WorldWideScience

Sample records for fully coupled scheme

  1. A hybrid surface layer parameterization scheme for the two-way fully coupled atmosphere-ocean wave system WEW

    Science.gov (United States)

    Katsafados, Petros; Papadopoulos, Anastasios; Varlas, George; Korres, Gerasimos

    2015-04-01

    The two-way fully coupled atmosphere-ocean wave system WEW has been recently developed in order to study the factors that contribute to the air-sea interaction processes and feedbacks. The coupled system consists of two components: the atmospheric component which is based on the Workstation Eta non-hydrostatic limited area model and the ocean-wave component which is based on the fourth generation OpenMP (OMP) version of the WAM model. The WEW has been already evaluated in a number of high-impact weather and sea state events where generally a more realistic representation of the momentum exchanges in the ocean wind-wave system has been shown However, the new developed wind-wave parameterization scheme reduces both the near surface wind speed and the significant wave height as a response to the increased aerodynamic drag considered by the atmospheric model over rough sea surfaces. Such behavior is mainly attributed to the surface layer parameterization scheme of the atmospheric component which is based on the Mellor-Yamada-Janjic (MYJ) scheme. It is noted that this scheme has been adjusted to support independent atmospheric simulations. Therefore, we proceed to develop a new hybrid surface layer parameterization based on the MYJ and the Janssen schemes that operate in the atmospheric and ocean wave components of the WEW, respectively. In this case the roughness length depends on the wave age instead of the Charnock parameter following the formulation proposed by Vickers and Mahrt. The spatial variability of the wave age is estimated at each ocean wave component time step and it is directly provided to the MYJ scheme. The parameterization of the viscous sublayer and the universal functions for the estimation of the near surface wind speed have been also revised accordingly. In this study, a test version of the new hybrid scheme of WEW has been statistically evaluated against a number of buoys and satellite retrievals over the Mediterranean Sea in a case study of high

  2. Investigating marine stratocumulus with a fully coupled cloud-aerosol scheme in a WRF/Chem Large Eddy Simulation

    Science.gov (United States)

    Kazil, J.; Wang, H.; Feingold, G.

    2009-12-01

    Drizzle in stratocumulus clouds is triggered by low concentrations of cloud condensation nuclei (CCN), and concurrently acts as a sink of CCN. The progression of this cloud-aerosol feedback may result in a transition in marine boundary layer dynamics and cloud structure; Closed cell circulation, characterized by a solid stratocumulus layer, may transition into an open cellular mode featuring low cloud fraction. Aerosol sources may balance the loss of CCN from drizzle, and delay or prevent the emergence of open cell circulation. Such sources include particle emissions from the sea surface, entrainment of aerosol from the free troposphere into the cloud deck, advection from land sources, and aerosol nucleation. In order to investigate the role of aerosol sources and processes in the transition between these two states, we have coupled in detail aerosol processes, cloud microphysics, and gas and aqueous chemistry in the WRF/Chem model. We operate WRF/Chem in Large Eddy Simulation mode. Aerosol nucleation is described with a sulfuric acid/water scheme based on laboratory measurements of the nucleation process. Here we present first results on the role of aerosol nucleation for cloud properties and drizzle formation in pristine conditions of the South-East Pacific region, and in polluted conditions.

  3. An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid–structure interaction scheme

    CSIR Research Space (South Africa)

    Malan, AG

    2012-09-01

    Full Text Available . This is such that both dynamic and kinematic continuity ? i.e. continuity of forces and velocities ? are satisfied at the fluid/solid interface. So-called monolithic methods ensure this by solving the entire coupled system [22, 23, 24]. Partitioned solvers...?j ). (3) Here, S(t) denotes the surface of the volume V(t) with n being a unit vector normal to S(t); Q is a vector of source terms (e.g. body forces), u denotes velocity, p is the pressure, ? is density, ? stress, and ?ij is the Kronecker delta...

  4. A fully coupled diffusion-reaction scheme for moisture sorption-desorption in an anhydride-cured epoxy resin

    KAUST Repository

    El Yagoubi, Jalal

    2012-11-01

    Thermoset materials frequently display non-classical moisture sorption behaviors. In this paper, we investigated this issue from an experimental point of view as well as in terms of modeling the water transport. We used the gravimetric technique to monitor water uptake by epoxy samples, with several thicknesses exposed to different levels of humidity during absorption and desorption tests. Our results revealed that the polymer displays a two-stage behavior with a residual amount of water that is desorbed progressively. We proposed a phenomenological reaction-diffusion scheme to describe this behavior. The model describes water transport as a competition between diffusion and the reaction, during which the local diffusivity and solubility depend on the local advancement of the reaction. We then implemented our model using COMSOL Multiphysics and identified it using a MATLAB-COMSOL optimization tool and the experimental data. We discussed the relation between the hydrophilicity of the product of the reaction and the diffusion behavior. We examined the reaction-induced modification of the water concentration field. It is worth noting that part of the phenomenology can be explained by the presence of hydrolyzable groups. © 2012 Elsevier Ltd. All rights reserved.

  5. Modified sequential fully implicit scheme for compositional flow simulation

    Science.gov (United States)

    Moncorgé, A.; Tchelepi, H. A.; Jenny, P.

    2017-05-01

    The fully implicit (FI) method is widely used for numerical modeling of multiphase flow and transport in porous media. The FI method is unconditionally stable, but that comes at the cost of a low-order approximation and high computational cost. The FI method entails iterative linearization and solution of fully-coupled linear systems with mixed elliptic/hyperbolic character. However, in methods that treat the near-elliptic (flow) and hyperbolic (transport) separately, such as multiscale formulations, sequential solution strategies are used to couple the flow (pressures and velocities) and the transport (saturations/compositions). The most common sequential schemes are: the implicit pressure explicit saturation (IMPES), and the sequential fully implicit (SFI) schemes. Problems of practical interest often involve tightly coupled nonlinear interactions between the multiphase flow and the multi-component transport. For such problems, the IMPES approach usually suffers from prohibitively small timesteps in order to obtain stable numerical solutions. The SFI method, on the other hand, does not suffer from a temporal stability limit, but the convergence rate can be extremely slow. This slow convergence rate of SFI can offset the gains obtained from separate and specialized treatments of the flow and transport problems. In this paper, we analyze the nonlinear coupling between flow and transport for compressible, compositional systems with complex interphase mass transfer. We isolate the nonlinear effects related to transmissibility and compressibility from those due to interphase mass transfer, and we propose a modified SFI (m-SFI) method. The new scheme involves enriching the 'standard' pressure equation with coupling between the pressure and the saturations/compositions. The modification resolves the convergence problems associated with SFI and provides a strong basis for using sequential formulations for general-purpose simulation. For a wide parameter range, we show

  6. Fully Coupled FE Analyses of Buried Structures

    Directory of Open Access Journals (Sweden)

    James T. Baylot

    1994-01-01

    Full Text Available Current procedures for determining the response of buried structures to the effects of the detonation of buried high explosives recommend decoupling the free-field stress analysis from the structure response analysis. A fully coupled (explosive–soil structure finite element analysis procedure was developed so that the accuracies of current decoupling procedures could be evaluated. Comparisons of the results of analyses performed using this procedure with scale-model experiments indicate that this finite element procedure can be used to effectively evaluate the accuracies of the methods currently being used to decouple the free-field stress analysis from the structure response analysis.

  7. Numerical schemes for the coupling of compressible and incompressible fluids in several space dimensions

    CERN Document Server

    Neusser, Jochen

    2015-01-01

    We present a numerical scheme for immiscible two-phase flows with one compressible and one incompressible phase. Special emphasis lies in the discussion of the coupling strategy for compressible and incompressible Euler equations to simulate inviscid liquid-vapour flows. To reduce the computational effort further, we also introduce two approximate coupling strategies. The resulting schemes are compared numerically to a fully compressible scheme and show good agreement with these standard algorithm at lower numerical costs.

  8. Novel coupling scheme to control dynamics of coupled discrete systems

    Science.gov (United States)

    Shekatkar, Snehal M.; Ambika, G.

    2015-08-01

    We present a new coupling scheme to control spatio-temporal patterns and chimeras on 1-d and 2-d lattices and random networks of discrete dynamical systems. The scheme involves coupling with an external lattice or network of damped systems. When the system network and external network are set in a feedback loop, the system network can be controlled to a homogeneous steady state or synchronized periodic state with suppression of the chaotic dynamics of the individual units. The control scheme has the advantage that its design does not require any prior information about the system dynamics or its parameters and works effectively for a range of parameters of the control network. We analyze the stability of the controlled steady state or amplitude death state of lattices using the theory of circulant matrices and Routh-Hurwitz criterion for discrete systems and this helps to isolate regions of effective control in the relevant parameter planes. The conditions thus obtained are found to agree well with those obtained from direct numerical simulations in the specific context of lattices with logistic map and Henon map as on-site system dynamics. We show how chimera states developed in an experimentally realizable 2-d lattice can be controlled using this scheme. We propose this mechanism can provide a phenomenological model for the control of spatio-temporal patterns in coupled neurons due to non-synaptic coupling with the extra cellular medium. We extend the control scheme to regulate dynamics on random networks and adapt the master stability function method to analyze the stability of the controlled state for various topologies and coupling strengths.

  9. Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Rick; Wendt, Fabian; Musial, Walter; Finucane, Z.; Hulliger, L.; Chilka, S.; Dolan, D.; Cushing, J.; O' Connell, D.; Falk, S.

    2017-06-19

    The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, the turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.

  10. Integrating hydrology within a fully coupled environmental prediction system

    Science.gov (United States)

    Best, Martin; Lewis, Huw; Ashton, Heather; Blyth, Eleanor; Martinez, Alberto

    2017-04-01

    Historically the hydrological community and the community developing the land surface component of atmospheric models have both been tasked with representing the terrestrial hydrological cycle, but have focused on different ends, namely streamflow and evaporation respectively. To date the lack of computational resources and representative observations have limited the integration of the skills within these two communities. However, this is no longer the case. In addition, the drive toward fully integrated high resolution environmental prediction systems, coupling atmosphere, land and ocean on regional domains, requires an accurate representation for all aspects of terrestrial hydrology. Hence a new focus is emerging to integrate improved hydrological processes within the land surface components of atmospheric models. The UK Environmental Prediction (UKEP) project is a research experiment aimed at understanding the potential benefits for detailed environmental forecasting from a fully coupled atmosphere/land/ocean system at km-scale resolution for the UK. The prototype model utilises the Joint UK Land Environment Simulator (JULES) as its land surface component, coupled to the RFM river flow model. Although JULES has been previously used for climate studies that close the global water cycle, the JULES/RFM system has not been comprehensively evaluated for its ability to simulate river discharge. In this study we attempt some initial evaluation of the JULES/RFM system for all aspects of the terrestrial hydrological cycle, including evaporation, soil moisture and streamflow. In addition, comparisons are made between the results from the fully coupled environmental prediction system and stand alone JULES/RFM simulations forced by atmospheric driving data from the UK weather forecasting model. This provides an opportunity to assess the impact of fully coupled versus a one way coupled response for terrestrial hydrology. Finally we consider the potential for coupling JULES

  11. A fully distributed geo-routing scheme for wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2013-12-01

    When marrying randomized distributed space-time coding (RDSTC) to beaconless geo-routing, new performance horizons can be created. In order to reach those horizons, however, beaconless geo-routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geo-routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes. © 2013 IEEE.

  12. Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S

    2009-06-03

    This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.

  13. A Regev-Type Fully Homomorphic Encryption Scheme Using Modulus Switching

    Science.gov (United States)

    Chen, Zhigang; Wang, Jian; Song, Xinxia

    2014-01-01

    A critical challenge in a fully homomorphic encryption (FHE) scheme is to manage noise. Modulus switching technique is currently the most efficient noise management technique. When using the modulus switching technique to design and implement a FHE scheme, how to choose concrete parameters is an important step, but to our best knowledge, this step has drawn very little attention to the existing FHE researches in the literature. The contributions of this paper are twofold. On one hand, we propose a function of the lower bound of dimension value in the switching techniques depending on the LWE specific security levels. On the other hand, as a case study, we modify the Brakerski FHE scheme (in Crypto 2012) by using the modulus switching technique. We recommend concrete parameter values of our proposed scheme and provide security analysis. Our result shows that the modified FHE scheme is more efficient than the original Brakerski scheme in the same security level. PMID:25093212

  14. Fully Coupled Electromechanical Elastodynamic Model for Guided Wave Propagation Analysis

    CERN Document Server

    Borkowski, Luke; Chattopadhyay, Aditi

    2013-01-01

    Physics-based computational models play a key role in the study of wave propagation for structural health monitoring (SHM) and the development of improved damage detection methodologies. Due to the complex nature of guided waves, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, a fully coupled electromechanical elastodynamic model for wave propagation in a heterogeneous, anisotropic material system is developed. The final framework provides the full three dimensional displacement and electrical potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated theoretically and proven computationally efficient. Studies are performed with surface bonded piezoelectric sensors to gain insight into the physics of experimental techniques used for SHM. Collocated actuation of the fundamental Lamb wave modes is modeled over a range of frequenc...

  15. ON THE CELL ENTROPY INEQUALITY FOR THE FULLY DISCRETE RELAXING SCHEMES

    Institute of Scientific and Technical Information of China (English)

    Hua-zhong Tang; Hua-mo Wu

    2001-01-01

    In this paper we study the cell entropy inequality for two classes of the fully discrete relaxing schemes approximating scalar conservation laws presented by Jin and Xin in [7], and Tang in [14], which implies convergence for the one-dimensional scalar case.

  16. Fully discrete Galerkin schemes for the nonlinear and nonlocal Hartree equation

    Directory of Open Access Journals (Sweden)

    Walter H. Aschbacher

    2009-01-01

    Full Text Available We study the time dependent Hartree equation in the continuum, the semidiscrete, and the fully discrete setting. We prove existence-uniqueness, regularity, and approximation properties for the respective schemes, and set the stage for a controlled numerical computation of delicate nonlinear and nonlocal features of the Hartree dynamics in various physical applications.

  17. Application of partially-coupled hydro-mechanical schemes to multiphase flow problems

    Science.gov (United States)

    Tillner, Elena; Kempka, Thomas

    2016-04-01

    Utilization of subsurface reservoirs by fluid storage or production generally triggers pore pressure changes and volumetric strains in reservoirs and cap rocks. The assessment of hydro-mechanical effects can be undertaken using different process coupling strategies. The fully-coupled geomechanics and flow simulation, constituting a monolithic system of equations, is rarely applied for simulations involving multiphase fluid flow due to the high computational efforts required. Pseudo-coupled simulations are driven by static tabular data on porosity and permeability changes as function of pore pressure or mean stress, resulting in a rather limited flexibility when encountering complex subsurface utilization schedules and realistic geological settings. Partially-coupled hydro-mechanical simulations can be distinguished into one-way and iterative two-way coupled schemes, whereby the latter one is based on calculations of flow and geomechanics, taking into account the iterative exchange of coupling parameters between the two respective numerical simulators until convergence is achieved. In contrast, the one-way coupling scheme is determined by the provision of pore pressure changes calculated by the flow simulator to the geomechanical simulator neglecting any feedback. In the present study, partially-coupled two-way schemes are discussed in view of fully-coupled single-phase flow and geomechanics, and their applicability to multiphase flow simulations. For that purpose, we introduce a comparison study between the different coupling schemes, using selected benchmarks to identify the main requirements for the partially-coupled approach to converge with the numerical solution of the fully-coupled one.

  18. Difference schemes for fully nonlinear pseudo-parabolic systems with two space dimensions

    Institute of Scientific and Technical Information of China (English)

    周毓麟; 袁光伟

    1996-01-01

    The first boundary value problem for the fully nonlinear pseudoparabolic systems of partial differential equations with two space dimensions by the finite difference method is studied. The existence and uniqueness of the discrete vector solutions for the difference systems are established by the fixed point technique. The stability and convergence of the discrete vector solutions of the difference schemes to the vector solutions of the original boundary problem of the fully nonlinear pseudo-parabolic system are obtained by way of a priori estimation. Here the unique smooth vector solution of the original problems for the fully nonlinear pseudo-parabolic system is assumed. Moreover, by the method used here, it can be proved that analogous results hold for fully nonlinear pseudo-parabolic system with three space dimensions, and improve the known results in the case of one space dimension.

  19. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    Science.gov (United States)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  20. A Comparison Theorem for Solution of the Fully Coupled Backward Stochastic Differential Equations

    Institute of Scientific and Technical Information of China (English)

    郭子君; 吴让泉

    2004-01-01

    The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.

  1. Energy Stability Analysis of Some Fully Discrete Numerical Schemes for Incompressible Navier–Stokes Equations on Staggered Grids

    KAUST Repository

    Chen, Huangxin

    2017-09-01

    In this paper we consider the energy stability estimates for some fully discrete schemes which both consider time and spatial discretizations for the incompressible Navier–Stokes equations. We focus on three kinds of fully discrete schemes, i.e., the linear implicit scheme for time discretization with the finite difference method (FDM) on staggered grids for spatial discretization, pressure-correction schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations, and pressure-stabilization schemes for time discretization with the FDM on staggered grids for the solutions of the decoupled velocity and pressure equations. The energy stability estimates are obtained for the above each fully discrete scheme. The upwind scheme is used in the discretization of the convection term which plays an important role in the design of unconditionally stable discrete schemes. Numerical results are given to verify the theoretical analysis.

  2. Fully-coupled hydrometeorological prediction of catastrophic Mediterranean floods

    Science.gov (United States)

    Rebora, N.; Gabellani, S.; Rudari, R.; Silvestro, F.; Parodi, A.; Gochis, D.

    2012-12-01

    On November 4th, 2011, the city of Genoa, Italy, located between the Tyrrhenian Sea and the Apennine mountains, was witness to a catastrophic flash flood. About 500 millimeters of rain -a third of the average annual rainfall- fell in approximately six hours. The waters that flooded the town center equated to an approximately 300 year flood event. Six people perished, commercial property was inundated, cars were swept away and many trees were uprooted. We analyze the performance of cloud-permitting (1 km) model simulations of the convective system responsible for this extreme event using the Advanced Research Weather and Forecasting Model (ARW-WRF, version 3.3) with its associated hydrological modeling extension ('WRF-Hydro') focusing on the utility of model quantitative precipitation forecasts (QPFs) for flash flood prediction. WRF model skill is assessed with respect to specification of cloud microphysics, convection and land surface physics parameterizations. The QPF results strongly suggest an event dominated by comparatively shallow warm rain processes where local maxima were the product of both synoptic scale dynamics and orographic enhancement over the Apennine mountain range. Land and sea surface temperature forcing was assess but found to be secondary in importance. Streamflow prediction skill from the fully coupled WRF-Hydro modeling system was compared against observations and against offline or 'uncoupled' hydrological model runs, driven by several quantitative precipitation estimate (QPEs) products. The results illustrate the significant sensitivity of the predicted (simulated) streamflow event to QPF (QPE) skill and emphasize the importance of taking into account many factors and sources of error in the hydrometeorological prediction chain. The end product of this study is a comprehensive evaluation and justification for optimal configurations of the WRF-Hydro modeling system for high-impact Mediterranean flood events for use in future forecasting

  3. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    Energy Technology Data Exchange (ETDEWEB)

    Trembacki, Bradley L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murthy, Jayathi Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Scott Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  4. Error Estimate for a Fully Discrete Spectral Scheme for Korteweg-de Vries-Kawahara Equation

    CERN Document Server

    Koley, U

    2011-01-01

    We are concerned with the convergence of spectral method for the numerical solution of the initial-boundary value problem associated to the Korteweg-de Vries-Kawahara equation (in short Kawahara equation), which is a transport equation perturbed by dispersive terms of 3rd and 5th order. This equation appears in several fluid dynamics problems. It describes the evolution of small but finite amplitude long waves in various problems in fluid dynamics. These equations are discretized in space by the standard Fourier- Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.

  5. Complete Synchronization in Coupled Chaotic HR Neurons with Symmetric Coupling Schemes

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-Xia; LU Qi-Shao; WANG Qing-Yun

    2005-01-01

    @@ Chaos synchronization in an array of coupled chaotic neurons with symmetric coupling is investigated. A criterion for the stability of the synchronization manifold is deduced by transforming the variational equation of the coupled system into a block diagonal one, and the critical coupling strengths for synchronization in different coupled cases are given. As examples for illustration, the HR neurons with the open-ended (i.e. chain), ring, star and all-to-all(i.e. global) coupling schemes are considered. It is shown that the coupling scheme plays an important role in synchronization and information transmission of neurons.

  6. Thermo-elasto-visco-plastic constitutive equations fully coupled with ductile damage. Application to metal cutting by chip formation

    Science.gov (United States)

    Lestriez, P.; Cherouat, A.; Saanouni, K.; Mariage, J. F.

    2004-06-01

    A fully coupled (strong coupling) thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under large plastic deformation developed for metal forming simulation are presented. The relevant numerical aspects concerning either the local integration scheme as well as the global resolution strategy are discussed. This model is implemented into ABAQUS/EXPLICIT using the Vumat user subroutine. Applications are made to the orthogonal metal cutting by chip formation and segmentation. The interaction between hardening plasticity, ductile damage and thermal effects are carefully analyzed. The numerical results obtained with this procedure based on the damage coupling are compared with those obtained with the classical procedure neglecting the damage effect.

  7. Rhythm Synchronization of Coupled Neurons with Temporal Coding Scheme

    Institute of Scientific and Technical Information of China (English)

    SHI Xia; LU Qi-Shao

    2007-01-01

    Encoding information by firing patterns is one of the basic neural functions, and synchronization is important collective behaviour of a group of coupled neurons. Taking account of two schemes for encoding information (that is, rate coding and temporal coding), rhythm synchronization of coupled neurons is studied. There are two types of rhythm synchronization of neurons: spike and burst synchronizations. Firstly, it is shown that the spike synchronization is equivalent to the phase synchronization for coupled neurons. Secondly, the similarity function of the slow variables of neurons, which have relevant to the bursting process, is proposed to judge the burst synchronization. It is also found that the burst synchronization can be achieved more easily than the spike synchronization, whatever the firing patterns of the neurons are. Hence the temporal encoding scheme, which is closely related to both the spike and burst synchronizations, is more comprehensive than the rate coding scheme in essence.

  8. A fully coupled depth-integrated model for surface water and groundwater flows

    Science.gov (United States)

    Li, Yuanyi; Yuan, Dekui; Lin, Binliang; Teo, Fang-Yenn

    2016-11-01

    This paper presents the development of a fully coupled surface water and groundwater flow model. The governing equations of the model are derived based on a control volume approach, with the velocity profiles of the two types of flows being both taken into consideration. The surface water and groundwater flows are both modelled based on the unified equations and the water exchange and interaction between the two types of flows can be taken into account. The model can be used to simulate the surface water and groundwater flows simultaneously with the same numerical scheme without other effort being needed to link them. The model is not only suitable for the porous medium consisting of fine sediments, but also for coarse sediments and crushed rocks by adding a quadratic friction term. Benchmark tests are conducted to validate the model. The model predictions agree well with the data.

  9. Modeling of Solidification Microstructures Based on Fully Coupling of Macro-transport Phenomena with Cellular Automata

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper has attempted to simulate the microstructure formation based on fully coupling of temperature field, concentration field and velocity field with micro-kinetics. The authors presented a new way, wlich is the combination of FDM and cellular automata (CAFD) to visualize the microstructure formation of the thin complex superalloy turbine blades cast by the vacuum investment process. The distribution, orientation and mechanism of the heterogeneous nucleation, the growth kinetics of dendrites and the columnar to equiaxed transition (CET) are considered. Capitalizing on these simulating schemes, the comprehensive influence of key process variables on the scale and uniformity of grains has been investigated quantitatively. The simulated grain size and morphology agree well with the experimental results.

  10. Reactive Transport Modeling of Induced Calcite Precipitation Reaction Fronts in Porous Media Using A Parallel, Fully Coupled, Fully Implicit Approach

    Science.gov (United States)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.

    2010-12-01

    Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs

  11. Minimal coupling schemes in N-body reaction theory

    Science.gov (United States)

    Picklesimer, A.; Tandy, P. C.; Thaler, R. M.

    1982-08-01

    A new derivation of the N-body equations of Bencze, Redish, and Sloan is obtained through the use of Watson-type multiple scattering techniques. The derivation establishes an intimate connection between these partition-labeled N-body equations and the particle-labeled Rosenberg equations. This result yields new insight into the implicit role of channel coupling in, and the minimal dimensionality of, the partition-labeled equations. NUCLEAR REACTIONS Scattering theory, multiple scattering, connected kernel reaction theory, minimal coupling, coupling schemes.

  12. Scheme variations of the QCD coupling and hadronic $\\tau$ decays

    CERN Document Server

    Boito, Diogo; Miravitllas, Ramon

    2016-01-01

    The Quantum Chromodynamics (QCD) coupling, $\\alpha_s$, is not a physical observable of the theory since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by $\\widehat\\alpha_s$, whose running is explicitly renormalization scheme invariant. The scheme dependence of the new coupling $\\widehat\\alpha_s$ is parameterized by a single parameter $C$, related to transformations of the QCD scale $\\Lambda$. It is demonstrated that appropriate choices of $C$ can lead to substantial improvements in the perturbative prediction of physical observables. As phenomenological applications, we study $e^+e^-$ scattering and decays of the $\\tau$ lepton into hadrons, both being governed by the QCD Adler function.

  13. A fully coupled thermo-mechanical model for unsaturated soil

    OpenAIRE

    2007-01-01

    This paper addresses a new, unified thermomechanical constitutive model for unsaturated soils through a coupled study. In the context of elastoplasticity and the critical state theory, the model uses the concepts of multi-mechanism and bounding surface theory. This advanced constitutive approach involves thermo-plasticity of saturated and unsaturated soils. Bishop’s effective stress framework is adopted to represent the stress state in the soil. This stress is linked to the water retention...

  14. Fully-Coupled Metallic Fuel Performance Simulations using BISON

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, Jack D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-27

    This document is a set of slides intended to accompany a talk at a meeting. The first topic taken up is zirconium redistribution. The rod edge Zr increase is evidently due to the Soret term and temperature gradient. Then metallic fission gas release modeling is considered. Based on a GRSIS/FEAST model, the approach of generating fission gas in the fuel matrix is described. A sensitivity study on parameters is presented, including sodium bond & diffusion coefficient sensitivity along with dt sensitivity. Finally, results of some coupled simulations are shown, with ideas about future work.

  15. A Fully Coupled Computational Model of the Silylation Process

    Energy Technology Data Exchange (ETDEWEB)

    G. H. Evans; R. S. Larson; V. C. Prantil; W. S. Winters

    1999-02-01

    This report documents the development of a new finite element model of the positive tone silylation process. Model development makes use of pre-existing Sandia technology used to describe coupled thermal-mechanical behavior in deforming metals. Material properties and constitutive models were obtained from the literature. The model is two-dimensional and transient and focuses on the part of the lithography process in which crosslinked and uncrosslinked resist is exposed to a gaseous silylation agent. The model accounts for the combined effects of mass transport (diffusion of silylation agent and reaction product), chemical reaction resulting in the uptake of silicon and material swelling, the generation of stresses, and the resulting material motion. The influence of stress on diffusion and reaction rates is also included.

  16. Ultra-low loss fully-etched grating couplers for perfectly vertical coupling compatible with DUV lithography tools

    Science.gov (United States)

    Dabos, G.; Pleros, N.; Tsiokos, D.

    2016-03-01

    Hybrid integration of VCSELs onto silicon-on-insulator (SOI) substrates has emerged as an attractive approach for bridging the gap between cost-effective and energy-efficient directly modulated laser sources and silicon-based PICs by leveraging flip-chip (FC) bonding techniques and silicon grating couplers (GCs). In this context, silicon GCs, should comply with the process requirements imposed by the complimentary-metal-oxide-semiconductor manufacturing tools addressing in parallel the challenges originating from the perfectly vertical incidence. Firstly, fully etched GCs compatible with deep-ultraviolet lithography tools offering high coupling efficiencies are imperatively needed to maintain low fabrication cost. Secondly, GC's tolerance to VCSEL bonding misalignment errors is a prerequisite for practical deployment. Finally, a major challenge originating from the perfectly vertical coupling scheme is the minimization of the direct back-reflection to the VCSEL's outgoing facet which may destabilize its operation. Motivated from the above challenges, we used numerical simulation tools to design an ultra-low loss, bidirectional VCSEL-to-SOI optical coupling scheme for either TE or TM polarization, based on low-cost fully etched GCs with a Si-layer of 340 nm without employing bottom reflectors or optimizing the buried-oxide layer. Comprehensive 2D Finite-Difference-Time- Domain simulations have been performed. The reported GC layout remains fully compatible with the back-end-of-line (BEOL) stack associated with the 3D integration technology exploiting all the inter-metal-dielectric (IMD) layers of the CMOS fab. Simulation results predicted for the first time in fully etched structures a coupling efficiency of as low as -0.87 dB at 1548 nm and -1.47 dB at 1560 nm with a minimum direct back-reflection of -27.4 dB and -14.2 dB for TE and TM polarization, respectively.

  17. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  18. Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.; Buhl, M. L., Jr.

    2007-06-01

    This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

  19. FULLY COUPLED FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH GENERAL MARTINGALE

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it considers Backward Stochastic Differential Equations (BSDEs) with the continuous local martingale. Then, on the basis of it, in the second part it considers the fully coupled FBSDEs with the continuous local martingale.It is proved that their solutions exist and are unique under the monotonicity conditions.

  20. A Randomized Fully Polynomial-time Approximation Scheme for Weighted Perfect Matching in the Plane

    Directory of Open Access Journals (Sweden)

    Yasser M. Abd El-Latif

    2012-12-01

    Full Text Available — In the approximate Euclidean min-weighted perfect matching problem, a set V of 2n points in the plane and a real number   0 are given. Usually, a solution of this problem is a partition of points of V into n pairs such that the sum of the distances between the paired points is at most (1  times the optimal solution.In this paper, the authors give a randomized algorithm which follows a Monte-Carlo method. This algorithm is a randomized fully polynomial-time approximation scheme for the given problem. Fortunately, the suggested algorithm is a one tackled the matching problem in both Euclidean nonbipartite and bipartite cases.The presented algorithm outlines as follows: With repeating 1/  times, we choose a point from V to build the suitable pair satisfying the suggested condition on the distance. If this condition is achieved, then remove the points of the constructed pair from V and put this pair in M (the output set of the solution. Then, choose a point and the nearest point of it from the remaining points in V to construct a pair and put it inM . Remove the two points of the constructed pair from V and repeat this process until V becomes an empty set. Obviously, this method is very simple. Furthermore, our algorithm can be applied without any modification on complete weighted graphs K mand complete weighted bipartite graphs Kn,n, where n,m 1and m is an even.

  1. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    model, HIRHAM. The physics of the coupling is formulated using an energy-based SVAT (land surface) model while the numerical coupling exploits the OpenMI modelling interface. First, some investigations of the applicability of the SVAT model are presented, including our ability to characterise...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...

  2. FULLY COUPLED SIMULATION OF COSMIC REIONIZATION. I. NUMERICAL METHODS AND TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Michael L.; So, Geoffrey C. [CASS, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0424 (United States); Reynolds, Daniel R. [Southern Methodist University, 6425 Boaz Lane, Dallas, TX 75205 (United States); Harkness, Robert P. [SDSC, University of California, San Diego, 9500 Gilman Drive La Jolla, CA 92093-0505 (United States); Wise, John H. [Center for Relativistic Astrophysics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332 (United States)

    2015-01-01

    We describe an extension of the Enzo code to enable fully coupled radiation hydrodynamical simulation of inhomogeneous reionization in large ∼(100 Mpc){sup 3} cosmological volumes with thousands to millions of point sources. We solve all dynamical, radiative transfer, thermal, and ionization processes self-consistently on the same mesh, as opposed to a postprocessing approach which coarse-grains the radiative transfer. We do, however, employ a simple subgrid model for star formation which we calibrate to observations. The numerical method presented is a modification of an earlier method presented in Reynolds et al. differing principally in the operator splitting algorithm we use to advance the system of equations. Radiation transport is done in the gray flux-limited diffusion (FLD) approximation, which is solved by implicit time integration split off from the gas energy and ionization equations, which are solved separately. This results in a faster and more robust scheme for cosmological applications compared to the earlier method. The FLD equation is solved using the hypre optimally scalable geometric multigrid solver from LLNL. By treating the ionizing radiation as a grid field as opposed to rays, our method is scalable with respect to the number of ionizing sources, limited only by the parallel scaling properties of the radiation solver. We test the speed and accuracy of our approach on a number of standard verification and validation tests. We show by direct comparison with Enzo's adaptive ray tracing method Moray that the well-known inability of FLD to cast a shadow behind opaque clouds has a minor effect on the evolution of ionized volume and mass fractions in a reionization simulation validation test. We illustrate an application of our method to the problem of inhomogeneous reionization in a 80 Mpc comoving box resolved with 3200{sup 3} Eulerian grid cells and dark matter particles.

  3. A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2017-01-01

    •Aerodynamic modeling of floating VAWTs is established using the Actuator Cylinder (AC) flow method.•A fully coupled aero-hydro-servo-elastic simulation tool, i.e. SIMO-RIFLEX-AC, is developed for floating VAWTs.•The developedsimulation tool is verified to be accurate by a series of code-to-code ......•Aerodynamic modeling of floating VAWTs is established using the Actuator Cylinder (AC) flow method.•A fully coupled aero-hydro-servo-elastic simulation tool, i.e. SIMO-RIFLEX-AC, is developed for floating VAWTs.•The developedsimulation tool is verified to be accurate by a series of code...

  4. Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes

    CERN Document Server

    Kovács, M; Lindgren, F

    2012-01-01

    We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation.

  5. Development of a fully implicit particle-in-cell scheme for gyrokinetic electromagnetic turbulence simulation in XGC1

    Science.gov (United States)

    Ku, Seung-Hoe; Hager, R.; Chang, C. S.; Chacon, L.; Chen, G.; EPSI Team

    2016-10-01

    The cancelation problem has been a long-standing issue for long wavelengths modes in electromagnetic gyrokinetic PIC simulations in toroidal geometry. As an attempt of resolving this issue, we implemented a fully implicit time integration scheme in the full-f, gyrokinetic PIC code XGC1. The new scheme - based on the implicit Vlasov-Darwin PIC algorithm by G. Chen and L. Chacon - can potentially resolve cancelation problem. The time advance for the field and the particle equations is space-time-centered, with particle sub-cycling. The resulting system of equations is solved by a Picard iteration solver with fixed-point accelerator. The algorithm is implemented in the parallel velocity formalism instead of the canonical parallel momentum formalism. XGC1 specializes in simulating the tokamak edge plasma with magnetic separatrix geometry. A fully implicit scheme could be a way to accurate and efficient gyrokinetic simulations. We will test if this numerical scheme overcomes the cancelation problem, and reproduces the dispersion relation of Alfven waves and tearing modes in cylindrical geometry. Funded by US DOE FES and ASCR, and computing resources provided by OLCF through ALCC.

  6. Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

    Directory of Open Access Journals (Sweden)

    Jung-Hyun Kim

    2014-12-01

    Full Text Available This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM, which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.

  7. Towards Fully Coupled Atmosphere-Hydrology Model Systems: Recent Developments and Performance Evaluation For Different Climate Regions

    Science.gov (United States)

    Kunstmann, Harald; Fersch, Benjamin; Rummler, Thomas; Wagner, Sven; Arnault, Joel; Senatore, Alfonso; Gochis, David

    2015-04-01

    Limitations in the adequate representation of terrestrial hydrologic processes controlling the land-atmosphere coupling are assumed to be a significant factor currently limiting prediction skills of regional atmospheric models. The necessity for more comprehensive process descriptions accounting for the interdependencies between water- and energy fluxes at the compartmental interfaces are driving recent developments in hydrometeorological modeling towards more sophisticated treatment of terrestrial hydrologic processes. It is particularly the lateral surface and subsurface water fluxes that are neglected in standard regional atmospheric models. Current developments in enhanced lateral hydrological process descriptions in the WRF model system will be presented. Based on WRF and WRF-Hydro, new modules and concepts for integrating the saturated zone by a 2-dim groundwater scheme and coupling approaches to the unsaturated zone will be presented. The fully coupled model system allows to model the complete regional water cycle, from the top of the atmosphere, via the boundary layer, the land surface, the unsaturated zone and the saturated zone till the flow in the river beds. With this increasing complexity, that also allows to describe the complex interaction of the regional water cycle on different spatial and temporal scales, the reliability and predictability of model simulations can only be shown, if performance is tested for a variety of hydrological variables for different climatological environments. We will show results of fully coupled simulations for the regions of sempiternal humid Southern Bavaria/Germany (rivers Isar and Ammer) and semiarid to subhumid Westafrica (river Sissilli). In both regions, in addition to streamflow measurements, also the validation of heat fluxes is possible via Eddy-Covariance stations within hydrometeorological testbeds. In the German Isar/Ammer region, e.g., we apply the extended WRF-Hydro modeling system in 3km atmospheric- grid

  8. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha

    2012-05-18

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  9. A fully coupled air foil bearing model considering friction – Theory & experiment

    DEFF Research Database (Denmark)

    von Osmanski, Alexander Sebastian; Larsen, Jon Steffen; Santos, Ilmar

    2017-01-01

    The dynamics of air foil bearings (AFBs) are not yet fully captured by any model. The recent years have, however, seen promising results from nonlinear time domain models, and simultaneously coupled formulations are now available, avoiding the previous requirements for undesirably small time step...

  10. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture.

    Science.gov (United States)

    Doulamis, A; Doulamis, N; Ntalianis, K; Kollias, S

    2003-01-01

    In this paper, an unsupervised video object (VO) segmentation and tracking algorithm is proposed based on an adaptable neural-network architecture. The proposed scheme comprises: 1) a VO tracking module and 2) an initial VO estimation module. Object tracking is handled as a classification problem and implemented through an adaptive network classifier, which provides better results compared to conventional motion-based tracking algorithms. Network adaptation is accomplished through an efficient and cost effective weight updating algorithm, providing a minimum degradation of the previous network knowledge and taking into account the current content conditions. A retraining set is constructed and used for this purpose based on initial VO estimation results. Two different scenarios are investigated. The first concerns extraction of human entities in video conferencing applications, while the second exploits depth information to identify generic VOs in stereoscopic video sequences. Human face/ body detection based on Gaussian distributions is accomplished in the first scenario, while segmentation fusion is obtained using color and depth information in the second scenario. A decision mechanism is also incorporated to detect time instances for weight updating. Experimental results and comparisons indicate the good performance of the proposed scheme even in sequences with complicated content (object bending, occlusion).

  11. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    Science.gov (United States)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  12. A numerical manifold method model for analyzing fully coupled hydro-mechanical processes in porous rock masses with discrete fractures

    Science.gov (United States)

    Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan

    2017-04-01

    In this study, a numerical manifold method (NMM) model was developed for fully coupled analysis of hydro-mechanical (HM) processes in porous rock masses with discrete fractures. Using an NMM two-cover-mesh system of mathematical and physical covers, fractures are conveniently discretized by dividing the mathematical cover along fracture traces to physical cover, resulting in a discontinuous model on a non-conforming mesh. In this model, discrete fracture deformation (e.g. open and slip) and fracture fluid flow within a permeable and deformable porous rock matrix are rigorously considered. For porous rock, direct pore-volume coupling was modeled based on an energy-work scheme. For mechanical analysis of fractures, a fracture constitutive model for mechanically open states was introduced. For fluid flow in fractures, both along-fracture and normal-to-fracture fluid flow are modeled without introducing additional degrees of freedom. When the mechanical aperture of a fracture is changing, its hydraulic aperture and hydraulic conductivity is updated. At the same time, under the effect of coupled deformation and fluid flow, the contact state may dynamically change, and the corresponding contact constraint is updated each time step. Therefore, indirect coupling is realized under stringent considerations of coupled HM effects and fracture constitutive behavior transfer dynamically. To verify the new model, examples involving deformable porous media containing a single and two sets of fractures were designed, showing good accuracy. Last, the model was applied to analyze coupled HM behavior of fractured porous rock domains with complex fracture networks under effects of loading and injection.

  13. Fully implicit, coupled procedures in computational fluid dynamics an engineer's resource book

    CERN Document Server

    Mazhar, Zeka

    2016-01-01

    This book introduces a new generation of superfast algorithms for the treatment of the notoriously difficult velocity-pressure coupling problem in incompressible fluid flow solutions. It provides all the necessary details for the understanding and implementation of the procedures. The derivation and construction of the fully-implicit, block-coupled, incomplete decomposition mechanism are given in a systematic, but easy fashion. Worked-out solutions are included, with comparisons and discussions. A complete program code is included for faster implementation of the algorithm. A brief literature review of the development of the classical solution procedures is included as well. .

  14. A fully-coupled approach combining plastic deformation and liquid lubrication

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Christiansen, Peter; Nielsen, Chris Valentin

    This paper presents a new approach based on a fully coupled procedure in which the lubricant flow and theplastic deformation of the metallic material are solved simultaneously. The approach is applied to strip reduction of asheet with surface pockets in order to investigate the escape of the lubr......This paper presents a new approach based on a fully coupled procedure in which the lubricant flow and theplastic deformation of the metallic material are solved simultaneously. The approach is applied to strip reduction of asheet with surface pockets in order to investigate the escape...... of the lubricant from the pocket by means of MicroPlasto HydroDynamic Lubrication (MPHDL) and Micro Plasto HydroStatic Lubrication (MPHSL) mechanisms....

  15. Verification of a fully coupled FE model for tunneling under compressed air

    Energy Technology Data Exchange (ETDEWEB)

    Oettl, G.; Stark, R.F.; Hofstetter, G. [Innsbruck Univ. (Austria). Inst. for Structural Analysis and Strength of Materials

    2001-07-01

    This paper deals with the verification of a fully coupled finite element model for tunneling under compressed air. The formulation is based on mixture theory treating the soil as a three-phase medium with the constituents: deformable porous soil skeleton, water and air. Starting with a brief outline of the governing equations results of numerical simulations of different laboratory tests and of a large-scale in-situ test are presented and compared with experimental data. (orig.)

  16. Fully Coupled Aero-Thermochemical-Elastic Simulations of an Eroding Graphite Nozzle

    Science.gov (United States)

    Blades, E. L.; Reveles, N. D.; Nucci, M.; Maclean, M.

    2017-01-01

    A multiphysics simulation capability has been developed that incorporates mutual interactions between aerodynamics, structural response from aero/thermal loading, ablation/pyrolysis, heating, and surface-to-surface radiation to perform high-fidelity, fully coupled aerothermoelastic ablation simulations, which to date had been unattainable. The multiphysics framework couples CHAR (a 3-D implicit charring ablator solver), Loci/CHEM (a computational fluid dynamics solver for high-speed chemically reacting flows), and Abaqus (a nonlinear structural dynamics solver) to create a fully coupled aerothermoelastic charring ablative solver. The solvers are tightly coupled in a fully integrated fashion to resolve the effects of the ablation pyrolysis and charring process and chemistry products upon the flow field, the changes in surface geometry due to recession upon the flow field, and thermal-structural analysis of the body from the induced aerodynamic heating from the flow field. The multiphysics framework was successfully demonstrated on a solid rocket motor graphite nozzle erosion application. Comparisons were made with available experimental data that measured the throat erosion during the motor firing. The erosion data is well characterized, as the test rig was equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle initially undergoes a nozzle contraction due to thermal expansion before ablation effects are able to widen the throat. A series of parameters studies were conducted using the coupled simulation capability to determine the sensitivity of the nozzle erosion to different parameters. The parameter studies included the shape of the nozzle throat (flat versus rounded), the material properties, the effect of the choice of turbulence model, and the inclusion or exclusion of the mechanical thermal expansion. Overall, the predicted results match

  17. Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model

    Science.gov (United States)

    Liang, Cheng-Yen; Keller, Scott M.; Sepulveda, Abdon E.; Bur, Alexandre; Sun, Wei-Yang; Wetzlar, Kyle; Carman, Gregory P.

    2014-10-01

    Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model, assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. This paper presents analytical work intended to significantly improve the simulation of finite structures by fully coupling the LLG model with elastodynamics, i.e., the partial differential equations are intrinsically coupled. The coupled equations developed in this manuscript, along with the Stoner-Wohlfarth model and the LLG (constant strain) model are compared to experimental data on nickel nanostructures. The nickel nanostructures are 100 × 300 × 35 nm single domain elements that are fabricated on a Si/SiO2 substrate; these nanostructures are mechanically strained when they experience an applied magnetic field, which is used to generate M vs H curves. Results reveal that this paper’s fully-coupled approach corresponds the best with the experimental data on coercive field changes. This more sophisticated modeling technique is critical for guiding the design process of future nanoscale strain-mediated multiferroic elements, such as those needed in memory systems.

  18. A New Vortex Initialization Scheme Coupled with WRF-ARW

    Directory of Open Access Journals (Sweden)

    Jimmy Chi Hung Fung

    2017-01-01

    Full Text Available The ability of numerical simulations to predict typhoons has been improved in recent decades. Although the track prediction is satisfactory, the intensity prediction is still far from adequate. Vortex initialization is an efficient method to improve the estimations of the initial conditions for typhoon forecasting. In this paper, a new vortex initialization scheme is developed and evaluated. The scheme requires only observational data of the radius of maximum wind and the max wind speed in addition to the global analysis data. This scheme can also satisfy the vortex boundary conditions, which means that the vortex is continuously merged into the background environment. The scheme has a low computational cost and has the flexibility to adjust the vortex structure. It was evaluated with 3 metrics: track, center sea-level pressure (CSLP, and maximum surface wind speed (MWSP. Simulations were conducted using the WRF-ARW numerical weather prediction model. Super and severe typhoon cases with insufficiently strong initial MWSP were simulated without and with the vortex initialization scheme. The simulation results were compared with the 6-hourly observational data from Hong Kong Observatory (HKO. The vortex initialization scheme improved the intensity (CSLP and MWSP prediction results. The scheme was also compared with other initialization methods and schemes.

  19. An alternative to fully coupled reactive transport simulations for long-term prediction of chemical reactions in complex geological systems

    Science.gov (United States)

    De Lucia, Marco; Kempka, Thomas; Kühn, Michael

    2014-05-01

    Fully-coupled reactive transport simulations involving multiphase hydrodynamics and chemical reactions in heterogeneous settings are extremely challenging from a computational point of view. This often leads to oversimplification of the investigated system: coarse spatial discretization, to keep the number of elements in the order of few thousands; simplified chemistry, disregarding many potentially important reactions. A novel approach for coupling non-reactive hydrodynamic simulations with the outcome of single batch geochemical simulations was therefore introduced to assess the potential long-term mineral trapping at the Ketzin pilot site for underground CO2 storage in Germany [1],[2]. The advantage of the coupling is the ability to use multi-million grid non-reactive hydrodynamics simulations on one side and few batch 0D geochemical simulations on the other, so that the complexity of both systems does not need to be reduced. This contribution shows the approach which was taken to validate this simplified coupling scheme. The procedure involved batch simulations of the reference geochemical model, then performing both non-reactive and fully coupled 1D and 3D reactive transport simulations and finally applying the simplified coupling scheme based on the non-reactive and geochemical batch model. The TOUGHREACT/ECO2N [3] simulator was adopted for the validation. The degree of refinement of the spatial grid and the complexity and velocity of the mineral reactions, along with a cut-off value for the minimum concentration of dissolved CO2 allowed to originate precipitates in the simplified approach were found out to be the governing parameters for the convergence of the two schemes. Systematic discrepancies between the approaches are not reducible, simply because there is no feedback between chemistry and hydrodynamics, and can reach 20 % - 30 % in unfavourable cases. However, even such discrepancy is completely acceptable, in our opinion, given the amount of

  20. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    Science.gov (United States)

    Taneja, Ankur; Higdon, Jonathan

    2016-11-01

    A spectral element method (SEM) is presented to simulate two-phase fluid flow (oil and water phase) in petroleum reservoirs. Petroleum reservoirs are porous media with heterogeneous geologic features, and the flow of two immiscible phases involves sharp, moving interfaces. The governing equations of motion are time-dependent, non-linear PDEs with strong hyperbolic nature. A fully-coupled numerical scheme using discontinuous Galerkin (DG) method with nodal spectral element basis functions for spatial discretization, and an implicit Runge-Kutta type time-stepping is developed to solve the PDEs in a robust, stable manner. Isoparameteric mapping is used to generate grids for reservoir and well geometry. We present the performance capabilities of the DG scheme with high-order basis functions to accurately resolve sharp fluid interfaces and a variety of heterogeneous geologic features. High-order convergence of SEM is demonstrated. Numerical results are presented for reservoir flows with various injection-production patterns. Typical reservoir heterogeneities like low-permeable regions, impermeable shale barriers, etc. are included in the numerical tests. Comparisons with commonly used finite volume methods and linear and quadratic finite element methods are presented. ExxonMobil Upstream Research Co.

  1. Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation

    Directory of Open Access Journals (Sweden)

    M Pomarède

    2016-09-01

    Full Text Available Numerical simulation of Vortex-Induced-Vibrations (VIV of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].

  2. Fully-depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.; Groom, Donald E.; Palaio, Nick P.; Stover, Richard J.; Wei, Mingzhi

    2002-03-28

    Charge-coupled devices (CCD's) have been fabricated on high-resistivity silicon. The resistivity, on the order of 10,000 {Omega}-cm, allows for depletion depths of several hundred microns. Fully-depleted, back-illuminated operation is achieved by the application of a bias voltage to a ohmic contact on the wafer back side consisting of a thin in-situ doped polycrystalline silicon layer capped by indium tin oxide and silicon dioxide. This thin contact allows for good short wavelength response, while the relatively large depleted thickness results in good near-infrared response.

  3. Local control on precipitation in a fully coupled climate-hydrology model

    DEFF Research Database (Denmark)

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin

    2016-01-01

    simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface......-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact......The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate...

  4. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  5. Ultra-thin fully-depleted SOI MOSFETs: Special charge properties and coupling effects

    Science.gov (United States)

    Eminente, S.; Cristoloveanu, S.; Clerc, R.; Ohata, A.; Ghibaudo, G.

    2007-02-01

    A standard characterization method in fully depleted SOI devices consists in biasing the back interface in the accumulation regime, and measuring the front-channel properties. In ultra thin body device however, it is sometimes no longer possible to achieve such an accumulation regime at the back interface. This unusual effect is investigated by detailed simulations and analytical modelling of the potential and electron/hole concentrations. The enhancement of the interface coupling effect in ultra thin body devices, called super-coupling, can explain previously published experimental data [Pretet J, Ohata A, Dieudonne F, Allibert F, Bresson N, Matsumoto T, et al. Scaling issues for advanced SOI devices: gate oxide tunneling, thin buried oxide, and ultra-thin films. In: 7th International symposium silicon nitride and silicon dioxide thin insulating films, Paris, France, 2003. Electrochemical Society Proceedings, vol. 2003-02, Pennington (USA); 2003. p. 476-87], and reveals new challenges in the characterization of advanced SOI devices.

  6. An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Mark [Department of Engineering, CERN, 1211 Geneva (Switzerland); Davino, Daniele, E-mail: davino@unisannio.it [Department of Engineering, University of Sannio, Benevento (Italy); Giustiniani, Alessandro; Masi, Alessandro [Department of Engineering, CERN, 1211 Geneva (Switzerland)

    2016-04-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  7. submitter An experimental evaluation of the fully coupled hysteretic electro-mechanical behaviour of piezoelectric actuators

    CERN Document Server

    Butcher, Mark; Giustiniani, Alessandro; Masi, Alessandro

    2016-01-01

    Piezoelectrics are the most commonly used of the multifunctional smart materials in industrial applications, because of their relatively low cost and ease of use in electric and electronic oriented applications. Nevertheless, while datasheets usually give just small signal quasi-static parameters, their full potential can only be exploited only if a full characterization is available because the maximum stroke or the higher piezo coupling coefficients are available at different electro-mechanical biases, where often small signal analysis is not valid. In this paper a method to get the quasi-static fully coupled characterization is presented. The method is tested on a commercial piezo actuator but can be extended to similar devices.

  8. Atomic electronic states: the L-S and j-j coupling schemes and their correlation

    CERN Document Server

    Li, Wai-Kee

    2014-01-01

    In the first part of this paper, we review the assumption of the L-S coupling scheme, with which we derive the electronic states arising from a given atomic configuration. Then, with the aid of the spectral data of Group 15 elements, it becomes clear that the assumption of the L-S coupling scheme is no longer valid as we go farther and farther down the Periodic Table. In the second part, we introduce the j-j coupling scheme, which is seldom covered in standard inorganic chemistry texts, and contrast the assumptions of the two schemes. Next, we use two worked examples to demonstrate the derivation of electronic states with the j-j coupling scheme. Finally, the correlation between the states derived by L-S and j-j schemes is pictorially shown. It is believed a student, by also studying j-j coupling schemes (by no means a difficult task) along with the L-S scheme, will gain a better understanding of the concept of atomic electronic states.

  9. A Cell-Centered Multiphase ALE Scheme With Structural Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Timothy Alan [Univ. of California, Davis, CA (United States)

    2012-04-16

    A novel computational scheme has been developed for simulating compressible multiphase flows interacting with solid structures. The multiphase fluid is computed using a Godunov-type finite-volume method. This has been extended to allow computations on moving meshes using a direct arbitrary-Eulerian- Lagrangian (ALE) scheme. The method has been implemented within a Lagrangian hydrocode, which allows modeling the interaction with Lagrangian structural regions. Although the above scheme is general enough for use on many applications, the ultimate goal of the research is the simulation of heterogeneous energetic material, such as explosives or propellants. The method is powerful enough for application to all stages of the problem, including the initial burning of the material, the propagation of blast waves, and interaction with surrounding structures. The method has been tested on a number of canonical multiphase tests as well as fluid-structure interaction problems.

  10. A Well-Balanced and Fully Coupled Noncapacity Model for Dam-Break Flooding

    Directory of Open Access Journals (Sweden)

    Zhiyuan Yue

    2015-01-01

    Full Text Available The last two decades have seen great progress in mathematical modeling of fluvial processes and flooding in terms of either approximation of the physical processes or dealing with the numerical difficulties. Yet attention to simultaneously taking advancements of both aspects is rarely paid. Here a well-balanced and fully coupled noncapacity model is presented of dam-break flooding over erodible beds. The governing equations are based on the complete mass and momentum conservation laws, implying fully coupled interactions between the dam-break flow and sediment transport. A well-balanced Godunov-type finite volume method is used to solve the governing equations, facilitating satisfactory representation of the complex flow phenomena. The well-balanced property is attained by using the divergence form of matrix related to the static force for the bottom slope source term. Existing classical tests, including idealized dam-break flooding over irregular topography and experimental dam-break flooding with/without sediment transport, are numerically simulated, showing a satisfactory quantitative performance of this model.

  11. Study of gap conductance model for thermo mechanical fully coupled finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Cha; Yang, Yong Sik; Kim, Dae Ho; Bang, Je Geon; Kim, Sun Ki; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    accurately, gap conductance model for thermomechanical fully coupled FE should be developed. However, gap conductance in FE can be difficult issue in terms of convergence because all elements which are positioned in gap have different gap conductance at each iteration step. It is clear that our code should have gap conductance model for thermo-mechanical fully coupled FE in three-dimension. In this paper, gap conductance model for thermomechanical coupled FE has been built using commercial FE code to understand gap conductance model in FE. We coded commercial FE code using APDL because it does not have iterative gap conductance model. Through model, convergence parameter and characteristics were studied.

  12. A Difference Scheme for the Coupled KdV Equation 14

    Institute of Scientific and Technical Information of China (English)

    ShaohongZHU

    1999-01-01

    In this paper,a difference scheme for the periodic initial-boundary problem of the coupled KdV equation is given.The scheme keeps the first two conserved quantities which the differential equation possesses.The catch-ran iterative method is used to solve the difference equations.The numerical simulation exhibits the existence of two-soliton solutions.

  13. Fully-coupled hydrologic/geomechanical simulations of slope failure in a prototypical steep mountain catchment

    Science.gov (United States)

    White, J. A.; Borja, R. I.; Ebel, B. A.; Loague, K.

    2009-12-01

    This work presents a physics-based framework for continuum modeling of hydrologically-driven slope failure. The analyses employ a mixed finite element formulation for variably-saturated geomaterials undergoing elastoplastic deformations. The deforming soil mass is treated as a multiphase continuum, and the governing mass and momentum balance equations are solved in a fully-coupled manner. This tight coupling is necessary to capture key features of slope behavior. To test the coupled formulation, we present a three-dimensional slope analysis motivated by a 1996 landslide that occurred at a steep experimental catchment (CB1) near Coos Bay, Oregon. Simulations are used to quantify the rainfall-induced slope deformation and assess the failure potential. Results of parametric studies suggest that for a steep hillslope underlain by bedrock, similar to the CB1 site, failure would occur by a multiple slide block mechanism, with progressive failure surfaces forming at the bedrock interface and propagating to the surface. Extensive field observations and experimental measurements made at the CB1 site provide a rich data set to calibrate and evaluate the proposed numerical model. We take the opportunity, however, to point out those features of the model that are not well-constrained by available field data, but which may play an important role in determing the timing and location of failure. These observations are used to assess the current state of predictive capability of the slope simulations, and to inform the design of future field experiments.

  14. Parallel Interleaved VSCs: Influence of the PWM Scheme on the Design of the Coupled Inductor

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Maheshwari, Ram Krishan;

    2014-01-01

    -linkage in the CI is presented in this paper. The maximum flux density and the core losses, being the most important parameters for the CI design, are evaluated for continuous PWM and discontinuous pulsewidth modulation (DPWM) schemes. The effect of these PWM schemes on the design of the CI is discussed....... To limit the circulating current, magnetic coupling between the interleaved legs of the corresponding phase is provided by means of a Coupled Inductor (CI). The design of the CI is strongly influenced by the Pulsewidth Modulation (PWM) scheme used. The analytical model to evaluate the flux...

  15. Stable explicit coupling of the Yee scheme with a linear current model in fluctuating magnetized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Filipe da, E-mail: tanatos@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Pinto, Martin Campos, E-mail: campos@ann.jussieu.fr [CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); Després, Bruno, E-mail: despres@ann.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); Heuraux, Stéphane, E-mail: stephane.heuraux@univ-lorraine.fr [Institut Jean Lamour, UMR 7198, CNRS – University Lorraine, Vandoeuvre (France)

    2015-08-15

    This work analyzes the stability of the Yee scheme for non-stationary Maxwell's equations coupled with a linear current model with density fluctuations. We show that the usual procedure may yield unstable scheme for physical situations that correspond to strongly magnetized plasmas in X-mode (TE) polarization. We propose to use first order clustered discretization of the vectorial product that gives back a stable coupling. We validate the schemes on some test cases representative of direct numerical simulations of X-mode in a magnetic fusion plasma including turbulence.

  16. A fully-coupled geomechanics and flow model for hydraulic fracturing and reservoir engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Charoenwongsa, S.; Kazemi, H.; Miskimins, J.; Fakcharoenphol [Colorado School of Mines, Golden, CO (United States)

    2010-07-01

    A fully coupled geomechanics flow model was used to assess how the changes in pore pressure and temperature influence rock stresses in tight gas reservoirs. The finite difference method was used to develop simulations for phases, components, and thermal stresses. A wave component was used to model the propagation of the strain displacement front as well as changes in stress with time. Fluid and heat flow volumes were modelled separately from rock formation properties. The influence of hydraulic fracturing on stress distributions surrounding the fracture was investigated as well as the effect of filter cake and filtrate. Results of the study showed that significant changes in shear stresses near hydraulic fractures occur as a result of hydraulic fracture face displacement perpendicular to the fracture face. While temperature effects also caused changes in stress distributions, changes in pore pressure did not significantly impact shear stresses as the filtrate did not travel very far into the reservoir. 17 refs., 17 figs.

  17. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  18. A fully-coupled fluid-structure interaction simulation of cerebral aneurysms

    Science.gov (United States)

    Bazilevs, Y.; Hsu, M.-C.; Zhang, Y.; Wang, W.; Liang, X.; Kvamsdal, T.; Brekken, R.; Isaksen, J. G.

    2009-10-01

    This paper presents a computational vascular fluid-structure interaction (FSI) methodology and its application to patient-specific aneurysm models of the middle cerebral artery bifurcation. A fully coupled fluid-structural simulation approach is reviewed, and main aspects of mesh generation in support of patient-specific vascular FSI analyses are presented. Quantities of hemodynamic interest such as wall shear stress and wall tension are studied to examine the relevance of FSI modeling as compared to the rigid arterial wall assumption. We demonstrate the importance of including the flexible wall modeling in vascular blood flow simulations by performing a comparison study that involves four patient-specific models of cerebral aneurysms varying in shape and size.

  19. Averaging for a Fully-Coupled Piecewise Deterministic Markov Process in Infinite Dimension

    CERN Document Server

    Genadot, Alexandre

    2011-01-01

    In this paper, we consider the generalized Hodgkin-Huxley model introduced by Austin in \\cite{Austin}. This model describes the propagation of an action potential along the axon of a neuron at the scale of ion channels. Mathematically, this model is a fully-coupled Piecewise Deterministic Markov Process (PDMP) in infinite dimension. We introduce two time scales in this model in considering that some ion channels open and close at faster jump rates than others. We perform a slow-fast analysis of this model and prove that asymptotically this two time scales model reduces to the so called averaged model which is still a PDMP in infinite dimension for which we provide effective evolution equations and jump rates.

  20. Coupling Schemes for an n su(2) Spin System

    Science.gov (United States)

    Yamamura, M.; Providencia, C.; Providencia, J. D.; Tsue, Y.; Providencia, J. D., Jr.

    2004-12-01

    In the framework of the Schwinger boson representation for the su(2)-algebra, the closed form is derived for the total spin eigenstates which result from the coupling of n su(2)-spins. In order to demonstrate its usefulness, the orthogonal set for the so(5)-algebra, which is reduced to four su(2)-spin systems, is obtained.

  1. Scalar coupling evolution in a non-perturbative QCD resummation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J.D., E-mail: jgomez@ufabc.edu.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica, UNESP, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070, São Paulo, SP (Brazil)

    2015-07-30

    We compute the Standard Model scalar coupling (λ) evolution in a particular QCD resummation scheme, where the QCD coupling becomes infrared finite due to the presence of a dynamically generated gluon mass, leading to the existence of a non-perturbative infrared fixed point. We discuss how this scheme can be fixed taking recourse to phenomenological considerations in the infrared region. The QCD β function associated to this non-perturbative coupling when introduced into the SM renormalization group equations increases the λ values at high energies.

  2. A fully-coupled atmosphere-ocean-wave model of the Caspian Sea

    Science.gov (United States)

    Bruneau, Nicolas; Toumi, Ralf

    2016-11-01

    Located in the mid-latitudes, the Caspian Sea is the largest enclosed basin in the world. A fully-coupled atmosphere-ocean-wave model of the Caspian Sea at high resolution (8 km) for a period of three years is presented. After validating each component of the modelling platform, the wave state of the Caspian Sea is studied. Results show very different wave regimes between the three different basins, a strong seasonality and an almost swell-free state. It is shown here that waves modify the horizontal eddy viscosity and vertical heat diffusion. However, due to a reasonably weak annual wave state, these effects are restricted to the upper-ocean layer (cooling of the SST accompanied with a deepening of the MLD is modelled during autumn and winter. The results also show a significant improvement of the model skill in the representation of the dynamics when ROMS is coupled to WRF. Finally, as ocean surface waves imply feedback at the interface atmosphere-ocean through the transfer of momentum, mass and heat, we investigate their potential effects on the Caspian Sea dynamics. Results are mixed and show a reasonably weak impact of wave-induced processes. While waves have a negligible effect during the winter as wave-induced mixing is confined to the MLD, the summer global SST are less accurately modelled due to the enhancement of mixing in shallow MLDs. However the SST bias, temperature at a subsurface location are improved.

  3. ANTHEPROT 2.0: a three-dimensional module fully coupled with protein sequence analysis methods.

    Science.gov (United States)

    Geourjon, C; Deléage, G

    1995-06-01

    ANTHEPROT is a fully interactive graphics program devoted to the analysis of the sequences and structures of proteins. This program, originally developed to facilitate the protein sequence analysis coupled with multiple alignments and predicted secondary structures of proteins, now comprises a powerful 3D module to display and handle macromolecular structures. All the methods that were previously integrated into ANTHEPROT are now directly coupled with a 3D window that provides the user all the classic features of a molecular modeling package. Indeed, it allows real-time rotation and translation of 3D structures with many kinds of models in depth-cueing mode (space filling, backbone, wire models, main chain, and ribbons), selections (atom type, residue type, segments, and chain), color-coding systems (amino acid properties, predicted or observed secondary structures, temperature B factor, and subunits), geometric calculations (Ramachandran plot, distances, and angles), and fitting molecules. Stereo views are possible as well as HPGL standard files. A module specifically devoted to the determination of 3D structures using nuclear magnetic resonance is also available. This major release of our program for IBM rs6000 workstations is available by anonymous ftp to ibcp.fr for academic institutions.

  4. A Low Phase Noise Fully Monolithic 6 GHz Differential Coupled NMOS LC-VCO

    Science.gov (United States)

    Moalla, Dorra Mellouli; Cordeau, David; Mnif, Hassene; Paillot, Jean-Marie; Loulou, Mourad

    2016-01-01

    A fully monolithic 6 GHz low-phase noise Voltage-Controlled-Oscillator (VCO) is presented in this paper. It consists in two LC-NMOS differential VCOs coupled through a resistive network and is implemented on a 0.25 µm BiCMOS SiGe process. This proposed integrated VCO can be used also for phased-array applications to steer the beam over the entire spatial range. In this case, the radiation pattern of the phased antenna array is steered in a particular direction by establishing a constant phase progression in the oscillator chain which can be obtained by detuning the free-running frequencies of the two oscillators in the array. At 2.5 V power supply voltage and a power dissipation of 62.5 mW, the coupled VCO array features a measured worst case phase noise of -102.4 dBc/Hz and -125.64 dBc/Hz at 100 kHz and 1 MHz frequency offset respectively from a 6 GHz carrier. The tuning range is about 400 MHz, from 5.85 to 6.25 GHz, for a tuning voltage varying from 0 to 2.5 V.

  5. Fully Coupled Fluid-Structure Interaction Model Based on Distributed Lagrange Multiplier/Fictitious Domain Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper, with a finite element method, studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations. With this fully coupled model, the rigid structure is taken as "fictitious" fluid with zero strain rate. Both fluid and structure are described by velocity and pressure. The whole domain, including fluid region and structure region, is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh. However, to keep the structure's rigid body shape and behavior, a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method which is originally introduced to solve particulate flow problems by Glowinski et al. For the verification of the model presented herein, a 2D numerical wave tank is established to simulate small amplitude wave propagations, and then numerical results are compared with analytical solutions. Finally, a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity.

  6. Local control on precipitation in a fully coupled climate-hydrology model.

    Science.gov (United States)

    Larsen, Morten A D; Christensen, Jens H; Drews, Martin; Butts, Michael B; Refsgaard, Jens C

    2016-03-10

    The ability to simulate regional precipitation realistically by climate models is essential to understand and adapt to climate change. Due to the complexity of associated processes, particularly at unresolved temporal and spatial scales this continues to be a major challenge. As a result, climate simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface, plant cover and the atmosphere, enables a realistic representation of local precipitation. Substantial improvements in simulated precipitation dynamics on seasonal and longer time scales is seen for a simulation period of six years and can be attributed to a more complete treatment of hydrological sub-surface processes including groundwater and moisture feedback. A high degree of local influence on the atmosphere suggests that coupled climate-hydrology models have a potential for improving climate projections and the results further indicate a diminished need for bias correction in climate-hydrology impact studies.

  7. Multidimensional fully-coupled thermal/chemical/mechanical response of reactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.; Baer, M.R.

    1995-11-01

    A summary of multidimensional modeling is presented which describes coupled thermals chemical and mechanical response of reactive and nonreactive materials. This modeling addresses cookoff of energetic material (EM) prior to the onset of ignition. Cookoff, lasting from seconds to days, sensitizes the EM whereupon combustion of confined, degraded material determines the level of violence. Such processes are dynamic, occurring over time scales of millisecond to microsecond, and thus more amenable for shock physics analysis. This work provides preignition state estimates such as the amount of decomposition, morphological changes, and quasistatic stress states for subsequent dynamic analysis. To demonstrate a fully-coupled thermal/chemical/quasistatic mechanical capability, several example simulations have been performed: (1) the one-dimensional time-to-explosion experiments, (2) the Naval Air Weapon Center`s (NAWC) small scale cookoff bomb, (3) a small hot cell experiment and (4) a rigid, highly porous, closed-cell polyurethane foam. Predictions compared adequately to available data. Deficiencies in the model and future directions are discussed.

  8. Minimal coupling schemes in N-body reaction theory

    Energy Technology Data Exchange (ETDEWEB)

    Picklesimer, A.; Tandy, P.C.; Thaler, R.M.

    1982-08-01

    A new derivation of the N-body equations of Bencze, Redish, and Sloan is obtained through the use of Watson-type multiple scattering techniques. The derivation establishes an intimate connection between these partition-labeled N-body equations and the particle-labeled Rosenberg equations. This result yields new insight into the implicit role of channel coupling in, and the minimal dimensionality of, the partition-labeled equations.

  9. Fully coupled heat conduction and deformation analyses of visco-elastic solids

    KAUST Repository

    Khan, Kamran

    2012-04-21

    Visco-elastic materials are known for their capability of dissipating energy. This energy is converted into heat and thus changes the temperature of the materials. In addition to the dissipation effect, an external thermal stimulus can also alter the temperature in a viscoelastic body. The rate of stress relaxation (or the rate of creep) and the mechanical and physical properties of visco-elastic materials, such as polymers, vary with temperature. This study aims at understanding the effect of coupling between the thermal and mechanical response that is attributed to the dissipation of energy, heat conduction, and temperature-dependent material parameters on the overall response of visco-elastic solids. The non-linearly viscoelastic constitutive model proposed by Schapery (Further development of a thermodynamic constitutive theory: stress formulation, 1969,Mech. Time-Depend. Mater. 1:209-240, 1997) is used and modified to incorporate temperature- and stress-dependent material properties. This study also formulates a non-linear energy equation along with a dissipation function based on the Gibbs potential of Schapery (Mech. Time-Depend. Mater. 1:209-240, 1997). A numerical algorithm is formulated for analyzing a fully coupled thermo-visco-elastic response and implemented it in a general finite-element (FE) code. The non-linear stress- and temperature-dependent material parameters are found to have significant effects on the coupled thermo-visco-elastic response of polymers considered in this study. In order to obtain a realistic temperature field within the polymer visco-elastic bodies undergoing a non-uniform heat generation, the role of heat conduction cannot be ignored. © Springer Science+Business Media, B. V. 2012.

  10. Modeling of Calcite Precipitation Driven by Bacteria-facilitated Urea Hydrolysis in A Flow Column Using A Fully Coupled, Fully Implicit Parallel Reactive Transport Simulator

    Science.gov (United States)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.

    2009-12-01

    One approach for immobilizing subsurface metal contaminants involves stimulating the in situ production of mineral phases that sequester or isolate contaminants. One example is using calcium carbonate to immobilize strontium. The success of such approaches depends on understanding how various processes of flow, transport, reaction and resulting porosity-permeability change couple in subsurface systems. Reactive transport models are often used for such purpose. Current subsurface reactive transport simulators typically involve a de-coupled solution approach, such as operator-splitting, that solves the transport equations for components and batch chemistry sequentially, which has limited applicability for many biogeochemical processes with fast kinetics and strong medium property-reaction interactions. A massively parallel, fully coupled, fully implicit reactive transport simulator has been developed based on a parallel multi-physics object oriented software environment computing framework (MOOSE) developed at the Idaho National Laboratory. Within this simulator, the system of transport and reaction equations is solved simultaneously in a fully coupled manner using the Jacobian Free Newton-Krylov (JFNK) method with preconditioning. The simulator was applied to model reactive transport in a one-dimensional column where conditions that favor calcium carbonate precipitation are generated by urea hydrolysis that is catalyzed by urease enzyme. Simulation results are compared to both laboratory column experiments and those obtained using the reactive transport simulator STOMP in terms of: the spatial and temporal distributions of precipitates and reaction rates and other major species in the reaction system; the changes in porosity and permeability; and the computing efficiency based on wall clock simulation time.

  11. Analysis of Seismicity Risk Increase Triggered by Longtan Reservoir, China, Using a Fully Coupled Poroelastic Model

    Science.gov (United States)

    Deng, K.; Zhang, S.; Guo, Y.; Zhou, S.; Liu, Y.

    2015-12-01

    Impoundment of reservoirs can lead to increase in crustal pore pressure and Coulomb stress, and promotes nearby faults to fail. Abnormal seismicity increase around reservoir is often thought to be triggered by the water impounded behind the dam. In this study, we analyze the impact of Longtan reservoir in Guangxi province, southwest China, on local seismicity, which has increased significantly since the initial impoundment in October, 2006. Most of the earthquakes cluster around the reservoir according to local seismic network and CEA reports, and the greatest earthquake is of magnitude 4.2. We introduce an improved Bayesian method to show that the temporal variation of b-value is inversely correlated with the seasonal fluctuation of reservoir water level. Upon extracting background seismicity using the Epidemic Type Aftershock Sequence (ETAS) model, we show that background seismicity variation is highly related to the filling rate and volume We further investigate the mechanism of seismicity increase and reservoir impoundment by performing a fully coupled 3-D poroelastic model with the reservoir loading history as a dynamic boundary condition. An optimally oriented fault plane is chosen according to the regional stress field and GPS deformation data when calculating the induced Coulomb stress. Our results demonstrate that most earthquakes occurred within positive Coulomb stress regime, and the seismicity rate is highly related to the rate of pore pressure increase. In the next step we plan to apply the coupled poroelastic model to understand hydraulic fracturing induced earthquakes in shale gas exploration, such as the recent Fox Creek event cluster, in the western Canada sedimentary basin.

  12. Simulation of coupled flow and mechanical deformation using IMplicit Pressure-Displacement Explicit Saturation (IMPDES) scheme

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    The problem of coupled structural deformation with two-phase flow in porous media is solved numerically using cellcentered finite difference (CCFD) method. In order to solve the system of governed partial differential equations, the implicit pressure explicit saturation (IMPES) scheme that governs flow equations is combined with the the implicit displacement scheme. The combined scheme may be called IMplicit Pressure-Displacement Explicit Saturation (IMPDES). The pressure distribution for each cell along the entire domain is given by the implicit difference equation. Also, the deformation equations are discretized implicitly. Using the obtained pressure, velocity is evaluated explicitly, while, using the upwind scheme, the saturation is obtained explicitly. Moreover, the stability analysis of the present scheme has been introduced and the stability condition is determined.

  13. Fast modulation scheme for a two laterally coupled laser diode array

    Energy Technology Data Exchange (ETDEWEB)

    Carpintero, G.; Lamela, H.; Leones, M.; Simmendinger, C.; Hess, O.

    2001-06-25

    The present letter reports a modulation scheme that takes advantage of the unique characteristics of a two laterally coupled laser diode (also known as twin stripe array) to overcome the limit on the modulation imposed by the laser{close_quote}s relaxation oscillation frequency. Through the use of the rate equation description of the device we uncover the device dynamics behind the modulation scheme generating 35 ps (full width at half maximum) laser pulses at 8 Gb/s modulation rate. Our scheme relies on the fast dynamics of the phase difference, controlled by means of the current injection on each stripe. {copyright} 2001 American Institute of Physics.

  14. Modeling of Magnetoelastic Nanostructures with a Fully-coupled Mechanical-Micromagnetic Model and Its Applications

    Science.gov (United States)

    Liang, Cheng-Yen

    Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. In this dissertation, a fully-coupled finite element micromagnetic method is developed. The method deals with the micromagnetics, elastodynamics, and piezoelectric effects. The dynamics of magnetization, non-uniform strain distribution, and electric fields are iteratively solved. This more sophisticated modeling technique is critical for guiding the design process of the nanoscale strain-mediated multiferroic elements such as those needed in multiferroic systems. In this dissertation, we will study magnetic property changes (e.g., hysteresis, coercive field, and spin states) due to strain effects in nanostructures. in addition, a multiferroic memory device is studied. The electric-field-driven magnetization switching by applying voltage on patterned electrodes simulation in a nickel memory device is shown in this work. The deterministic control law for the magnetization switching in a nanoring with electric field applied to the patterned electrodes is investigated. Using the patterned electrodes, we show that strain-induced anisotropy is able to be controlled, which changes the magnetization deterministically in a nano-ring.

  15. Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans

    CERN Document Server

    Way, M J; Kelley, M; Aleinov, I; Clune, T

    2015-01-01

    Rotation in planetary atmospheres plays an important role in regulating atmospheric and oceanic heat flow, cloud formation and precipitation. Using the Goddard Institute for Space Studies (GISS) three dimension General Circulation Model (3D-GCM) we investigate how the effects of varying rotation rate and increasing the incident stellar flux on a planet set bounds on a planet's habitable zone with its parent star. From ensemble climate simulations we identify which factors are the primary controllers of uncertainty in setting these bounds. This is shown in particular for fully coupled ocean (FCO) runs -- some of the first that have been utilized in this context. Results with a Slab Ocean (SO) of 100m mixed layer depth are compared with a similar study by Yang et al. 2014, which demonstrates consistency across models. However, there are clear differences for rotations rates of 1-16x present Earth sidereal day lengths between the 100m SO and FCO models, which points to the necessity of using FCOs whenever possib...

  16. A novel approach to computational homogenization and its application to fully coupled two-scale thermomechanics

    Science.gov (United States)

    Fleischhauer, Robert; Božić, Marko; Kaliske, Michael

    2016-11-01

    The paper introduces a novel approach to computational homogenization by bridging the scales from microscale to macroscale. Whenever the microstructure is in an equilibrium state, the macrostructure needs to be in equilibrium, too. The novel approach is based on the concept of representative volume elements, stating that an assemblage of representative elements should be able to resemble the macrostructure. The resulting key assumption is the continuity of the appropriate kinematic fields across both scales. This assumption motivates the following idea. In contrast to existing approaches, where mostly constitutive quantities are homogenized, the balance equations, that drive the considered field quantities, are homogenized. The approach is applied to the fully coupled partial differential equations of thermomechanics solved by the finite element (FE) method. A novel consistent finite homogenization element is given with respect to discretized residual formulations and linearization terms. The presented FE has no restrictions regarding the thermomechanical constitutive laws that are characterizing the microstructure. A first verification of the presented approach is carried out against semi-analytical and reference solutions within the range of one-dimensional small strain thermoelasticity. Further verification is obtained by a comparison to the classical FE^2 method and its different types of boundary conditions within a finite deformation setting of purely mechanical problems. Furthermore, the efficiency of the novel approach is investigated and compared. Finally, structural examples are shown in order to demonstrate the applicability of the presented homogenization framework in case of finite thermo-inelasticity at different length scales.

  17. A Fully-Coupled, Fully-Implicit, Finite Element Model for Solving Multiphase Fluid Flow, Heat Transport and Rock Deformation in Enhanced Geothermal Systems

    Science.gov (United States)

    Lu, C.; Deng, S.; Podgorney, R. K.; Huang, H.

    2011-12-01

    Reliable reservoir performance predictions of enhanced geothermal reservoir systems require accurate and robust modeling for the coupled thermal-hydrological-mechanical processes. Conventionally, in order to reduce computational cost, these types of problems are solved using operator splitting method, usually by sequentially coupling a subsurface flow and heat transport simulator with a solid mechanics simulator via input files. However, such operator splitting approaches are applicable only to loosely coupled problems and usually converge slowly. As in most enhanced geothermal systems (EGS), fluid flow, heat transport, and rock deformation are typically strongly nonlinearly coupled, an alternative is to solve the system of nonlinear partial differential equations that govern the system simultaneously using a fully coupled solution procedure for fluid flow, heat transport, and solid mechanics. This procedure solves for all solution variables (fluid pressure, temperature and rock displacement fields) simultaneously, which leads to one large nonlinear algebraic system that needs to be solved by a strongly convergent nonlinear solver. Development over the past 10 years in the area of physics-based conditioning, strongly convergent nonlinear solvers (such as Jacobian Free Newton methods) and efficient linear solvers (such as GMRES, AMG), makes such an approach competitive. In this presentation, we will introduce a continuum-scaled parallel physics-based, fully coupled, modeling tool for predicting the dynamics of fracture initiation and propagation, fluid flow, rock deformation, and heat transport in a single integrated code named FALCON (Fracturing And Liquid-steam CONvection). FALCON is built upon a parallel computing framework developed at Idaho National Laboratory (INL) for solving coupled systems of nonlinear equations with finite element method with unstructured and adaptively refined/coarsened grids. Currently, FALCON contains poro- and thermal- elastic models

  18. Reconstruction of the Eemian climate using a fully coupled Earth system model

    Science.gov (United States)

    Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Huybrechts, Philippe

    2017-04-01

    Climate of the Last Interglacial (LIG) between ca. 130 and 115 kyr BP is thought to be a good analogue for future climate warming. Though the driving mechanisms of the past and current climate evolution differ, analysis of the LIG climate may provide important insights for projections of future environmental changes. We do not know properly what was spatial distribution and magnitude of surface air temperature and precipitation anomalies with respect to present. Sparse proxy data are attributed mostly to the continental margins, internal areas of ice sheets and particular regions of the World Ocean. Combining mathematical modeling and indirect evidence can help to identify driving mechanisms and feed-backs which formed climatic conditions of the LIG. In order to reproduce the LIG climate, we carried out transient numerical experiments using a fully coupled Earth System Model (ESM) consisting of an AO GCM, which includes decription of the biosphere, atmospheric and oceanic chemistry ets. (INMCM), developed in the Institute of Numerical Mathematics (Moscow, Russia) and the models of Greenland and Antarctic ice sheets (GrISM and AISM, Vrije Uninersiteit Brussel, Belgium). Though the newest version of the INMCM has rather high spatial resolution, it canot be used in long transient numerical experimemts because of high computational demand. Coupling of the GrISM and AISM to the low resolution version of the INMCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmosphere and the ocean components of the ESM (spatial resolution 5˚×4˚, 21 vertical layers in the atmospheric block, 2.5°×2°, 6 min. temporal resolution; 33 vertical layers in the oceanic block; 20×20 km, 51 vertical layers and 1 yr temporal resolution in the GrISM and AISM). We apply two different coupling strategies. AISM is incorporated into the ESM via using procedures of resampling and interpolation of the input fields of annually averaged air surface

  19. Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values.

    Science.gov (United States)

    Schober, Christoph; Reuter, Karsten; Oberhofer, Harald

    2016-02-07

    We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or "flavors" of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer), we find that our new scheme gives improved electronic couplings for HAB7 (-6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (-15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.

  20. Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values

    Energy Technology Data Exchange (ETDEWEB)

    Schober, Christoph; Reuter, Karsten; Oberhofer, Harald, E-mail: harald.oberhofer@ch.tum.de [Chair for Theoretical Chemistry, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching (Germany)

    2016-02-07

    We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or “flavors” of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer), we find that our new scheme gives improved electronic couplings for HAB7 (−6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (−15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.

  1. A new scheme for the running coupling constant in gauge theories using Wilson loops

    Energy Technology Data Exchange (ETDEWEB)

    Kurachi, Masafumi [Los Alamos National Laboratory; Bilgici, Erek [AUSTRIA; Flachi, Antonion [KYOTO UNIV; Itou, Etsuko [KOGAKUIN UNIV; David Lin, C J [NATIONAL CHIAO-TUNG UNIV; Matsufuru, Hideo [KEK; Ohki, Hiroshi [KYOTO UNIV; Onogi, Tetsuya [KYOTO UNIV; Yamazaki, Takeshi [UNIV OF TSUKUBA

    2009-01-01

    We propose a new renormalization scheme of the running coupling constant in general gauge theories defined by using the Wilson loops. The renormalized coupling constant is obtained from the Cretz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter calculation is performed by adopting the zeta-function resummation techniques. We make a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with relatively small number of gauge configurations.

  2. Demonstration of fully coupled simplified extended station black-out accident simulation with RELAP-7

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Anders, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC) system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.

  3. Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory

    Science.gov (United States)

    Cao, Wenke; Deng, Jingen; Yu, Baohua; Liu, Wei; Tan, Qiang

    2017-03-01

    Drilling-induced tensile fractures are usually caused when the weight of mud is too high, and the effective tangential stress becomes tensile. It is thus hard to explain why tensile fractures are distributed along the lower part of a hole in an offshore exploration well when the mud weight is low. According to analysis, the reason could be the thermal effect, which cannot be ignored because of the drilling fluid and the cooling action of sea water during circulation. A heat transfer model is set up to obtain the temperature distribution of the wellbore and its formation by the finite difference method. Then, fully coupled poro-thermo-elastic theory is used to study the pore pressure and effective stress around the wellbore. By comparing it with both poroelastic and elastic models, it is indicated that the poroelastic effect is dominant at the beginning of circulation and inhibits tensile fractures from forming; then, the thermal effect becomes more important and decreases the effective tangential stress with the passing of time, so the drilling fluid and the cooling effect of sea water can cause tensile fractures to happen. Meanwhile, tensile fractures are shallow and not likely to lead to mud leakage with lower mud weight, which agrees with the actual drilling process. On the other hand, the fluid cooling effect could increase the strength of the rock and reduce the likelihood of shear failure, which would be beneficial for wellbore stability. So, the thermal effect cannot be neglected in offshore wellbore stability analysis, and mud weight and borehole exposure time should be controlled in the case of mud loss.

  4. The fragment spin difference scheme for triplet-triplet energy transfer coupling.

    Science.gov (United States)

    You, Zhi-Qiang; Hsu, Chao-Ping

    2010-08-21

    To calculate the electronic couplings in both inter- and intramolecular triplet energy transfer (TET), we have developed the "fragment spin difference" (FSD) scheme. The FSD was a generalization from the "fragment charge difference" (FCD) method of Voityuk et al. [J. Chem. Phys. 117, 5607 (2002)] for electron transfer (ET) coupling. In FSD, the spin population difference was used in place of the charge difference in FCD. FSD is derived from the eigenstate energies and populations, and therefore the FSD couplings contain all contributions in the Hamiltonian as well as the potential overlap effect. In the present work, two series of molecules, all-trans-polyene oligomers and polycyclic aromatic hydrocarbons, were tested for intermolecular TET study. The TET coupling results are largely similar to those from the previously developed direct coupling scheme, with FSD being easier and more flexible in use. On the other hand, the Dexter's exchange integral value, a quantity that is often used as an approximate for the TET coupling, varies in a large range as compared to the corresponding TET coupling. To test the FSD for intramolecular TET, we have calculated the TET couplings between zinc(II)-porphyrin and free-base porphyrin separated by different numbers of p-phenyleneethynylene bridge units. Our estimated rate constants are consistent with experimentally measured TET rates. The FSD method can be used for both intermolecular and intramolecular TET, regardless of their symmetry. This general applicability is an improvement over most existing methodologies.

  5. The fragment spin difference scheme for triplet-triplet energy transfer coupling

    Science.gov (United States)

    You, Zhi-Qiang; Hsu, Chao-Ping

    2010-08-01

    To calculate the electronic couplings in both inter- and intramolecular triplet energy transfer (TET), we have developed the "fragment spin difference" (FSD) scheme. The FSD was a generalization from the "fragment charge difference" (FCD) method of Voityuk et al. [J. Chem. Phys. 117, 5607 (2002)] for electron transfer (ET) coupling. In FSD, the spin population difference was used in place of the charge difference in FCD. FSD is derived from the eigenstate energies and populations, and therefore the FSD couplings contain all contributions in the Hamiltonian as well as the potential overlap effect. In the present work, two series of molecules, all-trans-polyene oligomers and polycyclic aromatic hydrocarbons, were tested for intermolecular TET study. The TET coupling results are largely similar to those from the previously developed direct coupling scheme, with FSD being easier and more flexible in use. On the other hand, the Dexter's exchange integral value, a quantity that is often used as an approximate for the TET coupling, varies in a large range as compared to the corresponding TET coupling. To test the FSD for intramolecular TET, we have calculated the TET couplings between zinc(II)-porphyrin and free-base porphyrin separated by different numbers of p-phenyleneethynylene bridge units. Our estimated rate constants are consistent with experimentally measured TET rates. The FSD method can be used for both intermolecular and intramolecular TET, regardless of their symmetry. This general applicability is an improvement over most existing methodologies.

  6. Feedback control scheme of traffic jams based on the coupled map car-following model

    Science.gov (United States)

    Zhou, Tong; Sun, Di-Hua; Zhao, Min; Li, Hua-Min

    2013-09-01

    Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary condition. The effect of the safe headway on the traffic system is considered. According to the control theory, the condition under which traffic jams can be suppressed is analyzed. The results are compared with the previous results concerning congestion control. The simulations show that the suppression performance of our scheme on traffic jams is better than those of the previous schemes, although all the schemes can suppress traffic jams. The simulation results are consistent with theoretical analyses.

  7. Synchronization of Chaotic Storage-Ring Free-Electron Laser by Bi-Directional Coupling Scheme with the Coupling Strength Varied Periodically

    Institute of Scientific and Technical Information of China (English)

    HUANG Liang-Yu; LUO Xiao-Shu

    2006-01-01

    @@ We analyse the chaotic dynamics of storage-ring free-electron lasers and report a bi-directional coupled scheme with the coupling strength varied periodically to synchronize two chaotic storage-ring free-electron lasers.

  8. A new coupled computational method in conjunction with three-dimensional finite volume schemes for nonlinear coupled constitutive relations

    CERN Document Server

    Jiang, Zhongzheng; Zhao, Wenwen

    2016-01-01

    Non-equilibrium effects play a vital role in high-speed and rarefied gas flows and the accurate simulation of these flow regimes are far beyond the capability of near-local-equilibrium Navier-Stokes-Fourier equations. Eu proposed generalized hydrodynamic equations which are consistent with the laws of irreversible thermodynamics to solve this problem. Based on Eu's generalized hydrodynamics equations, a computational model, namely the nonlinear coupled constitutive relations(NCCR),was developed by R.S.Myong and applied successfully to one-dimensional shock wave structure and two-dimensional rarefied flows. In this paper, finite volume schemes, including LU-SGS time advance scheme, MUSCL interpolation and AUSMPW+ scheme, are fistly adopted to investigate NCCR model's validity and potential in three-dimensional complex hypersonic rarefied gas flows. Moreover, in order to solve the computational stability problems in 3D complex flows,a modified solution is developed for the NCCR model. Finally, the modified solu...

  9. Report Viewgraphs for IC Project: Fully-coupled climate simulations with an eddy-permitting ocean component

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, Carmela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    Two sets of simulations were performed within this allocation: 1) a 12-year fully-coupled experiment in pre-industrial conditions, using the CICE4 version of the sea-ice model; 2) a set of multi-decadal ocean-ice-only experiments, forced with CORE-I atmospheric fields and using the CICE5 version of the sea-ice model.

  10. Perturbative running of the twisted Yang-Mills coupling in the gradient flow scheme

    CERN Document Server

    Bribian, Eduardo I

    2016-01-01

    We report on our ongoing computation of the perturbative running of the Yang-Mills coupling using gradient flow techniques. In particular, we use the gradient flow method with twisted boundary conditions to perform a perturbative expansion of the expectation value of the Yang-Mills energy density up to fourth order in the coupling at finite flow time. We regularise the resulting integrals using dimensional regularisation, and reproduce the universal coefficient of the 1/{\\epsilon} term in the relation between bare and renormalised couplings. The computation of the finite part leading to a determination of the {\\Lambda} parameter in this scheme is underway.

  11. A family of compact high order coupled time-space unconditionally stable vertical advection schemes

    Science.gov (United States)

    Lemarié, Florian; Debreu, Laurent

    2016-04-01

    Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost.

  12. The DSUBm approximation scheme for the coupled cluster method and applications to quantum magnets

    Directory of Open Access Journals (Sweden)

    R.F. Bishop

    2009-01-01

    Full Text Available A new approximate scheme, DSUBm, is described for the coupled cluster method. We apply it to two well-studied (spin-1/2 Heisenberg antiferromagnet spin-lattice models, namely: the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each case for the ground-state energy, the sublattice magnetization and the quantum critical point. They are in good agreement with those from such alternative methods as spin-wave theory, series expansions, exact diagonalization techniques, quantum Monte Carlo methods and those from the CCM using the LSUBm scheme.

  13. A Self-synchronizing Stream Encryption Scheme Based on One-Dimensional Coupled Map Lattices

    Institute of Scientific and Technical Information of China (English)

    MA Hui; ZHU Kai-En; CHEN Tian-Lun

    2007-01-01

    We present a self-synchronizing stream encryption scheme based on one-dimensional coupled map lattices which is introduced as a model with the essential features of spatiotemporal chaos,and of great complexity and diffusion capability of the little disturbance in the initial condition.To evaluate the scheme,a series of statistical tests are employed,and the results show good random-look nature of the ciphertext.Furthermore,we apply our algorithm to encrypt a grey-scale image to show the key sensitivity.

  14. Non-conforming curved finite element schemes for time-dependent elastic-acoustic coupled problems

    Science.gov (United States)

    Rodríguez-Rozas, Ángel; Diaz, Julien

    2016-01-01

    High-order numerical methods for solving time-dependent acoustic-elastic coupled problems are introduced. These methods, based on Finite Element techniques, allow for a flexible coupling between the fluid and the solid domain by using non-conforming meshes and curved elements. Since characteristic waves travel at different speeds through different media, specific levels of granularity for the mesh discretization are required on each domain, making impractical a possible conforming coupling in between. Advantageously, physical domains may be independently discretized in our framework due to the non-conforming feature. Consequently, an important increase in computational efficiency may be achieved compared to other implementations based on conforming techniques, namely by reducing the total number of degrees of freedom. Differently from other non-conforming approaches proposed so far, our technique is relatively simpler and requires only a geometrical adjustment at the coupling interface at a preprocessing stage, so that no extra computations are necessary during the time evolution of the simulation. On the other hand, as an advantage of using curvilinear elements, the geometry of the coupling interface between the two media of interest is faithfully represented up to the order of the scheme used. In other words, higher order schemes are in consonance with higher order approximations of the geometry. Concerning the time discretization, we analyze both explicit and implicit schemes. These schemes are energy conserving and, for the explicit case, the stability is guaranteed by a CFL condition. In order to illustrate the accuracy and convergence of these methods, a set of representative numerical tests are presented.

  15. A stable scheme for computation of coupled transport and equilibrium equations in tokamaks

    Science.gov (United States)

    Fable, E.; Angioni, C.; Ivanov, A. A.; Lackner, K.; Maj, O.; Yu, S.; Medvedev; Pautasso, G.; Pereverzev, G. V.

    2013-03-01

    The coupled system consisting of 1D radial transport equations and the quasi-static 2D magnetic equilibrium equation for axisymmetric systems (tokamaks) is known to be prone to numerical instabilities, either due to propagation of numerical errors in the iteration process, or due to the choice of the numerical scheme itself. In this paper, a possible origin of these instabilities, specifically associated with the latter condition, is discussed and an approach is chosen, which is shown to have good accuracy and stability properties. This scheme is proposed to be used within those codes for which the poloidal flux ψ is the quantity solved for in the current diffusion equation. Mathematical arguments are used to study the convergence properties of the proposed scheme.

  16. A Coupled Computational Scheme on Thermal and Phase Structures of Subducting Slabs

    Institute of Scientific and Technical Information of China (English)

    JING Zhi-Cheng; MNG Jie-Yuan

    2001-01-01

    The thermodynamic processes undergone by olivine, the chief mineral of subducting slabs, are important in studying the mechanisms of deep-focus earthquakes and the interaction between slabs and the surrounding mantle. We propose a modified coupling scheme to calculate the thermal and phase structures of slabs, which presents a high computational' accuracy at an accessible CPU expense. Using the new code of computation, we have calculated the thermal and phase structures of the Kurile subduction zone.

  17. Well-Posedness of a fully coupled thermo-chemo-poroelastic system with applications to petroleum rock mechanics

    OpenAIRE

    Tetyana Malysheva; White, Luther W.

    2017-01-01

    We consider a system of fully coupled parabolic and elliptic equations constituting the general model of chemical thermo-poroelasticity for a fluid-saturated porous media. The main result of this paper is the developed well-posedness theory for the corresponding initial-boundary problem arising from petroleum rock mechanics applications. Using the proposed pseudo-decoupling method, we establish, subject to some natural assumptions imposed on matrices of diffusion coeff...

  18. Fully coupled CEM/CFD modelling of microwave heating in a porous medium

    OpenAIRE

    2002-01-01

    Computational results for the microwave heating of a porous material are presented in this paper. Coupled finite difference time domain and finite volume methods are used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. These equations are nonlinearly coupled through the dielectric properties which depend both on temperature and moisture content. By investigating the resonant behaviour in two-dimensional microwave cavities, the FD-TD schem...

  19. REACTIVE TRANSPORT MODELING USING A PARALLEL FULLY-COUPLED SIMULATOR BASED ON PRECONDITIONED JACOBIAN-FREE NEWTON-KRYLOV

    Energy Technology Data Exchange (ETDEWEB)

    Luanjing Guo; Chuan Lu; Hai Huang; Derek R. Gaston

    2012-06-01

    Systems of multicomponent reactive transport in porous media that are large, highly nonlinear, and tightly coupled due to complex nonlinear reactions and strong solution-media interactions are often described by a system of coupled nonlinear partial differential algebraic equations (PDAEs). A preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach is applied to solve the PDAEs in a fully coupled, fully implicit manner. The advantage of the JFNK method is that it avoids explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations for computational efficiency considerations. This solution approach is also enhanced by physics-based blocking preconditioning and multigrid algorithm for efficient inversion of preconditioners. Based on the solution approach, we have developed a reactive transport simulator named RAT. Numerical results are presented to demonstrate the efficiency and massive scalability of the simulator for reactive transport problems involving strong solution-mineral interactions and fast kinetics. It has been applied to study the highly nonlinearly coupled reactive transport system of a promising in situ environmental remediation that involves urea hydrolysis and calcium carbonate precipitation.

  20. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    Science.gov (United States)

    Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.

    2017-09-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.

  1. Current steering detection scheme of three terminal antenna-coupled terahertz field effect transistor detectors.

    Science.gov (United States)

    Földesy, Péter

    2013-08-01

    An antenna-coupled field effect transistor (FET) as a plasma wave terahertz detector is used with the current steering to record separately the gate-source and gate-drain photoresponses and their phase sensitive combination. This method is based on the observation that the plasmon-terminal coupling is cut off in saturation, resulting in only one-sided sensitivity. A polarimetric example is presented with intensity and polarization angle reconstruction using a single three-terminal antenna-coupled Si-metal-oxide semiconductor FET (MOSFET). The technique is applicable to various detection schemes and technologies (high electron mobility transistors and GaAs-, GaN-, and Si-MOSFETs), and other application possibilities are discussed.

  2. Fully reconfigurable coupled ring resonator-based bandpass filter for microwave signal processing

    NARCIS (Netherlands)

    Taddei, Caterina; Zhuang, L.; Hoekman, M.; Leinse, Arne; Oldenbeuving, Ruud; van Dijk, Paul; Roeloffzen, C.G.H.

    2014-01-01

    We propose and demonstrate an integrated coupled resonator optical waveguide (CROW)-based bandpass filter in TriPleX™ technology for microwave photonic signal processing. The system principle allows the selection of a channel in a dense-frequency-division subcarrier satellite communication system.

  3. Coupling WRF with LEAFHYDRO: introducing groundwater and a fully dynamic water table in regional climate simulations

    Science.gov (United States)

    Martínez de La Torre, A.; Rios Entenza, A.; Gestal Souto, L.; Miguez Macho, G.

    2010-09-01

    Here we present a soil-vegetation-hydrology model, LEAFHYDRO coupled with the WRF model. LEAFHYDRO includes a groundwater parameterization with a dynamic water table and river routing and it can be run at a finer resolution than the atmosphere within WRF. Offline multiyear simulations over the Iberian Peninsula at 2.5 km resolution with the LEAFHYDRO model with and without groundwater indicate that introducing the water table parameterization has a significant impact on soil moisture amounts, soil moisture persistence and evapotranspiration fluxes. This is particularly true over the semiarid flat plateaus of the Iberian interior, where the atmospheric source of precipitation is scarce and the water table is naturally shallow due to slow drainage and lateral flow convergence from the surrounding mountains. Climatic simulations with the coupled WRF-HYDRO system suggest that the memory induced in the soil by the water table significantly impact the simulated precipitation, especially in the spring, when the land-surface atmospheric coupling is strong and rainfall amounts have their annual peak inland Iberia.

  4. A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network

    Science.gov (United States)

    Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien

    2017-01-01

    With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing. PMID:28322262

  5. A Nanotechnology-Ready Computing Scheme based on a Weakly Coupled Oscillator Network

    Science.gov (United States)

    Vodenicarevic, Damir; Locatelli, Nicolas; Abreu Araujo, Flavio; Grollier, Julie; Querlioz, Damien

    2017-03-01

    With conventional transistor technologies reaching their limits, alternative computing schemes based on novel technologies are currently gaining considerable interest. Notably, promising computing approaches have proposed to leverage the complex dynamics emerging in networks of coupled oscillators based on nanotechnologies. The physical implementation of such architectures remains a true challenge, however, as most proposed ideas are not robust to nanotechnology devices’ non-idealities. In this work, we propose and investigate the implementation of an oscillator-based architecture, which can be used to carry out pattern recognition tasks, and which is tailored to the specificities of nanotechnologies. This scheme relies on a weak coupling between oscillators, and does not require a fine tuning of the coupling values. After evaluating its reliability under the severe constraints associated to nanotechnologies, we explore the scalability of such an architecture, suggesting its potential to realize pattern recognition tasks using limited resources. We show that it is robust to issues like noise, variability and oscillator non-linearity. Defining network optimization design rules, we show that nano-oscillator networks could be used for efficient cognitive processing.

  6. The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Chow, F K; Kollet, S J

    2007-02-02

    This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can represent spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-hour period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.

  7. The impact on climate of groundwater induced soil moisture memory : a study with a fully coupled WRF-LEAFHYDRO system

    Science.gov (United States)

    Miguez-Macho, Gonzalo; Gómez, Breogán; Martínez-de la Torre, Alberto

    2014-05-01

    Groundwater dynamics and its interactions with the land-atmosphere system are increasingly being taking into consideration in climate and ecosystem modeling studies. A shallow water table slows down drainage and affects soil moisture and potentially evapotranspiration (ET) and climate, particularly in water-limited environments. Our area of interest, the Iberian Peninsula, with a typical Mediterranean climate of dry growing season, is one of such regions where ET is largely constrained by water availability. We investigate how the induced memory on soil moisture by groundwater affects spring precipitation and summer temperatures there using a fully coupled WRF-LEAFHYDRO system. The LEAFHYDRO Land Surface Model includes groundwater dynamics with a realistic water table validated with hundreds of observations over Spain and Portugal. We perform two sets of long-term offline simulations, with and without groundwater forced by ERA-Interim and detailed precipitation analyses for the Iberian Peninsula. The corresponding fully coupled simulations with the Weather Research and Forecasting model (WRF), using exactly the same grid, take initial conditions from the off-line simulations at the end of the winter and are run for spring and summer, when we expect the impact of ET on climate to be largest. After a dry winter, in the run with groundwater soils are considerably wetter in regions with shallow water table and WRF results indicate that during spring the impact on precipitation can be sizeable when synoptic conditions are favorable for convection. Increased ET in the summer due also to more moisture availability in the run with groundwater leads in general to cooler temperatures. These preliminary results highlight the important role of groundwater on climate and the advantages of a fully coupled hydrology-atmospheric modeling system.

  8. A convergent scheme for a non-local coupled system modelling dislocations densities dynamics

    Science.gov (United States)

    Hajj, A. El; Forcadel, N.

    2008-06-01

    In this paper, we study a non-local coupled system that arises in the theory of dislocations densities dynamics. Within the framework of viscosity solutions, we prove a long time existence and uniqueness result for the solution of this model. We also propose a convergent numerical scheme and we prove a Crandall-Lions type error estimate between the continuous solution and the numerical one. As far as we know, this is the first error estimate of Crandall-Lions type for Hamilton-Jacobi systems. We also provide some numerical simulations.

  9. A Theoretical Scheme for Entanglement Transfer under Intensity-Dependent Couplings

    Institute of Scientific and Technical Information of China (English)

    XIONG Heng-Na; GUO Hong

    2007-01-01

    We consider a theoretical scheme for entanglement transfer between a two-mode squeezed vacuum field and two initially separable atoms through intensity-dependent couplings. We find that the entanglement transfer between the field and the atoms has an exact period for any given squeezing. We also find that the maximum achievable entanglement of the atomic subsystem is a simple increasing function of r. For sufficiently large squeezing parameter r, it is possible for the atoms to be entangled into a Bell state at half the periodic time points.

  10. A maximum principle for optimal control problem of fully coupled forward-backward stochastic systems with partial information

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion.It is required that all admissible control processes are adapted to a given subfiltration of the filtration generated by the underlying Brownian motion.For this type of partial information control,one sufficient(a verification theorem) and one necessary conditions of optimality are proved.The control domain need to be convex and the forward diffusion coefficient of the system can contain the control variable.

  11. A maximum principle for optimal control problem of fully coupled forward-backward stochastic systems with partial information

    Institute of Scientific and Technical Information of China (English)

    MENG QingXin

    2009-01-01

    The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion. It is required that all admissible control processes are adapted to a given subfiltration of the filtration generated by the underlying Brownian motion. For this type of partial information control, one sufficient (a verification theorem) and one necessary conditions of optimality are proved. The control domain need to be convex and the forward diffusion coefficient of the system can contain the control variable.

  12. Report Viewgraphs for IC project: Fully-coupled climate simulations with an eddy-permitting ocean component

    Energy Technology Data Exchange (ETDEWEB)

    Veneziani, Carmela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    Two sets of simulations were performed within this allocation: 1) a 12-year fully-coupled experiment in preindustrial conditions, using the CICE4 version of the sea-ice model; 2) a set of multi-decadal ocean-ice-only experiments, forced with CORE-I atmospheric fields and using the CICE5 version of the sea-ice model. Results from simulation 1) are presented in Figures 1-3, and specific results from a simulation in 2) with tracer releases are presented in Figure 4.

  13. Fully coupled heat conduction and deformation analyses of nonlinear viscoelastic composites

    KAUST Repository

    Khan, Kamran

    2012-05-01

    This study presents an integrated micromechanical model-finite element framework for analyzing coupled heat conduction and deformations of particle-reinforced composite structures. A simplified micromechanical model consisting of four sub-cells, i.e., one particle and three matrix sub-cells is formulated to obtain the effective thermomechanical properties and micro-macro field variables due to coupled heat conduction and nonlinear thermoviscoelastic deformation of a particulate composite that takes into account the dissipation of energy from the viscoelastic constituents. A time integration algorithm for simultaneously solving the equations that govern heat conduction and thermoviscoelastic deformations of isotropic homogeneous materials is developed. The algorithm is then integrated to the proposed micromechanical model. A significant temperature generation due to the dissipation effect in the viscoelastic matrix was observed when the composite body is subjected to cyclic mechanical loadings. Heat conduction due to the dissipation of the energy cannot be ignored in predicting the factual temperature and deformation fields within the composite structure, subjected to cyclic loading for a long period. A higher creep resistant matrix material or adding elastic particles can lower the temperature generation. Our analyses suggest that using particulate composites and functionally graded materials can reduce the heat generation due to energy dissipation. © 2012 Elsevier Ltd.

  14. Fully Coupled Simulation of the Plasma Liquid Interface and Interfacial Coefficient Effects

    CERN Document Server

    Lindsay, Alexander; Shannon, Steven

    2016-01-01

    There is a growing interest in the study of coupled plasma-liquid systems because of their applications to biomedicine, biological and chemical disinfection, agriculture, and other areas. Without an understanding of the near-surface gas dynamics, modellers are left to make assumptions about the interfacial conditions. For instance it is commonly assumed that the surface loss or sticking coefficient of gas-phase electrons at the interface is equal to 1. In this work we explore the consequences of this assumption and introduce a couple of ways to think about the electron interfacial condition. In one set of simulations we impose a kinetic condition with varying surface loss coefficient on the gas phase interfacial electrons. In a second set of simulations we introduce a Henry's law like condition at the interface in which the gas-phase electron concentration is assumed to be in thermodynamic equilibrium with the liquid-phase electron concentration. It is shown that for a range of electron Henry coefficients spa...

  15. Variational approach to low-frequency kinetic-MHD in the current coupling scheme

    Science.gov (United States)

    Burby, Joshua W.; Tronci, Cesare

    2017-04-01

    Hybrid kinetic-MHD models describe the interaction of an MHD bulk fluid with an ensemble of hot particles, which obeys a kinetic equation. In this work we apply Hamilton’s variational principle to formulate new current-coupling kinetic-MHD models in the low-frequency approximation (i.e. large Larmor frequency limit). More particularly, we formulate current-coupling schemes, in which energetic particle dynamics are expressed in either guiding center or gyrocenter coordinates. When guiding center theory is used to model the hot particles, we show how energy conservation requires corrections to the standard magnetization term. On the other hand, charge and momentum conservation in gyrokinetic-MHD lead to extra terms in the usual definition of the hot current density as well as modifications to conventional gyrocenter dynamics. All these new features arise naturally from the underlying variational structure of the proposed models.

  16. Variational approach to low-frequency kinetic-MHD in the current coupling scheme

    CERN Document Server

    Burby, J W

    2016-01-01

    Hybrid kinetic-MHD models describe the interaction of an MHD bulk fluid with an ensemble of hot particles, which is described by a kinetic equation. When the Vlasov description is adopted for the energetic particles, different Vlasov-MHD models have been shown to lack an exact energy balance, which was recently recovered by the introduction of non-inertial force terms in the kinetic equation. These force terms arise from fundamental approaches based on Hamiltonian and variational methods. In this work we apply Hamilton's variational principle to formulate new current-coupling kinetic-MHD models in the low-frequency approximation (i.e. large Larmor frequency limit). More particularly, we formulate current-coupling hybrid schemes, in which energetic particle dynamics are expressed in either guiding-center or gyrocenter coordinates.

  17. Variational approach to low-frequency kinetic-MHD in the current-coupling scheme

    Science.gov (United States)

    Tronci, Cesare; Burby, Joshua

    2016-10-01

    Hybrid kinetic-MHD models describe the interaction of an MHD bulk fluid with an ensemble of hot particles, which is described by a kinetic equation. When the Vlasov description is adopted for the energetic particles, different Vlasov-MHD models have been shown to lack an exact energy balance, unless non-inertial force terms are inserted in the kinetic equation. These force terms arise from fundamental approaches based on Hamiltonian and variational methods. In this work we apply Hamilton's variational principle to formulate new current-coupling kinetic-MHD models in the low-frequency approximation (i.e. large Larmor frequency limit). More particularly, we formulate current-coupling hybrid schemes, in which energetic particle dynamics are expressed in either guiding-center or gyrocenter coordinates. Financial support by the Leverhulme Trust Research Project Grant No. 2014-112 is greatly acknowledged.

  18. Fully coupled simulation of the plasma liquid interface and interfacial coefficient effects

    Science.gov (United States)

    Lindsay, Alexander D.; Graves, David B.; Shannon, Steven C.

    2016-06-01

    There is a growing interest in the study of coupled plasma-liquid systems because of their applications to biomedicine, biological and chemical disinfection, agriculture, and other areas. Optimizing these applications requires a fundamental understanding of the coupling between phases. Though much progress has been made in this regard, there is still more to be done. One area that requires more research is the transport of electrons across the plasma-liquid interface. Some pioneering works (Rumbach et al 2015 Nat. Commun. 6, Rumbach et al 2015 J. Phys. D: Appl. Phys. 48 424001) have begun revealing the near-surface liquid characteristics of electrons. However, there has been little work to determine the near-surface gas phase electron characteristics. Without an understanding of the near-surface gas dynamics, modellers are left to make assumptions about the interfacial conditions. For instance it is commonly assumed that the surface loss or sticking coefficient of gas-phase electrons at the interface is equal to 1. In this work we explore the consequences of this assumption and introduce a couple of ways to think about the electron interfacial condition. In one set of simulations we impose a kinetic condition with varying surface loss coefficient on the gas phase interfacial electrons. In a second set of simulations we introduce a Henry’s law like condition at the interface in which the gas-phase electron concentration is assumed to be in thermodynamic equilibrium with the liquid-phase electron concentration. It is shown that for a range of electron Henry coefficients spanning a range of known hydrophilic specie Henry coefficients, the gas phase electron density in the anode can vary by orders of magnitude. Varying reflection of electrons by the interface also has consequences for the electron energy profile; increasing reflection may lead to increasing thermalization of electrons depending on choices about the electron energy boundary condition. This variation

  19. Effective and fully automatic image segmentation using quantum entropy and pulse-coupled neural networks

    Science.gov (United States)

    Du, Songlin; Yan, Yaping; Ma, Yide

    2015-03-01

    A novel image segmentation algorithm which uses quantum entropy and pulse-coupled neural networks (PCNN) is proposed in this paper. Optimal iteration of the PCNN is one of the key factors affecting segmentation accuracy. We borrow quantum entropy from quantum information to act as a criterion in determining optimal iteration of the PCNN. Optimal iteration is captured while total quantum entropy of the segments reaches a maximum. Moreover, compared with other PCNN-employed algorithms, the proposed algorithm works without any manual intervention, because all parameters of the PCNN are set automatically. Experimental results prove that the proposed method can achieve much lower probabilities of error segmentation than other PCNN-based image segmentation algorithms, and this suggests that higher image segmentation quality is achieved by the proposed method.

  20. Numerical simulation of fine blanking process using fully coupled advanced constitutive equations with ductile damage

    Science.gov (United States)

    Labergere, C.; Saanouni, K.; Benafia, S.; Galmiche, J.; Sulaiman, H.

    2013-05-01

    This paper presents the modelling and adaptive numerical simulation of the fine blanking process. Thermodynamically-consistent constitutive equations, strongly coupled with ductile damage, together with specific boundary conditions (particular command of forces on blank holder and counterpunch) are presented. This model is implemented into ABAQUS/EXPLICIT using the Vumat user subroutine and connected with an adaptive 2D remeshing procedure. The different material parameters are identified for the steel S600MC using experimental tensile tests conducted until the final fracture. A parametric study aiming to examine the sensitivity of the process parameters (die radius, clearance die/punch) to the punch force and fracture surfaces topology (convex zone, sheared zone, fracture zone and the burr).

  1. Fully Borylated Methane and Ethane by Ruthenium-Mediated Cleavage and Coupling of CO.

    Science.gov (United States)

    Batsanov, Andrei S; Cabeza, Javier A; Crestani, Marco G; Fructos, Manuel R; García-Álvarez, Pablo; Gille, Marie; Lin, Zhenyang; Marder, Todd B

    2016-04-04

    Many transition-metal complexes and some metal-free compounds are able to bind carbon monoxide, a molecule which has the strongest chemical bond in nature. However, very few of them have been shown to induce the cleavage of its C-O bond and even fewer are those that are able to transform CO into organic reagents with potential in organic synthesis. This work shows that bis(pinacolato)diboron, B2pin2, reacts with ruthenium carbonyl to give metallic complexes containing borylmethylidyne (CBpin) and diborylethyne (pinBC≡CBpin) ligands and also metal-free perborylated C1 and C2 products, such as C(Bpin)4 and C2 (Bpin)6, respectively, which have great potential as building blocks for Suzuki-Miyaura cross-coupling and other reactions. The use of (13)CO-enriched ruthenium carbonyl has demonstrated that the boron-bound carbon atoms of all of these reaction products arise from CO ligands.

  2. Fully-coupled magnetoelastic model for Galfenol alloys incorporating eddy current losses and thermal relaxation

    Science.gov (United States)

    Evans, Phillip G.; Dapino, Marcelo J.

    2008-03-01

    A general framework is developed to model the nonlinear magnetization and strain response of cubic magnetostrictive materials to 3-D dynamic magnetic fields and 3-D stresses. Dynamic eddy current losses and inertial stresses are modeled by coupling Maxwell's equations to Newton's second law through a nonlinear constitutive model. The constitutive model is derived from continuum thermodynamics and incorporates rate-dependent thermal effects. The framework is implemented in 1-D to describe a Tonpilz transducer in both dynamic actuation and sensing modes. The model is shown to qualitatively describe the effect of increase in magnetic hysteresis with increasing frequency, the shearing of the magnetization loops with increasing stress, and the decrease in the magnetostriction with increasing load stiffness.

  3. A coupled well-balanced and random sampling scheme for computing bubble oscillations*

    Directory of Open Access Journals (Sweden)

    Jung Jonathan

    2012-04-01

    Full Text Available We propose a finite volume scheme to study the oscillations of a spherical bubble of gas in a liquid phase. Spherical symmetry implies a geometric source term in the Euler equations. Our scheme satisfies the well-balanced property. It is based on the VFRoe approach. In order to avoid spurious pressure oscillations, the well-balanced approach is coupled with an ALE (Arbitrary Lagrangian Eulerian technique at the interface and a random sampling remap. Nous proposons un schéma de volumes finis pour étudier les oscillations d’une bulle sphérique de gaz dans l’eau. La symétrie sphérique fait apparaitre un terme source géométrique dans les équations d’Euler. Notre schéma est basé sur une approche VFRoe et préserve les états stationnaires. Pour éviter les oscillations de pression, l’approche well-balanced est couplée avec une approche ALE (Arbitrary Lagrangian Eulerian, et une étape de projection basée sur un échantillonage aléatoire.

  4. Robust low-dose dynamic cerebral perfusion CT image restoration via coupled dictionary learning scheme.

    Science.gov (United States)

    Tian, Xiumei; Zeng, Dong; Zhang, Shanli; Huang, Jing; Zhang, Hua; He, Ji; Lu, Lijun; Xi, Weiwen; Ma, Jianhua; Bian, Zhaoying

    2016-11-22

    Dynamic cerebral perfusion x-ray computed tomography (PCT) imaging has been advocated to quantitatively and qualitatively assess hemodynamic parameters in the diagnosis of acute stroke or chronic cerebrovascular diseases. However, the associated radiation dose is a significant concern to patients due to its dynamic scan protocol. To address this issue, in this paper we propose an image restoration method by utilizing coupled dictionary learning (CDL) scheme to yield clinically acceptable PCT images with low-dose data acquisition. Specifically, in the present CDL scheme, the 2D background information from the average of the baseline time frames of low-dose unenhanced CT images and the 3D enhancement information from normal-dose sequential cerebral PCT images are exploited to train the dictionary atoms respectively. After getting the two trained dictionaries, we couple them to represent the desired PCT images as spatio-temporal prior in objective function construction. Finally, the low-dose dynamic cerebral PCT images are restored by using a general DL image processing. To get a robust solution, the objective function is solved by using a modified dictionary learning based image restoration algorithm. The experimental results on clinical data show that the present method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the state-of-the-art methods.

  5. AN H∞ FUZZY TRACKING CONTROL SCHEME FOR AFFINE COUPLED SPATIO-TEMPORAL CHAOS

    Institute of Scientific and Technical Information of China (English)

    Dou Chunxia; Zhang Shuqing

    2005-01-01

    Due to the interactions among coupled spatio-temporal subsystems and the constant bias term of affine chaos, it is difficult to achieve tracking control for the affine coupled spatiotemporal chaos. However, every subsystem of the affine coupled spatio-temporal chaos can be approximated by a set of fuzzy models; every fuzzy model represents a linearized model of the subsystem corresponding to the operating point of the controlled system. Because the consequent parts of the fuzzy models have a constant bias term, it is very difficult to achieve tracking control for the affine system. Based on these fuzzy models, considering the affine constant bias term, an H∞ fuzzy tracking control scheme is proposed. A linear matrix inequality is employed to represent the feedback controller, and parameters of the controller are achieved by convex optimization techniques. The tracking control for the affine coupled spatio-temporal chaos is achieved, and the stability of the system is also guaranteed. The tracking performances are testified by simulation examples.

  6. Integrated hydrometeorological predictions with the fully-coupled WRF-Hydro modeling system in western North America

    Science.gov (United States)

    Gochis, D. J.; Yu, W.

    2013-12-01

    Prediction of heavy rainfall and associated streamflow responses remain as critical hydrometeorological challenges and require improved understanding of the linkages between atmospheric and land surface processes. Streamflow prediction skill is intrinsically liked to quantitative precipitation forecast skill, which emphasizes the need to produce mesoscale predictions of rainfall of high fidelity. However, in many cases land surface parameters can also exert significant control on the runoff response to heavy rainfall and on the formation or localization of heavy rainfall as well. A new generation of integrated atmospheric-hydrologic modeling systems is emerging from different groups around the world to meet the challenge of integrated water cycle predictions. In this talk the community WRF-Hydro modeling system will be presented. After a brief reviewing the architectural features of the WRF-Hydro system short-term forecasting and regional hydroclimate prediction applications of the model from western North America will be presented. In these applications, analyses will present results from observation-validated prediction experiments where atmospheric and terrestrial hydrologic model components are run in both a fully coupled mode and separately without two-way interactions. Emphasis is placed on illustrating an assessment framework using an initial state perturbation methodology to quantify the role of land-atmosphere energy and moisture flux partitioning in controlling precipitation and runoff forecast skill. Issues related to experimental design of fully-coupled model prediction experiments will also be discussed as will issues related to computational performance.

  7. First synchronous realistic simulations of Antarctic and Greenland SMB in a fully coupled climate model

    Science.gov (United States)

    Lenaerts, J.; van Kampenhout, L.; Lipscomb, W. H.; Gettelman, A.; van den Broeke, M.; Sacks, W.; Fyke, J. G.; Vizcaino, M.; Löfverström, M.

    2015-12-01

    Here we use the global, coupled ocean-atmosphere-land Community Earth System Model (CESM) at a 1o degree horizontal resolution to simulate recent past (1850-now) and future (21st century) Greenland and Antarctic ice sheet SMB in tandem. To that end, we have recently improved the representation of firn in CESM. We increased the vertical thickness of snow, which enhances the buffering of meltwater through refreezing, and firn density, to allow for wind-induced snow compaction. Other model improvements focused on atmospheric clouds; the most recent CESM atmosphere model allows for more liquid water in clouds, which increases positive longwave cloud forcing, and has profound and beneficial impact on the ice sheet surface radiation balance. In this contribution, we will show that the above improvements enable a realistic CESM simulation of both Greenland and Antarctic SMB. This allows for analysis of future evolution of ice sheet SMB and the interactions between ice sheets and other components of the climate system.

  8. Fully coupled chemical thermodynamics and geodynamics simulations of melting beneath spreading plates

    Science.gov (United States)

    Tirone, M.

    2006-12-01

    To model deep earth processes a general purpose simulation program has being developed. The program solves the multiphase flow equations (transport equations for: phase abundances, phase velocities, total mass, total energy, chemical components) and thermodynamic Gibbs free energy minimization of a chemical system in space and time. Coupling of these two methods allows determination of the thermophysical properties entering at any time in the dynamic model (this part is almost 'parameter free') as well as predicting mineral compositions and abundances and other physico-chemical properties that can be compared to observations. The most critical factor to obtain realistic results is the accuracy and completeness of the thermodynamic database used in the Gibbs free energy procedure. The second most important factor is proper knowledge of the mantle rheology. This simulation approach is applied here to study the evolution of a ridge system starting from the spreading of continental lithosphere. The scenario is a polybaric dynamic melting where the composition of the residual solid is continuously changing with depth. Melt forms and travels within the same region. The thermodynamic procedure allows to reproduce the correct position of the solidus as a function of composition and to determine the amount of melt and its composition at any pressure and temperature. Some preliminary conclusions from this modeling work are outlined here. (1) When the thermal anomaly reaches the surface in the initial stage of the spreading process the large amount of melt below the surface is rapidly extracted (possible explanation for flood basalts). (2) Melt not formed on the ridge axis accumulates at the base of the lithosphere. (3) Extraction to the surface is not continuous in time and occurs only within approximately 30 Km apart from the ridge axis. Beyond this point, melt follows mantle flow and freezes at the lithosphere/asthenosphere boundary. This conclusion is not very sensitive

  9. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  10. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  11. Fully coupled ice sheet-earth system model: How does the Greenlandic ice sheet interact in a changing climate

    Science.gov (United States)

    Rodehacke, C.; Mikolajewicz, U.; Vizcaino, M.

    2012-04-01

    As ice sheets belong to the slowest climate components, they are usually not interactively coupled in current climate models. Therefore, long-term climate projections are incomplete and only the consideration of ice sheet interactions allows tackling fundamental questions, such as how do ice sheets modify the reaction of the climate systems under a strong CO2 forcing? The earth system model MPI-ESM, with the atmosphere model ECHAM6 and ocean model MPIOM, is coupled to the modified ice sheet model PISM. This ice sheet model, which is developed at the University of Fairbanks, represents the ice sheet of Greenland at a horizontal resolution of 10 km. The coupling is performed by calculating the surface mass balance based on 6-hourly atmospheric data to determine the boundary condition for the ice sheet model. The response of the ice sheet to this forcing, which includes orographic changes and fresh water fluxes, are passed back to the ESM. In contrast to commonly used strategies, we use a mass conserving scheme and do therefore neither apply flux corrections nor utilize anomaly coupling. Under a strong CO2 forcing a disintegrating Greenlandic ice sheet contributes to a rising sea level and has the potential to alter the formation of deep water masses in the adjacent formation sites Labrador Sea and Nordic Seas. We will present results for an idealized forcing with a growing atmospheric CO2 concentration that rises by 1% per year until four-times the pre-industrial level has been reached. We will discuss the reaction of the ice sheet and immediate responses of the ocean to ice loss.

  12. Well-Posedness of a fully coupled thermo-chemo-poroelastic system with applications to petroleum rock mechanics

    Directory of Open Access Journals (Sweden)

    Tetyana Malysheva

    2017-05-01

    Full Text Available We consider a system of fully coupled parabolic and elliptic equations constituting the general model of chemical thermo-poroelasticity for a fluid-saturated porous media. The main result of this paper is the developed well-posedness theory for the corresponding initial-boundary problem arising from petroleum rock mechanics applications. Using the proposed pseudo-decoupling method, we establish, subject to some natural assumptions imposed on matrices of diffusion coefficients, the existence, uniqueness, and continuous dependence on initial and boundary data of a weak solution to the problem. Numerical experiments confirm the applicability of the obtained well-posedness results for thermo-chemo-poroelastic models with real-data parameters.

  13. Efficient fluid transport by a bionically inspired micro-flapper: fluidic investigations using fully coupled finite element simulation

    Science.gov (United States)

    Behlert, R.; Schrag, G.; Wachutka, G.

    2017-06-01

    We studied the fluid transport by a bionically inspired micro-flapper fabricated in piezoelectric thin-film technology. The undulatory, wave-like motion of the proposed design is supposed to generate vortex chains in the surrounding fluid resulting in a directed jet stream and, hence, enhanced mass convection and heat transport inside the fluid. Fully-coupled finite element (FE) simulations have been carried out to investigate the fluid transport induced by such an excitation in order to assess the efficiency of the concept. The results show that there is a significant higher net flow for undulation compared to the simple, resonant-like up-and-down motion of the flap, which corroborates the feasibility of the concept.

  14. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    Science.gov (United States)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  15. Transition among synchronous schemes in coupled nonidentical multiple time delay systems

    Energy Technology Data Exchange (ETDEWEB)

    Thang Manh Hoang [Department of Electronics and Informatics, Faculty of Electronics and Telecommunications, Hanoi University of Technology, 1 Dai Co Viet, Hanoi (Viet Nam)], E-mail: hmt@mail.hut.edu.vn

    2009-10-30

    We present the transition among possible synchronous schemes in coupled nonidentical multiple time delay systems, i.e., lag, projective-lag, complete, anticipating and projective-anticipating synchronization. The number of nonlinear transforms in the master's equation can be different from that in slave's, and nonlinear transforms can be in various forms. The driving signal is the sum of nonlinearly transformed components of delayed state variable. Moreover, the equation representing for driving signal is constructed exactly so that the difference between the master's and slave's structures is complemented. The sufficient condition for synchronization is considered by the Krasovskii-Lyapunov theory. The specific examples will demonstrate and verify the effectiveness of the proposed models.

  16. A coupled model tree genetic algorithm scheme for flow and water quality predictions in watersheds

    Science.gov (United States)

    Preis, Ami; Ostfeld, Avi

    2008-02-01

    SummaryThe rapid advance in information processing systems along with the increasing data availability have directed research towards the development of intelligent systems that evolve models of natural phenomena automatically. This is the discipline of data driven modeling which is the study of algorithms that improve automatically through experience. Applications of data driven modeling range from data mining schemes that discover general rules in large data sets, to information filtering systems that automatically learn users' interests. This study presents a data driven modeling algorithm for flow and water quality load predictions in watersheds. The methodology is comprised of a coupled model tree-genetic algorithm scheme. The model tree predicts flow and water quality constituents while the genetic algorithm is employed for calibrating the model tree parameters. The methodology is demonstrated through base runs and sensitivity analysis for daily flow and water quality load predictions on a watershed in northern Israel. The method produced close fits in most cases, but was limited in estimating the peak flows and water quality loads.

  17. Scalar correlator, Higgs decay into quarks, and scheme variations of the QCD coupling

    Energy Technology Data Exchange (ETDEWEB)

    Jamin, Matthias [IFAE, BIST,Campus UAB, 08193 Bellaterra (Barcelona) (Spain); ICREA,Pg. Lluís Companys 23, 08010 Barcelona (Spain); Miravitllas, Ramon [IFAE, BIST,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2016-10-12

    In this work, the perturbative QCD series of the scalar correlation function Ψ(s) is investigated. Besides /rm ImΨ(s), which is relevant for Higgs decay into quarks, two other physical correlators, Ψ{sup ″}(s) and D{sup L}(s), have been employed in QCD applications like quark mass determinations or hadronic τ decays. D{sup L}(s) suffers from large higher-order corrections and, by resorting to the large-β{sub 0} approximation, it is shown that this is related to a spurious renormalon ambiguity at u=1. Hence, this correlator should be avoided in phenomenological analyses. Moreover, it turns out advantageous to express the quark mass factor, introduced to make the scalar current renormalisation group invariant, in terms of the renormalisation invariant quark mass m̂{sub q}. To further study the behaviour of the perturbative expansion, we introduce a QCD coupling α̂{sub s}, whose running is explicitly renormalisation scheme independent. The scheme dependence of α̂{sub s} is parametrised by a single parameter C, being related to transformations of the QCD scale parameter Λ. It is demonstrated that appropriate choices of C lead to a substantial improvement in the behaviour of the perturbative series for Ψ{sup ″}(s) and /rm ImΨ(s).

  18. PSO-tuned PID controller for coupled tank system via priority-based fitness scheme

    Science.gov (United States)

    Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal

    2015-05-01

    The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.

  19. Scalar correlator, Higgs decay into quarks, and scheme variations of the QCD coupling

    CERN Document Server

    Jamin, Matthias

    2016-01-01

    In this work, the perturbative QCD series of the scalar correlation function $\\Psi(s)$ is investigated. Besides ${\\rm Im}\\Psi(s)$, which is relevant for Higgs decay into quarks, two other physical correlators, $\\Psi^{''}(s)$ and $D^L(s)$, have been employed in QCD applications like quark mass determinations or hadronic $\\tau$ decays. $D^L(s)$ suffers from large higher-order corrections and, by resorting to the large-$\\beta_0$ approximation, it is shown that this is related to a spurious renormalon ambiguity at $u=1$. Hence, this correlator should be avoided in phenomenological analyses. Moreover, it turns out advantageous to express the quark mass factor, introduced to make the scalar current renormalisation group invariant, in terms of the renormalisation invariant quark mass $\\widehat m_q$. To further study the behaviour of the perturbative expansion, we introduce a QCD coupling $\\widehat\\alpha_s$, whose running is explicitly renormalisation scheme independent. The scheme dependence of $\\widehat\\alpha_s$ is...

  20. A physically-based and fully coupled model of elasto-plasticity and damage for dynamic failure in ductile metals

    Science.gov (United States)

    Oussouaddi, O.; Campagne, L.; Daridon, L.; Ahzi, S.

    2006-08-01

    It is well established that spall fracture and other rapid failures in ductile materials are often dominated by nucleation and growth of micro-voids. In the present work, a mechanistic model for failure by cumulative nucleation and growth of voids is fully coupled with the thermo-elastoplastic constitutive equations of the Mechanical Threshold Stress (MTS) which is used to model the evolution of the flow stress. The damage modeling includes both ductile and brittle mechanisms. It accounts for the effects of inertia, rate sensitivity, fracture surface energy, and nucleation frequency. The MTS model used for plasticity includes the superposition of different thermal activation barriers for dislocation motion. Results obtained in the case of uncoupled and coupled model of plasticity and damage from the simulations of the planar impact with cylindrical target, are presented and compared with the experimental results for OFHC copper. This comparison shows the model capabilities in predicting the experimentally measured free surface velocity profile as well as the observed spall and other damage patterns in the material under impact loading. These results are obtained using the finite element code Abaqus/Explicit.

  1. Capturing intracellular pH dynamics by coupling its molecular mechanisms within a fully tractable mathematical model.

    Directory of Open Access Journals (Sweden)

    Yann Bouret

    Full Text Available We describe the construction of a fully tractable mathematical model for intracellular pH. This work is based on coupling the kinetic equations depicting the molecular mechanisms for pumps, transporters and chemical reactions, which determine this parameter in eukaryotic cells. Thus, our system also calculates the membrane potential and the cytosolic ionic composition. Such a model required the development of a novel algebraic method that couples differential equations for slow relaxation processes to steady-state equations for fast chemical reactions. Compared to classical heuristic approaches based on fitted curves and ad hoc constants, this yields significant improvements. This model is mathematically self-consistent and allows for the first time to establish analytical solutions for steady-state pH and a reduced differential equation for pH regulation. Because of its modular structure, it can integrate any additional mechanism that will directly or indirectly affect pH. In addition, it provides mathematical clarifications for widely observed biological phenomena such as overshooting in regulatory loops. Finally, instead of including a limited set of experimental results to fit our model, we show examples of numerical calculations that are extremely consistent with the wide body of intracellular pH experimental measurements gathered by different groups in many different cellular systems.

  2. A fully coupled atmosphere-ocean wave modeling system for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms

    Science.gov (United States)

    Katsafados, P.; Papadopoulos, A.; Korres, G.; Varlas, G.

    2016-01-01

    It is commonly accepted that there is a need for a better understanding of the factors that contribute to air-sea interactions and their feedbacks. In this context it is important to develop advanced numerical prediction systems that treat the atmosphere and the ocean as a unified system. The realistic description and understanding of the exchange processes near the ocean surface requires knowledge of the sea state and its evolution. This can be achieved by considering the sea surface and the atmosphere as a continuously cross-talking dynamic system. Following and adapting concepts already developed and implemented in large-scale numerical weather models and in hurricane simulations, this study aims to present the effort towards developing a new, high-resolution, two-way fully coupled atmosphere-ocean wave model in order to support both operational and research activities. A specific issue that is emphasized is the determination and parameterization of the air-sea momentum fluxes in conditions of extremely high and time-varying winds. Software considerations, data exchange as well as computational and scientific performance of the coupled system, the so-called WEW (worketa-wam), are also discussed. In a case study of a high-impact weather and sea-state event, the wind-wave parameterization scheme reduces the resulted wind speed and the significant wave height as a response to the increased aerodynamic drag over rough sea surfaces. Overall, WEW offers a more realistic representation of the momentum exchanges in the ocean wind-wave system and includes the effects of the resolved wave spectrum on the drag coefficient and its feedback on the momentum flux.

  3. A fully coupled Atmosphere–Ocean Wave modeling system (WEW for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms

    Directory of Open Access Journals (Sweden)

    P. Katsafados

    2015-05-01

    Full Text Available It is commonly accepted that there is an urgent need for a better understanding of the factors that contribute to the air–sea interaction processes and their feedbacks. In this sense it is absolutely important to develop advanced numerical prediction systems that treat the atmosphere and the ocean as a unified system. The realistic description and understanding of the exchange processes near the ocean surface, requires the exact knowledge of the sea state and its evolution. This can be achieved by considering the sea surface and the atmosphere as a continuously cross talking dynamic system. Therefore, this study aims to present the effort towards developing a new, high-resolution, two-way fully coupled atmosphere–ocean wave model in order to support operational and research activities. A specific issue that it is emphasized here is the determination and parameterization of the air–sea momentum fluxes under conditions of extremely high and time-varying winds. Software considerations, data exchange as well as computational and scientific performance of the coupled system, so-called WEW, are also discussed throughout this study. In a case study of high-impact weather and sea state event, the wind–wave parameterization scheme reduces the resulted wind speed and the significant wave height as a response to the increased aerodynamic drag over rough sea surfaces. Overall, WEW offers a more realistic representation of the momentum exchanges in the ocean wind–wave system and includes the effects of the resolved wave spectrum on the drag coefficient and its feedback on the momentum flux.

  4. A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media

    Science.gov (United States)

    Wang, Wenqing; Kosakowski, Georg; Kolditz, Olaf

    2009-08-01

    Many applied problems in geoscience require knowledge about complex interactions between multiple physical and chemical processes in the sub-surface. As a direct experimental investigation is often not possible, numerical simulation is a common approach. The numerical analysis of coupled thermo-hydro-mechanical (THM) problems is computationally very expensive, and therefore the applicability of existing codes is still limited to simplified problems. In this paper we present a novel implementation of a parallel finite element method (FEM) for the numerical analysis of coupled THM problems in porous media. The computational task of the FEM is partitioned into sub-tasks by a priori domain decomposition. The sub-tasks are assigned to the CPU nodes concurrently. Parallelization is achieved by simultaneously establishing the sub-domain mesh topology, synchronously assembling linear equation systems in sub-domains and obtaining the overall solution with a sub-domain linear solver (parallel BiCGStab method with Jacobi pre-conditioner). The present parallelization method is implemented in an object-oriented way using MPI for inter-processor communication. The parallel code was successfully tested with a 2-D example from the international DECOVALEX benchmarking project. The achieved speed-up for a 3-D extension of the test example on different computers demonstrates the advantage of the present parallel scheme.

  5. Modified coupled map car-following model and its delayed feedback control scheme

    Institute of Scientific and Technical Information of China (English)

    Ge Hong-Xia

    2011-01-01

    A modified coupled map car-following model is proposed,in which two successive vehicle headways in front of the considering vehicle is incorporated into the optimal velocity function. The steady state under certain conditions is obtained. An error system around the steady state is studied further. Moreover,the condition for the state having no traffic jam is derived. A new control scheme is presented to suppress the traffic jam in the modified coupled map car-following model under the open boundary. A control signal including the velocity differences between the following and the considering vehicles,and between the preceding and the considering vehicles is used. The condition under which the traffic jam can be well suppressed is analysed. The results are compared with that presented by Konishi et al. (the KKH model). The simulation results show that the temporal behaviour obtained in our model is better than that in the KKH model. The simulation results are in good agreement with the theoretical analysis.

  6. Modified coupled map car-following model and its delayed feedback control scheme

    Science.gov (United States)

    Ge, Hong-Xia

    2011-09-01

    A modified coupled map car-following model is proposed, in which two successive vehicle headways in front of the considering vehicle is incorporated into the optimal velocity function. The steady state under certain conditions is obtained. An error system around the steady state is studied further. Moreover, the condition for the state having no traffic jam is derived. A new control scheme is presented to suppress the traffic jam in the modified coupled map car-following model under the open boundary. A control signal including the velocity differences between the following and the considering vehicles, and between the preceding and the considering vehicles is used. The condition under which the traffic jam can be well suppressed is analysed. The results are compared with that presented by Konishi et al. (the KKH model). The simulation results show that the temporal behaviour obtained in our model is better than that in the KKH model. The simulation results are in good agreement with the theoretical analysis.

  7. Land-atmosphere interactions in an high resolution atmospheric simulation coupled with a surface data assimilation scheme

    Directory of Open Access Journals (Sweden)

    L. Campo

    2009-09-01

    Full Text Available A valid tool for the retrieving of the turbulent fluxes that characterize the surface energy budget is constituted by the remote sensing of land surface states. In this study sequences of satellite-derived observations (from SEVIRI sensors aboard the Meteosat Second Generation of Land Surface Temperature have been used as input in a data assimilation scheme in order to retrieve parameters that describe energy balance at the ground surface in the Tuscany region, in central Italy, during summer 2005. A parsimonious 1-D multiscale variational assimilation procedure has been followed, that requires also near surface meteorological observations. A simplified model of the surface energy balance that includes such assimilation scheme has been coupled with the limited area atmospheric model RAMS, in order to improve in the latter the accuracy of the energy budget at the surface. The coupling has been realized replacing the assimilation scheme products, in terms of surface turbulent fluxes and temperature and humidity states during the meteorological simulation. Comparisons between meteorological model results with and without coupling with the assimilation scheme are discussed, both in terms of reconstruction of surface variables and of vertical characterization of the lower atmosphere. In particular, the effects of the coupling on the moisture feedback between surface and atmosphere are considered and estimates of the precipitation recycling ratio are provided. The results of the coupling experiment showed improvements in the reconstruction of the surface states by the atmospheric model and considerable influence on the atmospheric dynamics.

  8. A Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme with Voxel-Level Parallelization for Cone-Beam CT Reconstruction.

    Science.gov (United States)

    Park, Hyeong-Gyu; Shin, Yeong-Gil; Lee, Ho

    2015-12-01

    A ray-driven backprojector is based on ray-tracing, which computes the length of the intersection between the ray paths and each voxel to be reconstructed. To reduce the computational burden caused by these exhaustive intersection tests, we propose a fully graphics processing unit (GPU)-based ray-driven backprojector in conjunction with a ray-culling scheme that enables straightforward parallelization without compromising the high computing performance of a GPU. The purpose of the ray-culling scheme is to reduce the number of ray-voxel intersection tests by excluding rays irrelevant to a specific voxel computation. This rejection step is based on an axis-aligned bounding box (AABB) enclosing a region of voxel projection, where eight vertices of each voxel are projected onto the detector plane. The range of the rectangular-shaped AABB is determined by min/max operations on the coordinates in the region. Using the indices of pixels inside the AABB, the rays passing through the voxel can be identified and the voxel is weighted as the length of intersection between the voxel and the ray. This procedure makes it possible to reflect voxel-level parallelization, allowing an independent calculation at each voxel, which is feasible for a GPU implementation. To eliminate redundant calculations during ray-culling, a shared-memory optimization is applied to exploit the GPU memory hierarchy. In experimental results using real measurement data with phantoms, the proposed GPU-based ray-culling scheme reconstructed a volume of resolution 28032803176 in 77 seconds from 680 projections of resolution 10243768 , which is 26 times and 7.5 times faster than standard CPU-based and GPU-based ray-driven backprojectors, respectively. Qualitative and quantitative analyses showed that the ray-driven backprojector provides high-quality reconstruction images when compared with those generated by the Feldkamp-Davis-Kress algorithm using a pixel-driven backprojector, with an average of 2.5 times

  9. Ductile Tearing of Thin Aluminum Plates Under Blast Loading. Predictions with Fully Coupled Models and Biaxial Material Response Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gullerud, Arne S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haulenbeek, Kimberly K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reu, Phillip L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The work presented in this report concerns the response and failure of thin 2024- T3 aluminum alloy circular plates to a blast load produced by the detonation of a nearby spherical charge. The plates were fully clamped around the circumference and the explosive charge was located centrally with respect to the plate. The principal objective was to conduct a numerical model validation study by comparing the results of predictions to experimental measurements of plate deformation and failure for charges with masses in the vicinity of the threshold between no tearing and tearing of the plates. Stereo digital image correlation data was acquired for all tests to measure the deflection and strains in the plates. The size of the virtual strain gage in the measurements, however, was relatively large, so the strain measurements have to be interpreted accordingly as lower bounds of the actual strains in the plate and of the severity of the strain gradients. A fully coupled interaction model between the blast and the deflection of the structure was considered. The results of the validation exercise indicated that the model predicted the deflection of the plates reasonably accurately as well as the distribution of strain on the plate. The estimation of the threshold charge based on a critical value of equivalent plastic strain measured in a bulge test, however, was not accurate. This in spite of efforts to determine the failure strain of the aluminum sheet under biaxial stress conditions. Further work is needed to be able to predict plate tearing with some degree of confidence. Given the current technology, at least one test under the actual blast conditions where the plate tears is needed to calibrate the value of equivalent plastic strain when failure occurs in the numerical model. Once that has been determined, the question of the explosive mass value at the threshold could be addressed with more confidence.

  10. Modeling greenhouse gas emissions and nutrient transport in managed arable soils with a fully coupled hydrology-biogeochemical modeling system

    Science.gov (United States)

    Haas, Edwin; Klatt, Steffen; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Breuer, Lutz

    2015-04-01

    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in various virtual landscapes / catchment to demonstrate the capabilities of the modelling system. The modelling system was applied to simulate water and nutrient transport at the at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the

  11. Development of a compositional model fully coupled with geomechanics and its application to tight oil reservoir simulation

    Science.gov (United States)

    Xiong, Yi

    Tight oil reservoirs have received great attention in recent years as unconventional and promising petroleum resources; they are reshaping the U.S. crude oil market due to their substantial production. However, fluid flow behaviors in tight oil reservoirs are not well studied or understood due to the complexities in the physics involved. Specific characteristics of tight oil reservoirs, such as nano-pore scale and strong stress-dependency result in complex porous medium fluid flow behaviors. Recent field observations and laboratory experiments indicate that large effects of pore confinement and rock compaction have non-negligible impacts on the production performance of tight oil reservoirs. On the other hand, there are approximations or limitations for modeling tight oil reservoirs under the effects of pore confinement and rock compaction with current reservoir simulation techniques. Thus this dissertation aims to develop a compositional model coupled with geomechanics with capabilities to model and understand the complex fluid flow behaviors of multiphase, multi-component fluids in tight oil reservoirs. MSFLOW_COM (Multiphase Subsurface FLOW COMpositional model) has been developed with the capability to model the effects of pore confinement and rock compaction for multiphase fluid flow in tight oil reservoirs. The pore confinement effect is represented by the effect of capillary pressure on vapor-liquid equilibrium (VLE), and modeled with the VLE calculation method in MSFLOW_COM. The fully coupled geomechanical model is developed from the linear elastic theory for a poro-elastic system and formulated in terms of the mean stress. Rock compaction is then described using stress-dependent rock properties, especially stress-dependent permeability. Thus MSFLOW_COM has the capabilities to model the complex fluid flow behaviors of tight oil reservoirs, fully coupled with geomechanics. In addition, MSFLOW_COM is validated against laboratory experimental data, analytical

  12. Climate and Habitability of Kepler 452b Simulated with a Fully Coupled Atmosphere–Ocean General Circulation Model

    Science.gov (United States)

    Hu, Yongyun; Wang, Yuwei; Liu, Yonggang; Yang, Jun

    2017-01-01

    The discovery of Kepler 452b is a milestone in searching for habitable exoplanets. While it has been suggested that Kepler 452b is the first Earth-like exoplanet discovered in the habitable zone of a Sun-like star, its climate states and habitability require quantitative studies. Here, we first use a three-dimensional fully coupled atmosphere–ocean climate model to study the climate and habitability of an exoplanet around a Sun-like star. Our simulations show that Kepler 452b is habitable if CO2 concentrations in its atmosphere are comparable or lower than that in the present-day Earth atmosphere. However, our simulations also suggest that Kepler 452b can become too hot to be habitable if there is the lack of silicate weathering to limit CO2 concentrations in the atmosphere. We also address whether Kepler 452b could retain its water inventory after 6.0 billion years of lifetime. These results in the present Letter will provide insights about climate and habitability for other undiscovered exoplanets similar to Kepler 452b, which may be observable by future observational missions.

  13. A battery model that fully couples mechanics and electrochemistry at both particle and electrode levels by incorporation of particle interaction

    Science.gov (United States)

    Wu, Bin; Lu, Wei

    2017-08-01

    This paper develops a multi-scale mechanical-electrochemical model which enables fully coupled mechanics and electrochemistry at both particle and electrode levels. At the particle level, solid diffusion is modeled using a generalized chemical potential to capture the effects of mechanical stress and phase transformation. At the electrode level, the stress arising from particle interaction is incorporated in a continuum model. This particle interaction stress is in addition to the traditional concept of intercalation stress inside isolated particles. The particle and continuum electrode levels are linked by the particle interaction stress as loads on the particle surface, and by consideration of stress on the electrochemical reaction rate on the particle surface. The effect of mechanical stress on electrochemical reaction results in a stress-dependent over-potential between particle and electrolyte. Stress gradient in an electrode leads to inhomogeneous intercalation/deintercalation currents for particles depending on their interaction stress with neighbors, resulting in stress gradient induced inhomogeneous state of charge. Conversely, non-uniform intercalation/deintercalation currents in an electrode lead to stress between particles. With this model we have an important finding: an electrochemically inactive region in an electrode causes stress built-up. This model provides a powerful tool to address various problems such as fracture in-between particles.

  14. Towards a Fully Distributed Characterization of Water Residence and Transit Time by Coupled Hydrology-Transport Modeling

    Science.gov (United States)

    Remondi, F.; Fatichi, S.; Burlando, P.

    2015-12-01

    Water residence and transit time are crucial elements in flow pathways and catchment response characterization. The temporal distribution of catchment transit times has been generally studied and modelled with lumped parameter approaches. However, understanding the dominant controls in a more holistic manner requires attention to the spatially distributed catchment properties also in relation to their control on the basin response to different type of precipitation events. A tool that looks both at the time and space distribution of water residence and transport can be useful for predicting water and solute fluxes and ultimately for better understanding the dependence of catchment transit and residence times on geomorphological and climatic factors. To this purpose we couple a fully distributed, yet essential, process-based watershed model with a component to simulate solute transport. Key features of the developed tool include: (a) reduced complexity spatially-distributed hydrological model; (b) spatially-distributed water age and conservative tracer concentration; (c) possibility to explicitly compute transit time distributions for different precipitation events and locations. The presented framework is tested on the Plynlimon watershed (UK), where long-term records of hydrological variables are available. Among them, discharge and chloride concentration are used to investigate the model behavior. We present the integrated model concept, the underlying methodologies, the results from the case study application, as well as preliminary virtual experiments that allow exploring the full statistical space of travel and residence times.

  15. A fully coupled bolus-esophageal-gastric model for esophageal emptying based on the immersed boundary method

    Science.gov (United States)

    Kou, Wenjun; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2016-11-01

    In this work, we develop a fully coupled bolus-esophageal-gastric model to study esophageal emptying based on the immersed boundary method. The model includes an esophageal segment, an ellipsoid-shaped stomach, and a bolus. It can easily handle the passive and active function of the lower esophageal sphincter (LES). Two groups of case studies are presented. The first group is about the influence from tissue anisotropy. Simulation shows that the weaker (or more compliant) part suffers from a higher wall shear stress and higher pressure load when the bolus is filled in and emptied from the LES segment. This implies a degradation cycle in which a weaker tissue becomes much weaker due to an increased load, a possible pathway to the esophageal lower diverticulum. The second group is about bulge formation resulting from asymmetric anatomy and a compliant LES. In particular, we find a right bulge tends to develop for a compliant LES. The bulge is most pronounced with a highest stiffness of the gastric wall. This implies that the competition between the LES stiffness and gastric wall stiffness might be another factor related to the esophageal lower diverticulum. The support of Grant R01 DK56033 and R01 DK079902 from NIH is gratefully acknowledged.

  16. Uncertainty Propagation and Quantification using Constrained Coupled Adaptive Forward-Inverse Schemes: Theory and Applications

    Science.gov (United States)

    Ryerson, F. J.; Ezzedine, S. M.; Antoun, T.

    2013-12-01

    equation for the distribution of k is solved, provided that Cauchy data are appropriately assigned. In the next stage, only a limited number of passive measurements are provided. In this case, the forward and inverse PDEs are solved simultaneously. This is accomplished by adding regularization terms and filtering the pressure gradients in the inverse problem. Both the forward and the inverse problem are either simultaneously or sequentially coupled and solved using implicit schemes, adaptive mesh refinement, Galerkin finite elements. The final case arises when P, k, and Q data only exist at producing wells. This exceedingly ill posed problem calls for additional constraints on the forward-inverse coupling to insure that the production rates are satisfied at the desired locations. Results from all three cases are presented demonstrating stability and accuracy of the proposed approach and, more importantly, providing some insights into the consequences of data under sampling, uncertainty propagation and quantification. We illustrate the advantages of this novel approach over the common UQ forward drivers on several subsurface energy problems in either porous or fractured or/and faulted reservoirs. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system.

    Science.gov (United States)

    Wang, Yueming; Liu, Bin; Lian, Jinling; Liang, Jiuqing

    2012-04-23

    We proposed a scheme for detecting the atom-field coupling constant in the Dicke superradiation regime based on a hybrid cavity optomechanical system assisted by an atomic gas. The critical behavior of the Dicke model was obtained analytically using the spin-coherent-state representation. Without regard to the dynamics of cavity field an analytical formula of one-to-one correspondence between movable mirror's steady position and atom-field coupling constant for a given number of atoms is obtained. Thus the atom-field coupling constant can be probed by measuring the movable mirror's steady position, which is another effect of the cavity optomechanics. © 2012 Optical Society of America

  18. A Chaos-based Image Encryption Scheme Using 3D Skew Tent Map and Coupled Map Lattice

    Directory of Open Access Journals (Sweden)

    Ruisong Ye

    2012-02-01

    Full Text Available This paper proposes a chaos-based image encryption scheme where one 3D skew tent map with three control parameters is utilized to generate chaotic orbits applied to scramble the pixel positions while one coupled map lattice is employed to yield random gray value sequences to change the gray values so as to enhance the security. Experimental results have been carried out with detailed analysis to demonstrate that the proposed image encryption scheme possesses large key space to resist brute-force attack and possesses good statistical properties to frustrate statistical analysis attacks. Experiments are also performed to illustrate the robustness against malicious attacks like cropping, noising, JPEG compression.

  19. Development of BFMCOUPLER (v1.0), the coupling scheme that links the MITgcm and BFM models for ocean biogeochemistry simulations

    Science.gov (United States)

    Cossarini, Gianpiero; Querin, Stefano; Solidoro, Cosimo; Sannino, Gianmaria; Lazzari, Paolo; Di Biagio, Valeria; Bolzon, Giorgio

    2017-04-01

    In this paper, we present a coupling scheme between the Massachusetts Institute of Technology general circulation model (MITgcm) and the Biogeochemical Flux Model (BFM). The MITgcm and BFM are widely used models for geophysical fluid dynamics and for ocean biogeochemistry, respectively, and they benefit from the support of active developers and user communities. The MITgcm is a state-of-the-art general circulation model for simulating the ocean and the atmosphere. This model is fully 3-D (including the non-hydrostatic term of momentum equations) and is characterized by a finite-volume discretization and a number of additional features enabling simulations from global (O(107) m) to local scales (O(100) m). The BFM is a biogeochemical model based on plankton functional type formulations, and it simulates the cycling of a number of constituents and nutrients within marine ecosystems. The online coupling presented in this paper is based on an open-source code, and it is characterized by a modular structure. Modularity preserves the potentials of the two models, allowing for a sustainable programming effort to handle future evolutions in the two codes. We also tested specific model options and integration schemes to balance the numerical accuracy against the computational performance. The coupling scheme allows us to solve several processes that are not considered by each of the models alone, including light attenuation parameterizations along the water column, phytoplankton and detritus sinking, external inputs, and surface and bottom fluxes. Moreover, this new coupled hydrodynamic-biogeochemical model has been configured and tested against an idealized problem (a cyclonic gyre in a mid-latitude closed basin) and a realistic case study (central part of the Mediterranean Sea in 2006-2012). The numerical results consistently reproduce the interplay of hydrodynamics and biogeochemistry in both the idealized case and Mediterranean Sea experiments. The former reproduces

  20. A scheme of de-synchronization in globally coupled neural networks and its possible implications for vagus nerve stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Li Yanlong [Institute of Theoretical Physics, Lanzhou University of Technology, Lanzhou 730050 (China) and Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China)], E-mail: liyl20031@126.com; Wu Min; Ma Jun [Institute of Theoretical Physics, Lanzhou University of Technology, Lanzhou 730050 (China); Chen Zhaoyang [Department of Chemistry, George Washington University, Washington, DC 20052 (United States); Wang Yinghai [Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China)

    2009-02-15

    A scheme of de-synchronization via pulse stimulation is numerically investigated in the Hindmarsh Rose globally coupled neural networks. The simulations show that synchronization evolves into de-synchronization in the globally coupled HR neural network when a part (about 10%) of neurons are stimulated with a pulse current signal. The network de-synchronization appears to be sensitive to the stimulation parameters. For the case of the same stimulation intensity, those weakly coupled networks reach de-synchronization more easily than strongly coupled networks. There exists a homologous asymptotic behavior in the region of higher frequency, and exist the optimal stimulation interval and period of continuous stimulation time when other stimulation parameters remain invariable.

  1. Travelling Wave Pulse Coupled Oscillator (TWPCO) Using a Self-Organizing Scheme for Energy-Efficient Wireless Sensor Networks

    Science.gov (United States)

    Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs. PMID:28056020

  2. Travelling Wave Pulse Coupled Oscillator (TWPCO) Using a Self-Organizing Scheme for Energy-Efficient Wireless Sensor Networks.

    Science.gov (United States)

    Al-Mekhlafi, Zeyad Ghaleb; Hanapi, Zurina Mohd; Othman, Mohamed; Zukarnain, Zuriati Ahmad

    2017-01-01

    Recently, Pulse Coupled Oscillator (PCO)-based travelling waves have attracted substantial attention by researchers in wireless sensor network (WSN) synchronization. Because WSNs are generally artificial occurrences that mimic natural phenomena, the PCO utilizes firefly synchronization of attracting mating partners for modelling the WSN. However, given that sensor nodes are unable to receive messages while transmitting data packets (due to deafness), the PCO model may not be efficient for sensor network modelling. To overcome this limitation, this paper proposed a new scheme called the Travelling Wave Pulse Coupled Oscillator (TWPCO). For this, the study used a self-organizing scheme for energy-efficient WSNs that adopted travelling wave biologically inspired network systems based on phase locking of the PCO model to counteract deafness. From the simulation, it was found that the proposed TWPCO scheme attained a steady state after a number of cycles. It also showed superior performance compared to other mechanisms, with a reduction in the total energy consumption of 25%. The results showed that the performance improved by 13% in terms of data gathering. Based on the results, the proposed scheme avoids the deafness that occurs in the transmit state in WSNs and increases the data collection throughout the transmission states in WSNs.

  3. A generic data translation scheme for the coupling of high-fidelity fusion neutronics and CFD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Yuefeng, E-mail: yuefeng.qiu@kit.edu [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany); Lu, Peng [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Fischer, Ulrich; Pereslavtsev, Pavel; Kecskes, Szabolcs [Association KIT-Euratom, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany)

    2014-10-15

    Highlights: • A data translation scheme has been developed for coupling Monte Carlo neutronics and CFD simulations. • It contains a generic data translation kernel, and interfaces for the MCNP, CFX and Fluent code. • A blanket test case model was investigated for validation and verification purposes. • Results of the so-called Inversion Check are very close to MCNP calculated results. - Abstract: The design of fusion device components is achieved through iterative coupled neutronics and thermal hydraulics analyses. A translation scheme has been developed for transferring the nuclear heating data from Monte Carlo (MC) neutronic calculations to CFD simulations. It contains a generic data translation kernel which supports the high-fidelity data mapping of MC meshes on CFD meshes, and provides interfaces for processing the nuclear response data on the meshes for CFD codes. This translation scheme has been implemented in the open-source pre- and post-processing platform SALOME to extend its capabilities on data manipulations and visualizations. For verification purposes, a blanket test case based on the Helium Cooled Pebble Bed Test Blanket Module was investigated. The processing of the heating distribution data was validated through a so-called Inversion Check comparing the inverted heating field with the original MC tally distribution. The results of the verification have been discussed in detail, and the reliability of the data translation scheme is concluded.

  4. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    Science.gov (United States)

    Schwinger, Jörg; Tjiputra, Jerry; Goris, Nadine; Six, Katharina D.; Kirkevåg, Alf; Seland, Øyvind; Heinze, Christoph; Ilyina, Tatiana

    2017-08-01

    We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS) production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong) sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K) towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr-1 or 31 % (11.5 Tg S yr-1 or 48 %). The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by -0. 041 K per 1 Tg S yr-1 change in sea-air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K) is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea-air DMS fluxes by about 9 % (15 %), which counteracts the reduction due to ocean acidification.

  5. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    Directory of Open Access Journals (Sweden)

    J. Schwinger

    2017-08-01

    Full Text Available We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr−1 or 31 % (11.5 Tg S yr−1 or 48 %. The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by −0. 041 K per 1 Tg S yr−1 change in sea–air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea–air DMS fluxes by about 9 % (15 %, which counteracts the reduction due to ocean acidification.

  6. The impact of iceberg calving on climate: a model study with a fully coupled ice-sheet - climate model

    Science.gov (United States)

    Bugelmayer, Marianne; Roche, Didier; Renssen, Hans

    2013-04-01

    In the current period of climate change the understanding of the interactions between different parts of the climate system gets more and more important. The ice-sheets and ice-shelves, an important part of this system, experienced strong changes in the geological past, ranging from fully ice free to ice covered - thereby altering the whole climate. In the present climate, thousands of icebergs are released every year from Greenland and Antarctica, acting as a moving source of freshwater and a sink of latent heat. As a consequence, these icebergs alter the oceans' stratification and facilitate the formation of sea ice, thus influencing the state of the ocean and of the atmosphere. Up to now, the impact of icebergs on climate has been addressed in different studies which utilize climate models using freshwater and latent heat fluxes to parameterize icebergs. Mostly these fluxes were equally distributed around the coast. However, more recently iceberg modules were integrated into climate models to take into account the temporal and spatial distribution of the iceberg melting. In the presented study, an earth system model of intermediate complexity - iLOVECLIM - that includes a 3D dynamic - thermodynamic iceberg module (Jongma et al., 2008) is coupled to the Grenoble ice shelves and land ice model - GRISLI (Ritz et al., 1997, 2001). In GRISLI, ice sheets evolve according to the precipitation and temperature received from iLOVECLIM. In turn, GRISLI provides its topography and the ice mask to the atmospheric component of iLOVECLIM and all freshwater fluxes (ablation and calving) to its oceanic component. The ablation is directly put into the uppermost layer of the ocean, whereas the calving is used to generate icebergs at the calving sites following the size distribution of Bigg et al. (1997). Using this model set-up we analyse the evolution and the equilibrium state of the Greenland ice-sheet under pre-industrial conditions within three different coupling methods. All

  7. A coupled neutronic/thermal-hydraulic scheme between COBAYA3 and SUBCHANFLOW within the NURESIM simulation platform

    Energy Technology Data Exchange (ETDEWEB)

    Calleja, M.; Stieglitz, R.; Sanchez, V.; Jimenez, J.; Imke, U. [Karlsruhe Inst. of Technology KIT, Inst. for Neutron Physics and Reactor Technology INR, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2012-07-01

    Multi-scale, multi-physics problems reveal significant challenges while dealing with coupled neutronic/thermal-hydraulic solutions. Current generation of codes applied to Light Water Reactors (LWR) are based on 3D neutronic nodal methods coupled with one or two phase flow thermal-hydraulic system or sub-channel codes. In addition, spatial meshing and temporal schemes are crucial for the proper description of the non-symmetrical core behavior in case of transient and accidents e.g. reactivity insertion accidents. This paper describes the coupling approach between the 3D neutron diffusion code COBAYA3 and the sub-channel code SUBCHANFLOW within SALOME. The coupling is done inside the SALOME open source platform that is characterized by a powerful pre- and post-processing capabilities and a novel functionality for mapping of the neutronic and thermal hydraulic domains. The peculiar functionalities of SALOME and the steps required for the code integration and coupling are presented. The validation of the coupled codes is done based on two benchmarks the PWR MOX/UO{sub 2} RIA and the TMI-1 MSLB benchmark. A discussion of the prediction capability of COBAYA3/SUBCHANFLOW compared to other coupled solutions will be provided too. (authors)

  8. Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales

    Science.gov (United States)

    Senatore, Alfonso; Mendicino, Giuseppe; Gochis, David J.; Yu, Wei; Yates, David N.; Kunstmann, Harald

    2015-12-01

    With the aim of developing a fully coupled atmosphere-hydrology model system, the Weather Research and Forecasting (WRF) model was enhanced by integrating a new set of hydrologic physics parameterizations accounting for lateral water flow occurring at the land surface. The WRF-Hydro modeling system was applied for a 3 year long simulation in the Crati River Basin (Southern Italy), where output from the fully coupled WRF/WRF-Hydro was compared to that provided by original WRF model. Prior to performing coupled land-atmosphere simulations, the stand-alone hydrological model ("uncoupled" WRF-Hydro) was calibrated through an automated procedure and validated using observed meteorological forcing and streamflow data, achieving a Nash-Sutcliffe Efficiency value of 0.80 for 1 year of simulation. Precipitation, runoff, soil moisture, deep drainage, and land surface heat fluxes were compared between WRF-only and WRF/WRF-Hydro simulations and validated additionally with ground-based observations, a FLUXNET site, and MODIS-derived LST. Since the main rain events in the study area are mostly dependent on the interactions between the atmosphere and the surrounding Mediterranean Sea, changes in precipitation between modeling experiments were modest. However, redistribution and reinfiltration of local infiltration excess produced higher soil moisture content, lower overall surface runoff, and higher drainage in the fully coupled model. Higher soil moisture values in WRF/WRF-Hydro slightly influenced precipitation and also increased latent heat fluxes. Overall, the fully coupled model tended to show better performance with respect to observed precipitation while allowing more water to circulate in the modeled regional water cycle thus, ultimately, modifying long-term hydrological processes at the land surface.

  9. Multichannel feedforward control schemes with coupling compensation for active sound profiling

    Science.gov (United States)

    Mosquera-Sánchez, Jaime A.; Desmet, Wim; de Oliveira, Leopoldo P. R.

    2017-05-01

    Active sound profiling includes a number of control techniques that enables the equalization, rather than the mere reduction, of acoustic noise. Challenges may rise when trying to achieve distinct targeted sound profiles simultaneously at multiple locations, e.g., within a vehicle cabin. This paper introduces distributed multichannel control schemes for independently tailoring structural borne sound reaching a number of locations within a cavity. The proposed techniques address the cross interactions amongst feedforward active sound profiling units, which compensate for interferences of the primary sound at each location of interest by exchanging run-time data amongst the control units, while attaining the desired control targets. Computational complexity, convergence, and stability of the proposed multichannel schemes are examined in light of the physical system at which they are implemented. The tuning performance of the proposed algorithms is benchmarked with the centralized and pure-decentralized control schemes through computer simulations on a simplified numerical model, which has also been subjected to plant magnitude variations. Provided that the representation of the plant is accurate enough, the proposed multichannel control schemes have been shown as the only ones that properly deliver targeted active sound profiling tasks at each error sensor location. Experimental results in a 1:3-scaled vehicle mock-up further demonstrate that the proposed schemes are able to attain reductions of more than 60 dB upon periodic disturbances at a number of positions, while resolving cross-channel interferences. Moreover, when the sensor/actuator placement is found as defective at a given frequency, the inclusion of a regularization parameter in the cost function is seen to not hinder the proper operation of the proposed compensation schemes, at the time that it assures their stability, at the expense of losing control performance.

  10. A 3-D variational assimilation scheme in coupled transport-biogeochemical models: Forecast of Mediterranean biogeochemical properties.

    Science.gov (United States)

    Teruzzi, Anna; Dobricic, Srdjan; Solidoro, Cosimo; Cossarini, Gianpiero

    2014-01-01

    [1] Increasing attention is dedicated to the implementation of suitable marine forecast systems for the estimate of the state of the ocean. Within the framework of the European MyOcean infrastructure, the pre-existing short-term Mediterranean Sea biogeochemistry operational forecast system has been upgraded by assimilating remotely sensed ocean color data in the coupled transport-biogeochemical model OPATM-BFM using a 3-D variational data assimilation (3D-VAR) procedure. In the present work, the 3D-VAR scheme is used to correct the four phytoplankton functional groups included in the OPATM-BFM in the period July 2007 to September 2008. The 3D-VAR scheme decomposes the error covariance matrix using a sequence of different operators that account separately for vertical covariance, horizontal covariance, and covariance among biogeochemical variables. The assimilation solution is found in a reduced dimensional space, and the innovation for the biogeochemical variables is obtained by the sequential application of the covariance operators. Results show a general improvement in the forecast skill, providing a correction of the basin-scale bias of surface chlorophyll concentration and of the local-scale spatial and temporal dynamics of typical bloom events. Further, analysis of the assimilation skill provides insights into the functioning of the model. The computational costs of the assimilation scheme adopted are low compared to other assimilation techniques, and its modular structure facilitates further developments. The 3D-VAR scheme results especially suitable for implementation within a biogeochemistry operational forecast system.

  11. Novel Designs and Coupling Schemes for Affordable High Energy Laser Modules

    Science.gov (United States)

    2007-09-28

    31 5.4. Phase Locking in Monolithic Multicore Fiber Laser..................................................... 38 5.5. UV...with multiple active cores, we demonstrated a novel monolithic all fiber scheme to coherently combine the emission from all active cores into a single...optimization of all components including semiconductor quantum well gain, distributed Bragg reflector ( DBR ), microcavity resonances, external cavity design

  12. Variable Coupling Scheme for High Frequency Electron Spin Resonance Resonators Using Asymmetric Meshes.

    Science.gov (United States)

    Tipikin, D S; Earle, K A; Freed, J H

    2010-01-01

    The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples.

  13. Numerical solution of one-dimensional transient, two-phase flows with temporal fully implicit high order schemes: Subcooled boiling in pipes

    Energy Technology Data Exchange (ETDEWEB)

    López, R., E-mail: ralope1@ing.uc3m.es; Lecuona, A., E-mail: lecuona@ing.uc3m.es; Nogueira, J., E-mail: goriba@ing.uc3m.es; Vereda, C., E-mail: cvereda@ing.uc3m.es

    2017-03-15

    Highlights: • A two-phase flows numerical algorithm with high order temporal schemes is proposed. • Transient solutions route depends on the temporal high order scheme employed. • ESDIRK scheme for two-phase flows events exhibits high computational performance. • Computational implementation of the ESDIRK scheme can be done in a very easy manner. - Abstract: An extension for 1-D transient two-phase flows of the SIMPLE-ESDIRK method, initially developed for incompressible viscous flows by Ijaz is presented. This extension is motivated by the high temporal order of accuracy demanded to cope with fast phase change events. This methodology is suitable for boiling heat exchangers, solar thermal receivers, etc. The methodology of the solution consist in a finite volume staggered grid discretization of the governing equations in which the transient terms are treated with the explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) method. It is suitable for stiff differential equations, present in instant boiling or condensation processes. It is combined with the semi-implicit pressure linked equations algorithm (SIMPLE) for the calculation of the pressure field. The case of study consists of the numerical reproduction of the Bartolomei upward boiling pipe flow experiment. The steady-state validation of the numerical algorithm is made against these experimental results and well known numerical results for that experiment. In addition, a detailed study reveals the benefits over the first order Euler Backward method when applying 3rd and 4th order schemes, making emphasis in the behaviour when the system is subjected to periodic square wave wall heat function disturbances, concluding that the use of the ESDIRK method in two-phase calculations presents remarkable accuracy and computational advantages.

  14. An advanced scheme for wet scavenging and liquid-phase chemistry in a regional online-coupled chemistry transport model

    Directory of Open Access Journals (Sweden)

    C. Knote

    2012-10-01

    Full Text Available Clouds are reaction chambers for atmospheric trace gases and aerosols, and the associated precipitation is a major sink for atmospheric constituents. The regional chemistry-climate model COSMO-ART has been lacking a description of wet scavenging of gases and aqueous-phase chemistry. In this work we present a coupling of COSMO-ART with a wet scavenging and aqueous-phase chemistry scheme. The coupling is made consistent with the cloud microphysics scheme of the underlying meteorological model COSMO. While the choice of the aqueous-chemistry mechanism is flexible, the effects of a simple sulfur oxidation scheme are shown in the application of the coupled system in this work. We give details explaining the coupling and extensions made, then present results from idealized flow-over-hill experiments in a 2-D model setup and finally results from a full 3-D simulation. Comparison against measurement data shows that the scheme efficiently reduces SO2 trace gas concentrations by 0.3 ppbv (−30% on average, while leaving O3 and NOx unchanged. PM10 aerosol mass, which has been overestimated previously, is now in much better agreement with measured values due to a stronger scavenging of coarse particles. While total PM2.5 changes only little, chemical composition is improved notably. Overestimations of nitrate aerosols are reduced by typically 0.5–1 μg m−3 (up to −2 μg m−3 in the Po Valley while sulfate mass is increased by 1–1.5 μg m−3 on average (up to 2.5 μg m−3 in Eastern Europe. The effect of cloud processing of aerosols on its size distribution, i. e. a shift towards larger diameters, is observed. Compared against wet deposition measurements the system underestimates the total wet deposited mass for the simulated case study. We find that while evaporation of cloud droplets dominates in higher altitudes, evaporation of precipitation can

  15. Strong-coupling constant with flavor thresholds at five loops in the anti M anti S scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, B.A.; Kotikov, A.V.; Onishchenko, A.I.; Veretin, O.L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2006-07-15

    We present in analytic form the matching conditions for the strong-coupling constant {alpha}{sub s}{sup (n{sub f})}({mu}) at the flavor thresholds to four loops in the modified minimal-subtraction scheme. Taking into account the present knowledge on the coefficient {beta}{sub 4} of the Callan-Symanzik beta function of quantum chromo-dynamics, we thus derive a five-loop formula for {alpha}{sub s}{sup (n{sub f})}({mu}) together with appropriate relationships between the asymptotic scale parameters {lambda}{sup (n{sub f})} for different numbers of flavors n{sub f}. (Orig.)

  16. An advanced scheme for wet scavenging and liquid-phase chemistry in a regional online-coupled chemistry transport model

    Science.gov (United States)

    Knote, C.; Brunner, D.

    2012-10-01

    Clouds are reaction chambers for atmospheric trace gases and aerosols, and the associated precipitation is a major sink for atmospheric constituents. The regional chemistry-climate model COSMO-ART has been lacking a description of wet scavenging of gases and aqueous-phase chemistry. In this work we present a coupling of COSMO-ART with a wet scavenging and aqueous-phase chemistry scheme. The coupling is made consistent with the cloud microphysics scheme of the underlying meteorological model COSMO. While the choice of the aqueous-chemistry mechanism is flexible, the effects of a simple sulfur oxidation scheme are shown in the application of the coupled system in this work. We give details explaining the coupling and extensions made, then present results from idealized flow-over-hill experiments in a 2-D model setup and finally results from a full 3-D simulation. Comparison against measurement data shows that the scheme efficiently reduces SO2 trace gas concentrations by 0.3 ppbv (-30%) on average, while leaving O3 and NOx unchanged. PM10 aerosol mass, which has been overestimated previously, is now in much better agreement with measured values due to a stronger scavenging of coarse particles. While total PM2.5 changes only little, chemical composition is improved notably. Overestimations of nitrate aerosols are reduced by typically 0.5-1 μg m-3 (up to -2 μg m-3 in the Po Valley) while sulfate mass is increased by 1-1.5 μg m-3 on average (up to 2.5 μg m-3 in Eastern Europe). The effect of cloud processing of aerosols on its size distribution, i. e. a shift towards larger diameters, is observed. Compared against wet deposition measurements the system underestimates the total wet deposited mass for the simulated case study. We find that while evaporation of cloud droplets dominates in higher altitudes, evaporation of precipitation can contribute up to 50% of total evaporated mass near the surface.

  17. Current steering detection scheme of three terminal antenna-coupled terahertz field effect transistor detectors

    OpenAIRE

    Földesy, Péter

    2013-01-01

    An antenna-coupled field effect transistor (FET) as a plasma wave terahertz detector is used with the current steering to record separately the gate-source and gate-drain photoresponses and their phase sensitive combination. This method is based on the observation that the plasmon-terminal coupling is cut off in saturation, resulting in only one-sided sensitivity. A polarimetric example is presented with intensity and polarization angle reconstruction using a single three-terminal antenna-cou...

  18. An Efficient Explicit Finite-Difference Scheme for Simulating Coupled Biomass Growth on Nutritive Substrates

    Directory of Open Access Journals (Sweden)

    G. F. Sun

    2015-01-01

    Full Text Available A novel explicit finite-difference (FD method is presented to simulate the positive and bounded development process of a microbial colony subjected to a substrate of nutrients, which is governed by a nonlinear parabolic partial differential equations (PDE system. Our explicit FD scheme is uniquely designed in such a way that it transfers the nonlinear terms in the original PDE into discrete sets of linear ones in the algebraic equation system that can be solved very efficiently, while ensuring the stability and the boundedness of the solution. This is achieved through (1 a proper design of intertwined FD approximations for the diffusion function term in both time and spatial variations and (2 the control of the time-step through establishing theoretical stability criteria. A detailed theoretical stability analysis is conducted to reveal that our FD method is indeed stable. Our examples verified the fact that the numerical solution can be ensured nonnegative and bounded to simulate the actual physics. Numerical examples have also been presented to demonstrate the efficiency of the proposed scheme. The present scheme is applicable for solving similar systems of PDEs in the investigation of the dynamics of biological films.

  19. Explicit and implicit finite difference schemes for fractional Cattaneo equation

    Science.gov (United States)

    Ghazizadeh, H. R.; Maerefat, M.; Azimi, A.

    2010-09-01

    In this paper, the numerical solution of fractional (non-integer)-order Cattaneo equation for describing anomalous diffusion has been investigated. Two finite difference schemes namely an explicit predictor-corrector and totally implicit schemes have been developed. In developing each scheme, a separate formulation approach for the governing equations has been considered. The explicit predictor-corrector scheme is the fractional generalization of well-known MacCormack scheme and has been called Generalized MacCormack scheme. This scheme solves two coupled low-order equations and simultaneously computes the flux term with the main variable. Fully implicit scheme however solves a single high-order undecomposed equation. For Generalized MacCormack scheme, stability analysis has been studied through Fourier method. Through a numerical test, the experimental order of convergency of both schemes has been found. Then, the domain of applicability and some numerical properties of each scheme have been discussed.

  20. Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator

    Institute of Scientific and Technical Information of China (English)

    Shi Zhen-Gang; Chen Xiong-Wen; Zhu Xi-Xiang; Song Ke-Hui

    2009-01-01

    This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a ID transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1// noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.

  1. Implementation of Fully Coupled Heat and Mass Transport Model to Determine Temperature and Moisture State at Elevated Temperatures

    DEFF Research Database (Denmark)

    Pecenko, R.; Hozjan, Tomaz; Svensson, Staffan

    2014-01-01

    The aim of this study is to present precise numerical formulation to determine temperature and moisture state of timber in the situation prior pyrolysis. The strong formulations needed for an accurate description of the physics are presented and discussed as well as their coupling terms. From the...

  2. Implementation of fully coupled heat and mass transport model to determine the behaviour of timber elements in fire

    DEFF Research Database (Denmark)

    Pečenko, Robert; Huč, Sabina; Turk, Goran

    2014-01-01

    In this paper we present results of numerical analysis of timber beam exposed to fire. The numerical procedure is divided into two physically separated but closely related phases. In the first phase coupled problem of moisture and heat transfer over the timber beam is numerically solved using the...

  3. A fully coupled Thermo-Hydro-Mechanical Double Porosity Formulation for Modeling Multiphysics Problems in Geological Media

    Science.gov (United States)

    Sanchez, M. J.; Gens, A.; Jarecki, Z.; Olivella, S.

    2012-12-01

    This work presents a coupled Thermo-Hydro-Mechanical (THM) formulation developed to handle multiphysic problems in porous media with two dominant void levels. The proposed framework assumes the presence of two porous media linked through a mass transfer term between them. In many cases, the use of a double porosity formulation is more realistic because it is possible to take explicitly into account the different physical phenomena that take place in each void level, and also their mutual interactions. The formulation is especially suitable for cases in which the material exhibits a strong coupling between the mechanical and the hydraulic problem in both media. The problem is approached using a multi-phase, multi-species formulation that expresses mathematically the main coupled thermo-hydro-mechanical phenomena in terms of: balance equations, constitutive equations and equilibrium restrictions. In its more general form, the proposed approach allows the consideration of multiphase flow in the two pore levels coupled with the mechanical problem. The formulation presented is quite open and general, and able to incorporate different constitutive laws for each basic structural level considered; for the mechanical, hydraulic and thermal problems. The double structure formulation has been implemented in the finite element program CODE_BRIGHT and it has been used to analyze a variety of engineering problems associated with the design of radioactive waste disposal in deep geological media and petroleum engineering problems. This work presents two case studies; one is related to oil production in a heterogeneous reservoir, and the other case focuses on the analysis of a repository for nuclear waste in a clayed formation. Both cases show the potential of the proposed formation to tackle coupled multiphysics problems in porous media.

  4. A scheme to interpolate potential energy surfaces and derivative coupling vectors without performing a global diabatization.

    Science.gov (United States)

    Evenhuis, Christian; Martínez, Todd J

    2011-12-14

    Simulation of non-adiabatic molecular dynamics requires the description of multiple electronic state potential energy surfaces and their couplings. Ab initio molecular dynamics approaches provide an attractive avenue to accomplish this, but at great computational expense. Interpolation approaches provide a possible route to achieve flexible descriptions of the potential energy surfaces and their couplings at reduced expense. A previously developed approach based on modified Shepard interpolation required global diabatization, which can be problematic. Here, we extensively revise this previous approach, avoiding the need for global diabatization. The resulting interpolated potentials provide only adiabatic energies, gradients, and derivative couplings. This new interpolation approach has been integrated with the ab initio multiple spawning method and it has been rigorously validated against direct dynamics. It is shown that, at least for small molecules, constructing an interpolated PES can be more efficient than performing direct dynamics as measured by the total number of ab initio calculations that are required for a given accuracy.

  5. A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime

    Science.gov (United States)

    Rimberg, A. J.; Blencowe, M. P.; Armour, A. D.; Nation, P. D.

    2014-05-01

    We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field.

  6. Thermal shaft effects on load-carrying capacity of a fully coupled, variable-properties cryogenic journal bearing

    Science.gov (United States)

    Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.

    1986-01-01

    The purpose of this work was to perform a rather complete analysis for a cryogenic (oxygen) journal bearing. The Reynolds equation required coupling and simultaneous solution with the fluid energy equation. To correctly account for the changes in the fluid viscosity, the fluid energy equation was coupled with the shaft and bearing heat conduction energy equations. The effects of pressure and temperature on the density, viscosity, and load-carrying capacity were further discussed as analysis parameters, with respect to relative eccentricity and the angular velocity. The isothermal fluid case and the adiabatic fluid case represented the limiting boundaries. The discussion was further extrapolated to study the Sommerfeld number dependency on the fluid Nusselt number and its consequence on possible total loss of load-carrying capacity and/or seizure (catastrophic failure).

  7. On the hydrological performance in preparation for fully coupled climate-hydrology modelling in a data-sparse region

    Science.gov (United States)

    Dahl Larsen, Morten Andreas; Senatore, Alfonso; Drews, Martin; Mendicino, Giuseppe

    2016-04-01

    Within the recently emerging field of research employing a dynamical coupling between existing advanced atmosphere-hydrology model codes lays a demand for a wide range of data. The data are needed to both drive and validate the models and need to be of a high quality in terms of spatial coverage, temporal resolution, representation of local attributes and data selection. As a consequence, most studies have been performed over regions of vast data coverage. Although good data coverage is mainly seen in regions of more economically developed countries, the advantages of the coupled models could be of at least equal relevance in lesser developed regions. We here evaluate the prediction capabilities of the joint MIKE SHE-SWET hydrology and land surface model which has recently been employed in a dynamical coupling with the HIRHAM regional climate model (RCM). As a test case, we use the Crati River catchment in Southern Italy. The catchment is used due to: 1) A reasonable availability of data in terms of discharge, a flux tower station, climate stations and gridded data products such as ERA-I, E-OBS, SWBM and RCM output (e.g. MED-CORDEX) albeit with problems resembling those of data sparse regions (lack of temporal overlap, gap filling, availability, hydrogeological interpretations and land use). 2) The location (the Mediterranean) has previously been shown to exhibit substantial biases which potentially could be reduced the future coupling. 3) The Mediterranean highlands with large variations in orography provide an interesting test case as this is poorly represented in models. And 4) Model runs using the WRF-Hydro model have been performed enabling the basis for valuable comparison studies. In the present study the model is parameterized through inverse calibration using variations of the available data to highlight the influence of data quality and availability on the model outcome and assets/disadvantages of individual products.

  8. Fully Coupled Three-Dimensional Dynamic Response of a Tension-Leg Platform Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Kumari Ramachandran, Gireesh Kumar Vasanta; Bredmose, Henrik; Sørensen, Jens Nørkær;

    2014-01-01

    , which is a consequence of the wave-induced rotor dynamics. Loads and coupled responses are predicted for a set of load cases with different wave headings. Further, an advanced aero-elastic code, Flex5, is extended for the TLP wind turbine configuration and the response comparison with the simpler model...... shows a generally good agreement, except for the yaw motion. This deviation is found to be a result of the missing lateral tower flexibility in the simpler model....

  9. High-order Spatio-temporal Schemes for Coupled, Multi-physics Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mr. Vijay S. Mahadevan; Dr. Jean C. Ragusa

    2008-09-01

    This report summarizes the work done in the summer of 08 by the Ph.D. student Vijay Mahadevan. The main focus of the work was to coupled 3-D neutron difusion to 3-D heat conduction in parallel with accuracy greater than or equal to 2nd order in space and time. Results show that the goal was attained.

  10. A fully-coupled upwind discontinuous Galerkin method for incompressible porous media flows: High-order computations of viscous fingering instabilities in complex geometry

    Science.gov (United States)

    Scovazzi, G.; Huang, H.; Collis, S. S.; Yin, J.

    2013-11-01

    We present a new approach to the simulation of viscous fingering instabilities in incompressible, miscible displacement flows in porous media. In the past, high resolution computational simulations of viscous fingering instabilities have always been performed using high-order finite difference or Fourier-spectral methods which do not posses the flexibility to compute very complex subsurface geometries. Our approach, instead, by means of a fully-coupled nonlinear implementation of the discontinuous Galerkin method, possesses a fundamental differentiating feature, in that it maintains high-order accuracy on fully unstructured meshes. In addition, the proposed method shows very low sensitivity to mesh orientation, in contrast with classical finite volume approximation used in porous media flow simulations. The robustness and accuracy of the method are demonstrated in a number of challenging computational problems.

  11. Stability of leap-frog constant-coefficients semi-implicit schemes for the fully elastic system of Euler equations. Flat-terrain case

    CERN Document Server

    Benard, P; Vivoda, J; Smolikova, P; Benard, Pierre; Laprise, Rene; Vivoda, Jozef; Smolikova, Petra

    2003-01-01

    The aim of this paper is to investigate the response of this system/scheme in terms of stability in presence of explicitly treated residual terms, as it inevitably occurs in the reality of NWP. This sudy is restricted to the impact of thermal and baric residual terms (metric residual terms linked to the orography are not considered here). It is shown that conversely to what occurs with Hydrostatic Primitive Equations, the choice of the prognostic variables used to solve the system in time is of primary importance for the robustness with Euler Equations. For an optimal choice of prognostic variables, unconditionnally stable schemes can be obtained (with respect to the length of the time-step), but only for a smaller range of reference states than in the case of Hydrostatic Primitive Equations. This study also indicates that: (i) vertical coordinates based on geometrical height and on mass behave similarly in terms of stability for the problems examined here, and (ii) hybrid coordinates induce an intrinsic inst...

  12. PSO-BELBIC scheme for two-coupled distillation column process

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2011-01-01

    Full Text Available In the two-coupled distillation column process, keeping the tray temperatures within a specified range around their steady state values assures the specifications for top and bottom product purity. The two-coupled distillation column is a 4 Input/4 Output process. Normally, control engineers decouple the process into four independent loops. They assign a PID controller to control each loop. Tuning of conventional PID controllers is very difficult when the process is subject to external unknown factors. The paper proposes a Brain Emotional Learning Based Intelligent Controller (BELBIC to replace conventional PID controllers. Moreover, the values of BELBIC and PID gains are optimized using a particle swarm optimization (PSO technique with minimization of Integral Square Error (ISE for all loops. The paper compares the performance of the proposed PSO-BELBICs with that of conventional PSO-PID controllers. PSO-BELBICs prove their usefulness in improving time domain behavior with keeping robustness for all loops.

  13. Multi-scale coupling strategy for fully two-dimensional and depth-averaged models for granular flows

    Science.gov (United States)

    Pudasaini, Shiva P.; Domnik, Birte; Miller, Stephen A.

    2013-04-01

    We developed a full two-dimensional Coulomb-viscoplastic model and applied it for inclined channel flows of granular materials from initiation to their deposition. The model includes the basic features and observed phenomena in dense granular flows like the exhibition of a yield strength and a non-zero slip velocity. A pressure-dependent yield strength is proposed to account for the frictional nature of granular materials. The yield strength can be related to the internal friction angle of the material and plays an important role, for example, in deposition processes. The interaction of the flow with the solid boundary is modelled by a pressure and rate-dependent Coulomb-viscoplastic sliding law. We developed an innovative multi-scale strategy to couple the full two-dimensional, non depth-averaged model (N-DAM) with a one-dimensional, depth-averaged model (DAM). The coupled model reduces computational complexity dramatically by using DAM only in regions with smooth changes of flow variables. The numerics uses N-DAM in regions where depth-averaging becomes inaccurate, for instance, in the initiation and deposition regions, and (particularly) when the flow hits an obstacle or a defense structure. In these regions, momentum transfer must be, and is, considered in all directions. We observe very high coupling performance, and show that the numerical results deviate only slightly from results of the much more cumbersome full two-dimensional model. This shows that the coupled model, which retains all the basic physics of the flow, is an attractive alternative to an expensive, full two-dimensional simulations. We compare simulation results with different experimental data for shock waves appearing in rapid granular flows down inclined channels and impacting a wall. The model predicts the evolution of the strong shock wave and the impact force on a rigid wall for different inclination angles and sliding surfaces. It is demonstrated that the internal friction angle plays an

  14. 涡流问题基于C-N差分格式的有限元耦合算法%A Finite Element Coupled Algorithm Based on C-N Differential Scheme for Eddy Current Problem

    Institute of Scientific and Technical Information of China (English)

    王艳芳; 陈涛; 吴红梅; 康彤

    2011-01-01

    Fully discrete potential-based finite element methods called A- methods are used to solve a transient eddy current problem in a three-dimensional convex bounded polyhedron.Using A- methods,fully discrete coupled Crank-Nicholson numerical scheme is developed.The existence and uniqueness of solution for this scheme together with the energy-norm error estimates are provided.To verify the validity of this scheme,some computer simulations are performed for the model from TEAM Workshop Problem 7.%基于势的全离散有限元法常用于解决三维凸有界多边形区域的瞬时涡流问题。本文采用A-法的全离散Crank-Nicholson格式耦合算法,给出能量模误差估计下其解的存在唯一性,并通过TEAM Workshop问题7的数值结果,验证此算法的有效性。

  15. Selective coupling of HE{sub 11} and TM{sub 01} modes into microfabricated fully metal-coated quartz probes

    Energy Technology Data Exchange (ETDEWEB)

    Tortora, P. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland)]. E-mail: piero.tortora@unine.ch; Descrovi, E. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland)]. E-mail: emiliano.descrovi@polito.it; Aeschimann, L. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland); Vaccaro, L. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland); Herzig, H.-P. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland); Daendliker, R. [Institute of Microtechnology, University of Neuchatel, Rue A.L. Breguet 2, CH-2000 Neuchatel (Switzerland)

    2007-02-15

    We report computational and experimental investigations on injection and transmission of light in microfabricated fully Aluminum-coated quartz probes. In particular, we show that a selective coupling of either the HE{sub 11} or the TM{sub 01} mode can be carried out by injecting focused linearly or radially polarized beams into the probe. Optical fields, emitted by the probe after a controlled injection, are characterized in intensity and phase with the help of an interferometric technique. With the help of near-field measurement, we finally demonstrate that a longitudinally polarized spot localized at the tip apex is actually produced when the TM{sub 01} mode is coupled into the probe.

  16. A fully integrated Earth System Model: focus on dynamical coupling of climatic and cryospheric model sub-systems

    Science.gov (United States)

    Morozova, Polina; Volodin, Evgeny; Rybak, Oleg; Huybrechts, Philippe; Korneva, Irina; Kaminskaia, Mariia

    2017-04-01

    Earth system models (ESMs) have been widely used in the recent years for complex studies of the climate system of the planet in the context of interactions between the atmosphere, oceans, ice sheets and the biosphere. Incorporation of the Earth syb-systems with very different spatial and temporal scales and response times into one model is really a challenging task. In particular, coupling of an AO GCM and ice sheet models of Greenland and Antarctic ice sheets (GrIS and AIS) requires application of special downscaling procedures. Within the frameworks of our research study, we implemented several coupling strategies. The choice of a strategy is dictated mostly by two factors - by the purpose of the research and by spatial resolution of an AO GCM. Several versions of the latter (called INMCM) were developed in the Institute of Numerical Mathematics (Moscow, Russia). For instance, the version aimed primarily for the relatively long numerical experiments (for e.g. palaeostudies) has spatial resolution of 5°×4°, 21 vertical layers in the atmospheric block, 2.5°×2°, 33 vertical layers in the oceanic block. To provide proper data exchange between the INMCM and GrIS and AIS models (spatial resolution 20×20 km), we employ rather simple buffer (sub-) models, describing regional heat and moisture diffusion. Applying buffer models enables to avoid systematic shifts in INMCM-generated precipitation fields and to much more realistically describe influence orographically driven precipitation (in Greenland) and elevation-temperature dependence. Novel versions of the INMCM with the spatial resolution of 2,5°×2° and higher generate much more realistic climatic fields, therefore the coupling procedure can be simplified to just averaging, resampling and remapping data from the AO GCM global domain to regional domains enclosing ice sheets. Increase in spatial resolution inevitably causes additional computational cost and reduces the area of the ESM application to

  17. Fully Coupled Micro/Macro Deformation, Damage, and Failure Prediction for SiC/Ti-15-3 Laminates

    Science.gov (United States)

    Bednarcyk, Brett A.; Arnold, Steven M.; Lerch, Brad A.

    2001-01-01

    The deformation, failure, and low cycle fatigue life of SCS-6/Ti-15-3 composites are predicted using a coupled deformation and damage approach in the context of the analytical generalized method of cells (GMC) micromechanics model. The local effects of inelastic deformation, fiber breakage, fiber-matrix interfacial debonding, and fatigue damage are included as sub-models that operate on the micro scale for the individual composite phases. For the laminate analysis, lamination theory is employed as the global or structural scale model, while GMC is embedded to operate on the meso scale to simulate the behavior of the composite material within each laminate layer. While the analysis approach is quite complex and multifaceted, it is shown, through comparison with experimental data, to be quite accurate and realistic while remaining extremely efficient.

  18. Spin-triplet paired state induced by Hund's rule coupling and correlations: a fully statistically consistent Gutzwiller approach.

    Science.gov (United States)

    Spałek, J; Zegrodnik, M

    2013-10-30

    The intrasite and intersite spin-triplet pairing gaps induced by interband Hund's rule coupling and their correlations are analyzed in the doubly degenerate Hubbard Hamiltonian. To include the effect of correlations, the statistically consistent Gutzwiller approximation is used. In this approach the consistency means that the averages calculated from the self-consistent equations and those determined variationally coincide with each other. Emphasis is put on the solution for which the average particle number is conserved when carrying out the Gutzwiller projection. This method leads to a stable equal-spin paired state in the so-called repulsive interactions limit (U > 3J) in the regime of moderate correlations. The interband hybridization introduces an inequivalence of the bands which, above a critical magnitude, suppresses the paired state due to both the Fermi-wavevector mismatch for the Cooper pair and the interband hopping allowed by the Pauli principle.

  19. Comparison between a coupled 1D-2D model and a fully 2D model for supercritical flow simulation in crossroads

    KAUST Repository

    Ghostine, Rabih

    2014-12-01

    In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D shallow water model and a fully two-dimensional (2D) model is presented. The paper explores the ability of a coupled model to simulate the flow processes during supercritical flows in crossroads. This combination leads to a significant reduction in the computational time, as a 1D approach is used in branches and a 2D approach is employed in selected areas only where detailed flow information is essential. Overall, the numerical results suggest that the coupled model is able to accurately simulate the main flow processes. In particular, hydraulic jumps, recirculation zones, and discharge distribution are reasonably well reproduced and clearly identified. Overall, the proposed model leads to a 30% reduction in run times. © 2014 International Association for Hydro-Environment Engineering and Research.

  20. On Fully Homomorphic Encryption

    OpenAIRE

    Fauzi, Prastudy

    2012-01-01

    Fully homomorphic encryption is an encryption scheme where a party can receive encrypted data and perform arbitrary operations on this data efficiently.The data remains encrypted throughout, but the operations can be done regardless, without having to know the decryption key.Such a scheme would be very advantageous, for example in ensuring the privacy of data that is sent to a third-party service.This is in contrast with schemes like Paillier where you can not perform a multiplication of encr...

  1. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz (Germany)

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  2. ECHMERIT V1.0 – a new global fully coupled mercury-chemistry and transport model

    Directory of Open Access Journals (Sweden)

    N. Pirrone

    2009-05-01

    Full Text Available Mercury is a global pollutant due to its long lifetime in the atmosphere. Its hemispheric transport patterns and eventual deposition are therefore of major concern. For the purpose of global atmospheric mercury chemistry and transport modelling the ECHMERIT model was developed. ECHMERIT, based on the global circulation model ECHAM5 differs from most global mercury models in that the emissions, chemistry (including general tropospheric chemistry and mercury chemistry, transport and deposition are coupled on-line to the GCM. The chemistry mechanism includes an online calculation of photolysis rate constants using the Fast-J photolysis mechanism, the CBM-Z tropospheric gas-phase mechanism and aqueous-phase chemistry based on the MECCA mechanism. Additionally, a mercury chemistry mechanism that incorporates gas and aqueous phase mercury chemistry is included. A detailed description of the model, including the wet and dry deposition modules, and the implemented emissions is given in this technical report. First model testing and evaluation show a satisfactory model performance for surface ozone and mercury concentrations (with a mean bias of 1.46 ppb for ozone and a mean bias of 13.55 ppq for TGM when compared with EMEP station data. Requirements regarding measurement data and emission inventories which could considerably improve model skill are discussed.

  3. ECHMERIT V1.0 – a new global fully coupled mercury-chemistry and transport model

    Directory of Open Access Journals (Sweden)

    G. Jung

    2009-11-01

    Full Text Available Mercury is a global pollutant due to its long lifetime in the atmosphere. Its hemispheric transport patterns and eventual deposition are therefore of major concern. For the purpose of global atmospheric mercury chemistry and transport modelling the ECHMERIT model was developed. ECHMERIT, based on the global circulation model ECHAM5 differs from most global mercury models in that the emissions, chemistry (including general tropospheric chemistry and mercury chemistry, transport and deposition are coupled on-line to the GCM. The chemistry mechanism includes an online calculation of photolysis rate constants using the Fast-J photolysis mechanism, the CBM-Z tropospheric gas-phase mechanism and aqueous-phase chemistry based on the MECCA mechanism. Additionally, a mercury chemistry mechanism that incorporates gas and aqueous phase mercury chemistry is included. A detailed description of the model, including the wet and dry deposition modules, and the implemented emissions is given in this technical report. First model testing and evaluation show a satisfactory model performance for surface ozone and mercury mixing ratios (with a mean bias of 1.46 nmol/mol for ozone and a mean bias of 13.55 fmol/mol for TGM when compared with EMEP station data. Requirements regarding measurement data and emission inventories which could considerably improve model skill are discussed.

  4. Fully Coupled Three-Dimensional Dynamic Response of a TLP Floating Wind Turbine in Waves and Wind

    DEFF Research Database (Denmark)

    Ramachandran, Gireesh Kumar V.R.; Bredmose, Henrik; Sørensen, Jens Nørkær

    2013-01-01

    A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes threedimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the ...... and discussed. As a next step (which is not presented here), the dynamic model for the substructure is therefore being coupled to an advanced aero-elastic code Flex5, Øye (1996), which has a higher number of DOFs and a controller module.......A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes threedimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11......, including Glauert correction for high values of axial induction factor, dynamic stall, dynamic wake and dynamic yaw. The aerodynamic model takes into account the wind shear and turbulence effects. For a representative geographic location, platform responses are obtained for a set of wind and wave climatic...

  5. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Komura, Jun-ichiro, E-mail: junkom@med.tohoku.ac.jp [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Ikehata, Hironobu [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan); Mori, Toshio [Radioisotope Research Center, Nara Medical University, Kashihara, Nara 634-8521 (Japan); Ono, Tetsuya [Department of Cell Biology, Tohoku University Graduate School of Medicine, Sendai 980-8575 (Japan)

    2012-03-10

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: Black-Right-Pointing-Pointer Global genome repair of (6-4) photoproducts is fully active in mitotic cells. Black-Right-Pointing-Pointer DNA in condensed mitotic chromatin does not seem inaccessible or inert. Black-Right-Pointing-Pointer Mitotic transcriptional repression may impair transcription-coupled repair.

  6. A non-oscillatory balanced scheme for an idealized tropical climate model. Part II. Nonlinear coupling and moisture effects

    Energy Technology Data Exchange (ETDEWEB)

    Khouider, Boualem [University of Victoria, Mathematics and Statistics, Victoria, B.C. (Canada); Majda, Andrew J. [New York University, Department of Mathematics and Center for Atmosphere/Ocean Sciences, NY (United States); Courant Institute, New York, NY (United States)

    2005-10-01

    We use the non-oscillatory balanced numerical scheme developed in Part I to track the dynamics of a dry highly nonlinear barotropic/baroclinic coupled solitary wave, as introduced by Biello and Majda (2004), and of the moisture fronts of Frierson et al. (2004) in the presence of dry gravity waves, a barotropic trade wind, and the beta effect. It is demonstrated that, for the barotropic/baroclinic solitary wave, except for a little numerical dissipation, the scheme utilized here preserves total energy despite the strong interactions and exchange of energy between the baroclinic and barotropic components of the flow. After a short transient period where the numerical solution stays close to the asymptotic predictions, the flow develops small scale eddies and ultimately becomes highly turbulent. It is found here that the interaction of a dry gravity wave with a moisture front can either result in a reflection of a fast moistening front or the pure extinction of the precipitation. The barotropic trade wind stretches the precipitation patches and increases the lifetime of the moisture fronts which decay naturally by the effects of dissipation through precipitation while the Coriolis effect makes the moving precipitation patches disappear and appear at other times and places. (orig.)

  7. A Maximum Efficiency Point Tracking Control Scheme Based on Different Cross Coupling of Dual-Receiver Inductive Power Transfer System

    Directory of Open Access Journals (Sweden)

    Ruikun Mai

    2017-02-01

    Full Text Available One of the most promising inductive power transfer applications is the wireless power supply for locomotives which may cancel the need for pantographs. In order to meet the dynamic and high power demands of wireless power supplies for locomotives, a relatively long transmitter track and multiple receivers are usually adopted. However, during the dynamic charging, the mutual inductances between the transmitter and receivers vary and the load of the locomotives also changes randomly, which dramatically affects the system efficiency. A maximum efficiency point tracking control scheme is proposed to improve the system efficiency against the variation of the load and the mutual inductances between the transmitter and receivers while considering the cross coupling between receivers. Firstly, a detailed theoretical analysis on dual receivers is carried out. Then a control scheme with three control loops is proposed to regulate the receiver currents to be the same, to regulate the output voltage and to search for the maximum efficiency point. Finally, a 2 kW prototype is established to validate the performance of the proposed method. The overall system efficiency (DC-DC efficiency reaches 90.6% at rated power and is improved by 5.8% with the proposed method under light load compared with the traditional constant output voltage control method.

  8. Stability Properties and Cross Coupling Performance of the Control Allocation Scheme CAPIO

    Science.gov (United States)

    Yildiz, Yildiray; Kolmanovsky, Ilya V.

    2010-01-01

    This paper presents a stability analysis and an application of a recently developed Control Allocator for recovery from Pilot Induced Oscillations (CAPIO). When actuators are rate-saturated due to either aggressive pilot commands, high gain ight control systems or some anomaly in the system, the effective delay in the control loop may increase. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate Pilot induced Oscillations (PIO). CAPIO reduces the e ective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. We present a stability analysis of CAPIO for a scalar system. In addition, we present simulation results for aircraft with cross-coupling which demonstrates the potential of CAPIO serving as an effective PIO handler in adverse conditions.

  9. Scheme for generation of fully-coherent, TW power level hard X-ray pulses from baseline undulators at the European X-ray FEL

    CERN Document Server

    Geloni, Gianluca; Saldin, Evgeni

    2010-01-01

    The most promising way to increase the output power of an X-ray FEL (XFEL) is by tapering the magnetic field of the undulator. Also, significant increase in power is achievable by starting the FEL process from a monochromatic seed rather than from noise. This report proposes to make use of a cascade self-seeding scheme with wake monochromators in a tunable-gap baseline undulator at the European XFEL to create a source capable of delivering coherent radiation of unprecedented characteristics at hard X-ray wavelengths. Compared with SASE X-ray FEL parameters, the radiation from the new source has three truly unique aspects: complete longitudinal and transverse coherence, and a peak brightness three orders of magnitude higher than what is presently available at LCLS. Additionally, the new source will generate hard X-ray beam at extraordinary peak (TW) and average (kW) power level. The proposed source can thus revolutionize fields like single biomolecule imaging, inelastic scattering and nuclear resonant scatteri...

  10. Impact of Arctic sea ice loss on large-scale atmospheric circulation based on fully-coupled sensitivity experiments

    Science.gov (United States)

    Oudar, Thomas; Sanchez, Emilia; Terray, Laurent; Chauvin, Fabrice

    2016-04-01

    Arctic sea ice decline in the recent decades has been reported in observational studies. Modeling studies have confirmed that this downward trend in Arctic sea ice is mainly caused by increasing Greenhouse Gases (GHGs) concentrations into the atmosphere. The IPCC-AR5 report concluded that Arctic sea ice will continue to decrease and is projected to disappear in the middle of the 21st century, yielding to a ice-free region during boreal summer season. Arctic sea ice loss is expected to strongly impact the climate system. Recently, the climate community has conducted a number of studies to evaluate and understand the Arctic sea ice loss implications on climate. While some studies have shown that Arctic sea ice decline can significantly affect the large-scale atmospheric dynamics at high and mid-latitudes of the Northern Hemisphere, by altering the storm-tracks, the jet stream (position and strength) and the planetary waves, large uncertainties remain due to a low signal-to-noise ratio and experimental protocol differences leading to a large inter-model spread. In this work, we investigate the respective roles of Arctic sea ice loss and GHGs increase on the atmospheric dynamics by means of an idealized experimental set-up that uses the coupled model CNRM-CM5. The experimental set-up, based on a flux correction technique, will allow separating the contributions of Arctic sea ice loss from the GHGs increasing. We will focus mainly on the atmospheric circulation response in the Northern Hemisphere and on the associated synoptic variability, represented by the storm-tracks. We show that Arctic sea ice loss is responsible for an equatorward shift of the northern hemisphere jet, which is opposed to the GHGs effect. Finally we show that these shifts are consistent with the storm-tracks response.

  11. A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period

    Directory of Open Access Journals (Sweden)

    Florence Sevault

    2014-11-01

    Full Text Available A fully coupled regional climate system model (CNRM-RCSM4 dedicated to the Mediterranean region is described and evaluated using a multidecadal hindcast simulation (1980–2012 driven by global atmosphere and ocean reanalysis. CNRM-RCSM4 includes the regional representation of the atmosphere (ALADIN-Climate model, land surface (ISBA model, rivers (TRIP model and the ocean (NEMOMED8 model, with a daily coupling by the OASIS coupler. This model aims to reproduce the regional climate system with as few constraints as possible: there is no surface salinity, temperature relaxation, or flux correction; the Black Sea budget is parameterised and river runoffs (except for the Nile are fully coupled. The atmospheric component of CNRM-RCSM4 is evaluated in a companion paper; here, we focus on the air–sea fluxes, river discharges, surface ocean characteristics, deep water formation phenomena and the Mediterranean thermohaline circulation. Long-term stability, mean seasonal cycle, interannual variability and decadal trends are evaluated using basin-scale climatologies and in-situ measurements when available. We demonstrate that the simulation shows overall good behaviour in agreement with state-of-the-art Mediterranean RCSMs. An overestimation of the shortwave radiation and latent heat loss as well as a cold Sea Surface Temperature (SST bias and a slight trend in the bottom layers are the primary current deficiencies. Further, CNRM-RCSM4 shows high skill in reproducing the interannual to decadal variability for air–sea fluxes, river runoffs, sea surface temperature and salinity as well as open-sea deep convection, including a realistic simulation of the Eastern Mediterranean Transient. We conclude that CNRM-RCSM4 is a mature modelling tool allowing the climate variability of the Mediterranean regional climate system to be studied and understood. It is used in hindcast and scenario modes in the HyMeX and Med-CORDEX programs.

  12. Quantitative precipitation and streamflow forecast for two recent extreme hydro-meteorological events in Southern Italy with a fully-coupled model system

    Science.gov (United States)

    Mendicino, Giuseppe; Senatore, Alfonso

    2016-04-01

    Two severe hydro-meteorological events affected Calabria Region (Southern Italy) in the second half of the year 2015. The first event, on August 12th, focused on a relatively small area near the northern Ionian coast, resulted in a rainfall intensity of about 230 mm in 24 hours involving flash flooding with several million Euros of damages. The second event mainly affected the southern Ionian coast, was more persistent (it lasted from October 30th to November 2nd), interested a wider area and led to recorded rainfall values up to 400 mm in 24 hours and 700 mm in 48 hours, resulting in severe flooding, landslides and a human loss. The fully two-way dynamically coupled atmosphere-hydrology modeling system WRF-Hydro is used to reproduce both the events, in order to assess its skill in forecasting both quantitative precipitation and streamflow with initial and lateral atmospheric boundary conditions given by the recently available 0.25° output resolution GFS grid dataset. Precipitation estimates provided by 2 km-resolution atmospheric model are compared with both ground-based data and observations from a National Civil Protection Department single-polarization Doppler radar. Discharge data from the rivers and creeks affected by heavy precipitation are not available, then streamflow results are compared with either official discharge estimates provided by authorities (first event) or recorded river stages (second event). Results show good performances of the fully-coupled hydrometeorological prediction system which allows an improved representation of the coupled atmospheric and terrestrial processes and provides an integrated solution for the regional water cycle modeling, from atmospheric processes to river outlets.

  13. Marine boundary layer cloud regimes and POC formation in a CRM coupled to a bulk aerosol scheme

    Science.gov (United States)

    Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.

    2013-12-01

    A cloud-resolving model (CRM) coupled to a new intermediate-complexity bulk aerosol scheme is used to study aerosol-boundary-layer-cloud-precipitation interactions and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single lognormal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by clouds and rain. The CRM with the aerosol scheme is applied to a range of steadily forced cases idealized from a well-observed POC. The long-term system evolution is explored with extended two-dimensional (2-D) simulations of up to 20 days, mostly with diurnally averaged insolation and 24 km wide domains, and one 10 day three-dimensional (3-D) simulation. Both 2-D and 3-D simulations support the Baker-Charlson hypothesis of two distinct aerosol-cloud "regimes" (deep/high-aerosol/non-drizzling and shallow/low-aerosol/drizzling) that persist for days; transitions between these regimes, driven by either precipitation scavenging or aerosol entrainment from the free-troposphere (FT), occur on a timescale of ten hours. The system is analyzed using a two-dimensional phase plane with inversion height and boundary layer average aerosol concentrations as state variables; depending on the specified subsidence rate and availability of FT aerosol, these regimes are either stable equilibria or distinct legs of a slow limit cycle. The same steadily forced modeling framework is applied to the coupled development and evolution of a POC and the surrounding overcast boundary layer in a larger 192 km wide domain. An initial 50% aerosol reduction is applied to half of the model domain. This has little effect until the stratocumulus thickens enough to drizzle, at which time the low-aerosol portion transitions into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback

  14. Development and evaluation of an ozone deposition scheme for coupling to a terrestrial biosphere model

    Science.gov (United States)

    Franz, Martina; Simpson, David; Arneth, Almut; Zaehle, Sönke

    2017-01-01

    Ozone (O3) is a toxic air pollutant that can damage plant leaves and substantially affect the plant's gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic O3 on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate O3 uptake and damage of plants for a state-of-the-art global terrestrial biosphere model called OCN. Our approach accounts for ozone damage by calculating (a) O3 transport from 45 m height to leaf level, (b) O3 flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated O3 uptake over the lifetime of a leaf. A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN including ozone damage. This comparison provides a good baseline on top of which ozone damage can be evaluated. In comparison to literature values, we demonstrate that the new model version produces realistic O3 surface resistances, O3 deposition velocities, and stomatal to total O3 flux ratios. A sensitivity study reveals that key metrics of the air-to-leaf O3 transport and O3 deposition, in particular the stomatal O3 uptake, are reasonably robust against uncertainty in the underlying parameterisation of the deposition scheme. Nevertheless, correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative O3 uptake. We further find that accounting for stomatal and non-stomatal uptake processes substantially affects simulated plant O3 uptake and accumulation, because aerodynamic resistance and non-stomatal O3 destruction reduce the predicted leaf-level O3 concentrations. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric O3 impacts the regional carbon and water cycling less

  15. Update on coaxial coupling scheme for International Linear Collider-type cavities

    Directory of Open Access Journals (Sweden)

    P. Kneisel

    2010-02-01

    Full Text Available This paper reports on our efforts to develop a flangeable coaxial coupler for both higher order mode and fundamental coupling for nine-cell ILC-type cavities, which were designed in the early 1990’s for pulsed operation with a duty factor less than 1%. The design of the coupler has been done in such a way that the rf magnetic flux B at the flange connection was minimized and only a field of <5  mT would be present for an operation at an accelerating field E_{acc}∼36  MV/m (B∼150  mT in the cavity. Even though we achieved reasonably high Q values at low field, the cavity/coupler combination was limited in the cw mode to only ∼7  MV/m, where a thermally initiated degradation occurred. We believed that this limitation was caused by poor cooling of the shorting plate and inner tube in the coaxial coupler; therefore, we have improved the cooling conditions by initially drilling radial cooling channels every 30 degrees, then every 15 degrees into the shorting plate and eventually removing the “bridges” between the channels. This paper reports on our experiences with the modified coaxial coupler under cw and pulsed conditions.

  16. A TVD SCHEME FOR INCOMPRESSIBLE FLOW COUPLED WITH DIFFERENT TURBULENCE MODLES ON A GROUND- MOUNTED SQUARE-RIB FLOW

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A finite-difference Total Variation Diminishing (TVD) numerical simulation model for coupling the Reynolds Averaged Navier-Stokes (RANS) equations, pressure-relative continuity equation and various k-ε turbulence models was developed to solve the incompressible flow based on the pseudo-compressibility method. The hyperbolicity of all these equations was studied and the discretization of the fully coupling equations with all the primal variables and source terms were made in this article. Numerical simulation for modeling the flow around a ground-mounted square rib was implemented and validated by comparing with the published wind tunnel experimental data. It is shown that such a numerical simulation method with a proper turbulence model has a very good accuracy to simulate the flow around a surface-mounted rib. It is concluded that the Renormalization Group (RNG) and Chen-Kim k-ε turbulence models have much better ability to predict the characteristics of the vortex structure and flow separation than the standard k-ε model.

  17. From the groundwater to the boundary layer: a fully-coupled hydrometeorologic modeling approach for a catchment of the Alpine foothils

    Science.gov (United States)

    Fersch, Benjamin; Kunstmann, Harald; Gochis, David

    2016-04-01

    Through capillary rise, shallow groundwater tables can considerably affect the soil moisture contents within the root layer of the vadose zone and consequently govern the exchange of moisture and energy between the land-surface and the atmospheric boundary layer. In addition, they play an important role for channel flow and substantial quantities of recharge water are subject to lateral redistribution. A combination of these processes can lead to various non-linear dependencies, feedback and back coupling. As a physically based hydrometeorologic modeling system, WRF-Hydro enables the study of the interactions between the atmospheric boundary layer and the hydrological quantities above and within the soil. However, in its current version a linear storage (bucket) model is employed to simulate the groundwater with single direction from the recharge towards the channel. For an improved representation, we present an extension to the hydrological component of WRF-Hydro that features a 2-dimensional, finite-difference, single-layer, porous groundwater flow model, a Darcy-flux parametrization of vertical water flux from and to the unsaturated zone, and a head-gradient based groundwater coupling to the river channel network. The developed model system is applied for the diverse Alpine foothill catchment of the Ammer river (650 km²), in Southern Germany, characterized by complex terrain, ranging from 550 to more than 2200 m.a.s.l. We will present an overview on the model structure and the coupling approach. Moreover, first results of the stand-alone model calibration and the fully coupled application will be shown.

  18. Coupling mechanism of roof and supporting wall in gob-side entry retaining in fully-mechanized mining with gangue backfilling

    Institute of Scientific and Technical Information of China (English)

    Ma Zhanguo; Gong Peng; Fan Jinquan; Geng Minmin; Zhang Guowei

    2011-01-01

    We analyzed the deformation characteristics of overlying stratum in backfilling with fully-mechanized and retaining roadways along the gob area coal mining technology,and established a mechanical model for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fullymechanized coal mining technology.Using Winkler elastic foundation theory,we analyzed a part of the key stratum under the action of elastic foundation coupling problem,and derived deflection analytical expressions.Combined with specific conditions,we obtained the deflection curves for the roof key stratum of retaining roadways along gob under the conditions of backfilling and fully-mechanized coal mining technology.On this basis,we adopted the Coulomb's earth pressure theory to solve the problem of lateral pressure of the gangue filling area on the supporting wall beside the roadway and to provide the theoretical basis for reasonable selection of the distance between gangue concrete wall and roof and further discussion on the supporting stability of roadway.

  19. CP-ABE Scheme Supporting Fully Fine-Grained Attribute Revocation%一种支持完全细粒度属性撤销的CP-ABE方案

    Institute of Scientific and Technical Information of China (English)

    王鹏翩; 冯登国; 张立武

    2012-01-01

    Attribute revocation is crucial to use of ABE. The existing ABE schemes that support attribute revocation under the direct revocation model can only revoke the whole attributes that the user possesses by revoking the user's identity, so the attribute revocation is coarse-grained. This paper proposes the model of CP-ABE that supports fully fine-grained attribute revocation. Based on the dual encryption system proposed by Waters, a concrete CP-ABE scheme that fully supports fine-grained attribute revocation is constructed over the composite order bilinear groups, and the study proves its security under the standard model. Compared to the existing related schemes, this scheme is much more flexible and can revoke an arbitrary number of attributes that user possesses.%属性撤销是基于属性的加密(attribute based encryption,简称ABE)在实际应用中所必须解决的问题.在直接撤销模式下,已有的支持属性撤销的ABE方案只能以撤销用户身份的方式对用户所拥有的全部属性进行撤销,而无法做到针对属性的细粒度撤销.提出了直接模式下支持完全细粒度属性撤销的CP-ABE(cipher policy ABE)模型,在合数阶双线性群上,基于双系统加密的思想构造了具体的方案,并在标准模型下给出了严格的安全性证明.该方案能够对用户所拥有的任意数量的属性进行撤销,解决了已有方案中属性撤销粒度过粗的问题.

  20. Modeling the influence of aerosols on cloud microphysical properties in the east Asia region using a mesoscale model coupled with a bin-based cloud microphysics scheme

    OpenAIRE

    Iguchi, Takamichi; Nakajima, Teruyuki; Khain, Alexander P.; Saito, Kazuo; Takemura, Toshihiko; Suzuki, Kentaroh

    2008-01-01

    A bin-based microphysics scheme for cloud is implemented into a three-dimensional nonhydrostatic model and off-line coupled with a global aerosol transport model to reproduce realistic and inhomogeneous condensation nuclei (CN) fields. This coupling makes it possible to calculate cloud microphysical properties over a larger area under more realistic environmental conditions. Using the model, nested grid simulations are performed for two precipitation events associated with transitional synopt...

  1. Design of novel three port optical gates scheme for the integration of large optical cavity electroabsorption modulators and evanescently-coupled photodiodes

    Institute of Scientific and Technical Information of China (English)

    Liao Zai-Yi; Yang Hua; Wang Wei

    2008-01-01

    This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.

  2. CLASSICAL AREAS OF PHENOMENOLOGY: Design of novel three port optical gates scheme for the integration of large optical cavity electroabsorption modulators and evanescently-coupled photodiodes

    Science.gov (United States)

    Liao, Zai-Yi; Yang, Hua; Wang, Wei

    2008-07-01

    This paper presents a novel scheme to monolithically integrate an evanescently-coupled uni-travelling carrier photodiode with a planar short multimode waveguide structure and a large optical cavity electroabsorption modulator based on a multimode waveguide structure. By simulation, both electroabsorption modulator and photodiode show excellent optical performances. The device can be fabricated with conventional photolithography, reactive ion etching, and chemical wet etching.

  3. How do icebergs affect the Greenland ice sheet under pre-industrial conditions? – A model study with a fully coupled ice sheet–climate model

    Directory of Open Access Journals (Sweden)

    M. Bügelmayer

    2014-01-01

    Full Text Available Icebergs have a potential impact on climate since they release freshwater over a wide spread area and cool the ocean due to the take up of latent heat. Yet, so far, icebergs have never been modelled using an ice sheet model coupled to a global climate model. Thus, in climate models their impact on climate was restricted to the ocean. In this study, we investigate the effect of icebergs on the Northern Hemisphere climate and the Greenland ice sheet itself within a fully coupled ice sheet (GRISLI–Earth system (iLOVECLIM model set-up under pre-industrial climate conditions. This set-up enables us to dynamically compute the calving sites as well as the ice discharge and to close the water cycle between the climate and the cryosphere model components. Further, we analyse the different impact of moving icebergs compared to releasing the ice discharge at the calving sites directly. We performed a suite of sensitivity experiments to investigate the individual role of the different factors presiding at the impact of ice release to the ocean: release of ice discharge as icebergs vs. as freshwater fluxes; freshening and latent heat effects. We find that icebergs enhance the sea ice thickness south and east of Greenland, thereby cooling the atmosphere and decreasing the Greenland ice sheet's height. In contrast, melting the ice discharge locally at the calving sites, causes an increased ice sheet thickness due to enhanced precipitation. Yet, releasing the ice discharge into the ocean at the calving sites while taking up the latent heat homogeneously, results in a similar ice sheet configuration and climate as the icebergs. Therefore, we conclude that in our fully coupled atmosphere–ocean–cryosphere model set-up, the spatial distribution of the take-up of latent heat related to icebergs melting has a bigger impact on the climate than the input of their melt water. Moreover, we find that icebergs affect the ice sheet's geometry even under pre

  4. Coupling between lower-tropospheric convective mixing and low-level clouds: Physical mechanisms and dependence on convection scheme.

    Science.gov (United States)

    Vial, Jessica; Bony, Sandrine; Dufresne, Jean-Louis; Roehrig, Romain

    2016-12-01

    Several studies have pointed out the dependence of low-cloud feedbacks on the strength of the lower-tropospheric convective mixing. By analyzing a series of single-column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary-layer clouds depend on this mixing in the present-day climate and under surface warming. An increased lower-tropospheric convective mixing leads to a reduction of low-cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary-layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower-tropospheric drying induced by the convective mixing, which damps the reduction of the low-cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low-cloud radiative cooling, which enhances the reduction of the low-cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low-cloud radiative cooling exhibits a stronger sensitivity of low-clouds to convective mixing in the present-day climate, and a stronger low-cloud feedback in response to surface warming. In this model, the low-cloud feedback is stronger when the present-day convective mixing is weaker and when present-day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low-cloud feedbacks observationally is discussed.

  5. Non-oscillatory Central Differencing (Noc) Scheme to Solve the Shallow Water Equations Coupled with Sediment Transport and Bed Evolution in Two Dimensions

    Science.gov (United States)

    Zia, H.; Simpson, G.

    2013-12-01

    The interaction between flowing surface water and sediment transport has numerous important applications in Earth science, including controls on river patterns, drainage basin evolution and morphological changes induced by extreme events such as tsunamis and dam breaks. Many of these problems can be investigated with the mathematical model of the shallow water equations coupled to conservation of sediment concentration and empirical functions for bed friction, substrate erosion and deposition. However, this system of equations is highly nonlinear, requiring fast and robust numerical methods. In this study, we investigate the solution of the shallow water equations coupled to sediment transports via the Non-oscillatory Central Differencing (NOC ) method, a second order scheme based on a predictor-corrector method. The scheme is chosen for its relative stability and robustness. The NOC scheme is especially favorable in situations where the water depth approaches zero and for steady flow conditions, both of which cause problems with more naive schemes. The model is verified by comparing computed results with documented solutions. We are currently using the model to investigate coupling between flow and sediment transport in alluvial rivers.

  6. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    Directory of Open Access Journals (Sweden)

    A. H. Berner

    2013-07-01

    Full Text Available A large-eddy simulation (LES coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of

  7. Spectroscopic diagnostics of low-pressure inductively coupled Kr plasma using a collisional-radiative model with fully relativistic cross sections

    Science.gov (United States)

    Gangwar, Reetesh K.; Dipti; Srivastava, Rajesh; Stafford, Luc

    2016-06-01

    A collisional-radiative (C-R) model for krypton plasma using fully relativistic distorted-wave cross sections for electron excitations was developed. The model was applied to the characterization of inductively coupled Kr plasma with cylindrical geometry over the pressure regime 1-50 mTorr. Radially averaged emission intensities from transitions of Kr (4p55p  →  4p55s) in the range 500-900 nm were recorded at 17 cm from the planar RF-driven coil, with the plasma operated in the inductive regime (H mode). The measured emission intensities were then fitted by varying the electron density, n e, and electron temperature, T e, in the C-R model. At both low and high pressures, variations of the electron density by over two orders of magnitude had only a minor role on the relative emission intensities. On the other hand, T e values deduced from the comparison between experiment and model decreased from 6.7 to 2.6 eV as pressure increased from 1 to 50 mTorr. These results are found to be in good agreement with the effective electron temperature determined from Langmuir probe measurements and the predictions of a model based on the particle balance equation of charged particles.

  8. High statistics determination of the strong coupling constant in Taylor scheme and its OPE Wilson coefficient from lattice QCD with a dynamical charm

    CERN Document Server

    Blossier, B; Brinet, M; De Soto, F; Morenas, V; Pène, O; Petrov, K; Rodríguez-Quintero, J

    2014-01-01

    This paper reports on the determination of $\\alpha_S$ from lattice simulations with 2+1+1 twisted-mass dynamical flavours {\\it via} the computation of the ghost-gluon coupling renormalized in the MOM Taylor scheme. A high-statistics sample of gauge configurations, used to evaluate the coupling from ghost and gluon propagators, allows for the appropriate update of previous results, now performing an improved analysis of data with reduced statistical errors and the systematical uncertainties under a better control.

  9. Demonstration of a fully-coupled end-to-end model for small pelagic fish using sardine and anchovy in the California Current

    Science.gov (United States)

    Rose, Kenneth A.; Fiechter, Jerome; Curchitser, Enrique N.; Hedstrom, Kate; Bernal, Miguel; Creekmore, Sean; Haynie, Alan; Ito, Shin-ichi; Lluch-Cota, Salvador; Megrey, Bernard A.; Edwards, Chris A.; Checkley, Dave; Koslow, Tony; McClatchie, Sam; Werner, Francisco; MacCall, Alec; Agostini, Vera

    2015-11-01

    -1990s from anchovy to sardine dominance. Simulated averaged weights- and lengths-at-age did not vary much across decades, and movement patterns showed anchovy located close to the coast while sardine were more dispersed and farther offshore. Albacore predation on anchovy and sardine was concentrated near the coast in two pockets near the Monterey Bay area and equatorward of Cape Mendocino. Predation mortality from fishing boats was concentrated where sardine age-1 and older individuals were located close to one of the five ports. We demonstrated that it is feasible to perform multi-decadal simulations of a fully-coupled end-to-end model, and that this can be done for a model that follows individual fish and boats on the same 3-dimensional grid as the hydrodynamics. Our focus here was on proof of principle and our results showed that we solved the major technical, bookkeeping, and computational issues. We discuss the next steps to increase computational speed and to include important biological differences between anchovy and sardine. In a companion paper (Fiechter et al., 2015), we further analyze the historical simulation in the context of the various hypotheses that have been proposed to explain the sardine and anchovy cycles.

  10. Towards the development of a fully coupled arterial-venous 1D model: suitability of using a 1D finite volume method with staggered spatial discretization

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2012-07-01

    Full Text Available In this paper we outline the development of a 1D finite volume model to solve for blood flow through the arterial system. The model is based on a staggered spatial discretization which leads to a stable solution scheme. This scheme can accurately...

  11. Quantifying the effects of three-dimensional subsurface heterogeneity on Hortonian runoff processes using a fully-coupled numerical, stochastic approach.

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, R M; Kollet, S J

    2007-08-23

    The impact of three-dimensional subsurface heterogeneity on hillslope runoff generated by excess infiltration (so called Hortonian runoff) is examined. A fully-coupled, parallel subsurface overland flow model is used to simulate runoff from an idealized hillslope. Ensembles of correlated, Gaussian random fields of saturated hydraulic conductivity are used to create uncertainty and variability (i.e. structure) due to subsurface heterogeneity. A large number of cases are simulated in a parametric manner with variance of the hydraulic conductivity varied over two orders of magnitude. These cases include rainfall rates above, equal and below the geometric mean of the hydraulic conductivity distribution. These cases are also compared to theoretical considerations of runoff production based on simple assumptions regarding (1) the rainfall rate and the value of hydraulic conductivity in the surface cell using a spatially-indiscriminant approach; and (2) a percolation-theory type approach to incorporate so-called runon. Simulations to test the ergodicity of hydraulic conductivity on hillslope runoff are also performed. Results show three-dimensional features (particularly in the vertical dimension) in the hydraulic conductivity distributions that create shallow perching, which has an important effect on runoff behavior that is fundamentally different in character than previous two dimensional analyses. The simple theories are shown to be very poor predictors of the saturated area that might runoff due to excess infiltration. It is also shown that ergodicity is reached only for a large number of integral scales ({approx}30) and not for cases where the rainfall rate is less than the geometric mean of the saturated hydraulic conductivity.

  12. Modeling of Hydraulic Fracture Propagation at the kISMET Site Using a Fully Coupled 3D Network-Flow and Quasi- Static Discrete Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Herb F. [Univ. of Wisconsin, Madison, WI (United States); Haimson, Bezalel C. [Univ. of Wisconsin, Madison, WI (United States); Doe, Thomas W. [Golder Associates Inc., Redmond, VA (United States); Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dobson, Patrick F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-01

    Aimed at supporting the design of hydraulic fracturing experiments at the kISMET site, ~1500 m below ground in a deep mine, we performed pre-experimental hydraulic fracturing simulations in order to estimate the breakdown pressure, propagation pressure, fracture geometry, and the magnitude of induced seismicity using a newly developed fully coupled three-dimensional (3D) network flow and quasi-static discrete element model (DEM). The quasi-static DEM model, which is constructed by Delaunay tessellation of the rock volume, considers rock fabric heterogeneities by using the “disordered” DEM mesh and adding random perturbations to the stiffness and tensile/shear strengths of individual DEM elements and the elastic beams between them. A conjugate 3D flow network based on the DEM lattice is constructed to calculate the fluid flow in both the fracture and porous matrix. One distinctive advantage of the model is that fracturing is naturally described by the breakage of elastic beams between DEM elements. It is also extremely convenient to introduce mechanical anisotropy into the model by simply assigning orientation-dependent tensile/shear strengths to the elastic beams. In this paper, the 3D hydraulic fracturing model was verified against the analytic solution for a penny-shaped crack model. We applied the model to simulate fracture propagation from a vertical open borehole based on initial estimates of rock mechanical properties and in-situ stress conditions. The breakdown pressure and propagation pressure are directly obtained from the simulation. In addition, the released elastic strain energies of individual fracturing events were calculated and used as a conservative estimate for the magnitudes of the potential induced seismic activities associated with fracturing. The comparisons between model predictions and experimental results are still ongoing.

  13. Fully Coupled Modeling of Burnup-Dependent (U1- y , Pu y )O2- x Mixed Oxide Fast Reactor Fuel Performance

    Science.gov (United States)

    Liu, Rong; Zhou, Wenzhong; Zhou, Wei

    2016-03-01

    During the fast reactor nuclear fuel fission reaction, fission gases accumulate and form pores with the increase of fuel burnup, which decreases the fuel thermal conductivity, leading to overheating of the fuel element. The diffusion of plutonium and oxygen with high temperature gradient is also one of the important fuel performance concerns as it will affect the fuel material properties, power distribution, and overall performance of the fuel pin. In order to investigate these important issues, the (U1- y Pu y )O2- x fuel pellet is studied by fully coupling thermal transport, deformation, oxygen diffusion, fission gas release and swelling, and plutonium redistribution to evaluate the effects on each other with burnup-dependent models, accounting for the evolution of fuel porosity. The approach was developed using self-defined multiphysics models based on the framework of COMSOL Multiphysics to manage the nonlinearities associated with fast reactor mixed oxide fuel performance analysis. The modeling results showed a consistent fuel performance comparable with the previous results. Burnup degrades the fuel thermal conductivity, resulting in a significant fuel temperature increase. The fission gas release increased rapidly first and then steadily with the burnup increase. The fuel porosity increased dramatically at the beginning of the burnup and then kept constant as the fission gas released to the fuel free volume, causing the fuel temperature to increase. Another important finding is that the deviation from stoichiometry of oxygen affects greatly not only the fuel properties, for example, thermal conductivity, but also the fuel performance, for example, temperature distribution, porosity evolution, grain size growth, fission gas release, deformation, and plutonium redistribution. Special attention needs to be paid to the deviation from stoichiometry of oxygen in fuel fabrication. Plutonium content will also affect the fuel material properties and performance

  14. Modeling the atmospheric and terrestrial water and energy cycles in the ScaleX experiment through a fully-coupled atmosphere-hydrology model

    Science.gov (United States)

    Senatore, Alfonso; Benjamin, Fersch; Thomas, Rummler; Caroline, Brosy; Christian, Chwala; Junkermann, Wolfgang; Ingo, Völksch; Harald, Kunstmann

    2016-04-01

    The TERENO preAlpine Observatory, comprising a series of observatory sites along an altitudinal gradient within the Ammer catchment (southern Bavaria, Germany), has been designed as an international research platform, open for participation and integration, and has been provided with comprehensive technical infrastructure to allow joint analyses of water-, energy- and nutrient fluxes. In June and July 2015 the operational monitoring has been complemented by the ScaleX intensive measurement campaign, where additional precipitation and soil moisture measurements, remote sensing measurements of atmospheric wind, humidity and temperature profiles have been performed, complemented by micro-light aircraft- and UAV-based remote sensing for three-dimensional pattern information. The comprehensive observations serve as validation and evaluation basis for compartment-crossing modeling systems. Specifically, the fully two-way dynamically coupled atmosphere-hydrology modeling system WRF-Hydro has been used to investigate the interplay of energy and water cycles at the regional scale and across the compartments atmosphere, stream, vadose zone and groundwater during the ScaleX campaign and to assess the closure of the budgets involved. Here, several high-resolution modeled hydro-meteorological variables, such as precipitation, soil moisture, river discharge and air moisture and temperature along vertical profiles are compared with observations from multiple sources, such as rain gauges and soil moisture networks, rain radars, stream gauges, UAV and a micro-light aircraft. Results achieved contribute to the objective of addressing questions on energy- and water-cycling within the TERENO-Ammer region at a very high scale and degree of integration, and provides hints on how well can observations constrain uncertainties associated with the modeling of atmospheric and terrestrial water and energy balances.

  15. Critical issues for high-power FEL based on microtron recuperator/electron out-coupling scheme

    Science.gov (United States)

    Vinokurov, Nikolai A.; Zholents, Alexander A.; Fawley, William M.; Kim, Kwang J.

    1997-05-01

    The FELs based on the rf accelerator-recuperator and the electron outcoupling is promising for obtaining average output power of hundreds of kilowatts. We present basic considerations for the system stability and performance optimization for this scheme.

  16. A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation Un esquema de elementos finitos completamente discreto para la ecuación de Derrida-Lebowitz-Speer-Spohn

    Directory of Open Access Journals (Sweden)

    Jorge Mauricio Ruiz Vera

    2013-03-01

    Full Text Available The Derrida-Lebowitz-Speer-Spohn (DLSS equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for a coupled-equation approach to the DLSS equation. Using the available information about the physical phenomena, we are able to set the corresponding boundary conditions for the coupled system. We prove existence of a global in time discrete solution by fixed point argument. Numerical results illustrate the quantum character of the equation. Finally a test of order of convergence of the proposed discretization scheme is presented.La ecuación de Derrida-Lebowitz-Speer-Spohn (DLSS es una ecuación de evolución no lineal de cuarto orden. Esta aparece en el estudio de las fluctuaciones de interface de sistemas de espín y en la modelación de semicoductores cuánticos.  En este artículo, se presenta una discretización por elementos finitos para una formulación exponencial de la ecuación DLSS abordada como un sistema acoplado de ecuaciones. Usando la información disponible acerca del fenómeno físico, se establecen las condiciones de contorno para el sistema acoplado. Se demuestra la existencia de la solución discreta global en el tiempo via un  argumento de punto fijo. Los resultados numéricos ilustran el carácter cuántico de la ecuación. Finalmente se presenta un test del orden de convergencia de la discretización porpuesta.

  17. High-Resolution Numerical Analysis of the Triggering Mechanism of M L5.7 Aswan Reservoir Earthquake Through Fully Coupled Poroelastic Finite Element Modeling

    Science.gov (United States)

    Cheng, Huihong; Zhang, Huai; Shi, Yaolin

    2016-05-01

    In 1981, a powerful M L5.7 earthquake occurred 50 km away from the Aswan Reservoir dam. After the statistical analysis on the correlationship between long-term continuous seismicity occurrence and the reservoir water level variation attributed to the impoundment and drainage procedures, researchers believe that this event is a typical reservoir-triggered seismicity (Nature 301(6):14, 1983; Earthquake Activity in the Aswan Region, Egypt. Birkhäuser, Basel, pp. 69-86, 1995), although its triggering mechanism is poorly understood to date. To quantitatively address the triggering mechanism as well as its relationship with the characteristics of local geological settings around the reservoir region, in this paper, a fully coupled three-dimensional poroelastic finite element model of the Aswan reservoir is put forward by taking the consideration of the realistic observation data, for example, the high-resolution topography, water level fluctuation history, flood zone boundary and water depth variation, fault parameters, etc. Meanwhile, the change of Coulomb Failure Stress (ΔCFS) in correspondence to elastic stress and pore pressure variations induced by fluid diffusion is calculated. And the elastic strain energy accumulation in the reservoir region due to the impoundment load is obtained as well. Our primary results indicate that both the pore pressure and the coulomb stress on the seismogenic fault plane gradually increase with the respect of time while the water level rises. The magnitude of ΔCFS at the hypocenter of this major event is around 0.1 MPa, suggesting that the impoundment of the Aswan Reservoir possibly triggered the M L5.7 earthquake. The contribution of the elastic load is less than 3 percent of the total ΔCFS; on the other hand, the dynamic pore pressure change predominantly accounts for the contribution. The accumulative maximum surface deformation beneath the Aswan reservoir is up to 80 cm since its impounding began until the M L5.7 earthquake

  18. A fully coupled transient thermomechanical ice-flow/permafrost model of the Rhine Glacier, Switzerland: effects of permafrost on basal conditions

    Science.gov (United States)

    Cohen, D.; Zwinger, T.; Haeberli, W.; Fischer, U. H.

    2016-12-01

    The safe disposal of radioactive wastes in deep geological repositories requires their containment and isolation for up to one million years. Over that time period, the performance of the repositories in mid- and high-latitude regions can be impacted by future ice-age conditions which may cause deep glacial erosion, permafrost development, and changes in groundwater fluxes. In Switzerland, repositories are planned in the northern Swiss lowlands near the marginal zone of the former Rhine Glacier that repeatedly formed two extensive piedmont lobes (the Rhine and Linth lobes) over the Swiss Plateau. There, overdeepenings formed by glacial erosion indicate that the glacier was warm-based. Yet the Last Glacial Maximum (LGM) occurred under cold conditions: central Europe experienced extremely cold and dry conditions caused by the penetration of winter sea ice to low latitudes in the Atlantic Ocean and the corresponding closure of the primary humidity source north of the Alps. At the LGM, flat and extended lobes of large piedmont glaciers spreading out over much of the Swiss Plateau were polythermal, characterized by low driving stresses (typically around 30 kPa) and surrounded by continuous periglacial permafrost up to 150 m thick. Subsurface temperatures and groundwater flow conditions were strongly influenced by the presence of extended surface and subsurface ice. Using numerical models we explore the effects of permafrost on basal conditions of the piedmont lobes during the build-up of the Rhine Glacier. We apply a two-dimensional transient fully coupled thermomechanical full stress ice-flow and permafrost model along a flowline characterizing the Rhine lobe. The energy equation is solved in both ice and rock and permafrost is modeled using an effective heat capacity formulation to account for phase transitions. Transient effects during ice advances and permafrost build-up up to the LGM are resolved by modeling the full glacial cycle using reconstructed temperature

  19. A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes: L95-GRS (v1.0)

    Science.gov (United States)

    Haussaire, J.-M.; Bocquet, M.

    2016-01-01

    Bocquet and Sakov (2013) introduced a low-order model based on the coupling of the chaotic Lorenz-95 (L95) model, which simulates winds along a mid-latitude circle, with the transport of a tracer species advected by this zonal wind field. This model, named L95-T, can serve as a playground for testing data assimilation schemes with an online model. Here, the tracer part of the model is extended to a reduced photochemistry module. This coupled chemistry meteorology model (CCMM), the L95-GRS (generic reaction set) model, mimics continental and transcontinental transport and the photochemistry of ozone, volatile organic compounds and nitrogen oxides. Its numerical implementation is described. The model is shown to reproduce the major physical and chemical processes being considered. L95-T and L95-GRS are specifically designed and useful for testing advanced data assimilation schemes, such as the iterative ensemble Kalman smoother (IEnKS), which combines the best of ensemble and variational methods. These models provide useful insights prior to the implementation of data assimilation methods into larger models. We illustrate their use with data assimilation schemes on preliminary yet instructive numerical experiments. In particular, online and offline data assimilation strategies can be conveniently tested and discussed with this low-order CCMM. The impact of observed chemical species concentrations on the wind field estimate can be quantitatively assessed. The impacts of the wind chaotic dynamics and of the chemical species non-chaotic but highly nonlinear dynamics on the data assimilation strategies are illustrated.

  20. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are pres...

  1. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are pres......Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS...... prior to detection are effected in a microconduit placed on top of an SI selection valve....

  2. Cost-based droop scheme for DC microgrid

    DEFF Research Database (Denmark)

    Nutkani, Inam Ullah; Wang, Peng; Loh, Poh Chiang

    2014-01-01

    voltage level, less on optimized operation and control of generation sources. The latter theme is perused in this paper, where cost-based droop scheme is proposed for distributed generators (DGs) in DC microgrids. Unlike traditional proportional power sharing based droop scheme, the proposed scheme...... considers the generation costs of DGs and dynamically tunes their droop gradients to produce more power from less costly DGs and vice versa. The proposed scheme is fully autonomous, simple to implement in dispatchable and non-dispatchable sources coupled with storage, support islanded and grid......-connected operation. Most importantly, the proposed scheme can reduce overall total generation cost in DC microgrids without centralized controller and communication links. The performance of the proposed scheme has been verified under different load conditions....

  3. Effect of coupling on scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high- superconductors

    OpenAIRE

    Shukrinov, Yu M.; Mahfouzi, F.

    2005-01-01

    We report the numerical calculations of the current-voltage characteristics of intrinsic Josephson junctions in high- superconductors. The charging effect at superconducting layers is taken into account. A set of equations is used to study the non-linear dynamics of the system. In framework of capacitively coupled Josephson junctions model we obtain the total number of branches using fixed initial conditions for phases and their derivatives. The influence of the coupling constant \\alpha on th...

  4. Coupled-core fluxgate magnetometer: Novel configuration scheme and the effects of a noise-contaminated external signal

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Antonio [San Diego State University, Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego, CA 92182-7720 (United States)]. E-mail: palacios@euler.sdsu.edu; Aven, John [San Diego State University, Nonlinear Dynamical Systems Group, Department of Mathematics and Statistics, San Diego, CA 92182-7720 (United States); In, Visarath [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States)]. E-mail: visarath@spawar.navy.mil; Longhini, Patrick [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States); Kho, Andy [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States); Neff, Joseph D. [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States); Bulsara, Adi [Space and Naval Warfare Systems Center San Diego, Code 2363, 53560 Hull St, San Diego, CA 92152-5001 (United States)]. E-mail: bulsara@spawar.navy.mil

    2007-07-16

    Recent theoretical and experimental work has shown that unidirectional coupling can induce oscillations in overdamped and undriven nonlinear dynamical systems that are non-oscillatory when uncoupled; in turn, this has been shown to lead to new mechanisms for weak (compared to the energy barrier height) signal detection and amplification. The potential applications include fluxgate magnetometers, electric field sensors, and arrays of Superconducting Quantum Interference Device (SQUID) rings. In the particular case of the fluxgate magnetometer, we have developed a ''coupled-core fluxgate magnetometer'' (CCFM); this device has been realized in the laboratory and its dynamics used to quantify many properties that are generic to this class of systems and coupling. The CCFM operation is underpinned by the emergent oscillatory behavior in a unidirectionally coupled ring of wound ferromagnetic cores, each of which can be treated as an overdamped bistable dynamic system when uncoupled. In particular, one can determine the regimes of existence and stability of the (coupling-induced) oscillations, and the scaling behavior of the oscillation frequency. More recently, we studied the effects of a (Gaussian) magnetic noise floor on a CCFM system realized with N=3 coupled ferromagnetic cores. In this Letter, we first introduce a variation on the basic CCFM configuration that affords a path to enhanced device sensitivity, particularly for N>=3 coupled elements. We then analyze the response of the basic CCFM configuration as well as the new setup to a dc target signal that has a small noisy component (or ''contamination'')

  5. Modeling the influence of aerosols on cloud microphysical properties in the east Asia region using a mesoscale model coupled with a bin-based cloud microphysics scheme

    Science.gov (United States)

    Iguchi, Takamichi; Nakajima, Teruyuki; Khain, Alexander P.; Saito, Kazuo; Takemura, Toshihiko; Suzuki, Kentaroh

    2008-07-01

    A bin-based microphysics scheme for cloud is implemented into a three-dimensional nonhydrostatic model and off-line coupled with a global aerosol transport model to reproduce realistic and inhomogeneous condensation nuclei (CN) fields. This coupling makes it possible to calculate cloud microphysical properties over a larger area under more realistic environmental conditions. Using the model, nested grid simulations are performed for two precipitation events associated with transitional synoptic-scale forcing during the spring over an area of the East China Sea. The nested grid simulations reproduce the general features of the horizontal distributions of variables such as effective droplet radius derived from satellite data retrieval. Comparison of the relationships among simulated cloud variables with those among satellite-derived variables reveals that the implementation of an inhomogeneous CN field results in a more accurate simulation of the distribution of cloud microphysical properties. Sensitivity tests with respect to CN concentration show that the simulated area and amount of precipitation are slightly affected by the CN concentration. Comparative simulations using bin-based and bulk microphysical schemes indicate that the difference in cloud microphysics has little effect on precipitation except over the areas of elevated pollution (i.e., elevated CN). Comparison with previous reports indicates that the precipitation response to aerosols is dependent on the environmental conditions and the type of the cloud system.

  6. WEB-DHM: A distributed biosphere hydrological model developed by coupling a simple biosphere scheme with a hillslope hydrological model

    Science.gov (United States)

    The coupling of land surface models and hydrological models potentially improves the land surface representation, benefiting both the streamflow prediction capabilities as well as providing improved estimates of water and energy fluxes into the atmosphere. In this study, the simple biosphere model 2...

  7. Developments and Validations of Fully Coupled CFD and Practical Vortex Transport Method for High-Fidelity Wake Modeling in Fixed and Rotary Wing Applications

    Science.gov (United States)

    Anusonti-Inthra, Phuriwat

    2010-01-01

    A novel Computational Fluid Dynamics (CFD) coupling framework using a conventional Reynolds-Averaged Navier-Stokes (BANS) solver to resolve the near-body flow field and a Particle-based Vorticity Transport Method (PVTM) to predict the evolution of the far field wake is developed, refined, and evaluated for fixed and rotary wing cases. For the rotary wing case, the RANS/PVTM modules are loosely coupled to a Computational Structural Dynamics (CSD) module that provides blade motion and vehicle trim information. The PVTM module is refined by the addition of vortex diffusion, stretching, and reorientation models as well as an efficient memory model. Results from the coupled framework are compared with several experimental data sets (a fixed-wing wind tunnel test and a rotary-wing hover test).

  8. Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model

    NARCIS (Netherlands)

    Strengers, B.J.; Müller, C.; Schaeffer, M.; Haarsma, R.J.; Severijns, C.; Gerten, D.; Schaphoff, S.; Houdt, Van den R.; Oostenrijk, R.

    2010-01-01

    This study describes the coupling of the dynamic global vegetation model (DGVM), Lund–Potsdam–Jena Model for managed land (LPJmL), with the general circulation model (GCM), Simplified Parameterizations primitivE Equation DYnamics model (SPEEDY), to study the feedbacks between land-use change and nat

  9. Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model

    NARCIS (Netherlands)

    Strengers, B.J.; Müller, C.; Schaeffer, M.; Haarsma, R.J.; Severijns, C.; Gerten, D.; Schaphoff, S.; Houdt, Van den R.; Oostenrijk, R.

    2010-01-01

    This study describes the coupling of the dynamic global vegetation model (DGVM), Lund–Potsdam–Jena Model for managed land (LPJmL), with the general circulation model (GCM), Simplified Parameterizations primitivE Equation DYnamics model (SPEEDY), to study the feedbacks between land-use change and nat

  10. Systematic review of HIV transmission between heterosexual serodiscordant couples where the HIV-positive partner is fully suppressed on antiretroviral therapy.

    Directory of Open Access Journals (Sweden)

    Mona R Loutfy

    Full Text Available BACKGROUND: The risk of sexual HIV transmission in serodiscordant couples when the HIV-positive partner has full virologic suppression on combination antiretroviral therapy (cART is debated. This study aims to systematically review observational studies and randomized controlled trials (RCTs, evaluating rates of sexual HIV transmission between heterosexual serodiscordant couples when the HIV-positive partner has full suppression on cART. METHODS AND FINDINGS: We searched major bibliographic databases to November 2012 for relevant observational studies and RCTs without language restrictions. Conference proceedings, key journals and bibliographies were also searched. Studies reporting HIV transmission rates, cART histories and viral loads of the HIV-positive partners were included. Two reviewers extracted methodologic characteristics and outcomes. Of 20,252 citations, 3 studies met all eligibility criteria with confirmed full virologic suppression in the HIV-positive partner. We included 3 additional studies (2 cohort studies, 1 RCT that did not confirm viral suppression in the HIV-positive partner at transmission in a secondary meta-analysis. Methodologic quality was reasonable. The rate of transmission in the 3 studies confirming virologic suppression was 0 per 100 person-years (95% CI = 0-0.05, with low heterogeneity (I(2 = 0%. When we included the 3 studies that did not confirm virologic suppression, the rate of transmission was 0.14 per 100 person-years (95%CI = 0.04-0.31 (I(2 = 0%. In a sensitivity analysis including all 6 studies, the rate of transmission was 0 per 100 person-years (95%CI = 0-0.01 after omitting all transmissions with known detectable or unconfirmed viral loads, as full suppression in these cases was unlikely. Limitations included lack of data on same-sex couples, type of sexual intercourse (vaginal vs. anal, direction of HIV transmission, exact viral load at the time of transmission, sexually

  11. Modelling fully-coupled Thermo-Hydro-Mechanical (THM) processes in fractured reservoirs using GOLEM: a massively parallel open-source simulator

    Science.gov (United States)

    Jacquey, Antoine; Cacace, Mauro

    2017-04-01

    Utilization of the underground for energy-related purposes have received increasing attention in the last decades as a source for carbon-free energy and for safe storage solutions. Understanding the key processes controlling fluid and heat flow around geological discontinuities such as faults and fractures as well as their mechanical behaviours is therefore of interest in order to design safe and sustainable reservoir operations. These processes occur in a naturally complex geological setting, comprising natural or engineered discrete heterogeneities as faults and fractures, span a relatively large spectrum of temporal and spatial scales and they interact in a highly non-linear fashion. In this regard, numerical simulators have become necessary in geological studies to model coupled processes and complex geological geometries. In this study, we present a new simulator GOLEM, using multiphysics coupling to characterize geological reservoirs. In particular, special attention is given to discrete geological features such as faults and fractures. GOLEM is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly and in a tightly coupled manner on unstructured meshes which is of interest for the considered non-linear context. Governing equations in 3D for fluid flow, heat transfer (conductive and advective), saline transport as well as deformation (elastic and plastic) have been implemented into the GOLEM application. Coupling between rock deformation and fluid and heat flow is considered using theories of poroelasticity and thermoelasticity. Furthermore, considering material properties such as density and viscosity and transport properties such as porosity as dependent on the state variables (based on the International Association for the Properties of Water and Steam models) increase the coupling complexity of the problem. The GOLEM application aims

  12. Coupling of dynamical micromagnetism and a stationary spin drift-diffusion equation: A step towards a fully self-consistent spintronics framework

    Energy Technology Data Exchange (ETDEWEB)

    Ruggeri, Michele, E-mail: michele.ruggeri@tuwien.ac.at [Institute for Analysis and Scientific Computing, TU Wien, Vienna (Austria); Abert, Claas [Christian Doppler Laboratory of Advanced Magnetic Sensing and Materials, Institute of Solid State Physics, TU Wien, Vienna (Austria); Hrkac, Gino [College of Engineering, Mathematics and Physical Sciences, University of Exeter (United Kingdom); Institute for Analysis and Scientific Computing, TU Wien, Vienna (Austria); Suess, Dieter [Christian Doppler Laboratory of Advanced Magnetic Sensing and Materials, Institute of Solid State Physics, TU Wien, Vienna (Austria); Praetorius, Dirk [Institute for Analysis and Scientific Computing, TU Wien, Vienna (Austria)

    2016-04-01

    We consider the coupling of the Landau–Lifshitz–Gilbert equation with a quasilinear diffusion equation to describe the interplay of magnetization and spin accumulation in magnetic-nonmagnetic multilayer structures. For this problem, we propose and analyze a convergent finite element integrator, where, in contrast to prior work, we consider the stationary limit for the spin diffusion. Numerical experiments underline that the new approach is more effective, since it leads to the same experimental results as for the model with time-dependent spin diffusion, but allows for larger time-steps of the numerical integrator.

  13. Mechanical energy dissipation induced by sloshing and wave breaking in a fully coupled angular motion system. Part I: Theoretical formulation and Numerical Investigation

    CERN Document Server

    Bouscasse, Benjamin; Souto-Iglesias, Antonio; Pita, José Luis Cercós

    2013-01-01

    A single degree of freedom angular motion dynamical system involving the coupling of a moving mass that creates an external torque, a rigid tank, driven by this torque, and fluid which partially fills the tank, is analyzed in the present paper series. The analysis of such a system is relevant for understanding the energy dissipation mechanisms resulting from fluid sloshing and wave breaking. Understanding such mechanisms poses open problems in the fluid mechanics field, and they are relevant for the design of a wide range of Tuned Liquid Damper devices of substantial industrial applicability. In Part I the dynamical system is described in detail to show its nonlinear features both in terms of mechanical and fluid dynamical aspects. A semi-analytical model of the energy dissipated by the fluid, based on a hydraulic jump solution and valid for small oscillation angles, is developed. In order to extend the analysis to large oscillation angles, a Smoothed Particle Hydrodynamics solver is also developed, adapting ...

  14. Towards a fully stringy computation of Yukawa couplings on non factorized tori and non abelian twist correlators (I): the classical solution and action

    CERN Document Server

    Pesando, Igor

    2015-01-01

    We consider the simplest possible setting of non abelian twist fields which corresponds to $SU(2)$ monodromies. We first review the theory of hypergeometric function and of the solutions of the most general Fuchsian second order equation with three singularities. Then we solve the problem of writing the general solution with prescribed $U(2)$ monodromies. We use this result to compute the classical string solution corresponding to three $D2$ branes in $R^4$. Despite the fact the configuration is supersymmetric the classical string solution is not holomorphic. Using the equation of motion and not the KLT approach we give a very simple expression for the classical action of the string. We find that the classical action is not proportional to the area of the triangle determined by the branes intersection points since the solution is not holomorphic. Phenomenologically this means that the Yukawa couplings for these supersymmetric configurations on non factorized tori are suppressed with respect to the factorized ...

  15. Coupled lattice Boltzmann method for simulating electrokinetic flows: A localized scheme for the Nernst-Plank model

    Science.gov (United States)

    Yoshida, Hiroaki; Kinjo, Tomoyuki; Washizu, Hitoshi

    2014-10-01

    We present a coupled lattice Boltzmann method (LBM) to solve a set of model equations for electrokinetic flows in micro-/nano-channels. The model consists of the Poisson equation for the electrical potential, the Nernst-Planck equation for the ion concentration, and the Navier-Stokes equation for the flows of the electrolyte solution. In the proposed LBM, the electrochemical migration and the convection of the electrolyte solution contributing to the ion flux are incorporated into the collision operator, which maintains the locality of the algorithm inherent to the original LBM. Furthermore, the Neumann-type boundary condition at the solid/liquid interface is then correctly imposed. In order to validate the present LBM, we consider an electro-osmotic flow in a slit between two charged infinite parallel plates, and the results of LBM computation are compared to the analytical solutions. Good agreement is obtained in the parameter range considered herein, including the case in which the nonlinearity of the Poisson equation due to the large potential variation manifests itself. We also apply the method to a two-dimensional problem of a finite-length microchannel with an entry and an exit. The steady state, as well as the transient behavior, of the electro-osmotic flow induced in the microchannel is investigated. It is shown that, although no external pressure difference is imposed, the presence of the entry and exit results in the occurrence of the local pressure gradient that causes a flow resistance reducing the magnitude of the electro-osmotic flow.

  16. Characterization of acoustic black hole effect using a one-dimensional fully-coupled and wavelet-decomposed semi-analytical model

    Science.gov (United States)

    Tang, Liling; Cheng, Li; Ji, Hongli; Qiu, Jinhao

    2016-07-01

    Acoustics Black Hole (ABH) effect shows promising features for potential vibration control and energy harvesting applications. The phenomenon occurs in a structure with diminishing thickness which gradually reduces the phase velocity of flexural waves. The coupling between the tailored ABH structure and the damping layer used to compensate for the adverse effect of the unavoidable truncation is critical and has not been well apprehended by the existing models. This paper presents a semi-analytical model to analyze an Euler-Bernoulli beam with embedded ABH feature and its full coupling with the damping layers coated over its surface. By decomposing the transverse displacement field of the beam over the basis of a set of Mexican hat wavelets, the extremalization of the Hamiltonian via Lagrange's equation yields a set of linear equations, which can be solved for structural responses. Highly consistent with the FEM and experimental results, numerical simulations demonstrate that the proposed wavelet-based model is particularly suitable to characterize the ABH-induced drastic wavelength fluctuation phenomenon. The ABH feature as well as the effect of the wedge truncation and that of the damping layers on the vibration response of the beam is analyzed. It is shown that the mass of the damping layers needs particular attention when their thickness is comparable to that of the ABH wedge around the tip area. Due to its modular and energy-based feature, the proposed framework offers a general platform allowing embodiment of other control or energy harvesting elements into the model to guide ABH structural design for various applications.

  17. Fully implicit mixed-hybrid finite-element discretization for general purpose subsurface reservoir simulation

    Science.gov (United States)

    Abushaikha, Ahmad S.; Voskov, Denis V.; Tchelepi, Hamdi A.

    2017-10-01

    We present a new fully-implicit, mixed-hybrid, finite-element (MHFE) discretization scheme for general-purpose compositional reservoir simulation. The locally conservative scheme solves the coupled momentum and mass balance equations simultaneously, and the fluid system is modeled using a cubic equation-of-state. We introduce a new conservative flux approach for the mass balance equations for this fully-implicit approach. We discuss the nonlinear solution procedure for the proposed approach, and we present extensive numerical tests to demonstrate the convergence and accuracy of the MHFE method using tetrahedral elements. We also compare the method to other advanced discretization schemes for unstructured meshes and tensor permeability. Finally, we illustrate the applicability and robustness of the method for highly heterogeneous reservoirs with unstructured grids.

  18. Towards a fully stringy computation of Yukawa couplings on non-factorized tori and non-abelian twist correlators (I): The classical solution and action

    Science.gov (United States)

    Pesando, Igor

    2016-09-01

    We consider the simplest possible setting of non-abelian twist fields which corresponds to SU (2) monodromies. We first review the theory of hypergeometric function and of the solutions of the most general Fuchsian second order equation with three singularities. Then we solve the problem of writing the general solution with prescribed U (2) monodromies. We use this result to compute the classical string solution corresponding to three D2 branes in R4. Despite the fact that the configuration is supersymmetric the classical string solution is not holomorphic. Using the equation of motion and not the KLT approach we give a very simple expression for the classical action of the string. We find that the classical action is not proportional to the area of the triangle determined by the branes intersection points since the solution is not holomorphic. Phenomenologically this means that the Yukawa couplings for these supersymmetric configurations on non-factorized tori are suppressed with respect to the factorized case.

  19. Vibrational configuration interaction using a tiered multimode scheme and tests of approximate treatments of vibrational angular momentum coupling: a case study for methane.

    Science.gov (United States)

    Mielke, Steven L; Chakraborty, Arindam; Truhlar, Donald G

    2013-08-15

    We present vibrational configuration interaction calculations employing the Watson Hamiltonian and a multimode expansion. Results for the lowest 36 eigenvalues of the zero total angular momentum rovibrational spectrum of methane agree with the accurate benchmarks of Wang and Carrington to within a mean unsigned deviation of 0.68, 0.033, and 0.014 cm(-1) for 4-mode, 5-mode, and 6-mode representations, respectively. We note that in the case of the 5-mode results, this is a factor of 10 better agreement than for 5-mode calculations reported earlier by Wu, Huang, Carter, and Bowman for the same set of eigenvalues, which indicates that the multimode expansion is even more rapidly convergent than previously demonstrated. Our largest calculations employ a tiered approach with matrix elements treated using a variable-order multimode expansion with orders ranging from 4-mode to 7-mode; strategies for assigning matrix elements to particular multimode tiers are discussed. Improvements of 7-mode coupling over 6-mode coupling are small (averaging 0.002 cm(-1) for the first 36 eigenvalues) suggesting that 7-mode coupling is sufficient to fully converge the results. A number of approximate treatments of the computationally expensive vibrational angular momentum terms are explored. The use of optimized vibrational quadratures allows rapid integration of the matrix elements, especially the vibrational angular momentum terms, which require significantly fewer quadrature points than are required to integrate the potential. We assign the lowest 243 states and compare our results to those of Wang and Carrington, who provided assignments for the same set of states. Excellent agreement is observed for most states, but our results are lower for some of the higher-energy states by as much as 20 cm(-1), with the largest deviations being for the states with six quanta of excitation in the F2 bends, suggesting that the earlier results were not fully converged with respect to the basis set. We

  20. Fully automated ionic liquid-based headspace single drop microextraction coupled to GC-MS/MS to determine musk fragrances in environmental water samples.

    Science.gov (United States)

    Vallecillos, Laura; Pocurull, Eva; Borrull, Francesc

    2012-09-15

    A fully automated ionic liquid-based headspace single drop microextraction (IL-HS-SDME) procedure has been developed for the first time to preconcentrate trace amounts of ten musk fragrances extensively used in personal care products (six polycyclic musks, three nitro musks and one polycyclic musk degradation product) from wastewater samples prior to analysis by gas chromatography and ion trap tandem mass spectrometry (GC-IT-MS/MS). Due to the low volatility of the ILs, a large internal diameter liner (3.4 mm i.d.) was used to improve the ILs evaporation. Furthermore, a piece of glass wool was introduced into the liner to avoid the entrance of the ILs in the GC column and a guard column was used to prevent analytical column damages. The main factors influencing the IL-HS-SDME were optimized. For all species, the highest enrichments factors were achieved using 1 μL of 1-octyl-3-methylimidazolium hexafluorophosphate ([OMIM][PF(6)]) ionic liquid exposed in the headspace of 10 mL water samples containing 300 g L(-1) of NaCl and stirred at 750 rpm and 60 °C for 45 min. All compounds were determined by direct injection GC-IT-MS/MS with a chromatographic time of 19 min. Method detection limits were found in the low ng mL(-1) range between 0.010 ng mL(-1) and 0.030 ng mL(-1) depending on the target analytes. Also, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations varying between 3% and 6% and 5% and 11%, respectively (n=3, 1 ng mL(-1)). The applicability of the method was tested with different wastewater samples from influent and effluent urban wastewater treatment plants (WWTPs) and one potable treatment plant (PTP). The analysis of influent urban wastewater revealed the presence of galaxolide and tonalide at concentrations of between 2.10 ng mL(-1) and 0.29 ng mL(-1) and 0.32 ng mL(-1) and waters from PTP only galaxolide was found at a concentration higher than MQL.

  1. A HPC “Cyber Wind Facility” Incorporating Fully-Coupled CFD/CSD for Turbine-Platform-Wake Interactions with the Atmosphere and Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, James G. [Univ. of Colorado, Boulder, CO (United States)

    2017-05-09

    that blade bend-twist coupling plays a central role in the elastic responses of the blades to atmospheric turbulence, impacting turbine power.

  2. Integrating peatlands into the coupled Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial Ecosystem Model (CTEM) v2.0

    Science.gov (United States)

    Wu, Yuanqiao; Verseghy, Diana L.; Melton, Joe R.

    2016-08-01

    Peatlands, which contain large carbon stocks that must be accounted for in the global carbon budget, are poorly represented in many earth system models. We integrated peatlands into the coupled Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM), which together simulate the fluxes of water, energy, and CO2 at the land surface-atmosphere boundary in the family of Canadian Earth system models (CanESMs). New components and algorithms were added to represent the unique features of peatlands, such as their characteristic ground floor vegetation (mosses), the slow decomposition of carbon in the water-logged soils and the interaction between the water, energy, and carbon cycles. This paper presents the modifications introduced into the CLASS-CTEM modelling framework together with site-level evaluations of the model performance for simulated water, energy and carbon fluxes at eight different peatland sites. The simulated daily gross primary production (GPP) and ecosystem respiration are well correlated with observations, with values of the Pearson correlation coefficient higher than 0.8 and 0.75 respectively. The simulated mean annual net ecosystem production at the eight test sites is 87 g C m-2 yr-1, which is 22 g C m-2 yr-1 higher than the observed annual mean. The general peatland model compares well with other site-level and regional-level models for peatlands, and is able to represent bogs and fens under a range of climatic and geographical conditions.

  3. Steady- and transient-state analysis of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-II: Applications by coupling with COREDAX

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hee; Cho, Bum Hee; Cho, Nam Zin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    In Part I of this paper, the two-temperature homogenized model for the fully ceramic microencapsulated fuel, in which tristructural isotropic particles are randomly dispersed in a fine lattice stochastic structure, was discussed. In this model, the fuel-kernel and silicon carbide matrix temperatures are distinguished. Moreover, the obtained temperature profiles are more realistic than those obtained using other models. Using the temperature-dependent thermal conductivities of uranium nitride and the silicon carbide matrix, temperature-dependent homogenized parameters were obtained. In Part II of the paper, coupled with the COREDAX code, a reactor core loaded by fully ceramic microencapsulated fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure is analyzed via a two-temperature homogenized model at steady and transient states. The results are compared with those from harmonic- and volumetric-average thermal conductivity models; i.e., we compare keff eigenvalues, power distributions, and temperature profiles in the hottest single channel at a steady state. At transient states, we compare total power, average energy deposition, and maximum temperatures in the hottest single channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized model for Doppler temperature feedback lead to significant differences.

  4. 一种耦合短路线加载的圆极化天线方案%A circularly polarized antenna scheme coupled with short route

    Institute of Scientific and Technical Information of China (English)

    陈智达; 廖林; 彭顺全

    2016-01-01

    提出在微带贴片辐射面上加载等长耦合短路线获得小型化或者小介电常数的圆极化微带天线设计方案,设计了两款双馈的北斗B3天线验证了该方法的有效性。HFSS仿真结果表明,该天线工作于1.268 GHz,单元应用于北斗自适应阵内,底盘尺寸直径为220 mm,传统天线采用50×50,ε=10的介质板,增益为5.7 dB。本设计方案1采用35×35,ε=10的介质板,增益6.0 dB,尺寸压缩了30%;方案2采用50×50,ε=6的介质板,增益为7.1 dB。介电常数减少了40%。与传统的微带圆极化天线相比,该设计方案可以根据实际选用更高增益的天线方案以及更小尺寸的天线方案。%In this paper, circularly polarized microstrip patch antenna has been widely used in wireless communications. As loading on the coupling short of microstrip patch radiating long line to get circular polarization microstrip antenna design miniaturization or a small dielectric constant, is proposed two double-fed antenna Compass B3 is designed to verify the effectiveness. HFSS simulation results show that the antenna in 1.268GHz, unit applies adaptive array within Compass, chassis size diameter of 220mm, a traditional antenna is 50 ×50,ε= dielectric plate 10, a gain of 5.7 dB. The design uses a 35×35,ε= dielectric plate 10, the gain 6.0 dB, size 30% compression; Scheme 2 using the dielectric plate 50 ×50,ε= 6, the gain is 7.1 dB reduced dielectric constant 40%. Compared with the conventional circular polarization microstrip antenna, the design can be chosen according to the actual programs and higher gain antenna with smaller size antenna scheme.

  5. Two $\\Lambda(1405)$ states in a chiral unitary approach with a fully-calculated loop function

    CERN Document Server

    Dong, Fang-Yong; Pang, Jing-Long

    2016-01-01

    The Bethe-Salpeter equation is solved in the framework of unitary coupled-channel approximation by using the pseudoscalar meson-baryon octet interaction. The loop function of the intermediate meson and baryon is deduced accurately in a fully dimensional regularization scheme, where the off-shell correction is supplemented. Two $\\Lambda(1405)$ states are generated dynamically in the strangeness $S=-1$ and isospin $I=0$ sector, and their masses, decay widths and couplings to the meson and the baryon are similar to those values obtained in the on-shell factorization. However, the scattering amplitudes at these two poles become weaker than the cases in the on-shell factorization.

  6. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    Science.gov (United States)

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  7. A Secure Computation Scheme of Inner Product Based on Fully Homomorphic Encryption%一种全同态加密的安全内积计算方案

    Institute of Scientific and Technical Information of China (English)

    邓江; 许春香; 杨浩淼

    2016-01-01

    Among many approaches to solve the problem of top-k retrieval over encrypted cloud data, we focus on an approach with homomorphic encryption, which is public key encryption supporting some operations on encrypted data. In top-k retrieval of encrypted data, the inner product is often used as a metric to compute the similarity between the file feature vector and the query vector. In this paper, we propose an efficient scheme to compute the inner product on encrypted data using the homomorphic encryption based on the learning with errors over ring (RLWE) problem, in which batch and packing techniques are adopted to achieve lower computation and communication cost.%在云计算环境下密文top-k检索的众多方法中,该文聚焦于同态加密方法,该公钥加密方法具有不解密就能对密文进行操作的优点。在密文top-k查询中,内积相似性是度量索引向量和查询向量的相似性的最常用的一个指标。该文提出一个安全计算两向量内积相似性的方案,该方案使用基于环上错误学习问题的批处理和打包的同态加密来保护隐私。与其他方法相比,该方案具有通信代价低和计算代价低的优点。

  8. Fully-distributed randomized cooperation in wireless sensor networks

    KAUST Repository

    Bader, Ahmed

    2015-01-07

    When marrying randomized distributed space-time coding (RDSTC) to geographical routing, new performance horizons can be created. In order to reach those horizons however, routing protocols must evolve to operate in a fully distributed fashion. In this letter, we expose a technique to construct a fully distributed geographical routing scheme in conjunction with RDSTC. We then demonstrate the performance gains of this novel scheme by comparing it to one of the prominent classical schemes.

  9. GSW-type hierarchical identity-based fully homomorphic encryption scheme from learning with errors%基于容错学习的GSW-型全同态层次型IBE方案

    Institute of Scientific and Technical Information of China (English)

    戴晓明; 张薇; 郑志恒; 李镇林

    2016-01-01

    针对传统的基于身份的加密(IBE)方案不能够对密文直接进行计算这一功能上的缺陷,提出了一个新的IBE方案.该方案利用Gentry等提出的同态转化机制,结合Agrawal等构造的层次型IBE方案,构造了一个具有全同态性质的层次型IBE方案.与Gentry等提出的全同态加密(GSW)方案(GENTRY C,SAHAI A,WATERS B.Homomorphic encryption from learning with errors:conceptually-simpler,asymptotically-faster,attribute-based.CRYPTO 2013:Proceedings of the 33rd Annual Cryptology Conference on Advances in Cryptology.Berlin:Springer,2013:75-92)和Clear等提出的全同态IBE(CM)方案(CLEAR M,MCGOLDRICK C.Bootstrappable identity-based fully homomorphic encryption.CANS 2014:Proceedings of 13th International Conference on Cryptology and Network Security.Berlin:Springer,2014:1-19)相比,该方案构造方法更加自然,空间复杂度由立方级降低到平方级,效率更高.在当前云计算背景下,有助于基于容错学习(LWE)的全同态加密方案从理论向实践转化.通过性能分析并在随机预言机模型下验证了所提方案具有完全安全下的选择明文攻击(IND-ID-CPA)安全性.

  10. Online coupling of fully automatic in-syringe dispersive liquid-liquid microextraction with oxidative back-extraction to inductively coupled plasma spectrometry for sample clean-up in elemental analysis: A proof of concept.

    Science.gov (United States)

    Horstkotte, Burkhard; Fikarová, Kateřina; Cocovi-Solberg, David J; Sklenářová, Hana; Solich, Petr; Miró, Manuel

    2017-10-01

    A proof of concept of a novel automatic sample cleanup approach for metal assays in troublesome matrixes as a front-end sample pre-treatment to inductively coupled plasma optical emission spectroscopy - ICP-OES - is herein presented. Target metals, namely, copper, lead, and cadmium were complexed in-system quantitatively using ammonium pyrrolidine dithiocarbamate (APDC) and transferred into a minute volume of toluene as extractant employing lab-in-syringe magnetic stirring-assisted dispersive liquid-liquid microextraction (LIS-MSA-DLLME). After discharge of the sample, the analytes were back-extracted into nitric acid and injected on-line into ICP-OES. To promote and expedite this process in-syringe, advantage was taken from oxidative decomposition of the chelate by potassium iodate, reported in this article for the first time. Experimental conditions for LIS-MSA-DLLME were optimized by Box-Benkhen multivariate analysis using the geometric mean of analyte recoveries as the desirability function. Times of extraction and back-extraction of 300s and 100s, respectively, pH 5.5 at 30mmol/L acetate, 300µL of extraction solvent, and 600µmol/L of APDC were finally applied. Online interfacing to ICP-OES for back-extract analysis yielded average repeatabilities for Cd, Cu, and Pb of 2.9%, 3.5%, and 3.5% with limits of detections (3s) of 1.9, 1.4, and 5.6ng/mL, respectively. Oxidative back-extraction was proven reliable for the determination of metal species in coastal seawater, surrogate digestive fluids and soil leachates with recovery values for Cd, Cu, and Pb ranging from 90% to 118%, 68% to 104%, and 86% to 112%, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modeling greenhouse gas emissions (CO2, N2O, CH4) from managed arable soils with a fully coupled hydrology-biogeochemical modeling system simulating water and nutrient transport and associated carbon and nitrogen cycling at catchment scale

    Science.gov (United States)

    Klatt, Steffen; Haas, Edwin; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Plesca, Ina; Breuer, Lutz; Zhu, Bo; Zhou, Minghua; Zhang, Wei; Zheng, Xunhua; Wlotzka, Martin; Heuveline, Vincent

    2014-05-01

    The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in a small catchment at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation

  12. Efficient Scheme for Chemical Flooding Simulation

    Directory of Open Access Journals (Sweden)

    Braconnier Benjamin

    2014-07-01

    Full Text Available In this paper, we investigate an efficient implicit scheme for the numerical simulation of chemical enhanced oil recovery technique for oil fields. For the sake of brevity, we only focus on flows with polymer to describe the physical and numerical models. In this framework, we consider a black oil model upgraded with the polymer modeling. We assume the polymer only transported in the water phase or adsorbed on the rock following a Langmuir isotherm. The polymer reduces the water phase mobility which can change drastically the behavior of water oil interfaces. Then, we propose a fractional step technique to resolve implicitly the system. The first step is devoted to the resolution of the black oil subsystem and the second to the polymer mass conservation. In such a way, jacobian matrices coming from the implicit formulation have a moderate size and preserve solvers efficiency. Nevertheless, the coupling between the black-oil subsystem and the polymer is not fully resolved. For efficiency and accuracy comparison, we propose an explicit scheme for the polymer for which large time step is prohibited due to its CFL (Courant-Friedrichs-Levy criterion and consequently approximates accurately the coupling. Numerical experiments with polymer are simulated : a core flood, a 5-spot reservoir with surfactant and ions and a 3D real case. Comparisons are performed between the polymer explicit and implicit scheme. They prove that our polymer implicit scheme is efficient, robust and resolves accurately the coupling physics. The development and the simulations have been performed with the software PumaFlow [PumaFlow (2013 Reference manual, release V600, Beicip Franlab].

  13. CAMS云微物理方案的改进及与WRF模式耦合的个例研究%Improved CAMS cloud microphysics scheme and numerical experiment coupled with WRF model

    Institute of Scientific and Technical Information of China (English)

    高文华; 赵凤生; 胡志晋; 周青

    2012-01-01

    本文在中国气象科学研究院(CAMS)双参数云微物理方案的基础上,增加气溶胶粒子的活化过程,改进原方案中的水汽混合比、云水混合比及云滴数浓度的预报方程,实现对各种水成物(包括云水)的混合比和数浓度的预报.此外,改进后的CAMS云方案被成功耦合到了WRF v3.1中尺度模式,本文利用耦合模式对2009年4月23~24日发生在我国北方地区的一次降水天气过程进行了模拟,将新方案的模拟结果与WRF自带的3个微物理方案进行了比较.结果显示,新方案能够合理地描述地面降水特征,其模拟的雨带分布范围与实测接近,降水中心的强度和位置优于其他3个方案.新方案模拟的云滴数浓度与WDM6方案基本一致,表明加入的气溶胶活化过程是合理的.新方案模拟的其他水成物粒子数浓度与Morrison方案相比有时会有量级的差别,说明粒子数浓度的模拟目前还存在着很大的不确定性,这也是云微物理模式进一步发展的难点.%The Chinese Academy of Meteorological Sciences (CAMS) two-moment bulk microphysics scheme was employed in this study, and a new parameterization approach to simulate the heterogeneous droplet activation was introduced into the scheme. The proposed scheme predicts both the mixing ratio and the number concentration for five hydrometeor species (cloud water, rain, cloud ice, snow, and graupel). Moreover, the improved CAMS scheme was coupled with the Weather Research and Forecasting model (WRF v3. 1), which makes it possible to investigate the effects of aerosol on clouds and precipitation. The rain event occurring on 23~ 24 April 2009 in north China was simulated using the coupled CAMS scheme and threesophisticated microphysics schemes in the WRF model. Results showed that the new scheme performed reasonably well in describing the characteristic of precipitation and the microphysics structure of cloud. The spatial pattern of precipitation, the

  14. 综放跨采巷道棚-索耦合协同支护技术%Framed Timber and Anchor Coupling Collective Support Technology for Fully Mechanized Top Coal Mining Face Crossing Over Gateway

    Institute of Scientific and Technical Information of China (English)

    田磊; 谢文兵; 荆升国; 邢艳冬; 彭剑平

    2011-01-01

    芦岭煤矿Ⅱ82运输上山受上方Ⅱ927综放工作面跨采影响且巷道围岩比较破碎,通过分析巷道围岩失稳机理得出了导致U型钢支架结构失稳的原因及锚索支护合理位置,提出了棚-索耦合支护技术方案;利用U型钢支架形成的基本承载结构,通过壁后充填注浆实现了破碎围岩与U型钢支架的第一次耦合,再根据巷道围岩的变形特征和U型钢支架的结构失稳类型,通过合理布置结构补偿锚索实现支护结构补偿,使U型钢支架与锚索形成二次耦合支护,进而提高支架的整体承载能力和支护结构的稳定性,在整个跨采期间巷道顶底板移近量累计475 mm,两帮移近量累计206 mm。%According to the Ⅱ82 transportation rise in Luling Mine affected by the cross mining of the Ⅱ927 fully mechanized top coal caving mining face above and the broken features of the surrounding rock along the gateway,with the analysis on the stability lost mechanism of the surrounding rock along the gateway,the stability lost cause of the U type steel support structure and the selection on the rational location of the structure compensation anchor were obtained.A frame support and anchor coupling support technical plan was provided.The technology would be first to use the U type steel support to form a basic loading structure and then with the backfill and grouting in the gateway wall,a primary coupling of the broken surrounding rock and U type steel support could be realized.Then based on the deformation features of the gateway surrounding rock and structure stability lost mode of the U type steel support,with the rational layout of the structure compensation anchor to realize the structure compensation,the secondary coupling of the U type steel support and anchor was realized.Thus the active and passive coupling support was realized and the completed bearing capacity of the support and the structure stability of the support structure could be improved

  15. Modelling fully coupled moisture, air and heat transfer in unsaturated soils%非饱和土孔隙气、水、汽、热耦合运动之模拟

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    旨在介绍一个描述非饱和土孔隙气、水、汽、热耦合运动的理论模型.该模型假定孔隙气和孔隙水运动分别遵循达西定律,而影响水蒸汽运动的两种主要因素分别是分子扩散和孔隙气运动,其中受分子扩散影响的孔隙水蒸汽运动可用Fick定律描述.热转移则主要包括了三种形式,即传导、对流和汽化潜热.根据有限单元法,编制了一个三维的计算机程序用以模拟非饱和土孔隙气、水、汽、热的耦合运动.通过数值分析与干沙试验结果之比较,验证了文中之理论模型和计算机程序的可靠性.%A theoretical model has been proposed to describe fully coupled moisture, air and heat transfer in unsaturated soils. Pore-liquid water and pore-air transfer were assumed to be governed by Darcy's law and pore-water vapour transfer was considered to occur due to two effects, first, under molecular diffusion and, second, as part of the bulk flow of the pore-air. The pore-water vapour transfer due to the molecular diffusion was described using Fick's law. Heat transfer was formulated to include effects of conduction, convection and latent heat of vapourization. A three-dimensional computer program has been developed to incorporate the proposed model for analyzing the transient coupled flow of moisture, air and heat in unsaturated soils. Both the fundamental mathematical formulation and the computer code have been verified by comparing numerical results with test measurements of a drying sand column.

  16. Colour schemes

    DEFF Research Database (Denmark)

    van Leeuwen, Theo

    2013-01-01

    This chapter presents a framework for analysing colour schemes based on a parametric approach that includes not only hue, value and saturation, but also purity, transparency, luminosity, luminescence, lustre, modulation and differentiation....

  17. Orthogonal Metal Cutting Simulation Using Advanced Constitutive Equations with Damage and Fully Adaptive Numerical Procedure

    Science.gov (United States)

    Saanouni, Kkemais; Labergère, Carl; Issa, Mazen; Rassineux, Alain

    2010-06-01

    This work proposes a complete adaptive numerical methodology which uses `advanced' elastoplastic constitutive equations coupling: thermal effects, large elasto-viscoplasticity with mixed non linear hardening, ductile damage and contact with friction, for 2D machining simulation. Fully coupled (strong coupling) thermo-elasto-visco-plastic-damage constitutive equations based on the state variables under large plastic deformation developed for metal forming simulation are presented. The relevant numerical aspects concerning the local integration scheme as well as the global resolution strategy and the adaptive remeshing facility are briefly discussed. Applications are made to the orthogonal metal cutting by chip formation and segmentation under high velocity. The interactions between hardening, plasticity, ductile damage and thermal effects and their effects on the adiabatic shear band formation including the formation of cracks are investigated.

  18. 页岩水力压裂中多簇裂缝扩展的全耦合模拟%Fully coupled modeling for multiple clusters growth of hydraulic fractures in shale

    Institute of Scientific and Technical Information of China (English)

    曾庆磊; 庄茁; 柳占立; 王涛; 高岳

    2016-01-01

    水平井和水力压裂是页岩气开发中的关键技术。对水力压裂中多簇裂缝同时扩展的物理过程进行了数值模拟。采用扩展有限元法(XFEM)模拟岩石中裂缝沿着任意路径扩展,采用有限体积法(FVM)模拟裂缝中流体的流动,并且考虑井筒中流体流动以及在各簇裂缝间的流量动态分配。通过牛顿迭代对全耦合物理过程进行数值求解,重点研究了初始长度不同的两条裂缝的扩展过程,证明较大的射孔摩阻能促进两条裂缝的同时扩展。并通过算例证明了本方法的精度和有效性。%Hydraulic fracturing in the horizontal wellbore is an effective technique in the development of shale gas.In this paper,the growth of multiple hydraulic fractures clusters is simulated numerically.The extended finite element method (XFEM)is adopted to model arbitrary propagation of the fractures in shale rock and the finite volume method (FVM)is used to discretize fluid flow in the fractures.The flow in horizontal wellbore and the dynamic distribution of the flow into different fracture clusters are consi-dered.The fully coupled field equations are solved by Newton iteration.Numerical examples are pre-sented to validate the accuracy and efficiency of the method.The propagation paths of two hydraulic fractures are modeled to demonstrate that the larger perforation entry friction can promote simultaneous growth of multiple fracture clusters.

  19. Energy-saving technology of fully thermally coupled distillation of four-component dividing wall column%4组分隔板塔热耦合精馏节能技术

    Institute of Scientific and Technical Information of China (English)

    李清元; 朱志亮

    2011-01-01

    对丙醇/丁醇/3-甲基丁醇/2-乙基丁醇组成的4组分物系的分离从完全热耦合原理出发,详细阐述了该物系精馏过程的建立模型到模拟计算,讨论了热耦合过程的自由度和隔板塔的最佳塔段数,指出了操作变量和完全热耦合在最佳热力学状态下应满足的条件,通过化工流程模拟软件Aspen Plus 11.1对该物系的分离工艺从简捷法到严格法计算和最后的优化设计,分析了模拟结果,相比一般的序列塔分离工艺,完全热耦合塔序列即隔板塔节能15.1%,设备材料节省约38%,节能效果明显.并且从用能分析方面讨论了隔板塔内隔板传热利弊和回收热量的多少以及隔板的设计要求.%The system of propanol-butanol-(3-methyl-l-butanol)- (2-ethyl-l-butanol) in fully thermally coupled distillation column ( FTCD) was discussed, and the modeling and simulation for the energy-saving distillation process were described. The freedom degrees of FTCD and optimal column segments were given. Some operational variables were corresponded with the optimal thermodynamics in FTCD. By means of chemical process simulation software Aspen Plus 11. 1, the results of complex FTCD were analyzed in order to indicate the advanced characteristics of dividing wall column. The energy saving of dividing wall column is 15. 1% and the cost saving of equipment material is 38% compared with the conventional sequence distillation process, which shows a remarkable energy-saving effect. The exergy loss and the thermal target of the total column were imaged by some figures, and the material of dividing wall was proposed to satisfy the thermal recovery in column.

  20. Stability analysis of implicit multi-fluid schemes

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, R.F.; Cope, W.K. [Lockheed Martin, Schenectady, NY (United States); Venkateswaran, S. [Pennsylvania State Univ., University Park, PA (United States)

    1997-06-01

    A new implicit method has been developed for solving the viscous full multi-fluid equations, which incorporate transport and generation of mass and momentum for each component present in a system. This work presents stability analysis and application of the important full multi-fluid system in a fully implicit algorithm. The stability analyses presented demonstrate the performance of several iterative schemes applied to the solution of the linearized systems which arise in the formulation. These include block Jacobi and symmetric block Gauss-Siedel schemes with various preconditioners applied. A hierarchy of increasing physical complexity is pursued, starting with one-dimensional, two-fluid systems with minimum inter-field dynamic coupling and no mass transfer. These analyses are extended to systems employing physically important inter-field forces (drag, turbulence dispersion, virtual mass). The effects of mass transfer, multiple fields (i.e., n{phi} > 2) and multiple dimensions are also considered. A two-fluid Navier-Stokes code has been developed based on this new scheme. Results are presented which verify the validity of the stability analyses presented for the coupled scheme. Multi-phase flows which require full multi-fluid modeling arise in a wide class of engineering problems, where non-equilibrium dynamics and thermodynamics of the interfaces between constituents play important roles in the evolution of the ensemble averaged mean flow. Examples include cyclone separators, two-phase flow in jets and curved ducts and boiling flow in heat exchangers.

  1. On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    for on-line matrix separation and pre-concentration of trace levels of metals with detection by ICP-MS. It highlights some of the frequently applied on-line, sample-pre-treatment schemes, including solid phase extraction (SPE), on-wall molecular sorption and precipitate/(co)-precipitate retention using...... a polytetrafluoroethylene (PTFE) knotted reactor (KR), solvent extraction-back extraction and hydride/vapor generation. It also addresses a novel, robust approach, whereby the protocol of SI-LOV-bead injection (BI) on-line separation and pre-concentration of ultra-trace levels of metals by a renewable microcolumn...

  2. Numerical simulation of transonic limit cycle oscillations using high-order low-diffusion schemes

    Science.gov (United States)

    Wang, Baoyuan; Zha, Ge-Cheng

    2010-05-01

    This paper simulates the NLR7301 airfoil limit cycle oscillation (LCO) caused by fluid-structure interaction (FSI) using Reynolds averaged Navier-Stokes equations (RANS) coupled with Spalart-Allmaras (S-A) one-equation turbulence model. A low diffusion E-CUSP (LDE) scheme with 5th order weighted essentially nonoscillatory scheme (WENO) is employed to calculate the inviscid fluxes. A fully conservative 4th order central differencing is used for the viscous terms. A fully coupled fluid-structural interaction model is employed. For the case computed in this paper, the predicted LCO frequency, amplitudes, averaged lift and moment, all agree excellently with the experiment performed by Schewe et al. The solutions appear to have bifurcation and are dependent on the initial fields or initial perturbation. The developed computational fluid dynamics (CFD)/computational structure dynamics (CSD) simulation is able to capture the LCO with very small amplitudes measured in the experiment. This is attributed to the high order low diffusion schemes, fully coupled FSI model, and the turbulence model used. This research appears to be the first time that a numerical simulation of LCO matches the experiment. The simulation confirms several observations of the experiment.

  3. On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    as substitutes for labor-intensive, manual, sample-pre-treatment and/or solution-handling procedures prior to analyte detection by inductively coupled plasma mass spectrometry (ICP-MS). The present review presents and discusses the progress of the state of the art in implementing miniaturized FI/SI systems...

  4. Hybrid Explicit Residual Distribution Scheme for Compressible Multiphase Flows

    Science.gov (United States)

    Bacigaluppi, Paola; Abgrall, Rémi; Kaman, Tulin

    2017-03-01

    The aim of this work is the development of a fully explicit scheme in the framework of time dependent hyperbolic problems with strong interacting discontinuities to retain high order accuracy in the context of compressible multiphase flows. A new methodology is presented to compute compressible two-fluid problems applied to the five equation reduced model given in Kapila et al. (Physics of Fluids 2001). With respect to other contributions in that area, we investigate a method that provides mesh convergence to the exact solutions, where the studied non-conservative system is associated to consistent jump relations. The adopted scheme consists of a coupled predictor-corrector scheme, which follows the concept of residual distributions in Ricchiuto and Abgrall (J. Comp. Physics 2010), with a classical Glimm’s scheme (J. Sci. Stat. Comp. 1982) applied to the area where a shock is occurring. This numerical methodology can be easily extended to unstructured meshes. Test cases on a perfect gas for a two phase compressible flow on a Riemann problem have verified that the approximation converges to its exact solution. The results have been compared with the pure Glimm’s scheme and the expected exact solution, finding a good overlap.

  5. Experimental Verification of Fully Decentralized Control Inspired by Plasmodium of True Slime Mold

    Science.gov (United States)

    Umedachi, Takuya; Takeda, Koichi; Nakagaki, Toshiyuki; Kobayashi, Ryo; Ishiguro, Akio

    This paper presents a fully decentralized control inspired by plasmodium of true slime mold and its validity using a soft-bodied amoeboid robot. The notable features of this paper are twofold: (1) the robot has truly soft and deformable body stemming from real-time tunable springs and a balloon, the former is utilized as an outer skin of the body and the latter serves as protoplasm; and (2) a fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts induced by the law of conservation of protoplasmic mass. Experimental results show that this robot exhibits truly supple locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design scheme for autonomous decentralized control system.

  6. A Fully Implicit Time Accurate Method for Hypersonic Combustion: Application to Shock-induced Combustion Instability

    Science.gov (United States)

    Yungster, Shaye; Radhakrishnan, Krishnan

    1994-01-01

    A new fully implicit, time accurate algorithm suitable for chemically reacting, viscous flows in the transonic-to-hypersonic regime is described. The method is based on a class of Total Variation Diminishing (TVD) schemes and uses successive Gauss-Siedel relaxation sweeps. The inversion of large matrices is avoided by partitioning the system into reacting and nonreacting parts, but still maintaining a fully coupled interaction. As a result, the matrices that have to be inverted are of the same size as those obtained with the commonly used point implicit methods. In this paper we illustrate the applicability of the new algorithm to hypervelocity unsteady combustion applications. We present a series of numerical simulations of the periodic combustion instabilities observed in ballistic-range experiments of blunt projectiles flying at subdetonative speeds through hydrogen-air mixtures. The computed frequencies of oscillation are in excellent agreement with experimental data.

  7. Android Fully Loaded

    CERN Document Server

    Huddleston, Rob

    2012-01-01

    Fully loaded with the latest tricks and tips on your new Android! Android smartphones are so hot, they're soaring past iPhones on the sales charts. And the second edition of this muscular little book is equally impressive--it's packed with tips and tricks for getting the very most out of your latest-generation Android device. Start Facebooking and tweeting with your Android mobile, scan barcodes to get pricing and product reviews, download your favorite TV shows--the book is positively bursting with practical and fun how-tos. Topics run the gamut from using speech recognition, location-based m

  8. Anonymous Credential Schemes with Encrypted Attributes

    NARCIS (Netherlands)

    Guajardo Merchan, J.; Mennink, B.; Schoenmakers, B.

    2011-01-01

    In anonymous credential schemes, users obtain credentials on certain attributes from an issuer, and later show these credentials to a relying party anonymously and without fully disclosing the attributes. In this paper, we introduce the notion of (anonymous) credential schemes with encrypted attribu

  9. New Ideas on Labeling Schemes

    DEFF Research Database (Denmark)

    Rotbart, Noy Galil

    evaluation of fully dynamic labeling schemes. Due to a connection between adjacency labeling schemes and the graph theoretical study of induced universal graphs, we study these in depth and show novel results for bounded degree graphs and power-law graphs. We also survey and make progress on the related......With ever increasing size of graphs, many distributed graph systems emerged to store, preprocess and analyze them. While such systems ease up congestion on servers, they incur certain penalties compared to centralized data structure. First, the total storage required to store a graph...... in a distributed fashion increases. Second, attempting to answer queries on vertices of a graph stored in a distributed fashion can be significantly more complicated. In order to lay theoretical foundations to the first penalty mentioned a large body of work concentrated on labeling schemes. A labeling scheme...

  10. Fully Awake Breast Reduction.

    Science.gov (United States)

    Filson, Simon A; Yarhi, Danielle; Ramon, Yitzhak

    2016-11-01

    The authors present 25 cases and an in-depth 4-minute video of fully awake aesthetic breast reduction, which was made possible by thoracic epidural anesthesia. There are obvious and important advantages to this technique. Not only does this allow for intraoperative patient cooperation (i.e., patient self-positioning and opinion for comparison of breasts), meaning a shorter and more efficient intraoperative time, there also is a reduction in postoperative pain, complications, recovery, and discharge times. The authors have also enjoyed great success and no complications with this technique in over 150 awake abdominoplasty/total body lift patients. The authors feel that the elimination of the need for general anesthesia by thoracic epidural sensorial-only anesthesia is a highly effective and efficient technique, with very few disadvantages/complications, providing advantages to both patients and surgeons. Therapeutic, IV.

  11. Economic evaluation of conditional cash transfer scheme for postponement of first pregnancy in newly married couples in Satara district of Maharashtra (India

    Directory of Open Access Journals (Sweden)

    Asha K Pratinidhi

    2013-10-01

    Full Text Available Background: Since 2007, Satara district is implementing a voluntary conditional cash transfer scheme named “Second Honeymoon Package” (SHP for postponement of first pregnancy. This study was undertaken to evaluate it's effectiveness in preventing pregnancies, utilizing the years for learning or betterment in jobs. Cost-effectiveness analysis was undertaken from government's viewpoint and that from beneficiary's viewpoint. Objectives: To perform the economic evaluation of second honeymoon package programme from the perspective of beneficiaries and that of Government of Maharashtra during the defined time horizon. To determine the targets to be achieved so as to make the programme cost- effective. Materials and Methods: This was an evaluation study of a community based interventional programme. This study employed quasi-experimental study design. Economic evaluation was conducted from the perspective of Government of Maharashtra and that of beneficiaries'. Costs and consequences SHP were evaluated in comparison with those of routine family welfare programme. Sensitivity analysis was done using Treeage Pro® version 2009 software. Results: Cost for participation in programme was Rs. 965888/268 person years of productivity. Cost of not participating in the Second honeymoon programme but availing routine family planning services was Rs. 298902/133 person years gained. Rankings analysis showed that no strategies were clearly dominated by any other. Extended dominance report indicates no strategies were eliminated by extended dominance. Incremental cost-effectiveness ratio was Rs.4920/person year of productivity. Conclusions: The SHP is cost effective at high success and productivity rates. The success rate of postponement of first pregnancy was 51.4%. Postponement of pregnancy by 2 years provides 45% chances of productive utilization of time.

  12. Three-dimensional optical metamaterials as model systems for longitudinal and transverse magnetic coupling.

    Science.gov (United States)

    Liu, Na; Giessen, Harald

    2008-12-22

    In this paper, we demonstrate that metamaterials represent model systems for longitudinal and transverse magnetic coupling in the optical domain. In particular, such coupling can lead to fully parallel or antiparallel alignment of the magnetic dipoles at the lowest frequency resonance. Also, we present the design scheme for constructing three-dimensional metamaterials with solely magnetic interaction. Our concept could pave the way for achieving rather complicated magnetic materials with desired arrangements of magnetic dipoles at optical frequencies.

  13. An Inviscid Decoupled Method for the Roe FDS Scheme in the Reacting Gas Path of FUN3D

    Science.gov (United States)

    Thompson, Kyle B.; Gnoffo, Peter A.

    2016-01-01

    An approach is described to decouple the species continuity equations from the mixture continuity, momentum, and total energy equations for the Roe flux difference splitting scheme. This decoupling simplifies the implicit system, so that the flow solver can be made significantly more efficient, with very little penalty on overall scheme robustness. Most importantly, the computational cost of the point implicit relaxation is shown to scale linearly with the number of species for the decoupled system, whereas the fully coupled approach scales quadratically. Also, the decoupled method significantly reduces the cost in wall time and memory in comparison to the fully coupled approach. This work lays the foundation for development of an efficient adjoint solution procedure for high speed reacting flow.

  14. Fully electric waste collection

    CERN Multimedia

    Anaïs Schaeffer

    2015-01-01

    Since 15 June, Transvoirie, which provides waste collection services throughout French-speaking Switzerland, has been using a fully electric lorry for its collections on the CERN site – a first for the region!   Featuring a motor powered by electric batteries that charge up when the brakes are used, the new lorry that roams the CERN site is as green as can be. And it’s not only the motor that’s electric: its waste compactor and lifting mechanism are also electrically powered*, making it the first 100% electric waste collection vehicle in French-speaking Switzerland. Considering that a total of 15.5 tonnes of household waste and paper/cardboard are collected each week from the Meyrin and Prévessin sites, the benefits for the environment are clear. This improvement comes as part of CERN’s contract with Transvoirie, which stipulates that the firm must propose ways of becoming more environmentally friendly (at no extra cost to CERN). *The was...

  15. Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP in a massively parallel supercomputing environment – a case study on JUQUEEN (IBM Blue Gene/Q

    Directory of Open Access Journals (Sweden)

    F. Gasper

    2014-06-01

    Full Text Available Continental-scale hyper-resolution simulations constitute a grand challenge in characterizing non-linear feedbacks of states and fluxes of the coupled water, energy, and biogeochemical cycles of terrestrial systems. Tackling this challenge requires advanced coupling and supercomputing technologies for earth system models that are discussed in this study, utilizing the example of the implementation of the newly developed Terrestrial Systems Modeling Platform (TerrSysMP on JUQUEEN (IBM Blue Gene/Q of the Jülich Supercomputing Centre, Germany. The applied coupling strategies rely on the Multiple Program Multiple Data (MPMD paradigm and require memory and load balancing considerations in the exchange of the coupling fields between different component models and allocation of computational resources, respectively. These considerations can be reached with advanced profiling and tracing tools leading to the efficient use of massively parallel computing environments, which is then mainly determined by the parallel performance of individual component models. However, the problem of model I/O and initialization in the peta-scale range requires major attention, because this constitutes a true big data challenge in the perspective of future exa-scale capabilities, which is unsolved.

  16. Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP) in a massively parallel supercomputing environment - a case study on JUQUEEN (IBM Blue Gene/Q)

    Science.gov (United States)

    Gasper, F.; Goergen, K.; Kollet, S.; Shrestha, P.; Sulis, M.; Rihani, J.; Geimer, M.

    2014-06-01

    Continental-scale hyper-resolution simulations constitute a grand challenge in characterizing non-linear feedbacks of states and fluxes of the coupled water, energy, and biogeochemical cycles of terrestrial systems. Tackling this challenge requires advanced coupling and supercomputing technologies for earth system models that are discussed in this study, utilizing the example of the implementation of the newly developed Terrestrial Systems Modeling Platform (TerrSysMP) on JUQUEEN (IBM Blue Gene/Q) of the Jülich Supercomputing Centre, Germany. The applied coupling strategies rely on the Multiple Program Multiple Data (MPMD) paradigm and require memory and load balancing considerations in the exchange of the coupling fields between different component models and allocation of computational resources, respectively. These considerations can be reached with advanced profiling and tracing tools leading to the efficient use of massively parallel computing environments, which is then mainly determined by the parallel performance of individual component models. However, the problem of model I/O and initialization in the peta-scale range requires major attention, because this constitutes a true big data challenge in the perspective of future exa-scale capabilities, which is unsolved.

  17. Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1.0) in a massively parallel supercomputing environment - a case study on JUQUEEN (IBM Blue Gene/Q)

    Science.gov (United States)

    Gasper, F.; Goergen, K.; Shrestha, P.; Sulis, M.; Rihani, J.; Geimer, M.; Kollet, S.

    2014-10-01

    Continental-scale hyper-resolution simulations constitute a grand challenge in characterizing nonlinear feedbacks of states and fluxes of the coupled water, energy, and biogeochemical cycles of terrestrial systems. Tackling this challenge requires advanced coupling and supercomputing technologies for earth system models that are discussed in this study, utilizing the example of the implementation of the newly developed Terrestrial Systems Modeling Platform (TerrSysMP v1.0) on JUQUEEN (IBM Blue Gene/Q) of the Jülich Supercomputing Centre, Germany. The applied coupling strategies rely on the Multiple Program Multiple Data (MPMD) paradigm using the OASIS suite of external couplers, and require memory and load balancing considerations in the exchange of the coupling fields between different component models and the allocation of computational resources, respectively. Using the advanced profiling and tracing tool Scalasca to determine an optimum load balancing leads to a 19% speedup. In massively parallel supercomputer environments, the coupler OASIS-MCT is recommended, which resolves memory limitations that may be significant in case of very large computational domains and exchange fields as they occur in these specific test cases and in many applications in terrestrial research. However, model I/O and initialization in the petascale range still require major attention, as they constitute true big data challenges in light of future exascale computing resources. Based on a factor-two speedup due to compiler optimizations, a refactored coupling interface using OASIS-MCT and an optimum load balancing, the problem size in a weak scaling study can be increased by a factor of 64 from 512 to 32 768 processes while maintaining parallel efficiencies above 80% for the component models.

  18. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2

    Directory of Open Access Journals (Sweden)

    V. Vionnet

    2012-05-01

    Full Text Available Detailed studies of snow cover processes require models that offer a fine description of the snow cover properties. The detailed snowpack model Crocus is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 yr. It is also used for climate or hydrological studies. To extend its potential applications, Crocus has been recently integrated within the framework of the externalized surface module SURFEX. SURFEX computes the exchanges of energy and mass between different types of surface and the atmosphere. It includes in particular the land surface scheme ISBA (Interactions between Soil, Biosphere, and Atmosphere. It allows Crocus to be run either in stand-alone mode, using a time series of forcing meteorological data or in fully coupled mode (explicit or fully implicit numerics with atmospheric models ranging from meso-scale models to general circulation models. This approach also ensures a full coupling between the snow cover and the soil beneath. Several applications of this new simulation platform are presented. They range from a 1-D stand-alone simulation (Col de Porte, France to fully-distributed simulations in complex terrain over a whole mountain range (Massif des Grandes Rousses, France, or in coupled mode such as a surface energy balance and boundary layer simulation over the East Antarctic Ice Sheet (Dome C.

  19. The detailed snowpack scheme Crocus and its implementation in SURFEX v7

    Directory of Open Access Journals (Sweden)

    V. Vionnet

    2011-09-01

    Full Text Available Detailed studies of snow cover processes require models that offer a fine description of the snow cover properties. The detailed snowpack model Crocus is such a scheme, and has been run operationally for avalanche forecasting over the French mountains for 20 years. It is also used for climate or hydrological studies. To extend its potential applications, Crocus has been recently integrated within the framework of the externalized surface module SURFEX. SURFEX computes the exchanges of energy and mass between different types of surface, and the atmosphere and includes in particular the land surface scheme ISBA (Interactions between Soil, Biosphere, and Atmosphere. It allows Crocus to be run either in stand-alone mode, using a time series of forcing meteorological data or in fully coupled mode (explicit or fully implicit numerics with atmospheric models ranging from meso-scale models to general circulation models. This approach also insures a full coupling between the snow cover and the soil beneath. Several applications of this new simulation platform are presented. They range from a 1D stand-alone simulation (Col de Porte, France to fully-distributed simulations in complex terrain, either in forced mode over a whole mountain range (Massif des Grandes Rousses, France, or in coupled mode such as a snow transport simulation (Col du Lac Blanc, France, or a surface energy balance and boundary layer simulation over a polar ice cap (Dome C, Antarctica.

  20. Fully differential cross sections for heavy particle impact ionization

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: mmcgovern06@qub.ac.u [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)

    2009-11-15

    We describe a procedure for extracting fully differential ionization cross sections from an impact parameter coupled pseudostate treatment of the collision. Some examples from antiproton impact ionization of atomic Hydrogen are given.

  1. Testing fully depleted CCD

    Science.gov (United States)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  2. Calculation of the dielectric constant ɛ and first nonlinear susceptibility χ(2) of crystalline potassium dihydrogen phosphate by the coupled perturbed Hartree-Fock and coupled perturbed Kohn-Sham schemes as implemented in the CRYSTAL code

    Science.gov (United States)

    Lacivita, Valentina; Rérat, Michel; Kirtman, Bernard; Ferrero, Mauro; Orlando, Roberto; Dovesi, Roberto

    2009-11-01

    The high-frequency dielectric ɛ and the first nonlinear electric susceptibility χ(2) tensors of crystalline potassium dihydrogen phosphate (KH2PO4) are calculated by using the coupled perturbed Hartree-Fock and Kohn-Sham methods as implemented in the CRYSTAL code. The effect of basis sets of increasing size on ɛ and χ(2) is explored. Five different levels of theory, namely, local-density approximation, generalized gradient approximation (PBE), hybrids (B3LYP and PBE0), and HF are compared using the experimental and theoretical structures corresponding not only to the tetragonal geometry I4d2 at room temperature but also to the orthorhombic phase Fdd2 at low temperature. Comparison between the two phases and their optical behavior is made. The calculated results for the tetragonal phase are in good agreement with the experimental data.

  3. Properties of wideband resonant reflectors under fully conical light incidence

    OpenAIRE

    Ko, Yeong Hwan; Niraula, Manoj; Lee, Kyu Jin; Magnusson, Robert

    2016-01-01

    Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors ...

  4. General Compact Labeling Schemes for Dynamic Trees

    OpenAIRE

    2006-01-01

    Let $F$ be a function on pairs of vertices. An {\\em $F$- labeling scheme} is composed of a {\\em marker} algorithm for labeling the vertices of a graph with short labels, coupled with a {\\em decoder} algorithm allowing one to compute $F(u,v)$ of any two vertices $u$ and $v$ directly from their labels. As applications for labeling schemes concern mainly large and dynamically changing networks, it is of interest to study {\\em distributed dynamic} labeling schemes. This paper investigates labelin...

  5. Discarding of cod in the Danish Fully Documented Fisheries trials

    DEFF Research Database (Denmark)

    Ulrich, Clara; Olesen, Hans Jakob; Bergsson, Heidrikur

    2015-01-01

    Denmarkwas the first nation in Europe to promote the use of Fully Documented Fisheries (FDF) through Remote Electronic Monitoring (REM) and CCTV camera systems, with pilot schemes in place since 2008. In theory, such a scheme could supplement and even potentially replace expensive control...... and monitoring programmes; and when associated with a catch quota management (CQM) system, incentivize positive changes in fishing patterns in a results-based management approach. Newdata flows are, however, required to ensure the practical implementation of such a scheme. This paper reviews the quality...

  6. Fully Automatic In-Syringe Magnetic Stirring-Assisted Dispersive Liquid-Liquid Microextraction Hyphenated to High-Temperature Torch Integrated Sample Introduction System-Inductively Coupled Plasma Spectrometer with Direct Injection of the Organic Phase.

    Science.gov (United States)

    Sánchez, Raquel; Horstkotte, Burkhard; Fikarová, Kateřina; Sklenářová, Hana; Maestre, Salvador; Miró, Manuel; Todolí, Jose-Luis

    2017-03-21

    A proof of concept study involving the online coupling of automatic dispersive liquid-liquid microextraction (DLLME) to inductively coupled plasma optical emission spectrometry (ICP OES) with direct introduction and analysis of the organic extract is herein reported for the first time. The flow-based analyzer features a lab-in-syringe (LIS) setup with an integrated stirring system, a Meinhard nebulizer in combination with a heated single-pass spray chamber, and a rotary injection valve, used as an online interface between the microextraction system and the detection instrument. Air-segmented flow was used for delivery of a fraction of the nonwater miscible extraction phase, 12 μL of xylene, to the nebulizer. All sample preparative steps including magnetic stirring assisted DLLME were carried out inside the syringe void volume as a size-adaptable yet sealed mixing and extraction chamber. Determination of trace level concentrations of cadmium, copper, lead, and silver as model analytes has been demonstrated by microextraction as diethyldithiophosphate (DDTP) complexes. The automatic LIS-DLLME method features quantitative metal extraction, even in troublesome sample matrixes, such as seawater, salt, and fruit juices, with relative recoveries within the range of 94-103%, 93-100%, and 92-99%, respectively. Furthermore, no statistically significant differences at the 0.05 significance level were found between concentration values experimentally obtained and the certified values of two serum standard reference materials.

  7. A fully automated method for simultaneous determination of aflatoxins and ochratoxin A in dried fruits by pressurized liquid extraction and online solid-phase extraction cleanup coupled to ultra-high-pressure liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Campone, Luca; Piccinelli, Anna Lisa; Celano, Rita; Russo, Mariateresa; Valdés, Alberto; Ibáñez, Clara; Rastrelli, Luca

    2015-04-01

    According to current demands and future perspectives in food safety, this study reports a fast and fully automated analytical method for the simultaneous analysis of the mycotoxins with high toxicity and wide spread, aflatoxins (AFs) and ochratoxin A (OTA) in dried fruits, a high-risk foodstuff. The method is based on pressurized liquid extraction (PLE), with aqueous methanol (30%) at 110 °C, of the slurried dried fruit and online solid-phase extraction (online SPE) cleanup of the PLE extracts with a C18 cartridge. The purified sample was directly analysed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for sensitive and selective determination of AFs and OTA. The proposed analytical procedure was validated for different dried fruits (vine fruit, fig and apricot), providing method detection and quantification limits much lower than the AFs and OTA maximum levels imposed by EU regulation in dried fruit for direct human consumption. Also, recoveries (83-103%) and repeatability (RSD < 8, n = 3) meet the performance criteria required by EU regulation for the determination of the levels of mycotoxins in foodstuffs. The main advantage of the proposed method is full automation of the whole analytical procedure that reduces the time and cost of the analysis, sample manipulation and solvent consumption, enabling high-throughput analysis and highly accurate and precise results.

  8. Fully Coriolis-coupled quantum studies of the H + O2 (upsilon i = 0-2, j i = 0,1) --> OH + O reaction on an accurate potential energy surface: integral cross sections and rate constants.

    Science.gov (United States)

    Lin, Shi Ying; Sun, Zhigang; Guo, Hua; Zhang, Dong Hui; Honvault, Pascal; Xie, Daiqian; Lee, Soo-Y

    2008-01-31

    We present accurate quantum calculations of the integral cross section and rate constant for the H + O2 --> OH + O combustion reaction on a recently developed ab initio potential energy surface using parallelized time-dependent and Chebyshev wavepacket methods. Partial wave contributions up to J = 70 were computed with full Coriolis coupling, which enabled us to obtain the initial state-specified integral cross sections up to 2.0 eV of the collision energy and thermal rate constants up to 3000 K. The integral cross sections show a large reaction threshold due to the quantum endothermicity of the reaction, and they monotonically increase with the collision energy. As a result, the temperature dependence of the rate constant is of the Arrhenius type. In addition, it was found that reactivity is enhanced by reactant vibrational excitation. The calculated thermal rate constant shows a significant improvement over that obtained on the DMBE IV potential, but it still underestimates the experimental consensus.

  9. Study of Physical Scheme for 10 MW Accelerator-driven Fast-thermal Coupled Gas-cooled Reactor%加速器驱动10 MW快热耦合气冷堆物理方案研究

    Institute of Scientific and Technical Information of China (English)

    李金阳; 顾龙; 秦长平; 王大伟; 刘璐

    2013-01-01

    The accelerator-driven sub-critical system has promising future in transmuta-tion of nuclear spent fuels .A physical design of a 10MW fast-thermal spectrum gas-cooled reactor was studied .The program COUPLE2.0 ,which couples with MCNPX and ORIGEN ,was applied to compute this scheme ,and the continuous energy neutron cross section was obtained by the nuclear data library of ENDF-7 which was modified with five different temperatures :300 ,600 ,900 ,1 500 ,and 2500K .The physical pa-rameters such as kef ,proton efficiency ,delayed neutron fraction and accelerator current varying with the burnup time were obtained .The system during 350 d burnup was obtained and the transmutation capability was analyzed by the further calculation .It is found that during the 350 d burnup ,the variations of kef and accelerator current are relatively small .The system has good transmutation capability with the transmutation support ratio of 24.86 .%加速器驱动的次临界系统(ADS )在实现嬗变核废料方面具有良好的前景。对加速器驱动10 M W次临界快热耦合能谱气冷堆的物理方案进行了设计和研究,利用 MCNPX和ORIGEN耦合的计算程序COUPLE2.0对该方案进行了计算,其中,中子截面采用ENDF-7处理后得到的5个温度300、600、900、1500、2500 K下的连续能量核数据库。得到该方案350 d燃耗期间的 kef 、质子效率、缓发中子份额以及加速器束流强度的变化。进而计算得到了该方案的燃耗信息,并分析了该方案的嬗变能力。结果表明,该方案在350 d燃耗期间的 kef 、加速器束流强度变化较小,嬗变支持比为24.86,具有较好的嬗变效果。

  10. Mixed finite element-based fully conservative methods for simulating wormhole propagation

    KAUST Repository

    Kou, Jisheng

    2015-10-11

    Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.

  11. Fully simulatable quantum-secure coin-flipping and applications

    DEFF Research Database (Denmark)

    Lunemann, Carolin; Nielsen, Jesper Buus

    2011-01-01

    We propose a coin-flip protocol which yields a string of strong, random coins and is fully simulatable against poly-sized quantum adversaries on both sides. It can be implemented with quantum-computational security without any set-up assumptions, since our construction only assumes mixed commitment...... schemes which we show how to construct in the given setting. We then show that the interactive generation of random coins at the beginning or during outer protocols allows for quantum-secure realizations of classical schemes, again without any set-up assumptions. As example applications we discuss quantum...... zero-knowledge proofs of knowledge and quantum-secure two-party function evaluation. Both applications assume only fully simulatable coin-flipping and mixed commitments. Since our framework allows to construct fully simulatable coin-flipping from mixed commitments, this in particular shows that mixed...

  12. Gravitational waves in dynamical spacetimes with matter content in the Fully Constrained Formulation

    CERN Document Server

    Cordero-Carrión, Isabel; Ibáñez, José María

    2011-01-01

    The Fully Constrained Formulation (FCF) of General Relativity is a novel framework introduced as an alternative to the hyperbolic formulations traditionally used in numerical relativity. The FCF equations form a hybrid elliptic-hyperbolic system of equations including explicitly the constraints. We present an implicit-explicit numerical algorithm to solve the hyperbolic part, whereas the elliptic sector shares the form and properties with the well known Conformally Flat Condition (CFC) approximation. We show the stability andconvergence properties of the numerical scheme with numerical simulations of vacuum solutions. We have performed the first numerical evolutions of the coupled system of hydrodynamics and Einstein equations within FCF. As a proof of principle of the viability of the formalism, we present 2D axisymmetric simulations of an oscillating neutron star. In order to simplify the analysis we have neglected the back-reaction of the gravitational waves into the dynamics, which is small (<2 %) for ...

  13. Evaluation of Cloud Microphysics Simulated using a Meso-Scale Model Coupled with a Spectral Bin Microphysical Scheme through Comparison with Observation Data by Ship-Borne Doppler and Space-Borne W-Band Radars

    Science.gov (United States)

    Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.

    2012-01-01

    Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations.

  14. A DRM Scheme Using File Physical Information

    Directory of Open Access Journals (Sweden)

    Cheng Qu

    2015-05-01

    Full Text Available A digital file has both the content and physical information, however the latter was not fully made use of in previous digital rights management (DRM systems. This paper introduces the idea of making use of file physical information to improve the system security and provides a scheme based on this idea to resist the replay attack in DRM systems. In our scheme, compared to commonly used schemes, we remove the dependency on continuous online connection from the client-side to the server-side or the usage of tamper-proof hardware, such as Trusted Platform Module (TPM. The scheme is appropriate for offline digital content usage. Primary experiments demonstrate that our scheme is secure enough to be put into practice use.

  15. Fully implicit kinetic modelling of collisional plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, V.A.

    1996-05-01

    This dissertation describes a numerical technique, Matrix-Free Newton Krylov, for solving a simplified Vlasov-Fokker-Planck equation. This method is both deterministic and fully implicit, and may not have been a viable option before current developments in numerical methods. Results are presented that indicate the efficiency of the Matrix-Free Newton Krylov method for these fully-coupled, nonlinear integro-differential equations. The use and requirement for advanced differencing is also shown. To this end, implementations of Chang-Cooper differencing and flux limited Quadratic Upstream Interpolation for Convective Kinematics (QUICK) are presented. Results are given for a fully kinetic ion-electron problem with a self consistent electric field calculated from the ion and electron distribution functions. This numerical method, including advanced differencing, provides accurate solutions, which quickly converge on workstation class machines. It is demonstrated that efficient steady-state solutions can be achieved to the non-linear integro-differential equation, obtaining quadratic convergence, without incurring the large memory requirements of an integral operator. Model problems are presented which simulate plasma impinging on a plate with both high and low neutral particle recycling typical of a divertor in a Tokamak device. These model problems demonstrate the performance of the new solution method.

  16. Image-restoration algorithms for a fully connected architecture.

    Science.gov (United States)

    Abbiss, J B; Brames, B J; Byrne, C L; Fiddy, M A

    1990-06-15

    We describe the implementation of a technique for achieving image superresolution using a fully connected network of simple processors operating in an iterative mode. We show that an updating scheme can be specified that ensures convergence for the serial (asynchronous) updating case. With the appropriate hardware, parallel (synchronous) updating becomes of particular interest because of the potential for accelerated convergence; it is this approach that we envisage implementing in optical hardware. For this case also, we present a convergent scheme that can be related to a regularized form of the Gerchberg-Papoulis algorithm.

  17. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  18. A Proxy Blind Signature Scheme Based on ECDLP

    Institute of Scientific and Technical Information of China (English)

    WANGHaiyan; WANGRuchuan

    2005-01-01

    While proxy signature scheme enables an original signer to fully authorize a proxy to sign a message on his or her behalf legally and undeniably, blind signature scheme keeps the message blind from the signer so that the signer cannot make a linkage between the signature and the identity of requester (receiver). Both schemes have been widely applied in the electronic business. A new ECDLP (Elliptic curve discrete problem)-based proxy blind signature scheme is to be proposed in this paper by integrating the security properties of both schemes.

  19. Synchronization of general complex networks via adaptive control schemes

    Indian Academy of Sciences (India)

    Ping He; Chun-Guo Jing; Chang-Zhong Chen; Tao Fan; Hassan Saberi Nik

    2014-03-01

    In this paper, the synchronization problem of general complex networks is investigated by using adaptive control schemes. Time-delay coupling, derivative coupling, nonlinear coupling etc. exist universally in real-world complex networks. The adaptive synchronization scheme is designed for the complex network with multiple class of coupling terms. A criterion guaranteeing synchronization of such complex networks is established by employing the Lyapunov stability theorem and adaptive control schemes. Finally, an illustrative example with numerical simulation is given to show the feasibility and efficiency of theoretical results.

  20. Fully Implicit Numerical Methods for the Baroclinic Primitive Equations

    Science.gov (United States)

    Cohn, S. E.; Isaacson, E.

    1984-01-01

    A fully implicit code was developed to solve the three-dimensional primitive equations of atmospheric flow. The scheme is second order accurate in time and fourth order accurate in the horizontal and vertical directions. Furthermore, as a result of being fully implicit, the time step is not restricted by the mesh spacing near the poles, nor by the speed of inertia-gravity waves. Rather, the time step, deltat is determined simply by the requirement that it be small enough to adequately resolve the atmospheric flow of interest. The accuracy and efficiency of current models for fine grids should be significantly improved.

  1. Horizontal Fault Tolerance in a Fully Distributed Loosely Coupled Environment

    Science.gov (United States)

    1990-08-01

    loops = DEFLOOPS; struct tireb timeo , timel, time2; double sum = 0.0, sumsqrs = 0.0, 314 avg, stdev, delay, max =0.0, min = 2000000000.0; FILE...FILE - NOT YET RESTARTEDWn); fflush(pfile) ; #endif ftime (&time0); #if DEBUG fprintf(pfile, "ZFLOP: TIMEO = %d %dn, time0.time, time0.Millitm); fflush

  2. Shift-type homomorphic encryption and its application to fully homomorphic encryption

    NARCIS (Netherlands)

    Armknecht, F.; Katzenbeisser, S.; Peter, Andreas

    2012-01-01

    This work addresses the characterization of homomorphic encryption schemes both in terms of security and design. In particular, we are interested in currently existing fully homomorphic encryption (FHE) schemes and their common structures and security. Our main contributions can be summarized as fol

  3. Shift-type homomorphic encryption and its application to fully homomorphic encryption

    NARCIS (Netherlands)

    Armknecht, F.; Katzenbeisser, S.; Peter, A.

    2012-01-01

    This work addresses the characterization of homomorphic encryption schemes both in terms of security and design. In particular, we are interested in currently existing fully homomorphic encryption (FHE) schemes and their common structures and security. Our main contributions can be summarized as fol

  4. Shift-type homomorphic encryption and its application to fully homomorphic encryption

    NARCIS (Netherlands)

    Armknecht, F.; Katzenbeisser, S.; Peter, Andreas

    2012-01-01

    This work addresses the characterization of homomorphic encryption schemes both in terms of security and design. In particular, we are interested in currently existing fully homomorphic encryption (FHE) schemes and their common structures and security. Our main contributions can be summarized as

  5. Chordal Graphs are Fully Orientable

    CERN Document Server

    Lai, Hsin-Hao

    2012-01-01

    Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let m and M denote the minimum and the maximum of the number of dependent arcs over all acyclic orientations of G. We call G fully orientable if G has an acyclic orientation with exactly d dependent arcs for every d satisfying m <= d <= M. A graph G is called chordal if every cycle in G of length at least four has a chord. We show that all chordal graphs are fully orientable.

  6. Renormalization Scheme Dependence and Renormalization Group Summation

    CERN Document Server

    McKeon, D G C

    2016-01-01

    We consider logarithmic contributions to the free energy, instanton effective action and Laplace sum rules in QCD that are a consequence of radiative corrections. Upon summing these contributions by using the renormalization group, all dependence on the renormalization scale parameter mu cancels. The renormalization scheme dependence in these processes is examined, and a renormalization scheme is found in which the effect of higher order radiative corrections is absorbed by the behaviour of the running coupling.

  7. Generalized Group Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The concept of generalized group signature scheme will bepresent. Based on the generalized secret sharing scheme proposed by Lin and Ha rn, a non-interactive approach is designed for realizing such generalized group signature scheme. Using the new scheme, the authorized subsets of the group in w hich the group member can cooperate to produce the valid signature for any messa ge can be randomly specified

  8. Finite Boltzmann schemes

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2006-01-01

    In the special case of relaxation parameter = 1 lattice Boltzmann schemes for (convection) diffusion and fluid flow are equivalent to finite difference/volume (FD) schemes, and are thus coined finite Boltzmann (FB) schemes. We show that the equivalence is inherent to the homology of the

  9. MIDI Programming in Scheme

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2010-01-01

    A Scheme representation of Standard MIDI Files is proposed. The Scheme expressions are defined and constrained by an XML-language, which in the starting point is inspired by a MIDI XML event language made by the MIDI Manufactures Association. The representation of Standard MIDI Files in Scheme ma...

  10. MIDI Programming in Scheme

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2010-01-01

    A Scheme representation of Standard MIDI Files is proposed. The Scheme expressions are defined and constrained by an XML-language, which in the starting point is inspired by a MIDI XML event language made by the MIDI Manufactures Association. The representation of Standard MIDI Files in Scheme ma...

  11. Consistency of non-minimal renormalisation schemes

    CERN Document Server

    Jack, I

    2016-01-01

    Non-minimal renormalisation schemes such as the momentum subtraction scheme (MOM) have frequently been used for physical computations. The consistency of such a scheme relies on the existence of a coupling redefinition linking it to MSbar. We discuss the implementation of this procedure in detail for a general theory and show how to construct the relevant redefinition up to three-loop order, for the case of a general theory of fermions and scalars in four dimensions and a general scalar theory in six dimensions.

  12. Schwinger boson approach to the fully screened Kondo model.

    Science.gov (United States)

    Rech, J; Coleman, P; Zarand, G; Parcollet, O

    2006-01-13

    We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from local moment behavior to a Fermi liquid with a nontrivial Wilson ratio. When applied to the two-impurity model, the mean-field theory describes the "Varma-Jones" quantum phase transition between a valence bond state and a heavy Fermi liquid.

  13. Scheme Program Documentation Tools

    DEFF Research Database (Denmark)

    Nørmark, Kurt

    2004-01-01

    This paper describes and discusses two different Scheme documentation tools. The first is SchemeDoc, which is intended for documentation of the interfaces of Scheme libraries (APIs). The second is the Scheme Elucidator, which is for internal documentation of Scheme programs. Although the tools...... are separate and intended for different documentation purposes they are related to each other in several ways. Both tools are based on XML languages for tool setup and for documentation authoring. In addition, both tools rely on the LAML framework which---in a systematic way---makes an XML language available...

  14. A New Hybrid Control Scheme for an Integrated Helicopter and Engine System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Haibo; WANG Jiankang; CHEN Guoqiang; YAN Changkai

    2012-01-01

    A new hybrid control scheme is presented with a robust multiple model fusion control (RMMFC) law for a UH-60 helicopter and an active disturbance rejection control (ADRC) controller for its engines.This scheme is a control design method with every subsystem designed separately but fully considering the couplings between them.With three subspaces with respect to forward flight velocity,a RMMFC is proposed to devise a four-loop reference signal tracing control for the helicopter,which escapes the closed-loop system from unstable state due to the extreme complexity of this integrated nonlinear system.The engines are controlled by the proposed ADRC decoupling controller,which fully takes advantage of a good compensation ability for unmodeled dynamics and extra disturbances,so as to compensate torque disturbance in power turbine speed loop.By simulating a forward acceleration flight task,the RMMFC for the helicopter is validated.It is apparent that the integrated helicopter and engine system (IHES) has much better dynamic performance under the new control scheme.Especially in the switching process,the large transient is significantly weakened,and smooth transition among candidate controllers is achieved.Over the entire simulation task,the droop of power turbine speed with the proposed ADRC controller is significantly slighter than with the conventional PID controller,and the response time of the former is much faster than the latter.By simulating a rapid climb and descent flight task,the results also show the feasibility for the application of the proposed multiple model fusion control.Although there is aggressive power demand in this maneuver,the droop of power turbine speed with an ADRC controller is smaller than using a PID controller.The control performance for helicopter and engine is enhanced by adopting this hybrid control scheme,and simulation results in other envelope stale give proofs of robustness for this new scheme.

  15. 萨拉齐电厂300 MW循环流化床锅炉机组耦合空气透平系统试验方案研究%Feasibility Study on Test Schemes for Coupling Air Turbine System of Salaqi 300 MW CFB Boiler Unit

    Institute of Scientific and Technical Information of China (English)

    王玉召; 李建锋

    2013-01-01

    To reduce the service power rate of thermal power unit via coupling air turbine system,3 test schemes were proposed for Salaqi 300 MW circulating fluidized bed (CFB) boiler unit,among which schemes 1 and 3 don't need to retrofit the air heater,but scheme 2 does.Based on the survey to performance parameters and price of relevant test facilities,the calculation of heat flux distribution in each scheme was carried out and a comparison was made among the schemes.Results show that by comprehensively considering the energy-saving effect,test cost and impact on normal operation of the unit,scheme 3 is regarded as the best option among all the 3 schemes,of which the energy-saving effect is better than scheme 1 due to its lower exhaust gas temperature,and its test risk is lower than scheme 2 since it is not necessary to retrofit the air heater.%为了验证火力发电机组耦合空气透平系统降低厂用电率的可行性,制定了萨拉齐电厂300MW循环流化床锅炉机组耦合空气透平系统的3个试验方案,其中方案1、方案3不需要改造锅炉空气预热器,而方案2则需要改造锅炉空气预热器.对试验所用设备性能参数及价格进行调研,并对试验方案的热流分布进行了计算和对比.结果表明:在综合考虑3个试验方案的节能效果、试验成本以及对机组正常运行所可能带来的影响后,确定方案3为最佳方案,其与方案1相比,由于排烟温度较低,所以节能效果较好,与方案2相比,由于不改动空气预热器,所以对锅炉部分的改动较小,试验的风险较小.

  16. Update on the Pyramid Scheme

    Science.gov (United States)

    Banks, Tom; Torres, T. J.

    2012-10-01

    We summarize recent work in which we attempt to make consistent models of LHC physics, from the Pyramid Scheme. The models share much with the NMSSM, in particular, enhanced tree level contributions to the Higgs mass and a preference for small tan β. There are three different singlet fields, and a new strongly coupled gauge theory, so the constraints of perturbative unification are quite different. We outline our general approach to the model, which contains a Kähler potential for three of the low energy fields, which is hard to calculate. Detailed calculations, based on approximations to the Kähler potential, will be presented in a future publication.

  17. Towards a fully passive transfemoral prosthesis for normal walking

    NARCIS (Netherlands)

    Ünal, Ramazan; Carloni, Raffaella; Behrens, Sebastiaan Maria; Hekman, Edsko E.G.; Stramigioli, Stefano; Koopman, Hubertus F.J.M.

    In this study, we present the principle design of a fully-passive transfemoral prosthesis for normal walking, inspired by the power flow in human natural gait. The working principle of the mechanism is based on three parts, which are responsible of the energetic coupling between the knee and ankle

  18. Viscosity solutions of fully nonlinear functional parabolic PDE

    Directory of Open Access Journals (Sweden)

    Liu Wei-an

    2005-01-01

    Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.

  19. Convertible Proxy Signcryption Scheme

    Institute of Scientific and Technical Information of China (English)

    李继国; 李建中; 曹珍富; 张亦辰

    2004-01-01

    In 1996, Mambo et al introduced the concept of proxy signature. However, proxy signature can only provide the delegated authenticity and cannot provide confidentiality. Recently, Gamage et al and Chan and Wei proposed different proxy signcryption schemes respectively, which extended the concept of proxy signature.However, only the specified receiver can decrypt and verify the validity of proxy signcryption in their schemes.To protect the receiver' s benefit in case of a later dispute, Wu and Hsu proposed a convertible authenticated encryption scheme, which carn enable the receiver to convert signature into an ordinary one that can be verified by anyone. Based on Wu and Hsu' s scheme and improved Kim' s scheme, we propose a convertible proxy signcryption scheme. The security of the proposed scheme is based on the intractability of reversing the one-way hash function and solving the discrete logarithm problem. The proposed scheme can satisfy all properties of strong proxy signature and withstand the public key substitution attack and does not use secure channel. In addition, the proposed scheme can be extended to convertible threshold proxy signcryption scheme.

  20. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    Directory of Open Access Journals (Sweden)

    G. Katata

    2014-06-01

    Full Text Available Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1 accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information, and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging for radioactive iodine gas (I2 and CH3I and other particles (CsI, Cs, and Te, was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal

  1. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of atmospheric dispersion model with improved deposition scheme and oceanic dispersion model

    Science.gov (United States)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2014-06-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Dai-ichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate a detailed time trend of atmospheric releases during the accident by combining environmental monitoring data with atmospheric model simulations from WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information), and simulations from the oceanic dispersion model SEA-GEARN-FDM, both developed by the authors. A sophisticated deposition scheme, which deals with dry and fogwater depositions, cloud condensation nuclei (CCN) activation and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The fallout to the ocean surface calculated by WSPEEDI-II was used as input data for the SEA-GEARN-FDM calculations. Reverse and inverse source-term estimation methods based on coupling the simulations from both models was adopted using air dose rates and concentrations, and sea surface concentrations. The results revealed that the major releases of radionuclides due to FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, the morning of 13 March after the venting event at Unit 3, midnight of 14 March when the SRV (Safely Relief Valve) at Unit 2 was opened three times, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of

  2. Robust Scheme for Long-Distance Teleportation of an Unknown Atomic State

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A scheme is presented for the long-distance teleportation of an unknown atomic state between two separated cavities. The scheme is based on the Raman coupling and cavity decay. In the scheme, the effective atom-cavity coupling strength is much smaller than the cavity decay rate and thus cavities of high quality factor are unnecesssary.

  3. A generalized scheme for designing multistable continuous dynamical systems

    Indian Academy of Sciences (India)

    PAL SANTINATH; SAHOO BANSHIDHAR; PORIA SWARUP

    2016-06-01

    In this paper, a generalized scheme is proposed for designing multistable continuous dynamical systems. The scheme is based on the concept of partial synchronization of states and the concept of constants of motion. The most important observation is that by coupling two mdimensional dynamical systems, multistable nature can be obtained if i number of variables of the two systems are completely synchronized and j number of variables keep a constant difference between them i.e., their differences are constants of motion, where $i+j = m$ and $1 \\le i, j \\le m−1$. The proposed scheme is illustrated by taking coupled Lorenz systems and coupled chaotic Lorenzlike systems. According to the scheme, two coupled systems reduce to single modified system withsome initial condition-dependent parameters. Time evolution plots, phase diagrams, variation of maximum Lyapunov exponent and bifurcation diagrams of the systems are presented to show the multistable nature of the coupled systems.

  4. A numerical relativity scheme for cosmological simulations

    CERN Document Server

    Daverio, David; Mitsou, Ermis

    2016-01-01

    Fully non-linear cosmological simulations may prove relevant in understanding relativistic/non-linear features and, therefore, in taking full advantage of the upcoming survey data. We propose a new 3+1 integration scheme which is based on the presence of a perfect fluid (hydro) field, evolves only physical states by construction and passes the robustness test on an FLRW space-time. Although we use General Relativity as an example, the idea behind that scheme is applicable to any generally-covariant modified gravity theory and/or matter content, including a N-body sector.

  5. Difference Schemes and Applications

    Science.gov (United States)

    2015-02-06

    of the shallow water equations that is well suited for complex geometries and moving boundaries. Another (similar) regularization of...the solid wall extrapolation followed by the interpolation in the phase space (by solving the Riemann problem between the internal cell averages and...scheme. This Godunov-type scheme enjoys all major advantages of Riemann -problem-solver-free, non-oscillatory central schemes and, at the same time, have

  6. Efficient Threshold Signature Scheme

    Directory of Open Access Journals (Sweden)

    Sattar J Aboud

    2012-01-01

    Full Text Available In this paper, we introduce a new threshold signature RSA-typed scheme. The proposed scheme has the characteristics of un-forgeable and robustness in random oracle model. Also, signature generation and verification is entirely non-interactive. In addition, the length of the entity signature participate is restricted by a steady times of the length of the RSA signature modulus. Also, the signing process of the proposed scheme is more efficient in terms of time complexity and interaction.

  7. Stateless Transitive Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    MA Chun-guang; CAI Man-chun; YANG Yi-xian

    2004-01-01

    A new practical method is introduced to transform the stateful transitive signature scheme to stateless one without the loss of security. According to the approach, two concrete stateless transitive signature schemes based on Factoring and RSA are presented respectively. Under the assumption of the hardness of factoring and one-more- RSA-inversion problem, both two schemes are secure under the adaptive chosen-message attacks in random oracle model.

  8. A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification

    Science.gov (United States)

    Rosam, J.; Jimack, P. K.; Mullis, A.

    2007-08-01

    A fully implicit numerical method based upon adaptively refined meshes for the simulation of binary alloy solidification in 2D is presented. In addition we combine a second-order fully implicit time discretisation scheme with variable step size control to obtain an adaptive time and space discretisation method. The superiority of this method, compared to widely used fully explicit methods, with respect to CPU time and accuracy, is shown. Due to the high nonlinearity of the governing equations a robust and fast solver for systems of nonlinear algebraic equations is needed to solve the intermediate approximations per time step. We use a nonlinear multigrid solver which shows almost h-independent convergence behaviour.

  9. Properties of wideband resonant reflectors under fully conical light incidence

    Science.gov (United States)

    Ko, Yeong Hwan; Niraula, Manoj; Lee, Kyu Jin; Magnusson, Robert

    2016-03-01

    Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applications demanding wideband reflectors that are efficient and materially sparse.

  10. Properties of wideband resonant reflectors under fully conical light incidence

    CERN Document Server

    Ko, Yeong Hwan; Lee, Kyu Jin; Magnusson, Robert

    2016-01-01

    Applying numerical modeling coupled with experiments, we investigate the properties of wideband resonant reflectors under fully conical light incidence. We show that the wave vectors pertinent to resonant first-order diffraction under fully conical mounting vary less with incident angle than those associated with reflectors in classical mounting. Therefore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, fully-conical mounting imbues reflectors with larger angular tolerance than their classical counterparts. We quantify the angular-spectral performance of representative resonant wideband reflectors in conic and classic mounts by numerical calculations with improved spectra found for fully conic incidence. Moreover, these predictions are verified experimentally for wideband reflectors fashioned in crystalline and amorphous silicon in distinct spectral regions spanning the 1200-1600-nm and 1600-2400-nm spectral bands. These results will be useful in various applic...

  11. Quantum Optimization of Fully Connected Spin Glasses

    Science.gov (United States)

    Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim

    2015-07-01

    Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.

  12. Quantum Optimization of Fully Connected Spin Glasses

    Directory of Open Access Journals (Sweden)

    Davide Venturelli

    2015-09-01

    Full Text Available Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer’s hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave Two^{TM} annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors optimized simulated annealing algorithms.

  13. Chaotic coupling synchronization of hyperchaotic oscillators

    Institute of Scientific and Technical Information of China (English)

    Zou Yan-Li; Zhu Jie; Chen Guan-Rong

    2005-01-01

    In this paper, two kinds of chaotic coupling synchronization schemes are presented. The synchronizability of the coupled hyperchaotic oscillators is proved mathematically and the numerical simulation is also carried out. The numerical calculation of the largest conditional Lyapunov exponent shows that in a given range of coupling strengths,chaotic-coupling synchronization is quicker than the typical continuous-coupling synchronization.

  14. 基于全时域势流理论的船舶与液舱晃荡耦合运动的数值计算%Numerical method of ship motions coupled with tank sloshing based on fully time domain potential flow theory

    Institute of Scientific and Technical Information of China (English)

    李裕龙; 朱仁传; 缪国平; 范菊

    2016-01-01

    Based on three dimensional time domain potential theory, ship motion is solved by using an im-pulse response function method and boundary element method. Using three dimensional fully nonlinear time domain potential theory to simulate the nonlinear tank sloshing. Then the ship motion coupled with tank slosh-ing is established that the interactions of wave, ship body and tank sloshing are completely taken into con-siderations. Numerical simulation and experimental studies indicate that the numerical results of ship mo-tion coupled with tank sloshing can clearly show the coupling effect of tank sloshing on the ship global mo-tion. The results of the ship motion RAO of both computational and experiment ones are in good agreement, the numerical result of ship which has forward speed with liquid tank is also agreed with expectation.%基于三维线性有航速时域势流理论计算船体时域运动外域波浪力,同时采用三维全非线性时域势流理论来计算舱内液体的非线性晃荡所诱导力与力矩,进而建立了波浪中载液船舶耦合运动方程。该方法能够完整地考虑波浪、船体和液舱晃荡之间的实时耦合作用。研究结果表明:通过模型实验和数值模拟计算的对比,数值模拟计算能够清晰显现出液舱晃荡对船体全局运动影响,无航速船体运动RAO与模型实验结果吻合良好,有航速运动计算合乎预期。

  15. Physics of Fully Depleted CCDs

    CERN Document Server

    Holland, S E; Kolbe, W F; Lee, J S

    2014-01-01

    In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photogenerated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully...

  16. Mechanical balance laws for fully nonlinear and weakly dispersive water waves

    Science.gov (United States)

    Kalisch, Henrik; Khorsand, Zahra; Mitsotakis, Dimitrios

    2016-10-01

    The Serre-Green-Naghdi system is a coupled, fully nonlinear system of dispersive evolution equations which approximates the full water wave problem. The system is known to describe accurately the wave motion at the surface of an incompressible inviscid fluid in the case when the fluid flow is irrotational and two-dimensional. The system is an extension of the well known shallow-water system to the situation where the waves are long, but not so long that dispersive effects can be neglected. In the current work, the focus is on deriving mass, momentum and energy densities and fluxes associated with the Serre-Green-Naghdi system. These quantities arise from imposing balance equations of the same asymptotic order as the evolution equations. In the case of an even bed, the conservation equations are satisfied exactly by the solutions of the Serre-Green-Naghdi system. The case of variable bathymetry is more complicated, with mass and momentum conservation satisfied exactly, and energy conservation satisfied only in a global sense. In all cases, the quantities found here reduce correctly to the corresponding counterparts in both the Boussinesq and the shallow-water scaling. One consequence of the present analysis is that the energy loss appearing in the shallow-water theory of undular bores is fully compensated by the emergence of oscillations behind the bore front. The situation is analyzed numerically by approximating solutions of the Serre-Green-Naghdi equations using a finite-element discretization coupled with an adaptive Runge-Kutta time integration scheme, and it is found that the energy is indeed conserved nearly to machine precision. As a second application, the shoaling of solitary waves on a plane beach is analyzed. It appears that the Serre-Green-Naghdi equations are capable of predicting both the shape of the free surface and the evolution of kinetic and potential energy with good accuracy in the early stages of shoaling.

  17. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    J. Goutsias (John); H.J.A.M. Heijmans (Henk)

    1998-01-01

    textabstract[PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis

  18. Multiresolution signal decomposition schemes

    NARCIS (Netherlands)

    Goutsias, J.; Heijmans, H.J.A.M.

    1998-01-01

    [PNA-R9810] Interest in multiresolution techniques for signal processing and analysis is increasing steadily. An important instance of such a technique is the so-called pyramid decomposition scheme. This report proposes a general axiomatic pyramid decomposition scheme for signal analysis and synthes

  19. A Note on Threshold Schemes with Disenrollment

    Science.gov (United States)

    2003-01-01

    Lecture Notes in Computer Science 2384, pp. 71- 88, 2002. [2] G. R. Blakley, “Safeguarding cryptographic keys,” Proc. AFIPS 1979 National Computer...CRYPTO’92, E. F. Brickell, ed., Lecture Notes in Computer Science vol. 740, pp. 540-548, 1993. [4] C. Blundo, A. Cresti, A. De Santis, U. Vaccaro...Fully dynamic secret sharing schemes,” Advances in Cryptology – CRYPTO ’93, D. R. Stinson, ed., Lecture Notes in Computer Science

  20. Fully integrated, fully automated generation of short tandem repeat profiles

    Science.gov (United States)

    2013-01-01

    Background The generation of short tandem repeat profiles, also referred to as ‘DNA typing,’ is not currently performed outside the laboratory because the process requires highly skilled technical operators and a controlled laboratory environment and infrastructure with several specialized instruments. The goal of this work was to develop a fully integrated system for the automated generation of short tandem repeat profiles from buccal swab samples, to improve forensic laboratory process flow as well as to enable short tandem repeat profile generation to be performed in police stations and in field-forward military, intelligence, and homeland security settings. Results An integrated system was developed consisting of an injection-molded microfluidic BioChipSet cassette, a ruggedized instrument, and expert system software. For each of five buccal swabs, the system purifies DNA using guanidinium-based lysis and silica binding, amplifies 15 short tandem repeat loci and the amelogenin locus, electrophoretically separates the resulting amplicons, and generates a profile. No operator processing of the samples is required, and the time from swab insertion to profile generation is 84 minutes. All required reagents are contained within the BioChipSet cassette; these consist of a lyophilized polymerase chain reaction mix and liquids for purification and electrophoretic separation. Profiles obtained from fully automated runs demonstrate that the integrated system generates concordant short tandem repeat profiles. The system exhibits single-base resolution from 100 to greater than 500 bases, with inter-run precision with a standard deviation of ±0.05 - 0.10 bases for most alleles. The reagents are stable for at least 6 months at 22°C, and the instrument has been designed and tested to Military Standard 810F for shock and vibration ruggedization. A nontechnical user can operate the system within or outside the laboratory. Conclusions The integrated system represents the

  1. Fully automated (operational) modal analysis

    Science.gov (United States)

    Reynders, Edwin; Houbrechts, Jeroen; De Roeck, Guido

    2012-05-01

    Modal parameter estimation requires a lot of user interaction, especially when parametric system identification methods are used and the modes are selected in a stabilization diagram. In this paper, a fully automated, generally applicable three-stage clustering approach is developed for interpreting such a diagram. It does not require any user-specified parameter or threshold value, and it can be used in an experimental, operational, and combined vibration testing context and with any parametric system identification algorithm. The three stages of the algorithm correspond to the three stages in a manual analysis: setting stabilization thresholds for clearing out the diagram, detecting columns of stable modes, and selecting a representative mode from each column. An extensive validation study illustrates the accuracy and robustness of this automation strategy.

  2. Singularities in fully developed turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Shivamoggi, Bhimsen K., E-mail: bhimsen.shivamoggi@ucf.edu

    2015-09-18

    Phenomenological arguments are used to explore finite-time singularity (FTS) development in different physical fully-developed turbulence (FDT) situations. Effects of spatial intermittency and fluid compressibility in three-dimensional (3D) FDT and the role of the divorticity amplification mechanism in two-dimensional (2D) FDT and quasi-geostrophic FDT and the advection–diffusion mechanism in magnetohydrodynamic turbulence are considered to provide physical insights into the FTS development in variant cascade physics situations. The quasi-geostrophic FDT results connect with the 2D FDT results in the barotropic limit while they connect with 3D FDT results in the baroclinic limit and hence apparently provide a bridge between 2D and 3D. - Highlights: • Finite-time singularity development in turbulence situations is phenomenologically explored. • Spatial intermittency and compressibility effects are investigated. • Quasi-geostrophic turbulence is shown to provide a bridge between two-dimensional and three-dimensional cases.

  3. A Switched Diversity Scheme for Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Qianya Wang

    2014-01-01

    Full Text Available With the constraint of antenna space, spatial correlation and mutual coupling must be considered to accurately predict the system performance for massive MIMO systems. Increasing the antenna quantity can degrade the system performance due to mutual coupling. Antenna selection systems have better performance and lower hardware cost than full-MIMO systems. However, the conventional selection combining (SC scheme consumes a great amount of training overhead and has high operational complexity in the presence of mutual coupling. This paper proposes a group switch-and-examine combining (GSEC scheme for massive MIMO systems with the spatial correlation and mutual coupling existing at both the transmitter and receiver. Simulation results demonstrate that the proposed GSEC scheme provides better effective capacity performance and lower operational complexity than the conventional selection combining (SC and full-MIMO scheme.

  4. A novel fully integrated handheld gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Massari, R.; Ucci, A.; Campisi, C. [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy); Scopinaro, F. [University of Rome “La Sapienza”, S. Andrea Hospital, Rome (Italy); Soluri, A., E-mail: alessandro.soluri@ibb.cnr.it [Biostructure and Bioimaging Institute (IBB), National Research Council of Italy (CNR), Rome (Italy)

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  5. General Projective Synchronization and Fractional Order Chaotic Masking Scheme

    Institute of Scientific and Technical Information of China (English)

    Shi-Quan Shao

    2008-01-01

    In this paper, a fractional order chaotic masking scheme used for secure communication is introduced. Based on the general projective synchronization of two coupled fractional Chert systems, a popular masking scheme is designed. Numerical example is given to demonstrate the effectiveness of the proposed method.

  6. General Projective Synchronization and Fractional Order Chaotic Masking Scheme

    Institute of Scientific and Technical Information of China (English)

    Shi-Quan Shao

    2008-01-01

    In this paper, a fractional order chaoticmasking scheme used for secure communication isintroduced. Based on the general projectivesynchronization of two coupled fractional Chen systems,a popular masking scheme is designed. Numericalexample is given to demonstrate the effectiveness of theproposed method.

  7. Towards Fully Optimized BICM Transceivers

    CERN Document Server

    Hossain, Md Jahangir; Szczecinski, Leszek

    2010-01-01

    Bit-interleaved coded modulation (BICM) transceivers often use equally spaced constellations and a random interleaver. In this paper, we propose a new BICM design, which considers hierarchical (nonequally spaced) constellations, a bit-level multiplexer, and multiple interleavers. It is shown that this new scheme increases the degrees of freedom that can be exploited in order to improve its performance. Analytical bounds on the bit error rate (BER) of the system in terms of the constellation parameters and the multiplexing rules are developed for the additive white Gaussian Noise (AWGN) and Nakagami-$m$ fading channels. These bounds are then used to design the BICM transceiver. Numerical results show that, compared to conventional BICM designs, and for a target BER of $10^{-6}$, gains up to 3 dB in the AWGN channel are obtained. For fading channels, the gains depend on the fading parameter, and reach 2 dB for a target BER of $10^{-7}$ and $m=5$.

  8. A Fuzzy Commitment Scheme

    CERN Document Server

    Al-saggaf, Alawi A

    2008-01-01

    This paper attempt has been made to explain a fuzzy commitment scheme. In the conventional Commitment schemes, both committed string m and valid opening key are required to enable the sender to prove the commitment. However there could be many instances where the transmission involves noise or minor errors arising purely because of the factors over which neither the sender nor the receiver have any control. The fuzzy commitment scheme presented in this paper is to accept the opening key that is close to the original one in suitable distance metric, but not necessarily identical. The concept itself is illustrated with the help of simple situation.

  9. Fully coupled model and engineering application for deformation and pressure-relief gas flow of remote coal and rock mass due to mining%远程采动煤岩体变形与卸压瓦斯流动气固耦合动力学模型及其应用研究

    Institute of Scientific and Technical Information of China (English)

    刘洪永

    2011-01-01

    经过多年的科学研究和工程实践证明,采动卸压瓦斯抽采技术是防治煤与瓦斯突出、降低煤层瓦斯含量最有效、最经济的区域性措施。尽管近几十年来开展了大量的采动卸压瓦斯抽采现场试验,但对采动煤岩体变形与卸压瓦斯流动相互作用的研究尚不够成熟,还无法为卸压瓦斯的高效抽采提供理论基础和技术支持。以远程采动煤岩体为研究对象,运用岩石力学、采矿工程、渗流力学、数值仿真等理论,采用现场实验、实验室实验、理论分析和数值分析相结合的研究方法,系统研究了采动煤岩体的卸压特征、移动变形、采动应力变化及卸压瓦斯流动规律;开展了采动煤岩体变%The pressure-relief gas drainage technique is the most effective and economical regional method to decrease gas content and eliminate coal and gas outburst from many years' practices and studies.In recent decades,many field tests was operated on pressure-relief gas drainage due to mining,however,the interaction between the deformation and pressure-relief gas flow of coal and rock mass is not considerate enough to provide the theory and method for efficient pressure-relief gas drainage.By taking coal and rock mass due to mining as the research object,the combination methods of laboratory experiment,filed experiment,theoretical analysis and numerical analysis are used to research on mechanical characteristic,movement,deformation,pressure relief and seepage characteristic of overlying coal and rock masses.Carried on the interaction between the deformation and pressure-relief gas flow,and then set up elasto-brittle-plastic constitutive model of coal rock mass damage due to mining and fully coupled model and numerical solution for deformation and pressure-relief gas flow.The research provides theoretical basis and reference for the design of protective layer mining and relief-pressure gas drainage.The main aspects can be seen as

  10. Restaurant No. 1 fully renovated

    CERN Multimedia

    2007-01-01

    The Restaurant No. 1 team. After several months of patience and goodwill on the part of our clients, we are delighted to announce that the major renovation work which began in September 2006 has now been completed. From 21 May 2007 we look forward to welcoming you to a completely renovated restaurant area designed with you in mind. The restaurant team wishes to thank all its clients for their patience and loyalty. Particular attention has been paid in the new design to creating a spacious serving area and providing a wider choice of dishes. The new restaurant area has been designed as an open-plan space to enable you to view all the dishes before making your selection and to move around freely from one food access point to another. It comprises user-friendly areas that fully comply with hygiene standards. From now on you will be able to pick and choose to your heart's content. We invite you to try out wok cooking or some other speciality. Or select a pizza or a plate of pasta with a choice of two sauces fr...

  11. Preconditioned fully implicit PDE solvers for monument conservation

    CERN Document Server

    Semplice, Matteo

    2010-01-01

    Mathematical models for the description, in a quantitative way, of the damages induced on the monuments by the action of specific pollutants are often systems of nonlinear, possibly degenerate, parabolic equations. Although some the asymptotic properties of the solutions are known, for a short window of time, one needs a numerical approximation scheme in order to have a quantitative forecast at any time of interest. In this paper a fully implicit numerical method is proposed, analyzed and numerically tested for parabolic equations of porous media type and on a systems of two PDEs that models the sulfation of marble in monuments. Due to the nonlinear nature of the underlying mathematical model, the use of a fixed point scheme is required and every step implies the solution of large, locally structured, linear systems. A special effort is devoted to the spectral analysis of the relevant matrices and to the design of appropriate iterative or multi-iterative solvers, with special attention to preconditioned Krylo...

  12. First steps towards a generic sample preparation scheme for inorganic engineered nanoparticles in a complex matrix for detection, characterization, and quantification by asymmetric flow-field flow fractionation coupled to multi-angle light scattering and ICP-MS

    DEFF Research Database (Denmark)

    Wagner, Stephan; Legros, Samuel; Löschner, Katrin

    2015-01-01

    The applicability of a multi-step generic procedure to systematically develop sample preparation methods for the detection, characterization, and quantification of inorganic engineered nanoparticles (ENPs) in a complex matrix was successfully demonstrated. The research focused on the optimization...... content by asymmetric flow-field flow fractionation coupled to a multi-angle light scattering detector and an inductively coupled plasma mass spectrometer. Following the proposed generic procedure SiO2-ENPs were separated from a tomato soup. Two potential sample preparation methods were tested these being...

  13. CSR schemes in agribusiness

    DEFF Research Database (Denmark)

    Pötz, Katharina Anna; Haas, Rainer; Balzarova, Michaela

    2013-01-01

    Purpose – The rise of CSR followed a demand for CSR standards and guidelines. In a sector already characterized by a large number of standards, the authors seek to ask what CSR schemes apply to agribusiness, and how they can be systematically compared and analysed. Design....../methodology/approach – Following a deductive-inductive approach the authors develop a model to compare and analyse CSR schemes based on existing studies and on coding qualitative data on 216 CSR schemes. Findings – The authors confirm that CSR standards and guidelines have entered agribusiness and identify a complex landscape...... of schemes that can be categorized on focus areas, scales, mechanisms, origins, types and commitment levels. Research limitations/implications – The findings contribute to conceptual and empirical research on existing models to compare and analyse CSR standards. Sampling technique and depth of analysis limit...

  14. Tabled Execution in Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  15. Electronically Tunable Fully Integrated Fractional-Order Resonator

    KAUST Repository

    Tsirimokou, Georgia

    2017-03-20

    A fully integrated implementation of a parallel fractional-order resonator which employs together a fractional order capacitor and a fractional-order inductor is proposed in this paper. The design utilizes current-controlled Operational Transconductance Amplifiers as building blocks, designed and fabricated in AMS 0:35m CMOS process, and based on a second-order approximation of a fractional-order differentiator/ integrator magnitude optimized in the range 10Hz–700Hz. An attractive benefit of the proposed scheme is its electronic tuning capability.

  16. Double transitions in the fully frustrated XY model

    Science.gov (United States)

    Jeon, Gun Sang; Park, Sung Yong; Choi, M. Y.

    1997-06-01

    The fully frustrated XY model is studied via the position-space renormalization group approach. The model is mapped into two coupled XY models, for which the scaling equations are derived. By integrating directly the scaling equations, we observe that there exists a narrow temperature range in which both the vortex and coupling charge fugacities grow large, suggesting double transitions in the system. While the transition at lower temperature is identified to be of the Kosterlitz-Thouless type, the higher-temperature one appears not to be of the Ising universality class.

  17. The fully Mobile City Government Project (MCity)

    DEFF Research Database (Denmark)

    Scholl, Hans; Fidel, Raya; Mai, Jens Erik

    2006-01-01

    The Fully Mobile City Government Project, also known as MCity, is an interdisciplinary research project on the premises, requirements, and effects of fully mobile, wirelessly connected applications (FWMC). The project will develop an analytical framework for interpreting the interaction...

  18. Analytic evaluation of the dipole Hessian matrix in coupled-cluster theory

    Science.gov (United States)

    Jagau, Thomas-C.; Gauss, Jürgen; Ruud, Kenneth

    2013-10-01

    The general theory required for the calculation of analytic third energy derivatives at the coupled-cluster level of theory is presented and connected to preceding special formulations for hyperpolarizabilities and polarizability gradients. Based on our theory, we have implemented a scheme for calculating the dipole Hessian matrix in a fully analytical manner within the coupled-cluster singles and doubles approximation. The dipole Hessian matrix is the second geometrical derivative of the dipole moment and thus a third derivative of the energy. It plays a crucial role in IR spectroscopy when taking into account anharmonic effects and is also essential for computing vibrational corrections to dipole moments. The superior accuracy of the analytic evaluation of third energy derivatives as compared to numerical differentiation schemes is demonstrated in some pilot calculations.

  19. A Fully Discrete Galerkin Method for a Nonlinear Space-Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    Yunying Zheng

    2011-01-01

    Full Text Available The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.

  20. Nucleon-Nucleon Scattering From Fully-Dynamical Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinos Orginos; Martin Savage; Paulo Bedaque; Silas Beane

    2006-07-01

    We present results of the first fully-dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1 S0 channel and 3 S1 - 3 D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with lattice spacing of b = 0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions

  1. Ensemble Data Assimilation in a Simple Coupled Climate Model:The Role of Ocean-Atmosphere Interaction

    Institute of Scientific and Technical Information of China (English)

    LIU Zhengyu; WU Shu; ZHANG Shaoqing; LIU Yun; RONG Xinyao

    2013-01-01

    A conceptual coupled ocean-atmosphere model was used to study coupled ensemble data assimilation schemes with a focus on the role of ocean-atmosphere interaction in the assimilation.The optimal scheme was the fully coupled data assimilation scheme that employs the coupled covariance matrix and assimilates observations in both the atmosphere and ocean.The assimilation of synoptic atmospheric variability that captures the temporal fluctuation of the weather noise was found to be critical for the estimation of not only the atmospheric,but also oceanic states.The synoptic atmosphere observation was especially important in the mid-latitude system,where oceanic variability is driven by weather noise.The assimilation of synoptic atmospheric variability in the coupled model improved the atmospheric variability in the analysis and the subsequent forecasts,reducing error in the surface forcing and,in turn,in the ocean state.Atmospheric observation was able to further improve the oceanic state estimation directly through the coupled covariance between the atmosphere and ocean states.Relative to the mid-latitude system,the tropical system was influenced more by ocean-atmosphere interaction and,thus,the assimilation of oceanic observation becomes more important for the estimation of the ocean and atmosphere.

  2. XTR-Kurosawa-Desmedt Scheme

    Institute of Scientific and Technical Information of China (English)

    DING XIU-HUAN; FU ZHI-GUO; ZHANG SHU-GONG

    2009-01-01

    This paper proposes an XTR version of the Kurosawa-Desmedt scheme. Our scheme is secure against adaptive choeen-ciphertext attack under the XTR version of the Decisional Diffie-Hellman assumption in the standard model. Comparing efficiency between the Kurosawa-Desmedt scheme and the proposed XTR-Kurosawa-Desmedt scheme, we find that the proposed scheme is more efficient than the Kurosawa-Desmedt scheme both in communication and computation without compromising security.

  3. Landau pole in the pyramid scheme

    Science.gov (United States)

    Banks, Tom; Fortin, Jean-François; Kathrein, Scott

    2010-12-01

    We revisit the problem of the hidden sector Landau pole in the pyramid scheme. There is a fixed line in the plane of hidden sector gauge coupling and Yukawa couplings between the trianon fields. We postulate that the couplings flow to this line, at a point where the hidden sector gauge coupling is close to the strong coupling edge of its perturbative regime. Below the masses of the heavier trianons, the model quickly flows to a confining NF=NC=3 supersymmetric gauge theory, as required by phenomenological considerations. We study possible discrete R symmetries, which guarantee, among other things, that the basin of attraction of the fixed line has full codimension in the space of R-allowed couplings. The Yukawa couplings required to get the fixed line violate the pyrma-baryon symmetries we invoked in previous work to find a dark matter candidate. Omitting one of them, we have a dark matter candidate, and an acceptable renormalization group flow down from the unification scale, if the confinement scale of the hidden sector group is lowered from 5 to 2 TeV. However, we cannot find anomaly-free symmetries, which guarantee a set of pyrma-baryon violating couplings that eliminate the Landau pole, but do not allow a supersymmetry preserving vacuum of the model. We can do this with only one pyrma-baryon violating coupling, but this lowers the confinement scale to 900 GeV, which may already be ruled out due to light hidden sector baryons.

  4. Numerical stability of iterative scheme in solving coupled vibration of a train-bridge system%车桥耦合振动迭代求解稳定性研究

    Institute of Scientific and Technical Information of China (English)

    杜宪亭; 夏禾; 张田

    2012-01-01

    Bridge and vehicle subsystems were simplified into oscillators connected with springs or a system of masses with springs in vertical direction, respectively. The numerical stabilities of iterative schemes in solving dynamic interaction of train and bridge were studied with different wheel-rail relations on the basis of the spectral radius theory. The corresponding improvement approach was proposed in term of possible causes leading to numerical divergence. The results showed that the iteration can converge if the time step is small enough for the wheel-rail separation model; for the wheel-rail non-separation model, direct iterative scheme may lead to numerical instability if the mass of a bridge node is smaller than that of the passing wheel-pair; the virtual mass approach is proposed, it can not only avoid potential divergence but also retain the advantages of direct iterative scheme.%将桥梁、车辆分别简化为竖向振动的弹簧振子、簧上质量系,应用谱半径理论研究不同轮轨关系、不同迭代格式下车桥动力相互作用的数值求解稳定性问题,针对可能引起迭代计算发散的原因,提出改进措施.研究表明,采用轮轨分离模型,时间积分步足够小,迭代过程即可收敛;轮轨密贴分析模型中,轮对质量大于所通过桥梁节点质量时采用直接迭代格式会造成数值计算发散;轮轨密贴模型迭代求解过程中应用该虚拟质量法既可避免迭代数值发散亦可保留直接迭代优点.

  5. Succesful labelling schemes

    DEFF Research Database (Denmark)

    Juhl, Hans Jørn; Stacey, Julia

    2001-01-01

    It is usual practice to evaluate the success of a labelling scheme by looking at the awareness percentage, but in many cases this is not sufficient. The awareness percentage gives no indication of which of the consumer segments that are aware of and use labelling schemes and which do not. In the ......It is usual practice to evaluate the success of a labelling scheme by looking at the awareness percentage, but in many cases this is not sufficient. The awareness percentage gives no indication of which of the consumer segments that are aware of and use labelling schemes and which do not....... In the spring of 2001 MAPP carried out an extensive consumer study with special emphasis on the Nordic environmentally friendly label 'the swan'. The purpose was to find out how much consumers actually know and use various labelling schemes. 869 households were contacted and asked to fill in a questionnaire...... it into consideration when I go shopping. The respondent was asked to pick the most suitable answer, which described her use of each label. 29% - also called 'the labelling blind' - responded that they basically only knew the recycling label and the Government controlled organic label 'Ø-mærket'. Another segment of 6...

  6. Charge preserving high order PIC schemes

    Energy Technology Data Exchange (ETDEWEB)

    Londrillo, P., E-mail: pasquale.londrillo@oabo.inaf.i [INAF Bologna Osservatorio Astronomico (Italy); INFN Sezione Bologna (Italy); Benedetti, C.; Sgattoni, A.; Turchetti, G. [INFN Sezione Bologna (Italy); Dipartimento di Fisica dell' Universita di Bologna (Italy)

    2010-08-01

    In this paper we present some new results on our investigation aimed at extending to higher order (HOPIC) the classical PIC framework. After reviewing the basic resolution properties of the Runge-Kutta time integrator, coupled to fourth (sixth) order compact schemes for space derivatives in the Maxwell equations, we focus on the problem of extending charge conservation schemes to a general HOPIC framework. This issue represents the main contribution of the present work. We consider then a few numerical examples of 1D laser-plasma interaction in the under-dense and over-dense regimes relevant for ions acceleration, to test grid convergence and to compare HOPIC results with standard PIC schemes (LOPIC).

  7. Compact Spreader Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  8. Towards Symbolic Encryption Schemes

    DEFF Research Database (Denmark)

    Ahmed, Naveed; Jensen, Christian D.; Zenner, Erik

    2012-01-01

    Symbolic encryption, in the style of Dolev-Yao models, is ubiquitous in formal security models. In its common use, encryption on a whole message is specified as a single monolithic block. From a cryptographic perspective, however, this may require a resource-intensive cryptographic algorithm......, namely an authenticated encryption scheme that is secure under chosen ciphertext attack. Therefore, many reasonable encryption schemes, such as AES in the CBC or CFB mode, are not among the implementation options. In this paper, we report new attacks on CBC and CFB based implementations of the well......-known Needham-Schroeder and Denning-Sacco protocols. To avoid such problems, we advocate the use of refined notions of symbolic encryption that have natural correspondence to standard cryptographic encryption schemes....

  9. Labeling Schemes with Queries

    OpenAIRE

    2006-01-01

    We study the question of ``how robust are the known lower bounds of labeling schemes when one increases the number of consulted labels''. Let $f$ be a function on pairs of vertices. An $f$-labeling scheme for a family of graphs $\\cF$ labels the vertices of all graphs in $\\cF$ such that for every graph $G\\in\\cF$ and every two vertices $u,v\\in G$, the value $f(u,v)$ can be inferred by merely inspecting the labels of $u$ and $v$. This paper introduces a natural generalization: the notion of $f$-...

  10. Fully coupled electro-mechanical model based on transfer matrix method for vibration control of circular cylindrical shell with active constrained layer damping%基于传递矩阵法分析ACLD圆柱壳振动控制问题的一种完全力电耦合模型

    Institute of Scientific and Technical Information of China (English)

    李晓妮; 向宇; 黄玉盈; 袁丽芸; 陆静

    2011-01-01

    The commonly used model for dynamic analysis of the shell with active constrained layer damping (ACLD) is a simply coupled electro-mechanical model (SCEM). In this model the electric field is assumed to be negligible in the in-plane directions of piezoelectric layer and to be constant throughout the thickness in the normal direction. The reason for ineffectiveness of SCEM was analyzed theoretically and a fully coupled electro-mechanical model (FCEM) was further developed. Then a first-order differential matrix equation for FCEM of thin ACLD circular cylindrical shell was derived. A high precision and high efficiency transfer matrix method based on the extended homogeneous capacity precision integration approach was employed to solve the matrix equation. Compared with the classical 3D method, the proposed method can greatly simplify computation, and can be applied to analyze the vibration control problems of thin circular cylindrical shell partially treated with ACLD under arbitrary boundary conditions. Numerical results were given to compare the two kinds of models ( SCEM and FCEM) in a wider frequency range. The results by both models agree exactly in the lowfrequency range, whereas differ significantly in the high-frequency range. This confirms sufficiently SCME is only applicable to low-frequency vibration problems while FCEM can be used in a wider frequency range.%目前在ACLD薄壳结构的动力学分析中,通常采用一种忽略压电约束层面内电场强度,仅考虑在厚度方向为常量分布的法向电场强度的简化力电耦合模型.首先从理论上分析了简化力电耦合模型的局限性,进而提出了一种新的完全力电耦合模型,以此为基础导出了该模型下ACLD圆柱壳的一阶常微分矩阵状态方程,并结合传递矩阵法和齐次扩容精细积分法求解该方程.相对于传统三维模型方法,所建立的新模型和求解方法不仅大幅度简化了计算,而且适用于分析部分覆盖和任

  11. Plasmonic Antenna Coupling for QWIPs

    Science.gov (United States)

    Hong, John

    2007-01-01

    In a proposed scheme for coupling light into a quantum-well infrared photodetector (QWIP), an antenna or an array of antennas made of a suitable metal would be fabricated on the face of what would otherwise be a standard QWIP. This or any such coupling scheme is required to effect polarization conversion: Light incident perpendicularly to the face is necessarily polarized in the plane of the face, whereas, as a matter of fundamental electrodynamics and related quantum selection rules, light must have a non-zero component of perpendicular polarization in order to be absorbed in the photodetection process. In a prior coupling scheme, gratings in the form of surface corrugations diffract normally gles, thereby imparting some perpendicular polarization. Unfortunately, the corrugation- fabrication process increases the overall nonuniformity of a large QWIP array. The proposed scheme is an alternative to the use of surface corrugations.

  12. Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0): applications to numerical weather forecasting and the CO2 budget in South America

    Science.gov (United States)

    Moreira, D. S.; Freitas, S. R.; Bonatti, J. P.; Mercado, L. M.; Rosário, N. M. É.; Longo, K. M.; Miller, J. B.; Gloor, M.; Gatti, L. V.

    2013-01-01

    This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation) and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March) and dry (September) seasons of 2010. The statistics used to perform the evaluation included bias (BIAS) and root mean squared error (RMSE). The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3) surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.

  13. Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0: applications to numerical weather forecasting and the CO2 budget in South America

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2013-01-01

    Full Text Available This article presents the development of a new numerical system denominated JULES-CCATT-BRAMS, which resulted from the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. The performance of this system in relation to several meteorological variables (wind speed at 10 m, air temperature at 2 m, dew point temperature at 2 m, pressure reduced to mean sea level and 6 h accumulated precipitation and the CO2 concentration above an extensive area of South America is also presented, focusing on the Amazon basin. The evaluations were conducted for two periods, the wet (March and dry (September seasons of 2010. The statistics used to perform the evaluation included bias (BIAS and root mean squared error (RMSE. The errors were calculated in relation to observations at conventional stations in airports and automatic stations. In addition, CO2 concentrations in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with aircraft data. The results of this study show that the JULES model coupled to CCATT-BRAMS provided a significant gain in performance in the evaluated atmospheric fields relative to those simulated by the LEAF (version 3 surface model originally utilized by CCATT-BRAMS. Simulations of CO2 concentrations in Amazonia and a comparison with observations are also discussed and show that the system presents a gain in performance relative to previous studies. Finally, we discuss a wide range of numerical studies integrating coupled atmospheric, land surface and chemistry processes that could be produced with the system described here. Therefore, this work presents to the scientific community a free tool, with good performance in relation to the observed data and re-analyses, able to produce atmospheric simulations/forecasts at different resolutions, for any period of time and in any region of the globe.

  14. Fully Polynomial Approximation Schemes for Single-Item Capacitated Economic Lot-Sizing Problems

    NARCIS (Netherlands)

    C.P.M. van Hoesel; A.P.M. Wagelmans (Albert)

    1997-01-01

    textabstractNP-hard cases of the single-item capacitated lot-sizing problem have been the topic of extensive research and continue to receive considerable attention. However, surprisingly few theoretical results have been published on approximation methods for these problems. To the best of our kno

  15. A Fully Conserved Minimal Adjustment Scheme with (T, S) Coherency for Stabilization of Hydrographic Profiles

    Science.gov (United States)

    2012-12-01

    heat, salt, and potential energy, which may lead to errors in estimating the oceanic impact on global climate change patterns (Chu and Fan 2010a... circulation of deep and abyssal waters. Deep-Sea Res., 15, 577–598. Marotzke, J., and J. R. Scott, 1999: Convective mixing and the thermohaline circulation . J...Jet Propulsion Laboratory (JPL) Estimating the Circula- tion and Climate of the Ocean (ECCO) (T, S) fields centered on 31December 2008 (download on 19

  16. Effectiveness of fully documented fisheries to estimate discards in a participatory research scheme

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Ulrich, Clara; Olesen, Hans Jakob;

    2016-01-01

    regulations. Currently, catch inspection at sea, self-reporting through e-log and on-board observers are the primary methods to document catches at sea. However, at-sea control and on-board observers are costly and have limited coverage, while self-reporting is susceptible to fraud and provides limited...

  17. The ACODEA Framework: Developing Segmentation and Classification Schemes for Fully Automatic Analysis of Online Discussions

    Science.gov (United States)

    Mu, Jin; Stegmann, Karsten; Mayfield, Elijah; Rose, Carolyn; Fischer, Frank

    2012-01-01

    Research related to online discussions frequently faces the problem of analyzing huge corpora. Natural Language Processing (NLP) technologies may allow automating this analysis. However, the state-of-the-art in machine learning and text mining approaches yields models that do not transfer well between corpora related to different topics. Also,…

  18. Comparing Sediment Yield Predictions from Different Hydrologic Modeling Schemes

    Science.gov (United States)

    Dahl, T. A.; Kendall, A. D.; Hyndman, D. W.

    2015-12-01

    Sediment yield, or the delivery of sediment from the landscape to a river, is a difficult process to accurately model. It is primarily a function of hydrology and climate, but influenced by landcover and the underlying soils. These additional factors make it much more difficult to accurately model than water flow alone. It is not intuitive what impact different hydrologic modeling schemes may have on the prediction of sediment yield. Here, two implementations of the Modified Universal Soil Loss Equation (MUSLE) are compared to examine the effects of hydrologic model choice. Both the Soil and Water Assessment Tool (SWAT) and the Landscape Hydrology Model (LHM) utilize the MUSLE for calculating sediment yield. SWAT is a lumped parameter hydrologic model developed by the USDA, which is commonly used for predicting sediment yield. LHM is a fully distributed hydrologic model developed primarily for integrated surface and groundwater studies at the watershed to regional scale. SWAT and LHM models were developed and tested for two large, adjacent watersheds in the Great Lakes region; the Maumee River and the St. Joseph River. The models were run using a variety of single model and ensemble downscaled climate change scenarios from the Coupled Model Intercomparison Project 5 (CMIP5). The initial results of this comparison are discussed here.

  19. Alternative health insurance schemes

    DEFF Research Database (Denmark)

    Keiding, Hans; Hansen, Bodil O.

    2002-01-01

    In this paper, we present a simple model of health insurance with asymmetric information, where we compare two alternative ways of organizing the insurance market. Either as a competitive insurance market, where some risks remain uninsured, or as a compulsory scheme, where however, the level...... competitive insurance; this situation turns out to be at least as good as either of the alternatives...

  20. Hydrocarbon characterization experiments in fully turbulent fires.

    Energy Technology Data Exchange (ETDEWEB)

    Ricks, Allen; Blanchat, Thomas K.

    2007-05-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.

  1. NUMERICAL SIMULATIONS OF SEA ICE WITH DIFFERENT ADVECTION SCHEMES

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-ying

    2011-01-01

    Numerical simulations are carried out for sea ice with four different advection schemes to study their effects on the simulation results.The sea ice model employed here is the Sea Ice Simulator (SIS) of the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 4b (MOM4b) and the four advection schemes are, the upwind scheme originally used in the SIS, the Multi-Dimensional Positive Advection (MDPA) scheme, the Incremental Remapping Scheme (IRS) and the Two Step Shape Preserving (TSSP) scheme.The latter three schemes are newly introduced.To consider the interactions between sea ice and ocean, a mixed layer ocean model is introduced and coupled to the SIS.The coupled model uses a tri-polar coordinate with 120×65 grids,covering the whole earth globe, in the horizontal plane.Simulation results in the northern high latitudes are analyzed.In all simulations, the model reproduces the seasonal variation of sea ice in the northern high latitudes well.Compared with the results from the observation, the sea ice model produces some extra sea ice coverage in the Greenland Sea and Barents Sea in winter due to the exclusion of ocean current effects and the smaller simulated sea ice thickness in the Arctic basin.There are similar features among the results obtained with the introduced three advection schemes.The simulated sea ice thickness with the three newly introduced schemes are all smaller than that of the upwind scheme and the simulated sea ice velocities of movement are all smaller than that of the upwind scheme.There are more similarities shared in the results obtained with the MPDA and TSSP schemes.

  2. A Coupled Multiphysics Approach for Simulating Induced Seismicity, Ground Acceleration and Structural Damage

    Science.gov (United States)

    Podgorney, Robert; Coleman, Justin; Wilkins, Amdrew; Huang, Hai; Veeraraghavan, Swetha; Xia, Yidong; Permann, Cody

    2017-04-01

    Numerical modeling has played an important role in understanding the behavior of coupled subsurface thermal-hydro-mechanical (THM) processes associated with a number of energy and environmental applications since as early as the 1970s. While the ability to rigorously describe all key tightly coupled controlling physics still remains a challenge, there have been significant advances in recent decades. These advances are related primarily to the exponential growth of computational power, the development of more accurate equations of state, improvements in the ability to represent heterogeneity and reservoir geometry, and more robust nonlinear solution schemes. The work described in this paper documents the development and linkage of several fully-coupled and fully-implicit modeling tools. These tools simulate: (1) the dynamics of fluid flow, heat transport, and quasi-static rock mechanics; (2) seismic wave propagation from the sources of energy release through heterogeneous material; and (3) the soil-structural damage resulting from ground acceleration. These tools are developed in Idaho National Laboratory's parallel Multiphysics Object Oriented Simulation Environment, and are integrated together using a global implicit approach. The governing equations are presented, the numerical approach for simultaneously solving and coupling the three coupling physics tools is discussed, and the data input and output methodology is outlined. An example is presented to demonstrate the capabilities of the coupled multiphysics approach. The example involves simulating a system conceptually similar to the geothermal development in Basel Switzerland, and the resultant induced seismicity, ground motion and structural damage is predicted.

  3. Iterated upwind schemes for gas dynamics

    Science.gov (United States)

    Smolarkiewicz, Piotr K.; Szmelter, Joanna

    2009-01-01

    A class of high-resolution schemes established in integration of anelastic equations is extended to fully compressible flows, and documented for unsteady (and steady) problems through a span of Mach numbers from zero to supersonic. The schemes stem from iterated upwind technology of the multidimensional positive definite advection transport algorithm (MPDATA). The derived algorithms employ standard and modified forms of the equations of gas dynamics for conservation of mass, momentum and either total or internal energy as well as potential temperature. Numerical examples from elementary wave propagation, through computational aerodynamics benchmarks, to atmospheric small- and large-amplitude acoustics with intricate wave-flow interactions verify the approach for both structured and unstructured meshes, and demonstrate its flexibility and robustness.

  4. A High Resolution Low Dissipation Hybrid Scheme for Compressible Flows

    Institute of Scientific and Technical Information of China (English)

    YU Jian; YAN Chao; JIANG Zhenhua

    2011-01-01

    In this paper,an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows.The hybrid algorithm is based on a fifth-order weighted essentially non-oscillatory (WENO) scheme in the finite volume form to solve the smooth part of the flow field,which is coupled with a characteristic-based monotone upstream-centered scheme for conservation laws(MUSCL) to capture discontinuities.The hybrid scheme is intended to combine high resolution of MUSCL scheme and low dissipation of WENO scheme.The two ingredients in this hybrid scheme are switched with an indicator.Three typical indicators are chosen and compared.MUSCL and WENO are both shock capturing schemes making the choice of the indicator parameter less crucial.Several test cases are carried out to investigate hybrid scheme with different indicators in terms of accuracy and efficiency.Numerical results demonstrate that the hybrid scheme in the present work performs well in a broad range of problems.

  5. Coupling between the JULES land-surface scheme and the CCATT-BRAMS atmospheric chemistry model (JULES-CCATT-BRAMS1.0: applications to numerical weather forecasting and the CO2 budget in South America

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2013-08-01

    Full Text Available This article presents the coupling of the JULES surface model to the CCATT-BRAMS atmospheric chemistry model. This new numerical system is denominated JULES-CCATT-BRAMS. We demonstrate the performance of this new model system in relation to several meteorological variables and the CO2 mixing ratio over a large part of South America, focusing on the Amazon basin. The evaluation was conducted for two time periods, the wet (March and dry (September seasons of 2010. The model errors were calculated in relation to meteorological observations at conventional stations in airports and automatic stations. In addition, CO2 mixing ratios in the first model level were compared with meteorological tower measurements and vertical CO2 profiles were compared with observations obtained with airborne instruments. The results of this study show that the JULES-CCATT-BRAMS modeling system provided a significant gain in performance for the considered atmospheric fields relative to those simulated by the LEAF (version 3 surface model originally employed by CCATT-BRAMS. In addition, the new system significantly increases the ability to simulate processes involving air–surface interactions, due to the ability of JULES to simulate photosynthesis, respiration and dynamic vegetation, among other processes. We also discuss a wide range of numerical studies involving coupled atmospheric, land surface and chemistry processes that could be done with the system introduced here. Thus, this work presents to the scientific community a free modeling tool, with good performance in comparison with observational data and reanalysis model data, at least for the region and time period discussed here. Therefore, in principle, this model is able to produce atmospheric hindcast/forecast simulations at different spatial resolutions for any time period and any region of the globe.

  6. A simple scheme to generate x-type four-charge entangled states in circuit QED

    Institute of Scientific and Technical Information of China (English)

    Gao Gui-Long; Song Fu-Quan; Huang Shou-Sheng; Wang Hui; Yuan Xian-Zhang; Wang Ming-Feng; Jiang Nian-Quan

    2012-01-01

    We propose a simple scheme to generate x-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR).The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit.The experimental feasibility of our scheme is also shown.

  7. Secure Biometric E-Voting Scheme

    Science.gov (United States)

    Ahmed, Taha Kh.; Aborizka, Mohamed

    The implementation of the e-voting becomes more substantial with the rapid increase of e-government development. The recent growth in communications and cryptographic techniques facilitate the implementation of e-voting. Many countries introduced e-voting systems; unfortunately most of these systems are not fully functional. In this paper we will present an e-voting scheme that covers most of the e-voting requirements, smart card and biometric recognition technology were implemented to guarantee voter's privacy and authentication.

  8. An unconditionally stable fully conservative semi-Lagrangian method

    KAUST Repository

    Lentine, Michael

    2011-04-01

    Semi-Lagrangian methods have been around for some time, dating back at least to [3]. Researchers have worked to increase their accuracy, and these schemes have gained newfound interest with the recent widespread use of adaptive grids where the CFL-based time step restriction of the smallest cell can be overwhelming. Since these schemes are based on characteristic tracing and interpolation, they do not readily lend themselves to a fully conservative implementation. However, we propose a novel technique that applies a conservative limiter to the typical semi-Lagrangian interpolation step in order to guarantee that the amount of the conservative quantity does not increase during this advection. In addition, we propose a new second step that forward advects any of the conserved quantity that was not accounted for in the typical semi-Lagrangian advection. We show that this new scheme can be used to conserve both mass and momentum for incompressible flows. For incompressible flows, we further explore properly conserving kinetic energy during the advection step, but note that the divergence free projection results in a velocity field which is inconsistent with conservation of kinetic energy (even for inviscid flows where it should be conserved). For compressible flows, we rely on a recently proposed splitting technique that eliminates the acoustic CFL time step restriction via an incompressible-style pressure solve. Then our new method can be applied to conservatively advect mass, momentum and total energy in order to exactly conserve these quantities, and remove the remaining time step restriction based on fluid velocity that the original scheme still had. © 2011 Elsevier Inc.

  9. Towards a Collaborative Intelligent Tutoring System Classification Scheme

    Science.gov (United States)

    Harsley, Rachel

    2014-01-01

    This paper presents a novel classification scheme for Collaborative Intelligent Tutoring Systems (CITS), an emergent research field. The three emergent classifications of CITS are unstructured, semi-structured, and fully structured. While all three types of CITS offer opportunities to improve student learning gains, the full extent to which these…

  10. On Converting Secret Sharing Scheme to Visual Secret Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Wang Daoshun

    2010-01-01

    Full Text Available Abstract Traditional Secret Sharing (SS schemes reconstruct secret exactly the same as the original one but involve complex computation. Visual Secret Sharing (VSS schemes decode the secret without computation, but each share is m times as big as the original and the quality of the reconstructed secret image is reduced. Probabilistic visual secret sharing (Prob.VSS schemes for a binary image use only one subpixel to share the secret image; however the probability of white pixels in a white area is higher than that in a black area in the reconstructed secret image. SS schemes, VSS schemes, and Prob. VSS schemes have various construction methods and advantages. This paper first presents an approach to convert (transform a -SS scheme to a -VSS scheme for greyscale images. The generation of the shadow images (shares is based on Boolean XOR operation. The secret image can be reconstructed directly by performing Boolean OR operation, as in most conventional VSS schemes. Its pixel expansion is significantly smaller than that of VSS schemes. The quality of the reconstructed images, measured by average contrast, is the same as VSS schemes. Then a novel matrix-concatenation approach is used to extend the greyscale -SS scheme to a more general case of greyscale -VSS scheme.

  11. An Integral Formalism for the Construction of Scheme Transformations in Quantum Field Theory

    CERN Document Server

    Choi, Gongjun

    2016-01-01

    We present an integral formalism for constructing scheme transformations in a quantum field theory. We apply this to generate several new useful scheme transformations. A comparative analysis is given of these scheme transformations in terms of their series expansion coefficients and their resultant effect on the interaction coupling, in particular at a zero of the beta function away from the origin in coupling-constant space.

  12. Detailed source term estimation of the atmospheric release for the Fukushima Daiichi Nuclear Power Station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model

    Science.gov (United States)

    Katata, G.; Chino, M.; Kobayashi, T.; Terada, H.; Ota, M.; Nagai, H.; Kajino, M.; Draxler, R.; Hort, M. C.; Malo, A.; Torii, T.; Sanada, Y.

    2015-01-01

    Temporal variations in the amount of radionuclides released into the atmosphere during the Fukushima Daiichi Nuclear Power Station (FNPS1) accident and their atmospheric and marine dispersion are essential to evaluate the environmental impacts and resultant radiological doses to the public. In this paper, we estimate the detailed atmospheric releases during the accident using a reverse estimation method which calculates the release rates of radionuclides by comparing measurements of air concentration of a radionuclide or its dose rate in the environment with the ones calculated by atmospheric and oceanic transport, dispersion and deposition models. The atmospheric and oceanic models used are WSPEEDI-II (Worldwide version of System for Prediction of Environmental Emergency Dose Information) and SEA-GEARN-FDM (Finite difference oceanic dispersion model), both developed by the authors. A sophisticated deposition scheme, which deals with dry and fog-water depositions, cloud condensation nuclei (CCN) activation, and subsequent wet scavenging due to mixed-phase cloud microphysics (in-cloud scavenging) for radioactive iodine gas (I2 and CH3I) and other particles (CsI, Cs, and Te), was incorporated into WSPEEDI-II to improve the surface deposition calculations. The results revealed that the major releases of radionuclides due to the FNPS1 accident occurred in the following periods during March 2011: the afternoon of 12 March due to the wet venting and hydrogen explosion at Unit 1, midnight of 14 March when the SRV (safety relief valve) was opened three times at Unit 2, the morning and night of 15 March, and the morning of 16 March. According to the simulation results, the highest radioactive contamination areas around FNPS1 were created from 15 to 16 March by complicated interactions among rainfall, plume movements, and the temporal variation of release rates. The simulation by WSPEEDI-II using the new source term reproduced the local and regional patterns of cumulative

  13. Application of an Online-Coupled Regional Climate Model, WRF-CAM5, over East Asia for Examination of Ice Nucleation Schemes: Part I. Comprehensive Model Evaluation and Trend Analysis for 2006 and 2011

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying; Zhang, Yang; Fan, Jiwen; Leung, Lai-Yung; Zhang, Qiang; He, Kebin

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at the surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with

  14. Application of an Online-Coupled Regional Climate Model, WRF-CAM5, over East Asia for Examination of Ice Nucleation Schemes: Part I. Comprehensive Model Evaluation and Trend Analysis for 2006 and 2011

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2015-08-01

    Full Text Available Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5 are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at the surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation. Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing. These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO2 but relatively poor for surface concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better

  15. TINKTEP: A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field

    Science.gov (United States)

    Dziedzic, Jacek; Mao, Yuezhi; Shao, Yihan; Ponder, Jay; Head-Gordon, Teresa; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-09-01

    We present a novel quantum mechanical/molecular mechanics (QM/MM) approach in which a quantum subsystem is coupled to a classical subsystem described by the AMOEBA polarizable force field. Our approach permits mutual polarization between the QM and MM subsystems, effected through multipolar electrostatics. Self-consistency is achieved for both the QM and MM subsystems through a total energy minimization scheme. We provide an expression for the Hamiltonian of the coupled QM/MM system, which we minimize using gradient methods. The QM subsystem is described by the onetep linear-scaling DFT approach, which makes use of strictly localized orbitals expressed in a set of periodic sinc basis functions equivalent to plane waves. The MM subsystem is described by the multipolar, polarizable force field AMOEBA, as implemented in tinker. Distributed multipole analysis is used to obtain, on the fly, a classical representation of the QM subsystem in terms of atom-centered multipoles. This auxiliary representation is used for all polarization interactions between QM and MM, allowing us to treat them on the same footing as in AMOEBA. We validate our method in tests of solute-solvent interaction energies, for neutral and charged molecules, demonstrating the simultaneous optimization of the quantum and classical degrees of freedom. Encouragingly, we find that the inclusion of explicit polarization in the MM part of QM/MM improves the agreement with fully QM calculations.

  16. The running coupling of the minimal sextet composite Higgs model

    CERN Document Server

    Fodor, Zoltan; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him

    2015-01-01

    We compute the renormalized running coupling of SU(3) gauge theory coupled to N_f = 2 flavors of massless Dirac fermions in the 2-index-symmetric (sextet) representation. This model is of particular interest as a minimal realization of the strongly interacting composite Higgs scenario. A recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings with two different implementations of the gradient flow allowing for a controlled continuum extrapolation and particular attention is paid to estimating the systematic uncertainties. For small values of the renormalized coupling our results for the beta-function agree with perturbation theory. For moderate couplings we observe a downward deviation relative to the 2-loop beta-function but in the coupling range where the continuum extrapolation is fully under control we do not observe an infrared fixed point. The explored range includes the locations of the zero of the 3-loop and the 4-loop beta-functions in ...

  17. Automatic Scheme for Fused Medical Image Segmentation with Nonsubsampled Contourlet Transform

    OpenAIRE

    Ch.Hima Bindu; Dr. K. Satya Prasad

    2012-01-01

    Medical image segmentation has become an essential technique in clinical and research- oriented applications. Because manual segmentation methods are tedious, and semi-automatic segmentation lacks the flexibility, fully-automatic methods have become the preferred type of medical image segmentation. This work proposes a robust fully automatic segmentation scheme based on the modified contouring technique. The entire scheme consists of three stages. In the first stage, the Nonsubsampled Contour...

  18. ESPC Coupled Global Ensemble Design

    Science.gov (United States)

    2014-09-30

    coupled system infrastructure and forecasting capabilities. Initial operational capability is targeted for 2018. APPROACH 1. It is recognized...provided will be the probability distribution function (PDF) of environmental conditions. It is expected that this distribution will have skill. To...system would be the initial capability for ensemble forecasts . Extensions to fully coupled ensembles would be the next step. 2. Develop an extended

  19. Fully double-logarithm-resummed cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2011-04-15

    We calculate the complete double logarithmic contribution to cross sections for semi-inclusive hadron production in the modified minimal-subtraction (MS) scheme by applying dimensional regularization to the double logarithm approximation. The full double logarithmic contribution to the coefficient functions for inclusive hadron production in electron-positron annihilation is obtained in this scheme for the first time. Our result agrees with all fixed order results in the literature, which extend to next-next-to-leading order. (orig.)

  20. Breakdown of unitarity in the dimensional reduction scheme

    OpenAIRE

    Hooft, G. 't; Van Damme, R.

    1985-01-01

    B-functions of any field theory using different regularization schemes should obey the physical rule that they can be transformed into each other by a finite transformation of the renormalized coupling constants in the theory. The dimensional reduction scheme does not obey this rule. The cause is that unacceptable counterterms had to be used where overlapping divergencies occur, so that unitarity is violated. Supersymmetry (or at least the N = 2 and N = 4 supersymmetric gauge theories and all...

  1. Comparing document classification schemes using k-means clustering

    OpenAIRE

    Šivić, Artur; Žmak, Lovro; Dalbelo Bašić, Bojana; Moens, Marie-Francine

    2008-01-01

    In this work, we jointly apply several text mining methods to a corpus of legal documents in order to compare the separation quality of two inherently different document classification schemes. The classification schemes are compared with the clusters produced by the k-means algorithm. In the future, we believe that our comparison method will be coupled with semi-supervised and active learning techniques. Also, this paper presents the idea of combining k-means and Principal Component Analysis...

  2. Renormalization Scheme Dependence and the Renormalization Group Beta Function

    OpenAIRE

    Chishtie, F. A.; McKeon, D. G. C.

    2016-01-01

    The renormalization that relates a coupling "a" associated with a distinct renormalization group beta function in a given theory is considered. Dimensional regularization and mass independent renormalization schemes are used in this discussion. It is shown how the renormalization $a^*=a+x_2a^2$ is related to a change in the mass scale $\\mu$ that is induced by renormalization. It is argued that the infrared fixed point is to be a determined in a renormalization scheme in which the series expan...

  3. A fully adaptive hybrid optimization of aircraft engine blades

    Science.gov (United States)

    Dumas, L.; Druez, B.; Lecerf, N.

    2009-10-01

    A new fully adaptive hybrid optimization method (AHM) has been developed and applied to an industrial problem in the field of the aircraft engine industry. The adaptivity of the coupling between a global search by a population-based method (Genetic Algorithms or Evolution Strategies) and the local search by a descent method has been particularly emphasized. On various analytical test cases, the AHM method overperforms the original global search method in terms of computational time and accuracy. The results obtained on the industrial case have also confirmed the interest of AHM for the design of new and original solutions in an affordable time.

  4. 76 FR 36176 - Fully Developed Claim (Fully Developed Claims-Applications for Compensation, Pension, DIC, Death...

    Science.gov (United States)

    2011-06-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Fully Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC, Death Pension, and/or Accrued Benefits); Correction AGENCY: Veterans Benefits Administration, Department...

  5. Adaptive Control and Synchronization of Sprott J System With Estimation Of Fully Unknown Parameters

    Directory of Open Access Journals (Sweden)

    Islam Mitul

    2015-06-01

    Full Text Available This communication develops an adaptive scheme for control and synchronization of Sprott J system with fully unknown parameters. The scheme provides an elegant strategy of designing estimators for identification of the unknown parameters of the underlying dynamical system. Adaptive control and update laws are proposed to globally stabilize the chaotic Sprott J system. A pair of identical Sprott J systems with un- known parameters are globally synchronized with the help of adaptive control and parameter update laws. The results are established using LaSalle invariance principle, which lays down weaker restrictions on the derivatives of the Lyapunov function, and producing more general results. All the results obtained in the paper are global in nature. Numerical simulations are performed to illustrate the validity and effectiveness of the proposed adaptive control and synchronization scheme in the context of the Sprott J system. The parameter identification capability of the scheme is also explored.

  6. A New Deferred Sentencing Scheme

    Directory of Open Access Journals (Sweden)

    N. K. Chakravarti

    1968-10-01

    Full Text Available A new deferred sentencing scheme resembling double sampling scheme has been suggested from viewpoint of operational and administrative. It is recommended particularly when the inspection is destructive. The O.C. curves of the scheme for two sample sizes of 5 and 10 have been given.

  7. Bonus schemes and trading activity

    NARCIS (Netherlands)

    Pikulina, E.S.; Renneboog, L.D.R.; ter Horst, J.R.; Tobler, P.N.

    2014-01-01

    Little is known about how different bonus schemes affect traders' propensity to trade and which bonus schemes improve traders' performance. We study the effects of linear versus threshold bonus schemes on traders' behavior. Traders buy and sell shares in an experimental stock market on the basis of

  8. Bonus Schemes and Trading Activity

    NARCIS (Netherlands)

    Pikulina, E.S.; Renneboog, L.D.R.; Ter Horst, J.R.; Tobler, P.N.

    2013-01-01

    Abstract: Little is known about how different bonus schemes affect traders’ propensity to trade and which bonus schemes improve traders’ performance. We study the effects of linear versus threshold (convex) bonus schemes on traders’ behavior. Traders purchase and sell shares in an experimental stock

  9. Bonus schemes and trading activity

    NARCIS (Netherlands)

    Pikulina, E.S.; Renneboog, L.D.R.; ter Horst, J.R.; Tobler, P.N.

    2014-01-01

    Little is known about how different bonus schemes affect traders' propensity to trade and which bonus schemes improve traders' performance. We study the effects of linear versus threshold bonus schemes on traders' behavior. Traders buy and sell shares in an experimental stock market on the basis of

  10. Two Improved Digital Signature Schemes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, two improved digital signature schemes are presented based on the design of directed signaturescheme [3]. The peculiarity of the system is that only if the scheme is specific recipient, the signature is authenticated.Since the scheme adds the screen of some information parameters, the difficulty of deciphered keys and the security ofdigital signature system are increased.

  11. CONSIDERATIONS CONCERNING GUARANTEE SCHEMES

    Directory of Open Access Journals (Sweden)

    EMILIA CLIPICI

    2013-05-01

    Full Text Available When a large withdrawal from banks occurs, customers withdraw their deposits, so banks are likely to go bankrupt because of liquidity problems. There are several mechanisms that allow the banking system to avoid the phenomenon of massive withdrawals from banks. The most effective one is the deposit insurance. The deposit insurance is seen primarily as a means of protecting depositors of credit institutions, and secondly as a means of ensuring the stability of the banking system. This article described deposit guarantee scheme in Romania and other country.

  12. Analytical decoupling techniques for fully implicit reservoir simulation

    Science.gov (United States)

    Qiao, Changhe; Wu, Shuhong; Xu, Jinchao; Zhang, Chen-Song

    2017-05-01

    This paper examines linear algebraic solvers for a given general purpose compositional simulator. In particular, the decoupling stage of the constraint pressure residual (CPR) preconditioner for linear systems arising from the fully implicit scheme is evaluated. An asymptotic analysis of the convergence behavior is given when Δt approaches zero. Based on this analysis, we propose an analytical decoupling technique, from which the pressure equation is directly related to an elliptic equation and can be solved efficiently. We show that this method ensures good convergence behavior of the algebraic solvers in a two-stage CPR-type preconditioner. We also propose a semi-analytical decoupling strategy that combines the analytical method and alternate block factorization method. Numerical experiments demonstrate the superior performance of the analytical and semi-analytical decoupling methods compared to existing methods.

  13. Infrared Fixed Points in the minimal MOM Scheme

    DEFF Research Database (Denmark)

    Ryttov, Thomas

    2014-01-01

    We analyze the behavior of several renormalization group functions at infrared fixed points for $SU(N)$ gauge theories with fermions in the fundamental and two-indexed representations. This includes the beta function of the gauge coupling, the anomalous dimension of the gauge parameter...... and the anomalous dimension of the mass. The scheme in which the analysis is performed is the minimal momentum subtraction scheme through third loop order. Due to the fact that scheme dependence is inevitable once the perturbation theory is truncated we compare to previous identical studies done in the minimal...

  14. Chemical Structure and Reaction Scheme of Modified Bamboo Powder with Silane Coupling Agent%硅烷偶联剂处理竹粉化学结构变化及其反应路径

    Institute of Scientific and Technical Information of China (English)

    陈钦慧; 白卫斌; 徐艳莲; 林金火

    2012-01-01

    The bamboo powder modified with the silane coupling agent of KH-560 (KB) was studied by X-ray photoelectron spec-troscopy (XPS) , X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscope. The modified mechanism was also investigated in this work. Results showed that the hydrolysis of KH-560 was found to enhance the attachment on the surface of bamboo powder by the formation of hydrogen bond and dehydration condensation. XRD analysis indicated that the degree of crystallinity of bamboo powder didn't change after the modification by KH-560. However, the reaction of bamboo powder and KH-560 was certified by the appearance of absorption of ether bond in FT-IR spectrum and the XPS peak of silicon at 101. 18 eV. At the same time, the binding energy of C1s changed from 288. 16 eV to 288.52 eV and the peak of oxygen atom ( attributed to C=O) at 530.98 eV disappeared. All results indicated that the reaction between bamboo powder and KH-560 didn't occur on the bamboo fibre due to the exist of the strong hydrogen bonding force, but on the aldehyde groups from lignin at the absence of mechanical force and chemistry reagent.%利用X射线光电子能谱(XPS)、X射线粉末衍射(XRD)和红外光谱(IR)研究硅烷偶联剂(KH-560)改性前后竹粉结构的变化,并推测硅烷偶联剂对竹粉表面改性的机理.实验结果表明,KH-560水解后,通过形成氢键和脱水缩合两个阶段结合到竹粉的表面.硅烷偶联剂改性后的竹粉结晶结构没有明显的变化,IR谱图出现了醚键的吸收,XPS在101.18 eV处出现了Si的发射峰,C1s分峰所对应的结合能由288.16 eV变为288.52 eV,氧原子在530.98 eV处C=O双键的分峰消失,说明在没有外力或化学试剂作用的情况下,竹纤维素分子间较强的相互作用力使反应无法发生在竹纤维素上,而主要是在木质素的醛基C=O上进行.

  15. Triviality of $\\varphi^4$ theory in a finite volume scheme adapted to the broken phase

    CERN Document Server

    Siefert, Johannes

    2014-01-01

    We study the standard one-component $\\varphi^4$-theory in four dimensions. A renormalized coupling is defined in a finite size renormalization scheme which becomes the standard scheme of the broken phase for large volumes. Numerical simulations are reported using the worm algorithm in the limit of infinite bare coupling. The cutoff dependence of the renormalized coupling closely follows the perturbative Callan Symanzik equation and the triviality scenario is hence further supported.

  16. NEW RSW & Wall Medium Fully Tetrahedral Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — New Medium Fully Tetrahedral RSW Grid with viscous wind tunnel wall at the root. This grid is for a node-based unstructured solver. Medium Tet: Quad Surface Faces= 0...

  17. NEW RSW & Wall Fine Fully Tetrahedral Grid

    Data.gov (United States)

    National Aeronautics and Space Administration — NEW RSW Fine Fully Tetrahedral Grid with Viscous Wind Tunnel wall at the root. This grid is for a node-based unstructured solver. Note that the CGNS file is very...

  18. Automated fully-stressed design with NASTRAN

    Science.gov (United States)

    Wallerstein, D. V.; Haggenmacher, G. W.

    1976-01-01

    An automated strength sizing capability is described. The technique determines the distribution of material among the elements of a structural model. The sizing is based on either a fully stressed design or a scaled feasible fully stressed design. Results obtained from the application of the strength sizing to the structural sizing of a composite material wing box using material strength allowables are presented. These results demonstrate the rapid convergence of the structural sizes to a usable design.

  19. Secure mediated certificateless signature scheme

    Institute of Scientific and Technical Information of China (English)

    YANG Chen; MA Wen-ping; WANG Xin-mei

    2007-01-01

    Ju et al proposed a certificateless signature scheme with instantaneous revocation by introducing security mediator (SEM) mechanism. This article presents a detailed cryptoanalysis of this scheme and shows that, in their proposed scheme, once a valid signature has been produced, the signer can recover his private key information and the instantaneous revocation property will be damaged. Furthermore, an improved mediated signature scheme, which can eliminate these disadvantages, is proposed, and security proof of the improved scheme under elliptic curve factorization problem (ECFP) assumption and bilinear computational diffie-hellman problem (BCDH) assumption is also proposed.

  20. OPERATIONAL MODAL ANALYSIS SCHEMES USING CORRELATION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    Zheng Min; Shen Fan; Chen Huaihai

    2005-01-01

    For some large-scale engineering structures in operating conditions, modal parameters estimation must base itself on response-only data. This problem has received a considerable amount of attention in the past few years. It is well known that the cross-correlation function between the measured responses is a sum of complex exponential functions of the same form as the impulse response function of the original system. So this paper presents a time-domain operating modal identification global scheme and a frequency-domain scheme from output-only by coupling the cross-correlation function with conventional modal parameter estimation. The outlined techniques are applied to an airplane model to estimate modal parameters from response-only data.

  1. Coupled transfers; Transferts couples

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, X.; Lauriat, G.; Jimenez-Rondan, J. [Universite de Marne-la-Vallee, Lab. d' Etudes des Transferts d' Energie et de Matiere (LETEM), 77 (France); Bouali, H.; Mezrhab, A. [Faculte des Sciences, Dept. de Physique, Lab. de Mecanique et Energetique, Oujda (Morocco); Abid, C. [Ecole Polytechnique Universitaire de Marseille, IUSTI UMR 6595, 13 Marseille (France); Stoian, M.; Rebay, M.; Lachi, M.; Padet, J. [Faculte des Sciences, Lab. de Thermomecanique, UTAP, 51 - Reims (France); Mladin, E.C. [Universitaire Polytechnique Bucarest, Faculte de Genie Mecanique, Bucarest (Romania); Mezrhab, A. [Faculte des Sciences, Lab. de Mecanique et Energetique, Dept. de Physique, Oujda (Morocco); Abid, C.; Papini, F. [Ecole Polytechnique, IUSTI, 13 - Marseille (France); Lorrette, C.; Goyheneche, J.M.; Boechat, C.; Pailler, R. [Laboratoire des Composites ThermoStructuraux, UMR 5801, 33 - Pessac (France); Ben Salah, M.; Askri, F.; Jemni, A.; Ben Nasrallah, S. [Ecole Nationale d' Ingenieurs de Monastir, Lab. d' Etudes des Systemes Thermiques et Energetiques (Tunisia); Grine, A.; Desmons, J.Y.; Harmand, S. [Laboratoire de Mecanique et d' Energetique, 59 - Valenciennes (France); Radenac, E.; Gressier, J.; Millan, P. [ONERA, 31 - Toulouse (France); Giovannini, A. [Institut de Mecanique des Fluides de Toulouse, 31 (France)

    2005-07-01

    This session about coupled transfers gathers 30 articles dealing with: numerical study of coupled heat transfers inside an alveolar wall; natural convection/radiant heat transfer coupling inside a plugged and ventilated chimney; finite-volume modeling of the convection-conduction coupling in non-stationary regime; numerical study of the natural convection/radiant heat transfer coupling inside a partitioned cavity; modeling of the thermal conductivity of textile reinforced composites: finite element homogenization on a full periodical pattern; application of the control volume method based on non-structured finite elements to the problems of axisymmetrical radiant heat transfers in any geometries; modeling of convective transfers in transient regime on a flat plate; a conservative method for the non-stationary coupling of aero-thermal engineering codes; measurement of coupled heat transfers (forced convection/radiant transfer) inside an horizontal duct; numerical simulation of the combustion of a water-oil emulsion droplet; numerical simulation study of heat and mass transfers inside a reactor for nano-powders synthesis; reduction of a combustion and heat transfer model of a direct injection diesel engine; modeling of heat transfers inside a knocking operated spark ignition engine; heat loss inside an internal combustion engine, thermodynamical and flamelet model, composition effects of CH{sub 4}H{sub 2} mixtures; experimental study and modeling of the evolution of a flame on a solid fuel; heat transfer for laminar subsonic jet of oxygen plasma impacting an obstacle; hydrogen transport through a A-Si:H layer submitted to an hydrogen plasma: temperature effects; thermal modeling of the CO{sub 2} laser welding of a magnesium alloy; radiant heat transfer inside a 3-D environment: application of the finite volume method in association with the CK model; optimization of the infrared baking of two types of powder paints; optimization of the emission power of an infrared

  2. Fully Relativistic Calculations of Magneto-Optical Kerr Effect

    Science.gov (United States)

    Li, Ming-Fang; Ariizumi, Toshihiro; Suzuki, Shugo

    2007-05-01

    We study the magneto-optical Kerr effect using fully relativistic calculations. Spin-orbit coupling is dealt with exactly solving the Dirac equation directly and the matrix elements of the Dirac matrices α are used in a fully relativistic expression of the Kubo formula for the optical conductivity derived with a relativistic sum rule. We also perform approximate calculations of the optical conductivity to examine the accuracy of a partly relativistic expression in which the matrix elements of the momentum operator p are used instead. As an example, we carry out calculations for bcc Fe and fcc Ni using the fully relativistic full-potential linear-combination-of-atomic-orbitals method. It is found that the partly relativistic treatment is good for the diagonal optical conductivity while it is not very good for the off-diagonal optical conductivity, the Kerr rotation angle, and the Kerr ellipticity. The results of the present study are compared to those of experimental and other theoretical studies.

  3. Pretzel scheme for CEPC

    Science.gov (United States)

    Geng, Huiping

    2016-11-01

    CEPC was proposed as an electron and positron collider ring with a circumference of 50-100 km to study the Higgs boson. Since the proposal was made, the lattice design for CEPC has been carried out and a preliminary conceptual design report has been written at the end of 2014. In this paper, we will describe the principles of pretzel scheme design, which is one of most important issues in CEPC lattice design. Then, we will show the modification of the lattice based on the lattice design shown in the Pre-CDR. The latest pretzel orbit design result will also be shown. The issues remained to be solved in the present design will be discussed and a brief summary will be given at the end.

  4. Cosmological SUSY Breaking and the Pyramid Schemes

    CERN Document Server

    Banks, T

    2014-01-01

    I review the ideas of holographic space-time (HST), Cosmological SUSY breaking (CSB), and the Pyramid Schemes, which are the only known models of Tera-scale physics consistent with CSB, current particle data, and gauge coupling unification. There is considerable uncertainty in the estimate of the masses of supersymmetric partners of the standard model particles, but the model predicts that the gluino is probably out of reach of the LHC, squarks may be in reach, and the NLSP is a right handed slepton, which should be discovered soon.

  5. Cosmological SUSY breaking and the pyramid scheme

    Science.gov (United States)

    Banks, Tom

    2015-04-01

    I review the ideas of holographic spacetime (HST), cosmological SUSY breaking (CSB), and the Pyramid Schemes, which are the only known models of Tera-scale physics consistent with CSB, current particle data, and gauge coupling unification. There is considerable uncertainty in the estimate of the masses of supersymmetric partners of the Standard Model particles, but the model predicts that the gluino is probably out of reach of the LHC, squarks may be in reach, and the NLSP is a right-handed slepton, which should be discovered soon.

  6. Two Types of Coupling Integrable Couplings of the S-mKdV Hierarchy

    Institute of Scientific and Technical Information of China (English)

    WEI Yuan; ZHANG Yu-Feng

    2011-01-01

    Firstly 4 Lie algebras are constructed. Then applications of the loop algebra are presented to obtain two types of coupling integrable couplings of the S-mKdV hierarchy by using Tu scheme. The coupling integrable couplings of the S-mKdV hierarchy obtained in the paper reduce to the coupling integrable couplings of the mKdV equation and the coupling integrable couplings of the nonlinear schr(o)dinger equation respectively. The method given in the paper can be used to other hierarchies generally.

  7. Intermediate vibrational coordinate localization with harmonic coupling constraints

    Science.gov (United States)

    Hanson-Heine, Magnus W. D.

    2016-05-01

    Optimized normal coordinates can significantly improve the speed and accuracy of vibrational frequency calculations. However, over-localization can occur when using unconstrained spatial localization techniques. The unintuitive mixtures of stretching and bending coordinates that result can make interpreting spectra more difficult and also cause artificial increases in mode-coupling during anharmonic calculations. Combining spatial localization with a constraint on the coupling between modes can be used to generate coordinates with properties in-between the normal and fully localized schemes. These modes preserve the diagonal nature of the mass-weighted Hessian matrix to within a specified tolerance and are found to prevent contamination between the stretching and bending vibrations of the molecules studied without a priori classification of the different types of vibration present. Relaxing the constraint can also be used to identify which normal modes form specific groups of localized modes. The new coordinates are found to center on more spatially delocalized functional groups than their fully localized counterparts and can be used to tune the degree of vibrational correlation energy during anharmonic calculations.

  8. The Lifting Scheme Based on the Second Generation Wavelets

    Institute of Scientific and Technical Information of China (English)

    FENG Hui; GUO Lanying; XIAO Jinsheng

    2006-01-01

    The lifting scheme is a custom-design construction of Biorthogonal wavelets, a fast and efficient method to realize wavelet transform, which provides a wider range of application and efficiently reduces the computing time with its particular frame. This paper aims at introducing the second generation wavelets, begins with traditional Mallat algorithms, illustrates the lifting scheme and brings out the detail steps in the construction of Biorthogonal wavelets. Because of isolating the degrees of freedom remaining the biorthogonality relations, we can fully control over the lifting operators to design the wavelet for a particular application, such as increasing the number of the vanishing moments.

  9. Cut-HDMR-based fully equivalent operational model for analysis of unreinforced masonry structures

    Indian Academy of Sciences (India)

    D Mukherjee; B N Rao; A M Prasad

    2012-10-01

    Mesoscale models are highly competent for understanding behaviour of unreinforced masonry structures. Their only limitation is large computational expense. Fully Equivalent Operational Model forms an equivalent mathematical model to represent a particular phenomenon where explicit relationship between inputs and outputs are unknown. This paper explores the ability of a major variant of High Dimensional Model Representation (HDMR) technique, namely Cut-HDMR, to construct the most efficient Fully Equivalent Operational Model for nonlinear finite element analysis of mesoscale model of an unreinforced masonry structure. Conclusions are reached on various aspects such as, suitability of interpolation schemes and order of Cut-HDMR approximation.

  10. Efficient Conservative Reformulation Schemes for Lithium Intercalation

    Energy Technology Data Exchange (ETDEWEB)

    Urisanga, PC; Rife, D; De, S; Subramanian, VR

    2015-02-18

    Porous electrode theory coupled with transport and reaction mechanisms is a widely used technique to model Li-ion batteries employing an appropriate discretization or approximation for solid phase diffusion with electrode particles. One of the major difficulties in simulating Li-ion battery models is the need to account for solid phase diffusion in a second radial dimension r, which increases the computation time/cost to a great extent. Various methods that reduce the computational cost have been introduced to treat this phenomenon, but most of them do not guarantee mass conservation. The aim of this paper is to introduce an inherently mass conserving yet computationally efficient method for solid phase diffusion based on Lobatto III A quadrature. This paper also presents coupling of the new solid phase reformulation scheme with a macro-homogeneous porous electrode theory based pseudo 20 model for Li-ion battery. (C) The Author(s) 2015. Published by ECS. All rights reserved.

  11. Fully Distributed Cooperative Motion of Group Robots

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper is focused on the fully distributed cooperative motion of group robots and proposes a new approach. Each robot has a local sensing ability and a simple action selection strategy. Computational complexity is decreased by the fully distributed architecture and the information insufficiency is solved by the interaction between the robots and the environment. Variable loop and random method are used to deal with the fluctuation and equity selection problem and the rapidity and reasonabiliiy are guaranteed. Some simulations have proved the effectiveness of the proposed approach.

  12. Optimality of a Fully Stressed Design

    Science.gov (United States)

    Patnaik, Surya N.; Hopkins, Dale A.

    1998-01-01

    For a truss a fully stressed state is reached and when all its members are utilized to their full strength capacity. Historically, engineers considered such a design optimum. But recently this optimality has been questioned, especially since the weight of the structure is not explicitly used in fully stressed design calculations. This paper examines optimality of the full stressed design (FSD) with analytical and graphical illustrations. Solutions for a set of examples obtained by using the FSD method and optimization methods numerically confirm the optimality of the FSD. The FSD, which can be obtained with a small amount of calculation, can be extended to displacement constraints and to nontruss-type structures.

  13. Improved Ternary Subdivision Interpolation Scheme

    Institute of Scientific and Technical Information of China (English)

    WANG Huawei; QIN Kaihuai

    2005-01-01

    An improved ternary subdivision interpolation scheme was developed for computer graphics applications that can manipulate open control polygons unlike the previous ternary scheme, with the resulting curve proved to be still C2-continuous. Parameterizations of the limit curve near the two endpoints are given with expressions for the boundary derivatives. The split joint problem is handled with the interpolating ternary subdivision scheme. The improved scheme can be used for modeling interpolation curves in computer aided geometric design systems, and provides a method for joining two limit curves of interpolating ternary subdivisions.

  14. Formal Verification of NTRUEncrypt Scheme

    Directory of Open Access Journals (Sweden)

    Gholam Reza Moghissi

    2016-04-01

    Full Text Available In this paper we explore a mechanized verification of the NTRUEncrypt scheme, with the formal proof system Isabelle/HOL. More precisely, the functional correctness of this algorithm, in its reduced form, is formally verified with computer support. We show that this scheme is correct what is a necessary condition for the usefulness of any cryptographic encryption scheme. Besides, we present a convenient and application specific formalization of the NTRUEncrypt scheme in the Isabelle/HOL system that can be used in further study around the functional and security analysis of NTRUEncrypt family.

  15. THE UNCONDITIONAL STABILITY OF PARALLEL DIFFERENCE SCHEMES WITH SECOND ORDER CONVERGENCE FOR NONLINEAR PARABOLIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Yuan Guangwei; Sheng Zhiqiang; Hang Xudeng

    2007-01-01

    For solving nonlinear parabolic equation on massive parallel computers,the construction of parallel difference schemes with simple design, high parallelism and unconditional stability and second order global accuracy in space, has long been desired.In the present work, a new kind of general parallel difference schemes for the nonlinear parabolic system is proposed. The general parallel difference schemes include, among others, two new parallel schemes. In one of them, to obtain the interface values on the interface of sub-domains an explicit scheme of Jacobian type is employed, and then the fully implicit scheme is used in the sub-domains. Here, in the explicit scheme of Jacobian type, the values at the points being adjacent to the interface points are taken as the linear combination of values of previous two time layers at the adjoining points of the inner interface. For the construction of another new parallel difference scheme,the main procedure is as follows. Firstly the linear combination of values of previous two time layers at the interface points among the sub-domains is used as the (Dirichlet)boundary condition for solving the sub-domain problems. Then the values in the subdomains are calculated by the fully implicit scheme. Finally the interface values are computed by the fully implicit scheme, and in fact these calculations of the last step are explicit since the values adjacent to the interface points have been obtained in the previous step. The existence, uniqueness, unconditional stability and the second order accuracy of the discrete vector solutions for the parallel difference schemes are proved.Numerical results are presented to examine the stability, accuracy and parallelism of the parallel schemes.

  16. AUTISTIC CHILDREN PROTECTION SCHEME

    Directory of Open Access Journals (Sweden)

    Dragan LUKIC

    1998-09-01

    Full Text Available The present article sets forth the theoretical grounds which make the basis for the organizational scheme of the autistic persons social protection. This protection consists of the below listed forms of work:· Health service with the role of an early detection and participation in the creation of rehabilitation programs;· Social protection with its programs of work from the diagnostics where the defectologist makes a team together with the physician and the psychologists to the systems of rehabilitation institutions where the defectologist’s is the main responsibility.The present article underlines two facts, namely:· that an autistic person requires to be followed and every spare moment used to promote and advance the activities the doer commenced himself instead of having him carry out the programs which are beyond his internal motivations and which he finds emotionally inaccessible;· that and form of work organization with autistic persons must subordinate its administrative part to the basic professional requirements this kind of disorder (handicap sets in front of each professional.

  17. Parametrization of Fully Dressed Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    MA Wei-Xing; ZHU Ji-Zhen; ZHOU Li-Juan; SHEN Peng-Nian; HU Zhao-Hui

    2005-01-01

    Based on an extensive study of the Dyson-Schwinger equations for a fully dressed quark propagator in the "rainbow" approximation, a parametrized form of the quark propagator is suggested. The corresponding quark selfform of the quark propagator proposed in this work describes a confining quark propagation, and is quite convenient to be used in any numerical calculations.

  18. Fully Integrated Biochip Platforms for Advanced Healthcare

    Directory of Open Access Journals (Sweden)

    Giovanni De Micheli

    2012-08-01

    Full Text Available Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

  19. Transport properties of fully screened Kondo models

    NARCIS (Netherlands)

    Hörig, Christoph B M; Mora, Christophe; Schuricht, Dirk

    2014-01-01

    We study the nonequilibrium transport properties of fully (exactly) screened Kondo quantum dots subject to a finite bias voltage or a finite temperature. First, we calculate the Fermi-liquid coefficients of the conductance for models with arbitrary spin, i.e., its leading behavior for small bias vol

  20. A Fully Automated Penumbra Segmentation Tool

    DEFF Research Database (Denmark)

    Nagenthiraja, Kartheeban; Ribe, Lars Riisgaard; Hougaard, Kristina Dupont

    2012-01-01

    salavageable tissue, quickly and accurately. We present a fully Automated Penumbra Segmentation (APS) algorithm using PWI and DWI images. We compare automatically generated PWI-DWI mismatch mask to mask outlined manually by experts, in 168 patients. Method: The algorithm initially identifies PWI lesions...

  1. Learner Perspectives on Fully Online Language Learning

    Science.gov (United States)

    Sun, Susan Y. H.

    2014-01-01

    This study builds on this author's 2011 article in which the author reflects on the pedagogical challenges and resultant changes made while teaching two fully online foreign language papers over a four-year period (Y. H. S. Sun (2011). Online language teaching: The pedagogical challenges. "Knowledge Management & E-Learning: An…

  2. Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods

    CERN Document Server

    Mai, Sebastian; Plasser, Felix; Marquetand, Philipp; Lischka, Hans; González, Leticia

    2016-01-01

    An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbit coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing c...

  3. Fast Computation of Fully Resolved Neuromechanically Simulated Locomotion

    Science.gov (United States)

    Patel, Namu; Patankar, Neelesh A.

    2014-11-01

    In fish, caudally propagating waves of neural activity produce muscle bending moments. These moments, coupled with forces due to the body's elastic properties and forces due to fluid-body interactions, determine the deformation kinematics for swimming. Fully resolved simulations of neurally-activated swimming can be used to decode activation patterns underlying observed behaviors in a swimming animal. These computations are expensive; the time stepping requirement is onerous due to the canonically used explicit coupling between the elastic body and the fluid. To overcome this barrier, we use our prior result that deformation kinematics closely follow the preferred kinematics due to muscle activation when a swimmer has a sufficiently stiff body. Thus, we can impose the preferred deformation kinematics directly on the body immersed in the fluid. In this way, the need to solve the elastic equations is eliminated. Here, we couple physiochemical and physiomechanical equations to a constraint-based self-propulsion formulation. With this method, we demonstrate how different behaviors, such as turning, emerge from varying the neural signal. This work is supported by NSF: CBET-0828749, CMMI-0941674, CBET-1066575, and DGE-0903637.

  4. CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Xinlong FENG; Yinnian HE

    2016-01-01

    In this paper, the Crank-Nicolson/Newton scheme for solving numerically second-order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nicolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank-Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the effcient performance of the proposed scheme.

  5. Land cover classification comparisons among dual polarimetric, pseudo-fully polarimetric, and fully polarimetric SAR imagery

    Science.gov (United States)

    Mishra, Bhogendra; Susaki, Junichi

    2012-10-01

    In this paper, an approach is proposed that predicts fully polarimetric data from dual polarimetric data, and then applies selected supervised algorithm for dual polarimetric, pseudo-fully polarimetric and fully polarimetric dataset for the land cover classification comparison. A regression model has been developed to predict the complex variables of VV polarimetric component and amplitude independently using corresponding complex variables and amplitude in HH and HV bands. Support vector machine (SVM)is implemented for the land cover classification. Coherency matrix and amplitude were used for all dataset for the land cover classification independently.They are used to compare the data from different perspective. Finally, a post processing technique is implemented to remove the isolated pixels appeared as a noise. AVNIR-2 optical data over the same area is used as ground truth data to access the classification accuracy.The result from SVM indicates that the fully polarimetric mode gives the maximum classification accuracy followed by pseudo-fully polarimetric and dual polarimetric datasets using coherency matrix input for fully polarimetric image and pseudo-fully polarimetric image and covariance matrix input for dual polarimetric image. Additionally, it is observed that pseudo-fully polarimetric image with amplitude input does not show the significant improvement over dual polarimetric image with same input.

  6. Chaotic communication scheme with multiplication

    Science.gov (United States)

    Bobreshov, A. M.; Karavaev, A. A.

    2007-05-01

    A new scheme of data transmission with nonlinear admixing is described, in which the two mutually inverse operations (multiplication and division) ensure multiplicative mixing of the informative and chaotic signals that provides a potentially higher degree of security. A special feature of the proposed scheme is the absence of limitations (related to the division by zero) imposed on the types of informative signals.

  7. Homographic scheme for Riccati equation

    CERN Document Server

    Dubois, François

    2011-01-01

    In this paper we present a numerical scheme for the resolution of matrix Riccati equation, usualy used in control problems. The scheme is unconditionnaly stable and the solution is definite positive at each time step of the resolution. We prove the convergence in the scalar case and present several numerical experiments for classical test cases.

  8. Differential operators and automorphism schemes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The ring of global differential operators of a variety is in closed and deep relation with its automorphism scheme.This relation can be applied to the study of homogeneous schemes,giving some criteria of homogeneity,a generalization of Serre-Lang theorem,and some consequences about abelian varieties.

  9. Interference Phenomenon for Different Chiral Bosonization Schemes

    CERN Document Server

    Abreu, Everton M C; Abreu, Everton M C; Wotzasek, Clovis

    1998-01-01

    We study the relationship between different chiral bosonization schemes (CBS) in the context of the soldering formalism\\cite{MS}, that considers the phenomenon of interference in the quantum field theory\\cite{ABW}. This analysis is done in the framework put forward by Siegel\\cite{WS} and by Floreanini and Jackiw\\cite{FJ} (FJ). We propose a field redefinition that discloses the presence of a noton, a non dynamical field, in Siegel's formulation for chiral bosons. The presence of a noton in the Siegel CBS is a new and surprising result, that separates dynamics from symmetry by diagonalising the Siegel action into the FJ and the noton action. While the first describes the chiral dynamics, the noton carries the symmetry contents, acquiring dynamics upon quantization and is fully responsible for the Siegel anomaly. The diagonal representation proposed here is used to study the effect of quantum interference between gauged rightons and leftons.

  10. Fully phase image encryption using double random-structured phase masks in gyrator domain.

    Science.gov (United States)

    Singh, Hukum; Yadav, A K; Vashisth, Sunanda; Singh, Kehar

    2014-10-01

    We propose a method for fully phase image encryption based on double random-structured phase mask encoding in the gyrator transform (GT) domain. The security of the system is strengthened by parameters used in the construction of a structured phase mask (SPM) based on a devil's vortex Fresnel lens (DVFL). The input image is recovered using the correct parameters of the SPMs, transform orders of the GT, and conjugate of the random phase masks. The use of a DVFL-based SPM enhances security by increasing the key space for encryption, and also overcomes the problem of axis alignment associated with an optical setup. The proposed scheme can also be implemented optically. The computed values of mean squared error between the retrieved and the original image show the efficacy of the proposed scheme. We have also investigated the scheme's sensitivity to the encryption parameters, and robustness against occlusion and multiplicative Gaussian noise attacks.

  11. Projective synchronization of chaotic systems with bidirectional nonlinear coupling

    Indian Academy of Sciences (India)

    Mohammada Ali Khan; Swarup Poria

    2013-09-01

    This paper presents a new scheme for constructing bidirectional nonlinear coupled chaotic systems which synchronize projectively. Conditions necessary for projective synchronization (PS) of two bidirectionally coupled chaotic systems are derived using Lyapunov stability theory. The proposed PS scheme is discussed by taking as examples the so-called unified chaotic model, the Lorenz–Stenflo system and the nonautonomous chaotic Van der Pol oscillator. Numerical simulation results are presented to show the efficiency of the proposed synchronization scheme.

  12. Coupling of convection and circulation at various resolutions

    Directory of Open Access Journals (Sweden)

    Cathy Hohenegger

    2015-03-01

    Full Text Available A correct representation of the coupling between convection and circulation constitutes a prerequisite for a correct representation of precipitation at all scales. In this study, the coupling between convection and a sea breeze is investigated across three main resolutions: large-eddy resolution where convection is fully explicit, convection-permitting resolution where convection is partly explicit and coarse resolution where convection is parameterised. The considered models are the UCLA-LES, COSMO and ICON. Despite the use of prescribed surface fluxes, comparison of the simulations reveals that typical biases associated with a misrepresentation of convection at convection-permitting and coarser resolutions significantly alter the characteristics of the sea breeze. The coarse-resolution simulations integrated without convective parameterisation and the convection-permitting simulations simulate a too slow propagation of the breeze front as compared to the large-eddy simulations. From the various factors affecting the propagation, a delayed onset and intensification of cold pools primarily explains the differences. This is a direct consequence of a delayed development of convection when the grid spacing is coarsened. Scaling the time the sea breeze reaches the centre of the land patch by the time precipitation exceeds 2 mm day−1, used as a measure for significant evaporation, yields a collapse of the simulations onto a simple linear relationship although subtle differences remain due to the use of different turbulence and microphysical schemes. Turning on the convection scheme significantly disrupts the propagation of the sea breeze due to a misrepresented timing (too early triggering and magnitude (too strong precipitation evaporation in one of the tested convection schemes of the convective processes.

  13. Scheme for Quantum Computing Immune to Decoherence

    Science.gov (United States)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.

  14. Controllable coupling of distributed qubits within a microtoroidal cavity network

    Science.gov (United States)

    Hu, C.; Xia, Y.; Song, J.

    2012-05-01

    We propose a scheme to control the coupling between two arbitrary atoms scattered within a quantum network composed of microtoroidal cavities linked by a ring-fibre. The atom-atom effective couplings are induced by pairing of off-resonant Raman transitions. The couplings can be arbitrarily controlled by adjusting classical fields. Compared with the previous scheme [S.B. Zheng, C.P. Yang, F. Nori, Phys. Rev. A 82, 042327 (2010)], the present scheme uses microtoroidal cavities with higher coupling efficiency than Fabry-Perot cavities. Furthermore, the scheme is not only suitable for the short-fibre limit, but also for multiple fibre modes. The added fibre modes can play a positive role, especially when the coupling rate between cavity-mode and fibre-mode is not large. In addition, a wider frequency domain of fibre modes can be used in this scheme.

  15. Transport properties of a superconducting single-electron transistor coupled to a nanomechanical oscillator

    Science.gov (United States)

    Koerting, V.; Schmidt, T. L.; Doiron, C. B.; Trauzettel, B.; Bruder, C.

    2009-04-01

    We investigate a superconducting single-electron transistor capacitively coupled to a nanomechanical oscillator and focus on the double Josephson quasiparticle resonance. The existence of two coherent Cooper-pair tunneling events is shown to lead to pronounced back action effects. Measuring the current and the shot noise provides a direct way of gaining information on the state of the oscillator. In addition to an analytical discussion of the linear-response regime, we discuss and compare results of higher-order approximation schemes and a fully numerical solution. We find that cooling of the mechanical resonator is possible and that there are driven and bistable oscillator states at low couplings. Finally, we also discuss the frequency dependence of the charge noise and the current noise of the superconducting single electron transistor.

  16. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  17. Synthetic free-oscillation spectra: an appraisal of various mode-coupling methods

    Science.gov (United States)

    Yang, Hsin-Ying; Tromp, Jeroen

    2015-11-01

    Normal-mode spectra may be used to investigate large-scale elastic and anelastic heterogeneity throughout the entire Earth. The relevant theory was developed a few decades ago, however-mainly due to computational limitations-several approximations are commonly employed, and thus far the full merits of the complete theory have not been taken advantage of. In this study, we present an exact algebraic form of the theory for an aspherical, anelastic and rotating Earth model in which either complex or real spherical harmonic bases are used. Physical dispersion is incorporated into the quadratic eigenvalue problem by expanding the logarithmic frequency term to second-order. Proper (re)normalization of modes in a 3-D Earth model is fully considered. Using a database of 41 earthquakes and more than 10 000 spectra containing 116 modes with frequencies less than 3 mHz, we carry out numerical experiments to quantitatively evaluate the accuracy of commonly used approximate mode synthetics. We confirm the importance of wideband coupling, that is, fully coupling all modes below a certain frequency. Neither narrowband coupling, in which nearby modes are grouped into isolated clusters, nor self-coupling, that is, incorporating coupling between singlets within the same multiplet, are sufficiently accurate approximations. Furthermore, we find that (1) effects of physical dispersion can be safely approximated based on either a fiducial frequency approximation or a quadratic approximation of the logarithmic dispersion associated with the absorption-band model; (2) neglecting the proper renormalization of the modes of a rotating, anelastic Earth model introduces only minor errors; (3) ignoring the frequency dependence of the Coriolis and kinematic matrices in a wideband coupling scheme can lead to ˜6 per cent errors in mode spectra at the lowest frequencies; notable differences also occur between narrowband coupling and quasi-degenerate perturbation theory, which linearizes the

  18. Fully resolved simulations of particle sedimentation

    Science.gov (United States)

    Sierakowski, Adam; Wang, Yayun; Prosperetti, Andrea

    2014-11-01

    Progress in computational capabilities - and specifically in the realm of massively parallel architectures - render possible the simulation of fully resolved fluid-particle systems. This development will drastically improve physical understanding and modelling of these systems when the particle size is not negligible and their concentration appreciable. Using a newly developed GPU-centric implementation of the Physalis method for the solution of the incompressible Navier-Stokes equations in the presence of finite-sized spheres, we carry out fully resolved simulations of more than one thousand sedimenting spheres. We discuss the results of these simulations focusing on statistical aspects such as particle velocity fluctuations, particle pair distribution function, microstructure, and others. Supported by NSF Grant CBET 1335965.

  19. MHD power generation with fully ionized seed

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, H.; Shioda, S.

    1977-01-01

    Recovery of power density in the regime of fully ionized seed has been demonstrated experimentally using an MHD disk generator with the effective Hall parameter up to 5.0 when the seed was fully ionized. The experiments were conducted with a shock-heated and potassium-seeded argon plasma under the following conditions: stagnation gas pressure = 0.92 atm, stagnation gas temperature = 2750 K, flow Mach number = 2.5, and seed fraction = 1.4 x 10/sup -5/. Measurements of electron-number density and spectroscopic observations of both potassium and argon lines confirmed that the recovery of power output was due to the reduction of ionization instability. This fact indicates that the successful operation of a disk generator utilizing nonequilibrium ionization seems to be possible and that the suppression of ionization instability can also provide higher adiabatic efficiency. Furthermore, the lower seed fraction offers technological advantages related to seed problems.

  20. An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations

    Institute of Scientific and Technical Information of China (English)

    FANG Ke-zhao; ZOU Zhi-li; WANG Yan

    2005-01-01

    The present study develops a numerical model of the two-dimensional fully nonlinear shallow water equations (NSWE) for the wave run-up on a beach. The finite volume method (FVM) is used to solve the equations, and a second-order explicit scheme is developed to improve the computation efficiency. The numerical fluxes are obtained by the two dimensional Roe's flux function to overcome the errors caused by the use of one dimensional fluxes in dimension splitting methods. The high-resolution Godunov-type TVD upwind scheme is employed and a second-order accuracy is achieved based on monotonic upstream schemes for conservation laws (MUSCL) variable extrapolation; a nonlinear limiter is applied to prevent unwanted spurious oscillation. A simple but efficient technique is adopted to deal with the moving shoreline boundary. The verification of the solution technique is carried out by comparing the model output with documented results and it shows that the solution technique is robust.