane sequestered in methane hydrate suggest that methane hydrate is an important component in the global organic carbon cycle. Various versions of this cycle have emphasized the importance of methane hydrate, and in the latest version the role of methane hydrate is considered to be analogous to the workings of an electrical circuit. In this circuit the methane hydrate is a condenser and the consequences of methane hydrate dissociation are depicted as a resistor and inductor, reflecting temperature change and changes in earth surface history. These consequences may have implications for global change including global climate change.

  13. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner


    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  14. Dispersant field monitoring procedures

    International Nuclear Information System (INIS)

    Hillman, S. O.; Hood, S. D.; Bronson, M. T.; Shufelt, G.


    Alyeska Pipeline Service Company's (APSC) dispersant response capability in the Port of Valdez, Prince William Sound, and in the Gulf of Alaska was described. APSC provides dispersal equipment, aerial spray delivery systems, helibucket delivery systems, vessel delivery systems, along with a minimum of 600,000 gallon stockpile of the dispersant Corexit 9527. Effectiveness and effects are monitored by visual observation. In addition, fluorometer and water sample analysis are also used to provide field analytical data indicative of the environmental effects of dispersant applications. The field monitoring plan was field tested in December 1996. Details of the monitoring procedures are outlined in this paper. 18 refs., 5 tabs

  15. Electromagnetic energy momentum in dispersive media

    International Nuclear Information System (INIS)

    Philbin, T. G.


    The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields are monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.

  16. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope (United States)

    Lee, M.W.; Collett, T.S.


    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.


    KAUST Repository

    Lei, L.


    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  18. Spectroscopic determination of gas-water interactions in clathrate hydrates

    International Nuclear Information System (INIS)

    Richardson, H.H. Jr.


    The technique of forming clathrate hydrates by first forming the amorphous deposits of gas-water mixture and, secondly, annealing this deposit was used to form the clathrate hydrates of ethylene oxide, hydrogen sulfide and sulfur dioxide. Once the clathrate hydrate formed as a thin film on the CsI substrate, the infrared spectrum of these hydrates could be obtained. The clathrate hydrates could be irradiated with 1.7 MeV electrons to promote high proton concentrations in the clathrate hydrate lattice at low temperatures (approx.30K) where the Bjerrum defects in the lattice are not mobile. The ring breathing model of ethylene oxide in the clathrate hydrate can be assigned. It was possible to incorporate D 2 O into the hydrogen bonded lattice of the ethylene oxide clathrate hydrate by growing the clathrate hydrate epitaxially on a thin film of clathrate hydrate at 100 K. The half-life of the D 2 O molecules in the ethylene oxide clathrate hydrate was only 9 minutes at 120 K. The activation energy determined from the hopping rate constant in ethylene oxide clathrate hydrate was 4.5 +/- 1.8 Kcal/mole. Irradiation of the ethylene oxide clathrate hydrate with 1.7 MeV electrons transformed some of the ethylene oxide molecules in the cages to (a) CH 2 = CH 2 , (b) CH 2 = C = O, (c) CH 3 -CH 2 -OH, (d) CO 2 , and (e) CO. A steady state concentration of coupled HOD was maintained in irradiated samples of ethylene oxide clathrate hydrates at a temperature around 80 K. The enclathrated H 2 S molecule in the small cages had a different infrared spectrum (broad band complex centered at 2600 cm -1 ) from the H 2 S molecules which had been enclathrated in the large cages (broad band complex centered at 2550 cm -1 )

  19. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. (United States)

    Camilleri, Josette; Laurent, Patrick; About, Imad


    The calcium-releasing ability of pulp-capping materials induces pulp tissue regeneration. Tricalcium silicate-based materials produce calcium hydroxide as a by-product of hydration. Assessment of hydration and calcium ion leaching is usually performed on samples that have been aged in physiological solution for a predetermined period of time. The hydration and activity of the materials in vivo may not be similar to those displayed in vitro because of insufficient fluid available in contact with dentin. The aim of this research was the assessment of hydration of Biodentine, Theracal LC, and a prototype radiopacified tricalcium silicate-based material after pulp capping and to compare it with direct hydration in an aqueous solution. The extent of hydration of Biodentine, Theracal LC, and a prototype radiopacified tricalcium silicate-based material with a similar composition to Biodentine but not incorporating the additives was assessed by scanning electron microscopy and energy dispersive spectroscopy of polished specimens after being allowed to hydrate in Hank's balanced salt solution for 14 days. The extent of hydration was compared with material hydration when used as direct pulp capping materials by using a tooth culture model. Material activity was also assessed by x-ray diffraction analysis to investigate the deposition of calcium hydroxide by the materials, and calcium ion leaching in Hank's balanced salt solution was assessed by ion chromatography. Biodentine and the prototype tricalcium silicate cement hydrated and reaction by-products were deposited in the cement matrix both after pulp capping and when incubated in an aqueous solution. Calcium hydroxide was formed, and calcium ions were leached in solution. Theracal LC hydration was incomplete because of the limited moisture diffusion within the material. Thus, no calcium hydroxide was produced, and a lower calcium ion leaching was recorded. Theracal LC had a heterogeneous structure with large unhydrated

  20. Modifying Cement Hydration with NS@PCE Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yue Gu


    Full Text Available It is generally accepted that fine particles could accelerate cement hydration process, or, more specifically, this accelerating effect can be attributed to additional surface area introduced by fine particles. In addition to this view, the surface state of fine particles is also an important factor, especially for nanoparticles. In the previous study, a series of nano-SiO2-polycarboxylate superplasticizer core-shell nanoparticles (NS@PCE were synthesized, which have a similar particle size distribution but different surface properties. In this study, the impact of NS@PCE on cement hydration was investigated by heat flow calorimetry, mechanical property measurement, XRD, and SEM. Results show that, among a series of NS@PCE, NS@PCE-2 with a moderate shell-core ratio appeared to be more effective in accelerating cement hydration. As dosage increases, the efficiency of NS@PCE-2 would reach a plateau which is quantified by various characteristic values. Compressive strength results indicate that strength has a linear correlation with cumulative heat release. A hypothesis was proposed to explain the modification effect of NS@PCE, which highlights a balance between initial dispersion and pozzolanic reactivity. This paper provides a new understanding for the surface modification of supplementary cementitious materials and their application and also sheds a new light on nano-SiO2 for optimizing cement-based materials.

  1. Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration. (United States)

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette


    Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H) Chemistry Structure - Influence of Magnesium Exchange on Mechanical Stiffness: C-S-H Jennite (United States)


    hydrated cement paste constituent - calcium silicate hydrate (C-S-H) based on its material chemistry structure are studied following a molecular dynamics...2015 Approved for public release; distribution is unlimited. Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H...1601 East Market Street Greensboro, NC 27411 -0001 ABSTRACT Computational Material Modeling of Hydrated Cement Paste Calcium Silicate Hydrate (C-S-H

  3. Methane hydrates and contemporary climate change (United States)

    Ruppel, Carolyn D.


    As the evidence for warming climate became better established in the latter part of the 20th century (IPCC 2001), some scientists raised the alarm that large quantities of methane (CH4) might be liberated by widespread destabilization of climate-sensitive gas hydrate deposits trapped in marine and permafrost-associated sediments (Bohannon 2008, Krey et al. 2009, Mascarelli 2009). Even if only a fraction of the liberated CH4 were to reach the atmosphere, the potency of CH4 as a greenhouse gas (GHG) and the persistence of its oxidative product (CO2) heightened concerns that gas hydrate dissociation could represent a slow tipping point (Archer et al. 2009) for Earth's contemporary period of climate change.

  4. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge


    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  5. Modelling porewater chemistry in hydrated Portland cement

    International Nuclear Information System (INIS)

    Berner, U.R.


    Extensive employment of concrete is foreseen in radioactive waste repositories. A prerequisite for modelling the interactions between concrete and formation waters is characterization of the concrete system. Available experimental data from high pressure squeezing of cement pore-water indicate that, besides the high pH due to alkali hydroxide dissolution, cement composition itself influences the solubility determining solid phases. A model which simulates the hydration of Portland cement assuming complete hydration of the main clinker minerals is presented. The model also includes parameters describing the reactions between the cement and blending agents. Comparison with measured pore-water data generally gives a consistent picture and, as expected, the model gives correct predictions for pure Portland cements. For blended cements, the required additional parameters can, to some extent, be derived from pore-water analysis. 14 references, 1 figure, 4 tables

  6. Effects of hydration on blood rheology. (United States)

    Vlastos, George A; Tangney, Christine C; Rosenson, Robert S


    This study investigated the impact of oral fluid intake on blood rheology of 17 healthy adults following a 12-14 hour overnight fast from food and drink. An oral fluid load of 500 ml was consumed every 30 minutes for 2 hours. Blood viscosity values at shear rates of 1, 10 and 100 s(-1) were reduced (p<0.05 to p<0.01) at 30 and 120 minutes following hydration; however, these differences were not significant after hematocrit correction. With fluid intake, both uncorrected and corrected viscous component of blood viscoelasticity at oscillatory shear rate of 1 s(-1) and at a constant frequency of 2 Hz were reduced (p<0.05 to p<0.001) at all time points as compared to fasting values. The corrected elastic component of blood viscoelasticity increased 90 minutes after hydration (p<0.05). An overnight fast is accompanied by rheological abnormalities that are altered by fluid intake.

  7. Visualizing Dispersion Interactions (United States)

    Gottschalk, Elinor; Venkataraman, Bhawani


    An animation and accompanying activity has been developed to help students visualize how dispersion interactions arise. The animation uses the gecko's ability to walk on vertical surfaces to illustrate how dispersion interactions play a role in macroscale outcomes. Assessment of student learning reveals that students were able to develop…

  8. Dispersal of forest insects (United States)

    Mcmanus, M. L.


    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  9. The Role of Bottom Simulating Reflectors in Gas Hydrate Assessment (United States)

    Majumdar, U.; Shedd, W. W.; Cook, A.; Frye, M.


    In this research we test the viability of using a bottom simulating reflector (BSR) to detect gas hydrate. Bottom simulating reflectors (BSRs) occur at many gas hydrate sites near the thermodynamic base of the gas hydrate stability zone (GHSZ), and are frequently used to identify possible presence of gas hydrate on a regional scale. To find if drilling a BSR actually increases the chances of finding gas hydrate, we combine an updated dataset of BSR distribution from the Bureau of Ocean Energy Management with a comprehensive dataset of natural gas hydrate distribution as appraised from well logs, covering an area of around 200,000 square kilometers in the northern Gulf of Mexico. The BSR dataset compiles industry 3-D seismic data, and includes mostly good-quality and high-confidence traditional and non-traditional BSRs. Resistivity well logs were used to identify the presence of gas hydrate from over 700 existing industry wells and we have found over 110 wells with likely gas hydrate occurrences. By integrating the two datasets, our results show that the chances of encountering gas hydrate when drilling through a BSR is ~ 42%, while that when drilling outside the BSR is ~15%. Our preliminary analysis indicates that a positive relationship exists between BSRs and gas hydrate accumulations, and the chances of encountering gas hydrate increases almost three-fold when drilling through a BSR. One interesting observation is that ~ 58% of the wells intersecting a BSR show no apparent evidence of gas hydrate. In this case, a BSR may occur at sites with no gas hydrate accumulations due to the presence of very low concentration of free gas that is not detected on resistivity logs. On the other hand, in a few wells, accumulations of gas hydrate were observed where no BSR is present. For example in a well in Atwater Valley Block 92, two intervals of gas hydrate accumulation in fractures have been identified on resistivity logs, of which, the deeper interval has 230 feet thick

  10. Fully Depleted Charge-Coupled Devices

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.


    We have developed fully depleted, back-illuminated CCDs thatbuild upon earlier research and development efforts directed towardstechnology development of silicon-strip detectors used inhigh-energy-physics experiments. The CCDs are fabricated on the same typeof high-resistivity, float-zone-refined silicon that is used for stripdetectors. The use of high-resistivity substrates allows for thickdepletion regions, on the order of 200-300 um, with corresponding highdetection efficiency for near-infrared andsoft x-ray photons. We comparethe fully depleted CCD to thep-i-n diode upon which it is based, anddescribe the use of fully depleted CCDs in astronomical and x-ray imagingapplications.

  11. Sherbet natural gas resources. ; Gas hydrate. Sherbet jo no tennen gas shigen. ; Gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Y. (Geological Survey of Japan, Tsukuba (Japan))


    The present of methane hydrate exploration is reviewed. Methane hydrate contains more than 95% methane in cages composed of water molecules, and it was probably formed from saturated methane in water and excess methane under specific temperature and pressure by biofermentation or pyrolysis of petroleum. It is found only under the sea bottom around continents or permanent frozen soil districts, and nearly 40 expected sites have been found at 500-5,000 m in depth of water, while 8 ones in Siberia, Canada and Alaska. In Japan, the Nankai trough, Kurile trench and Okushiri ridge are expected sites. Control of hydrate decomposition rates is essential for exploitation, while promotion of hydrate decomposition for methane gas production. The estimated amount of methane hydrate is larger in sea area than land area, and it is estimated to be 2.5-5 [times] 10[sup 14] m[sup 3] in the whole sea area of the globe, while 6 [times] 10[sup 12] m[sup 3] in the sea area around Japan. 17 refs., 6 figs., 4 tabs.

  12. Dispersion and space charge

    International Nuclear Information System (INIS)

    Venturini, M.; Kishek, R.A.; Reiser, M.


    The presence of space charge affects the value of the dispersion function. On the other hand dispersion has a role in shaping the beam distribution and therefore in determining the resulting forces due to space charge. In this paper we present a framework where the interplay between space charge and dispersion for a continuous beam can be simultaneously treated. We revise the derivation of a new set of rms envelope-dispersion equations we have recently proposed in [1]. The new equations generalize the standard rms envelope equations currently used for matching to the case where bends and a longitudinal momentum spread are present. We report a comparison between the solutions of the rms envelope-dispersion equations and the results obtained using WARP, a Particle in Cell (PIC) code, in the modeling of the Maryland Electron Ring. copyright 1998 American Institute of Physics

  13. Dispersion and space charge

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M. [Department of Physics and Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States); Kishek, R.A.; Reiser, M. [Department of Electrical Engeneering and Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States)


    The presence of space charge affects the value of the dispersion function. On the other hand dispersion has a role in shaping the beam distribution and therefore in determining the resulting forces due to space charge. In this paper we present a framework where the interplay between space charge and dispersion for a continuous beam can be simultaneously treated. We revise the derivation of a new set of rms envelope-dispersion equations we have recently proposed in [1]. The new equations generalize the standard rms envelope equations currently used for matching to the case where bends and a longitudinal momentum spread are present. We report a comparison between the solutions of the rms envelope-dispersion equations and the results obtained using WARP, a Particle in Cell (PIC) code, in the modeling of the Maryland Electron Ring. {copyright} {ital 1998 American Institute of Physics.}

  14. Dispersion and space charge

    International Nuclear Information System (INIS)

    Venturini, Marco; Kishek, Rami A.; Reiser, Martin


    The presence of space charge affects the value of the dispersion function. On the other hand dispersion has a role in shaping the beam distribution and therefore in determining the resulting forces due to space charge. In this paper we present a framework where the interplay between space charge and dispersion for a continuous beam can be simultaneously treated. We revise the derivation of a new set of rms envelope-dispersion equations we have recently proposed. The new equations generalize the standard rms envelope equations currently used for matching to the case where bends and a longitudinal momentum spread are present. We report a comparison between the solutions of the rms envelope-dispersion equations and the results obtained using WARP, a Particle in Cell (PIC) code, in the modeling of the Maryland Electron Ring

  15. Intermolecular Hydrogen Transfer in Isobutane Hydrate

    Directory of Open Access Journals (Sweden)

    Takeshi Sugahara


    Full Text Available Electron spin resonance (ESR spectra of butyl radicals induced with γ-ray irradiation in the simple isobutane (2-methylpropane hydrate (prepared with deuterated water were investigated. Isothermal annealing results of the γ-ray-irradiated isobutane hydrate reveal that the isobutyl radical in a large cage withdraws a hydrogen atom from the isobutane molecule through shared hexagonal-faces of adjacent large cages. During this “hydrogen picking” process, the isobutyl radical is apparently transformed into a tert-butyl radical, while the sum of isobutyl and tert-butyl radicals remains constant. The apparent transformation from isobutyl to tert-butyl radicals is an irreversible first-order reaction and the activation energy was estimated to be 35 ± 3 kJ/mol, which was in agreement with the activation energy (39 ± 5 kJ/mol of hydrogen picking in the γ-ray-irradiated propane hydrate with deuterated water.

  16. Polymorphism in Br2 clathrate hydrates. (United States)

    Goldschleger, I U; Kerenskaya, G; Janda, K C; Apkarian, V A


    The structure and composition of bromine clathrate hydrate has been controversial for more than 170 years due to the large variation of its observed stoichiometries. Several different crystal structures were proposed before 1997 when Udachin et al. (Udachin, K. A.; Enright, G. D.; Ratcliffe, C. I.; Ripmeester, J. A. J. Am. Chem. Soc. 1997, 119, 11481) concluded that Br2 forms only the tetragonal structure (TS-I). We show polymorphism in Br2 clathrate hydrates by identifying two distinct crystal structures through optical microscopy and resonant Raman spectroscopy on single crystals. After growing TS-I crystals from a liquid bromine-water solution, upon dropping the temperature slightly below -7 degrees C, new crystals of cubic morphology form. The new crystals, which have a limited thermal stability range, are assigned to the CS-II structure. The two structures are clearly distinguished by the resonant Raman spectra of the enclathrated Br2, which show long overtone progressions and allow the extraction of accurate vibrational parameters: omega(e) = 321.2 +/- 0.1 cm(-1) and omega(e)x(e) = 0.82 +/- 0.05 cm(-1) in TS-I and omega(e) = 317.5 +/- 0.1 cm(-1) and omega(e)x(e) = 0.70 +/- 0.1 cm(-1) in CS-II. On the basis of structural analysis, the discovery of the CS-II crystals implies stability of a large class of bromine hydrate structures and, therefore, polymorphism.

  17. The role of hydration in vocal fold physiology. (United States)

    Sivasankar, Mahalakshmi; Leydon, Ciara


    Increased vocal fold hydration is a popular target in the prevention and management of voice disorders. Current intervention strategies focus on enhancing both systemic (internal) and superficial (surface) hydration. We review relevant bench and human research on the role of hydration in vocal fold physiology. Bench and human studies provide converging evidence that systemic and superficial dehydration are detrimental to vocal fold physiology. Dehydration challenges increase the viscous properties of excised vocal fold tissue. Systemic, superficial, and combined drying challenges increase aerodynamic and acoustic measures of voice production in speakers. Emerging theoretical and clinical data suggest that increasing both systemic and superficial hydration levels may benefit voice production; however, robust evidence for positive outcomes of hydration treatments is lacking. Increased systemic and superficial vocal fold hydration as a component of vocal hygiene may improve overall health and efficiency of the vocal apparatus. However, continued exploration of biological mechanisms regulating vocal fold hydration is needed to optimize clinical hydration interventions. Specifically, the development of hydration treatments that maximize positive phonatory outcomes will necessitate understanding of the signaling pathways linking systemic and superficial hydration.

  18. The interaction of climate change and methane hydrates (United States)

    Ruppel, Carolyn D.; Kessler, John D.


    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  19. Fabrication and characterization of fully ceramic microencapsulated fuels

    International Nuclear Information System (INIS)

    Terrani, K.A.; Kiggans, J.O.; Katoh, Y.; Shimoda, K.; Montgomery, F.C.; Armstrong, B.L.; Parish, C.M.; Hinoki, T.; Hunn, J.D.; Snead, L.L.


    The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina–yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder–fuel particle mixture at a temperature of 1800–1900 °C using compaction pressures of 10–20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle–matrix interface.

  20. Effects of Incorporating High-Volume Fly Ash into Tricalcium Silicate on the Degree of Silicate Polymerization and Aluminum Substitution for Silicon in Calcium Silicate Hydrate

    Directory of Open Access Journals (Sweden)

    Sungchul Bae


    Full Text Available This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA into tricalcium silicate (C3S paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C–S–H. Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C3S hydration was significantly extended, the degree of hydration of C3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C3S in the C3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the pure C3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C–S–H in the C3S-HVFA paste directly indicate that Al substitutes for Si in C–S–H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C–S–H in C3S-HVFA system and presented results consistent with previous literature.

  1. NEW RSW & Wall Medium Fully Tetrahedral Grid (United States)

    National Aeronautics and Space Administration — New Medium Fully Tetrahedral RSW Grid with viscous wind tunnel wall at the root. This grid is for a node-based unstructured solver. Medium Tet: Quad Surface Faces= 0...

  2. NEW RSW & Wall Fine Fully Tetrahedral Grid (United States)

    National Aeronautics and Space Administration — NEW RSW Fine Fully Tetrahedral Grid with Viscous Wind Tunnel wall at the root. This grid is for a node-based unstructured solver. Note that the CGNS file is very...

  3. High-voltage-compatible, fully depleted CCDs

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.; Bebek, Chris J.; Dawson, Kyle S.; Emes, JohnE.; Fabricius, Max H.; Fairfield, Jessaym A.; Groom, Don E.; Karcher, A.; Kolbe, William F.; Palaio, Nick P.; Roe, Natalie A.; Wang, Guobin


    We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs.

  4. Recent results on hydrogen and hydration in biology studied by neutron macromolecular crystallography. (United States)

    Niimura, N; Arai, S; Kurihara, K; Chatake, T; Tanaka, I; Bau, R


    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in proteins, a technique complimentary to ultra-high-resolution [1, 2] X-ray diffraction. Three different types of neutron diffractometers for biological macromolecules have been constructed in Japan, France and the United States, and they have been used to determine the crystal structures of proteins up to resolution limits of 1.5-2.5 A. Results relating to hydrogen positions and hydration patterns in proteins have been obtained from these studies. Examples include the geometrical details of hydrogen bonds, H/D exchange in proteins and oligonucleotides, the role of hydrogen atoms in enzymatic activity and thermostability, and the dynamical behavior of hydration structures, all of which have been extracted from these structural results and reviewed. Other techniques, such as the growth of large single crystals, the preparation of fully deuterated proteins, the use of cryogenic techniques, and a data base of hydrogen and hydration in proteins, will be described.

  5. Incorporating Floating Surface Objects into a Fully Dispersive Surface Wave Model (United States)


    Decimation and Interpolation (PDI) Method was dded to NHWAVE by Shi et al. (2015) , who confirmed that the dy- amic pressure can be modeled accurately... cluster Farber located at he University of Delaware. Using 48 cores, it took about 8 h for a imulation of 10 0 0 s. The 10 m water depth was selected to re... decimation and interpolation (PDI) method for a baroclinic non-hydrostatic model. Ocean Mod. 96, 265–279 . 26 M.D. Orzech et al. / Ocean Modelling 102 (2016

  6. Fully Adaptive Radar Modeling and Simulation Development (United States)



  7. Influence of Physical Activity and Ambient Temperature on Hydration: The European Hydration Research Study (EHRS) (United States)

    Mora-Rodriguez, Ricardo; Ortega, Juan F.; Fernandez-Elias, Valentin E.; Kapsokefalou, Maria; Malisova, Olga; Athanasatou, Adelais; Husemann, Marlien; Domnik, Kirsten; Braun, Hans


    This study explored the effects of physical activity (PA) and ambient temperature on water turnover and hydration status. Five-hundred seventy three healthy men and women (aged 20–60 years) from Spain, Greece and Germany self-reported PA, registered all food and beverage intake, and collected 24-h urine during seven consecutive days. Fasting blood samples were collected at the onset and end of the study. Food moisture was assessed using nutritional software to account for all water intake which was subtracted from daily urine volume to allow calculation of non-renal water loss (i.e., mostly sweating). Hydration status was assessed by urine and blood osmolality. A negative association was seen between ambient temperature and PA (r = −0.277; p hydration status (i.e., lower urine and blood osmolality). PMID:27128938

  8. Stabilization of ammonia-rich hydrate inside icy planets. (United States)

    Naden Robinson, Victor; Wang, Yanchao; Ma, Yanming; Hermann, Andreas


    The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (H 2 O)(NH 3 ) 2 , is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O 2- ([Formula: see text]) 2 , where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.

  9. Dispersal and metapopulation stability

    Directory of Open Access Journals (Sweden)

    Shaopeng Wang


    Full Text Available Metapopulation dynamics are jointly regulated by local and spatial factors. These factors may affect the dynamics of local populations and of the entire metapopulation differently. Previous studies have shown that dispersal can stabilize local populations; however, as dispersal also tends to increase spatial synchrony, its net effect on metapopulation stability has been controversial. Here we present a simple metapopulation model to study how dispersal, in interaction with other spatial and local processes, affects the temporal variability of metapopulations in a stochastic environment. Our results show that in homogeneous metapopulations, the local stabilizing and spatial synchronizing effects of dispersal cancel each other out, such that dispersal has no effect on metapopulation variability. This result is robust to moderate heterogeneities in local and spatial parameters. When local and spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize or destabilize metapopulation dynamics through various mechanisms. Our findings have important theoretical and practical implications. We show that dispersal functions as a form of spatial intraspecific mutualism in metapopulation dynamics and that its effect on metapopulation stability is opposite to that of interspecific competition on local community stability. Our results also suggest that conservation corridors should be designed with appreciation of spatial heterogeneities in population dynamics in order to maximize metapopulation stability.

  10. Highly hydrated cations: deficiency, mobility, and coordination of water in crystalline nonahydrated scandium(III), yttrium(III), and lanthanoid(III) trifluoromethanesulfonates. (United States)

    Abbasi, Alireza; Lindqvist-Reis, Patric; Eriksson, Lars; Sandström, Dick; Lidin, Sven; Persson, Ingmar; Sandström, Magnus


    Trivalent lanthanide-like metal ions coordinate nine water oxygen atoms, which form a tricapped trigonal prism in a large number of crystalline hydrates. Water deficiency, randomly distributed over the capping positions, was found for the smallest metal ions in the isomorphous nonahydrated trifluoromethanesulfonates, [M(H2O)n](CF3SO3)3, in which M = Sc(III), Lu(III), Yb(III), Tm(III) or Er(III). The hydration number n increases (n = 8.0(1), 8.4(1), 8.7(1), 8.8(1) and 8.96(5), respectively) with increasing ionic size. Deuterium (2H) solid-state NMR spectroscopy revealed fast positional exchange between the coordinated capping and prism water molecules; this exchange started at temperatures higher than about 280 K for lutetium(III) and below 268 K for scandium(III). Similar positional exchange for the fully nonahydrated yttrium(III) and lanthanum(III) compounds started at higher temperatures, over about 330 and 360 K, respectively. An exchange mechanism is proposed that can exchange equatorial and capping water molecules within the restrictions of the crystal lattice, even for fully hydrated lanthanoid(III) ions. Phase transitions occurred for all the water-deficient compounds at approximately 185 K. The hydrated scandium(III) trifluoromethanesulfonate transforms reversibly (DeltaH degrees = -0.80(1) kJ mol(-1) on cooling) to a trigonal unit cell that is almost nine times larger, with the scandium ion surrounded by seven fully occupied and two partly occupied oxygen atom positions in a distorted capped trigonal prism. The hydrogen bonding to the trifluoromethanesulfonate anions stabilises the trigonal prism of water ligands, even for the crowded hydration sphere of the smallest metal ions in the series. Implications for the Lewis acid catalytic activity of the hydrated scandium(III) and lanthanoid(III) trifluoromethanesulfonates for organic syntheses performed in aqueous media are discussed.

  11. Particle size and hydration medium effects on hydration properties and sugar release of wheat straw fibers

    International Nuclear Information System (INIS)

    Lara-Vázquez, Anibal R.; Quiroz-Figueroa, Francisco R.; Sánchez, Arturo; Valdez-Vazquez, Idania


    Wheat straw is gaining importance as a feedstock for the production of biofuels and high value-added bioproducts. Several pretreatments recover the fermentable fraction involving the use of water or aqueous solutions. Therefore, hydration properties of wheat straw fibers play an important role in improving pretreatment performance. In this study, the water retention capacity (WRC) and swelling of wheat straw fibers were studied using water, propylene glycol (PPG) and an effluent from a H 2 -producing reactor as the hydration media with three particle sizes (3.35, 2.00 and 0.212 mm). The effects of swelling were analyzed by optical and confocal laser scanning microscopy (CLSM). The highest WRC was reached with the effluent medium (9.84 ± 0.87 g g −1 in 4 h), followed by PPG (8.52 ± 0.18 g g −1 in 1 h) and water (8.74 ± 0.76 g g −1 in 10 h). The effluent hydration treatment had a synergic effect between the enzymes present and the water. The particle size had a significant effect on the WRC (P < 0.01), the highest values were reached with 3.35 mm fibers. The CLSM images showed that finer fibers were subjected to a shaving effect due to the grinding affecting its capacity to absorb the hydration medium. The microscopic analysis showed the increase in the width of the epidermal cells after the hydration and a more undulating cell wall likely due to the hydration of the amorphous regions in the cellulose microfibrils. The sugar release was determined, achieving the highest glucose content with the effluent hydration treatment. - Highlights: • Water retention capacity (WRC) and swelling of wheat straw fibers were studied. • The highest WRC was achieved with a biological effluent. • The enzymatic activity in the biological effluent yielded the highest sugar release. • Finer fibers showed a shaving effect that affected its capacity to absorb water. • A more undulating cell wall was visualized after the hydration

  12. Finite difference modelling of scattered hydrates and its implications in gas-hydrate exploration

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Ramprasad, T.; Ramana, M.V.

    having larger Fresnel zone show continuous BSR from the scat- tered hydrates 6 . Moreover, BSRs appear weak in high- frequency seismic data in contrast to strong reflection observed in the low-frequency seismics. This frequency dependence of BSR... distribution of the hydrates was modelled using one-sided Gaussian membership function with maximum concentra- tion at BHSZ and reducing to zero at a distance of 15 m from the BHSZ. In a similar fashion, the free gas below the BHSZ was modelled. The Gaussian...

  13. Glucose and Mannose: A Link between Hydration and Sweetness. (United States)

    Rhys, N H; Bruni, F; Imberti, S; McLain, S E; Ricci, M A


    Glucose and mannose have a different degree of sweetness, implying different affinity to the sweet taste receptor. While the receptor structure is still undefined, there are several geometrical models for their binding mechanism. A detailed study of the hydration structure of sugars with known degree of sweetness is bound to provide information on the accuracy of such models. Our neutron diffraction study on the hydration of glucose and mannose show that both α- and β-glucose form strong hydrogen bonds with water, and that the steric hindrance of their first hydration shell matches the receptor geometrical model. The α-anomer of mannose has a similar, well-defined first hydration shell, but with fewer and weaker hydrogen bonds compared to glucose. Conversely, the hydration shell of β-mannose (reported as bitter) does not match the receptor geometrical model. These findings suggest a link between the hydration shell of sugars and their degree of sweetness.

  14. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan


    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  15. Thermal conductivity measurements in unsaturated hydrate-bearing sediments (United States)

    Dai, Sheng; Cha, Jong-Ho; Rosenbaum, Eilis J.; Zhang, Wu; Seol, Yongkoo


    Current database on the thermal properties of hydrate-bearing sediments remains limited and has not been able to capture their consequential changes during gas production where vigorous phase changes occur in this unsaturated system. This study uses the transient plane source (TPS) technique to measure the thermal conductivity of methane hydrate-bearing sediments with various hydrate/water/gas saturations. We propose a simplified method to obtain thermal properties from single-sided TPS signatures. Results reveal that both volume fraction and distribution of the pore constituents govern the thermal conductivity of unsaturated specimens. Thermal conductivity hysteresis is observed due to water redistribution and fabric change caused by hydrate formation and dissociation. Measured thermal conductivity increases evidently when hydrate saturation Sh > 30-40%, shifting upward from the geometric mean model prediction to a Pythagorean mixing model. These observations envisage a significant drop in sediment thermal conductivity when residual hydrate/water saturation falls below ~40%, hindering further gas production.

  16. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.


    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  17. Fracturing Behavior of Methane-Hydrate-Bearing Sediment (United States)

    Konno, Y.; Jin, Y.; Yoneda, J.; Uchiumi, T.; Shinjou, K.; Nagao, J.


    As a part of a Japanese national hydrate research program (MH21, funded by the Ministry of Economy, Trade, and Industry), we performed laboratory experiments of hydraulic fracturing in methane-hydrate-bearing sediment. Distilled water was injected into methane-hydrate-bearing sand which was artificially made in a tri-axial pressure cell. X-ray computed tomography revealed that tensile failure was occurred after a rapid drop in the injection pressure. It was found that generated fractures cause a significant increase in the effective water permeability of hydrate-bearing sand. The result contributes fundamental understanding of the accumulation mechanism of gas hydrates in sediments and shows that hydraulic fracturing is one of promising enhanced recovery methods for low-permeable gas hydrate reservoirs.

  18. Methods of gas hydrate concentration estimation with field examples

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, D.; Dash, R.; Dewangan, P.

    accuracy, sensitivity and cost issue. Seismic methods are the most common but the estimated gas hydrate concentration can be less accurate than coring method. Although coring method has certain difficulty such as the core sampling, preserving samples... general. The gas saturation is ignored for simplification, but in the case of free gas and gas hydrate coexisting both can be simultaneously estimated. The steps for hydrate saturation estimation in method 1 are: 1) first create a table of modeled seismic...

  19. A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Samper, J.; Montenegro, L.; Fernandez, A.M.


    Unsaturated compacted bentonite is foreseen by several countries as a backfill and sealing material in high-level radioactive waste repositories. The strong interplays between thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration stage of a repository call for fully coupled THMC models. Validation of such THMC models is prevented by the lack of comprehensive THMC experiments and the difficulties of experimental methods to measure accurately the chemical composition of bentonite porewater. We present here a non-isothermal multiphase flow and multicomponent reactive solute transport model for a deformable medium of a heating and hydration experiment performed on a sample of compacted FEBEX bentonite. Besides standard solute transport and geochemical processes, the model accounts for solute cross diffusion and thermal and chemical osmosis. Bentonite swelling is solved with a state-surface approach. The THM model is calibrated with transient temperature, water content and porosity data measured at the end of the experiment. The reactive transport model is calibrated with porewater chemical data derived from aqueous extract data. Model results confirm that thermal osmosis is relevant for the hydration of FEBEX bentonite while chemical osmosis can be safely neglected. Dilution and evaporation are the main processes controlling the concentration of conservative species. Dissolved cations are mostly affected by calcite dissolution-precipitation and cation exchange reactions. Dissolved sulphate is controlled by gypsum/anhydrite dissolution-precipitation. pH is mostly buffered by protonation/deprotonation via surface complexation. Computed concentrations agree well with inferred aqueous extract data at all sections except near the hydration boundary where cation data are affected by a sampling artifact. The fit of Cl{sup -} data is excellent except for the data near the heater. The largest deviations of the model from inferred aqueous

  20. Fully Printed Memristors from Cu-SiO2 Core-Shell Nanowire Composites (United States)

    Catenacci, Matthew J.; Flowers, Patrick F.; Cao, Changyong; Andrews, Joseph B.; Franklin, Aaron D.; Wiley, Benjamin J.


    This article describes a fully printed memory in which a composite of Cu-SiO2 nanowires dispersed in ethylcellulose acts as a resistive switch between printed Cu and Au electrodes. A 16-cell crossbar array of these memristors was printed with an aerosol jet. The memristors exhibited moderate operating voltages (˜3 V), no degradation over 104 switching cycles, write speeds of 3 μs, and extrapolated retention times of 10 years. The low operating voltage enabled the programming of a fully printed 4-bit memristor array with an Arduino. The excellent performance of these fully printed memristors could help enable the creation of fully printed RFID tags and sensors with integrated data storage.

  1. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb


    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We

  2. Critical pressure and multiphase flow in Blake Ridge gas hydrates (United States)

    Flemings, P.B.; Liu, Xiuying; Winters, W.J.


    We use core porosity, consolidation experiments, pressure core sampler data, and capillary pressure measurements to predict water pressures that are 70% of the lithostatic stress, and gas pressures that equal the lithostatic stress beneath the methane hydrate layer at Ocean Drilling Program Site 997, Blake Ridge, offshore North Carolina. A 29-m-thick interconnected free-gas column is trapped beneath the low-permeability hydrate layer. We propose that lithostatic gas pressure is dilating fractures and gas is migrating through the methane hydrate layer. Overpressured gas and water within methane hydrate reservoirs limit the amount of free gas trapped and may rapidly export methane to the seafloor.

  3. Ethylene Separation via Hydrate Formation in W/O Emulsions

    Directory of Open Access Journals (Sweden)

    Yong Pan


    Full Text Available An hybrid absorption-hydration method was adopted to recover C2H4 from C2H4/CH4 binary gas mixtures and the hydrate formation conditions of C2H4/CH4 mixtures was studied experimentally in diesel in water (w/o emulsions. Span 20 at a concentration of 1.0 wt% in the aqueous phase was added to form water in diesel emulsions before hydrate formation and then hydrate in diesel slurry was separated after hydrate formation. The influences of initial gas-liquid volume ratio (53–142, pressure (3.4–5.4 MPa, temperature (274.15–278.15 K, water cuts (10–30 vol%, and the mole fraction of C2H4 in feed gas (13.19–80.44 mol% upon the C2H4 separation efficiency were systematically investigated. The experimental results show that ethylene can be enriched in hydrate slurry phase with high separation factor (S and recovery ratio (R. Most hydrate formation finished in 20 min, after that, the hydrate formation rate became very slow. The conclusion is useful for determining the suitable operation conditions when adopting an absorption-hydration method to separate C2H4/CH4.

  4. Hydration, fluid regulation and the eye: in health and disease. (United States)

    Sherwin, Justin C; Kokavec, Jan; Thornton, Simon N


    Variation in systemic hydration status, namely chronic systemic hypohydration or dehydration, can influence the development of several chronic non-ophthalmic diseases. Owing to the eye's high water content and unique system of fluid regulation, we hypothesized that hydration status may affect the eye in health and disease states. Therefore, we performed a systematic review of the current evidence implicating changes in hydration and their association with ocular physiology and morphological characteristics. We also reviewed relevant clinical correlations of changes in hydration and major common eye diseases. Our findings suggest that systemic hydration status broadly affects a variety of ocular pathophysiologic processes and disease states. For example, dehydration may be associated with development of dry eye syndrome, cataract, refractive changes and retinal vascular disease. On the other hand, excessive hydration is associated with some ocular diseases. Tear fluid osmolarity may be an effective marker of systemic hydration status. Recent studies implicate chronic renin-angiotensin-aldosterone system activation in the pathogenesis of diabetic retinopathy and glaucoma but also suggest its antagonism may be a useful therapeutic target. Our findings indicate that assessment of hydration status may be an important consideration in the management of patients with chronic eye diseases and undergoing eye surgery. Further research investigating the role of acute and chronic changes in hydration in individuals with and without ocular disease is warranted. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  5. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs (United States)

    Burchwell, A.; Cook, A.


    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  6. Formation of hydrate plug within rectangular natural gas passage

    Energy Technology Data Exchange (ETDEWEB)

    Seong, K.; Song, M.H.; Ahn, J.H.; Yoo, K.S. [Dong Guk Univ., Joong-ku, Seoul (Korea, Republic of)


    Oil and gas reservoirs in off-shore shallow areas are being depleted. At the same time, the industry is expanding its production sites into deeper waters resulting in higher pressure and lower temperature and more isolated locations. In response, connecting pipelines have been extended, but because of these pressure, temperature and distance changes in pipelines, a more favorable condition for hydrate formation is created, making the problem of flow assurance more critical for safe and economic operations at deep off-shore oil and gas production sites. Another challenge in flow assurance lies in hydrate formation and potential blockage due to hydrate plugs in gas pipelines, where no free water phase is present. This paper presented an experimental study that examined the formation and the growth of hydrates from a gas mixture of methane and propane with different moisture concentrations. The hydrates were formed in a rectangular passage cooled to temperatures below equilibrium hydrate formation temperature. The paper described the experimental procedure and apparatus that was designed and fabricated for the study. A schematic layout of the hydrate formation and plug test experimental apparatus was illustrated. The paper also described the results of two sets of experiments that were conducted. It was concluded that with enough moisture content, hydrates formed without a fresh water phase under equilibrium conditions. It was also concluded that the results of the study could be used in verifying numerical models developed to predict hydrate plugging of natural gas pipelines. 4 refs., 6 figs.

  7. Mineralogy of Gas Hydrate Bearing Sediment in Green Canyon Block 955 Northern Gulf of Mexico (United States)

    Heber, R.; Kinash, N.; Cook, A.; Sawyer, D.; Sheets, J.; Johnson, J. E.


    Natural gas hydrates are of interest as a future hydrocarbon source, however, the formation and physical properties of such systems are not fully understood. In May 2017, the University of Texas drilled two holes in Green Canyon Block 955, northern Gulf of Mexico to collect pressurized core from a thick, 100 m accumulation of gas hydrate in a silt dominated submarine canyon levee system. The expedition, known as UT-GOM2-01, collected 21, 10-m pressure cores from Holes H002 and H005. Approximately half of the cores successfully pressurized and were fully recovered. Unsuccessful cores that did not pressurize generally had low core recovery. By analyzing the sediment composition in known gas hydrate reservoirs, we can construct a more detailed picture of how and why gas hydrates accumulate, as mineralogy can affect physical properties such as porosity and permeability as well as geophysical measurements such as resistivity. Using X-ray diffraction (XRD) on bulk sediment powders, we determined the bulk mineralogy of the samples. Moreover, we investigated drilling mud contamination using XRD and light optical analysis. In some cores, contamination was easily recognized visually as dense sludge between the core barrel and the recovered sediment core, however drilling mud is best observed both along the liner and interbedded within the sediment on X-ray computed tomography scans. To fully identify the presence and influence of drilling mud, we use XRD to analyze samples on cores collected both while drilling mud was used in hole and when only seawater was used in hole and consider the density anomalies observed on the XCT scans. The preliminary XRD light optical microscopy results show that the silt-dominated reservoir is primarily composed of quartz, with minor alkali feldspar, amphibole, muscovite, dolomite, and calcite. Samples from intervals with suspected drilling mud contamination show a similar composition, but with the addition of barite, a common component in

  8. Reactimeter dispersion equation


    A.G. Yuferov


    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...

  9. Fickian dispersion is anomalous (United States)

    Cushman, John H.; O'Malley, Dan


    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion we illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.

  10. Evaluation of the geological relationships to gas hydrate formation and stability. Second annual technical progress report, October 1, 1985--September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)


    Although there are many publications pertaining to gas hydrates, their formation and stability in various geological conditions are poorly known. Therefore, for the same reasons and because of the very broad scope of our research, limited amount and extremely dispersed information, the study regions are very large. Moreover, almost without exception the geological environments controlling gas hydrates formation and stability of the studied regions are very complex. The regions studied (completed and partially completed - total 17 locations) during the reporting period, particularly the Gulf of Mexico and the Middle America Trench, are the most important in this entire research project. In the past, both of these regions have been extensively studied, the presence of gas hydrates confirmed and samples recovered. In our investigation it was necessary not only to review all previous data and interpretations, but to do a thorough analysis of the basins, and a critical evaluation of an previously reported and publicly available but not published information.

  11. Life Origination Hydrate Hypothesis (LOH-Hypothesis). (United States)

    Ostrovskii, Victor; Kadyshevich, Elena


    The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis), according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides), DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their "thermodynamic front" guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor.

  12. Life Origination Hydrate Hypothesis (LOH-Hypothesis

    Directory of Open Access Journals (Sweden)

    Victor Ostrovskii


    Full Text Available The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis, according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides, DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their “thermodynamic front” guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor.

  13. Fully Depleted Charge-Coupled Devices

    International Nuclear Information System (INIS)

    Holland, Stephen E.


    We have developed fully depleted, back-illuminated CCDs that build upon earlier research and development efforts directed towards technology development of silicon-strip detectors used in high-energy-physics experiments. The CCDs are fabricated on the same type of high-resistivity, float-zone-refined silicon that is used for strip detectors. The use of high-resistivity substrates allows for thick depletion regions, on the order of 200-300 um, with corresponding high detection efficiency for near-infrared and soft x-ray photons. We compare the fully depleted CCD to the p-i-n diode upon which it is based, and describe the use of fully depleted CCDs in astronomical and x-ray imaging applications

  14. Models of a partially hydrated Titan interior with clathrate crust (United States)

    Lunine, J. I.; Castillo-Rogez, J.


    We present an updated model of the interior evolution of Titan over time, assuming the silicate core was hydrated early in Titan's history and is dehydrating over time. The original model presented in Castillo-Rogez and Lunine (2010) was motivated by a Cassini-derived moment of inertia (Iess et al., 2010) for Titan too large to be accommodated by classical fully differentiated models in which an anhydrous silicate core was overlain by a water ice (with possible perched ocean) mantle. Our model consisted of a silicate core still in the process of dehydrating today, a situation made possible by the leaching of radiogenic potassium from the silicates into the liquid water ocean. The crust of Titan was assumed to be pure water ice I. The model was consistent with the moment of inertia of Titan, but neglected the presence of large amounts of methane in the upper crust invoked to explain methane's persistence at present and through geologic time (Tobie et al. 2006). We have updated our model with such a feature. We have also improved our modeling with a better physical model for the dehydration of antigorite and other hydrated minerals. In particular our modeling now simulates heat advection resulting from water circulation (e.g., Seipold and Schilling 2003), rather than the purely conductive heat transfer regime assumed in the first version of our model. The modeling proceeds as in Castillo-Rogez and Lunine (2010), with the thermal conductivity of the methane clathrate crust rather than that of ice I. The former is several times lower than that of the latter, and the two have rather different temperature dependences (English and Tse, 2009). The crust turns out to have essentially no bearing on the temperature of the silicate core and hence the timing of dehydration, but it profoundly affects the thickness of the high-pressure ice layer beneath the ocean. Indeed, with the insulating methane clathrate crust, there must be a liquid water ocean beneath the methane clathrate

  15. A new calcium sulfate hemi-hydrate. (United States)

    Christensen, Axel Nørlund; Jensen, Torben R; Nonat, André


    Calcium sulfate hydrates receive significant attention due to numerous large scale industrial applications. There has been a long debate on the possible existence of two gypsum hemi-hydrate polymorphs, denoted alpha- and beta-CaSO(4).0.5H(2)O. In this work, a new crystal structure of calcium sulfate hemi-hydrates is presented, denoted beta-CaSO(4).0.5H(2)O. The structure was solved using powder neutron diffraction data, the space group is P3(1) and the unit cell in a hexagonal setting a = 6.9268(1), c = 12.7565(3) A. The structure has two calcium-oxygen coordination polyhedra: Ca1 is eight coordinated and has Ca-O bond lengths in the range 2.31(3) to 2.89(2) A and Ca2 is nine coordinated and has one Ca-O(water) bond length of 2.43(3) A, and eight Ca-O bonds in the range 2.30(4) to 2.86(4) A. Two sulfate ions have S-O bonds in the range 1.47(3) to 1.49(4) A, and 1.47(3) to 1.50(3) A, respectively. The water molecule forms a hydrogen bond of 2.55(4) A to an oxygen atom in one of the sulfate ions. The structure of the hemi-hydrate beta-CaSO(4).0.5H(2)O has one-dimensional channels running parallel to the c-axis where the water molecules are located. This relates the structures of alpha- and beta-CaSO(4).0.5H(2)O and soluble anhydrite AIII-CaSO(4), which all have similar channel structures. The water molecules in the structure of beta-CaSO(4).0.5H(2)O are packed in the channels with a three fold (3(1)) symmetry in a different way as compared to the pseudo hexagonal found in the structure of alpha-CaSO(4).0.5H(2)O.

  16. The Relative Rates of Secondary Hydration in Basalt and Rhyolite, and the use of δD as a Paleoclimate Indicator: Implications for Paleoenvironmental and Volcanic Degassing Studies (United States)

    Seligman, A. N.; Bindeman, I. N.


    The δD-H2O correlation is important for volcanic degassing and secondary hydration trends. We utilize the caibration of the TC/EA - MAT 253 continuous flow system, which permits us to analyze wt.% H2O and its δD extracted from 1-8 mg of glass with as little as 0.1 wt% H2O. Tephra that has been secondarily hydrated with meteoric water is widely used as a paleoenvironmental tool, but the rate of secondary hydration, the relative amounts of primary magmatic (degassed) and secondary meteoric water, and the retention of primary and secondary δD values are not well understood. To quantify these processes, we use a natural experiment involving dated Holocene tepha in Kamchatka and Oregon. Our research illustrates the drastic difference in hydration rates between silicic (hydrated after ~1.5 ka) and mafic tephra, which is not hydrated in the Holocene (similar to results for submarine volcanic glasses), and andesitic tephra with intermediate degrees of hydration. The 0.05-7.3 ka basaltic scoria from Klyuchevskoy volcano retains ≤0.45 wt.% primary magmatic H2O, with δD values from -99 to -121 ‰. Four other 0.05-7.6 ka basaltic tephra units from Kamchatka with 65 wt.% have higher (1.5 -3.4) wt.% H2O and δD values between -115 - -160 ‰. We interpret the lower δD values and higher water contents (opposite of the magmatic degassing trend) to be a characteristic of secondary hydration in regions of higher latitude such as Kamchatka and Oregon. We are also investigating 7.7 ka Mt. Mazama tephra in Oregon that are known to be fully hydrated and cover nearly 5000 km2 northeast of Crater Lake and range in elevation from ~1.3-1.9 km to understand the δD and δ18O details of the hydrated water's correspondence with local Holocene meteoric waters. In the future, we plan to use a combination of δD in mid-high latitude precipitation to delineate δD-H2O hydration trends to better understand the distinction between primary magmatic and secondary meteoric water in volcanic

  17. Characteristics of SF{sub 6} gas hydrate formation mechanisms (kinetics) and surfactants effects on hydrate formation rate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.; Lee, H.; Kim, Y.D. [Pusan National Univ., Busan (Korea, Republic of). School of Materials Science and Engineering; Kim, Y.S.; Lee, J.D. [Korea Inst. of Industrial Technology, Busan (Korea, Republic of). Advanced Energy Resource Development Team


    Sulfur hexafluoride (SF{sub 6}) is used as an insulating gas in a variety of industrial applications, and is a potent greenhouse gas (GHG). Gas hydrates are stable crystalline compounds formed by water and natural gas molecules that have relatively large cavities that can be occupied by guest molecules. SF{sub 6} gas is able to form hydrates at relatively mild conditions. This study investigated the hydrate formation mechanisms of SF{sub 6} gas, and presented a potential hydration treatment for the gas. The effects of surface active agents on SF{sub 6} gas hydrate formation were examined experimentally using Tween 20, sodium dodecyl sulfate (SDS) and linear alkyl benzene sulfonate (LABS). The surfactants showed promoter behaviour for SF{sub 6} gas hydrate formation. Formation rates occurred in 2 stages, with rates rapidly increasing during the second phase. The inflection point occurred approximately 30 minutes after the hydrate nucleation point. Results indicated the existence of a critical concentration of surfactants. It was concluded that SF{sub 6} gas hydrate formation rates were increased by the addition of surfactants. Further studies are needed to investigate 2-stage hydrate formation rates. 18 refs., 4 figs.

  18. Increasing Gas Hydrate Formation Temperature for Desalination of High Salinity Produced Water with Secondary Guests

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jong-Ho; Seol, Yongkoo


    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from -2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  19. CMOS current controlled fully balanced current conveyor (United States)

    Chunhua, Wang; Qiujing, Zhang; Haiguang, Liu


    This paper presents a current controlled fully balanced second-generation current conveyor circuit (CF-BCCII). The proposed circuit has the traits of fully balanced architecture, and its X-Y terminals are current controllable. Based on the CFBCCII, two biquadratic universal filters are also proposed as its applications. The CFBCCII circuits and the two filters were fabricated with chartered 0.35-μm CMOS technology; with ±1.65 V power supply voltage, the total power consumption of the CFBCCII circuit is 3.6 mW. Comparisons between measured and HSpice simulation results are also given.

  20. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines, Golden, CO (United States)


    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  1. Antifreeze proteins: Adsorption to ice, silica and gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Huang; Brown, Alan; Wathen, Brent; Ripmeester, John A.; Walker, VIrginia K.


    Certain organisms survive under freezing conditions that could otherwise prove fatal by the synthesis of antifreeze proteins (AFPs). AFPs adsorb to the surface of microscopic ice crystals and prevent further ice growth, resulting in a noncolligative freezing point depression. Type I AFP from the winter flounder (wfAFP) is an alfa-helical, alanine-rich serum protein that helps protect against innoculative freezing from ice-laden seas. The AFP of a moth from the boreal forest, Choristoneura fumiferana (Cf), is a beta-helical threonine-rich protein that helps prevent freezing at the overwintering, caterpillar stage. In contrast, the beta-roll AFP from the grass, Lolium perenne (Lp), confers little freezing point depression and the plants readily freeze. Remarkably, AFPs also adsorb to tetrahyrofuran (THF) hydrate, changing the hydrate's octahedral morphology and, as well, inhibiting the growth of THF and gas hydrates. The hyperactive CfAFP, with 30-100 times the activity of wfAFP toward ice, showed far greater nucleation inhibition for THF hydrate than did a commercial hydrate inhibitor, poly(N-vinylpyrrolidone) (PVP). Active AFPs were also judged to be superior to PVP in that they inhibited the memory effect, a phenomenon whereby hydrate reforms at a faster rate soon after melting. An inactive mutant wfAFP, with an amino acid substitution at the ice-binding site, also reduced the growth of THF hydrate but was ineffective at suppressing hydrate reformation. These results suggest that the molecular properties important for ice adsorption and inhibition of hydrate reformation may be similar, and are distinct from those required for hydrate growth inhibition. The different AFPs also show markedly different aggregations on a third hydrophilic substrate, silica. Together these studies suggest that AFP adsorption to ice, hydrates and silica depends on the overall structure, specific residues and protein-protein interactions. (Author)

  2. Equipment for fully automatic radiographic pipe inspection

    International Nuclear Information System (INIS)

    Basler, G.; Sperl, H.; Weinschenk, K.


    The patent describes a device for fully automatic radiographic testing of large pipes with longitudinal welds. Furthermore the invention enables automatic marking of films in radiographic inspection with regard to a ticketing of the test piece and of that part of it where testing took place. (RW) [de

  3. Surfactant process for promoting gas hydrate formation and application of the same (United States)

    Rogers, Rudy E.; Zhong, Yu


    This invention relates to a method of storing gas using gas hydrates comprising forming gas hydrates in the presence of a water-surfactant solution that comprises water and surfactant. The addition of minor amounts of surfactant increases the gas hydrate formation rate, increases packing density of the solid hydrate mass and simplifies the formation-storage-decomposition process of gas hydrates. The minor amounts of surfactant also enhance the potential of gas hydrates for industrial storage applications.

  4. Excess pore pressure and slope failures resulting from gas-hydrates dissociation and dissolution


    Sultan, Nabil


    Parameters affecting gas hydrate formation include temperature, pore pressure, gas chemistry, and pore-water salinity. Any change in the equilibrium of these parameters may result in dissociation (gas-hydrate turns into free gas/water mixture) and/or dissolution (gas-hydrate becomes mixture of water and dissolved gas) of the gas hydrate. While, gas-hydrate dissociation at the base of the Gas Hydrate Occurrence Zone (GHOZ) is often considered as a major cause of sediment deformation and submar...

  5. Calcium bromide hydration for heat storage systems

    Directory of Open Access Journals (Sweden)

    Ai Niwa


    Full Text Available A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the object that requires heat. The exothermic heat produced from the solid–liquid reaction was measured, and the relationship between the equivalence ratio and the reaction heat was evaluated. The heat output and heat recovered by the heat storage system, which comprised a reaction vessel and a heat exchanger, were measured. We selected solid CaBr2 because it was the best metal halide for a hydration reaction and had a high heat yield from the dissolution reaction. With this system, we were able to achieve a heat recovery rate of 582 kJ/L-H2O. We found no degradation in the chemical composition of CaBr2 after it being recycled 100 times.

  6. [NMF and cosmetology of cutaneous hydration]. (United States)

    Marty, J-P


    In the stratum corneum, the water binds to the intracellular hygroscopic and hydrosoluble substances called "natural moisturizing factors" or NMF. These "natural moisturizing factors" contained in the corneocytes are formed during epidermal differentiation and may represent up to 10 p. cent of the corneocyte mass. They are principally amino acids, carboxylic pyrrolidone acid, lactic acid, urea, glucose and mineral ions. Keratinization plays an important part in the formation of NMF that exhibit strong osmotic potential attracting the water molecules. The binding of water to NMF is the static aspect of cutaneous hydration. The second, dynamic, aspect is related to the selective permeability of the stratum corneum and to its lipid barrier properties, the permeability of which depends on the integrity and nature of the inter-corneocyte lipids and their lamellar organization between the cells. In these conditions, hydration cosmetics rely on two concepts that can be isolated or associated: the supply of hydrophilic substances to the stratum corneum, capable of attracting and retaining water (moisturizer) or capable of restoring the barrier in order to restore normal water loss or of protecting it against aggression (occlusive).

  7. Severe Oligohydramnios at Mid trimester: Maternal hydration- A ...

    African Journals Online (AJOL)

    Mainstay of management was combined intravenous/oral maternal hydration, bed rest, modification of antihypertensive regimen and close fetal surveillance. The amniotic fluid index returned to normal range and fetal growth has remained satisfactory. The emphasis of the case presentation is the role of maternal hydration ...

  8. Hydration kinetics and textural properties of pigeon peas (Cajanus ...

    African Journals Online (AJOL)

    Soaking at high temperatures increased the hydration rate constant and decreased the soaking time to achieve equilibrium moisture content (EMC)).The activation energy value (Ea) of the hydration process was 12.95kcal/mole. Texturalstudies revealed that the hardness of the grain was a function of the soaking time, ...

  9. Unexpected Hydration of a Triple Bond During DNA Synthesis

    DEFF Research Database (Denmark)

    Fatthalla, Maha I.; Pedersen, Erik B.


    acidic conditions, polarizes the triple bond in the intercalator and this makes hydration of the triple bond possible during the DNA synthesis and an oligonucleotide with 1-(indol-3-yl)-2-(pyren-1-yl)ethanone as the intercalator is formed. Insertion of the unhydrated and hydrated linker systems gave...

  10. Effect of isotopy and temperature on hydration of alkanols

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.P.; Batov, D.V.; Krestov, G.A.


    The authors determine isotope and temperature effects on the hydration of alkanols at a temperature of 278.15 K in solutions of water and heavy water. Aspects of isotopic exchange between hydrogen and deuterium are given as are enthalpies of hydration, evaporation, and dissolution for the alkanols. The possibility of weak hydrogen bond formation was examined.

  11. Ice method for production of hydrogen clathrate hydrates (United States)

    Lokshin, Konstantin [Santa Fe, NM; Zhao, Yusheng [Los Alamos, NM


    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  12. Putting the Deep Biosphere and Gas Hydrates on the Map (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.


    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  13. The effect of stereochemistry on carbohydrate hydration in aqueous solutions

    NARCIS (Netherlands)

    Galema, Saskia Alexandra


    Although-carbohydrates are widely used, not much is known about the stereochemical aspects of hydration of carbohydrates. For D-aldohexoses, for example, there are eight different stereoisomers. Just how the hydroxy topology of a carbohydrate molecule influences the hydration behaviour in water is

  14. Gas hydrate inhibition by perturbation of liquid water structure. (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong


    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  15. Evaluation of Nutritional Status and Hydration in Patients on Chronic ...

    African Journals Online (AJOL)

    Background: Nutrition and hydration of the dialysis patients have major influences on the outcomes of chronic hemodialysis. Purpose: To characterize the states of nutrition and hydration in patients on chronic hemodialysis at Jos University Teaching Hospital (JUTH) and to evaluate the usefulness of measurements by ...

  16. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)


    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  17. Spectroscopic determination of optimal hydration time of zircon surface

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia R, G.; Garcia G, N.


    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  18. and Di-hydration on the Intramolecular Proton Transfers and ...

    Indian Academy of Sciences (India)

    of the isomers did not change the stability trend, so that the tri-keto isomer was the most stable isomer among the hydrated and non-hydrated isomers. The activation energies (Ea) of the intramolecular proton transfers. (tautomerisms) and energy barriers of H-rotations around its C-O axis in enolic isomers were calculated.

  19. Hydration behaviour of synthetic saponite at variable relative humidity

    Indian Academy of Sciences (India)

    Hydration behaviour of synthetic saponite was examined by X-ray powder diffraction simulation at various relative humidities (RH). The basal spacing of the Ca-saponite increased stepwise with increase in RH. The (00) reflections observed reflect single or dual hydration states of smectite. Quasi-rational, intermediate, or ...

  20. Entrapment of Hydrate-coated Gas Bubbles into Oil and Separation of Gas and Hydrate-film; Seafloor Experiments with ROV (United States)

    Hiruta, A.; Matsumoto, R.


    We trapped gas bubbles emitted from the seafloor into oil-containing collector and observed an unique phenomena. Gas hydrate formation needs water for the crystal lattice; however, gas hydrates in some areas are associated with hydrophobic crude oil or asphalt. In order to understand gas hydrate growth in oil-bearing sediments, an experiment with cooking oil was made at gas hydrate stability condition. We collected venting gas bubbles into a collector with canola oil during ROV survey at a gas hydrate area in the eastern margin of the Sea of Japan. When the gas bubbles were trapped into collector with oil, gas phase appeared above the oil and gas hydrates, between oil and gas phase. At this study area within gas hydrate stability condition, control experiment with oil-free collector suggested that gas bubbles emitted from the seafloor were quickly covered with gas hydrate film. Therefore it is improbable that gas bubbles entered into the oil phase before hydrate skin formation. After the gas phase formation in oil-containing collector, the ROV floated outside of hydrate stability condition for gas hydrate dissociation and re-dived to the venting site. During the re-dive within hydrate stability condition, gas hydrate was not formed. The result suggests that moisture in the oil is not enough for hydrate formation. Therefore gas hydrates that appeared at the oil/gas phase boundary were already formed before bubbles enter into the oil. Hydrate film is the only possible origin. This observation suggests that hydrate film coating gas hydrate was broken at the sea water/oil boundary or inside oil. Further experiments may contribute for revealing kinetics of hydrate film and formation. This work was a part of METI (Ministry of Economy, Trade and Industry)'s project entitled "FY2014 Promoting research and development of methane hydrate". We also appreciate support of AIST (National Institute of Advanced Industrial Science and Technology).

  1. Time dispersion in large plastic scintillation neutron detectors

    International Nuclear Information System (INIS)

    De, A.; Dasgupta, S.S.; Sen, D.


    Time dispersion (TD) has been computed for large neutron detectors using plastic scintillators. It has been shown that TD seen by the PM tube does not necessarily increase with incident neutron energy, a result not fully in agreement with the usual finding

  2. Variational Boussinesq model for strongly nonlinear dispersive waves

    NARCIS (Netherlands)

    Lawrence, C.; Adytia, D.; van Groesen, E.


    For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be

  3. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele


    We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...

  4. Direct Numerical Simulations of Transient Dispersion (United States)

    Porter, M.; Valdes-Parada, F.; Wood, B.


    Transient dispersion is important in many engineering applications, including transport in porous media. A common theoretical approach involves upscaling the micro-scale mass balance equations for convection- diffusion to macro-scale equations that contain effective medium quantities. However, there are a number of assumptions implicit in the various upscaling methods. For example, results obtained from volume averaging are often dependent on a given set of length and time scale constraints. Additionally, a number of the classical models for dispersion do not fully capture the early-time dispersive behavior of the solute for a general set of initial conditions. In this work, we present direct numerical simulations of micro-scale transient mass balance equations for convection-diffusion in both capillary tubes and porous media. Special attention is paid to analysis of the influence of a new time- decaying coefficient that filters the effects of the initial conditions. The direct numerical simulations were compared to results obtained from solving the closure problem associated with volume averaging. These comparisons provide a quantitative measure of the significance of (1) the assumptions implicit in the volume averaging method and (2) the importance of the early-time dispersive behavior of the solute due to various initial conditions.

  5. Geologic framework of the 2005 Keathley Canyon gas hydrate research well, northern Gulf of Mexico (United States)

    Hutchinson, D.R.; Hart, P.E.; Collett, T.S.; Edwards, K.M.; Twichell, D.C.; Snyder, F.


    ., 2000. Sedimentary dynamics of the salt-dominated continental slope, Gulf of Mexico: integration of observations from the seafloor, near-surface, and deep subsurface. In: Proceedings of the GCSSEPM Foundation 20th Annual Research Conference, Deep-water Reservoirs of the World, pp. 1059-1086]. The presence of sand within the gas hydrate stability zone (in units c and d) is not sufficient to concentrate gas hydrate even though dispersed gas hydrate occurs deeper in the fractured mud/clay-rich sections of units e and f.

  6. NMR Studies of Protein Hydration and Protein-Ligand Interactions (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  7. Exploitation of marine gas hydrates: Benefits and risks (Invited) (United States)

    Wallmann, K. J.


    Vast amounts of natural gas are stored in marine gas hydrates deposited at continental margins. The global inventory of carbon bound as methane in gas hydrates is currently estimated as 1000 × 500 Gt. Large-scale national research projects located mostly in South-East Asia but also in North America and Europe are aiming to exploit these ice-like solids as new unconventional resource of natural gas. Japan, South Korea and other Asian countries are taking the lead because their national waters harbor exploitable gas hydrate deposits which could be developed to reduce the dependency of these nations on costly LGN imports. In 2013, the first successful production test was performed off Japan at water depths of ca. 1000 m demonstrating that natural gas can be released and produced from marine hydrates by lowering the pressure in the sub-seabed hydrate reservoirs. In an alternative approach, CO2 from coal power plans and other industrial sources is used to release natural gas (methane) from hydrates while CO2 is bound and stored in the sub-surface as solid hydrate. These new approaches and technologies are still in an early pre-commercial phase; the costs of field development and gas production exceed the value of natural gas being produced from the slowly dissociating hydrates. However, new technologies are currently under development in the German SUGAR project and elsewhere to reduce costs and enhance gas production rates such that gas hydrates may become commercially exploitable over the coming decade(s). The exploitation of marine gas hydrates may help to reduce CO2 emissions from the fossil fuel sector if the produced natural gas is used to replace coal and/or LNG. Hydrate development could also provide important incentives for carbon capture technologies since CO2 can be used to produce natural gas from hydrates. However, leakage of gas may occur during the production process while slope failure may be induced by the accompanying dissociation/conversion of gas

  8. 76 FR 36176 - Fully Developed Claim (Fully Developed Claims-Applications for Compensation, Pension, DIC, Death... (United States)


    ... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0747] Fully Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC, Death Pension, and/or Accrued Benefits); Correction AGENCY: Veterans Benefits Administration, Department of Veterans Affairs. ACTION: Notice; correction...

  9. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur


    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  10. Inhibition of Methane Hydrate Formation by Ice-Structuring Proteins

    DEFF Research Database (Denmark)

    Jensen, Lars; Ramløv, Hans; Thomsen, Kaj


    , assumed biodegradable, are capable of inhibiting the growth of methane hydrate (a structure I hydrate). The ISPs investigated were type III HPLC12 (originally identified in ocean pout) and ISP type III found in meal worm (Tenebrio molitor). These were compared to polyvinylpyrrolidone (PVP) a well......-known kinetic hydrate inhibitor. The results revealed that adding ISP in sufficient amounts caused the appearance of an initial nonlinear growth period. At a certain point during the growth process the growth pattern changed to linear which is identical to the growth observed for methane hydrate in the absence...... of inhibitors. The profile of the nonlinear growth was concentration-dependent but also dependent on the stirring rate. ISP type III HPLC12 decreased the growth rate of methane hydrate during the linear growth period by 17−75% at concentrations of 0.01−0.1 wt % (0.014−0.14 mM) while ISP from Tenebrio molitor...

  11. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    Le Saoût, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank


    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  12. Theoretical description of biomolecular hydration - Application to A-DNA

    International Nuclear Information System (INIS)

    Garcia, A.E.; Hummer, G.; Soumpasis, D.M.


    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG) 5 ] 2 and [d(C 5 G 5 )] 2 . We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers

  13. Chiral anomalous dispersion (United States)

    Sadofyev, Andrey; Sen, Srimoyee


    The linearized Einstein equation describing graviton propagation through a chiral medium appears to be helicity dependent. We analyze features of the corresponding spectrum in a collision-less regime above a flat background. In the long wave-length limit, circularly polarized metric perturbations travel with a helicity dependent group velocity that can turn negative giving rise to a new type of an anomalous dispersion. We further show that this chiral anomalous dispersion is a general feature of polarized modes propagating through chiral plasmas extending our result to the electromagnetic sector.

  14. Reflective terahertz (THz) imaging: system calibration using hydration phantoms (United States)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary


    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  15. Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01

    Digital Repository Service at National Institute of Oceanography (India)

    Collett, T.S.; Boswell, R.; Cochran, J.R.; Kumar, P.; Lall, M.; Mazumdar, A.; Ramana, M.V.; Ramprasad, T.; Riedel, M.; Sain, K.; Sathe, A.V.; Vishwanath, K.; NGHP Expedition 01 Scientific Party

    on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna–Godavari and Mahanadi Basins, and the Andaman Sea. The expedition...

  16. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; part 2, the correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Fischer, H.B; Matthes, C.; Beuthan, C.


    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  17. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jorgen


    Recent 27 Al MAS NMR studies of hydrated Portland cements and calcium-silicate-hydrate (C-S-H) phases have shown a resonance from Al in octahedral coordination, which cannot be assigned to the well-known aluminate species in hydrated Portland cements. This resonance, which exhibits the isotropic chemical shift δ iso = 5.0 ppm and the quadrupole product parameter P Q = 1.2 MHz, has been characterized in detail by 27 Al MAS and 27 Al{ 1 H} CP/MAS NMR for different hydrated white Portland cements and C-S-H phases. These experiments demonstrate that the resonance originates from an amorphous or disordered aluminate hydrate which contains Al(OH) 6 3- or O x Al(OH) 6-x (3+x)- units. The formation of the new aluminate hydrate is related to the formation of C-S-H at ambient temperatures, however, it decomposes by thermal treatment at temperatures of 70-90 o C. From the experiments in this work it is proposed that the new aluminate hydrate is either an amorphous/disordered aluminate hydroxide or a calcium aluminate hydrate, produced as a separate phase or as a nanostructured surface precipitate on the C-S-H phase. Finally, the possibilities of Al 3+ for Ca 2+ substitution in the principal layers and interlayers of the C-S-H structure are discussed

  18. Development of fully automatic pipe welding system

    International Nuclear Information System (INIS)

    Tanioka, Shin-ichi; Nakano, Mitsuhiro; Tejima, Akio; Yamada, Minoru; Saito, Tatsuo; Saito, Yoshiyuki; Abe, Rikio


    We have succeeded in developing a fully automatic TIG welding system; namely CAPTIG that enables unmanned welding operations from the initial layer to the final finishing layer continuously. This welding system is designed for continuous, multilayered welding of thick and large diameter fixed pipes of nuclear power plants and large-size boiler plants where high-quality welding is demanded. In the tests conducted with this welding system, several hours of continuous unmanned welding corroborated that excellent beads are formed, good results are obtained in radiographic inspection and that quality welding is possible most reliably. This system incorporates a microcomputer for fully automatic controls by which it features a seam tracking function, wire feed position automatic control function, a self-checking function for inter-pass temperature, cooling water temperature and wire reserve. (author)

  19. A fully reconfigurable photonic integrated signal processor (United States)

    Liu, Weilin; Li, Ming; Guzzon, Robert S.; Norberg, Erik J.; Parker, John S.; Lu, Mingzhi; Coldren, Larry A.; Yao, Jianping


    Photonic signal processing has been considered a solution to overcome the inherent electronic speed limitations. Over the past few years, an impressive range of photonic integrated signal processors have been proposed, but they usually offer limited reconfigurability, a feature highly needed for the implementation of large-scale general-purpose photonic signal processors. Here, we report and experimentally demonstrate a fully reconfigurable photonic integrated signal processor based on an InP-InGaAsP material system. The proposed photonic signal processor is capable of performing reconfigurable signal processing functions including temporal integration, temporal differentiation and Hilbert transformation. The reconfigurability is achieved by controlling the injection currents to the active components of the signal processor. Our demonstration suggests great potential for chip-scale fully programmable all-optical signal processing.

  20. Developments towards a fully automated AMS system

    International Nuclear Information System (INIS)

    Steier, P.; Puchegger, S.; Golser, R.; Kutschera, W.; Priller, A.; Rom, W.; Wallner, A.; Wild, E.


    The possibilities of computer-assisted and automated accelerator mass spectrometry (AMS) measurements were explored. The goal of these efforts is to develop fully automated procedures for 'routine' measurements at the Vienna Environmental Research Accelerator (VERA), a dedicated 3-MV Pelletron tandem AMS facility. As a new tool for automatic tuning of the ion optics we developed a multi-dimensional optimization algorithm robust to noise, which was applied for 14 C and 10 Be. The actual isotope ratio measurements are performed in a fully automated fashion and do not require the presence of an operator. Incoming data are evaluated online and the results can be accessed via Internet. The system was used for 14 C, 10 Be, 26 Al and 129 I measurements

  1. Fully differential VBF Higgs production at NNLO

    CERN Document Server

    Cacciari, Matteo; Karlberg, Alexander; Salam, Gavin P.; Zanderighi, Giulia


    We calculate the fully differential next-to-next-to-leading-order (NNLO) corrections to vector-boson fusion (VBF) Higgs production at proton colliders, in the limit in which there is no cross-talk between the hadronic systems associated with the two protons. We achieve this using a new "projection-to-Born" method that combines an inclusive NNLO calculation in the structure-function approach and a suitably factorised next-to-leading-order (NLO) VBF Higgs plus 3-jet calculation, using appropriate Higgs plus 2-parton counter events. An earlier calculation of the fully inclusive cross section had found small NNLO corrections, at the 1% level. In contrast, the cross section after typical experimental VBF cuts receives NNLO contributions of about 5-6%, while differential distributions show corrections of up to 10-12% for some standard observables. The corrections are often outside the NLO scale-uncertainty band.

  2. Randomized trial of one-hour sodium bicarbonate vs standard periprocedural saline hydration in chronic kidney disease patients undergoing cardiovascular contrast procedures. (United States)

    Kooiman, Judith; de Vries, Jean-Paul P M; Van der Heyden, Jan; Sijpkens, Yvo W J; van Dijkman, Paul R M; Wever, Jan J; van Overhagen, Hans; Vahl, Antonie C; Aarts, Nico; Verberk-Jonkers, Iris J A M; Brulez, Harald F H; Hamming, Jaap F; van der Molen, Aart J; Cannegieter, Suzanne C; Putter, Hein; van den Hout, Wilbert B; Kilicsoy, Inci; Rabelink, Ton J; Huisman, Menno V


    Guidelines advise periprocedural saline hydration for prevention of contrast induced-acute kidney injury (CI-AKI). We analysed whether 1-hour sodium bicarbonate hydration administered solely prior to intra-arterial contrast exposure is non-inferior to standard periprocedural saline hydration in chronic kidney disease (CKD) patients undergoing elective cardiovascular diagnostic or interventional contrast procedures. We performed an open-label multicentre non-inferiority trial between 2011-2014. Patients were randomized to 1 hour pre-procedure sodium bicarbonate hydration (250 ml 1.4%, N = 168) or 4-12 hours saline hydration (1000 ml 0.9%, N = 165) prior to and following contrast administration (2000 ml of saline total). Primary outcome was the relative serum creatinine increase (%) 48-96 hours post contrast exposure. Secondary outcomes were: incidence of CI-AKI (serum creatinine increase>25% or >44μmol/L), recovery of renal function, the need for dialysis, and hospital costs within two months follow-up. Mean relative creatinine increase was 3.1% (95%CI 0.9 to 5.2%) in the bicarbonate and 1.1% (95%CI -1.2 to 3.5%) in the saline arm, mean difference 1.9% (95%CI -1.2 to 5.1%, p-non-inferiority sodium bicarbonate and 12 (7.5%) to saline (p = 0.79). Renal function did not fully recover in 40.0% and 44.4% of CI-AKI patients, respectively (p = 0.84). No patient required dialysis. Mean costs for preventive hydration and clinical preparation for the contrast procedure were $1158 for sodium bicarbonate vs. $1561 for saline (p sodium bicarbonate prior to elective cardiovascular diagnostic or therapeutic contrast procedures is non-inferior to standard periprocedural saline hydration in CKD patients with respect to renal safety and results in considerable healthcare savings. Netherlands Trial Register (, Nr NTR2699.

  3. FMFT: fully massive four-loop tadpoles (United States)

    Pikelner, Andrey


    We present FMFT - a package written in FORM that evaluates four-loop fully massive tadpole Feynman diagrams. It is a successor of the MATAD package that has been successfully used to calculate many renormalization group functions at three-loop order in a wide range of quantum field theories especially in the Standard Model. We describe an internal structure of the package and provide some examples of its usage.

  4. Fully probabilistic design of hierarchical Bayesian models

    Czech Academy of Sciences Publication Activity Database

    Quinn, A.; Kárný, Miroslav; Guy, Tatiana Valentine


    Roč. 369, č. 1 (2016), s. 532-547 ISSN 0020-0255 R&D Projects: GA ČR GA13-13502S Institutional support: RVO:67985556 Keywords : Fully probabilistic design * Ideal distribution * Minimum cross- entropy principle * Bayesian conditioning * Kullback-Leibler divergence * Bayesian nonparametric modelling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.832, year: 2016

  5. Fully NLO Parton Shower in QCD

    International Nuclear Information System (INIS)

    Skrzypek, M.; Jadach, S.; Slawinska, M.; Gituliar, O.; Kusina, A.; Placzek, W.


    The project of constructing a complete NLO-level Parton Shower Monte Carlo for the QCD processes developed in IFJ PAN in Krakow is reviewed. Four issues are discussed: (1) the extension of the standard inclusive collinear factorization into a new, fully exclusive scheme; (2) reconstruction of the LO Parton Shower in the new scheme; (3) inclusion of the exclusive NLO corrections into the hard process and (4) inclusion of the exclusive NLO corrections into the evolution (ladder) part. (authors)

  6. Fully Passive Wireless Acquisition of Neuropotentials (United States)

    Schwerdt, Helen N.

    The ability to monitor electrophysiological signals from the sentient brain is requisite to decipher its enormously complex workings and initiate remedial solutions for the vast amount of neurologically-based disorders. Despite immense advancements in creating a variety of instruments to record signals from the brain, the translation of such neurorecording instrumentation to real clinical domains places heavy demands on their safety and reliability, both of which are not entirely portrayed by presently existing implantable recording solutions. In an attempt to lower these barriers, alternative wireless radar backscattering techniques are proposed to render the technical burdens of the implant chip to entirely passive neurorecording processes that transpire in the absence of formal integrated power sources or powering schemes along with any active circuitry. These radar-like wireless backscattering mechanisms are used to conceive of fully passive neurorecording operations of an implantable microsystem. The fully passive device potentially manifests inherent advantages over current wireless implantable and wired recording systems: negligible heat dissipation to reduce risks of brain tissue damage and minimal circuitry for long term reliability as a chronic implant. Fully passive neurorecording operations are realized via intrinsic nonlinear mixing properties of the varactor diode. These mixing and recording operations are directly activated by wirelessly interrogating the fully passive device with a microwave carrier signal. This fundamental carrier signal, acquired by the implant antenna, mixes through the varactor diode along with the internal targeted neuropotential brain signals to produce higher frequency harmonics containing the targeted neuropotential signals. These harmonics are backscattered wirelessly to the external interrogator that retrieves and recovers the original neuropotential brain signal. The passive approach removes the need for internal power

  7. Short-Range Electron Correlation Stabilizes Noncavity Solvation of the Hydrated Electron. (United States)

    Glover, William J; Schwartz, Benjamin J


    The hydrated electron, e - (aq) , has often served as a model system to understand the influence of condensed-phase environments on electronic structure and dynamics. Despite over 50 years of study, however, the basic structure of e - (aq) is still the subject of controversy. In particular, the structure of e - (aq) was long assumed to be an electron localized within a solvent cavity, in a manner similar to halide solvation. Recently, however, we suggested that e - (aq) occupies a region of enhanced water density with little or no discernible cavity. The potential we developed was only subtly different from those that give rise to a cavity solvation motif, which suggests that the driving forces for noncavity solvation involve subtle electron-water attractive interactions at close distances. This leads to the question of how dispersion interactions are treated in simulations of the hydrated electron. Most dispersion potentials are ad hoc or are not designed to account for the type of close-contact electron-water overlap that might occur in the condensed phase, and where short-range dynamic electron correlation is important. To address this, in this paper we develop a procedure to calculate the potential energy surface between a single water molecule and an excess electron with high-level CCSD(T) electronic structure theory. By decomposing the electron-water potential into its constituent energetic contributions, we find that short-range electron correlation provides an attraction of comparable magnitude to the mean-field interactions between the electron and water. Furthermore, we find that by reoptimizing a popular cavity-forming one-electron model potential to better capture these attractive short-range interactions, the enhanced description of correlation predicts a noncavity e - (aq) with calculated properties in better agreement with experiment. Although much attention has been placed on the importance of long-range dispersion interactions in water cluster

  8. Fully implicit kinetic modelling of collisional plasmas

    International Nuclear Information System (INIS)

    Mousseau, V.A.


    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method

  9. Evaluation of a rapid hydration protocol: Safety and effectiveness. (United States)

    Meredith, Sean; Hilliard, Jane; Vaillancourt, Regis


    Background The Children's Hospital of Eastern Ontario (CHEO) has implemented a rapid hydration protocol that may reduce the time required to achieve urine specific gravity and pH targets prior to chemotherapy. Objective The aim of this study was to determine if a rapid hydration protocol resulted in a shorter time to chemotherapy administration and during peak staffing levels without increasing adverse effects. Methods A retrospective chart review was conducted using data from electronic and paper medical charts, the hematology/oncology whiteboard, and video recordings. Patients who received cyclophosphamide, methotrexate, cisplatin and ifosfamide during the study period were included in the chart review. A urine specific gravity of ≤1.01, and in most cases a urine pH ≥7 was required to begin chemotherapy. Differences in time parameters between the standard and rapid hydration protocols were measured. Comparable parameters included the time from the start of pre-chemotherapy hydration to meeting urine targets, time from starting hydration to administration of chemotherapy, length of hospital stay and the number of chemotherapy administrations that were initiated prior to the nursing shift change at 19:30 h. Results Data were collected from 116 pre-chemotherapy intravenous hydration events administered to 25 different patients. There was a shorter time required to reach urine specific gravity and pH targets with the rapid hydration protocol compared to the standard hydration protocol, which translated into initiating chemotherapy sooner. There was also a shorter overall length of hospital stay and administration of chemotherapy occurred before the nursing shift change more often in the rapid hydration cohort compared to those patients who received the standard hydration protocol. There were no significant differences in adverse effects between the groups. Conclusion Patients receiving rapid hydration had a shorter time to chemotherapy administration and had a

  10. Cross-Sectional Dispersion of Firm Valuations and Expected Stock Returns


    Jiang, Danling


    This paper develops two competing hypotheses for the relation between the cross-sectional standard deviation of logarithmic firm fundamental-to-price ratios (``dispersion'') and expected aggregate returns. In models with fully rational beliefs, greater dispersion indicates greater risk and higher expected aggregate returns. In models with investor overconfidence, greater dispersion indicates greater mispricing and lower expected aggregate returns. Consistent with the behavioral models, the re...

  11. Psychorheology of food dispersions

    Czech Academy of Sciences Publication Activity Database

    Štern, Petr; Panovská, Z.; Pokorný, J.


    Roč. 58, č. 1 (2010), s. 29-35 ISSN 0042-790X R&D Projects: GA AV ČR IAA2060404 Institutional research plan: CEZ:AV0Z20600510 Keywords : psychorheology * food dispersions * tomato ketchup * rheology * sensory analysis Subject RIV: BK - Fluid Dynamics Impact factor: 0.553, year: 2010

  12. Spatially Dispersed Employee Recovery

    DEFF Research Database (Denmark)

    Hvass, Kristian Anders; Torfadóttir, Embla


    personnel achieve service recovery. Employee recovery within service research often focuses on front-line employees that work in a fixed location, however a contribution to the field is made by investigating the recovery of spatially dispersed personnel, such as operational personnel in the transport sector...

  13. Interface, a dispersed architecture

    NARCIS (Netherlands)

    Vissers, C.A.


    Past and current specification techniques use timing diagrams and written text to describe the phenomenology of an interface. This paper treats an interface as the architecture of a number of processes, which are dispersed over the related system parts and the message path. This approach yields a

  14. Coping with power dispersion?

    DEFF Research Database (Denmark)


    how the actors involved cope with the new configurations. In this introduction, we discuss the conceptualization of power dispersion and highlight the ways in which the contributions add to this research agenda. We then outline some general conclusions and end by indicating future avenues of research...

  15. A dispersion control chart

    NARCIS (Netherlands)

    Riaz, M.


    The study proposes a Shewhart-type control chart, namely Q chart, based on inter-quartile range, for monitoring changes (especially of moderate and large amounts which is major concern of Shewhart-type control charts) in process dispersion assuming normality of quality characteristic to be

  16. Turbulence and Dispersion

    Indian Academy of Sciences (India)

    phenomenon and this is the topic of the present article. Dispersion. Watch smoke flowing out of a chimney2. On a quiet day, it is seen that after rising for a small distance, the smoke stream bends and flows along with the wind. This is to be expected since the smoke particles are carried, or in technical terminology, convected ...

  17. Water Intake and Hydration Indices in Healthy European Adults: The European Hydration Research Study (EHRS) (United States)

    Malisova, Olga; Athanasatou, Adelais; Pepa, Alex; Husemann, Marlien; Domnik, Kirsten; Braun, Hans; Mora-Rodriguez, Ricardo; Ortega, Juan F.; Fernandez-Elias, Valentin E.; Kapsokefalou, Maria


    Hydration status is linked with health, wellness, and performance. We evaluated hydration status, water intake, and urine output for seven consecutive days in healthy adults. Volunteers living in Spain, Germany, or Greece (n = 573, 39 ± 12 years (51.1% males), 25.0 ± 4.6 kg/m2 BMI) participated in an eight-day study protocol. Total water intake was estimated from seven-day food and drink diaries. Hydration status was measured in urine samples collected over 24 h for seven days and in blood samples collected in fasting state on the mornings of days 1 and 8. Total daily water intake was 2.75 ± 1.01 L, water from beverages 2.10 ± 0.91 L, water from foods 0.66 ± 0.29 L. Urine parameters were: 24 h volume 1.65 ± 0.70 L, 24 h osmolality 631 ± 221 mOsmol/kg Η2Ο, 24 h specific gravity 1.017 ± 0.005, 24 h excretion of sodium 166.9 ± 54.7 mEq, 24 h excretion of potassium 72.4 ± 24.6 mEq, color chart 4.2 ± 1.4. Predictors for urine osmolality were age, country, gender, and BMI. Blood indices were: haemoglobin concentration 14.7 ± 1.7 g/dL, hematocrit 43% ± 4% and serum osmolality 294 ± 9 mOsmol/kg Η2Ο. Daily water intake was higher in summer (2.8 ± 1.02 L) than in winter (2.6 ± 0.98 L) (p = 0.019). Water intake was associated negatively with urine specific gravity, urine color, and urine sodium and potassium concentrations (p hydration level. PMID:27058557

  18. High-pressure structures of methane hydrate

    CERN Document Server

    Hirai, H; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T


    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K sub 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively.

  19. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo


    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  20. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li


    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  1. Neutron powder diffraction study of methane hydrate

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu


    Neutron powder diffraction study of methane hydrate has been conducted in the temperature range of 7 K to 185 K. The diffraction data were analyzed by the Rietveld refinement and the Maximum Entropy Method (MEM). From MEM analysis, we obtained the scattering-length density distributions in a 3-dimensional image. The scattering-length density corresponding to C atom of the methane molecule was appeared and no density of H atoms was found in the small cage over the measured temperature range. On the other hand, in the large cage the scattering-length densities related to both H atom and C atom were observed at low temperature. The scattering-length density of H atom disappeared with increasing temperature, and then the scattering-length density of methane was almost gone at high temperature. These results show the motion of methane molecules differ in the small cage as compared to the large cage

  2. Influence of Physical Activity and Ambient Temperature on Hydration: The European Hydration Research Study (EHRS

    Directory of Open Access Journals (Sweden)

    Ricardo Mora-Rodriguez


    Full Text Available This study explored the effects of physical activity (PA and ambient temperature on water turnover and hydration status. Five-hundred seventy three healthy men and women (aged 20–60 years from Spain, Greece and Germany self-reported PA, registered all food and beverage intake, and collected 24-h urine during seven consecutive days. Fasting blood samples were collected at the onset and end of the study. Food moisture was assessed using nutritional software to account for all water intake which was subtracted from daily urine volume to allow calculation of non-renal water loss (i.e., mostly sweating. Hydration status was assessed by urine and blood osmolality. A negative association was seen between ambient temperature and PA (r = −0.277; p < 0.001. Lower PA with high temperatures did not prevent increased non-renal water losses (i.e., sweating and elevated urine and blood osmolality (r = 0.218 to 0.163 all p < 0.001. When summer and winter data were combined PA was negatively associated with urine osmolality (r = −0.153; p = 0.001. Our data suggest that environmental heat acts to reduce voluntary PA but this is not sufficient to prevent moderate dehydration (increased osmolality. On the other hand, increased PA is associated with improved hydration status (i.e., lower urine and blood osmolality.

  3. Precise structural analysis of methane hydrate by neutron diffraction

    International Nuclear Information System (INIS)

    Igawa, Naoki; Hoshikawa, Akinori; Ishii, Yoshinobu


    Methane hydrate has attracted great interest as an energy resource to replace natural gas since this material is deposited in the seafloor and the deposits are estimated to exceed those of natural gas. Understanding the physical proprieties, such as the temperature dependence of the crystal structure, helps to specify the optimum environmental temperature and pressure during drilling, transport, and storage of methane hydrate. Clathrate hydrates consisted of encaging atomic and/or molecular species as a guest and host water formed by a hydrogen bonding. Although many studies on the clathrate hydrate including methane hydrate were reported, no detailed crystallographic property has yet been cleared. We focused on the motion of methane in the clathrate hydrate by the neutron diffraction. The crystal structure of the methane hydrate was analyzed by the applying the combination of the Rietveld refinement and the maximum entropy method (MEM) to neutron powder diffraction. Temperature dependence of the scattering-length density distribution maps revealed that the motion of methane molecules differs between the shapes of dodecahedron and tetrakaidecahedron. (author)

  4. Influence of Lithium Carbonate on C3A Hydration

    Directory of Open Access Journals (Sweden)

    Weiwei Han


    Full Text Available Lithium salts, known to ameliorate the effects of alkali-silica reaction, can make significant effects on cement setting. However, the mechanism of effects on cement hydration, especially the hydration of C3A which is critical for initial setting time of cement, is rarely reported. In this study, the development of pH value of pore solution, conductivity, thermodynamics, and mineralogical composition during hydration of C3A with or without Li2CO3 are investigated. The results demonstrate that Li2CO3 promotes C3A hydration through high alkalinity, due to higher activity of lithium ion than that of calcium ion in the solution and carbonation of C3A hydration products resulted from Li2CO3. Li2CO3 favors the C3A hydration in C3A-CaSO4·2H2O-Ca(OH2-H2O hydration system and affects the mineralogical variation of the ettringite phase(s.

  5. The effect of hydrate promoters on gas uptake. (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen


    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  6. Influence of limestone on the hydration of Portland cements

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Gallucci, Emmanuel; Scrivener, Karen


    The influence of the presence of limestone on the hydration of Portland cement was investigated. Blending of Portland cement with limestone was found to influence the hydrate assemblage of the hydrated cement. Thermodynamic calculations as well as experimental observations indicated that in the presence of limestone, monocarbonate instead of monosulfate was stable. Thermodynamic modelling showed that the stabilisation of monocarbonate in the presence of limestone indirectly stabilised ettringite leading to a corresponding increase of the total volume of the hydrate phase and a decrease of porosity. The measured difference in porosity between the 'limestone-free' cement, which contained less than 0.3% CO 2 , and a cement containing 4% limestone, however, was much smaller than calculated. Coupling of thermodynamic modelling with a set of kinetic equations which described the dissolution of the clinker, predicted quantitatively the amount of hydrates. The quantities of ettringite, portlandite and amorphous phase as determined by TGA and XRD agreed well with the calculated amounts of these phases after different periods of time. The findings in this paper show that changes in the bulk composition of hydrating cements can be followed by coupled thermodynamic models. Comparison between experimental and modelled data helps to understand in more detail the dominating processes during cement hydration

  7. Adhesion force between cyclopentane hydrate and mineral surfaces. (United States)

    Aman, Zachary M; Leith, William J; Grasso, Giovanny A; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A


    Clathrate hydrate adhesion forces play a critical role in describing aggregation and deposition behavior in conventional energy production and transportation. This manuscript uses a unique micromechanical force apparatus to measure the adhesion force between cyclopentane hydrate and heterogeneous quartz and calcite substrates. The latter substrates represent models for coproduced sand and scale often present during conventional energy production and transportation. Micromechanical adhesion force data indicate that clathrate hydrate adhesive forces are 5-10× larger for calcite and quartz minerals than stainless steel. Adhesive forces further increased by 3-15× when increasing surface contact time from 10 to 30 s. In some cases, liquid water from within the hydrate shell contacted the mineral surface and rapidly converted to clathrate hydrate. Further measurements on mineral surfaces with physical control of surface roughness showed a nonlinear dependence of water wetting angle on surface roughness. Existing adhesive force theory correctly predicted the dependence of clathrate hydrate adhesive force on calcite wettability, but did not accurately capture the dependence on quartz wettability. This comparison suggests that the substrate surface may not be inert, and may contribute positively to the strength of the capillary bridge formed between hydrate particles and solid surfaces.

  8. Hydration and diffusion processes shape microbial community organization and function in model soil aggregates (United States)

    Ebrahimi, Ali; Or, Dani


    The constantly changing soil hydration status affects gas and nutrient diffusion through soil pores and thus the functioning of soil microbial communities. The conditions within soil aggregates are of particular interest due to limitations to oxygen diffusion into their core, and the presence of organic carbon often acting as binding agent. We developed a model for microbial life in simulated soil aggregates comprising of 3-D angular pore network model (APNM) that mimics soil hydraulic and transport properties. Within these APNM, we introduced individual motile (flagellated) microbial cells with different physiological traits that grow, disperse, and respond to local nutrients and oxygen concentrations. The model quantifies the dynamics and spatial extent of anoxic regions that vary with hydration conditions, and their role in shaping microbial community size and activity and the spatial (self) segregation of anaerobes and aerobes. Internal carbon source and opposing diffusion directions of oxygen and carbon within an aggregate were essential to emergence of stable coexistence of aerobic and anaerobic communities (anaerobes become extinct when carbon sources are external). The model illustrates a range of hydration conditions that promote or suppress denitrification or decomposition of organic matter and thus affect soil GHG emissions. Model predictions of CO2 and N2O production rates were in good agreement with limited experimental data. These limited tests support the dynamic modeling approach whereby microbial community size, composition, and spatial arrangement emerge from internal interactions within soil aggregates. The upscaling of the results to a population of aggregates of different sizes embedded in a soil profile is underway.

  9. X-ray microanalysis of freeze-dried and frozen-hydrated cryosections

    International Nuclear Information System (INIS)

    Zierold, K.


    The elemental composition and the ultrastructure of biological cells were studied by scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray microanalysis. The preparation technique involves cryofixation, cryoultramicrotomy, cryotransfer, and freeze-drying of samples. Freeze-dried cryosections 100-nm thick appeared to be appropriate for measuring the distribution of diffusible elements and water in different compartments of the cells. The lateral analytical resolution was less than 50 nm, depending on ice crystal damage and section thickness. The detection limit was in the range of 10 mmol/kg dry weight for all elements with an atomic number higher than 12; for sodium and magnesium the detection limits were about 30 and 20 mmol/kg dry weight, respectively. The darkfield intensity in STEM is linearly related to the mass thickness. Thus, it becomes possible to measure the water content in intracellular compartments by using the darkfield signal of the dry mass remaining after freeze-drying. By combining the X-ray microanalytical data expressed as dry weight concentrations with the measurements of the water content, physiologically more meaningful wet weight concentrations of elements were determined. In comparison to freeze-dried cryosections frozen-hydrated sections showed poor contrast and were very sensitive against radiation damage, resulting in mass loss. The high electron exposure required for recording X-ray spectra made reproducible microanalysis of ultrathin (about 100-nm thick) frozen-hydrated sections impossible. The mass loss could be reduced by carbon coating; however, the improvement achieved thus far is still insufficient for applications in X-ray microanalysis. Therefore, at present only bulk specimens or at least 1-micron thick sections can be used for X-ray microanalysis of frozen-hydrated biological samples

  10. The investigation of lithium formate hydrate, sodium dithionate and N-methyl taurine as clinical EPR dosimeters

    International Nuclear Information System (INIS)

    Lelie, S.; Hole, E.O.; Duchateau, M.; Schroeyers, W.; Schreurs, S.; Verellen, D.


    Introduction: EPR-dosimetry using L-α-alanine is an established method for measuring high doses of ionizing radiation. However, since a minimum dose of approximately 4 Gy is required to achieve sufficient low uncertainties (1–2%) for clinical application, alternative dosimeter materials are being inquired. Lithium formate (LiFo) monohydrate has been studied by several groups and has revealed several promising properties in the low dose region (<4 Gy). The fading properties, however, are somewhat unpredictable, and depend on properties not yet fully uncovered. This paper reports the results from a study of lithium formate hydrate and N-methyl taurine as potential low dose EPR dosimeters. Methods and materials: Pellet shaped dosimeters of lithium formate monohydrate, lithium formate hydrate, sodium dithionate and N-methyl taurine were produced using a manual Weber press, L-α-alanine was obtained from Harwell dosimeters and irradiated using 60 kV and 6 MV X-ray beams, and Co-60 gamma-rays to a dose of 30 Gy and dose ranges of 0.5–100 Gy and 2–20 Gy respectively. The dosimeters were measured using an Electron Paramagnetic Resonance (EPR)-spectrometer. The detector responses for 6 MV and Co-60 radiation beams, the fading behaviors and signal shape in time were investigated. Results: Lithium formate monohydrate and lithium formate hydrate are apparently associated with near identical EPR-spectra (mainly one broad line), and the same spectrum arises for all radiation energies investigated. The shape of the EPR resonance remains constant with time, but the intensities decreases, and the fading is more prominent for the monohydrate than for the hydrate. The EPR resonance associated with N-methyl taurine is more complex than the resonance associated with LiFo and it changes with time, implying radical transitions and growth. Conclusions: The study showed that lithium formate hydrate is a strong candidate for EPR dosimetry with slightly better fading characteristics

  11. Modelling Changes in the Global Methane Hydrate Inventory (United States)

    Hunter, S. J.; Goldobin, D.; Haywood, A. M.; Rees, J. G.; Ridgwell, A. J.; Brilliantov, N.; Jackson, P.; Rochelle, C.; Lovell, M.; Levesley, J.


    We present initial results from a study designed to investigate how the global methane hydrate reservoir has changed during the last interglacial-glacial cycle. Bottom water conditions through the last 120 kyr are derived from a series of long-integration snapshot-type HadCM3 GCM experiments (Singarayer and Valdes, 2009), these are then used to drive a modified 1-d time-dependent hydrate model (Davie and Buffett, 2003). The hydrate model is first evaluated using sensitivity experiments against a number of hydrate bearing ODP/DSDP sites. We then explore the potential initial-state hydrate inventory using Pliocene boundary conditions and compare against a modelled and previously published modern-day inventories. Using modelled bottom water conditions and a thermal diffusion model, changes in the hydrate stability zone thickness though the last 120 kyr are investigated. We consider the timing and potential role of hydrate disassociation in the triggering of submarine landslides. Finally, the glacial cycle modelling strategy is discussed and preliminary results of the transient hydrate model run are presented. We aim to use these models and simulations to investigate potential changes in the volume and stability of the marine reservoir through many pseudo glacial-cycles as a precursor to running the model forward through potential climate change scenarios. References: J. S. Singarayer, P. J. Valdes, (2009) High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr, QSR v. 29 (1-2), p. 43-55 M. K. Davie, B. A. Buffett, (2003) Sources of methane for marine gas hydrate: inferences from a comparison of observations and numerical models, EPSL v. 206, p. 51-63

  12. Swelling pressure and hydration behavior of porcine corneal stroma. (United States)

    Hatami-Marbini, Hamed; Etebu, Ebitimi; Rahimi, Abdolrasol


    The aim of this study was to characterize swelling pressure-thickness, swelling pressure-hydration and hydration-thickness relations of porcine cornea. Mechanical compression tests and free swelling experiments were performed on porcine cornea. A rheometer (DHR-2, TA Instruments) with a thermally controlled fluid chamber filled with 0.9% NaCl solution was used to measure the equilibrium swelling pressure of (n = 17) corneal stromal specimens. The samples were compressed incrementally and their swelling pressure-thickness relations were obtained. In parallel to this investigation, a transient digital imaging microscope (H800-CL, American Scope Inc.), a USB autofocus camera (UM05, ViTiny), and a precision weighing scale (AGZN100, Torbal) were simultaneously used to measure the weight-thickness relation of (n = 8) corneal specimens. This experimental study gave the thickness-hydration relationship required for expressing swelling pressure measurements as a function of hydration. At the in vivo 666 ± 68 µm central corneal thickness, an average swelling pressure of 52 ± 13 mmHg and hydration of 3.36 ± 0.25 mg H2O/mg dry tissue were found. The swelling pressure was reported as functions of both tissue thickness and hydration. The average fixed charge density of ρF/F ~ 42.8 mM and dry density of 1.47±0.15 g/cm3 were found. The thickness-hydration relationship was only linear when the tissue thickness was within the range of physiological thickness. Overall, the physiological hydration and swelling pressure of the porcine cornea were within the same range of those reported previously for other mammalian corneas such as steers, rabbits and humans. Nevertheless, the thickness-hydration behavior of the porcine cornea was only similar to that of the human cornea.

  13. Detecting gas hydrate behavior in crude oil using NMR. (United States)

    Gao, Shuqiang; House, Waylon; Chapman, Walter G


    Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.

  14. Molecular mechanisms responsible for hydrate anti-agglomerant performance. (United States)

    Phan, Anh; Bui, Tai; Acosta, Erick; Krishnamurthy, Pushkala; Striolo, Alberto


    Steered and equilibrium molecular dynamics simulations were employed to study the coalescence of a sI hydrate particle and a water droplet within a hydrocarbon mixture. The size of both the hydrate particle and the water droplet is comparable to that of the aqueous core in reverse micelles. The simulations were repeated in the presence of various quaternary ammonium chloride surfactants. We investigated the effects due to different groups on the quaternary head group (e.g. methyl vs. butyl groups), as well as different hydrophobic tail lengths (e.g. n-hexadecyl vs. n-dodecyl tails) on the surfactants' ability to prevent coalescence. Visual inspection of sequences of simulation snapshots indicates that when the water droplet is not covered by surfactants it is more likely to approach the hydrate particle, penetrate the protective surfactant film, reach the hydrate surface, and coalesce with the hydrate than when surfactants are present on both surfaces. Force-distance profiles obtained from steered molecular dynamics simulations and free energy profiles obtained from umbrella sampling suggest that surfactants with butyl tripods on the quaternary head group and hydrophobic tails with size similar to the solvent molecules can act as effective anti-agglomerants. These results qualitatively agree with macroscopic experimental observations. The simulation results provide additional insights, which could be useful in flow assurance applications: the butyl tripod provides adhesion between surfactants and hydrates; when the length of the surfactant tail is compatible with that of the hydrocarbon in the liquid phase a protective film can form on the hydrate; however, once a molecularly thin chain of water molecules forms through the anti-agglomerant film, connecting the water droplet and the hydrate, water flows to the hydrate and coalescence is inevitable.

  15. Dispersion relations for η '→ η π π (United States)

    Isken, Tobias; Kubis, Bastian; Schneider, Sebastian P.; Stoffer, Peter


    We present a dispersive analysis of the decay amplitude for η '→ η π π that is based on the fundamental principles of analyticity and unitarity. In this framework, final-state interactions are fully taken into account. Our dispersive representation relies only on input for the {π π } and {π }η scattering phase shifts. Isospin symmetry allows us to describe both the charged and neutral decay channel in terms of the same function. The dispersion relation contains subtraction constants that cannot be fixed by unitarity. We determine these parameters by a fit to Dalitz-plot data from the VES and BES-III experiments. We study the prediction of a low-energy theorem and compare the dispersive fit to variants of chiral perturbation theory.

  16. On the hydration and conformation of cocaine in solution (United States)

    Gillams, Richard J.; Lorenz, Christian D.; McLain, Sylvia E.


    In order to develop theories relating to the mechanism through which cocaine can diffuse across the blood-brain barrier, it is important to understand the interplay between the hydration of the molecule and the adopted conformation. Here key differences in the hydration of cocaine hydrochloride (CHC) and freebase cocaine (CFB) are highlighted on the atomic scale in solution, through the use of molecular dynamics simulations. By adopting different conformations, CHC and CFB experience differing hydration environments. The interplay between these two factors may account for the vast difference in solubility of these two molecules.

  17. A biophysical index for predicting hydration-mediated microbial diversity in soils (United States)

    Wang, G.; Or, D.


    Exploring the origins of soil microbial diversity represents an immense and uncharted scientific frontier. Progress in resolving mechanisms that promote and sustain the unparalleled soil microbial diversity found in soil requires development of process-based predictive tools that consider dynamic biophysical interactions at highly resolved spatial and temporal scales. We report a novel biophysical metric for hydration-mediated microbial coexistence in soils by integrating key biophysical variables, such as aquatic habitat size and connectivity, nutrient diffusion affecting microbial growth, and aqueous films controlling motility and dispersal, into a predictive index. Results show a surprisingly narrow range of hydration conditions (a few kPa) that mark a sharp transition from suppression (wet) to promotion (dry) of microbial diversity in unsaturated soils in agreement with limited observations and with simulation results based on individual-based models of competing populations. The framework enables systematic hypothesis testing for key factors that regulate microbial populations and affect soil bio-geochemical functions, and represents a step towards deciphering key mechanisms that support soil microbial diversity. New insights into the different roles of biophysical mechanisms in promoting soil microbial diversity enable predictions concerning microbial consortia function and bioremediation activities in soils, and may shape how we quantify microbial diversity within the context of land resources and biogeochemical cycling.

  18. Simulation of natural corrosion by vapor hydration test: seven-year results

    International Nuclear Information System (INIS)

    Luo, J.S.; Ebert, W.L.; Mazer, J.J.; Bates, J.K.


    We have investigated the alteration behavior of synthetic basalt and SRL 165 borosilicate waste glasses that had been reacted in water vapor at 70 degrees C for time periods up to seven years. The nature and extent of corrosion of glasses have been determined by characterizing the reacted glass surface with optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS). Alteration in 70 degrees C laboratory tests was compared to that which occurs at 150-200 degrees C and also with Hawaiian basaltic glasses of 480 to 750 year old subaerially altered in nature. Synthetic basalt and waste glasses, both containing about 50 percent wt SiO 2 were found to react with water vapor to form an amorphous hydrated gel that contained small amounts of clay, nearly identical to palagonite layers formed on naturally altered basaltic glass. This result implies that the corrosion reaction in nature can be simulated with a vapor hydration test. These tests also provide a means for measuring the corrosion kinetics, which are difficult to determine by studying natural samples because alteration layers have often spelled off the samples and we have only limited knowledge of the conditions under which alteration occurred

  19. Fully Coupled FE Analyses of Buried Structures

    Directory of Open Access Journals (Sweden)

    James T. Baylot


    Full Text Available Current procedures for determining the response of buried structures to the effects of the detonation of buried high explosives recommend decoupling the free-field stress analysis from the structure response analysis. A fully coupled (explosive–soil structure finite element analysis procedure was developed so that the accuracies of current decoupling procedures could be evaluated. Comparisons of the results of analyses performed using this procedure with scale-model experiments indicate that this finite element procedure can be used to effectively evaluate the accuracies of the methods currently being used to decouple the free-field stress analysis from the structure response analysis.

  20. A Fully Automated Penumbra Segmentation Tool

    DEFF Research Database (Denmark)

    Nagenthiraja, Kartheeban; Ribe, Lars Riisgaard; Hougaard, Kristina Dupont


    salavageable tissue, quickly and accurately. We present a fully Automated Penumbra Segmentation (APS) algorithm using PWI and DWI images. We compare automatically generated PWI-DWI mismatch mask to mask outlined manually by experts, in 168 patients. Method: The algorithm initially identifies PWI lesions......) at 600∙10-6 mm2/sec. Due to the nature of thresholding, the ADC mask overestimates the DWI lesion volume and consequently we initialized level-set algorithm on DWI image with ADC mask as prior knowledge. Combining the PWI and inverted DWI mask then yield the PWI-DWI mismatch mask. Four expert raters...

  1. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.


    Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas

  2. Gas hydrate saturations estimated from pore-and fracture-filling gas hydrate reservoirs in the Qilian Mountain permafrost, China. (United States)

    Xiao, Kun; Zou, Changchun; Lu, Zhenquan; Deng, Juzhi


    Accurate calculation of gas hydrate saturation is an important aspect of gas hydrate resource evaluation. The effective medium theory (EMT model), the velocity model based on two-phase medium theory (TPT model), and the two component laminated media model (TCLM model), are adopted to investigate the characteristics of acoustic velocity and gas hydrate saturation of pore- and fracture-filling reservoirs in the Qilian Mountain permafrost, China. The compressional wave (P-wave) velocity simulated by the EMT model is more consistent with actual log data than the TPT model in the pore-filling reservoir. The range of the gas hydrate saturation of the typical pore-filling reservoir in hole DKXX-13 is 13.0~85.0%, and the average value of the gas hydrate saturation is 61.9%, which is in accordance with the results by the standard Archie equation and actual core test. The P-wave phase velocity simulated by the TCLM model can be transformed directly into the P-wave transverse velocity in a fracture-filling reservoir. The range of the gas hydrate saturation of the typical fracture-filling reservoir in hole DKXX-19 is 14.1~89.9%, and the average value of the gas hydrate saturation is 69.4%, which is in accordance with actual core test results.

  3. Hydration structure and water exchange dynamics of Fe(II) ion in ...

    African Journals Online (AJOL)

    Computer simulation studies of the hydration structure and water exchange dynamics in the first hydration shell for Fe(II) in water are presented. The structure of the hydrated ion is discussed in terms of radial distribution functions, coordination numbers, and angular distributions. The average first-shell hydration structure is ...

  4. Experimental studies for the cyclability of salt hydrates for thermochemical heat storage

    NARCIS (Netherlands)

    Donkers, P.A.J.; Pel, L.; Adan, O.C.G.


    Salt hydrates have promising potential as heat storage materials by use of their hydration/dehydration reaction. These hydration/dehydration reactions are studied in this paper for CuCl2, CuSO4, MgCl2 and MgSO4. During a hydration/dehydration reaction, the salt shrinks and expands as a result of the

  5. Dispersed flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.


    Dispersed flow film boiling is the heat transfer regime that occurs at high void fractions in a heated channel. The way this transfer mode is modelled in the NRC computer codes (RELAP5 and TRAC) and the validity of the assumption and empirical correlations used is discussed. An extensive review of the theoretical and experimental work related with heat transfer to highly dispersed mixtures reveals the basic deficiencies of these models: the investigation refers mostly to the typical conditions of low rate bottom reflooding, since the simulation of this physical situation by the computer codes has often showed poor results. The alternative models that are available in the literature are reviewed, and their merits and limits are highlighted. The modification that could improve the physics of the models implemented in the codes are identified. (author) 13 figs., 123 refs

  6. Working document dispersion models

    International Nuclear Information System (INIS)

    Dop, H. van


    This report is a summary of the most important results from June 1985 of the collaboration of the RIVM (Dutch National Institute for Public Health and Environment Hygiene) and KNMI (Royal Dutch Meteorologic Institute) on the domain of dispersion models. It contains a short description of the actual SO x /NO x -model. Furthermore it contains recommendations for modifications of some numerical-mathematical aspects and an impulse to a more complete description of chemical processes in the atmosphere and the (wet) deposition process. A separate chapter is devoted to the preparation of meteorologic data which are relevant for dispersion as well as atmospheric chemistry and deposition. This report serves as working document for the final formulation of a acidifying- and oxidant-model. (H.W.). 69 refs.; 51 figs.; 13 tabs.; 3 schemes

  7. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties (United States)

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.


    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  8. Phonon dispersion in Be

    International Nuclear Information System (INIS)

    Sharma, R.P.; Sharma, A.K.; Sharma, S.; Sinha, H.P.


    In a study of the lattice dynamics of Be a simple scheme has been developed in which the pairwise and long range forces are accounted on the lines of nonlocal theory and the short range three-body forces are included. This procedure of calculations has been applied to compute the phonon dispersion in Be and the results of investigation have been compared with the experimental data. (author)

  9. Taylor dispersion of nanoparticles (United States)

    Balog, Sandor; Urban, Dominic A.; Milosevic, Ana M.; Crippa, Federica; Rothen-Rutishauser, Barbara; Petri-Fink, Alke


    The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical extinction, translational diffusion, and sheer-enhanced dispersion of nanoparticles subjected to a steady laminar flow. The interplay of these defines the apparent size. Considering that particles in fact are never truly uniform nor monodisperse, we rigorously address particle polydispersity and calculate the apparent particle size measured by Taylor dispersion analysis. We conducted case studies addressing aqueous suspensions of model particles and large-scale-produced "industrial" particles of both academic and commercial interest of various core materials and sizes, ranging from 15 to 100 nm. A comparison with particle sizes determined by transmission electron microscopy confirms that our approach is model-independent, non-parametric, and of general validity that provides an accurate account of size polydispersity—independently on the shape of the size distribution and without any assumption required a priori.

  10. Fully CMOS-compatible titanium nitride nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Justin A., E-mail: [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Naik, Gururaj V.; Baum, Brian K.; Dionne, Jennifer A. [Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Petach, Trevor A.; Goldhaber-Gordon, David [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States)


    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  11. Fully populated VCM or the hidden parameter

    Directory of Open Access Journals (Sweden)

    Kermarrec G.


    Full Text Available Least-squares estimates are trustworthy with minimal variance if the correct stochastic model is used. Due to computational burden, diagonal models that neglect correlations are preferred to describe the elevation dependency of the variance of GPS observations. In this contribution, an improved stochastic model based on a parametric function to take correlations between GPS phase observations into account is presented. Built on an adapted and flexible Mátern function accounting for spatiotemporal variabilities, its parameters can be fixed thanks to Maximum Likelihood Estimation or chosen apriori to model turbulent tropospheric refractivity fluctuations. In this contribution, we will show in which cases and under which conditions corresponding fully populated variance covariance matrices (VCM replace the estimation of a tropospheric parameter. For this equivalence “augmented functional versus augmented stochastic model” to hold, the VCM should be made sufficiently largewhich corresponds to computing small batches of observations. A case study with observations from a medium baseline of 80 km divided into batches of 600 s shows improvement of up to 100 mm for the 3Drms when fully populated VCM are used compared with an elevation dependent diagonal model. It confirms the strong potential of such matrices to improve the least-squares solution, particularly when ambiguities are let float.

  12. Fully 3D GPU PET reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L., E-mail: [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Espana, S. [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Cal-Gonzalez, J. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain); Vaquero, J.J. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Desco, M. [Departmento de Bioingenieria e Ingenieria Espacial, Universidad Carlos III, Madrid (Spain); Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Udias, J.M. [Grupo de Fisica Nuclear, Departmento Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid (Spain)


    Fully 3D iterative tomographic image reconstruction is computationally very demanding. Graphics Processing Unit (GPU) has been proposed for many years as potential accelerators in complex scientific problems, but it has not been used until the recent advances in the programmability of GPUs that the best available reconstruction codes have started to be implemented to be run on GPUs. This work presents a GPU-based fully 3D PET iterative reconstruction software. This new code may reconstruct sinogram data from several commercially available PET scanners. The most important and time-consuming parts of the code, the forward and backward projection operations, are based on an accurate model of the scanner obtained with the Monte Carlo code PeneloPET and they have been massively parallelized on the GPU. For the PET scanners considered, the GPU-based code is more than 70 times faster than a similar code running on a single core of a fast CPU, obtaining in both cases the same images. The code has been designed to be easily adapted to reconstruct sinograms from any other PET scanner, including scanner prototypes.

  13. Energy from gas hydrates - assessing the opportunities and challenges for Canada: report of the expert panel on gas hydrates

    International Nuclear Information System (INIS)


    Gas hydrates form when water and natural gas combine at low temperatures and high pressures in regions of permafrost and in marine subseafloor sediments. Estimates suggest that the total amount of natural gas bound in hydrate form may exceed all conventional gas resources, or even the amount of all combined hydrocarbon energy. Gas from gas hydrate could provide a potentially vast new source of energy to offset declining supplies of conventional natural gas in North America and to provide greater energy security for countries such as Japan and India that have limited domestic sources. However, complex issues would need to be addressed if gas hydrate were to become a large part of the energy future of Canada. Natural Resources Canada asked the Council of Canadian Academies to assemble a panel of experts to examine the challenges for an acceptable operational extraction of gas hydrates in Canada. This report presented an overview of relevant contextual background, including some basic science; the medium-term outlook for supply and demand in markets for natural gas; broad environmental issues related to gas hydrate in its natural state and as a fuel; and an overview of Canada's contribution to knowledge about gas hydrate in the context of ongoing international research activity. The report also presented current information on the subject and what would be required to delineate and quantify the resource. Techniques for extracting gas from gas hydrate were also outlined. The report also addressed safety issues related to gas hydrate dissociation during drilling operations or release into the atmosphere; the environmental issues associated with potential leakage of methane into the atmosphere and with the large volumes of water produced during gas hydrate dissociation; and jurisdictional and local community issues that would need to be resolved in order to proceed with the commercial exploitation of gas hydrate. It was concluded that there does not appear to be

  14. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Georgia Tech Research Corporation, Atlanta, GA (United States); Santamarina, J. Carlos [King Abdulaziz Univ., Jeddah (Saudi Arabia)


    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate natural hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.

  15. Early hydration cement Effect of admixtures superplasticizers

    Directory of Open Access Journals (Sweden)

    Puertas, F.


    Full Text Available Early hydration of portland cement with superplasticizer admixtures of different nature has been studied. These admixtures were: one based on melamine synthetic, other based on vinyl copolymer and other based on polyacrylate copolymers. The dosage of the formers were constant (1% weigth of cement and for the third, the influence of admixture dosage was also evaluated, giving dosage values among 1-0.3%. The pastes obtained were studied by conduction calorimetry, XRD and FTIR. Also the apparent fluidity was determined by "Minislump" test. The main results obtained were: a superplasticizers admixtures used, regardless of their nature and for the polycarboxilate one the dosage, retard the silicate hydration (specially, alite phase, b The ettringite formation is affected by the nature of the admixture. cA relationship between the dosage of admixture based on polycarboxilates and the time at the acceleration has been established. A lineal relation (y = 11.03 + 16.05x was obtained. From these results is possible to know, in function of dosage admixture, the time when the masive hydration products and the setting times are produced. Also the total heat releases in these reactions is independent of the nature and dosage of admixture, saying that in all cases the reactions are the same.

    En el presente trabajo se ha estudiado la hidratación inicial de un cemento portland aditivado con superplastificantes de diferente naturaleza. Dichos aditivos fueron: uno basado en melaminas sintéticas, otro en copolímeros vinilicos y otro en policarboxilatos. La dosificación de los dos primeros se fijó constante en 1% en peso con relación al cemento, mientras que para el tercero se evaluó, también, la influencia de la dosificación, tomando proporciones desde el 1% hasta el 0,3%. Las pastas obtenidas se estudiaron por: calorimetría de conducción, DRX y FTIR. También se determinó la fluidez de la pasta a través del ensayo del "Minislump ". Los

  16. Shale hydration inhibition characteristics and mechanism of a new amine-based additive in water-based drilling fluids

    Directory of Open Access Journals (Sweden)

    Pezhman Barati


    Full Text Available In this work, shale hydration Inhibition performance of tallow amine ethoxylate as a shale stabilizer in water based drilling fluid, was investigated through these tests: bentonite hydration inhibition test, bentonite sedimentation test, drill cutting recovery test, dynamic linear swelling test, wettability test, isothermal water adsorption test, and zeta potential test. The results showed that bentonite particles are not capable of being hydrated or dispersed in the mediums containing tallow amine ethoxylate; tallow amine ethoxylate had shown a comparable and competitive inhibition performance with potassium chloride as a common shale stabilizer in drilling industry. Some amine functional groups exist in tallow amine ethoxylate structure which are capable of forming hydrogen bonding with surfaces of bentonite particles. This phenomenon decreased the water adsorption on bentonite particles' surfaces which results in reduction of swelling. Tallow amine ethoxylate is also compatible with other common drilling fluid additives. Keywords: Drilling fluids, Dynamic linear swelling, Hydrogen bond, Mechanism, Shale stabilizer, Tallow amine ethoxylate, Wettability, Zeta potential, Amine-based additive

  17. Characterization of Nanoreinforcement Dispersion in Inorganic Nanocomposites: A Review

    Directory of Open Access Journals (Sweden)

    Nouari Saheb


    Full Text Available Metal and ceramic matrix composites have been developed to enhance the stiffness and strength of metals and alloys, and improve the toughness of monolithic ceramics, respectively. It is possible to further improve their properties by using nanoreinforcement, which led to the development of metal and ceramic matrix nanocomposites, in which case, the dimension of the reinforcement is on the order of nanometer, typically less than 100 nm. However, in many cases, the properties measured experimentally remain far from those estimated theoretically. This is mainly due to the fact that the properties of nanocomposites depend not only on the properties of the individual constituents, i.e., the matrix and reinforcement as well as the interface between them, but also on the extent of nanoreinforcement dispersion. Therefore, obtaining a uniform dispersion of the nanoreinforcement in the matrix remains a key issue in the development of nanocomposites with the desired properties. The issue of nanoreinforcement dispersion was not fully addressed in review papers dedicated to processing, characterization, and properties of inorganic nanocomposites. In addition, characterization of nanoparticles dispersion, reported in literature, remains largely qualitative. The objective of this review is to provide a comprehensive description of characterization techniques used to evaluate the extent of nanoreinforcement dispersion in inorganic nanocomposites and critically review published work. Moreover, methodologies and techniques used to characterize reinforcement dispersion in conventional composites, which may be used for quantitative characterization of nanoreinforcement dispersion in nanocomposites, is also presented.

  18. A Review of the Methane Hydrate Program in Japan

    Directory of Open Access Journals (Sweden)

    Ai Oyama


    Full Text Available In this paper, methane hydrate R&D in Japan was examined in the context of Japan’s evolving energy policies. Methane hydrates have been studied extensively in Japanese national R&D programs since 1993, with the goal of utilizing them as an energy resource. Currently, the Research Consortium for Methane Hydrate Resources in Japan (MH 21 is in the third phase of a project that began in early 2002. Based on publicly available reports and other publications, and presentations made at the ten International Workshops for Methane Hydrate Research and Development, we have attempted to provide a timeline and a succinct summary of the major technical accomplishments of MH 21 during project Phases 1, 2, and 3.

  19. Clinical study on orofacial photonic hydration using phototherapy and biomaterials (United States)

    Lizarelli, Rosane F. Z.; Grandi, Natália D. P.; Florez, Fernando L. E.; Grecco, Clovis; Lopes, Luciana A.


    Skin hydration is important to prevent aging and dysfunction of orofacial system. Nowadays, it is known that cutaneous system is linked to muscle system, then every dentist need to treat healthy facial skin, as lips, keeping orofacial functions healthy. Thirty-two patients were treated using laser and led therapy single or associated to biomaterials (dermo-cosmetics) searching for the best protocol to promote skin hydration. Using a peace of equipment to measure electric impedance, percentage of water and oil from skin, before and after different treatments were analyzed. Statistic tests using 5% and 0.1% of significance were applied and results showed that light could improve hydration of epidermis layer of facial skin. Considering just light effect, using infrared laser followed by blue led system is more effective to hydration than just blue led system application. Considering dermo-cosmetic and light, the association between both presented the best result.

  20. Methane hydrates and the future of natural gas (United States)

    Ruppel, Carolyn


    For decades, gas hydrates have been discussed as a potential resource, particularly for countries with limited access to conventional hydrocarbons or a strategic interest in establishing alternative, unconventional gas reserves. Methane has never been produced from gas hydrates at a commercial scale and, barring major changes in the economics of natural gas supply and demand, commercial production at a large scale is considered unlikely to commence within the next 15 years. Given the overall uncertainty still associated with gas hydrates as a potential resource, they have not been included in the EPPA model in MITEI’s Future of Natural Gas report. Still, gas hydrates remain a potentially large methane resource and must necessarily be included in any consideration of the natural gas supply beyond two decades from now.

  1. Geo-scientific investigations of gas-hydrates in India

    Digital Repository Service at National Institute of Oceanography (India)

    Sain, K.; Gupta, H.; Mazumdar, A.; Bhaumik, A.K.; Bhowmick, P.K.

    . We have evaluated the resouce potential of gas-hydrates to boost the development of viable production technology. Approximately, 1900 trillion cubic meter of methane has been prognosticated within the vast exclusive economic zone (EEZ) of India...

  2. Thermal Regeneration of Sulfuric Acid Hydrates after Irradiation (United States)

    Loeffler, Mark J.; Hudson, Reggie L.


    In an attempt to more completely understand the surface chemistry of the jovian icy satellites, we have investigated the effect of heating on two irradiated crystalline sulfuric acid hydrates, H2SO4 4H2O and H2SO4 H2O. At temperatures relevant to Europa and the warmer jovian satellites, post-irradiation heating recrystallized the amorphized samples and increased the intensities of the remaining hydrate's infrared absorptions. This thermal regeneration of the original hydrates was nearly 100% efficient, indicating that over geological times, thermally-induced phase transitions enhanced by temperature fluctuations will reform a large fraction of crystalline hydrated sulfuric acid that is destroyed by radiation processing. The work described is the first demonstration of the competition between radiation-induced amorphization and thermally-induced recrystallization in icy ionic solids relevant to the outer Solar System.

  3. Influence of Liquid Paraffin, White Soft Paraffin and Initial Hydration ...

    African Journals Online (AJOL)

    hydrated white soft paraffin on the viscosity of a cream formulated with a corticosteroid. Methods: The formulations were prepared via homogenization with variable velocity in the range 3300 - 4000 rpm. Individual series of preparations contained the ...

  4. Chemical characteristics of mineral trioxide aggregate and its hydration reaction (United States)


    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  5. Maximum Recoverable Gas from Hydrate Bearing Sediments by Depressurization

    KAUST Repository

    Terzariol, Marco


    The estimation of gas production rates from hydrate bearing sediments requires complex numerical simulations. This manuscript presents a set of simple and robust analytical solutions to estimate the maximum depressurization-driven recoverable gas. These limiting-equilibrium solutions are established when the dissociation front reaches steady state conditions and ceases to expand further. Analytical solutions show the relevance of (1) relative permeabilities between the hydrate free sediment, the hydrate bearing sediment, and the aquitard layers, and (2) the extent of depressurization in terms of the fluid pressures at the well, at the phase boundary, and in the far field. Close form solutions for the size of the produced zone allow for expeditious financial analyses; results highlight the need for innovative production strategies in order to make hydrate accumulations an economically-viable energy resource. Horizontal directional drilling and multi-wellpoint seafloor dewatering installations may lead to advantageous production strategies in shallow seafloor reservoirs.

  6. Development of a CB Resistant Durable, Flexible Hydration System

    National Research Council Canada - National Science Library

    Hall, Peyton W; Zeller, Frank T; Bulluck, John W; Dingus, Michael L


    A durable, flexible hydration system resistant to contamination by contact with VX, GD, and HD chemical agents, as well as damage by the decontaminants sodium hypochlorite and DS-2 is being developed for aviator use...

  7. A study on dehydration of rare earth chloride hydrate

    International Nuclear Information System (INIS)

    Cho, Yong Zun; Eun, Hee Chul; Son, Sung Mo; Lee, Tae Kyo; Hwang, Taek Sung


    The dehydration schemes of rare earth (La, Ce, Nd, Pr, Sm. Eu, Gd, Y) chloride hydrates was investigated by using a dehydration apparatus. To prevent the formation of the rare earth oxychlorides, the operation temperature was changed step by step (80→150→230 degree C) based on the TGA (thermo-gravimetric analysis) results of the rare earth chloride hydrates. A vacuum pump and preheated Ar gas were used to effectively remove the evaporated moisture and maintain an inert condition in the dehydration apparatus. The dehydration temperature of the rare earth chloride hydrate was increased when the atomic number of the rare earth nuclide was increased. The content of the moisture in the rare earth chloride hydrate was decreased below 10% in the dehydration apparatus.

  8. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf


    Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...

  9. Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials. (United States)

    Kyomoto, Masayuki; Moro, Toru; Saiga, Kenichi; Hashimoto, Masami; Ito, Hideya; Kawaguchi, Hiroshi; Takatori, Yoshio; Ishihara, Kazuhiko


    Natural joints rely on fluid thin-film lubrication by the hydrated polyelectrolyte layer of cartilage. However, current artificial joints with polyethylene (PE) surfaces have considerably less efficient lubrication and thus much greater wear, leading to osteolysis and aseptic loosening. This is considered a common factor limiting prosthetic longevity in total hip arthroplasty (THA). However, such wear could be mitigated by surface modification to mimic the role of cartilage. Here we report the development of nanometer-scale hydrophilic layers with varying charge (nonionic, cationic, anionic, or zwitterionic) on cross-linked PE (CLPE) surfaces, which could fully mimic the hydrophilicity and lubricity of the natural joint surface. We present evidence to support two lubrication mechanisms: the primary mechanism is due to the high level of hydration in the grafted layer, where water molecules act as very efficient lubricants; and the secondary mechanism is repulsion of protein molecules and positively charged inorganic ions by the grafted polyelectrolyte layer. Thus, such nanometer-scaled hydrophilic polymers or polyelectrolyte layers on the CLPE surface of acetabular cup bearings could confer high durability to THA prosthetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. What Causes Animals to Disperse?

    Indian Academy of Sciences (India)

    Also, Zubiri [3] study in 1995 on Ethiopian wolves showed that in cases where dispersal became far more risky, because of harsh environment and high wolf pack densities, the females (who are the predominant dispersers) often did not disperse, and eventu- ally some became the dominant females of the pack. This would.

  11. Notes on hydrated cement fractals investigated by SANS

    International Nuclear Information System (INIS)

    Ficker, T; Len, A; Nemec, P


    Hydrated cement pastes with different water-to-cement ratios have been investigated by the small-angle scattering neutron technique. Special attention has been paid to the fractal nanostructure of the calcium silicate hydrate (C-S-H solid gel) and its basic building particles, i.e. nanometric globules. The inner stability of these particles has been tested and shown to be sufficiently persistent to withstand all spatial regroupings of the overall nanostructure caused by variations of w/c ratios

  12. Synergistic kinetic inhibition of natural gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas


    Rocking cells were used to investigate the natural gas hydrate formation and decomposition in the presence of kinetic inhibitor, Luvicap. In addition, the influence of poly ethylene oxide (PEO) and NaCl on the performance of Luvicap was investigated using temperature ramping and isothermal...... to decompose completely. One should consider this complex inhibitor-mediated hydrate formation and decomposition kinetics when screening and designing kinetic inhibitors for field applications....

  13. Hydration process of nuclear-waste glass: an interim report

    International Nuclear Information System (INIS)

    Bates, J.K.; Jardine, L.J.; Steindler, M.J.


    Aging of simulated nuclear waste glass by contact with a controlled-temperature, humid atmosphere results in the formation of a double hydration layer penetrating the glass, as well as the formation of minerals on the glass surface. The hydration process can be described by Arrhenius behavior between 120 and 240 0 C. Results suggest that simulated aging reactions are necessary for demonstrating that nuclear waste forms can meet projected Nuclear Regulatory Commission regulations. 16 figures, 4 tables

  14. Formation of nitric acid hydrates - A chemical equilibrium approach (United States)

    Smith, Roland H.


    Published data are used to calculate equilibrium constants for reactions of the formation of nitric acid hydrates over the temperature range 190 to 205 K. Standard enthalpies of formation and standard entropies are calculated for the tri- and mono-hydrates. These are shown to be in reasonable agreement with earlier calorimetric measurements. The formation of nitric acid trihydrate in the polar stratosphere is discussed in terms of these equilibrium constants.

  15. Chemical characteristics of mineral trioxide aggregate and its hydration reaction


    Chang, Seok-Woo


    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyap...

  16. Gas hydrates in Krishna-Godavari offshore basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.; Mazumdar, A.; Dewangan, P.

     geography and you T Ramprasad, A Mazumdar and P Dewangan Gas hydrates in Krishna- Godavari offshore basin Earth science technologies geography and you  july - august 2013  45 Methane from gas hydrate deposits could be a viable energy alternative... areas get buried deep under few kilometres of thick ocean sediments and is degraded by the bacterial activity for eons under very high temperatures. The methane molecules thus generated find their way into the overlying sediments through...

  17. Re-dispersion of alumina particles in water: influence of the surface state

    International Nuclear Information System (INIS)

    Desset, Sabine


    The aim of this work was to determine the mechanisms by which suspensions of alpha alumina particles may be dried and then re-dispersed spontaneously in water. To get reproducible results, we designed appropriate protocols: (i) for preparing the surface state, and for generating controlled interparticle contacts (presence of water or complexing agents); (ii) for measuring the amount of re-dispersed material with a proper averaging over all interparticle bonds (turbidity). These results show that there are thresholds, determined by the conditions of drying and re-dispersion, where all the powder goes from the aggregated state to the dispersed state. With hydrated powders, it was found that mild changes in the chemical conditions (pH) and application of very weak mechanical forces (sedimentation) were enough to cause significant change in re-dispersion. According to these thresholds, a re-dispersion mechanism could be identified. Re-dispersion is ruled, indeed, by a balance of forces and the displacement of the re-dispersion thresholds indicates a shift in the balance of forces. These forces are the well-known forces that control colloidal stability: van der Waals attraction, electrostatic repulsion and hydration forces. We found that hydration acts as a repulsive wall corresponding to one or two monolayers of water on each surface and depends on the Relative Humidity of drying. We also found that electrostatic repulsions at short separations are much weaker than the predictions based on the Poisson Boltzmann equation, but should be modelled according to the triple layer model. Repulsions to be considered are those calculated with the screened charges of the particles. Another aim of this work was to facilitate re-dispersion by using complexing agents that bind to the surfaces and add a steric repulsion We have found that molecules with carboxylic and hydroxyl groups can be efficient in this respect, if they are bound to surfaces before aggregation, if they are not

  18. Re-dispersion of alumina particles in water: influence of the surface state

    International Nuclear Information System (INIS)

    Desset, Sabine


    The aim of this work was to determine the mechanisms by which suspensions of alpha alumina particles may be dried and then re-dispersed spontaneously in water. To get reproducible results, we designed appropriate protocols: (i) for preparing the surface state, and for generating controlled interparticle contacts (presence of water or complexing agents); (ii) for measuring the amount of re-dispersed material with a proper averaging over all interparticle bonds (turbidity). These results show that there are thresholds, determined by the conditions of drying and re-dispersion, where all the powder goes from the aggregated state to the dispersed state. With hydrated powders, it was found that mild changes in the chemical conditions (pH) and application of very weak mechanical forces (sedimentation) were enough to cause significant change in re-dispersion. According to these thresholds, a re-dispersion mechanism could be identified. Re-dispersion is ruled, indeed, by a balance of forces and the displacement of the re-dispersion thresholds indicates a shift in the balance of forces. These forces are the well known forces that control colloidal stability: van der Waals attraction, electrostatic repulsion and hydration forces. We found that hydration acts as a repulsive wall corresponding to one or two monolayers of water on each surface and depends on the Relative Humidity of drying. We also found that electrostatic repulsions at short separations are much weaker than the predictions based on the Poisson Boltzmann equation, but should be modelled according to the triple layer model. Repulsions to be considered are those calculated with the screened charges of the particles. Another aim of this work was to facilitate re-dispersion by using complexing agents that bind to the surfaces and add a steric repulsion We have found that molecules with carboxylic and hydroxyl groups can be efficient in this respect, if they are bound to surfaces before aggregation, if they are not

  19. Life Origination Hydrate Theory (LOH-Theory) and Mitosis and Replication Hydrate Theory (MRH-Theory): three-dimensional PC validation (United States)

    Kadyshevich, E. A.; Dzyabchenko, A. V.; Ostrovskii, V. E.


    Size compatibility of the CH4-hydrate structure II and multi-component DNA fragments is confirmed by three-dimensional simulation; it is validation of the Life Origination Hydrate Theory (LOH-Theory).

  20. Gas hydrates of the Black sea sediment section

    International Nuclear Information System (INIS)

    Byakov, Y.A.; Kruglyakova, R.P.; Kruglyakova, M.V.


    Full text : This article shows how gas formation and its genesis in the Black sea sediments forms two types of gas hydrates. The first is diagenetic, formed from biochemical methane. The second type is thermogenic, formed from the thermogenic gases and represented not only by methane, but also by its light homologues, like ethane and propane. The most favourable area for formation of the gas hydrates of the first type in the Black sea is the foot of the continental slope and areas of underwater cones of paleorivers drift-over. Gas hydrates of the second type are accumulated in the areas of underwater mud volcanoes. In accordance with the results of seismic and seismoacoustic studies in deposited thickness of the Black sea the specific anomalies of the BSR and VAMP's types are revealed that associate with the foot of gas hydrate deposits. Two gas hydrates are distinguished according to sources of gas supply and genesis : type 1 - diagenetic, type 2 - thermogenic. When some critique is reached the gas hydrate trap breaks and volcanic eruption occurs. Thus, occurrence of underwater volcanism may testify the presence of deposits.

  1. Impact of Hydration Media on Ex Vivo Corneal Elasticity Measurements. (United States)

    Dias, Janice; Ziebarth, Noël M


    To determine the effect of hydration media on ex vivo corneal elasticity. Experiments were conducted on 40 porcine eyes retrieved from an abattoir (10 eyes each for phosphate-buffered saline (PBS), balanced salt solution, Optisol, 15% dextran). The epithelium was removed, and the cornea was excised with an intact scleral rim and placed in 20% dextran overnight to restore its physiological thickness. For each hydration media, corneas were evenly divided into two groups: one with an intact scleral rim and the other without. Corneas were mounted onto a custom chamber and immersed in a hydration medium for elasticity testing. Although in each medium, corneal elasticity measurements were performed for 2 hr: at 5-min intervals for the first 30 min and then 15-min intervals for the remaining 90 min. Elasticity testing was performed using nanoindentation with spherical indenters, and Young modulus was calculated using the Hertz model. Thickness measurements were taken before and after elasticity testing. The percentage change in corneal thickness and elasticity was calculated for each hydration media group. Balanced salt solution, PBS, and Optisol showed an increase in thickness and Young moduli for corneas with and without an intact scleral rim. Fifteen percent dextran exhibited a dehydrating effect on corneal thickness and provided stable maintenance of corneal elasticity for both groups. Hydration media affects the stability of corneal thickness and elasticity measurements over time. Fifteen percent dextran was most effective in maintaining corneal hydration and elasticity, followed by Optisol.

  2. Microstructure of hydrated cement pastes as determined by SANS

    International Nuclear Information System (INIS)

    Sabine, T.; Bertram, W.; Aldridge, L.


    Full text: Technologists have known how to make concrete for over 2000 years but despite painstaking research no one has been able to show how and why concrete sets. Part of the problem is that the calcium silicate hydrate (the gel produced by hydrating cement) is amorphous and cannot be characterised by x-ray crystallographic techniques. Small angle neutron scattering on instrument V12a at BENSC was used to characterise the hydration reactions and show the growth of the calcium silicate hydrates during initial hydration and the substantial differences in the rate of growth and structure as different additives are used. SANS spectra were measured as a function of the hydration from three different types of cement paste: 1) Ordinary Portland Cement made with a water to cement ratio of about 0.4; 2) A blend of Ordinary Portland Cement(25%) and Ground Granulated Blast Furnace Slag (75%) with a water to cement ration of about 0.4; 3) A dense paste made from silica fume(24%), Ordinary Portland Cement (76%) at a water to powder ratio of 0.18. The differences in the spectra are interpreted in terms of differences between the microstructure of the pastes

  3. Quantum Fully Homomorphic Encryption with Verification

    DEFF Research Database (Denmark)

    Alagic, Gorjan; Dulek, Yfke; Schaffner, Christian


    Fully-homomorphic encryption (FHE) enables computation on encrypted data while maintaining secrecy. Recent research has shown that such schemes exist even for quantum computation. Given the numerous applications of classical FHE (zero-knowledge proofs, secure two-party computation, obfuscation, etc.......) it is reasonable to hope that quantum FHE (or QFHE) will lead to many new results in the quantum setting. However, a crucial ingredient in almost all applications of FHE is circuit verification. Classically, verification is performed by checking a transcript of the homomorphic computation. Quantumly, this strategy...... is impossible due to no-cloning. This leads to an important open question: can quantum computations be delegated and verified in a non-interactive manner? In this work, we answer this question in the affirmative, by constructing a scheme for QFHE with verification (vQFHE). Our scheme provides authenticated...

  4. Water Intake and Hydration Indices in Healthy European Adults: The European Hydration Research Study (EHRS

    Directory of Open Access Journals (Sweden)

    Olga Malisova


    Full Text Available Hydration status is linked with health, wellness, and performance. We evaluated hydration status, water intake, and urine output for seven consecutive days in healthy adults. Volunteers living in Spain, Germany, or Greece (n = 573, 39 ± 12 years (51.1% males, 25.0 ± 4.6 kg/m2 BMI participated in an eight-day study protocol. Total water intake was estimated from seven-day food and drink diaries. Hydration status was measured in urine samples collected over 24 h for seven days and in blood samples collected in fasting state on the mornings of days 1 and 8. Total daily water intake was 2.75 ± 1.01 L, water from beverages 2.10 ± 0.91 L, water from foods 0.66 ± 0.29 L. Urine parameters were: 24 h volume 1.65 ± 0.70 L, 24 h osmolality 631 ± 221 mOsmol/kg Η2Ο, 24 h specific gravity 1.017 ± 0.005, 24 h excretion of sodium 166.9 ± 54.7 mEq, 24 h excretion of potassium 72.4 ± 24.6 mEq, color chart 4.2 ± 1.4. Predictors for urine osmolality were age, country, gender, and BMI. Blood indices were: haemoglobin concentration 14.7 ± 1.7 g/dL, hematocrit 43% ± 4% and serum osmolality 294 ± 9 mOsmol/kg Η2Ο. Daily water intake was higher in summer (2.8 ± 1.02 L than in winter (2.6 ± 0.98 L (p = 0.019. Water intake was associated negatively with urine specific gravity, urine color, and urine sodium and potassium concentrations (p < 0.01. Applying urine osmolality cut-offs, approximately 60% of participants were euhydrated and 20% hyperhydrated or dehydrated. Most participants were euhydrated, but a substantial number of people (40% deviated from a normal hydration level.

  5. Structure-driven CO2 selectivity and gas capacity of ionic clathrate hydrates. (United States)

    Hashimoto, Hidenori; Yamaguchi, Tsutomu; Ozeki, Hiroyuki; Muromachi, Sanehiro


    Ionic clathrate hydrates can selectively capture small gas molecules such as CO 2 , N 2 , CH 4 and H 2 . We investigated CO 2  + N 2 mixed gas separation properties of ionic clathrate hydrates formed with tetra-n-butylammonium bromide (TBAB), tetra-n-butylammonium chloride (TBAC), tetra-n-butylphosphonium bromide (TBPB) and tetra-n-butylphosphonium chloride (TBPC). The results showed that CO 2 selectivity of TBAC hydrates was remarkably higher than those of the other hydrates despite less gas capacity of TBAC hydrates. The TBAB hydrates also showed irregularly high CO 2 selectivity at a low pressure. X-ray diffraction and Raman spectroscopic analyses clarified that TBAC stably formed the tetragonal hydrate structure, and TBPB and TBPC formed the orthorhombic hydrate structure. The TBAB hydrates showed polymorphic phases which may consist of the both orthorhombic and tetragonal hydrate structures. These results showed that the tetragonal hydrate captured CO 2 more efficiently than the orthorhombic hydrate, while the orthorhombic hydrate has the largest gas capacity among the basic four structures of ionic clathrate hydrates. The present study suggests new potential for improving gas capacity and selectivity of ionic clathrate hydrates by choosing suitable ionic guest substances for guest gas components.

  6. Simulations of fully deformed oscillating flux tubes (United States)

    Karampelas, K.; Van Doorsselaere, T.


    Context. In recent years, a number of numerical studies have been focusing on the significance of the Kelvin-Helmholtz instability in the dynamics of oscillating coronal loops. This process enhances the transfer of energy into smaller scales, and has been connected with heating of coronal loops, when dissipation mechanisms, such as resistivity, are considered. However, the turbulent layer is expected near the outer regions of the loops. Therefore, the effects of wave heating are expected to be confined to the loop's external layers, leaving their denser inner parts without a heating mechanism. Aim. In the current work we aim to study the spatial evolution of wave heating effects from a footpoint driven standing kink wave in a coronal loop. Methods: Using the MPI-AMRVAC code, we performed ideal, three dimensional magnetohydrodynamic simulations of footpoint driven transverse oscillations of a cold, straight coronal flux tube, embedded in a hotter environment. We have also constructed forward models for our simulation using the FoMo code. Results: The developed transverse wave induced Kelvin-Helmholtz (TWIKH) rolls expand throughout the tube cross-section, and cover it entirely. This turbulence significantly alters the initial density profile, leading to a fully deformed cross section. As a consequence, the resistive and viscous heating rate both increase over the entire loop cross section. The resistive heating rate takes its maximum values near the footpoints, while the viscous heating rate at the apex. Conclusions: We conclude that even a monoperiodic driver can spread wave heating over the whole loop cross section, potentially providing a heating source in the inner loop region. Despite the loop's fully deformed structure, forward modelling still shows the structure appearing as a loop. A movie attached to Fig. 1 is available at http://

  7. Lidar Cloud Detection with Fully Convolutional Networks (United States)

    Cromwell, E.; Flynn, D.


    The vertical distribution of clouds from active remote sensing instrumentation is a widely used data product from global atmospheric measuring sites. The presence of clouds can be expressed as a binary cloud mask and is a primary input for climate modeling efforts and cloud formation studies. Current cloud detection algorithms producing these masks do not accurately identify the cloud boundaries and tend to oversample or over-represent the cloud. This translates as uncertainty for assessing the radiative impact of clouds and tracking changes in cloud climatologies. The Atmospheric Radiation Measurement (ARM) program has over 20 years of micro-pulse lidar (MPL) and High Spectral Resolution Lidar (HSRL) instrument data and companion automated cloud mask product at the mid-latitude Southern Great Plains (SGP) and the polar North Slope of Alaska (NSA) atmospheric observatory. Using this data, we train a fully convolutional network (FCN) with semi-supervised learning to segment lidar imagery into geometric time-height cloud locations for the SGP site and MPL instrument. We then use transfer learning to train a FCN for (1) the MPL instrument at the NSA site and (2) for the HSRL. In our semi-supervised approach, we pre-train the classification layers of the FCN with weakly labeled lidar data. Then, we facilitate end-to-end unsupervised pre-training and transition to fully supervised learning with ground truth labeled data. Our goal is to improve the cloud mask accuracy and precision for the MPL instrument to 95% and 80%, respectively, compared to the current cloud mask algorithms of 89% and 50%. For the transfer learning based FCN for the HSRL instrument, our goal is to achieve a cloud mask accuracy of 90% and a precision of 80%.

  8. Quinolinium 8-hy-droxy-7-iodo-quinoline-5-sulfonate 0.8-hydrate. (United States)

    Smith, Graham


    In the crystal structure of the title hydrated quinolinium salt of ferron (8-hy-droxy-7-iodo-quinoline-5-sulfonic acid), C9H7N(+)·C9H5INO4S(-)·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37) lying essentially within a common plane and with the ferron anions forming π-π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6) Å]. The cations and anions are linked into chains extending along c through hy-droxy O-H⋯O and quinolinium N-H⋯O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O-H⋯O hydrogen-bonding inter-actions along b, giving a two-dimensional network.

  9. Quinolinium 8-hydroxy-7-iodoquinoline-5-sulfonate 0.8-hydrate

    Directory of Open Access Journals (Sweden)

    Graham Smith


    Full Text Available In the crystal structure of the title hydrated quinolinium salt of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid, C9H7N+·C9H5INO4S−·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37 lying essentially within a common plane and with the ferron anions forming π–π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6 Å]. The cations and anions are linked into chains extending along c through hydroxy O—H...O and quinolinium N—H...O hydrogen bonds to sulfonate O-atom acceptors which are also involved in water O—H...O hydrogen-bonding interactions along b, giving a two-dimensional network.

  10. Seismic model of Mars: Effects of hydration (United States)

    Zharkov, V. N.; Gudkova, T. V.


    The arguments according to which the Martian minerals are assumed to contain large amount of water in the mantle minerals are given. As for the Earth, these minerals may constitute about 60 wt% of the Martian mantle, and can be considered as main components in their zones. In the mantle of the Earth the molecular concentration of Fe is about 10%, and for the mantle of Mars - about 20%. Taking into account twofold increase of Fe in Martian silicates in comparison with the terrestrial minerals, we have extrapolated the available partial experimental data of the hydration effect on the compressional and shear velocities of seismic waves in forsterite (olivine) and its high pressure phases - wadsleyite and ringwoodite for Martian conditions. The presence of water in the mantle of Mars may lead to the noticeable widening of the olivine-wadsleite phase transition zone, thus the determination of the olivine-wadsleite phase transition width by seismological methods could get a direct indication on the presence of water in the mantle of Mars. To find out real estimates of water content in the mantle of Mars is a task for the future seismic missions. The results of this article are important for InSight mission that will land a geophysical station on Mars in 2016.

  11. Effect of cations on the hydrated proton. (United States)

    Ottosson, Niklas; Hunger, Johannes; Bakker, Huib J


    We report on a strong nonadditive effect of protons and other cations on the structural dynamics of liquid water, which is revealed using dielectric relaxation spectroscopy in the frequency range of 1-50 GHz. For pure acid solutions, protons are known to have a strong structuring effect on water, leading to a pronounced decrease of the dielectric response. We observe that this structuring is reduced when protons are cosolvated with salts. This reduction is exclusively observed for combinations of protons with other ions; for all studied solutions of cosolvated salts, the effect on the structural dynamics of water is observed to be purely additive, even up to high concentrations. We derive an empirical model that quantitatively describes the nonadditive effect of cosolvated protons and cations. We argue that the effect can be explained from the special character of the proton in water and that Coulomb fields exerted by other cations, in particular doubly charged cations like Mg(2+)aq and Ca(2+)aq, induce a localization of the H(+)aq hydration structures.

  12. Environmental Impact of Natural Gas Hydrate Production (United States)

    Max, M. D.; Johnson, A. H.


    Unmet conventional energy demand is encouraging a number of deep energy importing nations closer to production of their potentially very large Natural Gas Hydrate (NGH) resources. As methane and other natural gases are potent greenhouse gases, concerns exist about the possible environmental risks associated NGH development. Accidental of natural gas would have environmental consequences. However, the special characteristics of NGH and production models indicate a very low environmental risk from the reservoir to the deepwater wellhead that is much lower than for conventional deepwater gas. NGH is naturally stable in its solid form in the reservoir and shutting in the gas can be achieved by stopping NGH conversion and gas production in the reservoir. Rapid shut down results in re-crystallization of gas and stabilization of the reservoir through NGH reformation. In addition, new options for innovative technologies have the potential to allow safe development of NGH at a fraction of the current estimated cost. Gas produced from NGH is about the same as processed conventional gas, although almost certainly more pure. Leakage of gas during transport is not a production issue. Gas transport leakage is a matter for best practices regulation that is rigorously enforced.

  13. DNA hydration studied by neutron fiber diffraction

    International Nuclear Information System (INIS)

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J.


    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix

  14. Hypersonic flow past slender bodies in dispersive hydrodynamics

    International Nuclear Information System (INIS)

    El, G.A.; Khodorovskii, V.V.; Tyurina, A.V.


    The problem of two-dimensional steady hypersonic flow past a slender body is formulated for dispersive media. It is shown that for the hypersonic flow, the original 2+0 boundary-value problem is asymptotically equivalent to the 1+1 piston problem for the fully nonlinear flow in the same physical system, which allows one to take advantage of the analytic methods developed for one-dimensional systems. This type of equivalence, well known in ideal Euler gas dynamics, has not been established for dispersive hydrodynamics so far. Two examples pertaining to collisionless plasma dynamics are considered

  15. Tracer dispersion - experiment and CFD

    International Nuclear Information System (INIS)

    Zitny, R.


    Description of tracer distribution by means of dispersion models is a method successfully used in process engineering for fifty years. Application of dispersion models in reactor engineering for characterization of flows in column apparatus, heat exchangers, etc. is summarized and experimental tracer techniques as well as CFD methods for dispersion coefficients evaluation are discussed. Possible extensions of thermal axial dispersion model (ADM) and a core-wall ADM model suitable for description of tracer dispersion in laminar flows are suggested as well as CFD implementation as 1D finite elements. (author)

  16. Developing a dispersant spraying capability

    Energy Technology Data Exchange (ETDEWEB)

    Gill, S.D.


    In developing a national dispersant spraying capability, the Canadian Coast Guard (CCG) has undertaken a modification program to enable the conventional offshore spraying gear to be mounted on almost any vessel of convenience. Smaller, more versatile inshore spraying vessels and pumps have been designed and built. With the popularization of concentrated dispersants, the inshore pumping equipment can be used aboard hovercraft for special application situations. A program of acquiring mobile dispersant storage tanks has been undertaken with auxiliary equipment that will facilitate the shipment of dispersants in bulk by air freight. Work also has commenced on extending the dispersant application program to include the CCG fleet of helicopters.

  17. Phonon density of states in different clathrate hydrates measured by inelastic neutron scattering (United States)

    Celli, M.; Colognesi, D.; Ulivi, L.; Zoppi, M.; Ramirez-Cuesta, A. J.


    Clathrate hydrates, depending on the guest molecule type, generally exhibit one out of three different crystal structures: two cubic structures, sI and sII and one hexagonal structure, sH. In the past, our inelastic neutron scattering measurements on hydrogen clathrates have provided information on the quantum dynamics of the guest molecules in the water cages. Besides the guest dynamics, the dynamics of the water lattice itself has a large interest, due to the analogy with ice (e.g. proton disorder), and to the existence of various possible structures. Additionally, in these inclusion compounds, a coupling between the host and the guest motions is generally observed, and is considered to be relevant to explain the anomalous features of some macroscopic properties, such as thermal conductivity. Here, we present a systematic study of the H-projected phonon density of states (H-PDoS) of the lattice modes in clathrate hydrates. We have experimentally investigated the three existing structures (i.e. sI, sII, and sH) through inelastic neutron scattering measurements, and we have extracted the acoustic-optic and the librational H-PDoS's. By using proper isotopic substitutions, we have been able to tune the host scattering intensity with respect to the guest one. The studied samples consisted in three clathrates made of light water (namely, simple sI structure with Xe, simple sII structure with fully deuterated THF, and binary sH structure with MTBE and D2), and two made of heavy water (namely, simple sII structure with Ne, and simple sII structure with fully deuterated THF). The experimental results have been compared with lattice dynamics simulations performed by us.

  18. Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni


    Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

  19. Spurious dispersion effects at FLASH

    International Nuclear Information System (INIS)

    Prat, Eduard


    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  20. Spurious dispersion effects at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Eduard


    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)