WorldWideScience

Sample records for fully electromagnetic nonlinear

  1. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence

    International Nuclear Information System (INIS)

    Hahm, T.S.; Wang, Lu; Madsen, J.

    2008-01-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E x B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρ i θi ∼ L E ∼ L p i is the thermal ion Larmor radius and ρ θi = B/B θ ρ i ), as typically observed in the tokamak H-mode edge, with L E and L p being the radial electric field and pressure gradient lengths. We take k # perpendicular# ρ i ∼ 1 for generality, and keep the relative fluctuation amplitudes e(delta)φ/T i ∼ (delta)B/B up to the second order. Extending the electrostatic theory in the presence of high E x B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation

  2. Nonlinear electromagnetic susceptibilities of unmagnetized plasmas

    International Nuclear Information System (INIS)

    Yoon, Peter H.

    2005-01-01

    Fully electromagnetic nonlinear susceptibilities of unmagnetized plasmas are analyzed in detail. Concrete expressions of the second-order nonlinear susceptibility are found in various forms in the literature, usually in connection with the discussions of various three-wave decay processes, but the third-order susceptibilities are rarely discussed. The second-order susceptibility is pertinent to nonlinear wave-wave interactions (i.e., the decay/coalescence), whereas the third-order susceptibilities affect nonlinear wave-particle interactions (i.e., the induced scattering). In the present article useful approximate analytical expressions of these nonlinear susceptibilities that can be readily utilized in various situations are derived

  3. Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Zhang Jinggui; Wen Shuangchun; Xiang Yuanjiang; Wang Youwen; Luo Hailu

    2010-01-01

    We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs) with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM, a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity, exerting a significant influence on the propagation of electromagnetic pulses.

  4. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  5. Electromagnetic pulses at the boundary of a nonlinear plasma

    International Nuclear Information System (INIS)

    Satorius, E.H.

    1975-01-01

    An investigation was made of the behavior of strong electromagnetic pulses at the boundary of a nonlinear, cold, collisionless, and uniform plasma. The nonlinearity considered here is due to the nonlinear terms in the fluid equation which is used to describe the plasma. Two cases are studied. First, the case where there is a voltage pulse applied across the plane boundary of a semi-infinite, nonlinear plasma. Two different voltage pulses are considered, i.e., a delta function pulse and a suddenly turned-on sinusoidal pulse. The resulting electromagnetic fields propagating in the nonlinear plasma are found in this case. In the second case, the reflection of incident E-polarized and H-polarized, electromagnetic pulses at various angles of incidence from a nonlinear, semi-infinite plasma are considered. Again, two forms of incident pulses are considered: a delta function pulse and a suddenly turned-on sinusoidal pulse. In case two, the reflected electromagnetic fields are found. In both cases, the method used for finding the fields is to first solve the fluid equation (which describes the plasma) for the nonlinear conduction current in terms of the electric field using a perturbation method (since the nonlinear effects are assumed to be small). Next, this current is substituted into Maxwell's equations, and finally the electromagnetic fields which satisfy the boundary conditions are found. (U.S.)

  6. Non-linear electromagnetic interactions in thermal QED

    International Nuclear Information System (INIS)

    Brandt, F.T.; Frenkel, J.

    1994-08-01

    The behavior of the non-linear interactions between electromagnetic fields at high temperature is examined. It is shown that, in general, the log(T) dependence on the temperature of the Green functions is simply related to their UV behavior at zero-temperature. It is argued that the effective action describing the nonlinear thermal electromagnetic interactions has a finite limit as T -> ∞. This thermal action approaches, in the long wavelength limit, the negative of the corresponding zero-temperature action. (author). 12 refs, 1 fig

  7. Nonlinear simulation of electromagnetic current diffusive interchange mode turbulence

    International Nuclear Information System (INIS)

    Yagi, M.; Itoh, S.I.; Fukuyama, A.

    1998-01-01

    The anomalous transport in toroidal plasmas has been investigated extensively. It is pointed out that the nonlinear instability is important in driving the microturbulence[1], i.e., the self-sustained plasma turbulence. This concept is explained as follows; when the electron motion along the magnetic field line is resisted by the background turbulence, it gives rise to the effective resistivity and enhances the level of the turbulence. The nonlinear simulation of the electrostatic current diffusive interchange mode (CDIM) in the two dimensional sheared slab geometry has been performed as an example. The occurrence of the nonlinear instability and the self-sustainment of the plasma turbulence were confirmed by this simulation[2]. On the other hand, the electromagnetic turbulence is sustained in the high pressure limit. The possibility of the self-organization with more variety has been pointed out[3]. It is important to study the electromagnetic turbulence based on the nonlinear simulation. In this paper, the model equation for the electrostatic CDIM turbulence[2] is extended for both electrostatic and electromagnetic turbulence. (1) Not only E x B convective nonlinearity but also the electromagnetic nonlinearity which is related to the parallel flow are incorporated into the model equation. (2) The electron and ion pressure evolution equations are solved separately, making it possible to distinguish the electron and ion thermal diffusivities. The two dimensional nonlinear simulation of the electromagnetic CDIM is performed based on the extended fluid model. This paper is organized as follows. The model equation is explained in section II. The result of simulation is shown in section III. The conclusion and discussion are given in section IV. (author)

  8. Nonlinear propagation of intense electromagnetic waves in weakly-ionized plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.

    1993-01-01

    The nonlinear propagation of intense electromagnetic waves in weakly-ionized plasmas is considered. Stimulated scattering mechanisms involving electromagnetic and acoustic waves in an unmagnetized plasma are investigated. The growth rate and threshold for three-wave decay interactions as well as modulational and filamentation instabilities are presented. Furthermore, the electromagnetic wave modulation theory is generalized for weakly ionized collisional magnetoplasmas. Here, the radiation envelope is generally governed by a nonlinear Schroedinger equation. Accounting for the dependence of the attachment frequency on the radiation intensity, ponderomotive force, as well as the differential Joule heating nonlinearity, the authors derive the equations for the nonthermal electron density and temperature perturbations. The various nonlinear terms in the electron motion are compared. The problems of self-focusing and wave localization are discussed. The relevance of the investigation to ionospheric modification by powerful electromagnetic waves is pointed out

  9. Nonlinear classical theory of electromagnetism

    International Nuclear Information System (INIS)

    Pisello, D.

    1977-01-01

    A topological theory of electric charge is given. Einstein's criteria for the completion of classical electromagnetic theory are summarized and their relation to quantum theory and the principle of complementarity is indicated. The inhibiting effect that this principle has had on the development of physical thought is discussed. Developments in the theory of functions on nonlinear spaces provide the conceptual framework required for the completion of electromagnetism. The theory is based on an underlying field which is a continuous mapping of space-time into points on the two-sphere. (author)

  10. Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium

    Science.gov (United States)

    Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying

    2015-01-01

    A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066

  11. Electromagnetic nonlinear gyrokinetics with polarization drift

    International Nuclear Information System (INIS)

    Duthoit, F.-X.; Hahm, T. S.; Wang, Lu

    2014-01-01

    A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete

  12. Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Pakter, R.; Rizzato, F.B. [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Rio Grande do Sul (Brazil)

    2004-07-01

    The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)

  13. Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

    International Nuclear Information System (INIS)

    Bonatto, A.; Pakter, R.; Rizzato, F.B.

    2004-01-01

    The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)

  14. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  15. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla

    2015-04-13

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  16. Nonlinear interaction of powerful short electromagnetic pulses with an electron plasma

    International Nuclear Information System (INIS)

    Rao, N.N.; Yu, M.Y.; Shukla, P.K.

    1990-01-01

    The nonlinear interaction of powerful short electromagnetic pulses with a plasma consisting of two groups of electrons and immobile ions has been studied. It is shown that the interaction is governed by a nonlinear equation for the electromagnetic wave envelope and a driven nonlinear equation for the low-frequency electron fluctuations. The driver for the latter depends explicitly on the spatio-temporal evolution of the electromagnetic wave flux. It is found that, depending on the cold-to-hot electron density ratio, the localized pulse can propagate with sub- as well as supersonic velocities accompanied by compressional or rarefactional density perturbations. The conditions of existence for the different types of solitary pulses are obtained. The present investigation may be relevant to the study of wave-plasma interaction devices such as inertial fusion confinement as well as to ionospheric modification experiments. (author)

  17. Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Wen, Shuangchun; Xiang, Yuanjiang; Dai, Xiaoyu; Tang, Zhixiang; Su, Wenhua; Fan, Dianyuan

    2007-01-01

    A metamaterial (MM) differs from an ordinary optical material mainly in that it has a dispersive magnetic permeability and offers greatly enhanced design freedom to alter the linear and nonlinear properties. This makes it possible for us to control the propagation of ultrashort electromagnetic pulses at will. Here we report on generic features of ultrashort electromagnetic pulse propagation and demonstrate the controllability of both the linear and nonlinear parameters of models for pulse propagation in MMs. First, we derive a generalized system of coupled three-dimensional nonlinear Schroedinger equations (NLSEs) suitable for few-cycle pulse propagation in a MM with both nonlinear electric polarization and nonlinear magnetization. The coupled equations recover previous models for pulse propagation in both ordinary material and a MM under the same conditions. Second, by using the coupled NLSEs in the Drude dispersive model as an example, we identify the respective roles of the dispersive electric permittivity and magnetic permeability in ultrashort pulse propagation and disclose some additional features of pulse propagation in MMs. It is shown that, for linear propagation, the sign and magnitude of space-time focusing can be controlled through adjusting the linear dispersive permittivity and permeability. For nonlinear propagation, the linear dispersive permittivity and permeability are incorporated into the nonlinear magnetization and nonlinear polarization, respectively, resulting in controllable magnetic and electric self-steepening effects and higher-order dispersively nonlinear terms in the propagation models

  18. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla

    2015-07-29

    A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

  19. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  20. Sparse Reconstruction Schemes for Nonlinear Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2016-03-01

    Electromagnetic imaging is the problem of determining material properties from scattered fields measured away from the domain under investigation. Solving this inverse problem is a challenging task because (i) it is ill-posed due to the presence of (smoothing) integral operators used in the representation of scattered fields in terms of material properties, and scattered fields are obtained at a finite set of points through noisy measurements; and (ii) it is nonlinear simply due the fact that scattered fields are nonlinear functions of the material properties. The work described in this thesis tackles the ill-posedness of the electromagnetic imaging problem using sparsity-based regularization techniques, which assume that the scatterer(s) occupy only a small fraction of the investigation domain. More specifically, four novel imaging methods are formulated and implemented. (i) Sparsity-regularized Born iterative method iteratively linearizes the nonlinear inverse scattering problem and each linear problem is regularized using an improved iterative shrinkage algorithm enforcing the sparsity constraint. (ii) Sparsity-regularized nonlinear inexact Newton method calls for the solution of a linear system involving the Frechet derivative matrix of the forward scattering operator at every iteration step. For faster convergence, the solution of this matrix system is regularized under the sparsity constraint and preconditioned by leveling the matrix singular values. (iii) Sparsity-regularized nonlinear Tikhonov method directly solves the nonlinear minimization problem using Landweber iterations, where a thresholding function is applied at every iteration step to enforce the sparsity constraint. (iv) This last scheme is accelerated using a projected steepest descent method when it is applied to three-dimensional investigation domains. Projection replaces the thresholding operation and enforces the sparsity constraint. Numerical experiments, which are carried out using

  1. Nonlinear Coupling Characteristics Analysis of Integrated System of Electromagnetic Brake and Frictional Brake of Car

    Directory of Open Access Journals (Sweden)

    Ren He

    2015-01-01

    Full Text Available Since theoretical guidance is lacking in the design and control of the integrated system of electromagnetic brake and frictional brake, this paper aims to solve this problem and explores the nonlinear coupling characteristics and dynamic characteristics of the integrated system of electromagnetic brake and frictional brake. This paper uses the power bond graph method to establish nonlinear coupling mathematical model of the integrated system of electromagnetic brake and frictional brake and conducts the contrastive analysis on the dynamic characteristics based on this mathematical model. Meanwhile, the accuracy of the nonlinear coupling mathematical model proposed above is verified on the hardware in the loop simulation platform, and nonlinear coupling characteristics of the integrated system are also analyzed through experiments.

  2. Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations

    Directory of Open Access Journals (Sweden)

    Espen R. Jakobsen

    2002-05-01

    Full Text Available Using the maximum principle for semicontinuous functions [3,4], we prove a general ``continuous dependence on the nonlinearities'' estimate for bounded Holder continuous viscosity solutions of fully nonlinear degenerate elliptic equations. Furthermore, we provide existence, uniqueness, and Holder continuity results for bounded viscosity solutions of such equations. Our results are general enough to encompass Hamilton-Jacobi-Bellman-Isaacs's equations of zero-sum, two-player stochastic differential games. An immediate consequence of the results obtained herein is a rate of convergence for the vanishing viscosity method for fully nonlinear degenerate elliptic equations.

  3. Transients of the electromagnetically-induced-transparency-enhanced refractive Kerr nonlinearity

    International Nuclear Information System (INIS)

    Pack, M. V.; Camacho, R. M.; Howell, J. C.

    2007-01-01

    We report observations of the dynamics of electromagnetically induced transparency (EIT) in a Λ system when the ground states are Stark shifted. Interactions of this type exhibit large optical nonlinearities called Kerr nonlinearities, and have numerous applications. The EIT Kerr nonlinearity is relatively slow, which is a limiting factor that may make many potential applications impossible. Using rubidium atoms, we observe the dynamics of the EIT Kerr nonlinearity using a Mach-Zehnder interferometer to measure phase modulation of the EIT fields resulting from a pulsed signal beam Stark shifting the ground state energy levels. The rise times and transients agree well with theory

  4. Knotted solutions for linear and nonlinear theories: Electromagnetism and fluid dynamics

    Directory of Open Access Journals (Sweden)

    Daniel W.F. Alves

    2017-10-01

    Full Text Available We examine knotted solutions, the most simple of which is the “Hopfion”, from the point of view of relations between electromagnetism and ideal fluid dynamics. A map between fluid dynamics and electromagnetism works for initial conditions or for linear perturbations, allowing us to find new knotted fluid solutions. Knotted solutions are also found to be solutions of nonlinear generalizations of electromagnetism, and of quantum-corrected actions for electromagnetism coupled to other modes. For null configurations, electromagnetism can be described as a null pressureless fluid, for which we can find solutions from the knotted solutions of electromagnetism. We also map them to solutions of Euler's equations, obtained from a type of nonrelativistic reduction of the relativistic fluid equations.

  5. Application of the descriptive function on non-linear electromagnetic phenomena

    International Nuclear Information System (INIS)

    Silva, H.T.

    1982-01-01

    This paper presents the solution of the nonlinear plan wave equation in non-equilibrium dielectric medium. The descriptive function appears as a useful tool to describe the medium response when it is possible to consider intensive electromagnetic response. Despite it has been considered an ideal situation of a limitless nonlinear medium, the results constitute a solid basis to mold more complex processes, such as those which take place in the plasma physics

  6. Nonlinear saturation of the slab ITG instability and zonal flow generation with fully kinetic ions

    Science.gov (United States)

    Miecnikowski, Matthew T.; Sturdevant, Benjamin J.; Chen, Yang; Parker, Scott E.

    2018-05-01

    Fully kinetic turbulence models are of interest for their potential to validate or replace gyrokinetic models in plasma regimes where the gyrokinetic expansion parameters are marginal. Here, we demonstrate fully kinetic ion capability by simulating the growth and nonlinear saturation of the ion-temperature-gradient instability in shearless slab geometry assuming adiabatic electrons and including zonal flow dynamics. The ion trajectories are integrated using the Lorentz force, and the cyclotron motion is fully resolved. Linear growth and nonlinear saturation characteristics show excellent agreement with analogous gyrokinetic simulations across a wide range of parameters. The fully kinetic simulation accurately reproduces the nonlinearly generated zonal flow. This work demonstrates nonlinear capability, resolution of weak gradient drive, and zonal flow physics, which are critical aspects of modeling plasma turbulence with full ion dynamics.

  7. Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography

    Science.gov (United States)

    Xu, Feng; Deshpande, Manohar

    2012-01-01

    Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.

  8. An introduction to geometric theory of fully nonlinear parabolic equations

    International Nuclear Information System (INIS)

    Lunardi, A.

    1991-01-01

    We study a class of nonlinear evolution equations in general Banach space being an abstract version of fully nonlinear parabolic equations. In addition to results of existence, uniqueness and continuous dependence on the data, we give some qualitative results about stability of the stationary solutions, existence and stability of the periodic orbits. We apply such results to some parabolic problems arising from combustion theory. (author). 24 refs

  9. An explicit MOT-TDVIE scheme for analyzing electromagnetic field interactions on nonlinear scatterers

    KAUST Repository

    Ulku, Huseyin Arda

    2015-02-01

    An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.

  10. Nonlinear propagation of electromagnetic waves in negative-refraction-index composite materials.

    Science.gov (United States)

    Kourakis, I; Shukla, P K

    2005-07-01

    We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrödinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.

  11. Viscosity solutions of fully nonlinear functional parabolic PDE

    Directory of Open Access Journals (Sweden)

    Liu Wei-an

    2005-01-01

    Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.

  12. Electromagnetic effects on the self-modulation of nonlinear lower hybrid waves

    International Nuclear Information System (INIS)

    Hsu, P.; Kuehl, H.H.

    1983-01-01

    Electromagnetic effects on the self-modulation of nonlinear lower hybrid waves in an inhomogeneous plasma are studied for both broad and narrow spectrum excitations. For broad spectrum excitation, the complex modified Korteweg--de Vries equation is modified by two additional terms due to the electromagnetic correction and inhomogeneity. Numerical solutions of this equation for typical tokamak parameters show that these terms suppress soliton formation. For narrow spectrum excitation, the electromagnetic correction produces an additional dispersive term in the differential equation governing the wave envelope. This term opposes thermal dispersion, resulting in significant self-modulation. Numerical solutions show constriction and splitting of the envelope as well as spreading of the Fourier spectrum

  13. Integrable parameter regimes and stationary states of nonlinearly coupled electromagnetic and ion-acoustic waves

    International Nuclear Information System (INIS)

    Rao, N.N.

    1998-01-01

    A systematic analysis of the stationary propagation of nonlinearly coupled electromagnetic and ion-acoustic waves in an unmagnetized plasma via the ponderomotive force is carried out. For small but finite amplitudes, the governing equations have a Hamiltonian structure, but with a kinetic energy term that is not positive definite. The Hamiltonian is similar to the well-known Hacute enon endash Heiles Hamiltonian of nonlinear dynamics, and is completely integrable in three regimes of the allowed parameter space. The corresponding second invariants of motion are also explicitly obtained. The integrable parameter regimes correspond to supersonic values of the Mach number, which characterizes the propagation speed of the coupled waves. On the other hand, in the sub- as well as near-sonic regimes, the coupled mode equations admit different types of exact analytical solutions, which represent nonlinear localized eigenstates of the electromagnetic field trapped in the density cavity due to the ponderomotive potential. While the density cavity has always a single-dip structure, for larger amplitudes it can support higher-order modes having a larger number of nodes in the electromagnetic field. In particular, we show the existence of a new type of localized electromagnetic wave whose field intensity has a triple-hump structure. For typical parameter values, the triple-hump solitons propagate with larger Mach numbers that are closer to the sonic limit than the single- as well as the double-hump solitons, but carry a lesser amount of the electromagnetic field energy. A comparison between the different types of solutions is carried out. The possibility of the existence of trapped electromagnetic modes having a larger number of humps is also discussed. copyright 1998 American Institute of Physics

  14. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  15. Axion as a Cold Dark Matter Candidate: Proof to Fully Nonlinear Order

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyerim [Center for Large Telescope, Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Park, Chan-Gyung [Division of Science Education and Institute of Fusion Science, Chonbuk National University, Jeonju (Korea, Republic of)

    2017-09-01

    We present proof of the axion as a cold dark matter (CDM) candidate to the fully nonlinear order perturbations based on Einstein’s gravity. We consider the axion as a coherently oscillating massive classical scalar field without interaction. We present the fully nonlinear and exact, except for ignoring the transverse-tracefree tensor-type perturbation, hydrodynamic equations for an axion fluid in Einstein’s gravity. We show that the axion has the characteristic pressure and anisotropic stress; the latter starts to appear from the second-order perturbation. But these terms do not directly affect the hydrodynamic equations in our axion treatment. Instead, what behaves as the effective pressure term in relativistic hydrodynamic equations is the perturbed lapse function and the relativistic result coincides exactly with the one known in the previous non-relativistic studies. The effective pressure term leads to a Jeans scale that is of the solar-system scale for conventional axion mass. As the fully nonlinear and relativistic hydrodynamic equations for an axion fluid coincide exactly with the ones of a zero-pressure fluid in the super-Jeans scale, we have proved the CDM nature of such an axion in that scale.

  16. Nonlinear oscillation regime of electromagnetic disturbances in the equatorial F region

    International Nuclear Information System (INIS)

    Sazonov, S.V.

    1990-01-01

    Nonlinear oscillation regime of electromagnetic dicturbances within equatorial ionosphere F-region resulted from Rayleigh-Taylor instability, gradient-drift instability and recombination processes is investigated on the basis of two-liquid quasihydrodynamics equations. It is shown, that at positive linear increment the oscillations are developing in regime with aggregation and are terminated by increment the effect of threshold destabilization, when under certain initial conditions underlgoes oscillation nonlinear swinging, resulting, as well, in bubble formation in contrast to small damping oscillations, is detected

  17. Fully nonlinear and exact perturbations of the Friedmann world model: non-flat background

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyerim, E-mail: hr@kasi.ac.kr [Korea Astronomy and Space Science Institute, Daejeon, 305-348 (Korea, Republic of)

    2014-07-01

    We extend the fully non-linear and exact cosmological perturbation equations in a Friedmann background universe to include the background curvature. The perturbation equations are presented in a gauge ready form, so any temporal gauge condition can be adopted freely depending on the problem to be solved. We consider the scalar, and vector perturbations without anisotropic stress. As an application, we analyze the equations in the special case of irrotational zero-pressure fluid in the comoving gauge condition. We also present the fully nonlinear formulation for a minimally coupled scalar field.

  18. New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations

    International Nuclear Information System (INIS)

    Tian Lixin; Yin Jiuli

    2004-01-01

    In this paper, we introduce the fully nonlinear generalized Camassa-Holm equation C(m,n,p) and by using four direct ansatzs, we obtain abundant solutions: compactons (solutions with the absence of infinite wings), solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions and obtain kink compacton solutions and nonsymmetry compacton solutions. We also study other forms of fully nonlinear generalized Camassa-Holm equation, and their compacton solutions are governed by linear equations

  19. Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria

    International Nuclear Information System (INIS)

    Frieman, E.A.; Chen, L.

    1981-10-01

    A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong-turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magentic field geometries. The specific case of axisymmetric tokamaks is then considered, and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating sceme, it is found that nonlinear ion Landau damping of kinetic shear-Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency

  20. CIME school “Fully Nonlinear PDEs in Real and Complex Geometry and Optics”

    CERN Document Server

    Capogna, Luca; Gutiérrez, Cristian E; Montanari, Annamaria

    2014-01-01

    The purpose of this CIME summer school was to present current areas of research arising both in the theoretical and applied setting that involve fully nonlinear partial different equations. The equations presented in the school stem from the fields of Conformal Mapping Theory, Differential Geometry, Optics, and Geometric Theory of Several Complex Variables. The school consisted of four courses: Extremal problems for quasiconformal mappings in space by Luca Capogna, Fully nonlinear equations in geometry by Pengfei Guan, Monge-Ampere type equations and geometric optics by Cristian E. Gutiérrez, and On the Levi Monge Ampere equation by Annamaria Montanari.

  1. Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses

    International Nuclear Information System (INIS)

    Han, Jeong Sam

    2010-01-01

    In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator

  2. Ion hole formation and nonlinear generation of electromagnetic ion cyclotron waves: THEMIS observations

    Science.gov (United States)

    Shoji, Masafumi; Miyoshi, Yoshizumi; Katoh, Yuto; Keika, Kunihiro; Angelopoulos, Vassilis; Kasahara, Satoshi; Asamura, Kazushi; Nakamura, Satoko; Omura, Yoshiharu

    2017-09-01

    Electromagnetic plasma waves are thought to be responsible for energy exchange between charged particles in space plasmas. Such an energy exchange process is evidenced by phase space holes identified in the ion distribution function and measurements of the dot product of the plasma wave electric field and the ion velocity. We develop a method to identify ion hole formation, taking into consideration the phase differences between the gyromotion of ions and the electromagnetic ion cyclotron (EMIC) waves. Using this method, we identify ion holes in the distribution function and the resulting nonlinear EMIC wave evolution from Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations. These ion holes are key to wave growth and frequency drift by the ion currents through nonlinear wave-particle interactions, which are identified by a computer simulation in this study.

  3. Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas

    DEFF Research Database (Denmark)

    Ostrikov, K.N.; Tsakadze, E.L.; Xu, S.

    2003-01-01

    Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (similar to500 kHz) inductively coupled plasmas have been measured using miniature magnetic probes. In the low-power (similar to170 W) E-mode, the magnetic field pattern is purely linear......, with the fundamental frequency harmonics only. After transition to higher-power (similar to1130 W) H-mode, the second-harmonic nonlinear azimuthal magnetic field B-phi(2omega) that is in 4-6 times larger than the fundamental frequency component B-phi(omega), has been observed. A simplified plasma fluid model...... explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source is proposed. The nonlinear second harmonic poloidal (r-z) rf current generating the azimuthal magnetic field B-phi(2omega) is attributed to nonlinear interactions between the fundamental frequency radial...

  4. Effect of nonlinear-electrodynamic lagging of electromagnetic signals in the field of magnetic dipole

    International Nuclear Information System (INIS)

    Denisov, V.I.; Krivchenkov, I.V.; Denisov, I.P.

    2002-01-01

    The study on the electromagnetic waves propagation in the neutron star magnetic dipole and gravitation fields, taking place according to the vacuum nonlinear electrodynamics laws, is carried out. It is shown that depending on the polarization the electromagnetic signals in this field propagate by different beams and with various velocities. The law on these signals motion by beams is established. The calculation of differences in the times of the electromagnetic signals propagation, having the same source up to the detector, is presented. It is shown that this difference in some cases may reach enough measurable value of 1 μs [ru

  5. Nonlinear metamaterials for electromagnetic energy harvesting (Conference Presentation)

    Science.gov (United States)

    Oumbe Tekam, Gabin Thibaut; Ginis, Vincent; Seetharamdoo, Divitha; Danckaert, Jan

    2016-09-01

    Surrounded by electromagnetic radiation coming from wireless power transfer to consumer devices such as mobile phones, computers and television, our society is facing the scientific and technological challenge to recover energy that is otherwise lost to the environment. Energy harvesting is an emerging field of research focused on this largely unsolved problem, especially in the microwave regime. Metamaterials provide a very promising platform to meet this purpose. These artificial materials are made from subwavelength building blocks, and can be designed by resonate at particular frequencies, depending on their shape, geometry, size, and orientation. In this work, we show that an efficient electromagnetic energy harvester can be design by inserting a nonlinear element directly within the metamaterial unit cell, leading to the conversion of RF input power to DC charge accumulation. The electromagnetic energy harvester operating at microwave frequencies is built from a cut-wire metasurface, which operates as a quasistatic electric dipole resonator. Using the equivalent electrical circuit, we design the parameters to tune the resonance frequency of the harvester at the desired frequency, and we compare these results with numerical simulations. Finally, we discuss the efficiency of our metamaterial energy harvesters. This work potentially offers a variety of applications, for example in the telecommunications industry to charge phones, in robotics to power microrobots, and also in medicine to advance pacemakers or health monitoring sensors.

  6. Nonlinear optical properties of an electromagnetically induced transparency medium interacting with two quantized fields

    CERN Document Server

    Kuang-Leman; Wu Yong Shi

    2003-01-01

    We study linear and nonlinear optical properties of an electromagnetically induced transparency (EIT) medium interacting with two quantized laser fields in the adiabatic EIT case. We show that the EIT medium exhibits normal dispersion. Kerr and higher-order nonlinear refractive index coefficients are also calculated in a completely analytical form. It is indicated that the EIT medium exhibits giant resonantly enhanced nonlinearities. We discuss the response of the EIT medium to nonclassical light fields and find that the polarization vanishes when the probe laser is initially in a nonclassical state of no single-photon coherence.

  7. Fully discrete Galerkin schemes for the nonlinear and nonlocal Hartree equation

    Directory of Open Access Journals (Sweden)

    Walter H. Aschbacher

    2009-01-01

    Full Text Available We study the time dependent Hartree equation in the continuum, the semidiscrete, and the fully discrete setting. We prove existence-uniqueness, regularity, and approximation properties for the respective schemes, and set the stage for a controlled numerical computation of delicate nonlinear and nonlocal features of the Hartree dynamics in various physical applications.

  8. Backward stochastic differential equations from linear to fully nonlinear theory

    CERN Document Server

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  9. Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank

    DEFF Research Database (Denmark)

    Christiansen, Torben; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2013-01-01

    A new hybrid-spectral solution strategy is proposed for the simulation of the fully nonlinear free surface equations based on potential flow theory. A Fourier collocation method is adopted horisontally for the discretization of the free surface equations. This is combined with a modal Chebyshev Tau...... method in the vertical for the discretization of the Laplace equation in the fluid domain, which yields a sparse and spectrally accurate Dirichletto-Neumann operator. The Laplace problem is solved with an efficient Defect Correction method preconditioned with a spectral discretization of the linearised...... wave problem, ensuring fast convergence and optimal scaling with the problem size. Preliminary results for very nonlinear waves show expected convergence rates and a clear advantage of using spectral schemes....

  10. Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium

    International Nuclear Information System (INIS)

    Maimistov, Andrei I

    2000-01-01

    Some cases of model media considered in this paper allow analytical solutions to nonlinear wave equations to be found and the time dependence of the electric field strength to be determined in the explicit form for arbitrarily short electromagnetic pulses. Our analysis does not employ any assumptions concerning a harmonic carrier wave or the variation rate of the field in such pulses. The class of models considered includes two-level resonance and quasi-resonance systems. Nonresonance media are analysed in terms of models of anharmonic oscillators - the Duffing and Lorentz models. In most cases, only particular solutions describing the stationary propagation of a video pulse (a unipolar transient of the electric field or a pulse including a small number of oscillations of the electric field around zero) can be found. These solutions correspond to sufficiently strong electromagnetic fields when the dispersion inherent in the medium is suppressed by nonlinear processes. (invited paper)

  11. Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm

    KAUST Repository

    Desmal, Abdulla

    2017-04-03

    An efficient electromagnetic inversion scheme for imaging sparse 3-D domains is proposed. The scheme achieves its efficiency and accuracy by integrating two concepts. First, the nonlinear optimization problem is constrained using L₀ or L₁-norm of the solution as the penalty term to alleviate the ill-posedness of the inverse problem. The resulting Tikhonov minimization problem is solved using nonlinear Landweber iterations (NLW). Second, the efficiency of the NLW is significantly increased using a steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without sacrificing the convergence of the algorithm. Numerical results demonstrate the efficiency and accuracy of the proposed imaging scheme in reconstructing sparse 3-D dielectric profiles.

  12. Large amplitude parallel propagating electromagnetic oscillitons

    International Nuclear Information System (INIS)

    Cattaert, Tom; Verheest, Frank

    2005-01-01

    Earlier systematic nonlinear treatments of parallel propagating electromagnetic waves have been given within a fluid dynamic approach, in a frame where the nonlinear structures are stationary and various constraining first integrals can be obtained. This has lead to the concept of oscillitons that has found application in various space plasmas. The present paper differs in three main aspects from the previous studies: first, the invariants are derived in the plasma frame, as customary in the Sagdeev method, thus retaining in Maxwell's equations all possible effects. Second, a single differential equation is obtained for the parallel fluid velocity, in a form reminiscent of the Sagdeev integrals, hence allowing a fully nonlinear discussion of the oscilliton properties, at such amplitudes as the underlying Mach number restrictions allow. Third, the transition to weakly nonlinear whistler oscillitons is done in an analytical rather than a numerical fashion

  13. Investigation of Equivalent Unsprung Mass and Nonlinear Features of Electromagnetic Actuated Active Suspension

    Directory of Open Access Journals (Sweden)

    Jun Yin

    2015-01-01

    Full Text Available Electromagnetic actuated active suspension benefits active control and energy harvesting from vibration at the same time. However, the rotary type electromagnetic actuated active suspension introduces a significant extra mass on the unsprung mass due to the inertia of the rotating components of the actuator. The magnitude of the introduced unsprung mass is studied based on a gearbox type actuator and a ball screw type actuator. The geometry of the suspension and the actuator also influence the equivalent unsprung mass significantly. The suspension performance simulation or control logic derived should take this equivalent unsprung mass into account. Besides, an extra force should be compensated due to the nonlinear features of the suspension structure and it is studied. The active force of the actuator should compensate this extra force. The discovery of this paper provides a fundamental for evaluating the rotary type electromagnetic actuated active suspension performance and control strategy derived as well as controlling the electromagnetic actuated active suspension more precisely.

  14. Numerical studies on the electromagnetic properties of the nonlinear Lorentz Computational model for the dielectric media

    International Nuclear Information System (INIS)

    Abe, H.; Okuda, H.

    1994-06-01

    We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media

  15. Homogeneous and isotropic cosmologies with nonlinear electromagnetic radiation

    International Nuclear Information System (INIS)

    Vollick, Dan N.

    2008-01-01

    In this paper I examine cosmological models that contain a stochastic background of nonlinear electromagnetic radiation. I show that for Born-Infeld electrodynamics the equation of state parameter, w=P/ρ, remains close to 1/3 throughout the evolution of the universe if E 2 =B 2 in the late universe to a high degree of accuracy. Theories with electromagnetic Lagrangians of the form L=-(1/4)F 2 +αF 4 have recently been studied in magnetic universes, where the electric field vanishes. It was shown that the F 4 term can produce a bounce in the early universe, avoiding an initial singularity. Here I show that the inclusion of an electric field, with E 2 ≅B 2 in the late universe, eliminates the bounce and the universe begins with an initial singularity. I also examine theories with Lagrangians of the form L=-(1/4)F 2 -μ 8 /F 2 , which have been shown to produce a period of late time accelerated expansion in magnetic universes. I show that, if an electric field is introduced, the accelerated phase will only occur if E 2 2 .

  16. Electromagnetic weak turbulence theory revisited

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, P. H. [IPST, University of Maryland, College Park, Maryland 20742 (United States); Ziebell, L. F. [Instituto de Fisica, UFRGS, Porto Alegre, RS (Brazil); Gaelzer, R.; Pavan, J. [Instituto de Fisica e Matematica, UFPel, Pelotas, RS (Brazil)

    2012-10-15

    The statistical mechanical reformulation of weak turbulence theory for unmagnetized plasmas including fully electromagnetic effects was carried out by Yoon [Phys. Plasmas 13, 022302 (2006)]. However, the wave kinetic equation for the transverse wave ignores the nonlinear three-wave interaction that involves two transverse waves and a Langmuir wave, the incoherent analogue of the so-called Raman scattering process, which may account for the third and higher-harmonic plasma emissions. The present paper extends the previous formalism by including such a term.

  17. The influence of fully nonlinear wave forces on aero-hydro-elastic calculations of monopile wind turbines

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.

    2016-01-01

    The response of an offshore wind turbine tower and its monopile foundation has been investigated when exposed to linear and fully nonlinear irregular waves on four different water depths. The investigation focuses on the consequences of including full nonlinearity in the wave kinematics. The line...

  18. A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    Yunying Zheng

    2011-01-01

    Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.

  19. Scalable Nonlinear Solvers for Fully Implicit Coupled Nuclear Fuel Modeling. Final Report

    International Nuclear Information System (INIS)

    Cai, Xiao-Chuan; Yang, Chao; Pernice, Michael

    2014-01-01

    The focus of the project is on the development and customization of some highly scalable domain decomposition based preconditioning techniques for the numerical solution of nonlinear, coupled systems of partial differential equations (PDEs) arising from nuclear fuel simulations. These high-order PDEs represent multiple interacting physical fields (for example, heat conduction, oxygen transport, solid deformation), each is modeled by a certain type of Cahn-Hilliard and/or Allen-Cahn equations. Most existing approaches involve a careful splitting of the fields and the use of field-by-field iterations to obtain a solution of the coupled problem. Such approaches have many advantages such as ease of implementation since only single field solvers are needed, but also exhibit disadvantages. For example, certain nonlinear interactions between the fields may not be fully captured, and for unsteady problems, stable time integration schemes are difficult to design. In addition, when implemented on large scale parallel computers, the sequential nature of the field-by-field iterations substantially reduces the parallel efficiency. To overcome the disadvantages, fully coupled approaches have been investigated in order to obtain full physics simulations.

  20. Transient electromagnetic detecting technique for water hazard to the roof of fully mechanized sub-level caving face

    Energy Technology Data Exchange (ETDEWEB)

    Yu Jing-cun; Liu Zhi-xin; Tang Jin-yun; Wang Yang-zhou [China University of Mining & Technology, Xuzhou (China). School of Resources and Geoscience Science

    2007-07-01

    In coal mining, with the popularization of fully mechanized equipment, the roof control becomes more and more important. The development of water body in roofs may seriously affect the efficiency of the fully mechanized mining, quite possible to cause an accident in working face. Therefore, to make clear the position of a water body located in roofs so as to provide a basis for water drainage borehole layout is an urgent problem to be solved by geophysical exploration. Based on the transient electromagnetic theory and the technique used on ground surface and on the actual situation in underground coal mines, a square superimposed loop device (2 m in side length) which is non-contact and multi-turns was developed to detect the water bodies in coal seam roofs. Based on the 'smoke ring effect' theory and the physical simulation criterion, the mathematical model for calculating the apparent resistivity of full space transient electromagnetism is deduced. In addition, the water detection technology for the roof of fully mechanized sub-level caving face was researched and applied in several coal mines, which has been verified by boreholes and mining practice, indicating that this method is very effective in detecting the water source in the roof of fully mechanized sub-level caving face. 11 refs., 5 figs.

  1. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    Energy Technology Data Exchange (ETDEWEB)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  2. A parallel code named NEPTUNE for 3D fully electromagnetic and pic simulations

    International Nuclear Information System (INIS)

    Dong Ye; Yang Wenyuan; Chen Jun; Zhao Qiang; Xia Fang; Ma Yan; Xiao Li; Sun Huifang; Chen Hong; Zhou Haijing; Mao Zeyao; Dong Zhiwei

    2010-01-01

    A parallel code named NEPTUNE for 3D fully electromagnetic and particle-in-cell (PIC) simulations is introduced, which could run on the Linux system with hundreds to thousand CPUs. NEPTUNE is suitable to simulate entire 3D HPM devices; many HPM devices are simulated and designed by using it. In NEPTUNE code, the electromagnetic fields are updated by using the finite-difference in time domain (FDTD) method of solving Maxwell equations and the particles are moved by using Buneman-Boris advance method of solving relativistic Newton-Lorentz equation. Electromagnetic fields and particles are coupled by using liner weighing interpolation PIC method, and the electric filed components are corrected by using Boris method of solve Poisson equation in order to ensure charge-conservation. NEPTUNE code could construct many complicated geometric structures, such as arbitrary axial-symmetric structures, plane transforming structures, slow-wave-structures, coupling holes, foils, and so on. The boundary conditions used in NEPTUNE code are introduced in brief, including perfectly electric conductor boundary, external wave boundary, and particle boundary. Finally, some typical HPM devices are simulated and test by using NEPTUNE code, including MILO, RBWO, VCO, and RKA. The simulation results are with correct and credible physical images, and the parallel efficiencies are also given. (authors)

  3. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Sha; Yue, Feng [Shanghai Institute of Spaceflight Control Technology, Shanghai 200233 (China); Wu, Jian [China Research Institute of Radio wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); China Research Institute of Radio wave Propagation, Beijing 102206 (China)

    2016-04-15

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  4. Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Zhou, Zhong-Xiang; Liu, Sha; Yue, Feng; Wu, Jian; Li, Hui

    2016-01-01

    The propagation properties of electromagnetic (EM) waves in fully ionized dusty plasmas is the subject of this study. The dielectric relationships for EM waves propagating in a fully ionized dusty plasma was derived from the Boltzmann distribution law, taking into consideration the collision and charging effects of the dust grains. The propagation properties of the EM waves in a dusty plasma were numerically calculated and studied. The study results indicated that the dusty grains with an increased radius and charge were more likely to impede the penetration of EM waves. Dust grains with large radii and high charge cause the attenuation of the EM wave in the dusty plasma. The different density of the dust in the plasma appeared to have no obvious effect on the transmission of the EM waves. The propagation of the EM waves in a weakly ionized dusty plasma varies from that in a fully ionized dusty plasma. The results are helpful to analyze the effects of dust in dusty plasmas and also provide a theoretical basis for future studies.

  5. PLASMA EMISSION BY NONLINEAR ELECTROMAGNETIC PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: laripetruzzellis@yahoo.com.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2015-06-20

    The plasma emission, or electromagnetic (EM) radiation at the plasma frequency and/or its harmonic(s), is generally accepted as the radiation mechanism responsible for solar type II and III radio bursts. Identification and characterization of these solar radio burst phenomena were done in the 1950s. Despite many decades of theoretical research since then, a rigorous demonstration of the plasma emission process based upon first principles was not available until recently, when, in a recent Letter, Ziebell et al. reported the first complete numerical solution of EM weak turbulence equations; thus, quantitatively analyzing the plasma emission process starting from the initial electron beam and the associated beam-plasma (or Langmuir wave) instability, as well as the subsequent nonlinear conversion of electrostatic Langmuir turbulence into EM radiation. In the present paper, the same problem is revisited in order to elucidate the detailed physical mechanisms that could not be reported in the brief Letter format. Findings from the present paper may be useful for interpreting observations and full-particle numerical simulations.

  6. A non-linear 3D printed electromagnetic vibration energy harvester

    International Nuclear Information System (INIS)

    Constantinou, P; Roy, S

    2015-01-01

    This paper describes a novel electromagnetic energy harvester that exploits the low flexural modulus of ABS and comprises of a nonlinear mechanism to enhance the generated power and bandwidth. The device is printed using desktop additive manufacturing techniques (3D printing) that use thermoplastics. It has a ‘V’ spring topology and exhibits a softening spring non-linearity introduced through the magnetic arrangement, which introduces a monostable potential well. A model is presented and measurements correspond favourably. The produced prototype generates a peak power of approximately 2.5mW at a frame acceleration of 1g and has a power bandwidth of approximately 1.2→1.5Hz and 3.5→3.9Hz during up and down sweeps respectively. The device has a power density of 0.4mW/cm 3 at a frame acceleration of 1g and a density of 0.04mW/cm 3 from a generated power of 25μW at 0.1g. (paper)

  7. Harmonic balance finite element method applications in nonlinear electromagnetics and power systems

    CERN Document Server

    Lu, Junwei; Yamada, Sotoshi

    2016-01-01

    The first book applying HBFEM to practical electronic nonlinear field and circuit problems * Examines and solves wide aspects of practical electrical and electronic nonlinear field and circuit problems presented by HBFEM * Combines the latest research work with essential background knowledge, providing an all-encompassing reference for researchers, power engineers and students of applied electromagnetics analysis * There are very few books dealing with the solution of nonlinear electric- power-related problems * The contents are based on the authors' many years' research and industry experience; they approach the subject in a well-designed and logical way * It is expected that HBFEM will become a more useful and practical technique over the next 5 years due to the HVDC power system, renewable energy system and Smart Grid, HF magnetic used in DC/DC converter, and Multi-pulse transformer for HVDC power supply * HBFEM can provide effective and economic solutions to R&D product development * Includes Matlab e...

  8. Radiation from nonlinear coupling of plasma waves

    International Nuclear Information System (INIS)

    Fung, S.F.

    1986-01-01

    The author examines the generation of electromagnetic radiation by nonlinear resonant interactions of plasma waves in a cold, uniformly magnetized plasma. In particular, he considers the up-conversion of two electrostatic wave packets colliding to produce high frequency electromagnetic radiation. Efficient conversion of electrostatic to electromagnetic wave energy occurs when the pump amplitudes approach and exceed the pump depletion threshold. Results from the inverse scattering transform analysis of the three-wave interaction equations are applied. When the wave packets are initially separated, the fully nonlinear set of coupling equations, which describe the evolution of the wave packets, can be reduced to three separate eigenvalue problems; each can be considered as a scattering problem, analogous to eh Schroedinger equation. In the scattering space, the wave packet profiles act as the scattering potentials. When the wavepacket areas approach (or exceed) π/2, the wave functions are localized (bound states) and the scattering potentials are said to contain solitons. Exchange of solitons occurs during the interaction. The transfer of solitons from the pump waves to the electromagnetic wave leads to pump depletion and the production of strong radiation. The emission of radio waves is considered by the coupling of two upper-hybrid branch wave packets, and an upper-hybrid and a lower hybrid branch wave packet

  9. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  10. A stabilised nodal spectral element method for fully nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele

    2016-01-01

    can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively......We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...

  11. Induced scattering due to nonlinear Landau and cyclotron damping of electromagnetic and electrostatic waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Sugaya, Reiji

    1989-01-01

    General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)

  12. Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses.

    Science.gov (United States)

    Kim, Kihong; Phung, D K; Rotermund, F; Lim, H

    2008-01-21

    We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.

  13. Weakly nonlinear electromagnetic waves in an electron-ion positron plasma

    International Nuclear Information System (INIS)

    Rizzato, F.B.; Schneider, R.S.; Dillenburg, D.

    1987-01-01

    The modulation of a high-frequency electromagnetic wave which is circulary polarized and propagates in a plasma made up of electrons, ions and positrons is investigated. The coefficient of the cubic nonlinear term in the Schroedinger equation may change sign as the relative particle concentrations vary, and consequently a marginal state of modulation instability may exist. To described the system in the neighbourhood of this state an appropriate equation is derived. Particular stationary solutions of this equation are envelope solitary waves, envelope Kinks and envelope hole solitary waves. The dependence of the amplitude of the solutions on the propagation velocity and the particle concentrations is discussed. (author) [pt

  14. Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator

    Science.gov (United States)

    Tao, Kai; Wu, Jin; Kottapalli, Ajay Giri Prakash; Chen, Di; Yang, Zhuoqing; Ding, Guifu; Lye, Sun Woh; Miao, Jianmin

    2017-12-01

    This paper reports a fully-integrated, batch-fabricated electromagnetic actuator which features micro-patterned NdFeB magnets. The entire actuator is fabricated through MEMS-compatible laminated surface micromachining technology, eliminating the requirement for further component assembly processes. The fabrication strategy allowed the entire volume of the actuator to be reduced to a small size of 2.5 × 2.5 × 2 mm3, which is one of the smallest NdFeB-based electromagnetic actuators demonstrated to date. The magnetic properties of NdFeB thin films are further investigated and optimized using different types of lithographically-defined micromolds. By altering the direction of the input current, actuating displacements of approximately ±10 μm are achieved during both the attraction and the repulsion operations. This work demonstrates the viability and compatibility of using polymer-bonded magnets for magnetic MEMS applications.

  15. A preconditioned inexact newton method for nonlinear sparse electromagnetic imaging

    KAUST Repository

    Desmal, Abdulla

    2015-03-01

    A nonlinear inversion scheme for the electromagnetic microwave imaging of domains with sparse content is proposed. Scattering equations are constructed using a contrast-source (CS) formulation. The proposed method uses an inexact Newton (IN) scheme to tackle the nonlinearity of these equations. At every IN iteration, a system of equations, which involves the Frechet derivative (FD) matrix of the CS operator, is solved for the IN step. A sparsity constraint is enforced on the solution via thresholded Landweber iterations, and the convergence is significantly increased using a preconditioner that levels the FD matrix\\'s singular values associated with contrast and equivalent currents. To increase the accuracy, the weight of the regularization\\'s penalty term is reduced during the IN iterations consistently with the scheme\\'s quadratic convergence. At the end of each IN iteration, an additional thresholding, which removes small \\'ripples\\' that are produced by the IN step, is applied to maintain the solution\\'s sparsity. Numerical results demonstrate the applicability of the proposed method in recovering sparse and discontinuous dielectric profiles with high contrast values.

  16. Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas

    International Nuclear Information System (INIS)

    Mori, W.B.; Decker, C.D.; Leemans, W.P.

    1993-01-01

    The relativistic harmonic content of large amplitude electromagnetic waves propagating in underdense plasmas is investigated. The steady state harmonic content of nonlinear linearly polarized waves is calculated for both the very underdense (w p /w o ) much-lt 1 and critical density (w p /w o ) ≅ 1 limits. For weak nonlinearities, eE o /mcw o p /w o . Arguments are given for extending these results for arbitrary wave amplitudes. The authors also show that the use of the variable x-ct and the quasi-static approximation leads to errors in both magnitude and sign when calculating the third harmonic. In the absence of damping or density gradients the third harmonic's amplitude is found to oscillate between zero and twice the steady state value. Preliminary PIC simulation results are presented. The simulation results are in basic agreement with the uniform plasma predictions for the third harmonic amplitude. However, the higher harmonics are orders of magnitude larger than expected and the presence of density ramps significantly modifies the results

  17. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  18. Wave-Kinetic Simulations of the Nonlinear Generation of Electromagnetic VLF Waves through Velocity Ring Instabilities

    Science.gov (United States)

    Ganguli, G.; Crabtree, C. E.; Rudakov, L.; Mithaiwala, M.

    2014-12-01

    Velocity ring instabilities are a common naturally occuring magnetospheric phenomenon that can also be generated by man made ionospheric experiments. These instabilities are known to generate lower-hybrid waves, which generally cannot propagte out of the source region. However, nonlinear wave physics can convert these linearly driven electrostatic lower-hybrid waves into electromagnetic waves that can escape the source region. These nonlinearly generated waves can be an important source of VLF turbulence that controls the trapped electron lifetime in the radiation belts. We develop numerical solutions to the wave-kinetic equation in a periodic box including the effects of nonlinear (NL) scattering (nonlinear Landau damping) of Lower-hybrid waves giving the evolution of the wave-spectra in wavenumber space. Simultaneously we solve the particle diffusion equation of both the background plasma particles and the ring ions, due to both linear and nonlinear Landau resonances. At initial times for cold ring ions, an electrostatic beam mode is excited, while the kinetic mode is stable. As the instability progresses the ring ions heat, the beam mode is stabilized, and the kinetic mode destabilizes. When the amplitude of the waves becomes sufficient the lower-hybrid waves are scattered (by either nearly unmagnetized ions or magnetized electrons) into electromagnetic magnetosonic waves [Ganguli et al 2010]. The effect of NL scattering is to limit the amplitude of the waves, slowing down the quasilinear relaxation time and ultimately allowing more energy from the ring to be liberated into waves [Mithaiwala et al. 2011]. The effects of convection out of the instability region are modeled, additionally limiting the amplitude of the waves, allowing further energy to be liberated from the ring [Scales et al., 2012]. Results are compared to recent 3D PIC simulations [Winske and Duaghton 2012].

  19. Deterministic and stochastic evolution equations for fully dispersive and weakly nonlinear waves

    DEFF Research Database (Denmark)

    Eldeberky, Y.; Madsen, Per A.

    1999-01-01

    and stochastic formulations are solved numerically for the case of cross shore motion of unidirectional waves and the results are verified against laboratory data for wave propagation over submerged bars and over a plane slope. Outside the surf zone the two model predictions are generally in good agreement......This paper presents a new and more accurate set of deterministic evolution equations for the propagation of fully dispersive, weakly nonlinear, irregular, multidirectional waves. The equations are derived directly from the Laplace equation with leading order nonlinearity in the surface boundary...... is significantly underestimated for larger wave numbers. In the present work we correct this inconsistency. In addition to the improved deterministic formulation, we present improved stochastic evolution equations in terms of the energy spectrum and the bispectrum for multidirectional waves. The deterministic...

  20. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas

    International Nuclear Information System (INIS)

    Artun, M.; Tang, W.M.

    1994-03-01

    The influence of sheared equilibrium flows on the confinement properties of tokamak plasmas is a topic of much current interest. A proper theoretical foundation for the systematic kinetic analysis of this important problem has been provided here by presented the derivation of a set of nonlinear electromagnetic gyrokinetic equations applicable to low frequency microinstabilities in a rotating axisymmetric plasma. The subsonic rotation velocity considered is in the direction of symmetry with the angular rotation frequency being a function of the equilibrium magnetic flux surface. In accordance with experimental observations, the rotation profile is chosen to scale with the ion temperature. The results obtained represent the shear flow generalization of the earlier analysis by Frieman and Chen where such flows were not taken into account. In order to make it readily applicable to gyrokinetic particle simulations, this set of equations is cast in a phase-space-conserving continuity equation form

  1. Remarks on the Phragmen-Lindelof theorem for Lp-viscosity solutions of fully nonlinear PDEs with unbounded ingredients

    Directory of Open Access Journals (Sweden)

    Kazushige Nakagawa

    2009-11-01

    Full Text Available The Phragmen-Lindelof theorem for Lp-viscosity solutions of fully nonlinear second order elliptic partial differential equations with unbounded coefficients and inhomogeneous terms is established.

  2. Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations

    Directory of Open Access Journals (Sweden)

    M. G. Crandall

    1999-07-01

    Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.

  3. Nonlinear optical rectification in vertically coupled InAs/GaAs quantum dots under electromagnetic fields, pressure and temperature effects

    Energy Technology Data Exchange (ETDEWEB)

    Choubani, M., E-mail: mohsenchoubani3@yahoo.fr; Ben Mahrsia, R.; Bouzaiene, L.; Maaref, H.

    2013-12-15

    In this paper we explore the effects of the structural dimensions, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). The analytical expression of the NOR is analyzed by using the density matrix formalism, the effective mass and the Finite Difference Method (FDM). Obtained results show that the NOR obtained with this coupled system is not a monotonic function of the barrier width, electromagnetic fields, pressure and temperature. Also, calculated results reveal that the resonant peaks of the NOR can be blue-shifted or red-shifted energies depending on the energy of the lowest confined states in the VCQDs structure. In addition, this condition can be controlled by changes in the structural dimensions and the external proofs mentioned above. -- Highlights: • In this paper we explore the effects of the barrier width, applied electromagnetic fields, hydrostatic pressure and temperature on the nonlinear optical rectification (NOR) in Vertically Coupled InAs/GaAs Quantum Dots (VCQDs). • The calculated results reveal that the resonant peaks of the NOR can be blue-shifted to large photon energies or red-shifted to lower photon energies. • In this paper, all parameters: electromagnetic fields, pressure and temperature effects are introduced and investigated. • The resonant energy and the magnitude of the NOR are controlled and adjusted.

  4. Run-up on a body in waves and current. Fully nonlinear and finite-order calculations

    DEFF Research Database (Denmark)

    Büchmann, Bjarne; Ferrant, P.; Skourup, J.

    2001-01-01

    Run-up on a large fixed body in waves and current have been calculated using both a fully nonlinear time-domain boundary element model and a finite-order time-domain boundary element model, the latter being correct to second order in the wave steepness and to first-order in the current strength...

  5. A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions

    Science.gov (United States)

    Chacón, L.; Chen, G.

    2016-07-01

    We extend a recently proposed fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (ϕ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ ṡ A = 0 exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.

  6. Nonlinear electromagnetic waves in a degenerate electron-positron plasma

    Energy Technology Data Exchange (ETDEWEB)

    El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)

    2015-08-15

    Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)

  7. Effects from fully nonlinear irregular wave forcing on the fatigue life of an offshore wind turbine and its monopile foundation

    DEFF Research Database (Denmark)

    Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.

    2013-01-01

    The effect from fully nonlinear irregular wave forcing on the fatigue life of the foundation and tower of an offshore wind turbine is investigated through aeroelastic calculations. Five representative sea states with increasing significant wave height are considered in a water depth of 40 m....... The waves are both linear and fully nonlinear irregular 2D waves. The wind turbine is the NREL 5-MW reference wind turbine. Fatigue analysis is performed in relation to analysis of the sectional forces in the tower and monopile. Impulsive excitation of the sectional force at the bottom of the tower is seen...

  8. Electron acceleration during the decay of nonlinear Whistler waves in low-beta electron-ion plasma

    International Nuclear Information System (INIS)

    Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro

    2014-01-01

    Relativistic electron acceleration through dissipation of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave in low-beta plasma is investigated by utilizing a one-dimensional fully relativistic electromagnetic particle-in-cell code. The nonlinear (large-amplitude) parent whistler wave decays through the parametric instability which enhances electrostatic ion acoustic waves and electromagnetic whistler waves. These waves satisfy the condition of three-wave coupling. Through the decay instability, the energy of electron bulk velocity supporting the parent wave is converted to the thermal energy perpendicular to the background magnetic field. Increase of the perpendicular temperature triggers the electron temperature anisotropy instability which generates broadband whistler waves and heats electrons in the parallel direction. The broadband whistler waves are inverse-cascaded during the relaxation of the electron temperature anisotropy. In lower-beta conditions, electrons with a pitch angle of about 90° are successively accelerated by inverse-cascaded whistler waves, and selected electrons are accelerated to over a Lorentz factor of 10. The result implies that the nonlinear dissipation of a finite-amplitude and short-wavelength whistler wave plays an important role in producing relativistic nonthermal electrons over a few MeV especially at lower beta plasmas.

  9. Electromagnetic drift modes in an inhomogeneous electron gas

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens

    1986-01-01

    A pair of nonlinear equations is derived which describes the dynamics of the electromagnetic drift oscillations in a nonuniform magnetized electron gas. It is shown that the nonlinear electromagnetic drift modes can propagate in the form of dipole vortices...

  10. Controlling the stability of nonlinear optical modes via electromagnetically induced transparency

    Science.gov (United States)

    Zhang, Kun; Liang, Yi-zeng; Lin, Ji; Li, Hui-jun

    2018-02-01

    We propose a scheme to generate and stabilize the high-dimensional spatial solitons via electromagnetically induced transparency (EIT). The system we consider is a resonant atomic ensemble having Λ configuration. We illustrate that under EIT conditions the equation satisfied by the probe field envelope is reduced to a saturable nonlinear Schrödinger equation with the trapping potential, provided by a far-detuned laser field and a random magnetic field. We present high-dimensional soliton solutions exhibiting many interesting characteristics, including diversity (i.e., many different types of soliton solutions can be found, including bright, ring multipole bright, ring multipole defect mode, multiring bright, multiring defect mode, and vortices solitons), the phase transition between bright soliton and higher-order defect modes (i.e., the phase transition can be realized by controlling the nonlinear coefficient or the intensity of the trapping potential), and stability (i.e., various solitons can be stabilized by the Gaussian potential provided by the far detuned laser field, or the random potential provided by the magnetic field). We also find that some solitons are the extension of the linear eigenmode, whereas others entirely derive from the role of nonlinearity. Compared with previous studies, we not only show the diverse soliton solutions in the same system but also find the boundary of the phase transition for the type of solitons. In addition, we present the possibility of using the random potential to stabilize various solitons and vortices.

  11. A sparse electromagnetic imaging scheme using nonlinear landweber iterations

    KAUST Repository

    Desmal, Abdulla

    2015-10-26

    Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting the nonlinear forward scattering operator into a sequence of linear ill-posed operations (for example using the Born iterative method) and applying sparsity constraints to the linear minimization problem of each iteration through the use of L0/L1-norm penalty term (A. Desmal and H. Bagci, IEEE Trans. Antennas Propag, 7, 3878–3884, 2014, and IEEE Trans. Geosci. Remote Sens., 3, 532–536, 2015). It has been shown that these techniques produce more accurate and sharper images than their counterparts which solve a minimization problem constrained with smoothness promoting L2-norm penalty term. But these existing techniques are only applicable to investigation domains involving weak scatterers because the linearization process breaks down for high values of dielectric permittivity.

  12. Detection of electromagnetic radiation using nonlinear materials

    Science.gov (United States)

    Hwang, Harold Y.; Liu, Mengkun; Averitt, Richard D.; Nelson, Keith A.; Sternbach, Aaron; Fan, Kebin

    2016-06-14

    An apparatus for detecting electromagnetic radiation within a target frequency range is provided. The apparatus includes a substrate and one or more resonator structures disposed on the substrate. The substrate can be a dielectric or semiconductor material. Each of the one or more resonator structures has at least one dimension that is less than the wavelength of target electromagnetic radiation within the target frequency range, and each of the resonator structures includes at least two conductive structures separated by a spacing. Charge carriers are induced in the substrate near the spacing when the resonator structures are exposed to the target electromagnetic radiation. A measure of the change in conductivity of the substrate due to the induced charge carriers provides an indication of the presence of the target electromagnetic radiation.

  13. Nonlinear self-precession and wavenumber shift of electromagnetic waves under resonance and of Alfven waves in plasmas

    International Nuclear Information System (INIS)

    Bhattacharyya, B.; Chakraborty, B.

    1979-01-01

    Nonlinear corrections of a left and a right circularly polarized electromagnetic wave of the same frequency, propagating in the direction of a static and uniform magnetic field in a cold and collisionally damped two-component plasma, have been evaluated. The nonlinearly correct dispersion relation, self-generating nonlinear precessional rotation of the polarization ellipse of the wave and the shift in a wave parameter depend on linear combinations of products of the amplitude components taken two at a time and hence on the energies of the waves. Both in the low frequency resonance (that is when the ion cyclotron frequency equals the wave frequency) and in the high frequency resonance (that is when the electron cyclotron frequency equals the wave frequency), the self-precessional rate and wavenumber shift are found to be large and so have the possibility of detection in laboratory experiments. Moreover, for the limit leading to Alfven waves, these nonlinear effects have been found to have some interesting and significant properties. (Auth.)

  14. On weakly singular and fully nonlinear travelling shallow capillary–gravity waves in the critical regime

    Energy Technology Data Exchange (ETDEWEB)

    Mitsotakis, Dimitrios, E-mail: dmitsot@gmail.com [Victoria University of Wellington, School of Mathematics, Statistics and Operations Research, PO Box 600, Wellington 6140 (New Zealand); Dutykh, Denys, E-mail: Denys.Dutykh@univ-savoie.fr [LAMA, UMR 5127 CNRS, Université Savoie Mont Blanc, Campus Scientifique, F-73376 Le Bourget-du-Lac Cedex (France); Assylbekuly, Aydar, E-mail: asylbekuly@mail.ru [Khoja Akhmet Yassawi International Kazakh–Turkish University, Faculty of Natural Science, Department of Mathematics, 161200 Turkestan (Kazakhstan); Zhakebayev, Dauren, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University, Faculty of Mechanics and Mathematics, Department of Mathematical and Computer Modelling, 050000 Almaty (Kazakhstan)

    2017-05-25

    In this Letter we consider long capillary–gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott–Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well. - Highlights: • A model for long capillary–gravity weakly dispersive and fully nonlinear water waves is derived. • Shallow capillary–gravity waves are classified using phase plane analysis. • Peaked travelling waves are found in the critical regime. • The dynamics of peakons in Serre–Green–Naghdi equations is studied numerically.

  15. A Fast GPU-accelerated Mixed-precision Strategy for Fully NonlinearWater Wave Computations

    DEFF Research Database (Denmark)

    Glimberg, Stefan Lemvig; Engsig-Karup, Allan Peter; Madsen, Morten G.

    2011-01-01

    We present performance results of a mixed-precision strategy developed to improve a recently developed massively parallel GPU-accelerated tool for fast and scalable simulation of unsteady fully nonlinear free surface water waves over uneven depths (Engsig-Karup et.al. 2011). The underlying wave......-preconditioned defect correction method. The improved strategy improves the performance by exploiting architectural features of modern GPUs for mixed precision computations and is tested in a recently developed generic library for fast prototyping of PDE solvers. The new wave tool is applicable to solve and analyze...

  16. A priori estimates and existence for a class of fully nonlinear elliptic equations in conformal geometry

    OpenAIRE

    Wang, Xu-Jia

    2006-01-01

    In this paper we prove the interior gradient and second derivative estimates for a class of fully nonlinear elliptic equations determined by symmetric functions of eigenvalues of the Ricci or Schouten tensors. As an application we prove the existence of solutions to the equations when the manifold is locally conformally flat or the Ricci curvature is positive.

  17. Electromagnetically Induced Absorption (EIA) and a ``Twist'' on Nonlinear Magneto-optical Rotation (NMOR) with Cold Atoms

    Science.gov (United States)

    Kunz, Paul; Meyer, David; Quraishi, Qudsia

    2015-05-01

    Within the class of nonlinear optical effects that exhibit sub-natural linewidth features, electromagnetically induced transparency (EIT) and nonlinear magneto-optical rotation (NMOR) stand out as having made dramatic impacts on various applications including atomic clocks, magnetometry, and single photon storage. A related effect, known as electromagnetically induced absorption (EIA), has received less attention in the literature. Here, we report on the first observation of EIA in cold atoms using the Hanle configuration, where a single laser beam is used to both pump and probe the atoms while sweeping a magnetic field through zero along the beam direction. We find that, associated with the EIA peak, a ``twist'' appears in the corresponding NMOR signal. A similar twist has been previously noted by Budker et al., in the context of warm vapor optical magnetometry, and was ascribed to optical pumping through nearby hyperfine levels. By studying this feature through numerical simulations and cold atom experiments, thus rendering the hyperfine levels well resolved, we enhance the understanding of the optical pumping mechanism behind it, and elucidate its relation to EIA. Finally, we demonstrate a useful application of these studies through a simple and rapid method for nulling background magnetic fields within our atom chip apparatus.

  18. Moving Manifolds in Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    David V. Svintradze

    2017-08-01

    Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.

  19. Electromagnetic wave analogue of an electronic diode

    International Nuclear Information System (INIS)

    Shadrivov, Ilya V; Powell, David A; Kivshar, Yuri S; Fedotov, Vassili A; Zheludev, Nikolay I

    2011-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of rotation of the polarization state and is also a key component in optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by an extraordinarily strong nonlinear wave propagation effect in the same way as the electronic diode function is provided by the nonlinear current characteristic of a semiconductor junction. The effect exploited in this new electromagnetic diode is an intensity-dependent polarization change in an artificial chiral metamolecule. This microwave effect exceeds a similar optical effect previously observed in natural crystals by more than 12 orders of magnitude and a direction-dependent transmission that differs by a factor of 65.

  20. Nonlinear gyrokinetic Maxwell-Vlasov equations using magnetic coordinates

    International Nuclear Information System (INIS)

    Brizard, A.

    1988-09-01

    A gyrokinetic formalism using magnetic coordinates is used to derive self-consistent, nonlinear Maxwell-Vlasov equations that are suitable for particle simulation studies of finite-β tokamak microturbulence and its associated anomalous transport. The use of magnetic coordinates is an important feature of this work as it introduces the toroidal geometry naturally into our gyrokinetic formalism. The gyrokinetic formalism itself is based on the use of the Action-variational Lie perturbation method of Cary and Littlejohn, and preserves the Hamiltonian structure of the original Maxwell-Vlasov system. Previous nonlinear gyrokinetic sets of equations suitable for particle simulation analysis have considered either electrostatic and shear-Alfven perturbations in slab geometry, or electrostatic perturbations in toroidal geometry. In this present work, fully electromagnetic perturbations in toroidal geometry are considered. 26 refs

  1. A discontinuous Galerkin approach for conservative modeling of fully nonlinear and weakly dispersive wave transformations

    Science.gov (United States)

    Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef

    2018-05-01

    This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.

  2. Einstein-Podolsky-Rosen entanglement via nonlinear processes enhanced by electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Cheng Guangling; Hu Xiangming; Zhong Wenxue

    2009-01-01

    We show that Einstein-Podolsky-Rosen (EPR) light entanglement is obtainable via the resonant nonlinear interactions enhanced by electromagnetically induced transparency. A three-level system is used as a unified model, where two metastable states are coupled to each other via microwave, or Raman, or two-photon transition, and the upper metastable state is coupled to the excited state. A pair of inner sidebands is amplified as optical cavity modes via the transition from the excited state to the other metastable state. The analysis is presented by using the dressed-atom squeezed-transformed-mode approach. For a proper ratio of the amplitudes of the applied fields, the sum of the variances for two EPR-like operators approaches zero, which corresponds to EPR entanglement.

  3. Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model

    Science.gov (United States)

    Cheviakov, Alexei F.

    2018-05-01

    A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.

  4. Nonlinear Electromagnetic Stabilization of Plasma Microturbulence

    Science.gov (United States)

    Whelan, G. G.; Pueschel, M. J.; Terry, P. W.

    2018-04-01

    The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.

  5. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  6. Cosmological Ohm's law and dynamics of non-minimal electromagnetism

    International Nuclear Information System (INIS)

    Hollenstein, Lukas; Jain, Rajeev Kumar; Urban, Federico R.

    2013-01-01

    The origin of large-scale magnetic fields in cosmic structures and the intergalactic medium is still poorly understood. We explore the effects of non-minimal couplings of electromagnetism on the cosmological evolution of currents and magnetic fields. In this context, we revisit the mildly non-linear plasma dynamics around recombination that are known to generate weak magnetic fields. We use the covariant approach to obtain a fully general and non-linear evolution equation for the plasma currents and derive a generalised Ohm law valid on large scales as well as in the presence of non-minimal couplings to cosmological (pseudo-)scalar fields. Due to the sizeable conductivity of the plasma and the stringent observational bounds on such couplings, we conclude that modifications of the standard (adiabatic) evolution of magnetic fields are severely limited in these scenarios. Even at scales well beyond a Mpc, any departure from flux freezing behaviour is inhibited

  7. Fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons

    International Nuclear Information System (INIS)

    Sabry, R.; Shukla, P. K.; Moslem, W. M.

    2009-01-01

    Properties of fully nonlinear ion-acoustic solitary waves in a plasma with positive-negative ions and nonthermal electrons are investigated. For this purpose, the hydrodynamic equations for the positive-negative ions, nonthermal electron density distribution, and the Poisson equation are used to derive the energy integral equation with a new Sagdeev potential. The latter is analyzed to examine the existence regions of the solitary pulses. It is found that the solitary excitations strongly depend on the mass and density ratios of the positive and negative ions as well as the nonthermal electron parameter. Numerical solution of the energy integral equation clears that both positive and negative potentials exist together. It is found that faster solitary pulses are taller and narrower. Furthermore, increasing the electron nonthermality parameter (negative-to-positive ions density ratio) decreases (increases) the localized excitation amplitude but increases (decreases) the pulse width. The present model is used to investigate the solitary excitations in the (H + ,O 2 - ) and (H + ,H - ) plasmas, where they are presented in the D- and F-regions of the Earth's ionosphere. This investigation should be helpful in understanding the salient features of the fully nonlinear ion-acoustic solitary waves in space and in laboratory plasmas where two distinct groups of ions and non-Boltzmann distributed electrons are present.

  8. Three-dimensional analysis of nonlinear plasma oscillation

    International Nuclear Information System (INIS)

    Miano, G.

    1990-01-01

    In an underdense plasma a large-amplitude plasma oscillation may be produced by the beating of two external and colinear electromagnetic waves with a frequency difference approximately equal to the plasma frequency - plasma beat wave (PBW) resonant mechanism. The plasma oscillations are driven by the ponderomotive force arising from the beating of the two imposed electromagnetic waves. In this paper two pump electromagnetic waves with arbitrary transverse profiles have been considered. The plasma is described by using the three dimensinal weakly relativistic fluid equations. The nonlinear plasma oscillation dynamics is studied by using the eulerian description, the averaging and the multiple time scale methods. Unlike the linear theory a strong cross field coupling between longitudinal ans transverse electric field components of the plasma oscillation comes out, resulting in a nonlinear phase change and energy transfer between the two components. Unlike the one-dimensional nonlinear theory, the nonlinear frequency shift is caused by relativistic effects as well as by convective effects and electromagnetic field generated from the three dimensional plasma oscillation. The large amplitude plasma oscillation dynamics produced by a bunched relativistic electron beam with arbitrary transverse profile - plasma wave field (PWF) - or by a high power single frequency short electromagnetic pulse with arbitrary transverse profile - electromagnetic plasma wake field (EPWF) - may be described by means of the present theory. (orig.)

  9. Linear and nonlinear light propagations in a Doppler-broadened medium via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Li Liang; Huang Guoxiang

    2010-01-01

    We present a systematic theoretical study to deal with linear and nonlinear light propagations in a Doppler-broadened three-level Λ system via electromagnetically induced transparency (EIT), with incoherent population exchange between two lower energy levels taken into account. Through a careful analysis of base state and linear excitation, we show that the EIT condition of the system is given by |Ω c | 2 γ 31 >>2γ 21 Δω D 2 , where Ω c is half the Rabi frequency of the control field, Δω D is the Doppler width, and γ jl is the decay rate of the coherence between states |j> and |l>. Under this condition, the effect of incoherent population exchange is insignificant, while dephasing dominates the decoherence of the system. This condition also ensures the validity of the weak nonlinear perturbation theory used in this work for solving the Maxwell-Bloch equations with inhomogeneous broadening. We then investigate the nonlinear propagation of the probe field and show that it is possible to form temporal optical solitons in the Doppler-broadened medium. Such solitons have ultraslow propagating velocity and can be generated in very low light power. The possibility of realizing (1+1)-dimensional and (2+1)-dimensional spatial optical solitons in the adiabatic regime of the system is also discussed.

  10. A study on the influence of corona on currents and electromagnetic fields predicted by a nonlinear lightning return-stroke model

    Science.gov (United States)

    De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério

    2014-05-01

    This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.

  11. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  12. Force-controlled absorption in a fully-nonlinear numerical wave tank

    International Nuclear Information System (INIS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-01-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes

  13. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-06-03

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  14. Electromagnetic perturbations of black holes in general relativity coupled to nonlinear electrodynamics

    Science.gov (United States)

    Toshmatov, Bobir; Stuchlík, Zdeněk; Schee, Jan; Ahmedov, Bobomurat

    2018-04-01

    The electromagnetic (EM) perturbations of the black hole solutions in general relativity coupled to nonlinear electrodynamics (NED) are studied for both electrically and magnetically charged black holes, assuming that the EM perturbations do not alter the spacetime geometry. It is shown that the effective potentials of the electrically and magnetically charged black holes related to test perturbative NED EM fields are related to the effective metric governing the photon motion, contrary to the effective potential of the linear electrodynamic (Maxwell) field that is related to the spacetime metric. Consequently, corresponding quasinormal (QN) frequencies differ as well. As a special case, we study new family of the NED black hole solutions which tend in the weak field limit to the Maxwell field, giving the Reissner-Nordström (RN) black hole solution. We compare the NED Maxwellian black hole QN spectra with the RN black hole QN spectra.

  15. Interacting electromagnetic waves in general relativity

    International Nuclear Information System (INIS)

    Griffiths, J.B.

    1976-01-01

    The problem is considered of finding exact solutions of the Einstein-Maxwell equations which describe the physical situation of two colliding and subsequently interacting electromagnetic waves. The general theory of relativity predicts a nonlinear interaction between electromagnetic waves. The situation is described using an approximate geometrical method, and a new exact solution describing two interacting electromagnetic waves is given. This describes waves emitted from two sources mutually focusing each other on the opposite source. (author)

  16. Electromagnetic wave analogue of electronic diode

    OpenAIRE

    Shadrivov, Ilya V.; Powell, David A.; Kivshar, Yuri S.; Fedotov, Vassili A.; Zheludev, Nikolay I.

    2010-01-01

    An electronic diode is a nonlinear semiconductor circuit component that allows conduction of electrical current in one direction only. A component with similar functionality for electromagnetic waves, an electromagnetic isolator, is based on the Faraday effect of the polarization state rotation and is also a key component of optical and microwave systems. Here we demonstrate a chiral electromagnetic diode, which is a direct analogue of an electronic diode: its functionality is underpinned by ...

  17. Superfluid plasmas: Multivelocity nonlinear hydrodynamics of superfluid solutions with charged condensates coupled electromagnetically

    International Nuclear Information System (INIS)

    Holm, D.D.; Kupershmidt, B.A.

    1987-01-01

    Four levels of nonlinear hydrodynamic description are presented for a nondissipative multicondensate solution of superfluids with vorticity. First, the multivelocity superfluid (MVSF) theory is extended to the case of a multivelocity superfluid plasma (MVSP), in which some of the superfluid condensates (protons, say) are charged and coupled electromagnetically to an additional, normal, charged fluid (electrons). The resulting drag-current density is derived due to the electromagnetic coupling of the condensates with the normal fluids. For the case of one charged condensate, the MVSP equations simplify to what we call superfluid Hall magnetohydrodynamics (SHMHD) in the approximation that displacement current and electron inertia are negligible, and local charge neutrality is imposed. The contribution of the charged condensate to the Hall drift force is determined. In turn, neglecting the Hall effect in SHMHD gives the equations of superfluid magnetohydrodynamics (SMHD). Each set of equations (MVSF, MVSP, SHMHD, and SMHD) is shown to be Hamiltonian and to possess a Poisson bracket associated with the dual space of a corresponding semidirect-product Lie algebra with a generalized two-cocycle defined on it. Topological conservation laws (helicities) associated with the kernels of these Lie algebras are also discussed as well as those associated physically with generalized Kelvin theorems for conservation of superfluid circulation around closed loops moving with the normal fluid

  18. A Fully Nonlinear, Dynamically Consistent Numerical Model for Solid-Body Ship Motion. I. Ship Motion with Fixed Heading

    Science.gov (United States)

    Lin, Ray-Quing; Kuang, Weijia

    2011-01-01

    In this paper, we describe the details of our numerical model for simulating ship solidbody motion in a given environment. In this model, the fully nonlinear dynamical equations governing the time-varying solid-body ship motion under the forces arising from ship wave interactions are solved with given initial conditions. The net force and moment (torque) on the ship body are directly calculated via integration of the hydrodynamic pressure over the wetted surface and the buoyancy effect from the underwater volume of the actual ship hull with a hybrid finite-difference/finite-element method. Neither empirical nor free parametrization is introduced in this model, i.e. no a priori experimental data are needed for modelling. This model is benchmarked with many experiments of various ship hulls for heave, roll and pitch motion. In addition to the benchmark cases, numerical experiments are also carried out for strongly nonlinear ship motion with a fixed heading. These new cases demonstrate clearly the importance of nonlinearities in ship motion modelling.

  19. Nonlinear generation of the fundamental radiation in plasmas

    International Nuclear Information System (INIS)

    Chian, A.C.L.; Rizzato, F.B.

    1993-01-01

    Nonlinear generation of coherent electromagnetic radiation by intense Langmuir waves in the vicinity of the fundamental plasma frequency f p is of current interest in space and laboratory plasmas. In a pioneer work, Lashmore-Davies demonstrated that an efficient process for converting intense Langmuir waves into f p electromagnetic radiation can be achieved by two counterstreaming Langmuir pump waves through an electromagnetic oscillating two-stream instability. Recently Chian and Alves, Akimoto and Rizzato and Chian extended the formalism of Lashmore-Davies in order to include mixed processes with induced modes which are purely electrostatic or electromagnetic. In this paper we extend our previous analysis, in order to study the nonlinear interaction involving travelling electromagnetic pumps, low-frequency density fluctuations and high-frequency f p modes which can be electrostatic-electromagnetic hybrids. (author) 5 refs., 2 figs

  20. Finite-temperature Casimir effect in the presence of nonlinear dielectrics

    DEFF Research Database (Denmark)

    Kheirandish, Fardin; Amooghorban, Ehsan; Soltani, Morteza

    2011-01-01

    Starting from a Lagrangian, the electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques, and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained, and their relations to coupl......Starting from a Lagrangian, the electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques, and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained, and their relations...

  1. Nonlinear image encryption using a fully phase nonzero-order joint transform correlator in the Gyrator domain

    Science.gov (United States)

    Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet

    2017-02-01

    A novel nonlinear image encryption scheme based on a fully phase nonzero-order joint transform correlator architecture (JTC) in the Gyrator domain (GD) is proposed. In this encryption scheme, the two non-overlapping data distributions of the input plane of the JTC are fully encoded in phase and this input plane is transformed using the Gyrator transform (GT); the intensity distribution captured in the GD represents a new definition of the joint Gyrator power distribution (JGPD). The JGPD is modified by two nonlinear operations with the purpose of retrieving the encrypted image, with enhancement of the decrypted signal quality and improvement of the overall security. There are three keys used in the encryption scheme, two random phase masks and the rotation angle of the GT, which are all necessary for a proper decryption. Decryption is highly sensitivity to changes of the rotation angle of the GT as well as to little changes in other parameters or keys. The proposed encryption scheme in the GD still preserves the shift-invariance properties originated in the JTC-based encryption in the Fourier domain. The proposed encryption scheme is more resistant to brute force attacks, chosen-plaintext attacks, known-plaintext attacks, and ciphertext-only attacks, as they have been introduced in the cryptanalysis of the JTC-based encryption system. Numerical results are presented and discussed in order to verify and analyze the feasibility and validity of the novel encryption-decryption scheme.

  2. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two

  3. Transients of the electromagnetically-induced-transparency-enhanced refractive Kerr nonlinearity: Theory

    International Nuclear Information System (INIS)

    Pack, M. V.; Camacho, R. M.; Howell, J. C.

    2006-01-01

    We present a theory describing the transients and rise times of the refractive Kerr nonlinearity which is enhanced using electromagnetically induced transparency (EIT). We restrict our analysis to the case of a pulsed signal field with continuous-wave EIT fields, and all fields are well below saturation. These restrictions enable the reduction of an EIT Kerr, four-level, density-matrix equation to a two-level Bloch-vector equation which has a simple and physically intuitive algebraic solution. The physically intuitive picture of a two-level Bloch vector provides insights that are easily generalized to more complex and experimentally realistic models. We consider generalization to the cases of Doppler broadening, many-level EIT systems (we consider the D1 line of 87 Rb), and optically thick media. For the case of optically thick media we find that the rise time of the refractive EIT Kerr effect is proportional to the optical thickness. The rise time of the refractive EIT Kerr effect sets important limitations for potential few-photon applications

  4. Fully nonlinear phenomenology of the Berk-Breizman augmentation of the Vlasov-Maxwell system

    International Nuclear Information System (INIS)

    Vann, R.G.L.; Dendy, R.O.; Rowlands, G.; Arber, T.D.; D'Ambrumenil, N.

    2003-01-01

    The Berk-Breizman augmentation of the Vlasov-Maxwell system is widely used to model self-consistent resonant excitation and damping of wave fields by evolving energetic particle populations in magnetic fusion plasmas. The key model parameters are the particle annihilation rate ν a , which drives bump-on-tail structure, and the linear wave damping rate γ d . A code, based on the piecewise parabolic method, is used to integrate the fully nonlinear Berk-Breizman system of equations across the whole (ν a ,γ d ) parameter space. The results of this code show that the system's behavior can be classified into one of four types, each of which occurs in a well-defined region of parameter space: chaotic, periodic, steady state, and damped. The corresponding evolution in (x,v) phase space is also examined

  5. Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pegalajar-Jurado, Antonio [Technical University of Denmark; Borg, Michael [Technical University of Denmark; Bredmose, Henrik [Technical University of Denmark

    2017-08-02

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equation for the hydrodynamic forcing. The wave kinematics are computed from either theoretical or measured signals of free-surface elevation. The numerical results from each model are compared to results from wave basin tests on a scaled prototype. The comparison shows that sub and superharmonic responses can be introduced by second-order and fully nonlinear wave kinematics. The response at the wave frequency range is better reproduced when kinematics are generated from the measured surface elevation. In the future, the numerical response may be further improved by replacing the global, constant damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping.

  6. Nonlinear coupled Alfven and gravitational waves

    International Nuclear Information System (INIS)

    Kaellberg, Andreas; Brodin, Gert; Bradley, Michael

    2004-01-01

    In this paper we consider nonlinear interaction between gravitational and electromagnetic waves in a strongly magnetized plasma. More specifically, we investigate the propagation of gravitational waves with the direction of propagation perpendicular to a background magnetic field and the coupling to compressional Alfven waves. The gravitational waves are considered in the high-frequency limit and the plasma is modeled by a multifluid description. We make a self-consistent, weakly nonlinear analysis of the Einstein-Maxwell system and derive a wave equation for the coupled gravitational and electromagnetic wave modes. A WKB-approximation is then applied and as a result we obtain the nonlinear Schroedinger equation for the slowly varying wave amplitudes. The analysis is extended to 3D wave pulses, and we discuss the applications to radiation generated from pulsar binary mergers. It turns out that the electromagnetic radiation from a binary merger should experience a focusing effect, that in principle could be detected

  7. Coupling electromagnetic pulse-shaped waves into wire-like interconnection structures with a non-linear protection – Time domain calculations by the PEEC method

    Directory of Open Access Journals (Sweden)

    G. Wollenberg

    2004-01-01

    Full Text Available An interconnection system whose loads protected by a voltage suppressor and a low-pass filter against overvoltages caused by coupling pulse-shaped electromagnetic waves is analyzed. The external wave influencing the system is assumed as a plane wave with HPM form. The computation is provided by a full-wave PEEC model for the interconnection structure incorporated in the SPICE code. Thus, nonlinear elements of the protection circuit can be included in the calculation. The analysis shows intermodulation distortions and penetrations of low frequency interferences caused by intermodulations through the protection circuits. The example examined shows the necessity of using full-wave models for interconnections together with non-linear circuit solvers for simulation of noise immunity in systems protected by nonlinear devices.

  8. Nonlocal theory of electromagnetic wave decay into two electromagnetic waves in a rippled density plasma channel

    International Nuclear Information System (INIS)

    Sati, Priti; Tripathi, V. K.

    2012-01-01

    Parametric decay of a large amplitude electromagnetic wave into two electromagnetic modes in a rippled density plasma channel is investigated. The channel is taken to possess step density profile besides a density ripple of axial wave vector. The density ripple accounts for the momentum mismatch between the interacting waves and facilitates nonlinear coupling. For a given pump wave frequency, the requisite ripple wave number varies only a little w.r.t. the frequency of the low frequency decay wave. The radial localization of electromagnetic wave reduces the growth rate of the parametric instability. The growth rate decreases with the frequency of low frequency electromagnetic wave.

  9. Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals.

    Science.gov (United States)

    Bakunov, M I; Maslov, A V; Bodrov, S B

    2007-11-16

    We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct linear reflection and transmission coefficients that we derive show that such pulses can experience a gain or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that has no counterpart for free-propagating pulses.

  10. Self-modulation and filamentation of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Bingham, R.; Lashmore-Davies, C.N.

    1976-01-01

    Self-modulation and filamentation of an electromagnetic wave is considered as a problem of the non-linear interaction between electromagnetic and ion waves. A new electro-magnetic modulational instability is obtained, whose threshold is the same as that of the oscillating two-stream instability. A simple geometrical model is given of filamentation when the non-linearity is due to the ponderomotive force. The relationship between the filamentation and electromagnetic modulational instabilities and other parametric instabilities is considered. In particular, it is shown that both electromagnetic modulational and filamentation instabilities can occur at the critical density where they have the same threshold as the modulational instability of a Langmuir wave. Finally, a conservation relation (a generalization of the Manley-Rowe relation) for the wave action density is obtained for the filamentation instability. This shows clearly that this instability results from a four wave interaction. (author)

  11. Oscillating electromagnetic soliton in an anisotropic ferromagnetic medium

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, P., E-mail: perumal_sathish@yahoo.co.in [Department of Physics, K.S.R. College of Engineering (Autonomous), Tiruchengode 637215, Tamilnadu (India); Senjudarvannan, R. [Department of Physics, Jansons Institute of Technology, Karumathampatty, Coimbatore 641659 (India)

    2017-05-01

    We investigate theoretically the propagation of electromagnetic oscillating soliton in the form of breather in an anisotropic ferromagnetic medium. The interaction of magnetization with the magnetic field component of the electromagnetic (EM) wave has been studied by solving Maxwell's equations coupled with a Landau–Lifshitz equation for the magnetization of the medium. We made a small perturbation on the magnetization and magnetic field along the direction of propagation of EM wave in the framework of reductive perturbation method and the associated nonlinear magnetization dynamics is governed by a generalized derivative nonlinear Schrödinger (DNLS) equation. In order to understand the dynamics of the concerned system, we employ the Jacobi elliptic function method to solve the DNLS equation and deduce breatherlike soliton modes for the EM wave in the medium. - Highlights: • The propagation of electromagnetic oscillating soliton in an anisotropic ferromagnetic medium is investigated in the presence of varying external magnetic field. • The magnetization and electromagnetic wave modulates in the form of breathing like oscillating solitons. • The governing nonlinear spin dynamical equation is studied through a reductive perturbation method. • The magnetization components of the ferromagnetic medium are derived using Jacobi elliptic functions method with the aid of symbolic computation.

  12. Implicit solvers for large-scale nonlinear problems

    International Nuclear Information System (INIS)

    Keyes, David E; Reynolds, Daniel R; Woodward, Carol S

    2006-01-01

    Computational scientists are grappling with increasingly complex, multi-rate applications that couple such physical phenomena as fluid dynamics, electromagnetics, radiation transport, chemical and nuclear reactions, and wave and material propagation in inhomogeneous media. Parallel computers with large storage capacities are paving the way for high-resolution simulations of coupled problems; however, hardware improvements alone will not prove enough to enable simulations based on brute-force algorithmic approaches. To accurately capture nonlinear couplings between dynamically relevant phenomena, often while stepping over rapid adjustments to quasi-equilibria, simulation scientists are increasingly turning to implicit formulations that require a discrete nonlinear system to be solved for each time step or steady state solution. Recent advances in iterative methods have made fully implicit formulations a viable option for solution of these large-scale problems. In this paper, we overview one of the most effective iterative methods, Newton-Krylov, for nonlinear systems and point to software packages with its implementation. We illustrate the method with an example from magnetically confined plasma fusion and briefly survey other areas in which implicit methods have bestowed important advantages, such as allowing high-order temporal integration and providing a pathway to sensitivity analyses and optimization. Lastly, we overview algorithm extensions under development motivated by current SciDAC applications

  13. Radome electromagnetic theory and design

    CERN Document Server

    Shavit, Reuven

    2018-01-01

    Radome Electromagnetic Theory and Design explores the theoretical tools and methods required to design radomes that are fully transparent to the electromagnetic energy transmitted or received by the enclosed antenna. A radome is a weatherproof and camouflaged enclosure that protects the enclosed radar or communication antenna, and are typically used on a fixed or moving platform such as an aircraft, ship or missile.

  14. Nonlinear excitation of electron cyclotron waves by a monochromatic strong microwave: computer simulation analysis of the MINIX results

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.; Kimura, T.

    1986-01-01

    Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures.

  15. Nonlinear excitation of electron cyclotron waves by a monochromatic strong microwave: computer simulation analysis of the MINIX results

    International Nuclear Information System (INIS)

    Matsumoto, H.; Kimura, T.

    1986-01-01

    Triggered by the experimental results of the MINIX, a computer simulation study was initiated on the nonlinear excitation of electrostatic electron cyclotron waves by a monochromatic electromagnetic wave such as the transmitted microwave in the MINIX. The model used assumes that both of the excited waves and exciting (pumping) electromagnetic wave as well as the idler electromagnetic wave propagate in the direction perpendicular to the external magnetic field. The simulation code used for this study was the one-and-two-half dimensional electromagnetic particle code named KEMPO. The simulation result shows the high power electromagnetic wave produces both the backscattered electromagnetic wave and electrostatic electron cyclotron waves as a result of nonlinear parametric instability. Detailed nonlinear microphysics related to the wave excitation is discussed in terms of the nonlinear wave-wave couplings and associated ponderomotive force produced by the high power electromagnetic waves. 2 references, 4 figures

  16. Classical mechanics and electromagnetism in accelerator physics

    CERN Document Server

    Stupakov, Gennady

    2018-01-01

    This self-contained textbook with exercises discusses a broad range of selected topics from classical mechanics and electromagnetic theory that inform key issues related to modern accelerators. Part I presents fundamentals of the Lagrangian and Hamiltonian formalism for mechanical systems, canonical transformations, action-angle variables, and then linear and nonlinear oscillators. The Hamiltonian for a circular accelerator is used to evaluate the equations of motion, the action, and betatron oscillations in an accelerator. From this base, we explore the impact of field errors and nonlinear resonances. This part ends with the concept of the distribution function and an introduction to the kinetic equation to describe large ensembles of charged particles and to supplement the previous single-particle analysis of beam dynamics. Part II focuses on classical electromagnetism and begins with an analysis of the electromagnetic field from relativistic beams, both in vacuum and in a resistive pipe. Plane electromagne...

  17. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    Science.gov (United States)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  18. Second-order nonlinearity induced transparency.

    Science.gov (United States)

    Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X

    2017-04-01

    In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.

  19. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  20. Effect of second-order and fully nonlinear wave kinematics on a tension-leg-platform wind turbine in extreme wave conditions

    DEFF Research Database (Denmark)

    Pegalajar Jurado, Antonio Manuel; Borg, Michael; Robertson, Amy

    2017-01-01

    In this study, we assess the impact of different wave kinematics models on the dynamic response of a tension-leg-platform wind turbine. Aero-hydro-elastic simulations of the floating wind turbine are carried out employing linear, second-order, and fully nonlinear kinematics using the Morison equa...... damping coefficients in the model by a more detailed, customizable definition of the user-defined numerical damping....

  1. Study of dispersive and nonlinear effects of coastal wave dynamics with a fully nonlinear potential flow model

    Science.gov (United States)

    Benoit, Michel; Yates, Marissa L.; Raoult, Cécile

    2017-04-01

    Efficient and accurate numerical models simulating wave propagation are required for a variety of engineering projects including the evaluation of coastal risks, the design of protective coastal structures, and the estimation of the potential for marine renewable energy devices. Nonlinear and dispersive effects are particularly significant in the coastal zone where waves interact with the bottom, the shoreline, and coastal structures. The main challenge in developing a numerical models is finding a compromise between computational efficiency and the required accuracy of the simulated wave field. Here, a potential approach is selected and the (fully nonlinear) water wave problem is formulated using the Euler-Zakharov equations (Zakharov, 1968) describing the temporal evolution of the free surface elevation and velocity potential. The proposed model (Yates and Benoit, 2015) uses a spectral approach in the vertical (i.e. the vertical variation of the potential is approximated by a linear combination of the first NT+1 Chebyshev polynomials, following the work of Tian and Sato (2008)). The Zakharov equations are integrated in time using a fourth-order Runge-Kutta scheme with a constant time step. At each sub-timestep, the Laplace Boundary Value Problem (BVP) is solved to estimate the free surface vertical velocity using the spectral approach, with typical values of NT between 5 to 8 for practical applications. The 1DH version of the code is validated with comparisons to the experimental data set of Becq-Girard et al. (1999), which studied the propagation of irregular waves over a beach profile with a submerged bar. The nonlinear and dispersive capacities of the model are verified with the correct representation of wave-wave interactions, in particular the transfer of energy between different harmonic components during wave propagation (analysis of the transformation of the variance spectrum along the channel). Evolution of wave skewness, asymmetry and kurtosis along the

  2. Large time asymptotics of solutions to the anharmonic oscillator model from nonlinear optics

    OpenAIRE

    Jochmann, Frank

    2005-01-01

    The anharmonic oscillator model describing the propagation of electromagnetic waves in an exterior domain containing a nonlinear dielectric medium is investigated. The system under consideration consists of a generally nonlinear second order differential equation for the dielectrical polarization coupled with Maxwell's equations for the electromagnetic field. Local decay of the electromagnetic field for t to infinity in the charge free case is shown for a large class of potentials. (This pape...

  3. Collinear light scattering using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Harris, S.E.; Sokolov, A.V.; Walker, D.R.; Yavuz, D.D.; Yin, G.Y.

    2001-01-01

    The paper describes two types of nonlinear optical processes which are based on electromagnetically induced transparency. These are: (1) Collinear generation of FM-like Raman sidebands and (2) a type of pondermotive light scattering which is inherent to the interaction of slow light with cold atoms. Connections to other areas of EIT-based nonlinear optics are also described

  4. Interaction between a dark spot and a two-dimensional nonlinear photonic lattice with fully incoherent white light

    International Nuclear Information System (INIS)

    Liu, Zhaohong; Liu, Simin; Guo, Ru; Song, Tao; Zhu, Nan

    2007-01-01

    We study experimentally the interaction of a dark spot with a nonlinear photonic lattice with fully incoherent white light emitted from an incandescent bulb in the self-defocussing photovoltaic media when the dark spot is aimed at different positions of lattices with different lattice spacing. In this case a host of novel phenomena is demonstrated, including dark spot induced lattice dislocation-deformation, the annihilation of the dark spot and so on. Results demonstrate that the interaction between incoherent dark spot and photonic lattice is always attraction and the large-spacing photonic lattice is analogous to the continuous medium

  5. Dynamics and Control of a Chaotic Electromagnetic System

    OpenAIRE

    Shun-Chang Chang

    2012-01-01

    In this paper, different nonlinear dynamics analysis techniques are employed to unveil the rich nonlinear phenomena of the electromagnetic system. In particular, bifurcation diagrams, time responses, phase portraits, Poincare maps, power spectrum analysis, and the construction of basins of attraction are all powerful and effective tools for nonlinear dynamics problems. We also employ the method of Lyapunov exponents to show the occurrence of chaotic motion and to verify those numerical simula...

  6. Nonlinear theory of electroelastic and magnetoelastic interactions

    CERN Document Server

    Dorfmann, Luis

    2014-01-01

    This book provides a unified theory of nonlinear electro-magnetomechanical interactions of soft materials capable of large elastic deformations. The authors include an overview of the basic principles of the classical theory of electromagnetism from the fundamental notions of point charges and magnetic dipoles through to distributions of charge and current in a non-deformable continuum, time-dependent electromagnetic fields and Maxwell’s equations. They summarize the basic ingredients of continuum mechanics that are required to account for the deformability of material and present nonlinear constitutive frameworks for electroelastic and magnetoelastic interactions in a highly deformable material. The equations contained in the book are used to formulate and solve a variety of representative boundary-value problems for both nonlinear electroelasticity and magnetoelasticity.

  7. Nonlinear temporal modulation of pulsar radioemission

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1984-01-01

    A nonlinear theory is discussed for self-modulation of pulsar radio pulses. A nonlinear Schroedinger equation is derived for strong electromagnetic waves propagating in an electron-positron plasma. The nonlinearities arising from wave intensity induced relativistic particle mass variation may excite the modulational instability of circularly and linearly polarized pulsar radiation. The resulting wave envelopes can take the form of periodic wave trains or solitons. These nonlinear stationary wave forms may account for the formation of pulsar microstructures. (Author) [pt

  8. Generation of electromagnetic waves and Alfven waves during coalescence of magnetic islands in pair plasmas

    International Nuclear Information System (INIS)

    Sakai, J.I.; Haruki, T.; Kazimura, Y.

    2000-01-01

    It is shown by using a 2-D fully relativistic electromagnetic particle-in-cell (PIC) code that the tearing instability in a current sheet of pair plasmas is caused by Landau resonances of both electrons and positrons. Strong magnetic flux can be generated during coalescence of magnetic islands in the nonlinear phase of the tearing instability. The magnetic flux produced in an O-type magnetic island is caused from the counter-streaming instability found by Kazimura et al. (1998). It is also shown that charge separation with a quadrupole-like structure is generated from the localized strong magnetic flux. During the decay of the quadrupole-like charge structure as well as the magnetic flux, there appear wave emission with high-frequency electromagnetic waves and Alfven waves as well as Langmuir waves. We also show by using a 3-D PIC code that current filaments associated with the O-type magnetic islands become unstable against the kink instability during the coalescence of current filaments. (orig.)

  9. Synthesis, multi-nonlinear dielectric resonance and electromagnetic absorption properties of hcp-cobalt particles

    International Nuclear Information System (INIS)

    Wen, Shulai; Liu, Ying; Zhao, Xiuchen; Cheng, Jingwei; Li, Hong

    2014-01-01

    Hcp-cobalt particles were successfully prepared by a liquid phase reduction method, and the microstructure, static magnetic properties, electromagnetic and microwave absorption properties of the cobalt particles with irregular shape were investigated in detail. The measured results indicate that the saturation magnetization was less than that of hcp-Co single crystals, and the coercivity was larger than that of bulk cobalt crystal. The permittivity presents multi-nonlinear dielectric resonance, which may result from the irregular shape containing parts of cutting angle of dodecahedron of cobalt particles. The real part of permeability decreases with the frequency, and the imaginary part has a wide resonant peak. The paraffin-based composite containing 70 wt% cobalt particles possessed strong absorption characteristics with a minimum RL of −38.97 dB at 10.81 GHz and an absorption band with RL under −10 dB from 8.72 to 13.26 GHz when the thickness is 1.8 mm, which exhibits excellent microwave absorption in middle and high frequency. The architectural design of material morphologies is important for improving microwave absorption properties toward future application. - Highlights: • Hcp-cobalt particles were prepared by a liquid phase reduction method. • The saturation magnetization was less than that of hcp-Co single crystals. • The permittivity presents multi-nonlinear dielectric resonance. • The real part of permeability decreases with frequency, and the imaginary part presents a wide resonant peak. • The paraffin-based composite possessed a minimum RL of −38.97 dB at 10.81 GHz

  10. Scalar, electromagnetic, and gravitational fields interaction: Particlelike solutions

    International Nuclear Information System (INIS)

    Bronnikov, K.A.; Melnikov, V.N.; Shikin, G.N.; Staniukovich, K.P.

    1979-01-01

    Particlelike static spherically symmetric solutions to massless scalar and electromagnetic field equations combined with gravitational field equations are considered. Two criteria for particlelike solutions are formulated: the strong one (solutions are required to be singularity free) and the weak one (singularities are admitted but the total energy and material field energy should be finite). Exact solutions for the following physical systems are considered with their own gravitational field: (i) linear scalar (minimally coupled or conformal) plus electromagnetic field; (ii) the same fields with a bare mass source in the form of charged incoherent matter distributions; (iii) nonlinear electromagnetic field with an abritrary dependence on the invariant F/sub alphabeta/F/sup alphabeta/; and (iv) directly interacting scalar and electromagnetic fields. Case (i) solutions are not particlelike (except those with horizons, in which static regions formally satisfy the weak criterion). For systems (ii), examples of nonsingular models are constructed, in particular, a model for a particle--antiparticle pair of a Wheeler-handle type, without scalar field and explict electric charges. Besides, a number of limitations upon nonsingular model parameters is indicated. Systems (iii) are proved to violate the strong criterion for any type of nonlinearity but can satisfy the weak criterion (e.g., the Born--Infeld nonlinearity). For systems (iv) some particlelike solutions by the weak criterion are constructed and a regularizing role of gravitation is demonstrated. Finally, an example of a field system satisfying the strong criterion is given

  11. Electromagnetic Transport From Microtearing Mode Turbulence

    International Nuclear Information System (INIS)

    Guttenfelder, W.; Candy, J.; Kaye, S.M.; Nevins, W.M.; Wang, E.; Bell, R.E.; Hammett, G.W.; LeBlanc, B.P.; Mikkelsen, D.R.; Yuh, H.

    2011-01-01

    This Letter presents non-linear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high beta discharge in the National Spherical Torus Experiment (NSTX). The predicted electron thermal transport is comparable to that given by experimental analysis, and it is dominated by the electromagnetic contribution of electrons free streaming along the resulting stochastic magnetic field line trajectories. Experimental values of flow shear can significantly reduce the predicted transport.

  12. Efficient uncertainty quantification of a fully nonlinear and dispersive water wave model with random inputs

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Eskilsson, Claes

    2016-01-01

    A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a formulation of a fully nonlinear and dispersive potential flow water wave model with random inputs for the probabilistic description...... at different points in the parameter space, allowing for the reuse of existing simulation software. The choice of the applied methods is driven by the number of uncertain input parameters and by the fact that finding the solution of the considered model is computationally intensive. We revisit experimental...... benchmarks often used for validation of deterministic water wave models. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in comparison with experimental measurements could be partially explained...

  13. Probing nonlinear electrodynamics in slowly rotating spacetimes through neutrino astrophysics

    OpenAIRE

    Cuesta, Herman J. Mosquera; Lambiase, Gaetano; Pereira, Jonas P.

    2017-01-01

    Huge electromagnetic fields are known to be present during the late stages of the dynamics of supernovae. Thus, when dealing with electrodynamics in this context, the possibility may arise to probe nonlinear theories (generalizations of the Maxwellian electromagnetism). We firstly solve Einstein field equations minimally coupled to an arbitrary (current-free) nonlinear Lagrangian of electrodynamics (NLED) in the slow rotation regime $a\\ll M$ (black hole's mass), up to first order in $a/M$. We...

  14. Studying the formation of non-linear bursts in fully turbulent channel flows

    Science.gov (United States)

    Encinar, Miguel P.; Jimenez, Javier

    2017-11-01

    Linear transient growth has been suggested as a possible explanation for the intermittent behaviour, or `bursting', in shear flows with a stable mean velocity profile. Analysing fully non-linear DNS databases yields a similar Orr+lift-up mechanism, but acting on spatially localised wave packets rather than on monochromatic infinite wavetrains. The Orr mechanism requires the presence of backwards-leaning wall-normal velocity perturbations as initial condition, but the linear theory fails to clarify how these perturbations are formed. We investigate the latter in a time-resolved wavelet-filtered turbulent channel database, which allows us to assign an amplitude and an inclination angle to a flow region of selected size. This yields regions that match the dynamics of linear Orr for short times. We find that a short streamwise velocity (u) perturbation (i.e. a streak meander) consistently appears before the burst, but disappears before the burst reaches its maximum amplitude. Lift-up then generates a longer streamwise velocity perturbation. The initial streamwise velocity is also found to be backwards-leaning, contrary to the averaged energy-containing scales, which are known to be tilted forward. Funded by the ERC COTURB project.

  15. Traveling waves in a free-electron laser with an electromagnetic wiggler

    International Nuclear Information System (INIS)

    Olumi, Mohsen; Maraghechi, B; Rouhani, M H

    2011-01-01

    The propagation of electromagnetic traveling wave in a free-electron laser (FEL) with an electromagnetic wiggler is investigated using the relativistic fluid-Maxwell formulation. By adapting the traveling-wave ansatz, three coupled, nonlinear ordinary differential equations are obtained describing the nonlinear propagation of the coupled wave. These equations may be used to study saturation in FELs. By linearizing the nonlinear equations dispersion relations for the traveling wave are obtained. Numerical solution of the small-signal traveling dispersion relation reveals the coupling of radiation to both slow and fast space-charge waves. It is shown that the traveling wave, which is not a normal mode in a laboratory frame, becomes a normal mode in terms of a transformed variable.

  16. Nonlinear diffuse scattering of the random-phased wave

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Arinaga, Shinji; Mima, Kunioki.

    1983-01-01

    First experimental observation of the nonlinear diffuse scattering is reported. This new effect was observed in the propagation of the random-phased wave through a nonlinear dielectric medium. This effect is ascribed to the diffusion of the wavevector of the electro-magnetic wave to the lateral direction due to the randomly distributed nonlinear increase in the refractive index. (author)

  17. New solitary solutions with compact support for Boussinesq-like B(2n, 2n) equations with fully nonlinear dispersion

    International Nuclear Information System (INIS)

    Zhu Yonggui; Lu Chao

    2007-01-01

    In this paper, the Boussinesq-like equations with fully nonlinear dispersion, B(2n, 2n) equations: u tt + (u 2n ) xx + (u 2n ) xxxx 0 which exhibit compactons: solitons with compact support, are studied. New exact solitary solutions with compact support are found. The special case B(2, 2) is chosen to illustrate the concrete scheme of the decomposition method in B(2n, 2n) equations. General formulas for the solutions of B(2n, 2n) equations are established

  18. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Lee, W. Wei-li; Hong Qin; Startsev, Edward

    2001-01-01

    This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed

  19. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  20. Analysis of bus width and delay on a fully digital signum nonlinearity chaotic oscillator

    KAUST Repository

    Mansingka, Abhinav S.; Radwan, Ahmed G.; Salama, Khaled N.; Zidan, Mohammed A.

    2012-01-01

    This paper introduces the first fully digital implementation of a 3rd order ODE-based chaotic oscillator with signum nonlinearity. A threshold bus width of 12-bits for reliable chaotic behavior is observed, below which the system output becomes periodic. Beyond this threshold, the maximum Lyapunov exponent (MLE) is shown to improve up to a peak value at 16-bits and subsequently decrease with increasing bus width. The MLE is also shown to gradually increase with number of introduced internal delay cycles until a peak value at 14 cycles, after which the system loses chaotic properties. Introduced external delay cycles are shown to rotate the attractors in 3-D phase space. Bus width and delay elements can be independently modulated to optimize the system to suit specifications. The experimental results of the system show low area and high performance on a Xilinx Virtex 4 FPGA with throughput of 13.35 Gbits/s for a 32-bit implementation.

  1. Analysis of bus width and delay on a fully digital signum nonlinearity chaotic oscillator

    KAUST Repository

    Mansingka, Abhinav S.

    2012-07-29

    This paper introduces the first fully digital implementation of a 3rd order ODE-based chaotic oscillator with signum nonlinearity. A threshold bus width of 12-bits for reliable chaotic behavior is observed, below which the system output becomes periodic. Beyond this threshold, the maximum Lyapunov exponent (MLE) is shown to improve up to a peak value at 16-bits and subsequently decrease with increasing bus width. The MLE is also shown to gradually increase with number of introduced internal delay cycles until a peak value at 14 cycles, after which the system loses chaotic properties. Introduced external delay cycles are shown to rotate the attractors in 3-D phase space. Bus width and delay elements can be independently modulated to optimize the system to suit specifications. The experimental results of the system show low area and high performance on a Xilinx Virtex 4 FPGA with throughput of 13.35 Gbits/s for a 32-bit implementation.

  2. A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations

    International Nuclear Information System (INIS)

    Yomba, Emmanuel

    2008-01-01

    With the aid of symbolic computation, a generalized auxiliary equation method is proposed to construct more general exact solutions to two types of NLPDEs. First, we present new family of solutions to a nonlinear Klein-Gordon equation, by using this auxiliary equation method including a new first-order nonlinear ODE with six-degree nonlinear term proposed by Sirendaoreji. Then, we apply an indirect F-function method very close to the F-expansion method to solve the generalized Camassa-Holm equation with fully nonlinear dispersion and fully nonlinear convection C(l,n,p). Taking advantage of the new first-order nonlinear ODE with six degree nonlinear term, this indirect F-function method is used to map the solutions of C(l,n,p) equations to those of that nonlinear ODE. As a result, we can successfully obtain in a unified way, many exact solutions

  3. Nonlinear properties of gated graphene in a strong electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Avetisyan, A. A., E-mail: artakav@ysu.am; Djotyan, A. P., E-mail: adjotyan@ysu.am [Yerevan State University, Department of Physics (Armenia); Moulopoulos, K., E-mail: cos@ucy.ac.cy [University of Cyprus, Department of Physics (Cyprus)

    2017-03-15

    We develop a microscopic theory of a strong electromagnetic field interaction with gated bilayer graphene. Quantum kinetic equations for density matrix are obtained using a tight binding approach within second quantized Hamiltonian in an intense laser field. We show that adiabatically changing the gate potentials with time may produce (at resonant photon energy) a full inversion of the electron population with high density between valence and conduction bands. In the linear regime, excitonic absorption of an electromagnetic radiation in a graphene monolayer with opened energy gap is also studied.

  4. Metamaterial Electromagnetic Superabsorber with Arbitrary Geometries

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2010-06-01

    Full Text Available The electromagnetic superabsorber that has larger absorption cross section than its real size may be a novel photothermal device with improved solar energy conversion rates. Based on a transformation optical approach, the material parameters for a two-dimensional (2D metamaterial-assisted electromagnetic superabsorber with arbitrary geometries are derived and validated by numerical simulation. We find that for the given geometry size, the absorption cross section of the superabsorber using nonlinear transformation is larger than that using linear transformation. These transformations can also be specialized to the designing the N-sided regular polygonal superabsorber just by changing the contour equation. All theoretical and numerical results validate the material parameters for the 2D electromagnetic superabsorber we have developed.

  5. A sparse electromagnetic imaging scheme using nonlinear landweber iterations

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting

  6. Electromagnetic solitary vortices in rotating plasma

    International Nuclear Information System (INIS)

    Liu, J.; Horton, W.

    1985-12-01

    The nonlinear equations describing drift-Alfven solitary vortices in a low β, rotating plasma are derived. Two types of solitary vortex solutions along with their corresponding nonlinear dispersion relations are obtained. Both solutions have the localized coherent dilopar structure. The first type of solution belongs to the family of the usual Rossby or drift wave vortex, while the second type of solution is intrinsic to the electromagnetic perturbation in a magnetized plasma and is a complicated structure. While the first type of vortex is a solution to a second order differential equation the second one is the solution of a fourth order differential equation intrinsic to the electromagnetic problem. The fourth order vortex solution has two intrinsic space scales in contrast to the single space scale of the previous drift vortex solution. With the second short scale length the parallel current density at the vortex interface becomes continuous. As special cases the rotational electron drift vortex and the rotational ballooning vortex also are given. 10 refs

  7. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  8. Terahertz Solitons in Biomolecular Systems and their Excitation by External Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Bugay А.N.

    2015-01-01

    Full Text Available Nonlinear dynamics of charge and acoustic excitations in cellular microtubules is considered. Different types of nonlinear solitary waves were studied taking account for dissipation. The mechanism of electro-acoustic pulse excitation by external electromagnetic field of terahertz frequency is recognized.

  9. Fluid analysis of electromagnetic ballooning modes in a fully toroidal description

    International Nuclear Information System (INIS)

    Andersson, P.; Weiland, J.

    1986-01-01

    A comparatively complete two fluid description of collisionless electromagnetic ballooning modes has been derived. Using an unexpanded ion density response it has been shown that a necessary and sufficient condition for an instability below the MHD/BETA/ limit is the presence of an ion temperature gradient exceeding a threshold. The cause of this instability has been identified and an analytical dispersion relation is given. (authors)

  10. Particle simulations of nonlinear whistler and Alfven wave instabilities - Amplitude modulation, decay, soliton and inverse cascading

    International Nuclear Information System (INIS)

    Omura, Yoshiharu; Matsumoto, Hiroshi.

    1989-01-01

    Past theoretical and numerical studies of the nonlinear evolution of electromagnetic cyclotron waves are reviewed. Such waves are commonly observed in space plasmas such as Alfven waves in the solar wind or VLF whistler mode waves in the magnetosphere. The use of an electromagnetic full-particle code to study an electron cyclotron wave and of an electromagnetic hybrid code to study an ion cyclotron wave is demonstrated. Recent achievements in the simulations of nonlinear revolution of electromagnetic cyclotron waves are discussed. The inverse cascading processes of finite-amplitude whistler and Alfven waves is interpreted in terms of physical elementary processes. 65 refs

  11. Electromagnetic solitary waves in magnetized plasmas

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Holm, D.D.; Morrison, P.J.

    1985-03-01

    A Hamiltonian formulation, in terms of noncanonical Poisson bracket, is presented for a nonlinear fluid system that includes reduced magnetohydrodynamics and the Hasegawa-Mima equation as limiting cases. The single-helicity and axisymmetric versions possess three nonlinear Casimir invariants, from which a generalized potential can be constructed. Variation of the generalized potential yields a description of exact nonlinear stationary states. The new equilibria, allowing for plasma flow as well as partial electron adiabaticity, are distinct from those found in conventional magnetohydrodynamic theory. They differ from electrostatic stationary states in containing plasma current and magnetic field excitation. One class of steady-state solutions is shown to provide a simple electromagnetic generalization of drift-solitary waves

  12. Nonlinear theory of the free-electron laser

    International Nuclear Information System (INIS)

    Chian, A.C.-L.; Padua Brito Serbeto, A. de.

    1984-01-01

    A theory of Raman free-electron laser using a circularly polarized electromagnetic pump is investigated. Coupled wave equations that describe both linear and nonlinear evolution of stimulated Raman scattering are derived. The dispersion relation and the growth rate for the parametric instability are obtained. Nonlinear processes that may lead to saturation of the free-electron laser are discussed. (Author) [pt

  13. Electromagnetic waves in single- and multi-Josephson junctions

    International Nuclear Information System (INIS)

    Matsumoto, Hideki; Koyama, Tomio; Machida, Masahiko

    2008-01-01

    The terahertz wave emission from the intrinsic Josephson junctions is one of recent topics in high T c superconductors. We investigate, by numerical simulation, properties of the electromagnetic waves excited by a constant bias current in the single- and multi-Josephson junctions. Nonlinear equations of phase-differences are solved numerically by treating the effects of the outside electromagnetic fields as dynamical boundary conditions. It is shown that the emitted power of the electromagnetic wave can become large near certain retrapping points of the I-V characteristics. An instability of the inside phase oscillation is related to large amplitude of the oscillatory waves. In the single- (or homogeneous mutli-) Josephson junctions, electromagnetic oscillations can occur either in a form of standing waves (shorter junctions) or by formation of vortex-antivortex pairs (longer junctions). How these two effects affects the behavior of electromagnetic waves in the intrinsic Josephson junctions is discussed

  14. Rogue waves generation in a left-handed nonlinear transmission line with series varactor diodes

    Science.gov (United States)

    Onana Essama, B. G.; Atangana, J.; Biya Motto, F.; Mokhtari, B.; Cherkaoui Eddeqaqi, N.; Kofane, Timoleon C.

    2014-07-01

    We investigate the electromagnetic wave behavior and its characterization using collective variables technique. Second-order dispersion, first- and second-order nonlinearities, which strongly act in a left-handed nonlinear transmission line with series varactor diodes, are taken into account. Four frequency ranges have been found. The first one gives the so-called energetic soliton due to a perfect combination of second-order dispersion and first-order nonlinearity. The second frequency range presents a dispersive soliton leading to the collapse of the electromagnetic wave at the third frequency range. But the fourth one shows physical conditions which are able to provoke the appearance of wave trains generation with some particular waves, the rogue waves. Moreover, we demonstrate that the number of rogue waves increases with frequency. The soliton, thereafter, gains a relative stability when second-order nonlinearity comes into play with some specific values in the fourth frequency range. Furthermore, the stability conditions of the electromagnetic wave at high frequencies have been also discussed.

  15. On the self-trapping of an electromagnetic wave in magnetized plasma

    International Nuclear Information System (INIS)

    El-Ashry, M.Y.; Berezhiani, V.I.; Pichkhadze, Sh.D.

    1987-06-01

    The possibility of relativistic self-trapping of an electromagnetic wave in magnetized plasma is studied. It is shown that in the case of propagation of fast wave packet of electromagnetic wave in plasma, self-trapping is possible due to the effect of relativistic non-linearity, which is effective even for small amplitudes of the pumping wave. (author). 7 refs

  16. Nonlinear generation of the fundamental radiation in plasmas: the influence of induced ion-acoustic and Langmuir waves

    International Nuclear Information System (INIS)

    Rizzato, F.B.

    1992-01-01

    A nonlinear emission mechanism of electromagnetic waves at the fundamental plasma frequency has been examined. This mechanism is based on the electromagnetic oscillating two-stream instability driven by two oppositely propagating Langmuir waves. The excitation of the electromagnetic oscillating two-stream instability is due to nonlinear wave-wave coupling involving Langmuir waves, low-frequency density waves and electromagnetic waves. The Chian and Alves model is improved using the generalized Zakharov equations. Attention is directed toward the influence of induced low-frequency and Langmuir waves on the properties of the electromagnetic oscillating two-stream instability. Presumably, the properties derived in the present context may be relevant to both space and laboratory plasmas. (author)

  17. The modulational and filamentational instabilities of two coupled electromagnetic waves in plasmas

    International Nuclear Information System (INIS)

    Shukla, P.K.

    1992-01-01

    The modulational and filamentational instabilities of two coupled electromagnetic waves have been investigated, taking into account the combined effect of relativistic electron mass variations and nonresonant density fluctuations that are driven by the ponderomotive force. The relevance of our investigation to phenomena related with nonlinear mixing of electromagnetic waves is pointed out. (orig.)

  18. Electromagnetically Induced Transparency In Rydberg Atomic Medium

    Science.gov (United States)

    Deng, Li; Cong, Lu; Chen, Ai-Xi

    2018-03-01

    Due to possessing big principal quantum number, Rydberg atom has some unique properties, for example: its radiative lifetime is long, dipole moment is large, and interaction between atoms is strong and so on. These properties make one pay attention to Rydberg atoms. In this paper we investigate the effects of Rydberg dipole-dipole interactions on electromagnetically induced transparency (EIT) schemes and group velocity in three-level systems of ladder type, which provides theoretical foundation for exploring the linear and nonlinear characteristics of light in a Rydberg electromagnetically-induced-transparency medium.

  19. ASPEN: A fully kinetic, reduced-description particle-in-cell model for simulating parametric instabilities

    International Nuclear Information System (INIS)

    Vu, H.X.; Bezzerides, B.; DuBois, D.F.

    1999-01-01

    A fully kinetic, reduced-description particle-in-cell (RPIC) model is presented in which deviations from quasineutrality, electron and ion kinetic effects, and nonlinear interactions between low-frequency and high-frequency parametric instabilities are modeled correctly. The model is based on a reduced description where the electromagnetic field is represented by three separate temporal envelopes in order to model parametric instabilities with low-frequency and high-frequency daughter waves. Because temporal envelope approximations are invoked, the simulation can be performed on the electron time scale instead of the time scale of the light waves. The electrons and ions are represented by discrete finite-size particles, permitting electron and ion kinetic effects to be modeled properly. The Poisson equation is utilized to ensure that space-charge effects are included. The RPIC model is fully three dimensional and has been implemented in two dimensions on the Accelerated Strategic Computing Initiative (ASCI) parallel computer at Los Alamos National Laboratory, and the resulting simulation code has been named ASPEN. The authors believe this code is the first particle-in-cell code capable of simulating the interaction between low-frequency and high-frequency parametric instabilities in multiple dimensions. Test simulations of stimulated Raman scattering, stimulated Brillouin scattering, and Langmuir decay instability are presented

  20. Nonlinear and turbulent processes in physics. Volume 2. Nonlinear effects in various areas of science

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeev, R Z

    1984-01-01

    The results of theoretical and experimental investigations of nonlinear and turbulent phenomena from a wide range of fields in physics are presented in reviews and reports. Topics examined include localized vortex formations in an ideal fluid, phase transitions in crystals, spatially nonuniform structures in condensed matter, solitons in molecular systems, the migration of quasi-particles in easily deformed crystals, bifurcations and dissipative structures in distributed kinetic systems, and structures in a nonlinear burning medium. Consideration is given to macroscopic motion generation in nonequilibrium media, the interaction of bulk and surface wave trains, near-threshold instabilities in hydrodynamics, solitons in nonlinear elastic rods with variable characteristics, the generation of solitons and vortices from chaos, and nonlinear electromagnetic-wave dissipation in an electron system.

  1. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  2. Ultrashort electromagnetic clusters formation by two-stream superheterodyne free electron lasers

    DEFF Research Database (Denmark)

    Kulish, Viktor V.; Lysenko, Alexander V.; Volk, Iurii I.

    2016-01-01

    A cubic nonlinear self-consistent theory of multiharmonic two-stream superheterodyne free electron lasers (TSFEL) of a klystron type, intended to form powerful ultrashort clusters of an electromagnetic field is constructed. Plural three-wave parametric resonant interactions of wave harmonics have...... been taken into account. An amplitude, phase and spectral analyses of the processes occurring in such devices have been carried out. The conditions necessary for the forming of the ultrashort clusters of an electromagnetic field have been found out. The possibility of the ultrashort electromagnetic...

  3. Spatiotemporal solitons in quadratic nonlinear media

    Indian Academy of Sciences (India)

    Optical solitons are localized electromagnetic waves that propagate stably in .... conversion generates a nonlinear phase shift ∆ΦNL at the FH frequency. ... to incidence on the SHG crystal (lithium iodate or barium borate, cut for type-I interac-.

  4. New analytical results in the electromagnetic response of composite superconducting wire in parallel fields

    NARCIS (Netherlands)

    Niessen, E.M.J.; Niessen, E.M.J.; Zandbergen, P.J.

    1993-01-01

    Analytical results are presented concerning the electromagnetic response of a composite superconducting wire in fields parallel to the wire axis, using the Maxwell equations supplemented with constitutive equations. The problem is nonlinear due to the nonlinearity in the constitutive equation

  5. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    Science.gov (United States)

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  6. Variation principle for nonlinear wave propagation

    International Nuclear Information System (INIS)

    Watanabe, T.; Lee, Y.C.; Nishikawa, Kyoji; Hojo, H.; Yoshida, Y.

    1976-01-01

    Variation principle is derived which determines stationary nonlinear propagation of electrostatic waves in the self-consistent density profile. Example is given for lower-hybrid waves and the relation to the variation principle for the Lagrangian density of electromagnetic fluids is discussed

  7. Nonlinear aspects of quantum plasma physics

    International Nuclear Information System (INIS)

    Shukla, Padma K; Eliasson, B

    2010-01-01

    Dense quantum plasmas are ubiquitous in planetary interiors and in compact astrophysical objects (e.g., the interior of white dwarf stars, in magnetars, etc.), in semiconductors and micromechanical systems, as well as in the next-generation intense laser-solid density plasma interaction experiments and in quantum X-ray free-electron lasers. In contrast to classical plasmas, quantum plasmas have extremely high plasma number densities and low temperatures. Quantum plasmas are composed of electrons, positrons and holes, which are degenerate. Positrons (holes) have the same (slightly different) mass as electrons, but opposite charge. The degenerate charged particles (electrons, positrons, and holes) obey the Fermi-Dirac statistics. In quantum plasmas, there are new forces associated with (i) quantum statistical electron and positron pressures, (ii) electron and positron tunneling through the Bohm potential, and (iii) electron and positron angular momentum spin. Inclusion of these quantum forces allows the existence of very high-frequency dispersive electrostatic and electromagnetic waves (e.g., in the hard X-ray and gamma-ray regimes) with extremely short wavelengths. In this review paper, we present theoretical backgrounds for some important nonlinear aspects of wave-wave and wave-electron interactions in dense quantum plasmas. Specifically, we focus on nonlinear electrostatic electron and ion plasma waves, novel aspects of three-dimensional quantum electron fluid turbulence, as well as nonlinearly coupled intense electromagnetic waves and localized plasma wave structures. Also discussed are the phase-space kinetic structures and mechanisms that can generate quasistationary magnetic fields in dense quantum plasmas. The influence of the external magnetic field and the electron angular momentum spin on the electromagnetic wave dynamics is discussed. Finally, future perspectives of the nonlinear quantum plasma physics are highlighted. (reviews of topical problems)

  8. Electromagnetic fields with vanishing quantum corrections

    Science.gov (United States)

    Ortaggio, Marcello; Pravda, Vojtěch

    2018-04-01

    We show that a large class of null electromagnetic fields are immune to any modifications of Maxwell's equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classical electrodynamics containing both non-linear terms and higher derivatives, including, e.g., non-linear electrodynamics as well as QED- and string-motivated effective theories. This result holds not only in a flat or (anti-)de Sitter background, but also in a larger subset of Kundt spacetimes, which allow for the presence of aligned gravitational waves and pure radiation.

  9. Fully non-linear multi-species Fokker-Planck-Landau collisions for gyrokinetic particle-in-cell simulations of fusion plasma

    Science.gov (United States)

    Hager, Robert; Yoon, E. S.; Ku, S.; D'Azevedo, E. F.; Worley, P. H.; Chang, C. S.

    2015-11-01

    We describe the implementation, and application of a time-dependent, fully nonlinear multi-species Fokker-Planck-Landau collision operator based on the single-species work of Yoon and Chang [Phys. Plasmas 21, 032503 (2014)] in the full-function gyrokinetic particle-in-cell codes XGC1 [Ku et al., Nucl. Fusion 49, 115021 (2009)] and XGCa. XGC simulations include the pedestal and scrape-off layer, where significant deviations of the particle distribution function from a Maxwellian can occur. Thus, in order to describe collisional effects on neoclassical and turbulence physics accurately, the use of a non-linear collision operator is a necessity. Our collision operator is based on a finite volume method using the velocity-space distribution functions sampled from the marker particles. Since the same fine configuration space mesh is used for collisions and the Poisson solver, the workload due to collisions can be comparable to or larger than the workload due to particle motion. We demonstrate that computing time spent on collisions can be kept affordable by applying advanced parallelization strategies while conserving mass, momentum, and energy to reasonable accuracy. We also show results of production scale XGCa simulations in the H-mode pedestal and compare to conventional theory. Work supported by US DOE OFES and OASCR.

  10. Observational constraints on electromagnetic Born-Infeld cosmology

    International Nuclear Information System (INIS)

    Bretón, Nora; Montiel, Ariadna; Lazkoz, Ruth

    2012-01-01

    The cosmological model consisting of an electromagnetic Born-Infeld (BI) field coupled to a Robertson-Walker geometry is tested with the standard probes of SNIa, GRBs and direct Hubble parameter. The analysis shows that the inclusion of the nonlinear electromagnetic component does not contribute in a significative way to the observed expansion. The BI electromagnetic matter is considered with an abundance of Ω BI , that our best fit leads to Ω BI = 0.037 when tested with SNIa and the Hubble parameter data (0.1 BI = 0.304, which may indicate that this electrodynamics was important at epochs close to the appearance of large structure (z ≈ 7), although this late result has not as much reliability as that corresponding to the first two probes, since we know that the dispersion in GRBs data is still considerable. In view of these results we can rule out the electromagnetic Born-Infeld matter as the origin of the present accelerated expansion, this conclusion concerns exclusively the Born-Infeld theory

  11. Design Study of Fully Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Jensen, Bogi Bech

    2015-01-01

    In this paper, two fully superconducting generators employing MgB2 armature winding, with YBCO and MgB2 field winding respectively, are presented and analyzed. The ac loss in armature winding is estimated, and a simple comparative study is carried out. The results show that both electromagnetic...... designs for fully superconducting generators are promising with respect to the power density. However, the cost of removing ac loss in armature winding is as high as $900 000. It is also noted that with the current price of YBCO tape, the generator employing MgB 2 field winding would have lower cost....

  12. Nonlinear electrostatic wave equations for magnetized plasmas - II

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.

    1985-01-01

    For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....

  13. Electromagnetic wave collapse in a radiation background

    International Nuclear Information System (INIS)

    Marklund, Mattias; Brodin, Gert; Stenflo, Lennart

    2003-01-01

    The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed

  14. Effect of weak nonlinearities on the plane waves in a plasma stream

    International Nuclear Information System (INIS)

    Seshadri, S.R.

    1976-01-01

    The effect of weak nonlinearities on the monochromatic plane waves in a cold infinite plasma stream is investigated for the case in which the waves are progressing parallel to the drift velocity. The fast and the slow space-charge waves undergo amplitude-dependent frequency and wave number shifts. There is a long time slow modulation of the amplitude of the electromagnetic mode which becomes unstable to this nonlinear wave modulation. The importance of using the relativistically correct equation of motion for predicting correctly the modulational stability of the electromagnetic mode is pointed out. (author)

  15. Electromagnetic nonlinearities in a Roebel-cable-based accelerator magnet prototype: variational approach

    Science.gov (United States)

    Ruuskanen, J.; Stenvall, A.; Lahtinen, V.; Pardo, E.

    2017-02-01

    Superconducting magnets are the most expensive series of components produced in the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). When developing such magnets beyond state-of-the-art technology, one possible option is to use high-temperature superconductors (HTS) that are capable of tolerating much higher magnetic fields than low-temperature superconductors (LTS), carrying simultaneously high current densities. Significant cost reductions due to decreased prototype construction needs can be achieved by careful modelling of the magnets. Simulations are used, e.g. for designing magnets fulfilling the field quality requirements of the beampipe, and adequate protection by studying the losses occurring during charging and discharging. We model the hysteresis losses and the magnetic field nonlinearity in the beampipe as a function of the magnet’s current. These simulations rely on the minimum magnetic energy variation principle, with optimization algorithms provided by the open-source optimization library interior point optimizer. We utilize this methodology to investigate a research and development accelerator magnet prototype made of REBCO Roebel cable. The applicability of this approach, when the magnetic field dependence of the superconductor’s critical current density is considered, is discussed. We also scrutinize the influence of the necessary modelling decisions one needs to make with this approach. The results show that different decisions can lead to notably different results, and experiments are required to study the electromagnetic behaviour of such magnets further.

  16. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator.

    Science.gov (United States)

    Wang, Xin; Wen, Zhen; Guo, Hengyu; Wu, Changsheng; He, Xu; Lin, Long; Cao, Xia; Wang, Zhong Lin

    2016-12-27

    Ocean energy, in theory, is an enormous clean and renewable energy resource that can generate electric power much more than that required to power the entire globe without adding any pollution to the atmosphere. However, owing to a lack of effective technology, such blue energy is almost unexplored to meet the energy requirement of human society. In this work, a fully packaged hybrid nanogenerator consisting of a rolling triboelectric nanogenerator (R-TENG) and an electromagnetic generator (EMG) is developed to harvest water motion energy. The outstanding output performance of the R-TENG (45 cm 3 in volume and 28.3 g in weight) in the low-frequency range (hybrid nanogenerator to deliver valuable outputs in a broad range of operation frequencies. Therefore, the hybrid nanogenerator can maximize the energy conversion efficiency and broaden the operating frequency simultaneously. In terms of charging capacitors, this hybrid nanogenerator provides not only high voltage and consistent charging from the TENG component but also fast charging speed from the EMG component. The practical application of the hybrid nanogenerator is also demonstrated to power light-emitting diodes by harvesting energy from stimulated tidal flow. The high robustness of the R-TENG is also validated based on the stable electrical output after continuous rolling motion. Therefore, the hybrid R-TENG and EMG device renders an effective and sustainable approach toward large-scale blue energy harvesting in a broad frequency range.

  17. Multi-atom Jaynes-Cummings model with nonlinear effects

    International Nuclear Information System (INIS)

    Aleixo, Armando Nazareno Faria; Balantekin, Akif Baha; Ribeiro, Marco Antonio Candido

    2001-01-01

    The standard Jaynes-Cummings (JC) model and its extensions, normally used in quantum optics, idealizes the interaction of matter with electromagnetic radiation by a simple Hamiltonian of a two-level atom coupled to a single bosonic mode. This Hamiltonian has a fundamental importance to the field of quantum optics and it is a central ingredient in the quantized description of any optical system involving the interaction between light and atoms. The JC Hamiltonian defines a molecule, a composite system formed from the coupling of a two-state system and a quantized harmonic oscillator. For this Hamiltonian, mostly the single-particle situation has been studied. This model can also be extended for the situation where one has N two-level systems, which interact only with the electromagnetic radiation. In this case the effects of the spatial distribution of the particles it is not taken into account and the spin angular momentum S-circumflex i of each particle contributes to form a total angular momentum J-circumflex of the system. When one considers the effects due to the spatial variation in the field intensity in a nonlinear medium it is necessary to further add a Kerr term to the standard JC Hamiltonian. This kind of nonlinear JC Hamiltonian is used in the study of micro masers. Another nonlinear variant of the JC model takes the coupling between matter and the radiation to depend on the intensity of the electromagnetic field. This model is interesting since this kind of interaction means that effectively the coupling is proportional to the amplitude of the field representing a very simple case of a nonlinear interaction corresponding to a more realistic physical situation. In this work we solve exactly the problem of the interaction of a N two-level atoms with an electromagnetic radiation when nonlinear effects due to the spatial variation in the field intensity in a nonlinear Kerr medium and the dependence on the intensity of the electromagnetic field on the matter

  18. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    International Nuclear Information System (INIS)

    Hamedi, H R; Ruseckas, J; Juzeliūnas, G

    2017-01-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N -type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell–Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system. (paper)

  19. Three-dimensional sparse electromagnetic imaging accelerated by projected steepest descent

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2016-01-01

    An efficient and accurate scheme for solving the nonlinear electromagnetic inverse scattering problem on three-dimensional sparse investigation domains is proposed. The minimization problem is constructed in such a way that the data misfit between

  20. Electromagnetic radiation from strong Langmuir turbulence

    International Nuclear Information System (INIS)

    Akimoto, K.; Rowland, H.L.; Papadopoulos, K.

    1988-01-01

    A series of computer simulations is reported showing the generation of electromagnetic radiation by strong Langmuir turbulence. The simulations were carried out with a fully electromagnetic 2 1/2 -dimensional fluid code. The radiation process takes place in two stages that reflect the evolution of the electrostatic turbulence. During the first stage while the electrostatic turbulence is evolving from an initial linear wave packet into a planar soliton, the radiation is primarily at ω/sub e/. During the second stage when transverse instabilities lead to the collapse and dissipation of the solitons, 2ω/sub e/ and ω/sub e/ radiation are comparable, and 3ω/sub e/ is also present. The radiation power at ω = 2ω/sub e/ is in good agreement with theoretical predictions for electromagnetic emissions by collapsing solitons

  1. The Nature of Grand Minima and Maxima from Fully Nonlinear Flux Transport Dynamos

    Energy Technology Data Exchange (ETDEWEB)

    Inceoglu, Fadil; Arlt, Rainer [Leibniz-Institute for Astrophysics Potsdam, An der Sternwarte 16, D-14482, Potsdam (Germany); Rempel, Matthias, E-mail: finceoglu@aip.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States)

    2017-10-20

    We aim to investigate the nature and occurrence characteristics of grand solar minimum and maximum periods, which are observed in the solar proxy records such as {sup 10}Be and {sup 14}C, using a fully nonlinear Babcock–Leighton type flux transport dynamo including momentum and entropy equations. The differential rotation and meridional circulation are generated from the effect of turbulent Reynolds stress and are subjected to back-reaction from the magnetic field. To generate grand minimum- and maximum-like periods in our simulations, we used random fluctuations in the angular momentum transport process, namely the Λ-mechanism, and in the Babcock–Leighton mechanism. To characterize the nature and occurrences of the identified grand minima and maxima in our simulations, we used the waiting time distribution analyses, which reflect whether the underlying distribution arises from a random or a memory-bearing process. The results show that, in the majority of the cases, the distributions of grand minima and maxima reveal that the nature of these events originates from memoryless processes. We also found that in our simulations the meridional circulation speed tends to be smaller during grand maximum, while it is faster during grand minimum periods. The radial differential rotation tends to be larger during grand maxima, while it is smaller during grand minima. The latitudinal differential rotation, on the other hand, is found to be larger during grand minima.

  2. Hybrid fully nonlinear BEM-LBM numerical wave tank with applications in naval hydrodynamics

    Science.gov (United States)

    Mivehchi, Amin; Grilli, Stephan T.; Dahl, Jason M.; O'Reilly, Chris M.; Harris, Jeffrey C.; Kuznetsov, Konstantin; Janssen, Christian F.

    2017-11-01

    simulation of the complex dynamics response of ships in waves is typically modeled by nonlinear potential flow theory, usually solved with a higher order BEM. In some cases, the viscous/turbulent effects around a structure and in its wake need to be accurately modeled to capture the salient physics of the problem. Here, we present a fully 3D model based on a hybrid perturbation method. In this method, the velocity and pressure are decomposed as the sum of an inviscid flow and viscous perturbation. The inviscid part is solved over the whole domain using a BEM based on cubic spline element. These inviscid results are then used to force a near-field perturbation solution on a smaller domain size, which is solved with a NS model based on LBM-LES, and implemented on GPUs. The BEM solution for large grids is greatly accelerated by using a parallelized FMM, which is efficiently implemented on large and small clusters, yielding an almost linear scaling with the number of unknowns. A new representation of corners and edges is implemented, which improves the global accuracy of the BEM solver, particularly for moving boundaries. We present model results and the recent improvements of the BEM, alongside results of the hybrid model, for applications to problems. Office of Naval Research Grants N000141310687 and N000141612970.

  3. Dissipative behavior of some fully non-linear KdV-type equations

    Science.gov (United States)

    Brenier, Yann; Levy, Doron

    2000-03-01

    The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.

  4. Electromagnetic signatures of far-field gravitational radiation in the 1 + 3 approach

    International Nuclear Information System (INIS)

    Chua, Alvin J K; Cañizares, Priscilla; Gair, Jonathan R

    2015-01-01

    Gravitational waves (GWs) from astrophysical sources can interact with background electromagnetic fields, giving rise to distinctive and potentially detectable electromagnetic signatures. In this paper, we study such interactions for far-field gravitational radiation using the 1 + 3 approach to relativity. Linearized equations for the electromagnetic field on perturbed Minkowski space are derived and solved analytically. The inverse Gertsenshteĭn conversion of GWs in a static electromagnetic field is rederived, and the resultant electromagnetic radiation is shown to be significant for highly magnetized pulsars in compact binary systems. We also obtain a variety of nonlinear interference effects for interacting gravitational and electromagnetic waves, although wave–wave resonances previously described in the literature are absent when the electric–magnetic self-interaction is taken into account. The fluctuation and amplification of electromagnetic energy flux as the GW strength increases towards the gravitational–electromagnetic frequency ratio is a possible signature of gravitational radiation from extended astrophysical sources. (paper)

  5. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    Science.gov (United States)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  6. Nonlinear response of the quantum Hall system to a strong electromagnetic radiation

    International Nuclear Information System (INIS)

    Avetissian, H.K.; Mkrtchian, G.F.

    2016-01-01

    We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility. - Highlights: • Nonlinear optical response of a quantum Hall system has specific plateaus feature. • This effect remains robust against the significant broadening of Landau levels. • It can be observed via the third harmonic signal and the nonlinear Faraday effect.

  7. Computation of the frequency response of a nonlinearly loaded antenna within a cavity

    Directory of Open Access Journals (Sweden)

    F. Gronwald

    2004-01-01

    Full Text Available We analyze a nonlinearly loaded dipole antenna which is located within a rectangular cavity and excited by an electromagnetic signal. The signal is composed from two different frequencies. In order to calculate the spectrum of the resulting electromagnetic field within the resonator we transform the antenna problem into a network problem. This requires to precisely determine the antenna impedance within the cavity. The resulting nonlinear equivalent network is solved by means of the harmonic balance technique. As a result the occurrence of low intermodulation frequencies within the spectrum is verified.

  8. Electronic circuit for control rod attracting electromagnet

    International Nuclear Information System (INIS)

    Ito, Koji.

    1991-01-01

    The present invention provides a discharging circuit for control rod attracting electromagnet used for a reactor which is highly reliable and has high performance. The resistor of the circuit comprises a non-linear resistor element and a blocking rectification element connected in series. The discharging circuit can be prevented from short-circuit by selecting a resistor having a resistance value about ten times as great as the coil resistance, even in a case where the blocking rectification element and the non-linear resistor element are failed. Accordingly, reduction of attracting force and the increase of scream releasing time can be minimized. (I.S.)

  9. Progress of electromagnetic analysis for fusion reactors

    International Nuclear Information System (INIS)

    Takagi, T.; Ruatto, P.; Boccaccini, L.V.

    1998-01-01

    This paper describes the recent progress of electromagnetic analysis research for fusion reactors including methods, codes, verification tests and some applications. Due to the necessity of the research effort for the structural design of large tokamak devices since the 1970's with the help of the introduction of new numerical methods and the advancement of computer technologies, three-dimensional analysis methods have become as practical as shell approximation methods. The electromagnetic analysis is now applied to the structural design of new fusion reactors. Some more modeling and verification tests are necessary when the codes are applied to new materials with nonlinear material properties. (orig.)

  10. Intense electromagnetic outbursts from collapsing hypermassive neutron stars

    Science.gov (United States)

    Lehner, Luis; Palenzuela, Carlos; Liebling, Steven L.; Thompson, Christopher; Hanna, Chad

    2012-11-01

    We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and nonrotating stellar collapse scenarios and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The nonrotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the nonlinear time evolution of force-free fluids. In both the rotating and nonrotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient, which leaves behind an uncharged, unmagnetized Kerr black hole. In the case of submillisecond rotation, the magnetic field experiences strong winding, and the transient carries much more energy. This result has important implications for models of gamma-ray bursts. Even when the neutron star is surrounded by an accretion torus (as in binary merger and collapsar scenarios), a magnetosphere may emerge through a dynamo process operating in a surface shear layer. When this rapidly rotating magnetar collapses to a black hole, the electromagnetic energy released can compete with the later output in a Blandford-Znajek jet. Much less electromagnetic energy is

  11. Fully implicit kinetic modelling of collisional plasmas

    International Nuclear Information System (INIS)

    Mousseau, V.A.

    1996-05-01

    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method

  12. Observational constraints on electromagnetic Born-Infeld cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bretón, Nora; Montiel, Ariadna [Dpto. de Física, Centro de Investigación y de Estudios Avanzados del I.P.N., Apdo. 14–740, D.F. (Mexico); Lazkoz, Ruth, E-mail: nora@fis.cinvestav.mx, E-mail: amontiel@fis.cinvestav.mx [Dpto. de Física Teórica, Universidad del País Vasco, Apdo. 644, E-48080, Bilbao (Spain)

    2012-10-01

    The cosmological model consisting of an electromagnetic Born-Infeld (BI) field coupled to a Robertson-Walker geometry is tested with the standard probes of SNIa, GRBs and direct Hubble parameter. The analysis shows that the inclusion of the nonlinear electromagnetic component does not contribute in a significative way to the observed expansion. The BI electromagnetic matter is considered with an abundance of Ω{sub BI}, that our best fit leads to Ω{sub BI} = 0.037 when tested with SNIa and the Hubble parameter data (0.1 < z < 1.75); while when tested with GRBs the result is of Ω{sub BI} = 0.304, which may indicate that this electrodynamics was important at epochs close to the appearance of large structure (z ≈ 7), although this late result has not as much reliability as that corresponding to the first two probes, since we know that the dispersion in GRBs data is still considerable. In view of these results we can rule out the electromagnetic Born-Infeld matter as the origin of the present accelerated expansion, this conclusion concerns exclusively the Born-Infeld theory.

  13. A nonlinear equivalent circuit method for analysis of passive intermodulation of mesh reflectors

    Directory of Open Access Journals (Sweden)

    Jiang Jie

    2014-08-01

    Full Text Available Passive intermodulation (PIM has gradually become a serious electromagnetic interference due to the development of high-power and high-sensitivity RF/microwave communication systems, especially large deployable mesh reflector antennas. This paper proposes a field-circuit coupling method to analyze the PIM level of mesh reflectors. With the existence of many metal–metal (MM contacts in mesh reflectors, the contact nonlinearity becomes the main reason for PIM generation. To analyze these potential PIM sources, an equivalent circuit model including nonlinear components is constructed to model a single MM contact so that the transient current through the MM contact point induced by incident electromagnetic waves can be calculated. Taking the electric current as a new electromagnetic wave source, the far-field scattering can be obtained by the use of electromagnetic numerical methods or the communication link method. Finally, a comparison between simulation and experimental results is illustrated to verify the validity of the proposed method.

  14. Coupled electromagnetic and structural finite element analysis of a superconducting dipole model

    International Nuclear Information System (INIS)

    Hirtenfelder, F.

    1996-01-01

    Many devices contain parts that undergo motion due to electromagnetic forces. The motion causes the electromagnetic fields to change. Thus the electromagnetic fields must be computed along with the structural motion. In many cases the motion produced by electromagnetic forces is desired motion. However, in many devices, some undesired motion can occur due to electromagnetic forces. The motion creases motion-induced eddy currents which in turn affect the electromagnetic fields and forces. A finite element technique is described that fully couples structural and electromagnetic analysis in the time domain. The code is applied to a superconducting dipole model in order to study deformations and stresses during ramp and quench. The results of this coupled analysis enables the designer to visualize deformations, vibrations, displacements and all electromagnetic field quantities of the device and to try different solutions to enhance its performance

  15. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  16. Study of large nonlinear change phase in Hibiscus Sabdariffa

    Science.gov (United States)

    Trejo-Durán, M.; Alvarado-Méndez, E.; Andrade-Lucio, J. A.; Rojas-Laguna, R.; Vázquez-Guevara, M. A.

    2015-09-01

    High intensities electromagnetic energy interacting with organic media gives rise to nonlinear optical effects. Hibiscus Sabdariffa is a flower whose concentrated solution presents interesting nonlinear optical properties. This organic material shows an important self-phase modulation with changes bigger than 2π. We present a diffraction ring patterns study of the Hibiscus Sabdariffa solution. Numerical results of transmittance, with refraction and simultaneous absorption, are shown.

  17. Nonlinear interaction of energetic ring current protons with magnetospheric hydromagnetic waves

    International Nuclear Information System (INIS)

    Chan, A.A.; Chen, L.; White, R.B.

    1989-01-01

    In order to study nonlinear wave-particle interactions in the Earth's magnetosphere we have derived Hamiltonian equations for the gyrophase-averaged nonrelativistic motion of charged particles in a perturbed dipole magnetic field. We assume low frequency (less than the proton gyrofrequency) fully electromagnetic perturbations, and we retain finite Larmor radius effects. Analytic and numerical results for the stochastic threshold of energetic protons (approx-gt 100 keV) in compressional geomagnetic pulsations in the Pc 5 range of frequencies 150--600 seconds are presented. These protons undergo a drift-bounce resonance with the Pc 5 waves which breaks the second (longitudinal) and third (flux) adiabatic invariants, while the first invariant (the magnetic moment) and the proton energy are approximately conserved. The proton motion in the observed spectrum of waves is found to be strongly diffusive, due to the overlap of neighboring primary resonances. copyright American Geophysical Union 1989

  18. Nonlinear interaction of energetic ring current protons with magnetospheric hydromagnetic waves

    International Nuclear Information System (INIS)

    Chan, A.A.; Chen, Liu; White, R.B.

    1989-09-01

    In order to study nonlinear wave-particle interactions in the earth's magnetosphere we have derived Hamiltonian equations for the gyrophase-averaged nonrealistic motion of charged particles in a perturbed dipole magnetic field. We assume low frequency (less than the proton gyrofrequency) fully electromagnetic perturbations, and we retain finite Larmor radius effects. Analytic and numerical results for the stochastic threshold of energetic protons (approx gt 100 keV) in compressional geomagnetic pulsations in the Pc 5 range of frequencies (150--600 seconds) are presented. These protons undergo a drift-bounce resonance with the Pc 5 waves which breaks the second (longitudinal) and third (flux) adiabatic invariants, while the first invariant (the magnetic moment) and the proton energy are approximately conserved. The proton motion in the observed spectrum of waves is found to be strongly diffusive, due to the overlap of neighboring primary resonances. 17 refs., 2 figs

  19. Novel Approach for Electromagnetic Actuators Analysis in Transient Behavior

    Directory of Open Access Journals (Sweden)

    SIRBU, I. G.

    2012-02-01

    Full Text Available A new model of the actuator is proposed in this paper. It considers the nonlinear electromagnetic phenomena in the ferromagnetic core, as well as the influence of the mechanical load during the plunger movement. According to our approach, the entire system that includes the magnetic circuit, the electric circuit and the mechanical parts is mathematically modeled through a differential algebraic equation system (DAE. Therefore, a corresponding analog nonlinear electric circuit described by a similar mathematical model is conceived and implemented in an electric circuit simulation program capable to analyze its behavior in steady state or dynamic regimes. The SPICE simulator has been chosen as implementation platform and a case study has been performed to prove the feasibility and efficiency of our approach. The simulation result contains electromagnetic and mechanical quantities that were represented as time-domain functions. The method is remarkable through an extremely short computation time when compared with the classical methods based on the discretization of the domain.

  20. Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration

    International Nuclear Information System (INIS)

    Brown, Peter N.; Shumaker, Dana E.; Woodward, Carol S.

    2005-01-01

    We present a solution method for fully implicit radiation diffusion problems discretized on meshes having millions of spatial zones. This solution method makes use of high order in time integration techniques, inexact Newton-Krylov nonlinear solvers, and multigrid preconditioners. We explore the advantages and disadvantages of high order time integration methods for the fully implicit formulation on both two- and three-dimensional problems with tabulated opacities and highly nonlinear fusion source terms

  1. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    International Nuclear Information System (INIS)

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.

    2011-01-01

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF 6 .

  2. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    Science.gov (United States)

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.

    2011-09-01

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.

  3. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    Energy Technology Data Exchange (ETDEWEB)

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Rambo, P. K.; Atherton, B. W. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2011-09-15

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF{sub 6}.

  4. Multigrid methods for fully implicit oil reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, J.

    1995-12-31

    In this paper, the authors consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations the material balance or continuity equations, and the equation of motion (Darcy`s law). For the numerical solution of this system of nonlinear partial differential equations, there are two approaches: the fully implicit or simultaneous solution method, and the sequential solution method. In this paper, the authors consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations.

  5. Extreme Nonlinear Optics An Introduction

    CERN Document Server

    Wegener, Martin

    2005-01-01

    Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The followi...

  6. Current filamentation caused by the electrochemical instability in a fully ionized plasma

    International Nuclear Information System (INIS)

    Haines, M.G.; Marsh, F.

    1983-01-01

    This chapter is primarily concerned with the non-linear development of electrothermal instabilities in a fully ionized plasma discharge in which the current is predominantly carried parallel to an applied magnetic field, as in the Tokamak configuration. Discusses instabilities with wave-number K perpendicular to magnetic field B and current J; the non-linear steady state; amplitude of the filaments; and runaway electrons and ion acoustic instabilities. Concludes that the steady non-linear amplitude of the fully developed instability shows a spiky filamentary structure with the possibility of the generation of runaway electrons and ion acoustic turbulence in the current maxima. Finds that the addition of bremsstrahlung radiation loss enhances the instability, reducing the critical ratio of T /SUB e/ to T /SUB i/ for its onset, and yielding a maximum ion temperature attainable by Joule heating and equipartition

  7. Nonlinear electrodynamics and cosmology

    International Nuclear Information System (INIS)

    Breton, Nora

    2010-01-01

    Nonlinear electrodynamics (NLED) generalizes Maxwell's theory for strong fields. When coupled to general relativity NLED presents interesting features like the non-vanishing of the trace of the energy-momentum tensor that leads to the possibility of violation of some energy conditions and of acting as a repulsive contribution in the Raychaudhuri equation. This theory is worth to study in cosmological and astrophysical situations characterized by strong electromagnetic and gravitational fields.

  8. Nonlinear extraordinary wave in dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Russian University of Peoples’ Friendship (Russian Federation)

    2013-10-15

    Conditions for the propagation of a slow extraordinary wave in dense magnetized plasma are found. A solution to the set of relativistic hydrodynamic equations and Maxwell’s equations under the plasma resonance conditions, when the phase velocity of the nonlinear wave is equal to the speed of light, is obtained. The deviation of the wave frequency from the resonance frequency is accompanied by nonlinear longitudinal-transverse oscillations. It is shown that, in this case, the solution to the set of self-consistent equations obtained by averaging the initial equations over the period of high-frequency oscillations has the form of an envelope soliton. The possibility of excitation of a nonlinear wave in plasma by an external electromagnetic pulse is confirmed by numerical simulations.

  9. On the dynamics of Airy beams in nonlinear media with nonlinear losses.

    Science.gov (United States)

    Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A

    2015-04-06

    We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.

  10. Vibration control of a flexible structure with electromagnetic actuators

    DEFF Research Database (Denmark)

    Gruzman, Maurício; Santos, Ilmar

    2016-01-01

    This work presents the model of a shear-frame-type structure composed of six flexible beams and three rigid masses. Fixed on the ground, outside the structure, two voltage-controlled electromagnetic actuators are used for vibration control. To model the flexible beams, unidimensional finite...... elements were used. Nonlinear equations for the actuator electromagnetic force, noise in the position sensor, time delays for the control signal update and voltage saturation were also considered in the model. For controlling purposes, a discrete linear quadratic regulator combined with a predictive full......-order discrete linear observer was employed. Results of numerical simulations, where the structure is submitted to an impulsive disturbance force and to a harmonic force, show that the oscillations can be significantly reduced with the use of the electromagnetic actuators....

  11. Electromagnetic effects on plasma blob-filament transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wonjae, E-mail: wol023@ucsd.edu [University of California, San Diego, La Jolla, CA (United States); Angus, J.R. [Naval Research Laboratory, Washington, DC (United States); Umansky, Maxim V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Krasheninnikov, Sergei I. [University of California, San Diego, La Jolla, CA (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation)

    2015-08-15

    Both microscopic and macroscopic impacts of the electromagnetic effects on blob dynamics are considered. Linear stability analysis and nonlinear BOUT++ simulations demonstrate that electromagnetic effects in high temperature or high beta plasmas suppress the resistive drift wave turbulence in the blob when resistivity drops below a certain value. In the course of blob’s motion in the SOL its temperature is reduced, which leads to enhancement of resistive effects, so the blob can switch from electromagnetic to electrostatic regime, where resistive drift wave turbulence become important. It is found that inhomogeneity of magnetic curvature or plasma pressure along the filament length leads to bending of the high-beta blob filaments. This is caused by the increase of the propagation time of plasma current (Alfvén time) in higher-density plasma. The effects of sheath boundary conditions on the part of the blob away from the boundary are also diminished by the increased Alfvén time.

  12. Development of nonperturbative nonlinear optics models including effects of high order nonlinearities and of free electron plasma: Maxwell–Schrödinger equations coupled with evolution equations for polarization effects, and the SFA-like nonlinear optics model

    International Nuclear Information System (INIS)

    Lorin, E; Bandrauk, A D; Lytova, M; Memarian, A

    2015-01-01

    This paper is dedicated to the exploration of non-conventional nonlinear optics models for intense and short electromagnetic fields propagating in a gas. When an intense field interacts with a gas, usual nonlinear optics models, such as cubic nonlinear Maxwell, wave and Schrödinger equations, derived by perturbation theory may become inaccurate or even irrelevant. As a consequence, and to include in particular the effect of free electrons generated by laser–molecule interaction, several heuristic models, such as UPPE, HOKE models, etc, coupled with Drude-like models [1, 2], were derived. The goal of this paper is to present alternative approaches based on non-heuristic principles. This work is in particular motivated by the on-going debate in the filamentation community, about the effect of high order nonlinearities versus plasma effects due to free electrons, in pulse defocusing occurring in laser filaments [3–9]. The motivation of our work goes beyond filamentation modeling, and is more generally related to the interaction of any external intense and (short) pulse with a gas. In this paper, two different strategies are developed. The first one is based on the derivation of an evolution equation on the polarization, in order to determine the response of the medium (polarization) subject to a short and intense electromagnetic field. Then, we derive a combined semi-heuristic model, based on Lewenstein’s strong field approximation model and the usual perturbative modeling in nonlinear optics. The proposed model allows for inclusion of high order nonlinearities as well as free electron plasma effects. (paper)

  13. Continuum mechanics of electromagnetic solids

    CERN Document Server

    Maugin, GA

    1988-01-01

    This volume is a rigorous cross-disciplinary theoretical treatment of electromechanical and magnetomechanical interactions in elastic solids. Using the modern style of continuum thermomechanics (but without excessive formalism) it starts from basic principles of mechanics and electromagnetism, and goes on to unify these two fields in a common framework. It treats linear and nonlinear static and dynamic problems in a variety of elastic solids such as piezoelectrics, electricity conductors, ferromagnets, ferroelectrics, ionic crystals and ceramics. Chapters 1-3 are introductory, describing the e

  14. Rotating black string with nonlinear source

    International Nuclear Information System (INIS)

    Hendi, S. H.

    2010-01-01

    In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.

  15. The structure of electromagnetism and gravitation

    International Nuclear Information System (INIS)

    Pommaret, J.F.

    1983-01-01

    The formalisms of gauge theory and continuum mechanics linked to the construction of the non-linear Spencer sequences in the formal theory of Lie pseudogroups give results showing that a contradiction exists between the two theories quoted above as the Yang-Mills ''potentials'' of physicists are sections of the first Spencer vector bundle, coming from connections, while the ''fields'' of mechanicians are sections of the same bundle, not coming from connections. The purpose of this Note is to explain this contradiction by showing that the electromagnetic model of gauge theory must be modified. Maxwell and Einstein equations then automatically appear in this differential framework that unifies electromagnetism and gravitation. These conclusions are imposed, not by the choice of physical assumptions, but by the use of a new mathematical tool [fr

  16. A Route to Chaotic Behavior of Single Neuron Exposed to External Electromagnetic Radiation.

    Science.gov (United States)

    Feng, Peihua; Wu, Ying; Zhang, Jiazhong

    2017-01-01

    Non-linear behaviors of a single neuron described by Fitzhugh-Nagumo (FHN) neuron model, with external electromagnetic radiation considered, is investigated. It is discovered that with external electromagnetic radiation in form of a cosine function, the mode selection of membrane potential occurs among periodic, quasi-periodic, and chaotic motions as increasing the frequency of external transmembrane current, which is selected as a sinusoidal function. When the frequency is small or large enough, periodic, and quasi-periodic motions are captured alternatively. Otherwise, when frequency is in interval 0.778 electromagnetic radiation. The frequency apparently plays a more important role in determining the system behavior.

  17. Effect of electromagnetic waves on human reproduction.

    Science.gov (United States)

    Wdowiak, Artur; Mazurek, Paweł A; Wdowiak, Anita; Bojar, Iwona

    2017-03-31

    Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.

  18. Nonlinear analysis and characteristics of inductive galloping energy harvesters

    Science.gov (United States)

    Dai, H. L.; Yang, Y. W.; Abdelkefi, A.; Wang, L.

    2018-06-01

    This paper presents an investigation on analysis and characteristics of aerodynamic electromagnetic energy harvesters. The source of aeroelastic oscillations results from galloping of a prismatic structure. A nonlinear distributed-parameter model is developed representing the dynamics of the transverse degree of freedom and the electric current induced in the coil. Firstly, we perform a linear analysis to study the impacts of the external electrical resistance, magnet placement, electromagnetic coupling coefficient, and internal resistance in the coil on the cut-in speed of instability of the coupled electroaeroelastic system. It is demonstrated that these parameters have significant impacts on cut-in speed of instability of the harvester system. Subsequently, a nonlinear analysis is implemented to explore the influences of these parameters on the output property of the energy harvester. The results show that there exists an optimal external electrical resistance which maximizes the output power of the harvester, and this optimal value varies with the magnet's placement, wind speed, electromagnetic coupling coefficient and internal resistance of the coil. It is also demonstrated that an increase in the distance between the clamped end and the magnet, an increase in the electromagnetic coupling coefficient, and/or a decrease in the internal resistance of the coil are accompanied by an increase in the level of the harvested power and a decrease in the tip displacement of the bluff body which is associated with a resistive-shunt damping effect in the harvester. The implemented studies give a constructive guidance to design and enhance the output performance of aerodynamic electromagnetic energy harvesters.

  19. Fully implicit two-phase reservoir simulation with the additive schwarz preconditioned inexact newton method

    KAUST Repository

    Liu, Lulu

    2013-01-01

    The fully implicit approach is attractive in reservoir simulation for reasons of numerical stability and the avoidance of splitting errors when solving multiphase flow problems, but a large nonlinear system must be solved at each time step, so efficient and robust numerical methods are required to treat the nonlinearity. The Additive Schwarz Preconditioned Inexact Newton (ASPIN) framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this paper, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size.

  20. On kinetic description of electromagnetic processes in a quantum plasma

    International Nuclear Information System (INIS)

    Tyshetskiy, Yu.; Vladimirov, S. V.; Kompaneets, R.

    2011-01-01

    A nonlinear kinetic equation for nonrelativistic quantum plasma with electromagnetic interaction of particles is obtained in the Hartree's mean-field approximation. It is cast in a convenient form of Vlasov-Boltzmann-type equation with ''quantum interference integral'', which allows for relatively straightforward modification of existing classical Vlasov codes to incorporate quantum effects (quantum statistics and quantum interference of overlapping particles wave functions), without changing the bulk of the codes. Such modification (upgrade) of existing Vlasov codes may provide a direct and effective path to numerical simulations of nonlinear electrostatic and electromagnetic phenomena in quantum plasmas, especially of processes where kinetic effects are important (e.g., modulational interactions and stimulated scattering phenomena involving plasma modes at short wavelengths or high-order kinetic modes, dynamical screening and interaction of charges in quantum plasma, etc.) Moreover, numerical approaches involving such modified Vlasov codes would provide a useful basis for theoretical analyses of quantum plasmas, as quantum and classical effects can be easily separated there.

  1. Generating entangled states of continuous variables via cross-Kerr nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiming [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Khosa, Ashfaq H [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Ikram, Manzoor [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2007-05-28

    We propose a scheme for generating entanglement of quantum states with continuous variables (coherent states and squeezed vacuum states) of electromagnetical fields. The scheme involves cross-Kerr nonlinearity. It was shown that the cross-Kerr nonlinearity required for generating the superposition and entanglement of squeezed vacuum states is smaller than that required for coherent states. It was also found that the fidelity monotonously decreases with both the increase of the amplitude of the input coherent field and the increase of the deviation of the nonlinear phase shift from {pi}.

  2. Power harvesting by electromagnetic coupling from wind-induced limit cycle oscillations

    Science.gov (United States)

    Boccalero, G.; Olivieri, S.; Mazzino, A.; Boragno, C.

    2017-09-01

    Recent developments of low-power microprocessors open to new applications such as wireless sensor networks (WSN) with the consequent problem of autonomous powering. For this purpose, a possible strategy is represented by energy harvesting from wind or other flows exploiting fluid-structure interactions. In this work, we present an updated picture of a flutter-based device characterized by fully passive dynamics and a simple constructive layout, where limit cycle oscillations are undergone by an elastically bounded wing. In this case, the conversion from mechanical to electrical energy is performed by means of an electromagnetic coupling between a pair of coils and magnets. A centimetric-size prototype is shown to harvest energy from low wind velocities (between 2 and 4 m s-1), reaching a power peak of 14 mW, representing a valuable amount for applications related to WSN. A mathematical description of the nonlinear dynamics is then provided by a quasi-steady phenomenological model, revealing satisfactory agreement with the experimental framework within a certain parametric range and representing a useful tool for future optimizations.

  3. Non linear dynamic of Langmuir and electromagnetic waves in space plasmas

    International Nuclear Information System (INIS)

    Guede, Jose Ricardo Abalde

    1995-11-01

    The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the

  4. Optical rogue waves generation in a nonlinear metamaterial

    Science.gov (United States)

    Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin

    2014-11-01

    We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.

  5. Parametric autoresonant excitation of the nonlinear Schrödinger equation.

    Science.gov (United States)

    Friedland, L; Shagalov, A G

    2016-10-01

    Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics.

  6. Evaluation of Specific Absorption Rate as a Dosimetric Quantity for Electromagnetic Fields Bioeffects

    OpenAIRE

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2013-01-01

    PURPOSE: To evaluate SAR as a dosimetric quantity for EMF bioeffects, and identify ways for increasing the precision in EMF dosimetry and bioactivity assessment. METHODS: We discuss the interaction of man-made electromagnetic waves with biological matter and calculate the energy transferred to a single free ion within a cell. We analyze the physics and biology of SAR and evaluate the methods of its estimation. We discuss the experimentally observed non-linearity between electromagnetic exposu...

  7. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    Science.gov (United States)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  8. Computer simulations of electromagnetic cool ion beam instabilities. [in near earth space

    Science.gov (United States)

    Gary, S. P.; Madland, C. D.; Schriver, D.; Winske, D.

    1986-01-01

    Electromagnetic ion beam instabilities driven by cool ion beams at propagation parallel or antiparallel to a uniform magnetic field are studied using computer simulations. The elements of linear theory applicable to electromagnetic ion beam instabilities and the simulations derived from a one-dimensional hybrid computer code are described. The quasi-linear regime of the right-hand resonant ion beam instability, and the gyrophase bunching of the nonlinear regime of the right-hand resonant and nonresonant instabilities are examined. It is detected that in the quasi-linear regime the instability saturation is due to a reduction in the beam core relative drift speed and an increase in the perpendicular-to-parallel beam temperature; in the nonlinear regime the instabilities saturate when half the initial beam drift kinetic energy density is converted to fluctuating magnetic field energy density.

  9. Breatherlike electromagnetic wave propagation in an antiferromagnetic medium with Dzyaloshinsky-Moriya interaction

    International Nuclear Information System (INIS)

    Kavitha, L.; Saravanan, M.; Srividya, B.; Gopi, D.

    2011-01-01

    We investigate the nature of propagation of electromagnetic waves (EMWs) in an antiferromagnetic medium with Dzyaloshinsky-Moriya (DM) interaction environment. The interplay of bilinear and DM exchange spin coupling with the magnetic field component of the EMW has been studied by solving Maxwell's equations coupled with a nonlinear spin equation for the magnetization of the medium. We made a nonuniform expansion of the magnetization and magnetic field along the direction of propagation of EMW, in the framework of reductive perturbation method, and the dynamics of the system is found to be governed by a generalized derivative nonlinear Schroedinger (DNLS) equation. We employ the Jacobi-elliptic function method to solve the DNLS equation, and the electromagnetic wave propagation in an antiferromagnetic medium is governed by the breatherlike spatially and temporally coherent localized modes under the influence of DM interaction parameter.

  10. Fully plastic solutions of semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Kitajima, Yasumi; Ueda, Hiroyoshi.

    1990-01-01

    Nonlinear finite element analyses of semi-elliptical surface cracks are performed under the fully plastic condition. The power-law hardening materials and the deformation theory of plasticity are assumed. Either the penalty function method or the Uzawa's algorithm is utilized to treat the incompressibility of plastic strains. The local and global J-integral values are obtained using a virtual crack extension technique for plates and cylinders with semi-elliptical surface cracks subjected to uniform tensions. The fully plastic solutions for surface cracked plates are given in the form of polynominals with geometric parameters a/t, a/c and the strain hardening exponent (n). In addition, the effects of curvature on fully plastic solutions are discussed through the comparison between the results of plates and cylinders. (author)

  11. Propagation of strong electromagnetic beams in inhomogeneous plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1980-09-01

    We study some simple aspects of nonlinear propagation of relativistically strong electromagnetic beams in inhomogeneous plasmas, especially in connection with effects of beam self-trapping in extended extragalactic radio sources. The two effects of (i) long scale longitudinal and radial inhomogeneities inherent to the plasma and (ii) radial inhomogeneities produced by the ponderomotive force of the beam itself are investigated.

  12. Quantum control of light using electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Andre, A; Eisaman, M D; Walsworth, R L; Zibrov, A S; Lukin, M D

    2005-01-01

    We present an overview of recent theoretical and experimental work on the control of the propagation and quantum properties of light using electromagnetically induced transparency in atomic ensembles. Specifically, we discuss techniques for the generation and storage of few-photon quantum-mechanical states of light as well as novel approaches to manipulate weak pulses of light via enhanced nonlinear optical processes

  13. Three-dimensional sparse electromagnetic imaging accelerated by projected steepest descent

    KAUST Repository

    Desmal, Abdulla

    2016-11-02

    An efficient and accurate scheme for solving the nonlinear electromagnetic inverse scattering problem on three-dimensional sparse investigation domains is proposed. The minimization problem is constructed in such a way that the data misfit between measurements and scattered fields (which are expressed as a nonlinear function of the contrast) is constrained by the contrast\\'s first norm. The resulting minimization problem is solved using nonlinear Landweber iterations accelerated using a steepest descent algorithm. A projection operator is applied at every iteration to enforce the sparsity constraint by thresholding the result of that iteration. Steepest descent algorithm ensures accelerated and convergent solution by utilizing larger iteration steps selected based on a necessary B-condition.

  14. FULL ELECTROMAGNETIC FEL SIMULATION VIA THE LORENTZ-BOOSTED FRAME TRANSFORMATION

    International Nuclear Information System (INIS)

    Fawley, William; Vay, Jean-Luc

    2010-01-01

    Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. A particularly good application for calculation in a boosted frame isthat of short wavelength free-electron lasers (FELs) where a high energy electron beam with small fractional energy spread interacts with a static magnetic undulator. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required longitudinal grid cells and time-steps for fully electromagnetic simulation (relative to the laboratory frame) decrease by factors of gamma 2 each. In theory, boosted frame EM codes permit direct study of FEL problems for which the eikonal approximation for propagation of the radiation field and wiggler-period-averaging for the particle-field interaction may be suspect. We have adapted the WARP code to apply this method to several electromagnetic FEL problems including spontaneous emission, strong exponential gain in a seeded, single pass amplifier configuration, and emission from e-beams in undulators with multiple harmonic components. WARP has a standard relativistic macroparticle mover and a fully 3-D electromagnetic field solver. We discuss our boosted frame results and compare with those obtained using the 'standard' eikonal FEL simulation approach.

  15. Electromagnetic characterization of fine-scale particulate composite materials

    International Nuclear Information System (INIS)

    Talbot, P.; Konn, A.M.; Brosseau, C.

    2002-01-01

    We report the results of the composition and frequency-dependent complex permittivity and permeability of ZnO and γ-Fe 2 O 3 composites prepared by powder pressing. The electromagnetic properties of these materials exhibit a strong dependence on the powder size of the starting materials. In the microwave frequency range, the permittivity and permeability show nonlinear variations with volume fraction of Fe 2 O 3 . As the particle size decreases from a few micrometers to a few tens of nanometers, the data indicate that local mesostructural factors such as shape anisotropy, porosity and possible effect of the binder are likely to be intertwined in the understanding of electromagnetic properties of fine-scale particulate composite materials

  16. Nonlinear left-handed transmission line metamaterials

    International Nuclear Information System (INIS)

    Kozyrev, A B; Weide, D W van der

    2008-01-01

    Metamaterials, exhibiting simultaneously negative permittivity ε and permeability μ, more commonly referred to as left-handed metamaterials (LHMs) and also known as negative-index materials, have received substantial attention in the scientific and engineering communities [1]. Most studies of LHMs (and electromagnetic metamaterials in general) have been in the linear regime of wave propagation and have already inspired new types of microwave circuits and devices. The results of these studies have already been the subject of numerous reviews and books. This review covers a less explored but rapidly developing area of investigation involving media that combine nonlinearity (dependence of the permittivity and permeability on the magnitude of the propagating field) with the anomalous dispersion exhibited by LHM. The nonlinear phenomena in such media will be considered on the example of a model system: the nonlinear left-handed transmission line. These nonlinear phenomena include parametric generation and amplification, harmonic and subharmonic generation as well as modulational instabilities and envelope solitons. (topical review)

  17. Non-linear diffusion of charged particles due to stochastic electromagnetic fields

    International Nuclear Information System (INIS)

    Martins, A.M.; Balescu, R.; Mendonca, J.T.

    1989-01-01

    It is well known that the energy confinement times observed in tokamak cannot be explained by the classical or neo-classical transport theory. The alternative explanations are based on the existence of various kinds of micro-instabilities, or on the stochastic destruction of the magnetic surfaces, due to the interaction of magnetic islands of different helicities. In the absence of a well established theory of anomalous transport it is perhaps important to study in some detail the diffusion coefficient of single charged particles in the presence of electromagnetic fluctuation, because it can provide the physical grounds for more complete and self-consistent calculations. In the present work we derive a general expression for the transverse diffusion coefficient of electrons and ions in a constant magnetic field and in the presence of space and time dependent electromagnetic fluctuation. We neglect macroscopic drifts due to inhomogeneity and field curvatures, but retain finite Larmor radius effects. (author) 3 refs

  18. Self-generation and management of spin-electromagnetic wave solitons and chaos

    International Nuclear Information System (INIS)

    Ustinov, Alexey B.; Kondrashov, Alexandr V.; Nikitin, Andrey A.; Kalinikos, Boris A.

    2014-01-01

    Self-generation of microwave spin-electromagnetic wave envelope solitons and chaos has been observed and studied. For the investigation, we used a feedback active ring oscillator based on artificial multiferroic, which served as a nonlinear waveguide. We show that by increasing the wave amplification in the feedback ring circuit, a transition from monochromatic auto-generation to soliton train waveform and then to dynamical chaos occurs in accordance with the Ruelle-Takens scenario. Management of spin-electromagnetic-wave solitons and chaos parameters by both dielectric permittivity and magnetic permeability of the multiferroic waveguiding structure is demonstrated.

  19. Nonlinear and quantum optics near nanoparticles

    Science.gov (United States)

    Dhayal, Suman

    We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. We have also studied the modifications of the electromagnetic fields in a collection of nanoparticles due to strong near field nonlinear interactions using the generalized Mie theory for the case of many particles applicable in photovoltaics (PV). We also consider quantum coherence phenomena such as modification of dark states, stimulated Raman adiabatic passage (STIRAP), optical pumping in 4-level atoms near nanoparticles by using rotating wave approximation to describe the Hamiltonian of the atomic system. We also considered the behavior of atomic and the averaged atomic polarization in 7-level atoms near nanoparticles. This could be used as a prototype to study

  20. Variational Boussinesq model for strongly nonlinear dispersive waves

    NARCIS (Netherlands)

    Lawrence, C.; Adytia, D.; van Groesen, E.

    2018-01-01

    For wave tank, coastal and oceanic applications, a fully nonlinear Variational Boussinesq model with optimized dispersion is derived and a simple Finite Element implementation is described. Improving a previous weakly nonlinear version, high waves over flat and varying bottom are shown to be

  1. Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S

    2009-06-03

    This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.

  2. Vacuum nonlinear electrodynamic polarization effects in hard emission of pulsars and magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Sokolov, V.A.; Svertilov, S.I., E-mail: vid.msu@yandex.ru, E-mail: sokolov.sev@inbox.ru, E-mail: sis@coronas.ru [Physics Department, Moscow State University, Moscow (Russian Federation)

    2017-09-01

    The nonlinear electrodynamics influence of pulsar magnetic field on the electromagnetic pulse polarization is discussed from the point of observation interpretation. The calculations of pulsar magnetic field impact on the electromagnetic pulse polarization are made in such a way to make it easier to interpret these effects in space experiments. The law of hard emission pulse propagation in the pulsar magnetic field according to the vacuum (nonlinear electrodynamics is obtained. It has been shown, that due to the birefringence in the vacuum the front part of any hard emission pulse coming from a pulsar should be linearly polarized and the rest of pulse can have arbitrary polarization. The observational possibilities of vacuum birefringence are discussed. In this paper we give the estimations of detector parameters such as effective area, exposure time and necessity of polarization measurements with high accuracy. The combination of large area and extremely long exposure time gives the good opportunity to search the fine polarization effects like vacuum nonlinear electrodynamics birefringence.

  3. Fully nonlinear time-domain simulation of a backward bent duct buoy floating wave energy converter using an acceleration potential method

    Directory of Open Access Journals (Sweden)

    Kyoung-Rok Lee

    2013-12-01

    Full Text Available A floating Oscillating Water Column (OWC wave energy converter, a Backward Bent Duct Buoy (BBDB, was simulated using a state-of-the-art, two-dimensional, fully-nonlinear Numerical Wave Tank (NWT technique. The hydrodynamic performance of the floating OWC device was evaluated in the time domain. The acceleration potential method, with a full-updated kernel matrix calculation associated with a mode decomposition scheme, was implemented to obtain accurate estimates of the hydrodynamic force and displacement of a freely floating BBDB. The developed NWT was based on the potential theory and the boundary element method with constant panels on the boundaries. The mixed Eulerian-Lagrangian (MEL approach was employed to capture the nonlinear free surfaces inside the chamber that interacted with a pneumatic pressure, induced by the time-varying airflow velocity at the air duct. A special viscous damping was applied to the chamber free surface to represent the viscous energy loss due to the BBDB's shape and motions. The viscous damping coefficient was properly selected using a comparison of the experimental data. The calculated surface elevation, inside and outside the chamber, with a tuned viscous damping correlated reasonably well with the experimental data for various incident wave conditions. The conservation of the total wave energy in the computational domain was confirmed over the entire range of wave frequencies.

  4. Coherent polarization driven by external electromagnetic fields

    International Nuclear Information System (INIS)

    Apostol, M.; Ganciu, M.

    2010-01-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  5. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    International Nuclear Information System (INIS)

    Leyser, T.B.

    1994-01-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. The electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission

  6. Dispersion relation of linearly polarized strong electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A; Massaglia, S [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Dobrowolny, M [Comitato Nazionale per l' Energia Nucleaire, Frascati (Italy). Lab. Plasma Spazio

    1975-12-15

    A numerical study is presented of the dispersion relation of linearly polarized strong electromagnetic waves in a cold electron plasma. The nonlinear effects introduced by the relativistic motion of electrons are: (1) the dispersion relation depends explicitly on the field strength ..cap alpha..=eE/sub 0//mc..omega../sub 0/, and (2) the propagation of modes with frequencies below the formal electron plasma frequency is allowed.

  7. Dark and bright vortex solitons in electromagnetically induced transparent media

    International Nuclear Information System (INIS)

    Wu Xuan; Xie Xiaotao; Yang Xiaoxue

    2006-01-01

    We show that dark and bright vortex solitons can exist in three-state electromagnetically induced transparent media under some appropriate conditions. We also analyse the stability of the dark and bright vortex solitons. This work may provide other research opportunities in nonlinear optical experiments and may result in a substantial impact on technology

  8. Effect of P T symmetry on nonlinear waves for three-wave interaction models in the quadratic nonlinear media

    Science.gov (United States)

    Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao

    2018-04-01

    We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.

  9. Sampling methods for low-frequency electromagnetic imaging

    International Nuclear Information System (INIS)

    Gebauer, Bastian; Hanke, Martin; Schneider, Christoph

    2008-01-01

    For the detection of hidden objects by low-frequency electromagnetic imaging the linear sampling method works remarkably well despite the fact that the rigorous mathematical justification is still incomplete. In this work, we give an explanation for this good performance by showing that in the low-frequency limit the measurement operator fulfils the assumptions for the fully justified variant of the linear sampling method, the so-called factorization method. We also show how the method has to be modified in the physically relevant case of electromagnetic imaging with divergence-free currents. We present numerical results to illustrate our findings, and to show that similar performance can be expected for the case of conducting objects and layered backgrounds

  10. Bubble shape and electromagnetic field in the nonlinear regime for laser wakefield acceleration

    International Nuclear Information System (INIS)

    Li, X. F.; Yu, Q.; Huang, S.; Kong, Q.; Gu, Y. J.; Kawata, S.

    2015-01-01

    The electromagnetic field in the electron “bubble” regime for ultra-intense laser wakefield acceleration was solved using the d'Alembert equations. Ignoring the residual electrons, we assume an ellipsoidal bubble forms under ideal conditions, with bubble velocity equal to the speed of light in vacuum. The general solution for bubble shape and electromagnetic field were obtained. The results were confirmed in 2.5D PIC (particle-in-cell) simulations. Moreover, slopes for the longitudinal electric field of larger than 0.5 were found in these simulations. With spherical bubbles, this slope is always smaller than or equal to 0.5. This behavior validates the ellipsoid assumption

  11. Self-Organized Biological Dynamics and Nonlinear Control

    Science.gov (United States)

    Walleczek, Jan

    2006-04-01

    The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological

  12. Nonlinear surface waves at ferrite-metamaterial waveguide structure

    Science.gov (United States)

    Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques

    2016-09-01

    A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.

  13. Nonlinear saturated states of the magnetic-curvature-driven Rayleigh-Taylor instability in three dimensions

    International Nuclear Information System (INIS)

    Das, Amita; Sen, Abhijit; Kaw, Predhiman; Benkadda, S.; Beyer, Peter

    2005-01-01

    Three-dimensional electromagnetic fluid simulations of the magnetic-curvature-driven Rayleigh-Taylor instability are presented. Issues related to the existence of nonlinear saturated states and the nature of the temporal evolution to such states from random initial conditions are addressed. It is found that nonlinear saturated states arising from generation of zonal shear flows continue to exist in certain parametric domains but their spectrum and spatial characteristics have important differences from earlier two-dimensional results reported in Phys. Plasmas 4, 1018 (1997) and Phys. Plasmas 8, 5104 (2001). In particular, the three-dimensional nonlinear states possess a significant power level in short scales and the spatial structures of the potential and density fluctuations appear not to develop any functional correlations. Electromagnetic effects are found to inhibit the formation of zonal flows and thereby to considerably restrict the parametric domain of nonlinear stabilization. The role of finite k parallel and the contribution of the unstable drift wave branch are also discussed and delineated through a number of simulation studies carried out in special simplified limits

  14. A variational approach to nonlinear evolution equations in optics

    Indian Academy of Sciences (India)

    optics. D ANDERSON, M LISAK and A BERNTSON£. Department of Electromagnetics, Chalmers University of Technology, SE-41296 Göteborg, Sweden. £Ericsson Telcom ... Many works in nonlinear optics have made efficient ...... focusing dynamics of a laser beam (or a Bose–Einstein condensate) in a parabolic external.

  15. Reflection-type electromagnetically induced transparency analogue in terahertz metamaterials

    International Nuclear Information System (INIS)

    Ding Chun-Feng; Zhang Ya-Ting; Yao Jian-Quan; Xu De-Gang; Zhang Gui-Zhong; Sun Chong-Ling

    2014-01-01

    A reflection-type electromagnetically induced transparency (EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum (THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Explosive electromagnetic radiation by the relaxation of a multimode magnon system.

    Science.gov (United States)

    Vasyuchka, V I; Serga, A A; Sandweg, C W; Slobodianiuk, D V; Melkov, G A; Hillebrands, B

    2013-11-01

    Microwave emission from a parametrically pumped ferrimagnetic film of yttrium iron garnet was studied versus the magnon density evolution, which was detected by Brillouin light scattering spectroscopy. It has been found that the shutdown of external microwave pumping leads to an unexpected effect: The conventional monotonic decrease of the population of parametrically injected magnons is accompanied by an explosive behavior of electromagnetic radiation at the magnon frequency. The developed theory shows that this explosion is caused by a nonlinear energy transfer from parametrically driven short-wavelength dipolar-exchange magnons to a long-wavelength dipolar magnon mode effectively coupled to an electromagnetic wave.

  17. Controlling of the electromagnetic solitary waves generation in the wake of a two-color laser

    Science.gov (United States)

    Pan, K. Q.; Li, S. W.; Guo, L.; Yang, D.; Li, Z. C.; Zheng, C. Y.; Jiang, S. E.; Zhang, B. H.; He, X. T.

    2018-05-01

    Electromagnetic solitary waves generated by a two-color laser interaction with an underdense plasma are investigated. It is shown that, when the former wave packet of the two-color laser is intense enough, it will excite nonlinear wakefields and generate electron density cavities. The latter wave packets will beat with the nonlinear wakefield and generate both high-frequency and low-frequency components. When the peak density of the cavities exceeds the critical density of the low-frequency component, this part of the electromagnetic field will be trapped to generate electromagnetic solitary waves. By changing the laser and plasma parameters, we can control the wakefield generation, which will also control the generation of the solitary waves. One-dimensional particle-in-cell simulations are performed to prove the controlling of the solitary waves. The simulation results also show that solitary waves generated by higher laser intensities will become moving solitary waves. The two-dimensional particle-in-cell also shows the generation of the solitary waves. In the two-dimensional case, solitary waves are distributed in the transverse directions because of the filamentation instability.

  18. Nonlinear interaction of charged particles with strong laser pulses in a gaseous media

    Directory of Open Access Journals (Sweden)

    H. K. Avetissian

    2007-07-01

    Full Text Available The charged particles nonlinear dynamics in the field of a strong electromagnetic wave pulse of finite duration and certain form of the envelope, in the refractive medium with a constant and variable refraction indexes, is investigated by means of numerical integration of the classical relativistic equations of motion. The particle energy dependence on the pulse intensity manifests the nonlinear threshold phenomenon of a particle reflection and capture by actual laser pulses in dielectric-gaseous media that takes place for a plane electromagnetic wave in the induced Cherenkov process. Laser acceleration of the particles in the result of the reflection from the pulse envelope and in the capture regime with the variable refraction index along the pulse propagation direction is investigated.

  19. Voltage-Induced Nonlinear Conduction Properties of Epoxy Resin/Micron-Silver Particles Composites

    Science.gov (United States)

    Qu, Zhaoming; Lu, Pin; Yuan, Yang; Wang, Qingguo

    2018-01-01

    The nonlinear conduction properties of epoxy resin (ER)/micron-silver particles (MP) composites were investigated. Under sufficient high intensity applied constant voltage, the obvious nonlinear conduction properties of the samples with volume fraction 25% were found. With increments in the voltage, the conductive switching effect was observed. The nonlinear conduction mechanism of the ER/MP composites under high applied voltages could be attributed to the electrical current conducted via discrete paths of conductive particles induced by the electric field. The test results show that the ER/MP composites with nonlinear conduction properties are of great potential application in electromagnetic protection of electron devices and systems.

  20. Nonlinear Aerodynamic and Nonlinear Structures Interations (NANSI) Methodology for Ballute/Inflatable Aeroelasticity in Hypersonic Atmospheric Entry, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA proposes a phase II effort to fully develop a comprehensive methodology for aeroelastic predictions of the nonlinear aerodynamic/aerothermodynamic - structure...

  1. Excitation of planetary electromagnetic waves in the inhomogeneous ionosphere

    Directory of Open Access Journals (Sweden)

    Yu. Rapoport

    2014-04-01

    Full Text Available In this paper we develop a new method for the analysis of excitation and propagation of planetary electromagnetic waves (PEMW in the ionosphere of the Earth. The nonlinear system of equations for PEMW, valid for any height, from D to F regions, including intermediate altitudes between D and E and between E and F regions, is derived. In particular, we have found the system of nonlinear one-fluid MHD equations in the β-plane approximation valid for the ionospheric F region (Aburjania et al., 2003a, 2005. The series expansion in a "small" (relative to the local geomagnetic field non-stationary magnetic field has been applied only at the last step of the derivation of the equations. The small mechanical vertical displacement of the media is taken into account. We have shown that obtained equations can be reduced to the well-known system with Larichev–Reznik vortex solution in the equatorial region (see e.g. Aburjania et al., 2002. The excitation of planetary electromagnetic waves by different initial perturbations has been investigated numerically. Some means for the PEMW detection and data processing are discussed.

  2. Theoretical studies of some nonlinear laser-plasma interactions

    International Nuclear Information System (INIS)

    Cohen, B.I.

    1975-01-01

    The nonlinear coupling of intense, monochromatic, electromagnetic radiation with plasma is considered in a number of special cases. The first part of the thesis serves as an introduction to three-wave interactions. A general formulation of the stimulated scattering of transverse waves by longitudinal modes in a warm, unmagnetized, uniform plasma is constructed. A general dispersion relation is derived that describes Raman and Brillouin scattering, modulational instability, and induced Thomson scattering. Raman scattering (the scattering of a photon into another photon and an electron plasma wave) is investigated as a possible plasma heating scheme. Analytic theory complemented by computer simulation is presented describing the nonlinear mode coupling of laser light with small and large amplitude, resonantly excited electron plasma waves. The simulated scattering of a coherent electromagnetic wave by low frequency density perturbations in homogeneous plasma is discussed. A composite picture of the linear dispersion relations for filamentation and Brillouin scattering is constructed. The absolute instability of Brillouin weak and strong coupling by analytic and numerical means is described

  3. Self-focusing of electromagnetic waves as a result of relativistic electron-mass variation

    International Nuclear Information System (INIS)

    Spatschek, K.H.

    1977-01-01

    Relativistic electron-mass variations due to the presence of intense electromagnetic radiation in the plasma cause a nonlinear refractive index. Using a variational principle the latter is obtained up to fourth order in the electric field amplitude and it is shown that nonlinear effects of the second order lead to self-focusing of a beam of radiation. By nonlinear optics considerations, the self-focusing length of an axially symmetric beam is obtained. Including higher-order dispersive effects it is shown that within the thin-beam approximation the complex electric field envelope obeys a cubic nonlinear Schroedinger equation with an attractive self-consistent potential. The cylindrically symmetric nonlinear Schroedinger equation predicts collapse of the radiation at the self-focusing distance. The nature of the self-focusing singularity is analysed and it is shown that higher-order nonlinearities saturate the amplitude. Then oscillations of the beam radius along the axial direction occur. (author)

  4. Neutrino charge in the non-linear R sub(xi) gauge

    International Nuclear Information System (INIS)

    Monyonko, N.M.; Reid, J.H.

    1982-12-01

    We show that the electromagnetic Ward identity for the charged W boson is satisfied in the non-linear R sub(xi) gauge. Consequently the one-loop contributions to the neutrino charge give zero, which they do not in the conventional R sub(xi) gauge

  5. Nonlinear Alfvén Waves in a Vlasov Plasma

    DEFF Research Database (Denmark)

    Bell, T.F.

    1965-01-01

    Stationary solutions to the nonlinear Vlasov—Boltzmann equations are considered which represent one-dimensional electromagnetic waves in a hot magnetoplasma. These solutions appear in arbitrary reference frames as circularly polarized, sinusoidal waves of unlimited amplitude, i.e., as nonlinear...... Alfvén waves. Solutions are found implicitly by deriving a set of integral dispersion relations which link the wave characteristics with the particle distribution functions. A physical discussion is given of the way in which the Alfvén waves can trap particles, and it is shown that the presence...

  6. 4th International Conference on Nonlinear Mechanics

    CERN Document Server

    Maugin, G

    2003-01-01

    The mechanics of electromagnetic materials and structures has been developing rapidly with extensive applications in, e. g. , electronics industry, nuclear engineering, and smart materials and structures. Researchers in this interdisciplinary field are with diverse background and motivation. The Symposium on the Mechanics of Electromagnetic Materials and Structures of the Fourth International Conference on Nonlinear Mechanics in Shanghai, China in August 13-16, 2002 provided an opportunity for an intimate gathering of researchers and exchange of ideas. This volume contains papers based on most of the presentations at the symposium, and articles from a few invited contributors. These papers reflect some of the recent activities in the mechanics of electromagnetic materials and structures. The first twelve papers are in the order in which they were listed in the program of the conference. These are followed by six invited papers in alphabetical order of the last names of the first authors. We would like to exte...

  7. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.

    2014-12-01

    In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.

  8. The electromagnetic Christodoulou memory effect and its application to neutron star binary mergers

    International Nuclear Information System (INIS)

    Bieri, Lydia; Chen, PoNing; Yau, Shing-Tung

    2012-01-01

    Gravitational waves are predicted by the general theory of relativity. It has been shown that gravitational waves have a nonlinear memory, displacing test masses permanently. This is called the Christodoulou memory. We proved that the electromagnetic field contributes at highest order to the nonlinear memory effect of gravitational waves, enlarging the permanent displacement of test masses. In experiments like LISA or LIGO which measure distances of test masses, the Christodoulou memory will manifest itself as a permanent displacement of these objects. It has been suggested to detect the Christodoulou memory effect using radio telescopes investigating small changes in pulsar’s pulse arrival times. The latter experiments are based on present-day technology and measure changes in frequency. In the present paper, we study the electromagnetic Christodoulou memory effect and compute it for binary neutron star mergers. These are typical sources of gravitational radiation. During these processes, not only mass and momenta are radiated away in form of gravitational waves, but also very strong magnetic fields are produced and radiated away. Moreover, a large portion of the energy is carried away by neutrinos. We give constraints on the conditions, where the energy transported by electromagnetic radiation is of similar or slightly higher order than the energy radiated in gravitational waves or in form of neutrinos. We find that for coalescing neutron stars, large magnetic fields magnify the Christodoulou memory as long as the gaseous environment is sufficiently rarefied. Thus the observed effect on test masses of a laser interferometer gravitational wave detector will be enlarged by the contribution of the electromagnetic field. Therefore, the present results are important for the planned experiments. Looking at the null asymptotics of spacetimes, which are solutions of the Einstein–Maxwell equations, we derive the electromagnetic Christodoulou memory effect. We obtain

  9. Nonlinear inertial Alfven waves in plasmas with sheared magnetic field and flow

    International Nuclear Information System (INIS)

    Chen Yinhua; Wang Ge; Tan Liwei

    2004-01-01

    Nonlinear equations describing inertial Alfven waves in plasmas with sheared magnetic field and flow are derived. For some specific parameters chosen, authors have found a new type of electromagnetic coherent structures in the tripolar vortex-like form

  10. Absorption of high-frequency electromagnetic energy in a high-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeyev, R S; Shafranov, V D

    1958-07-01

    In this paper an analysis of the cyclotron and Cherenkov mechanisms is given. These are two fundamental mechanisms for noncollisional absorption of electromagnetic radiation by plasma in a magnetic field. The expressions for the dielectric permeability tensor, for plasma with a nonisotropic temperature distribution in a magnetic field, are obtained by integrating the kinetic equation with Lagrangian particle co-ordinates in a form suitable to allow a comprehensive physical interpretation of the absorption mechanisms. The oscillations of a plasma column stabilized by a longitudinal field have been analyzed. For uniform plasma, the frequency spectrum has been obtained together with the direction of electromagnetic wave propagation when both the cyclotron and Cherenkov absorption mechanisms take place. The influence of nonlinear effects on the electromagnetic wave absorption and the part which cyclotron and Cherenkov absorption play in plasma heating have also been investigated.

  11. A preconditioned inexact newton method for nonlinear sparse electromagnetic imaging

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    to tackle the nonlinearity of these equations. At every IN iteration, a system of equations, which involves the Frechet derivative (FD) matrix of the CS operator, is solved for the IN step. A sparsity constraint is enforced on the solution via thresholded

  12. Fully relativistic free-electron laser in a completely filled waveguide

    International Nuclear Information System (INIS)

    Farokhi, B.; Abdykian, A.

    2005-01-01

    An analysis of the azimuthally symmetrical, high frequency eigenmodes of a cylindrical metallic waveguide completely filled with a relativistic magnetized plasma is presented. A relativistic nonlinear wave equation is derived in a form which includes the coupling of EH and HE modes due to the finite axial magnetic field. Relativistic equations that permit calculation of the dispersion curves for four families of electromagnetic and electrostatic modes are derived. Numerical analysis is conducted to study the relativistic dispersion curves of various modes as a function of axial magnetic field B 0 . This treatment is shown that the dispersion curves dependent to γ in low frequency which is ignored in previous work. It is found that in drawn figures shown difference between relativistic and non-relativistic cases. The former each figure is treated for two orbit groups. This study is benefiting to facilities the development of devices for generation of high-power electromagnetic radiation, charged particle acceleration, and other applications of plasma waveguide. (author)

  13. QUICKSILVER - A general tool for electromagnetic PIC simulation

    International Nuclear Information System (INIS)

    Seidel, David B.; Coats, Rebecca S.; Johnson, William A.; Kiefer, Mark L.; Mix, L. Paul; Pasik, Michael F.; Pointon, Timothy D.; Quintenz, Jeffrey P.; Riley, Douglas J.; Turner, C. David

    1997-01-01

    The dramatic increase in computational capability that has occurred over the last ten years has allowed fully electromagnetic simulations of large, complex, three-dimensional systems to move progressively from impractical, to expensive, and recently, to routine and widespread. This is particularly true for systems that require the motion of free charge to be self-consistently treated. The QUICKSILVER electromagnetic Particle-In-Cell (EM-PIC) code has been developed at Sandia National Laboratories to provide a general tool to simulate a wide variety of such systems. This tool has found widespread use for many diverse applications, including high-current electron and ion diodes, magnetically insulated power transmission systems, high-power microwave oscillators, high-frequency digital and analog integrated circuit packages, microwave integrated circuit components, antenna systems, radar cross-section applications, and electromagnetic interaction with biological material. This paper will give a brief overview of QUICKSILVER and provide some thoughts on its future development

  14. A multi-scale and multi-field coupling nonlinear constitutive theory for the layered magnetoelectric composites

    Science.gov (United States)

    Xu, Hao; Pei, Yongmao; Li, Faxin; Fang, Daining

    2018-05-01

    The magnetic, electric and mechanical behaviors are strongly coupled in magnetoelectric (ME) materials, making them great promising in the application of functional devices. In this paper, the magneto-electro-mechanical fully coupled constitutive behaviors of ME laminates are systematically studied both theoretically and experimentally. A new probabilistic domain switching function considering the surface ferromagnetic anisotropy and the interface charge-mediated effect is proposed. Then a multi-scale multi-field coupling nonlinear constitutive model for layered ME composites is developed with physical measureable parameters. The experiments were performed to compare the theoretical predictions with the experimental data. The theoretical predictions have a good agreement with experimental results. The proposed constitutive relation can be used to describe the nonlinear multi-field coupling properties of both ME laminates and thin films. Several novel coupling experimental phenomena such as the electric-field control of magnetization, and the magnetic-field tuning of polarization are observed and analyzed. Furthermore, the size-effect of the electric tuning behavior of magnetization is predicted, which demonstrates a competition mechanism between the interface strain-mediated effect and the charge-driven effect. Our study offers deep insight into the coupling microscopic mechanism and macroscopic properties of ME layered composites, which is benefit for the design of electromagnetic functional devices.

  15. Observation of electromagnetically induced Talbot effect in an atomic system

    Science.gov (United States)

    Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min

    2018-01-01

    The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.

  16. Achievements in ISICs/SAPP collaborations for electromagnetic modeling of accelerators

    International Nuclear Information System (INIS)

    Lee Liequan; Ge Lixin; Li Zenghai; Ng, Cho; Schussman, Greg; Ko, Kwok

    2005-01-01

    SciDAC provides the unique opportunity and the resources for the Electromagnetic System Simulations (ESS) component of High Energy Physics (HEP)'s Accelerator Science and Technology (AST) project to work with researchers in the Integrated Software Infrastructure Centres (ISICs) and Scientific Application Pilot Program (SAPP) to overcome challenging barriers in computer science and applied mathematics in order to perform the large-scale simulations required to support the ongoing R and D efforts on accelerators across the Office of Science. This paper presents the resultant achievements made under SciDAC in important areas of computational science relevant to electromagnetic modelling of accelerators which include nonlinear eigensolvers, shape optimization, adaptive mesh refinement, parallel meshing, and visualization

  17. Spectrum of harmonic emission by inhomogeneous plasma in intense electromagnetic wave

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.

    1989-01-01

    The spectrum and angular distribution of the harmonics of arbitrary index emitted by a cold, inhomogeneous electron plasma subjected to a p-polarized electromagnetic wave have been studied analytically. The results are shown in graphical form. The intensity of the wave was varied over a wide range. At energy flux densities of the electromagnetic wave at which the inverse effect of the higher harmonics on the lower harmonics becomes appreciable, it becomes possible to observe a decay of the absolute value of the complex amplitude of a harmonic with increasing harmonic index in vacuum which is substantially slower than that predicted by the theory for a weak nonlinearity

  18. Investigation on Electromagnetic Models of High-Speed Solenoid Valve for Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Jianhui Zhao

    2017-01-01

    Full Text Available A novel formula easily applied with high precision is proposed in this paper to fit the B-H curve of soft magnetic materials, and it is validated by comparison with predicted and experimental results. It can accurately describe the nonlinear magnetization process and magnetic saturation characteristics of soft magnetic materials. Based on the electromagnetic transient coupling principle, an electromagnetic mathematical model of a high-speed solenoid valve (HSV is developed in Fortran language that takes the saturation phenomena of the electromagnetic force into consideration. The accuracy of the model is validated by the comparison of the simulated and experimental static electromagnetic forces. Through experiment, it is concluded that the increase of the drive current is conducive to improving the electromagnetic energy conversion efficiency of the HSV at a low drive current, but it has little effect at a high drive current. Through simulation, it is discovered that the electromagnetic energy conversion characteristics of the HSV are affected by the drive current and the total reluctance, consisting of the gap reluctance and the reluctance of the iron core and armature soft magnetic materials. These two influence factors, within the scope of the different drive currents, have different contribution rates to the electromagnetic energy conversion efficiency.

  19. Nonlinear wave chaos: statistics of second harmonic fields.

    Science.gov (United States)

    Zhou, Min; Ott, Edward; Antonsen, Thomas M; Anlage, Steven M

    2017-10-01

    Concepts from the field of wave chaos have been shown to successfully predict the statistical properties of linear electromagnetic fields in electrically large enclosures. The Random Coupling Model (RCM) describes these properties by incorporating both universal features described by Random Matrix Theory and the system-specific features of particular system realizations. In an effort to extend this approach to the nonlinear domain, we add an active nonlinear frequency-doubling circuit to an otherwise linear wave chaotic system, and we measure the statistical properties of the resulting second harmonic fields. We develop an RCM-based model of this system as two linear chaotic cavities coupled by means of a nonlinear transfer function. The harmonic field strengths are predicted to be the product of two statistical quantities and the nonlinearity characteristics. Statistical results from measurement-based calculation, RCM-based simulation, and direct experimental measurements are compared and show good agreement over many decades of power.

  20. Nonlinear laser-plasma interactions

    Science.gov (United States)

    Kaw, P. K.

    2017-12-01

    Soon after lasers were invented, there was tremendous curiosity on the nonlinear phenomena which would result in their interaction with a fully ionized plasma. Apart from the basic interest, it was realized that it could be used for the achievement of nuclear fusion in the laboratory. This led us to a paper on the propagation of a laser beam into an inhomogeneous fusion plasma, where it was first demonstrated that light would go up to the critical layer (where the frequency matches the plasma frequency) and get reflected from there with a reflection coefficient of order unity. The reflection coefficient was determined by collisional effects. Since the wave was expected to slow down to near zero group speed at the reflection point, the dominant collision frequency determining the reflection coefficient was the collision frequency at the reflection point. It turned out that the absorption of light was rather small for fusion temperatures. This placed a premium on investigation of nonlinear phenomena which might contribute to the absorption and penetration of the light into high-density plasma. An early investigation showed that electron jitter with respect to ions would be responsible for the excitation of decay instabilities which convert light waves into electrostatic plasma waves and ion waves near the critical frequency. These electrostatic waves would then get absorbed into the plasma even in the collisionless case and lead to plasma heating which is nonlinear. Detailed estimates of this heating were made. Similar nonlinear processes which could lead to stimulated scattering of light in the underdense region (ω >ω _p) were investigated together with a number of other workers. All these nonlinear processes need a critical threshold power for excitation. Another important process which was discovered around the same time had to do with filamentation and trapping of light when certain thresholds were exceeded. All of this work has been extensively verified in

  1. Nonlinear fluid equations for fully toroidal electromagnetic waves for the core tokamak plasma

    Science.gov (United States)

    Weiland, J.; Liu, C. S.; Liu

    2013-12-01

    The rather general set of fluid equations with full curvature effects (Shukla and Weiland, Phys. Rev. A 40, 341 (1989)) has been modified to apply to the core and generalized to include also microtearing modes.

  2. Nonlinear DC Conduction Behavior in Graphene Nanoplatelets/Epoxy Resin Composites

    Science.gov (United States)

    Yuan, Yang; Wang, Qingguo; Qu, Zhaoming

    2018-01-01

    Graphene nanoplatelets (GNPs)/Epoxy resin (ER) with a low percolation threshold were fabricated. Then the nonlinear DC conduction behavior of GNPs/ER composites was investigated, which indicates that dispersion, exfoliation level and conductivity of GNPs in specimens are closely related to the conduction of composites. Moreover, it could be seen that the modified graphene nanoplatelets made in this paper could be successfully used for increasing the electric conductivity of the epoxy resin, and the GNPs/ER composites with nonlinear conduction behavior have a good application prospects in the field of intelligent electromagnetic protection.

  3. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  4. Homogenized description and retrieval method of nonlinear metasurfaces

    Science.gov (United States)

    Liu, Xiaojun; Larouche, Stéphane; Smith, David R.

    2018-03-01

    A patterned, plasmonic metasurface can strongly scatter incident light, functioning as an extremely low-profile lens, filter, reflector or other optical device. When the metasurface is patterned uniformly, its linear optical properties can be expressed using effective surface electric and magnetic polarizabilities obtained through a homogenization procedure. The homogenized description of a nonlinear metasurface, however, presents challenges both because of the inherent anisotropy of the medium as well as the much larger set of potential wave interactions available, making it challenging to assign effective nonlinear parameters to the otherwise inhomogeneous layer of metamaterial elements. Here we show that a homogenization procedure can be developed to describe nonlinear metasurfaces, which derive their nonlinear response from the enhanced local fields arising within the structured plasmonic elements. With the proposed homogenization procedure, we are able to assign effective nonlinear surface polarization densities to a nonlinear metasurface, and link these densities to the effective nonlinear surface susceptibilities and averaged macroscopic pumping fields across the metasurface. These effective nonlinear surface polarization densities are further linked to macroscopic nonlinear fields through the generalized sheet transition conditions (GSTCs). By inverting the GSTCs, the effective nonlinear surface susceptibilities of the metasurfaces can be solved for, leading to a generalized retrieval method for nonlinear metasurfaces. The application of the homogenization procedure and the GSTCs are demonstrated by retrieving the nonlinear susceptibilities of a SiO2 nonlinear slab. As an example, we investigate a nonlinear metasurface which presents nonlinear magnetoelectric coupling in near infrared regime. The method is expected to apply to any patterned metasurface whose thickness is much smaller than the wavelengths of operation, with inclusions of arbitrary geometry

  5. Modelling of the nonlinear soliton dynamics in the ring fibre cavity

    Science.gov (United States)

    Razukov, Vadim A.; Melnikov, Leonid A.

    2018-04-01

    Using the cabaret method numerical realization, long-time spatio-temporal dynamics of the electromagnetic field in a nonlinear ring fibre cavity with dispersion is investigated during the hundreds of round trips. Formation of both the temporal cavity solitons and irregular pulse trains is demonstrated and discussed.

  6. Electromagnetic solitons in degenerate relativistic electron–positron plasma

    International Nuclear Information System (INIS)

    Berezhiani, V I; Shatashvili, N L; Tsintsadze, N L

    2015-01-01

    The existence of soliton-like electromagnetic (EM) distributions in a fully degenerate electron–positron plasma is studied applying relativistic hydrodynamic and Maxwell equations. For a circularly polarized wave it is found that the soliton solutions exist both in relativistic as well as nonrelativistic degenerate plasmas. Plasma density in the region of soliton pulse localization is reduced considerably. The possibility of plasma cavitation is also shown. (invited comment)

  7. Nonlinear features of the electron temperature gradient mode and electron thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Kaw, P.K.; Singh, R.; Weiland, J.G.

    2001-01-01

    Analytical investigations of several linear and nonlinear features of ETG turbulence are reported. The linear theory includes effects such as finite beta induced electromagnetic shielding, coupling to electron magnetohydrodynamic modes like whistlers etc. It is argued that nonlinearly, turbulence and transport are dominated by radially extended modes called 'streamers'. A nonlinear mechanism generating streamers based on a modulational instability theory of the ETG turbulence is also presented. The saturation levels of the streamers using a Kelvin Helmholtz secondary instability mechanism are calculated and levels of the electron thermal transport due to streamers are estimated. (author)

  8. Nonlinear and self-consistent treatment of ECRH

    Energy Technology Data Exchange (ETDEWEB)

    Tsironis, C.; Vlahos, L.

    2005-07-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  9. Nonlinear and self-consistent treatment of ECRH

    International Nuclear Information System (INIS)

    Tsironis, C.; Vlahos, L.

    2005-01-01

    A self-consistent formulation for the nonlinear interaction of electromagnetic waves with relativistic magnetized electrons is applied for the description of the ECRH. In general, electron-cyclotron absorption is the result of resonances between the cyclotron harmonics and the Doppler-shifted waver frequency. The resonant interaction results to an intense wave-particle energy exchange and an electron acceleration, and for that reason it is widely applied in fusion experiments for plasma heating and current drive. The linear theory, for the wave absorption, as well as the quasilinear theory for the electron distribution function, are the most frequently-used tools for the study of wave-particle interactions. However, in many cases the validity of these theories is violated, namely cases where nonlinear effects, like, e. g. particle trapping in the wave field, are dominant in the particle phase-space. Our model consists of electrons streaming and gyrating in a tokamak plasma slab, which is finite in the directions perpendicular to the main magnetic field. The particles interact with an electromagnetic electron-cyclotron wave of the ordinary (O-) or the extraordinary (X-) mode. A set of nonlinear and relativistic equations is derived, which take into account the effects of the charged particle motions on the wave. These consist of the equations of motion for the plasma electrons in the slab, as well as the wave equation in terms of the vector potential. The effect of the electron motions on the temporal evolution of the wave is reflected in the current density source term. (Author)

  10. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2014-05-04

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  11. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2014-01-06

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  12. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  13. Nonlinear interaction of the surface waves at a plasma boundary

    International Nuclear Information System (INIS)

    Dolgopolov, V.V.; El-Naggar, I.A.; Hussein, A.M.; Khalil, Sh.M.

    1976-01-01

    Amplitudes of electromagnetic waves with combination frequencies, radiating from the plasma boundary due to nonlinear interaction of the surface waves, have been found. Previous papers on this subject did not take into account that the tangential components of the electric field of waves with combination frequencies were discontinuous at the plasma boundary. (Auth.)

  14. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  15. Stimulated brillouin scattering of electromagnetic waves in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Sen, A.

    1991-08-01

    The stimulated Brilluoin scattering of electromagnetic waves in a homogeneous, unmagnetized and collisionless dusty plasma has been investigated theoretically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the dust particles introduces a background inhomogeneous electric field which significantly influences the dispersive properties of the plasma. At the ion acoustic branch we find the usual scattering slightly modified by the charged dust grains. However, at the frequency lower than the ion acoustic branch we find a new mode of the plasma arising from the oscillations of the ions in the static structure of the dust distribution. This low frequency branch causes enhanced stimulated Brillouin scattering of electromagnetic waves in a dusty plasma. (author). 15 refs

  16. Simulations of electromagnetic effects in high-frequency capacitively coupled discharges using the Darwin approximation

    International Nuclear Information System (INIS)

    Eremin, Denis; Hemke, Torben; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2013-01-01

    The Darwin approximation is investigated for its possible use in simulation of electromagnetic effects in large size, high-frequency capacitively coupled discharges. The approximation is utilized within the framework of two different fluid models which are applied to typical cases showing pronounced standing wave and skin effects. With the first model it is demonstrated that the Darwin approximation is valid for treatment of such effects in the range of parameters under consideration. The second approach, a reduced nonlinear Darwin approximation-based model, shows that the electromagnetic phenomena persist in a more realistic setting. The Darwin approximation offers a simple and efficient way of carrying out electromagnetic simulations as it removes the Courant condition plaguing explicit electromagnetic algorithms and can be implemented as a straightforward modification of electrostatic algorithms. The algorithm described here avoids iterative schemes needed for the divergence cleaning and represents a fast and efficient solver, which can be used in fluid and kinetic models for self-consistent description of technical plasmas exhibiting certain electromagnetic activity. (paper)

  17. Novel methodology to characterize electromagnetic exposure of the brain

    International Nuclear Information System (INIS)

    Crespo-Valero, Pedro; Christopoulou, Maria; Nikita, Konstantina S; Zefferer, Marcel; Christ, Andreas; Kuster, Niels; Achermann, Peter

    2011-01-01

    Due to the greatly non-uniform field distribution induced in brain tissues by radio frequency electromagnetic sources, the exposure of anatomical and functional regions of the brain may be a key issue in interpreting laboratory findings and epidemiological studies concerning endpoints related to the central nervous system. This paper introduces the Talairach atlas in characterization of the electromagnetic exposure of the brain. A hierarchical labeling scheme is mapped onto high-resolution human models. This procedure is fully automatic and allows identification of over a thousand different sites all over the brain. The electromagnetic absorption can then be extracted and interpreted in every region or combination of regions in the brain, depending on the characterization goals. The application examples show how this methodology enhances the dosimetry assessment of the brain based on results obtained by either finite difference time domain simulations or measurements delivered by test compliance dosimetry systems. Applications include, among others, the detailed dosimetric analysis of the exposure of the brain during cell phone use, improved design of exposure setups for human studies or medical diagnostic and therapeutic devices using electromagnetic fields or ultrasound.

  18. Novel methodology to characterize electromagnetic exposure of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Crespo-Valero, Pedro [Schmid and Partner Engineering AG, Zeughausstr. 43, 8004, Zuerich (Switzerland); Christopoulou, Maria; Nikita, Konstantina S [Biomedical Simulations and Imaging Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 157 80 Athens (Greece); Zefferer, Marcel; Christ, Andreas; Kuster, Niels [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstr. 43, 8004 Zuerich (Switzerland); Achermann, Peter, E-mail: crespo@speag.com [Institute of Pharmacology and Toxicology, University of Zuerich, Winterthurerstrasse 190, 8057, Zurich (Switzerland)

    2011-01-21

    Due to the greatly non-uniform field distribution induced in brain tissues by radio frequency electromagnetic sources, the exposure of anatomical and functional regions of the brain may be a key issue in interpreting laboratory findings and epidemiological studies concerning endpoints related to the central nervous system. This paper introduces the Talairach atlas in characterization of the electromagnetic exposure of the brain. A hierarchical labeling scheme is mapped onto high-resolution human models. This procedure is fully automatic and allows identification of over a thousand different sites all over the brain. The electromagnetic absorption can then be extracted and interpreted in every region or combination of regions in the brain, depending on the characterization goals. The application examples show how this methodology enhances the dosimetry assessment of the brain based on results obtained by either finite difference time domain simulations or measurements delivered by test compliance dosimetry systems. Applications include, among others, the detailed dosimetric analysis of the exposure of the brain during cell phone use, improved design of exposure setups for human studies or medical diagnostic and therapeutic devices using electromagnetic fields or ultrasound.

  19. Macroscopic effects in electromagnetically-induced transparency in a Doppler-broadened system

    International Nuclear Information System (INIS)

    Pei Li-Ya; Qu Yi-Zhi; Niu Jin-Yan; Wang Ru-Quan; Wu Ling-An; Fu Pan-Ming; Zuo Zhan-Chun

    2015-01-01

    We study the electromagnetically-induced transparency (EIT) in a Doppler-broadened cascaded three-level system. We decompose the susceptibility responsible for the EIT resonance into a linear and a nonlinear part, and the EIT resonance reflects mainly the characteristics of the nonlinear susceptibility. It is found that the macroscopic polarization interference effect plays a crucial role in determining the EIT resonance spectrum. To obtain a Doppler-free spectrum there must be polarization interference between atoms of different velocities. A dressed-state model, which analyzes the velocities at which the atoms are in resonance with the dressed states through Doppler frequency shifting, is employed to explain the results. (paper)

  20. Intrinsic electromagnetic solitary vortices in magnetized plasma

    International Nuclear Information System (INIS)

    Liu, J.; Horton, W.

    1986-01-01

    Several Rossby type vortex solutions constructed for electromagnetic perturbations in magnetized plasma encounter the difficulty that the perturbed magnetic field and the parallel current are not continuous on the boundary between two regions. We find that fourth order differential equations must be solved to remove this discontinuity. Special solutions for two types of boundary value problems for the fourth order partial differential equations are presented. By applying these solutions to different nonlinear equations in magnetized plasma, the intrinsic electromagnetic solitary drift-Alfven vortex (along with solitary Alfven vortex) and the intrinsic electromagnetic solitary electron vortex (along with short-wavelength drift vortex) are constructed. While still keeping a localized dipole structure, these new vortices have more complicated radial structures in the inner and outer regions than the usual Rossby wave vortex. The new type of vortices guarantees the continuity of the perturbed magnetic field deltaB/sub perpendicular/ and the parallel current j/sub parallel/ on the boundary between inner and outer regions of the vortex. The allowed regions of propagation speeds for these vortices are analyzed, and we find that the complementary relation between the vortex propagating speeds and the corresponding phase velocities of the linear modes no longer exists

  1. Lorentz covariance ‘almost’ implies electromagnetism and more

    International Nuclear Information System (INIS)

    Sobouti, Y

    2015-01-01

    Beginning from two simple assumptions, (i) the speed of light is a universal constant, or its equivalent, the spacetime intervals are Lorentz invariant, and (ii) there are mutually interacting particles, with a covariant ‘source-field’ equation, one arrives at a class of field equations of which the standard electromagnetism (EM) and electrodynamics are special cases. The formalism, depending on how one formulates the source-field equation, allows one to speculate magnetic monopoles, massive photons, nonlinear EMs, and more. (paper)

  2. A fully coupled air foil bearing model considering friction – Theory & experiment

    DEFF Research Database (Denmark)

    von Osmanski, Alexander Sebastian; Larsen, Jon Steffen; Santos, Ilmar

    2017-01-01

    The dynamics of air foil bearings (AFBs) are not yet fully captured by any model. The recent years have, however, seen promising results from nonlinear time domain models, and simultaneously coupled formulations are now available, avoiding the previous requirements for undesirably small time steps...

  3. Direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear optical and dynamical laser interaction

    International Nuclear Information System (INIS)

    Lalousis, P.

    1984-01-01

    Nonthermal direct electrodynamic interaction between laser energy and a fully ionized plasma was studied. The particular emphasis is on the action of nonlinear forces, in which the optical electromagnetic fields act on the plasma electrons which then transfer their energy to the ions electrostatically. Instead of the usual single fluid model, the plasma is treated as two separate conducting fluids for electrons and ions, coupled by momentum and Coulomb interactions. The equations governing the two fluids are derived from first principles, and numerical algorithms for computing these equations are developed, enabling the plasma oscillatons to be resolved and studied. Fully ionized plasma expansion without laser irradiation is studied first numerically. Remarkable damping mechanisms by coupling to ion oscillations have been observed. Inhomogeneities in densities of the two fluids result in large electrostatic fields and double layers are generated. There is quite close agreement between numerically calculated electrostatic fields and analytical solutions. Laser interaction with fully ionized plasma is also studied numerically. The generation of cavitons is numerically observed, and it is inferred that laser plasma interactions produce very high electrostatic fields in the vicinity of cavitons. It is further shown that charge neutrality is not necessarily maintained in a caviton

  4. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.-I.; Yushmanov, P.N.; Parail, V.V.

    1987-01-01

    Calculations for the stochastic diffusion of electrons in Tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, monotonic spectrum extending from k sub(perpendicular to min) ≅ ωsub(ci)/Csub(s) to k sub(perpendicular to max) ≅ 3ωsub(pe)/C with different power laws of decrease φsub(k) ≅ φ 1 /ksup(m), 1 ≤ m ≤ 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that ksup(nl)sub(parallel to)Vsub(e) < ωsub(k) due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatov empirical formulas for plasma densities below a critical density. (author)

  5. Nonstationary self-action of electromagnetic wave beams in the beat accelerator

    International Nuclear Information System (INIS)

    Abramyan, L.A.; Litvak, A.G.; Mironov, V.A.

    1990-01-01

    The resonance excitation of a plasma wave in a modified accelerator using the beats of two electromagnetic waves permits to increase considerably the intensity of the accelerating field and, consequently, the rate of the accumulation of the energy by charged particles. The efficiency of the electromagnetic radiation conversion to the longitudinal wave is defined by nonlinear processes. The saturation of the accelerating field is considered which is due to the appearance of multiflux motion of electrons oscillating in the wave field with overturn of waves, due to the development of parametric instabilities and due to the change of natural frequency of plasma oscillations caused by the relativistic increase of electron mass. The effects of self-action which change the form of the electromagnetic radiation pulse and the wave beam structure play a significant role in the most promising laser plasma beat accelerator. We consider dynamics of space distribution of the plasma wave in a self-consistent field of the wave beam. (author) 5 refs., 2 figs

  6. Self-organization of large-scale ULF electromagnetic wave structures in their interaction with nonuniform zonal winds in the ionospheric E region

    International Nuclear Information System (INIS)

    Aburjania, G. D.; Chargazia, Kh. Z.

    2011-01-01

    A study is made of the generation and subsequent linear and nonlinear evolution of ultralow-frequency planetary electromagnetic waves in the E region of a dissipative ionosphere in the presence of a nonuniform zonal wind (a sheared flow). Hall currents flowing in the E region and such permanent global factors as the spatial nonuniformity of the geomagnetic field and of the normal component of the Earth’s angular velocity give rise to fast and slow planetary-scale electromagnetic waves. The efficiency of the linear amplification of planetary electromagnetic waves in their interaction with a nonuniform zonal wind is analyzed. When there are sheared flows, the operators of linear problems are non-self-conjugate and the corresponding eigenfunctions are nonorthogonal, so the canonical modal approach is poorly suited for studying such motions and it is necessary to utilize the so-called nonmodal mathematical analysis. It is shown that, in the linear evolutionary stage, planetary electromagnetic waves efficiently extract energy from the sheared flow, thereby substantially increasing their amplitude and, accordingly, energy. The criterion for instability of a sheared flow in an ionospheric medium is derived. As the shear instability develops and the perturbation amplitude grows, a nonlinear self-localization mechanism comes into play and the process ends with the self-organization of nonlinear, highly localized, solitary vortex structures. The system thus acquires a new degree of freedom, thereby providing a new way for the perturbation to evolve in a medium with a sheared flow. Depending on the shape of the sheared flow velocity profile, nonlinear structures can be either purely monopole vortices or vortex streets against the background of the zonal wind. The accumulation of such vortices can lead to a strongly turbulent state in an ionospheric medium.

  7. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    Energy Technology Data Exchange (ETDEWEB)

    Oevguen, A. [Eastern Mediterranean Univ., Famagusta (Country Unknown). Dept. of Physics

    2017-02-15

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields. (orig.)

  8. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    Science.gov (United States)

    Övgün, A.

    2017-02-01

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  9. Nonlinear elliptic equations and nonassociative algebras

    CERN Document Server

    Nadirashvili, Nikolai; Vlăduţ, Serge

    2014-01-01

    This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of "Hessian equations", depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four. Thus this book gives a complete list of dimensions...

  10. Linear and nonlinear waves with orbital angular momentum in magnetized plasma

    Science.gov (United States)

    Ali, Shahid; Kant Shukla, Padma; Tito Mendonca, José.

    2009-11-01

    Here we discuss the concept of orbital angular momentum (OAM) for electromagnetic waves in a magnetized plasma. Nonlinear effects of photons with spin and OAM will be considered. In particular, we examine the case of parametric interactions between circularly polarized electromagnetic waves and Langmuir and ion acoustic waves, including the ponderomotive force of light with OAM in magnetized plasma (Shukla & Stenflo, PRA). This will be a generalization of recent results published in PRL by J.T. Mendonca and B. Thide. We also examine the influence of OAM on the magnetic field generation by the inverse Faraday effect.

  11. Cosimulation of electromagnetics-circuit systems exploiting DGTD and MNA

    KAUST Repository

    Li, Ping

    2014-06-01

    A hybrid electromagnetics (EM)-circuit simulator exploiting the discontinuous Galerkin time domain (DGTD) method and the modified nodal analysis (MNA) algorithm is developed for analyzing hybrid distributive and nonlinear multiport lumped circuit systems. The computational domain is split into two subsystems. One is the EM subsystem that is analyzed by DGTD, while the other is the circuit subsystem that is solved by the MNA method. The coupling between the EM and circuit subsystems is enforced at the lumped port where related field and circuit unknowns are coupled via the use of numerical flux, port voltages, and current sources. Since the spatial operations of DGTD are localized, thanks to the use of numerical flux, coupling matrices between EM and circuit subsystems are small and are directly inverted. To handle nonlinear devices within the circuit subsystem, the standard Newton-Raphson method is applied to the nonlinear coupling matrix system. In addition, a local time-stepping scheme is applied to improve the efficiency of the hybrid solver. Numerical examples including single and multiport linear/nonlinear circuit networks are presented to validate the proposed solver. © 2014 IEEE.

  12. Nonlinear Magnetic Phenomena in Highly Polarized Target Materials

    CERN Document Server

    Kiselev, Yu F

    2007-01-01

    The report introduces and surveys nonlinear magnetic phenomena which have been observed at high nuclear polarizations in polarized targets of the SMC and of the COMPASS collaborations at CERN. Some of these phenomena, namely the frequency modulation eect and the distortion of the NMR line shape, promote the development of the polarized target technique. Others, as the spin-spin cross-relaxation between spin subsystems can be used for the development of quantum statistical physics. New findings bear on an electromagnetic noise and the spectrally resolved radiation from LiD with negatively polarized nuclei detected by low temperature bolometers. These nonlinear phenomena need to be taken into account for achieving the ultimate polarizations.

  13. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  14. Numerical simulation of water exit of an initially fully submerged buoyant spheroid in an axisymmetric flow

    Energy Technology Data Exchange (ETDEWEB)

    Ni, B Y; Wu, G X, E-mail: g.wu@ucl.ac.uk [College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001 (China)

    2017-08-15

    The free water exit of an initially fully submerged buoyant spheroid in an axisymmetric flow, which is driven by the difference between the vertical fluid force and gravity, is investigated. The fluid is assumed to be incompressible and inviscid, and the flow to be irrotational. The velocity potential theory is adopted together with fully nonlinear boundary conditions on the free surface. The surface tension is neglected and the pressure is taken as constant on the free surface. The acceleration of the body at each time step is obtained as part of the solution. Its nonlinear mutual dependence on the fluid force is decoupled through the auxiliary function method. The free-surface breakup by body penetration and water detachment from the body are treated through numerical conditions. The slender body theory based on the zero potential assumption on the undisturbed flat free surface is adopted, through which a condition for full water exit of a spheroid is obtained. Comparison is made between the results from the slender body theory and from the fully nonlinear theory through the boundary-element method, and good agreement is found when the spheroid is slender. Extensive case studies are undertaken to investigate the effects of body density, dimensions and the initial submergence. (paper)

  15. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  16. Nonlinear effect of the structured light profilometry in the phase-shifting method and error correction

    International Nuclear Information System (INIS)

    Zhang Wan-Zhen; Chen Zhe-Bo; Xia Bin-Feng; Lin Bin; Cao Xiang-Qun

    2014-01-01

    Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector–camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  17. Self-reflection of intense electromagnetic waves in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, D P; Kumar, A; Sharma, J K [Indian Inst. of Tech., New Delhi. Dept. of Physics

    1977-10-01

    A uniform electromagnetic wave of high power density, propagating in a collisional plasma gives rise to a modification in temperature-dependent collision frequency and in turn induces a gradient in the complex refractive index of the medium. A WKB solution of the problem predicts a backward propagating wave on account of the self-induced inhomogeneity. The amplitude of the backward (i.e. reflected) wave increases with increasing power density of the wave. This is a volume nonlinear effect and is appreciable for usually employed power densities.

  18. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  19. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    International Nuclear Information System (INIS)

    Erofeev, V. I.

    2015-01-01

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena

  20. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

    KAUST Repository

    Bagci, Hakan

    2015-01-07

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

  1. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

    KAUST Repository

    Bagci, Hakan

    2015-01-01

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

  2. Electromagnetic production of very light gluinos

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.E.; Sher, M. [College of William and Mary, Williamsburg, VA (United States); Weinstein, L. [Old Dominion Univ., Norfolk, VA (United States)

    1994-04-01

    Current experiments allow the possibility of gluino masses below about 600 MeV if the lifetime of the gluino is longer than 100 picoseconds. If the mass and lifetime are in this window, then electromagnetic production of pairs of gluino-gluon bound states can provide a means to observe them. The cross section is large enough that the window can be fully explored, up to lifetimes exceeding a microsecond, at high luminosity electron accelerators. A discussion of signatures and a table of event rates for various possibilities at CEBAF is given.

  3. Electromagnetic Effices from Impacts on Spacecraft

    Science.gov (United States)

    Close, Sigrid

    2018-04-01

    Hypervelocity micro particles, including meteoroids and space debris with masses electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma and show that impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (> 20 km/s) impacts that produced a fully ionized plasma.

  4. Electromagnetic production of very light gluinos

    International Nuclear Information System (INIS)

    Carlson, C.E.; Sher, M.; Weinstein, L.

    1994-01-01

    Current experiments allow the possibility of gluino masses below about 600 MeV if the lifetime of the gluino is longer than 100 picoseconds. If the mass and lifetime are in this window, then electromagnetic production of pairs of gluino-gluon bound states can provide a means to observe them. The cross section is large enough that the window can be fully explored, up to lifetimes exceeding a microsecond, at high luminosity electron accelerators. A discussion of signatures and a table of event rates for various possibilities at CEBAF is given

  5. A Hybrid DGTD-MNA Scheme for Analyzing Complex Electromagnetic Systems

    KAUST Repository

    Li, Peng

    2015-01-07

    A hybrid electromagnetics (EM)-circuit simulator for analyzing complex systems consisting of EM devices loaded with nonlinear multi-port lumped circuits is described. The proposed scheme splits the computational domain into two subsystems: EM and circuit subsystems, where field interactions are modeled using Maxwell and Kirchhoff equations, respectively. Maxwell equations are discretized using a discontinuous Galerkin time domain (DGTD) scheme while Kirchhoff equations are discretized using a modified nodal analysis (MNA)-based scheme. The coupling between the EM and circuit subsystems is realized at the lumped ports, where related EM fields and circuit voltages and currents are allowed to “interact’’ via numerical flux. To account for nonlinear lumped circuit elements, the standard Newton-Raphson method is applied at every time step. Additionally, a local time-stepping scheme is developed to improve the efficiency of the hybrid solver. Numerical examples consisting of EM systems loaded with single and multiport linear/nonlinear circuit networks are presented to demonstrate the accuracy, efficiency, and applicability of the proposed solver.

  6. Fourier imaging of non-linear structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-04-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  7. Fourier imaging of non-linear structure formation

    International Nuclear Information System (INIS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  8. A bistable electromagnetically actuated rotary gate microvalve

    International Nuclear Information System (INIS)

    Luharuka, Rajesh; Hesketh, Peter J

    2008-01-01

    Two types of rotary gate microvalves are developed for flow modulation in microfluidic systems. These microvalves have been tested for an open flow rate of up to 100 sccm and operate under a differential pressure of 6 psig with flow modulation of up to 100. The microvalve consists of a suspended gate that rotates in the plane of the chip to regulate flow through the orifice. The gate is suspended by a novel fully compliant in-plane rotary bistable micromechanism (IPRBM) that advantageously constrains the gate in all degrees of freedom except for in-plane rotational motion. Multiple inlet/outlet orifices provide flexibility of operating the microvalve in three different flow configurations. The rotary gate microvalve is switched with an external electromagnetic actuator. The suspended gate is made of a soft magnetic material and its electromagnetic actuation is based on the operating principle of a variable-reluctance stepper motor

  9. Nonlinear data assimilation

    CERN Document Server

    Van Leeuwen, Peter Jan; Reich, Sebastian

    2015-01-01

    This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

  10. Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body.

    Science.gov (United States)

    Nawathe, Shashank; Yang, Haisheng; Fields, Aaron J; Bouxsein, Mary L; Keaveny, Tony M

    2015-05-01

    The influence of the ductility of bone tissue on whole-bone strength represents a fundamental issue of multi-scale biomechanics. To gain insight, we performed a computational study of 16 human proximal femurs and 12 T9 vertebral bodies, comparing the whole-bone strength for the two hypothetical bounding cases of fully brittle versus fully ductile tissue-level failure behaviors, all other factors, including tissue-level elastic modulus and yield stress, held fixed. For each bone, a finite element model was generated (60-82 μm element size; up to 120 million elements) and was virtually loaded in habitual (stance for femur, compression for vertebra) and non-habitual (sideways fall, only for femur) loading modes. Using a geometrically and materially non-linear model, the tissue was assumed to be either fully brittle or fully ductile. We found that, under habitual loading, changing the tissue behavior from fully ductile to fully brittle reduced whole-bone strength by 38.3±2.4% (mean±SD) and 39.4±1.9% for the femur and vertebra, respectively (p=0.39 for site difference). These reductions were remarkably uniform across bones, but (for the femur) were greater for non-habitual (57.1±4.7%) than habitual loading (pductile cases. These theoretical results suggest that the whole-bone strength of the proximal femur and vertebra can vary substantially between fully brittle and fully ductile tissue-level behaviors, an effect that is relatively insensitive to bone morphology but greater for non-habitual loading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. On the structure of the new electromagnetic conservation laws

    International Nuclear Information System (INIS)

    Edgar, S Brian

    2004-01-01

    New electromagnetic conservation laws have recently been proposed: in the absence of electromagnetic currents, the trace of the Chevreton superenergy tensor, H ab is divergence free in four-dimensional (a) Einstein spacetimes for test fields, and (b) Einstein-Maxwell spacetimes. Subsequently it has been pointed out, in analogy with flat spaces, that for Ricci-flat spacetimes the trace of the Chevreton superenergy tensor H ab can be rearranged in the form of a generalized wave operator □ L acting on the energy-momentum tensor T ab of the test fields, i.e., H ab □ L T ab /2. In this letter we show, for Einstein-Maxwell spacetimes in the full nonlinear theory, that, although, the trace of the Chevreton superenergy tensor H ab can again be rearranged in the form of a generalized wave operator □ G acting on the electromagnetic energy-momentum tensor, in this case the result is also crucially dependent on Einstein's equations; hence we argue that the divergence-free property of the tensor H ab = □ G T ab /2 has significant independent content beyond that of the divergence-free property of T ab . (letter to the editor)

  12. Controlled opacity in a class of nonlinear dielectric media

    Science.gov (United States)

    Bittencourt, E.; Camargo, G. H. S.; De Lorenci, V. A.; Klippert, R.

    2017-03-01

    Motivated by new technologies for designing and tailoring metamaterials, we seek properties for certain classes of nonlinear optical materials that allow room for a reversibly controlled opacity-to-transparency phase transition through the application of external electromagnetic fields. We examine some mathematically simple models for the dielectric parameters of the medium and compute the relevant geometric quantities that describe the speed and polarization of light rays.

  13. Initial boundary value problems of nonlinear wave equations in an exterior domain

    International Nuclear Information System (INIS)

    Chen Yunmei.

    1987-06-01

    In this paper, we investigate the existence and uniqueness of the global solutions to the initial boundary value problems of nonlinear wave equations in an exterior domain. When the space dimension n >= 3, the unique global solution of the above problem is obtained for small initial data, even if the nonlinear term is fully nonlinear and contains the unknown function itself. (author). 10 refs

  14. Hyperbolicity of the Nonlinear Models of Maxwell's Equations

    Science.gov (United States)

    Serre, Denis

    . We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class Hs with s>1+d/2. The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex. Since the energy conservation law does not derive from the system of conservation laws itself (Faraday's and Ampère's laws), but also needs the compatibility relations divB=divD=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.

  15. The electromagnetic bio-field: clinical experiments and interferences.

    Science.gov (United States)

    Burnei, G; Hodorogea, D; Georgescu, I; Gavriliu, Ş; Drăghici, I; Dan, D; Vlad, C; Drăghici, L

    2012-06-12

    One of the most important factors is the technical and scientifically rapid development that is continually modifying the world we live in and polluting it with electromagnetic radiations. A functional and structural influence of magnetic and electromagnetic field on living organisms is presented in the literature by many performed experiments. The notion of bio-field represents the electromagnetic field generated by the bio-structures, not only in their normal physiological activities but also in their pathological states. There is a tight interdependency between the bio-field and the bio-structure, which respects the primary notion of an electromagnetic field given by the Maxwell-Faraday laws, in which, the electromagnetic phenomena are simplified to the field variations. These variations can be expressed in a coherent differential equation system that bounds the field vectors to different space points at different time moments. The living organisms cannot contain electrostatic and magneto-static fields due to the intense activity of the bio-structures. The biochemical reactions that have high rhythms and speeds always impose the electrodynamics character of the biologic field that also corresponds to the stability of the protein molecule that can be explained only through a dynamic way. The existent energy is not considered an exciting agent, and it does not lead to any effects. The parameters of these elementary bio-fields cannot yet be fully known due to technical reasons. The biological structures are very complex ones and undergo continuous dynamical activity. That is why the calculus model should be related to the constant dynamics, nowadays being very difficult to express.

  16. Study of piezoelectric materials combined with electromagnetic design for bicycle harvesting system

    Directory of Open Access Journals (Sweden)

    Dyi-Cheng Chen

    2016-04-01

    Full Text Available Energy harvesting device involves capturing energy from the environment and it is increasingly crucial in the crisis of greenhouse effect nowadays. Equipping bicycles with many types of shock absorbers can enhance the riding comfort. Additionally, an embedded energy harvesting device will gain much benefit beyond the sports. This study applied the finite element method to analyze the components of nonlinear magnetic spring. The analytical simulations were conducted to analyze the electromagnetic effect in ANSYS©/Emag software. A model equipped with nonlinear magnetic springs was constructed to absorb the impact energy. Nevertheless, the piezoelectric components were used to capture the piezoelectric effect current caused by the compressive stress. A series of simulations were conducted, such as changing the diameter of the magnet, electric coil width, and the position of the coils. Moreover, with those finite element analysis data, the Taguchi method L9(34 orthogonal arrays were applied to determine the optimal parametric dimensions of the electromagnetic and piezoelectric assemblies for maximizing the captured kinetic energy and power transformation. The results could assist the suspension manufacturers to innovate their design for energy harvesting and impact absorbing.

  17. An efficient flexible-order model for 3D nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole

    2009-01-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal......, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental...

  18. Propagation characteristics of electromagnetic waves in dusty plasma with full ionization

    Science.gov (United States)

    Dan, Li; Guo, Li-Xin; Li, Jiang-Ting

    2018-01-01

    This study investigates the propagation characteristics of electromagnetic (EM) waves in fully ionized dusty plasmas. The propagation characteristics of fully ionized plasma with and without dust under the Fokker-Planck-Landau (FPL) and Bhatnagar-Gross-Krook (BGK) models are compared to those of weakly ionized plasmas by using the propagation matrix method. It is shown that the FPL model is suitable for the analysis of the propagation characteristics of weakly collisional and fully ionized dusty plasmas, as is the BGK model. The influence of varying the dust parameters on the propagation properties of EM waves in the fully ionized dusty plasma was analyzed using the FPL model. The simulation results indicated that the densities and average radii of dust grains influence the reflection and transmission coefficients of fully ionized dusty plasma slabs. These results may be utilized to analyze the effects of interaction between EM waves and dusty plasmas, such as those associated with hypersonic vehicles.

  19. A Neural Network: Family Competition Genetic Algorithm and Its Applications in Electromagnetic Optimization

    Directory of Open Access Journals (Sweden)

    P.-Y. Chen

    2009-01-01

    Full Text Available This study proposes a neural network-family competition genetic algorithm (NN-FCGA for solving the electromagnetic (EM optimization and other general-purpose optimization problems. The NN-FCGA is a hybrid evolutionary-based algorithm, combining the good approximation performance of neural network (NN and the robust and effective optimum search ability of the family competition genetic algorithms (FCGA to accelerate the optimization process. In this study, the NN-FCGA is used to extract a set of optimal design parameters for two representative design examples: the multiple section low-pass filter and the polygonal electromagnetic absorber. Our results demonstrate that the optimal electromagnetic properties given by the NN-FCGA are comparable to those of the FCGA, but reducing a large amount of computation time and a well-trained NN model that can serve as a nonlinear approximator was developed during the optimization process of the NN-FCGA.

  20. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  1. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    Science.gov (United States)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  2. Non-linear processes in the Earth atmosphere boundary layer

    Science.gov (United States)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components

  3. Generation of complete coherence in Young's interference experiment with random mutually uncorrelated electromagnetic beams

    NARCIS (Netherlands)

    Agarwal, G. S.; Dogariu, A.; Visser, T.D.; Wolf, E.

    2005-01-01

    The recently developed theory that unifies the treatments of polarization and coherence of random electro-magnetic beams is applied to study field correlations in Young's interference experiment. It is found that at certain pairs of points the transmitted field is spatially fully coherent,

  4. Double-resonant processes in x.sup.20.sup. nonlinear periodic media

    Czech Academy of Sciences Publication Activity Database

    Konotop, V. V.; Kuzmiak, Vladimír

    2000-01-01

    Roč. 17, č. 11 (2000), s. 1874-1883 ISSN 0740-3224 Grant - others:Fundo European de Desenvolvimento Regional and Program PRAXIS XXI(PT) PRAXIS/2/2.1/FIS/176/94 Institutional research plan: CEZ:AV0Z2067918 Keywords : nonlinear media * electromagnetic wave propagation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.943, year: 2000

  5. Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems

    International Nuclear Information System (INIS)

    Hart, R.D.

    1981-01-01

    A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited

  6. Nonlinear dynamics of attractive magnetic bearings

    Science.gov (United States)

    Hebbale, K. V.; Taylor, D. L.

    1987-01-01

    The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

  7. Electron diffusion in tokamaks due to electromagnetic fluctuations

    International Nuclear Information System (INIS)

    Horton, W.; Choi, D.I.; Yushmanov, P.N.; Parail, V.V.

    1986-05-01

    Calculations for the stochastic diffusion of electrons in tokamaks due to a spectrum of electromagnetic drift fluctuations are presented. The parametric dependence of the diffusion coefficient on the amplitude and phase velocity of the spectrum, and the bounce frequency for the electrons is studied. The wavenumber spectrum is taken to be a low order (5 x 5) randomly-phased, isotropic, Monotonic spectrum extending from k /sub perpendicular min/ approx. = ω/sub ci//c/sub s/ to k/sub perpendicular max/ approx. = 3ω/sub pe//c with different power laws of decrease phi k approx. = phi 1/k/sup m/, 1 less than or equal to m less than or equal to 3. A nonlinear Ohm's law is derived for the self-consistent relation between the electrostatic and parallel vector potentials. The parallel structure of the fluctuations is taken to be such that k parallel/sup nl/upsilon/sub e/ < w/sub k/ due to the nonlinear perpendicular motion of the electrons described in the nonlinear Ohm's law. The diffusion coefficient scales approximately as the neo-Alcator and Merezhkin-Mukhovatoc empirical formulas for plasma densities above a critical density

  8. Some aspects of transformation of the nonlinear plasma equations to the space-independent frame

    International Nuclear Information System (INIS)

    Paul, S.N.; Chakraborty, B.

    1982-01-01

    Relativistically correct transformation of nonlinear plasma equations are derived in a space-independent frame. This transformation is useful in many ways because in place of partial differential equations one obtains a set of ordinary differential equations in a single independent variable. Equations of Akhiezer and Polovin (1956) for nonlinear plasma oscillations have been generalized and the results of Arons and Max (1974), and others for wave number shift and precessional rotation of electromagnetic wave are recovered in a space-independent frame. (author)

  9. Domain decomposition solvers for nonlinear multiharmonic finite element equations

    KAUST Repository

    Copeland, D. M.

    2010-01-01

    In many practical applications, for instance, in computational electromagnetics, the excitation is time-harmonic. Switching from the time domain to the frequency domain allows us to replace the expensive time-integration procedure by the solution of a simple elliptic equation for the amplitude. This is true for linear problems, but not for nonlinear problems. However, due to the periodicity of the solution, we can expand the solution in a Fourier series. Truncating this Fourier series and approximating the Fourier coefficients by finite elements, we arrive at a large-scale coupled nonlinear system for determining the finite element approximation to the Fourier coefficients. The construction of fast solvers for such systems is very crucial for the efficiency of this multiharmonic approach. In this paper we look at nonlinear, time-harmonic potential problems as simple model problems. We construct and analyze almost optimal solvers for the Jacobi systems arising from the Newton linearization of the large-scale coupled nonlinear system that one has to solve instead of performing the expensive time-integration procedure. © 2010 de Gruyter.

  10. Spectrum of the seismic-electromagnetic and acoustic waves caused by seismic and volcano activity

    Directory of Open Access Journals (Sweden)

    S. Koshevaya

    2005-01-01

    Full Text Available Modeling of the spectrum of the seismo-electromagnetic and acoustic waves, caused by seismic and volcanic activity, has been done. This spectrum includes the Electromagnetic Emission (EME, due to fracturing piezoelectrics in rocks and the Acoustic Emission (AE, caused by the excitation and the nonlinear passage of acoustic waves through the Earth's crust, the atmosphere, and the ionosphere. The investigated mechanism of the EME uses the model of fracturing and the crack motion. For its analysis, we consider a piezoelectric crystal under mechanical stresses, which cause the uniform crack motion, and, consequently, in the vicinity of the moving crack also cause non-stationary polarization currents. A possible spectrum of EME has been estimated. The underground fractures produce Very Low (VLF and Extremely Low Frequency (ELF acoustic waves, while the acoustic waves at higher frequencies present high losses and, on the Earth's surface, they are quite small and are not registered. The VLF acoustic wave is subject to nonlinearity under passage through the lithosphere that leads to the generation of higher harmonics and also frequency down-conversion, namely, increasing the ELF acoustic component on the Earth's surface. In turn, a nonlinear propagation of ELF acoustic wave in the atmosphere and the ionosphere leads to emerging the ultra low frequency (ULF acousto-gravity waves in the ionosphere and possible local excitation of plasma waves.

  11. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal; Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi

    2015-01-01

    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  12. Global-local nonlinear model reduction for flows in heterogeneous porous media

    KAUST Repository

    AlOtaibi, Manal

    2015-08-01

    In this paper, we combine discrete empirical interpolation techniques, global mode decomposition methods, and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM), to reduce the computational complexity associated with nonlinear flows in highly-heterogeneous porous media. To solve the nonlinear governing equations, we employ the GMsFEM to represent the solution on a coarse grid with multiscale basis functions and apply proper orthogonal decomposition on a coarse grid. Computing the GMsFEM solution involves calculating the residual and the Jacobian on a fine grid. As such, we use local and global empirical interpolation concepts to circumvent performing these computations on the fine grid. The resulting reduced-order approach significantly reduces the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider several numerical examples of nonlinear multiscale partial differential equations that are numerically integrated using fully-implicit time marching schemes to demonstrate the capability of the proposed model reduction approach to speed up simulations of nonlinear flows in high-contrast porous media.

  13. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    Science.gov (United States)

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  14. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  15. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  16. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called textbook multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  17. Parametric decay of an extraordinary electromagnetic wave in relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dorofeenko, V. G. [Institute for Advanced Studies (Austria); Krasovitskiy, V. B., E-mail: krasovit@mail.ru [Keldysh Institute of Applied Mathematics (Russian Federation); Turikov, V. A. [Peoples’ Friendship University of Russia (Russian Federation)

    2015-03-15

    Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.

  18. Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Hofstrand, A.; Moloney, J. V.

    2018-03-01

    In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.

  19. A direct method for numerical solution of a class of nonlinear Volterra integro-differential equations and its application to the nonlinear fission and fusion reactor kinetics

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki; Ise, Takeharu; Kobayashi, Kensuke; Itoh, Yasuyuki

    1975-12-01

    A new method has been developed for numerical solution of a class of nonlinear Volterra integro-differential equations with quadratic nonlinearity. After dividing the domain of the variable into subintervals, piecewise approximations are applied in the subintervals. The equation is first integrated over a subinterval to obtain the piecewise equation, to which six approximate treatments are applied, i.e. fully explicit, fully implicit, Crank-Nicolson, linear interpolation, quadratic and cubic spline. The numerical solution at each time step is obtained directly as a positive root of the resulting algebraic quadratic equation. The point reactor kinetics with a ramp reactivity insertion, linear temperature feedback and delayed neutrons can be described by one of this type of nonlinear Volterra integro-differential equations. The algorithm is applied to the Argonne benchmark problem and a model problem for a fast reactor without delayed neutrons. The fully implicit method has been found to be unconditionally stable in the sense that it always gives the positive real roots. The cubic spline method is divergent, and the other four methods are intermediate in between. From the estimation of the stability, convergency, accuracy and CPU time, it is concluded that the Crank-Nicolson method is best, then the linear interpolation method comes closely next to it. Discussions are also made on the possibility of applying the algorithm to the fusion reactor kinetics in the form of a nonlinear partial differential equation. (auth.)

  20. Secure DS-CDMA spreading codes using fully digital multidimensional multiscroll chaos

    KAUST Repository

    Mansingka, Abhinav S.

    2014-06-18

    This paper introduces a generalized fully digital hardware implementation of 1-D, 2-D and 3-D multiscroll chaos through sawtooth nonlinearities in a 3rd order ODE with the Euler approximation, wherein low-significance bits pass all NIST SP. 800-22 tests. The low-significance bits show good performance as spreading code for multiple-access DS-CDMA in AWGN and multipath environments, equivalent to Gold codes. This system capitalizes on complex nonlinear dynamics afforded by multiscroll chaos to provide higher security than conventional codes with the same BER performance demonstrated experimentally on a Xilinx Virtex 4 FPGA with logic utilization less than 1.25% and throughput up to 10.92 Gbits/s.

  1. Approximate viability for nonlinear evolution inclusions with application to controllability

    Directory of Open Access Journals (Sweden)

    Omar Benniche

    2016-12-01

    Full Text Available We investigate approximate viability for a graph with respect to fully nonlinear quasi-autonomous evolution inclusions. As application, an approximate null controllability result is given.

  2. Nonlinear Epigenetic Variance: Review and Simulations

    Science.gov (United States)

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  3. Nonexistence of Smooth Electromagnetic Fields in Nonlinear Dielectrics. II. Shock Development in a Half-Space.

    Science.gov (United States)

    1982-03-01

    NUMB9ER 00 AU THOR(s) 8. CON7RACT OR GRANT .%Uv3ERHj) Frederick Bloom AFOSR-81-0171 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PrOGRAK ELEMAE:NT...material coff -iceret which may be associated with a particular nonlinear dielectric substance. For most common nonlinear dielectric substance, e

  4. Forward-backward equations for nonlinear propagation in axially invariant optical systems

    International Nuclear Information System (INIS)

    Ferrando, Albert; Zacares, Mario; Fernandez de Cordoba, Pedro; Binosi, Daniele; Montero, Alvaro

    2005-01-01

    We present a general framework to deal with forward and backward components of the electromagnetic field in axially invariant nonlinear optical systems, which include those having any type of linear or nonlinear transverse inhomogeneities. With a minimum amount of approximations, we obtain a system of two first-order equations for forward and backward components, explicitly showing the nonlinear couplings among them. The modal approach used allows for an effective reduction of the dimensionality of the original problem from 3+1 (three spatial dimensions plus one time dimension) to 1+1 (one spatial dimension plus one frequency dimension). The new equations can be written in a spinor Dirac-like form, out of which conserved quantities can be calculated in an elegant manner. Finally, these equations inherently incorporate spatiotemporal couplings, so that they can be easily particularized to deal with purely temporal or purely spatial effects. Nonlinear forward pulse propagation and nonparaxial evolution of spatial structures are analyzed as examples

  5. The universal C*-algebra of the electromagnetic field II. Topological charges and spacelike linear fields

    Science.gov (United States)

    Buchholz, Detlev; Ciolli, Fabio; Ruzzi, Giuseppe; Vasselli, Ezio

    2017-02-01

    Conditions for the appearance of topological charges are studied in the framework of the universal C*-algebra of the electromagnetic field, which is represented in any theory describing electromagnetism. It is shown that non-trivial topological charges, described by pairs of fields localised in certain topologically non-trivial spacelike separated regions, can appear in regular representations of the algebra only if the fields depend non-linearly on the mollifying test functions. On the other hand, examples of regular vacuum representations with non-trivial topological charges are constructed, where the underlying field still satisfies a weakened form of "spacelike linearity". Such representations also appear in the presence of electric currents. The status of topological charges in theories with several types of electromagnetic fields, which appear in the short distance (scaling) limit of asymptotically free non-abelian gauge theories, is also briefly discussed.

  6. Nonlinear quantum fluid equations for a finite temperature Fermi plasma

    International Nuclear Information System (INIS)

    Eliasson, Bengt; Shukla, Padma K

    2008-01-01

    Nonlinear quantum electron fluid equations are derived, taking into account the moments of the Wigner equation and by using the Fermi-Dirac equilibrium distribution for electrons with an arbitrary temperature. A simplified formalism with the assumptions of incompressibility of the distribution function is used to close the moments in velocity space. The nonlinear quantum diffraction effects into the fluid equations are incorporated. In the high-temperature limit, we retain the nonlinear fluid equations for a dense hot plasma and in the low-temperature limit, we retain the correct fluid equations for a fully degenerate plasma

  7. Linear and nonlinear verification of gyrokinetic microstability codes

    Science.gov (United States)

    Bravenec, R. V.; Candy, J.; Barnes, M.; Holland, C.

    2011-12-01

    Verification of nonlinear microstability codes is a necessary step before comparisons or predictions of turbulent transport in toroidal devices can be justified. By verification we mean demonstrating that a code correctly solves the mathematical model upon which it is based. Some degree of verification can be accomplished indirectly from analytical instability threshold conditions, nonlinear saturation estimates, etc., for relatively simple plasmas. However, verification for experimentally relevant plasma conditions and physics is beyond the realm of analytical treatment and must rely on code-to-code comparisons, i.e., benchmarking. The premise is that the codes are verified for a given problem or set of parameters if they all agree within a specified tolerance. True verification requires comparisons for a number of plasma conditions, e.g., different devices, discharges, times, and radii. Running the codes and keeping track of linear and nonlinear inputs and results for all conditions could be prohibitive unless there was some degree of automation. We have written software to do just this and have formulated a metric for assessing agreement of nonlinear simulations. We present comparisons, both linear and nonlinear, between the gyrokinetic codes GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and GS2 [W. Dorland, F. Jenko, M. Kotschenreuther, and B. N. Rogers, Phys. Rev. Lett. 85, 5579 (2000)]. We do so at the mid-radius for the same discharge as in earlier work [C. Holland, A. E. White, G. R. McKee, M. W. Shafer, J. Candy, R. E. Waltz, L. Schmitz, and G. R. Tynan, Phys. Plasmas 16, 052301 (2009)]. The comparisons include electromagnetic fluctuations, passing and trapped electrons, plasma shaping, one kinetic impurity, and finite Debye-length effects. Results neglecting and including electron collisions (Lorentz model) are presented. We find that the linear frequencies with or without collisions agree well between codes, as do the time averages of

  8. Electromagnetic effects on the light hadron spectrum

    International Nuclear Information System (INIS)

    Basak, S; Bazavov, A; Bernard, C; Komijani, J; DeTar, C; Foley, J; Levkova, L; Li, R; Torok, A; Freeland, E; Gottlieb, Steven; Heller, U M; Laiho, J; Osborn, J; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R

    2015-01-01

    For some time, the MILC Collaboration has been studying electromagnetic effects on light mesons. These calculations use fully dynamical QCD, but only quenched photons, which suffices to NLO in χPT. That is, the sea quarks are electrically neutral, while the valence quarks carry charge. For the photons we use the non-compact formalism. We have new results with lattice spacing as small as 0.045 fm and a large range of volumes. We consider how well chiral perturbation theory describes these results and the implications for light quark masses. (paper)

  9. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    Energy Technology Data Exchange (ETDEWEB)

    Carbajal, L., E-mail: L.Carbajal-Gomez@warwick.ac.uk; Cook, J. W. S. [Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Dendy, R. O. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB, Oxfordshire (United Kingdom); Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Chapman, S. C. [Centre for Fusion, Space and Astrophysics, Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Mathematics and Statistics, University of Tromsø, N-9037, Tromsø (Norway); Max Planck Institute for the Physics of Complex Systems, D-01187, Dresden (Germany)

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  10. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas

    Science.gov (United States)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.

    1997-01-01

    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  11. Investigation of Non-Linear Dynamics of the Rock Massive,Using Seismological Catalogue data and Induction Electromagnetic Monitoring Data in a Rock Burst Mine.

    Science.gov (United States)

    Hachay, O. A.; Khachay, O. Y.; Klimko, V. K.; Shipeev, O. V.

    2012-04-01

    Geological medium is an open dynamical system, which is influenced on different scales by natural and man-made impacts, which change the medium state and lead as a result to a complicated many ranked hierarchic evolution. That is the subject of geo synergetics. Paradigm of physical mesomechanics, which was advanced by academician Panin V.E. and his scientific school, which includes the synergetic approach is a constructive method for research and changing the state of heterogenic materials [1]. That result had been obtained on specimens of different materials. In our results of research of no stationary geological medium in a frame of natural experiments in real rock massifs, which are under high man-made influence it was shown, that the state dynamics can be revealed with use synergetics in hierarchic medium. Active and passive geophysical monitoring plays a very important role for research of the state of dynamical geological systems. It can be achieved by use electromagnetic and seismic fields. Our experience of that research showed the changing of the system state reveals on the space scales and times in the parameters, which are linked with the peculiarities of the medium of the second or higher ranks [2-5]. Results of seismological and electromagnetic information showed the mutual additional information on different space-time levels of rock massive state, which are energetic influenced by explosions, used in mining technology. It is revealed a change of nonlinearity degree in time of the massive state by active influence on it. The description of massive movement in a frame of linear dynamical system does not satisfy the practical situation. The received results are of great significance because for the first time we could find the coincidences with the mathematical theory of open systems and experimental natural results with very complicated structure. On that base we developed a new processing method for the seismological information which can be used in

  12. Diffuse ions produced by electromagnetic ion beam instabilities

    International Nuclear Information System (INIS)

    Winske, D.; Leroy, M.M.

    1984-01-01

    The evolution of the electromagnetic ions beam instability driven by the reflected ion component backstreaming away from the earth's how shock into the foreshock region is studied by means computer simulation. The linear the quasi-linear states of the instability are found to be in good agreement with known results for the resonant model propagating parallel to the beam along the magnetic field and with theory developed in this paper for the nonresonant mode, which propagates antiparallel to the beam direction. The quasi-linear stage, which produces large amplitude 8Bapprox.B, sinusoidal transverse waves and ''intermediate'' ion distribution, is terminated by a nonlinear phase in which strongly nonlinear, compressive waves and ''diffuse'' ion distributions are produced. Additional processes by which the diffuse ions are accelerated to observed high energies are not addressed. The results are discussed in terms of the ion distributions and hydromagnetic waves observed in the foreshock of the earth's bow shock and of interplanetary shocks

  13. The investigation of electromagnetic precursors to earthquakes in Armenia

    Directory of Open Access Journals (Sweden)

    M. Babayan

    1997-06-01

    Full Text Available The present work provides a sufficient theoretical substantiation of the anomalous distribution for Very-Low-Frequency (VLF radio waves which is observed for all radio routes controlled by the National Survey for Seismic Protection (NSSP of the Republic of Armenia. This event is connected with the ionosphere excitement over the strong seismic event preparation zone under the influence of intensively oscillated VLF electromagnetic waves falling on the ionosphere from the source called an area of uniformly oriented Zones of Separated Charges (ZSC in the strong seismic preparation zone. ZSC, formed at the interfaces of solid, liquid, and gaseous phases of rocks, acquire identical orientation under the action of increasing elastic strain forces. These strain forces may cause the effect of mutual polarisation of ZSC in the field of their high concentration. As a result, in the strong earthquake preparation zone, the most sensitive to the deformation ZSC, non-linear electromagnetic effects may be observed. One of these effects is the irreversibility of non-stationary electromagnetic processes (INP. It is shown that the INP method developed by Balassanian and Kabilsky (Balassanian, 1990 may prove to be very sensitive to the deformations of geological medium in the earthquake preparation zone.

  14. Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.

    Science.gov (United States)

    Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko

    2014-08-28

    It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. On electromagnetic forming processes in finitely strained solids: Theory and examples

    Science.gov (United States)

    Thomas, J. D.; Triantafyllidis, N.

    2009-08-01

    The process of electromagnetic forming (EMF) is a high velocity manufacturing technique that uses electromagnetic (Lorentz) body forces to shape sheet metal parts. EMF holds several advantages over conventional forming techniques: speed, repeatability, one-sided tooling, and most importantly considerable ductility increase in several metals. Current modeling techniques for EMF processes are not based on coupled variational principles to simultaneously account for electromagnetic and mechanical effects. Typically, separate solutions to the electromagnetic (Maxwell) and motion (Newton) equations are combined in staggered or lock-step methods, sequentially solving the mechanical and electromagnetic problems. The present work addresses these issues by introducing a fully coupled Lagrangian (reference configuration) least-action variational principle, involving magnetic flux and electric potentials and the displacement field as independent variables. The corresponding Euler-Lagrange equations are Maxwell's and Newton's equations in the reference configuration, which are shown to coincide with their current configuration counterparts obtained independently by a direct approach. The general theory is subsequently simplified for EMF processes by considering the eddy current approximation. Next, an application is presented for axisymmetric EMF problems. It is shown that the proposed variational principle forms the basis of a variational integration numerical scheme that provides an efficient staggered solution algorithm. As an illustration a number of such processes are simulated, inspired by recent experiments of freely expanding uncoated and polyurea-coated aluminum tubes.

  16. Wireless Performance of a Fully Passive Neurorecording Microsystem Embedded in Dispersive Human Head Phantom

    Science.gov (United States)

    Schwerdt, Helen N.; Chae, Junseok; Miranda, Felix A.

    2012-01-01

    This paper reports the wireless performance of a biocompatible fully passive microsystem implanted in phantom media simulating the dispersive dielectric properties of the human head, for potential application in recording cortical neuropotentials. Fully passive wireless operation is achieved by means of backscattering electromagnetic (EM) waves carrying 3rd order harmonic mixing products (2f(sub 0) plus or minus f(sub m)=4.4-4.9 GHZ) containing targeted neuropotential signals (fm approximately equal to 1-1000 Hz). The microsystem is enclosed in 4 micrometer thick parylene-C for biocompatibility and has a footprint of 4 millimeters x 12 millimeters x 500 micrometers. Preliminary testing of the microsystem implanted in the lossy biological simulating media results in signal-to-noise ratio's (SNR) near 22 (SNR approximately equal to 38 in free space) for millivolt level neuropotentials, demonstrating the potential for fully passive wireless microsystems in implantable medical applications.

  17. Analysis of transient electromagnetic interactions on nanodevices using a quantum corrected integral equation approach

    KAUST Repository

    Uysal, Ismail Enes

    2015-10-26

    Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device, quantum-mechanical effects including tunneling should be taken into account for an accurate characterization of the device\\'s response. Since the first-principle quantum simulators can not be used efficiently to fully characterize a typical-size nanodevice, a quantum corrected electromagnetic model has been proposed as an efficient and accurate alternative (R. Esteban et al., Nat. Commun., 3(825), 2012). The quantum correction is achieved through an effective layered medium introduced into the gap between the surfaces. The dielectric constant of each layer is obtained using a first-principle quantum characterization of the gap with a different dimension.

  18. Nonlinear Coherent Structures, Microbursts and Turbulence

    Science.gov (United States)

    Lakhina, G. S.

    2015-12-01

    Nonlinear waves are found everywhere, in fluids, atmosphere, laboratory, space and astrophysical plasmas. The interplay of nonlinear effects, dispersion and dissipation in the medium can lead to a variety of nonlinear waves and turbulence. Two cases of coherent nonlinear waves: chorus and electrostatic solitary waves (ESWs) and their impact on modifying the plasma medium are discussed. Chorus is a right-hand, circularly-polarized electromagnetic plane wave. Dayside chorus is a bursty emission composed of rising frequency "elements" with duration of ~0.1 to 1.0 s. Each element is composed of coherent subelements with durations of ~1 to 100 ms or more. The cyclotron resonant interaction between energetic electrons and the coherent chorus waves is studied. An expression for the pitch angle transport due to this interaction is derived considering a Gaussian distribution for the time duration of the chorus elements. The rapid pitch scattering can provide an explanation for the ionospheric microbursts of ~0.1 to 0.5 s in bremsstrahlung x-rays formed by ~10-100 keV precipitating electrons. On the other hand, the ESWs are observed in the electric field component parallel to the background magnetic field, and are usually bipolar or tripolar. Generation of coherent ESWs has been explained in terms of nonlinear fluid models of ion- and electron-acoustic solitons and double layers (DLs) based on Sagdeev pseudopotential technique. Fast Fourier transform of electron- and ion-acoustic solitons/DLs produces broadband wave spectra which can explain the properties of the electrostatic turbulence observed in the magnetosheath and plasma sheet boundary layer, and in the solar wind, respectively.

  19. Nonlinear mode conversion with chaotic soliton generation at plasma resonance

    International Nuclear Information System (INIS)

    Pietsch, H.; Laedke, E.W.; Spatschek, K.H.

    1993-01-01

    The resonant absorption of electromagnetic waves near the critical density in inhomogeneous plasmas is studied. A driven nonlinear Schroedinger equation for the mode-converted oscillations is derived by multiple-scaling techniques. The model is simulated numerically. The generic transition from a stationary to a time-dependent solution is investigated. Depending on the parameters, a time-chaotic behavior is found. By a nonlinear analysis, based on the inverse scattering transform, solitons of a corresponding integrable equation are identified as the dominant coherent structures of the chaotic dynamics. Finally, a map is presented which predicts chaotic soliton generation and emission at the critical density. Its qualitative behavior, concerning the bifurcation points, is in excellent agreement with the numerical simulations

  20. Nonlinear dynamic processes in modified ionospheric plasma

    Science.gov (United States)

    Kochetov, A.; Terina, G.

    Presented work is a contribution to the experimental and theoretical study of nonlinear effects arising on ionospheric plasma under the action of powerful radio emission (G.I. Terina, J. Atm. Terr. Phys., 1995, v.57, p.273; A.V. Kochetov et. al., Advances in Space Research, 2002, in press). The experimental results were obtained by the method of sounding of artificially disturbed ionosphere by short radio pulses. The amplitude and phase characteristics of scattered signal as of "caviton" type (CS) (analogy of narrow-band component of stimulation electromagnetic emission (SEE)) as the main signal (MS) of probing transmitter are considered. The theoretical model is based on numerical solution of driven nonlinear Shrödinger equation (NSE) in inhomogeneous plasma. The simulation allows us to study a self-consistent spatial-temporal dynamics of field and plasma. The observed evolution of phase characteristics of MS and CS qualitatively correspond to the results of numerical simulation and demonstrate the penetration processes of powerful electromagnetic wave in supercritical (in linear approach) plasma regions. The modeling results explain also the periodic generation of CS, the travel CS maximum down to density gradient, the aftereffect of CS. The obtained results show the excitation of strong turbulence and allow us to interpret CS, NC and so far inexplicable phenomena as "spikes" too. The work was supported in part by Russian Foundation for Basic Research (grants Nos. 99-02-16642, 99-02- 16399).

  1. Robust Numerical Methods for Nonlinear Wave-Structure Interaction in a Moving Frame of Reference

    DEFF Research Database (Denmark)

    Kontos, Stavros; Lindberg, Ole

    This project is focused on improving the state of the art for predicting the interaction between nonlinear ocean waves and marine structures. To achieve this goal, a flexible order finite difference potential flow solver has been extended to calculate for fully nonlinear wave-structure interaction...

  2. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    KAUST Repository

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-01-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.

  3. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    KAUST Repository

    Adams, Mark F.

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.

  4. Chaotic behavior in a relativistic electron beam interacting with a transverse slow electromagnetic wave

    International Nuclear Information System (INIS)

    Serbeto, A.; Alves, M.V.

    1993-01-01

    Using a nonlinear set of equations which describes the excitation of a purely transverse slow electromagnetic wave by a relativistic electron beam, it is shown that the system runs from chaotic behavior to a regular stable state due to crisis phenomenon and from stabilized soliton and repeated stabilized explosive solutions to a temporal chaos. These behaviors suggest that the primary mechanism for the saturation of the explosive instability is not only the cubic nonlinear frequency shift as pointed out by many authors until now. The inclusion of the velocity perturbation in the beam charge initial equilibrium state leads the system to these strange behaviors. (author)

  5. Rogue wave train generation in a metamaterial induced by cubic-quintic nonlinearities and second-order dispersion

    Science.gov (United States)

    Essama, Bedel Giscard Onana; Atangana, Jacques; Frederick, Biya Motto; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Kofane, Timoleon Crepin

    2014-09-01

    We investigate the behavior of the electromagnetic wave that propagates in a metamaterial for negative index regime. Second-order dispersion and cubic-quintic nonlinearities are taken into account. The behavior obtained for negative index regime is compared to that observed for absorption regime. The collective coordinates technique is used to characterize the light pulse intensity profile at some frequency ranges. Five frequency ranges have been pointed out. The perfect combination of second-order dispersion and cubic nonlinearity leads to a robust soliton at each frequency range for negative index regime. The soliton peak power progressively decreases for absorption regime. Further, this peak power also decreases with frequency. We show that absorption regime can induce rogue wave trains generation at a specific frequency range. However, this rogue wave trains generation is maintained when the quintic nonlinearity comes into play for negative index regime and amplified for absorption regime at a specific frequency range. It clearly appears that rogue wave behavior strongly depends on the frequency and the regime considered. Furthermore, the stability conditions of the electromagnetic wave have also been discussed at frequency ranges considered for both negative index and absorption regimes.

  6. Slow flow solutions and chaos control in an electromagnetic seismometer system

    International Nuclear Information System (INIS)

    Lazzouni, S.A.; Siewe Siewe, M.; Moukam Kakmeni, F.M.; Bowong, S.

    2005-05-01

    We study in this paper the dynamics and chaos control of a nonlinear electromagnetic seismometer system consisting of an extended Duffing electrical oscillator magnetically coupled with a natural Duffing mechanical oscillator. The singular perturbation method is used to find slow solutions. Some bifurcation structures and the variation of the corresponding Lyapunov exponent are obtained. Transitions from a regular behavior to chaotic orbits are seen to occur for large amplitudes of the external excitation. We also examine the application of a simple adaptive damping feedback controller to eliminate the chaotic behavior in a controlled extended Duffing system. The main idea is to regulate the chaotic motion of the electromagnetic seismometer system around less complex attractors, such as equilibrium points and periodic orbits. The effectiveness and efficiency of the proposed feedback control strategy is illustrated by means of numerical simulations. (author)

  7. Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities

    International Nuclear Information System (INIS)

    Barrett, S.D.; Kok, Pieter; Spiller, T.P.; Nemoto, Kae; Beausoleil, R.G.; Munro, W.J.

    2005-01-01

    We describe a method to project photonic two-qubit states onto the symmetric and antisymmetric subspaces of their Hilbert space. This device utilizes an ancillary coherent state, together with a weak cross-Kerr nonlinearity, generated, for example, by electromagnetically induced transparency. The symmetry analyzer is nondestructive, and works for small values of the cross-Kerr coupling. Furthermore, this device can be used to construct a nondestructive Bell-state detector

  8. Spectral properties of electromagnetic turbulence in plasmas

    Directory of Open Access Journals (Sweden)

    D. Shaikh

    2009-03-01

    Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.

  9. Control of Nonlinear Coupled Electromagnetic Actuators for Active Drag Reduction in Turbulent Flow

    OpenAIRE

    Seidler, Florian; Trabert, Julius; Dück, Marcel; van Waasen, Stefan; Schiek, Michael; Abel, Dirk; Castelan, E. B.

    2016-01-01

    The research group FOR1779 “active drag reduction via wavy surface oscillations” develops robust methods for reduction of turbulent friction drag by flow control. The planned concentration on unsteady flow conditions requires a control of the electromagnetic actuator system for generation of transversal surface waves. The bars are positioned in parallel and coupled with an aluminum surface to generate a travelling wave perpendicular to the flow field. The actuator system can be approximately ...

  10. Localization of nonlinear excitations in curved waveguides

    DEFF Research Database (Denmark)

    Gaididei, Yu. B.; Christiansen, Peter Leth; Kevrekidis, P. G.

    2005-01-01

    numerical simulations of the nonlinear problem and in this case localized excitations are found to persist. We found also interesting relaxational dynamics. Analogies of the present problem in context related to atomic physics and particularly to Bose–Einstein condensation are discussed.......Motivated by the examples of a curved waveguide embedded in a photonic crystal and cold atoms moving in a waveguide created by a spatially inhomogeneous electromagnetic field, we examine the effects of geometry in a 'quantum channel' of parabolic form. Starting with the linear case we derive exact...

  11. Nonlinear Dynamics of Nanomechanical Resonators

    Science.gov (United States)

    Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym

    2007-03-01

    Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).

  12. Electromagnetically induced interference in a superconducting flux qubit

    International Nuclear Information System (INIS)

    Du lingjie; Yu Yang; Lan Dong

    2013-01-01

    Interaction between quantum two-level systems (qubits) and electromagnetic fields can provide additional coupling channels to qubit states. In particular, the interwell relaxation or Rabi oscillations, resulting, respectively, from the multi- or single-mode interaction, can produce effective crossovers, leading to electromagnetically induced interference in microwave driven qubits. The environment is modeled by a multimode thermal bath, generating the interwell relaxation. Relaxation induced interference, independent of the tunnel coupling, provides deeper understanding to the interaction between the qubits and their environment. It also supplies a useful tool to characterize the relaxation strength as well as the characteristic frequency of the bath. In addition, we demonstrate the relaxation can generate population inversion in a strongly driving two-level system. On the other hand, different from Rabi oscillations, Rabi-oscillation-induced interference involves more complicated and modulated photon exchange thus offers an alternative means to manipulate the qubit, with more controllable parameters including the strength and position of the tunnel coupling. It also provides a testing ground for exploring nonlinear quantum phenomena and quantum state manipulation in qubits either with or without crossover structure.

  13. Electromagnetically induced transparency and reduced speeds for single photons in a fully quantized model

    International Nuclear Information System (INIS)

    Purdy, Thomas; Ligare, Martin

    2003-01-01

    We introduce a simple model for electromagnetically induced transparency in which all fields are treated quantum mechanically. We study a system of three separated atoms at fixed positions in a one-dimensional multimode optical cavity. The first atom serves as the source for a single spontaneously emitted photon; the photon scatters from a three-level 'Λ'-configuration atom which interacts with an additional single-mode field coupling two of the atomic levels; the third atom serves as a detector of the total transmitted field. We find an analytical solution for the quantum dynamics. From the quantum amplitude describing the excitation of the detector atom we extract information that provides exact single-photon analogues to wave delays predicted by semi-classical theories. We also find complementary information in the expectation value of the electric field intensity operator

  14. Nonlinear Quantum Optical Springs and Their Nonclassical Properties

    International Nuclear Information System (INIS)

    Faghihi, M.J.; Tavassoly, M.K.

    2011-01-01

    The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant (and so its frequency) depends on the quantum states of another system. Recently, it is realized that by the assumption of frequency modulation of ω to ω√1+μa † a the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence of frequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized Hamiltonian of nonlinear quantum optical spring and it's solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Calculation of electromagnetic force in electromagnetic forming process of metal sheet

    International Nuclear Information System (INIS)

    Xu Da; Liu Xuesong; Fang Kun; Fang Hongyuan

    2010-01-01

    Electromagnetic forming (EMF) is a forming process that relies on the inductive electromagnetic force to deform metallic workpiece at high speed. Calculation of the electromagnetic force is essential to understand the EMF process. However, accurate calculation requires complex numerical solution, in which the coupling between the electromagnetic process and the deformation of workpiece needs be considered. In this paper, an appropriate formula has been developed to calculate the electromagnetic force in metal work-piece in the sheet EMF process. The effects of the geometric size of coil, the material properties, and the parameters of discharge circuit on electromagnetic force are taken into consideration. Through the formula, the electromagnetic force at different time and in different positions of the workpiece can be predicted. The calculated electromagnetic force and magnetic field are in good agreement with the numerical and experimental results. The accurate prediction of the electromagnetic force provides an insight into the physical process of the EMF and a powerful tool to design optimum EMF systems.

  16. Nonlinear electrodynamics and CMB polarization

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, Herman J. Mosquera [Departmento de Física Universidade Estadual Vale do Acaraú, Avenida da Universidade 850, Campus da Betânia, CEP 62.040-370, Sobral, Ceará (Brazil); Lambiase, G., E-mail: herman@icra.it, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica ' ' E.R. Caianiello' ' , Università di Salerno, 84081 Baronissi (Italy)

    2011-03-01

    Recently WMAP and BOOMERanG experiments have set stringent constraints on the polarization angle of photons propagating in an expanding universe: Δα = (−2.4±1.9)°. The polarization of the Cosmic Microwave Background radiation (CMB) is reviewed in the context of nonlinear electrodynamics (NLED). We compute the polarization angle of photons propagating in a cosmological background with planar symmetry. For this purpose, we use the Pagels-Tomboulis (PT) Lagrangian density describing NLED, which has the form L ∼ (X/Λ{sup 4}){sup δ−1} X, where X = ¼F{sub αβ}F{sup αβ}, and δ the parameter featuring the non-Maxwellian character of the PT nonlinear description of the electromagnetic interaction. After looking at the polarization components in the plane orthogonal to the (x)-direction of propagation of the CMB photons, the polarization angle is defined in terms of the eccentricity of the universe, a geometrical property whose evolution on cosmic time (from the last scattering surface to the present) is constrained by the strength of magnetic fields over extragalactic distances.

  17. Nonlinear dynamics and chaotic phenomena an introduction

    CERN Document Server

    Shivamoggi, Bhimsen K

    2014-01-01

    This book starts with a discussion of nonlinear ordinary differential equations, bifurcation theory and Hamiltonian dynamics. It then embarks on a systematic discussion of the traditional topics of modern nonlinear dynamics  -- integrable systems, Poincaré maps, chaos, fractals and strange attractors. The Baker’s transformation, the logistic map and Lorenz system are discussed in detail in view of their central place in the subject. There is a detailed discussion of solitons centered around the Korteweg-deVries equation in view of its central place in integrable systems. Then, there is a discussion of the Painlevé property of nonlinear differential equations which seems to provide a test of integrability. Finally, there is a detailed discussion of the application of fractals and multi-fractals to fully-developed turbulence -- a problem whose understanding has been considerably enriched by the application of the concepts and methods of modern nonlinear dynamics. On the application side, there is a special...

  18. Nonlinear radiation generation processes in the auroral acceleration region

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2017-11-01

    Full Text Available It is known from laboratory plasma experiments that double layers (DLs radiate in the electromagnetic spectrum; but this is only known qualitatively. In these experiments, it was shown that the electron beam created on the high-potential side of a DL generates nonlinear structures which couple to electromagnetic waves and act as a sender antenna. In the Earth auroral region, observations performed by auroral spacecraft have shown that DLs occur naturally in the source region of intense radio emissions called auroral kilometric radiation (AKR. Very high time-, spatial-, and temporal-resolution measurements are needed in order to characterize waves and particle distributions in the vicinity of DLs, which are moving transient structures. We report observations from the FAST satellite of a localized large-amplitude parallel electric field (∼ 300 mV m−1 recorded at the edges of the auroral density cavity. In agreement with laboratory experiments, on the high-potential side of the DL, elementary radiation events are detected. They occur substantially above the local electron gyrofrequency and are associated with the presence of electron holes. The velocity of these nonlinear structures can be derived from the measurement of the Doppler-shifted AKR frequency spectrum above the electron gyrofrequency. The generated electron holes appear as the nonlinear evolution of electrostatic waves generated by the electron–electron two-stream instability because they propagate at about half the beam velocity. It is pointed out that, in the vicinity of a DL, the shape of the electron distribution gives rise to a significant power recorded in the left-hand polarized ordinary (LO mode.

  19. Generation of Zonal Flow and Magnetic Field by Electromagnetic Planetary Waves in the Ionospheric E-Layer

    Science.gov (United States)

    Kahlon, L. Z.; Kaladze, T. D.

    2017-12-01

    We review the excitation of zonal flow and magnetic field by coupled electromagnetic (EM) ULF planetary waves in the Earth's ionospheric E layer. Coupling of different planetary low-frequency electromagnetic waves under the typical ionospheric E-layer conditions is revealed. Propagation of coupled internal-gravity-Alfvén (CIGA), coupled Rossby-Khantadze (CRK) and coupled Rossby-Alfvén-Khantadze (CRAK) waves is shown and studied. A set of appropriate nonlinear equations describing the interaction of such waves with sheared zonal flow is derived. The conclusion on the instability of short wavelength turbulence of such coupled waves with respect to the excitation of low-frequency and large-scale perturbation of the sheared zonal flow and sheared magnetic field is inferred. This nonlinear instability's mechanism is depended on the parametric excitation of triple finite-amplitude coupled waves leading to the inverse energy cascade towards the longer wavelength. The possibility of generation of the intense mean magnetic field is shown. Obtained growth rates are discussed for each considered coupled waves.

  20. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  1. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  2. Complex dynamics and morphogenesis an introduction to nonlinear science

    CERN Document Server

    Misbah, Chaouqi

    2017-01-01

    This book offers an introduction to the physics of nonlinear phenomena through two complementary approaches: bifurcation theory and catastrophe theory. Readers will be gradually introduced to the language and formalisms of nonlinear sciences, which constitute the framework to describe complex systems. The difficulty with complex systems is that their evolution cannot be fully predicted because of the interdependence and interactions between their different components. Starting with simple examples and working toward an increasing level of universalization, the work explores diverse scenarios of bifurcations and elementary catastrophes which characterize the qualitative behavior of nonlinear systems. The study of temporal evolution is undertaken using the equations that characterize stationary or oscillatory solutions, while spatial analysis introduces the fascinating problem of morphogenesis. Accessible to undergraduate university students in any discipline concerned with nonlinear phenomena (physics, mathema...

  3. A Cumulant-based Analysis of Nonlinear Magnetospheric Dynamics

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Wing, Simon

    2004-01-01

    Understanding magnetospheric dynamics and predicting future behavior of the magnetosphere is of great practical interest because it could potentially help to avert catastrophic loss of power and communications. In order to build good predictive models it is necessary to understand the most critical nonlinear dependencies among observed plasma and electromagnetic field variables in the coupled solar wind/magnetosphere system. In this work, we apply a cumulant-based information dynamical measure to characterize the nonlinear dynamics underlying the time evolution of the Dst and Kp geomagnetic indices, given solar wind magnetic field and plasma input. We examine the underlying dynamics of the system, the temporal statistical dependencies, the degree of nonlinearity, and the rate of information loss. We find a significant solar cycle dependence in the underlying dynamics of the system with greater nonlinearity for solar minimum. The cumulant-based approach also has the advantage that it is reliable even in the case of small data sets and therefore it is possible to avoid the assumption of stationarity, which allows for a measure of predictability even when the underlying system dynamics may change character. Evaluations of several leading Kp prediction models indicate that their performances are sub-optimal during active times. We discuss possible improvements of these models based on this nonparametric approach

  4. Nonlinear response and bistability of driven ion acoustic waves

    Science.gov (United States)

    Akbari-Moghanjoughi, M.

    2017-08-01

    The hydrodynamic model is used to obtain a generalized pseudoforce equation through which the nonlinear response of periodically driven ion acoustic waves is studied in an electron-ion plasma with isothermal and adiabatic ion fluids. The pseudotime series, corresponding to different driving frequencies, indicates that nonlinearity effects appear more strongly for smaller frequency values. The existence of extra harmonic resonances in the nonlinear amplitude spectrum is a clear indication of the interaction of an external force with harmonic components of the nonlinear ion acoustic waves. It is shown that many plasma parameters significantly and differently affect the nonlinear resonance spectrum of ion acoustic excitations. A heuristic but accurate model for the foldover effect is used which quite satisfactorily predicts the bistability of driven plasma oscillations. It is remarked that the characteristic resonance peak of isothermal ion plasma oscillations appears at lower frequencies but is stronger compared to that of adiabatic ions. Comparison of the exact numerical results for fully nonlinear and approximate (weakly nonlinear) models indicates that a weakly nonlinear model exaggerates the hysteresis and jump phenomenon for higher values of the external force amplitude.

  5. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  6. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  7. Simulation study of generalized electron cyclotron harmonic waves and nonlinear scattering in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinez, R.M.

    1983-01-01

    Part One examines the properties of electron cyclotron harmonic waves by means of computer simulation. The electromagnetic cyclotron harmonic modes not previously observed in simulation are emphasized and compared with the better known electrostatic (Bernstein) modes for perpendicular propagation. The investigation is performed by a spectrum analysis (both wavelength and frequency) of the thermal equilibrium electromagnetic fluctuation fields present in the simulation. A numerical solution of the fully electromagnetic dispersion relation shows that extreme frequency resolution is necessary to discern shifts of the electromagnetic mode frequencies from the cyclotron harmonics except at high plasma density or temperature. The simulation results show that at high plasma pressure the amplitude of the electromagnetic modes can become greater than that of the electrostatic modes. Part Two examines the interaction of an external electromagnetic wave with the electrostatic cylotron harmonic modes. The stimulated Raman scattering with an extraordinary wave as the pump is observed to occur in a wavelength regime where it would be prevented by Landau damping in an unmagnetized plasma

  8. Three dimensional nonlinear magnetic AdS solutions through topological defects

    International Nuclear Information System (INIS)

    Hendi, S.H.; Panah, B.E.; Momennia, M.; Panahiyan, S.

    2015-01-01

    Inspired by large applications of topological defects in describing different phenomena in physics, and considering the importance of three dimensional solutions in AdS/CFT correspondence, in this paper we obtain magnetic anti-de Sitter solutions of nonlinear electromagnetic fields. We take into account three classes of nonlinear electrodynamic models; first two classes are the well-known Born-Infeld like models including logarithmic and exponential forms and third class is known as the power Maxwell invariant nonlinear electrodynamics. We investigate the effects of these nonlinear sources on three dimensional magnetic solutions. We show that these asymptotical AdS solutions do not have any curvature singularity and horizon. We also generalize the static metric to the case of rotating solutions and find that the value of the electric charge depends on the rotation parameter. Finally, we consider the quadratic Maxwell invariant as a correction of Maxwell theory and we investigate the effects of nonlinearity as a correction. We study the behavior of the deficit angle in presence of these theories of nonlinearity and compare them with each other. We also show that some cases with negative deficit angle exists which are representing objects with different geometrical structure. We also show that in case of the static only magnetic field exists whereas by boosting the metric to rotating one, electric field appears too. (orig.)

  9. Implementation of SoC Based Real-Time Electromagnetic Transient Simulator

    Directory of Open Access Journals (Sweden)

    I. Herrera-Leandro

    2017-01-01

    Full Text Available Real-time electromagnetic transient simulators are important tools in the design stage of new control and protection systems for power systems. Real-time simulators are used to test and stress new devices under similar conditions that the device will deal with in a real network with the purpose of finding errors and bugs in the design. The computation of an electromagnetic transient is complex and computationally demanding, due to features such as the speed of the phenomenon, the size of the network, and the presence of time variant and nonlinear elements in the network. In this work, the development of a SoC based real-time and also offline electromagnetic transient simulator is presented. In the design, the required performance is met from two sides, (a using a technique to split the power system into smaller subsystems, which allows parallelizing the algorithm, and (b with specialized and parallel hardware designed to boost the solution flow. The results of this work have shown that for the proposed case studies, based on a balanced distribution of the node of subsystems, the proposed approach has decreased the total simulation time by up to 99 times compared with the classical approach running on a single high performance 32-bit embedded processor ARM-Cortex A9.

  10. A development of the equations of electromagnetism in material continua

    CERN Document Server

    Tiersten, Harry F

    1990-01-01

    This tract is based on lecture notes for a course in mechanics that has been offered at Rensselaer Polytechnic Institute on and off for the past twenty years. The course is intended to provide graduate students in mechanics with an understanding of electromagnetism and prepare them for studies on the interaction of the electric and magnetic fields with deformable solid continua. As such, it is imperative that the distinction between particle and continuum descriptions of matter be carefully made and that the distinction between that which is inherently linear and that which is intrinsically nonlinear be clearly delineated. Every possible effort has been made on my part to achieve these ends. I wish to acknowledge the contributions of a number of students and faculty who attended the lectures over the years and who, by their questions and suggestions, significantly improved some of the sections. This preface would not be complete if I did not point out that my interest in electromagnetism was initiated and my ...

  11. Generalized nonlinear Proca equation and its free-particle solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nobre, F.D. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, RJ (Brazil); Plastino, A.R. [Universidad Nacional Buenos Aires-Noreoeste, CeBio y Secretaria de Investigacion, Junin (Argentina)

    2016-06-15

    We introduce a nonlinear extension of Proca's field theory for massive vector (spin 1) bosons. The associated relativistic nonlinear wave equation is related to recently advanced nonlinear extensions of the Schroedinger, Dirac, and Klein-Gordon equations inspired on the non-extensive generalized thermostatistics. This is a theoretical framework that has been applied in recent years to several problems in nuclear and particle physics, gravitational physics, and quantum field theory. The nonlinear Proca equation investigated here has a power-law nonlinearity characterized by a real parameter q (formally corresponding to the Tsallis entropic parameter) in such a way that the standard linear Proca wave equation is recovered in the limit q → 1. We derive the nonlinear Proca equation from a Lagrangian, which, besides the usual vectorial field Ψ{sup μ}(vector x,t), involves an additional field Φ{sup μ}(vector x,t). We obtain exact time-dependent soliton-like solutions for these fields having the form of a q-plane wave, and we show that both field equations lead to the relativistic energy-momentum relation E{sup 2} = p{sup 2}c{sup 2} + m{sup 2}c{sup 4} for all values of q. This suggests that the present nonlinear theory constitutes a new field theoretical representation of particle dynamics. In the limit of massless particles the present q-generalized Proca theory reduces to Maxwell electromagnetism, and the q-plane waves yield localized, transverse solutions of Maxwell equations. Physical consequences and possible applications are discussed. (orig.)

  12. Four-dimensional black holes with scalar hair in nonlinear electrodynamics

    International Nuclear Information System (INIS)

    Barrientos, Jose; Gonzalez, P.A.; Vasquez, Yerko

    2016-01-01

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and a U(1) nonlinear electromagnetic field. Solving analytically and numerically the coupled system for both power-law and Born-Infeld type electrodynamics, we find charged hairy black hole solutions. Then we study the thermodynamics of these solutions and we find that at a low temperature the topological charged black hole with scalar hair is thermodynamically preferred, whereas the topological charged black hole without scalar hair is thermodynamically preferred at a high temperature for power-law electrodynamics. Interestingly enough, these phase transitions occur at a fixed critical temperature and do not depend on the exponent p of the nonlinear electrodynamics. (orig.)

  13. Four-dimensional black holes with scalar hair in nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barrientos, Jose [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile); Universidad Catolica del Norte, Departamento de Ensenanza de las Ciencias Basicas, Coquimbo (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica y Astronomia, Facultad de Ciencias, La Serena (Chile)

    2016-12-15

    We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and a U(1) nonlinear electromagnetic field. Solving analytically and numerically the coupled system for both power-law and Born-Infeld type electrodynamics, we find charged hairy black hole solutions. Then we study the thermodynamics of these solutions and we find that at a low temperature the topological charged black hole with scalar hair is thermodynamically preferred, whereas the topological charged black hole without scalar hair is thermodynamically preferred at a high temperature for power-law electrodynamics. Interestingly enough, these phase transitions occur at a fixed critical temperature and do not depend on the exponent p of the nonlinear electrodynamics. (orig.)

  14. Anisotropic effects of background fields on Born-Infeld electromagnetic waves

    International Nuclear Information System (INIS)

    Aiello, Matias; Bengochea, Gabriel R.; Ferraro, Rafael

    2007-01-01

    We show exact solutions of the Born-Infeld theory for electromagnetic plane waves propagating in the presence of static background fields. The non-linear character of the Born-Infeld equations generates an interaction between the background and the wave that changes the speed of propagation and adds a longitudinal component to the wave. As a consequence, in a magnetic background the ray direction differs from the propagation direction-a behavior resembling the one of a wave in an anisotropic medium. This feature could open up a way to experimental tests of the Born-Infeld theory

  15. Anisotropic effects of background fields on Born-Infeld electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, Matias [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: aiello@iafe.uba.ar; Bengochea, Gabriel R. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: gabriel@iafe.uba.ar; Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: ferraro@iafe.uba.ar

    2007-01-22

    We show exact solutions of the Born-Infeld theory for electromagnetic plane waves propagating in the presence of static background fields. The non-linear character of the Born-Infeld equations generates an interaction between the background and the wave that changes the speed of propagation and adds a longitudinal component to the wave. As a consequence, in a magnetic background the ray direction differs from the propagation direction-a behavior resembling the one of a wave in an anisotropic medium. This feature could open up a way to experimental tests of the Born-Infeld theory.

  16. Exact solutions with solitary patterns for the Zakharov-Kuznetsov equations with fully nonlinear dispersion

    International Nuclear Information System (INIS)

    Inc, Mustafa

    2007-01-01

    In this paper, the nonlinear dispersive Zakharov-Kuznetsov ZK(m, n, k) equations are solved exactly by using the Adomian decomposition method. The two special cases, ZK(2, 2, 2) and ZK(3, 3, 3), are chosen to illustrate the concrete scheme of the decomposition method in ZK(m, n, k) equations. General formulas for the solutions of ZK(m, n, k) equations are established

  17. Joint proposal for US/USSR on nonlinear dynamics and plasma transport

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sagdeev, R.Z.

    1991-01-01

    This report discusses: convection-driven flow in plasma and fluids; particle transport and rotation damping by sound wave propagation along stochastic magnetic field lines; acceleration of charge article in a magnetic field by electromagnetic and electrostatic waves, lagrangian particle transport in time-dependent 20 flows; fast dynamo; 3D flows will stagnation points and vortices; Edge-localized modes in Tokamaks; and code development for nonlinear analysis and visualization. (LP)

  18. Nonlinear Scattering of VLF Waves in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris; Rudakov, Leonid; Ganguli, Guru; Mithaiwala, Manish

    2014-10-01

    Electromagnetic VLF waves, such as whistler mode waves, control the lifetime of trapped electrons in the radiation belts by pitch-angle scattering. Since the pitch-angle scattering rate is a strong function of the wave properties, a solid understanding of VLF wave sources and propagation in the magnetosphere is critical to accurately calculate electron lifetimes. Nonlinear scattering (Nonlinear Landau Damping) is a mechanism that can strongly alter VLF wave propagation [Ganguli et al. 2010], primarily by altering the direction of propagation, and has not been accounted for in previous models of radiation belt dynamics. Laboratory results have confirmed the dramatic change in propagation direction when the pump wave has sufficient amplitude to exceed the nonlinear threshold [Tejero et al. 2014]. Recent results show that the threshold for nonlinear scattering can often be met by naturally occurring VLF waves in the magnetosphere, with wave magnetic fields of the order of 50-100 pT inside the plasmapause. Nonlinear scattering can then dramatically alter the macroscopic dynamics of waves in the radiation belts leading to the formation of a long-lasting wave-cavity [Crabtree et al. 2012] and, when amplification is present, a multi-pass amplifier [Ganguli et al. 2012]. By considering these effects, the lifetimes of electrons can be dramatically reduced. This work is supported by the Naval Research Laboratory base program.

  19. On the influence of electromagnetic wave and relativistic electron beam on a plasma

    International Nuclear Information System (INIS)

    El Ashry, M.Y.; Berezhiani, V.I.; Javakhishvili, J.L.

    1993-08-01

    The dynamics of nonlinear wave in plasma under the influence of high-frequency electromagnetic pump and relativistic electron beam is considered. It is shown that the electrons of the beam play the role of the heavy plasma component, the matter which creates a possibility of formation of wave of a soliton type in a pure electron plasma. The wave structure is investigated and the characteristic parameters of the soliton are obtained. (author). 8 refs

  20. Luminosity distance for Born-Infeld electromagnetic waves propagating in a cosmological magnetic background

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, Matias; Bengochea, Gabriel R; Ferraro, Rafael, E-mail: aiello@iafe.uba.ar, E-mail: gabriel@iafe.uba.ar, E-mail: ferraro@iafe.uba.ar [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

    2008-06-15

    Born-Infeld electromagnetic waves interacting with a static magnetic background in an expanding universe are studied. The non-linear character of Born-Infeld electrodynamics modifies the relation between the energy flux and the distance to the source, which gains a new dependence on the redshift that is governed by the background field. We compute the luminosity distance as a function of the redshift and compare with Maxwellian curves for supernovae type Ia.

  1. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  2. Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling

    International Nuclear Information System (INIS)

    Lin, Shi-Rong; Zhang, Ruo-Yang; Ma, Yi-Rong; Jia, Wei; Zhao, Qing

    2016-01-01

    Highlights: • Time-dependent permittivity combined with antisymmetric magnetoelectric coupling will yield a novel linear birefringence. • Distinct dynamical behaviors of these two birefringent modes are analyzed. • As a new nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed. - Abstract: This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.

  3. Electromagnetic wave propagation in time-dependent media with antisymmetric magnetoelectric coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shi-Rong [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Ruo-Yang [Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Ma, Yi-Rong; Jia, Wei [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2016-07-29

    Highlights: • Time-dependent permittivity combined with antisymmetric magnetoelectric coupling will yield a novel linear birefringence. • Distinct dynamical behaviors of these two birefringent modes are analyzed. • As a new nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed. - Abstract: This paper deals with electromagnetic wave propagation in time-dependent media with an antisymmetric magnetoelectric coupling and an isotropic time-dependent permittivity. We identify a new mechanism of linear birefringence, originated from the combined action of the time-dependent permittivity and the antisymmetric magnetoelectric coupling. Permittivity with linear and exponential temporal variations exemplifies the creation and control of these two distinct types of linear birefringent modes. As a novel nonlinear optical effect, a scheme utilizing optical Kerr effect in moving media is proposed for the realization of the predicted birefringence.

  4. Nonlinear Analysis of Renal Autoregulation Under Broadband Forcing Conditions

    DEFF Research Database (Denmark)

    Marmarelis, V Z; Chon, K H; Chen, Y M

    1994-01-01

    Linear analysis of renal blood flow fluctuations, induced experimentally in rats by broad-band (pseudorandom) arterial blood pressure forcing at various power levels, has been unable to explain fully the dynamics of renal autoregulation at low frequencies. This observation has suggested...... the possibility of nonlinear mechanisms subserving renal autoregulation at frequencies below 0.2 Hz. This paper presents results of 3rd-order Volterra-Wiener analysis that appear to explain adequately the nonlinearities in the pressure-flow relation below 0.2 Hz in rats. The contribution of the 3rd-order kernel...... in describing the dynamic pressure-flow relation is found to be important. Furthermore, the dependence of 1st-order kernel waveforms on the power level of broadband pressure forcing indicates the presence of nonlinear feedback (of sigmoid type) based on previously reported analysis of a class of nonlinear...

  5. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    Science.gov (United States)

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  6. Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities

    DEFF Research Database (Denmark)

    Choi, Hyeongrak; Heuck, Mikkel; Englund, Dirk R.

    2017-01-01

    We propose a photonic crystal nanocavity design with self-similar electromagnetic boundary conditions, achieving ultrasmall mode volume (V-eff). The electric energy density of a cavity mode can be maximized in the air or dielectric region, depending on the choice of boundary conditions. We illust...... at the single-photon level. These features open new directions in cavity quantum electrodynamics, spectroscopy, and quantum nonlinear optics....

  7. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals

    DEFF Research Database (Denmark)

    Albert, Magnus; Dantan, Aurelien Romain; Drewsen, Michael

    2011-01-01

    The control of one light field by another, ultimately at the single photon level1, 2, 3, 4, 5, 6, 7, is a challenging task that has numerous interesting applications within nonlinear optics4, 5 and quantum information science6, 7, 8. This type of control can only be achieved through highly...... nonlinear interactions, such as those based on electromagnetic induced transparency (EIT)2, 3, 4, 5, 6, 9, 10, 11, 12. Here, we demonstrate for the first time EIT as well as all-optical EIT-based light switching using ion Coulomb crystals situated in an optical cavity. Changes from essentially full...... milestones for future realizations of quantum information processing devices, such as high-efficiency quantum memories8, 13, 14, single-photon transistors15, 16 and single-photon gates4, 6, 9....

  8. Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators

    KAUST Repository

    Mansingka, Abhinav S.; Radwan, Ahmed Gomaa; Salama, Khaled N.

    2012-01-01

    This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness

  9. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert, E-mail: rhager@pppl.gov; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-04-15

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  10. The thermomechanics of nonlinear irreversible behaviors an introduction

    CERN Document Server

    Maugin, Gérard A

    1999-01-01

    In this invaluable book, macroscopic irreversible thermodynamics is presented in its realm and its splendor by appealing to the notion of internal variables of state. This applies to both fluids and solids with or without microstructures of mechanical or electromagnetic origin. This unmatched richness of essentially nonlinear behaviors is the result of the use of modern mathematical techniques such as convex analysis in a clear-cut framework which allows one to put under the umbrella of "irreversible thermodynamics" behaviors which until now have been commonly considered either not easily cove

  11. Active-Set Reduced-Space Methods with Nonlinear Elimination for Two-Phase Flow Problems in Porous Media

    KAUST Repository

    Yang, Haijian

    2016-07-26

    Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.

  12. Active-Set Reduced-Space Methods with Nonlinear Elimination for Two-Phase Flow Problems in Porous Media

    KAUST Repository

    Yang, Haijian; Yang, Chao; Sun, Shuyu

    2016-01-01

    Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.

  13. Electromagnetic Wave Propagation Through the ZR Z-Pinch Accelerator

    International Nuclear Information System (INIS)

    Rose, D. V.; Welch, D. R.; Madrid, E. A.; Miller, C. L.; Clark, R. E.; Stygar, W. A.; Struve, K.; Corcoran, P. A.; Whitney, B.

    2009-01-01

    A fully three-dimensional electromagnetic model of the major pulsed power components of the 26-MA ZR accelerator is presented. This large-scale simulation model tracks the evolution of electromagnetic waves through the intermediate storage capacitors, laser-triggered gas switches, pulse-forming lines, water switches, tri-plate transmission lines, and water convolute to the vacuum insulator stack. The plates at the insulator stack are coupled to a transmission line circuit model of the four-level magnetically-insulated transmission line section and post-hole convolutes. The vacuum section circuit model is terminated by either a short-circuit load or dynamic models of imploding z-pinch loads. The simulations results are compared with electrical measurements made throughout the ZR accelerator and good agreement is found, especially for times before and up to peak load power. This modeling effort represents new opportunities for modeling existing and future large-scale pulsed power systems used in a variety of high energy density physics and radiographic applications.

  14. Nonlinear optics in germanium mid-infrared fiber material: Detuning oscillations in femtosecond mid-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Ordu

    2017-09-01

    Full Text Available Germanium optical fibers hold great promise in extending semiconductor photonics into the fundamentally important mid-infrared region of the electromagnetic spectrum. The demonstration of nonlinear response in fabricated Ge fiber samples is a key step in the development of mid-infrared fiber materials. Here we report the observation of detuning oscillations in a germanium fiber in the mid-infrared region using femtosecond dispersed pump-probe spectroscopy. Detuning oscillations are observed in the frequency-resolved response when mid-infrared pump and probe pulses are overlapped in a fiber segment. The oscillations arise from the nonlinear frequency resolved nonlinear (χ(3 response in the germanium semiconductor. Our work represents the first observation of coherent oscillations in the emerging field of germanium mid-infrared fiber optics.

  15. Electro-Optical Sensing Apparatus and Method for Characterizing Free-Space Electromagnetic Radiation

    Science.gov (United States)

    Zhang, Xi-Cheng; Libelo, Louis Francis; Wu, Qi

    1999-09-14

    Apparatus and methods for characterizing free-space electromagnetic energy, and in particular, apparatus/method suitable for real-time two-dimensional far-infrared imaging applications are presented. The sensing technique is based on a non-linear coupling between a low-frequency electric field and a laser beam in an electro-optic crystal. In addition to a practical counter-propagating sensing technique, a co-linear approach is described which provides longer radiated field--optical beam interaction length, thereby making imaging applications practical.

  16. Nonlinearly driven oscillations in the gyrotron traveling-wave amplifier

    International Nuclear Information System (INIS)

    Chiu, C. C.; Pao, K. F.; Yan, Y. C.; Chu, K. R.; Barnett, L. R.; Luhmann, N. C. Jr.

    2008-01-01

    By delivering unprecedented power and gain, the gyrotron traveling-wave amplifier (gyro-TWT) offers great promise for advanced millimeter wave radars. However, the underlying physics of this complex nonlinear system is yet to be fully elucidated. Here, we report a new phenomenon in the form of nonlinearly driven oscillations. A zero-drive stable gyro-TWT is shown to be susceptible to a considerably reduced dynamic range at the band edge, followed by a sudden transition into driven oscillations and then a hysteresis effect. An analysis of this unexpected behavior and its physical interpretation are presented.

  17. Causal properties of nonlinear gravitational waves in modified gravity

    Science.gov (United States)

    Suvorov, Arthur George; Melatos, Andrew

    2017-09-01

    Some exact, nonlinear, vacuum gravitational wave solutions are derived for certain polynomial f (R ) gravities. We show that the boundaries of the gravitational domain of dependence, associated with events in polynomial f (R ) gravity, are not null as they are in general relativity. The implication is that electromagnetic and gravitational causality separate into distinct notions in modified gravity, which may have observable astrophysical consequences. The linear theory predicts that tachyonic instabilities occur, when the quadratic coefficient a2 of the Taylor expansion of f (R ) is negative, while the exact, nonlinear, cylindrical wave solutions presented here can be superluminal for all values of a2. Anisotropic solutions are found, whose wave fronts trace out time- or spacelike hypersurfaces with complicated geometric properties. We show that the solutions exist in f (R ) theories that are consistent with Solar System and pulsar timing experiments.

  18. Modeling of MEMS piezoelectric energy harvesters using electromagnetic and power system theories

    International Nuclear Information System (INIS)

    Ahmad, Mahmoud Al; Alshareef, H N; Elshurafa, Amro M; Salama, Khaled N

    2011-01-01

    This work proposes a novel methodology for estimating the power output of piezoelectric generators. An analytical model that estimates for the first time the loss ratio and output power of piezoelectric generators based on the direct mechanical-to-electrical analogy, electromagnetic theory, and power system theory is developed. The mechanical-to-electrical analogy and power system theory allow the derivation of an equivalent input impedance expression for the network, whereas electromagnetic transmission line theory allows deduction of the equivalent electromechanical loss of the piezoelectric generator. By knowing the mechanical input power and the loss of the network, calculation of the output power of the piezoelectric device becomes a straightforward procedure. Experimental results based on published data are also presented to validate the analytical solution. In order to fully benefit from the well-established electromagnetic transmission line and electric circuit theories, further analyses on the resonant frequency, bandwidth, and sensitivity are presented. Compared to the conventional modeling methods currently being adopted in the literature, the proposed method provides significant additional information that is crucial for enhanced device operation and quick performance optimization

  19. Closed form solutions of two time fractional nonlinear wave equations

    Science.gov (United States)

    Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan

    2018-06-01

    In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.

  20. Theory and design of nonlinear metamaterials

    Science.gov (United States)

    Rose, Alec Daniel

    If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers

  1. Intercalibration of the CMS Electromagnetic Calorimeter Using Jet Trigger Events

    CERN Document Server

    Futyan, David

    2004-01-01

    This note describes a strategy for rapidly obtaining electromagnetic calorimeter crystal intercalibration at LHC start-up in the absence of test beam precalibration of the complete detector. In the case of the CMS (Compact Muon Solenoid) Electromagnetic Calorimeter, the limit on the precision to which crystals can be intercalibrated in phi using fully simulated jet trigger events, and assuming complete ignorance of the distribution of material in front of the calorimeter, is determined as a function of the pseudorapidity eta. The value of the limit has been found to be close to 1.5% in the barrel and between 3.0% and 1.0% for the fiducial region of the endcaps. The precision is limited by the inhomogeneity of tracker material. With increasing knowledge of the material distribution in the tracker, the attainable precision of the method will increase, with the potential of providing rapid and repeated calibration of the calorimeter.

  2. Probabilistic DHP adaptive critic for nonlinear stochastic control systems.

    Science.gov (United States)

    Herzallah, Randa

    2013-06-01

    Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Allowable propagation of short pulse laser beam in a plasma channel and electromagnetic solitary waves

    International Nuclear Information System (INIS)

    Zhang, Shan; Hong, Xue-Ren; Wang, Hong-Yu; Xie, Bai-Song

    2011-01-01

    Nonparaxial and nonlinear propagation of a short intense laser beam in a parabolic plasma channel is analyzed by means of the variational method and nonlinear dynamics. The beam propagation properties are classified by five kinds of behaviors. In particularly, the electromagnetic solitary wave for finite pulse laser is found beside the other four propagation cases including beam periodically oscillating with defocussing and focusing amplitude, constant spot size, beam catastrophic focusing. It is also found that the laser pulse can be allowed to propagate in the plasma channel only when a certain relation for laser parameters and plasma channel parameters is satisfied. For the solitary wave, it may provide an effective way to obtain ultra-short laser pulse.

  4. Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton1, D; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Costantini, Silvia; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Debraine, Alain; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl1, J; Gras1, P; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel-de-Montechenault, G; Hansen, Magnus; Heath, Helen F; AHill, J; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, Akli; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman26, H B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Poilleux, Patrick; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; ATriantis, F; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2006-01-01

    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals.

  5. Solution of the fully fuzzy linear systems using iterative techniques

    International Nuclear Information System (INIS)

    Dehghan, Mehdi; Hashemi, Behnam; Ghatee, Mehdi

    2007-01-01

    This paper mainly intends to discuss the iterative solution of fully fuzzy linear systems which we call FFLS. We employ Dubois and Prade's approximate arithmetic operators on LR fuzzy numbers for finding a positive fuzzy vector x-tilde which satisfies A-tildex-tilde=b, where A-tilde and b-tilde are a fuzzy matrix and a fuzzy vector, respectively. Please note that the positivity assumption is not so restrictive in applied problems. We transform FFLS and propose iterative techniques such as Richardson, Jacobi, Jacobi overrelaxation (JOR), Gauss-Seidel, successive overrelaxation (SOR), accelerated overrelaxation (AOR), symmetric and unsymmetric SOR (SSOR and USSOR) and extrapolated modified Aitken (EMA) for solving FFLS. In addition, the methods of Newton, quasi-Newton and conjugate gradient are proposed from nonlinear programming for solving a fully fuzzy linear system. Various numerical examples are also given to show the efficiency of the proposed schemes

  6. Fully implicit Particle-in-cell algorithms for multiscale plasma simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, Luis [Los Alamos National Laboratory

    2015-07-16

    The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PIC only, reduced dimensionality). The approach is free of numerical instabilities: ωpeΔt >> 1, and Δx >> λD. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing NFE, leading to an optimal algorithm.

  7. Estimation of conduction and displacement currents on p-n-junction in electromagnetic superhigh-frequency field

    International Nuclear Information System (INIS)

    Shamirzaev, S.Kh.; Dadamirzaev, M.G.; Gulyamov, G.; Gulyamov, A.G.

    2009-01-01

    Current generated in semiconductor diode that is in variable field is shown to define only by convection current, but the average value of displacement current is always zero and has not influence on current, outgoing from diode. This conclusion explains an origin of generated currents in different diode in electromagnetic field. The formula is found out allowing one to calculate the diode current with any nonlinear feature. (authors)

  8. Electromagnetic characteristics and static torque of a solid salient poles synchronous motor computed by 3D-finite element method magnetics

    International Nuclear Information System (INIS)

    Popnikolova Radevska, Mirka; Cundev, Milan; Petkovska, Lidija

    2002-01-01

    In these paper is presented a methodology for numerical determination and complex analysis of the electromagnetic characteristics of the Solid Salient Poles Synchronous Motor, with rated data: 2.5 kW, 240 V and 1500 r.p.m.. A mathematical model and original algorithm for the nonlinear and iterative calculations by using Finite Element Method in 3D domain will be given. The program package FEM-3D will be used to perform automatically mesh generation of the finite elements in the 3D domain, calculation of the magnetic field distribution, as well as electromagnetic characteristics and Static torque in SSPSM. (Author)

  9. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  10. Time reversal invariance for a nonlinear scatterer exhibiting contact acoustic nonlinearity

    Science.gov (United States)

    Blanloeuil, Philippe; Rose, L. R. Francis; Veidt, Martin; Wang, Chun H.

    2018-03-01

    The time reversal invariance of an ultrasonic plane wave interacting with a contact interface characterized by a unilateral contact law is investigated analytically and numerically. It is shown analytically that despite the contact nonlinearity, the re-emission of a time reversed version of the reflected and transmitted waves can perfectly recover the original pulse shape, thereby demonstrating time reversal invariance for this type of contact acoustic nonlinearity. With the aid of finite element modelling, the time-reversal analysis is extended to finite-size nonlinear scatterers such as closed cracks. The results show that time reversal invariance holds provided that all the additional frequencies generated during the forward propagation, such as higher harmonics, sub-harmonics and zero-frequency component, are fully included in the retro-propagation. If the scattered waves are frequency filtered during receiving or transmitting, such as through the use of narrowband transducers, the recombination of the time-reversed waves will not exactly recover the original incident wave. This discrepancy due to incomplete time invariance can be exploited as a new method for characterizing damage by defining damage indices that quantify the departure from time reversal invariance. The sensitivity of these damage indices for various crack lengths and contact stress levels is investigated computationally, indicating some advantages of this narrowband approach relative to the more conventional measurement of higher harmonic amplitude, which requires broadband transducers.

  11. Nonlinear Diffusion and Transient Osmosis

    International Nuclear Information System (INIS)

    Igarashi, Akira; Rondoni, Lamberto; Botrugno, Antonio; Pizzi, Marco

    2011-01-01

    We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call ''transient osmosis . We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. On Electromagnetic Modulation of Flow Instabilities, Mixing and Heat Transfer in Conducting and Magnetized Fluids

    Science.gov (United States)

    Kenjeres, S.

    2016-09-01

    In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.

  13. A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors

    Science.gov (United States)

    Shi, H.; Yang, B.; Thomson, M.; Fang, H.

    2011-01-01

    This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.

  14. Adaptive Critic Nonlinear Robust Control: A Survey.

    Science.gov (United States)

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.

  15. Nonlinear Bloch waves in metallic photonic band-gap filaments

    International Nuclear Information System (INIS)

    Kaso, Artan; John, Sajeev

    2007-01-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10-50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell's equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament

  16. Nonlinear Bloch waves in metallic photonic band-gap filaments

    Science.gov (United States)

    Kaso, Artan; John, Sajeev

    2007-11-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.

  17. Non linear dynamic of Langmuir and electromagnetic waves in space plasmas; Dinamica nao linear de ondas de Langmuir e eletromagneticas em plasmas espaciais

    Energy Technology Data Exchange (ETDEWEB)

    Guede, Jose Ricardo Abalde

    1995-11-01

    The aim of this work is to study the nonlinear dynamics of Langmuir and electromagnetic waves in space plasmas. Firstly, the generalized Zakharov equations are derived which are used to study the hybrid parametric instability involving the generation of daughter Langmuir, electromagnetic and ion-acoustic waves induced by two counter-propagating Langmuir pump waves with different amplitudes based on a coupled dispersion relation. Secondly, starting from the generalized Zakharov equations the linear and nonlinear coupled mode theories of three-wave and four-wave parametric interactions are developed, respectively. In three-waves processes, a Langmuir wave decays into another Langmuir wave and an ion-acoustic wave (electrostatic parametric decay) or into an electromagnetic wave and an ion-acoustic wave (electromagnetic parametric decay). In four-wave (modulational) processes, the interaction involves two wave triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplets: in the decay triplet a pump wave couples with a low-frequency wave to generate a Stokes wave, and in the fusion triplet the coupling of a pump wave with a low-frequency wave generate an anti-Stokes wave. These modulational processes are convective and resonant processes wherein the low-frequency modes are Eigenmodes of plasma and are known as the stimulated modulational processes. Four such processes are investigated in this thesis: two with Langmuir pump waves (electrostatic and hybrid stimulated modulation processes) and the other two with electromagnetic pump waves (stimulated modulation Brillouin scattering and electromagnetic stimulated modulation process). Applications of the theoretical results in space plasmas are discussed. In particular, it is shown that the electrostatic and electromagnetic parametric decay processes of Langmuir waves can model the generation and modulation of radio emissions and Langmuir waves in the

  18. Weakly nonlinear dispersion and stop-band effects for periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    of frequency band-gaps, i.e. frequency ranges in which elastic waves cannot propagate. Most existing analytical methods in the field are based on Floquet theory [1]; e.g. this holds for the classical Hill’s method of infinite determinants [1,2], and themethod of space-harmonics [3]. However, application...... of these methods for studying nonlinear problems isimpossible or cumbersome, since Floquet theory is applicable only for linear systems. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applications may demand effects of nonlinearity on structural response...... to be accounted for.The paper deals with analytically predicting dynamic response for nonlinear elastic structures with a continuous periodic variation in structural properties. Specifically, for a Bernoulli-Euler beam with aspatially continuous modulation of structural properties in the axial direction...

  19. The Full—Discrete Mixed Finite Element Methods for Nonlinear Hyperbolic Equations

    Institute of Scientific and Technical Information of China (English)

    YanpingCHEN; YunqingHUANG

    1998-01-01

    This article treats mixed finite element methods for second order nonlinear hyperbolic equations.A fully discrete scheme is presented and improved L2-error estimates are established.The convergence of both the function value andthe flux is demonstrated.

  20. Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.

    1999-01-01

    A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet

  1. Analysis of Conductor Impedances Accounting for Skin Effect and Nonlinear Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, M P; Ong, M M; Brown, C G; Speer, R D

    2011-07-20

    It is often necessary to protect sensitive electrical equipment from pulsed electric and magnetic fields. To accomplish this electromagnetic shielding structures similar to Faraday Cages are often implemented. If the equipment is inside a facility that has been reinforced with rebar, the rebar can be used as part of a lighting protection system. Unfortunately, such shields are not perfect and allow electromagnetic fields to be created inside due to discontinuities in the structure, penetrations, and finite conductivity of the shield. In order to perform an analysis of such a structure it is important to first determine the effect of the finite impedance of the conductors used in the shield. In this paper we will discuss the impedances of different cylindrical conductors in the time domain. For a time varying pulse the currents created in the conductor will have different spectral components, which will affect the current density due to skin effects. Many construction materials use iron and different types of steels that have a nonlinear permeability. The nonlinear material can have an effect on the impedance of the conductor depending on the B-H curve. Although closed form solutions exist for the impedances of cylindrical conductors made of linear materials, computational techniques are needed for nonlinear materials. Simulations of such impedances are often technically challenging due to the need for a computational mesh to be able to resolve the skin depths for the different spectral components in the pulse. The results of such simulations in the time domain will be shown and used to determine the impedances of cylindrical conductors for lightning current pulses that have low frequency content.

  2. Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks

    Science.gov (United States)

    Hu, Youjun; Chen, Yang; Parker, Scott

    2017-10-01

    A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.

  3. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, J. [Czech Technical University in Prague, CTU, Praha (Czech Republic); Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France)], E-mail: j.blaha@ipnl.in2p3.fr; Cartiglia, N. [Instituto Nazionale di Fisica Nucleare, INFN, Torino (Italy); Combaret, C. [Czech Technical University in Prague, CTU, Praha (Czech Republic); Fay, J. [Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France); Lustermann, W. [Eidgenossische Technische Hoschschule, ETH, Zuerich (Switzerland); Maurelli, G. [Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France); Nardulli, A. [Eidgenossische Technische Hoschschule, ETH, Zuerich (Switzerland); Obertino, M. [Instituto Nazionale di Fisica Nucleare, INFN, Torino (Italy)

    2007-10-15

    The Very-Front-End cards processing signal from photodetectors of the CMS electromagnetic calorimeter, have been put through extensive test program to guarantee their functionality and reliability. The characteristics of the VFE cards designed for the calorimeter barrel are presented. The results confirm the high quality of the cards production and show that the specifications are fully reached.

  4. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Blaha, J.; Cartiglia, N.; Combaret, C.; Fay, J.; Lustermann, W.; Maurelli, G.; Nardulli, A.; Obertino, M.

    2007-01-01

    The Very-Front-End cards processing signal from photodetectors of the CMS electromagnetic calorimeter, have been put through extensive test program to guarantee their functionality and reliability. The characteristics of the VFE cards designed for the calorimeter barrel are presented. The results confirm the high quality of the cards production and show that the specifications are fully reached

  5. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  7. Nonlinear unitary quantum collapse model with self-generated noise

    Science.gov (United States)

    Geszti, Tamás

    2018-04-01

    Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.

  8. DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Hesthaven, Jan; Bingham, Harry B.

    2008-01-01

    equations in complex and curvilinear geometries which amends the application range of previous numerical models that have been based on structured Cartesian grids. The Boussinesq method provides the basis for the accurate description of fully nonlinear and dispersive water waves in both shallow and deep...... waters within the breaking limit. To demonstrate the current applicability of the model both linear and mildly nonlinear test cases are considered in two horizontal dimensions where the water waves interact with bottom-mounted fully reflecting structures. It is established that, by simple symmetry...... considerations combined with a mirror principle, it is possible to impose weak slip boundary conditions for both structured and general curvilinear wall boundaries while maintaining the accuracy of the scheme. As is standard for current high-order Boussinesq-type models, arbitrary waves can be generated...

  9. Variational Principles, Lie Point Symmetries, and Similarity Solutions of the Vector Maxwell Equations in Non-linear Optics

    DEFF Research Database (Denmark)

    Webb, Garry; Sørensen, Mads Peter; Brio, Moysey

    2004-01-01

    the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr nonlinearity, are shown to reduce...... the properties of Maxwell's equations in nonlinear optics, without resorting to the commonly used nonlinear Schr\\"odinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to nonlinear sideband wave interactions. This is important in femto......-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field $E$, in terms of the the canonical variables, with possible multiple real roots for $E$. In order...

  10. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Daniel, E-mail: daniel.simmons@nottingham.ac.uk; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications. - Graphical abstract:.

  11. Nonlinear elliptic equations of the second order

    CERN Document Server

    Han, Qing

    2016-01-01

    Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and "elementary" proofs for results in important special cases. This book will serve as a valuable resource for graduate stu...

  12. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  13. Polarization dynamics in nonlinear anisotropic fibers

    International Nuclear Information System (INIS)

    Komarov, Andrey; Komarov, Konstantin; Meshcheriakov, Dmitry; Amrani, Foued; Sanchez, Francois

    2010-01-01

    We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincare sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincare sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi's functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered.

  14. Atomistic simulation of MgO nanowires subject to electromagnetic wave

    International Nuclear Information System (INIS)

    Wang, Xianqiao; Lee, James D

    2010-01-01

    This work is concerned with the application of atomistic field theory (AFT) in modeling and simulation of polarizable materials under an electromagnetic (EM) field. AFT enables us to express an atomic scale local property of a multi-element crystalline (which has more than one kind of atom in the unit cell) system in terms of the distortions of lattice cells and the rearrangement of atoms within the lattice cell, thereby making AFT suitable to fully reproduce both acoustic and optical branches in phonon dispersion relations. Due to the applied EM field, the inhomogeneous motions of discrete atoms in the polarizable crystal give rise to the rearrangement of microstructure and polarization. The AFT and its corresponding finite element implementation are briefly introduced. Single-crystal MgO nanowires under an EM field is modeled and simulated. The numerical results have demonstrated that AFT can serve as a tool to analyze the electromagnetic phenomena of multi-element crystal materials at micro/nano-level within a field framework

  15. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  16. Topological approximation of the nonlinear Anderson model

    Science.gov (United States)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  17. Testing nonlinear-QED at the future linear collider with an intense laser

    International Nuclear Information System (INIS)

    Hartin, Anthony; Porto, Stefano; Moortgat-Pick, Gudrid; Hamburg Univ.

    2014-04-01

    The future linear collider will collide dense e + e - bunches at high energies up to 1 TeV, generating very intense electromagnetic fields at the interaction point (IP). These fields are strong enough to lead to nonlinear effects which affect all IP processes and which are described by strong field physics theory. In order to test this theory, we propose an experiment that will focus an intense laser on the LC electron beam post-IP. Similar experiments at SLAC E144 have investigated nonlinear Compton scattering, Breit-Wheeler pair production using an electron beam of 46.6 GeV. The higher beam energies available at the future LC would allow more precise studies of these phenomena. Mass-shift and spin-dependent effects could also be investigated.

  18. Nonlinear dynamo in the intracluster medium

    Science.gov (United States)

    Beresnyak, Andrey; Miniati, Francesco

    2018-05-01

    Hot plasma in galaxy clusters, the intracluster medium is observed to be magnetized with magnetic fields of around a μG and the correlation scales of tens of kiloparsecs, the largest scales of the magnetic field so far observed in the Universe. Can this magnetic field be used as a test of the primordial magnetic field in the early Universe? In this paper, we argue that if the cluster field was created by the nonlinear dynamo, the process would be insensitive to the value of the initial field. Our model combines state of the art hydrodynamic simulations of galaxy cluster formation in a fully cosmological context with nonlinear dynamo theory. Initial field is not a parameter in this model, yet it predicts magnetic scale and strength compatible with observations.

  19. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    Science.gov (United States)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  20. Out of time: a possible link between mirror neurons, autism and electromagnetic radiation.

    Science.gov (United States)

    Thornton, Ian M

    2006-01-01

    Recent evidence suggests a link between autism and the human mirror neuron system. In this paper, I argue that temporal disruption from the environment may play an important role in the observed mirror neuron dysfunction, leading in turn to the pattern of deficits associated with autism. I suggest that the developing nervous system of an infant may be particularly prone to temporal noise that can interfere with the initial calibration of brain networks such as the mirror neuron system. The most likely source of temporal noise in the environment is artificially generated electromagnetic radiation. To date, there has been little evidence that electromagnetic radiation poses a direct biological hazard. It is clear, however, that time-varying electromagnetic waves have the potential to temporally modulate the nervous system, particularly when populations of neurons are required to act together. This modulation may be completely harmless for the fully developed nervous system of an adult. For an infant, this same temporal disruption might act to severely delay or disrupt vital calibration processes.