International Nuclear Information System (INIS)
Toor, P.M.
1998-01-01
The stress intensity solutions presented herein were obtained using an energy method in conjunction with a two-dimensional finite element program in order to explicitly account for curvature effect for fully circumferential cracks. The magnification factors for a specific crack depth were calculated by successively loading the crack surface by a uniform, linear, quadratic, and a cubic loading distribution. The magnification factors can be used to calculate the stress intensity factors by superposition method. The functions for each load condition in terms of radius to thickness ratio (R/t) and a fractional distance in terms of crack depth to thickness ratio (a/t) were developed. The validity of these functions is R/t = 1.5 to 10.0 and for 0.0125 ≤ a/t ≤ 0.8125. The functions agree to within 1% of the finite elements solutions for most magnification factors
Circumferential cracking of steam generator tubes
International Nuclear Information System (INIS)
Karwoski, K.J.
1997-04-01
On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, open-quote Circumferential Cracking of Steam Generator Tubes.close-quote GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff's assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness
International Nuclear Information System (INIS)
Zahoor, A.; Kanninen, M.F.
1981-01-01
A method of analyzing internal surface circumferential cracks in ductile reactor piping is presented. The method utilizes an alternate but equivalent definition of the J-integral based on nonlinear structural compliance. The analysis is valid for situations where the cross section containing the crack is fully yielded. Results are obtained for radial and circumferential crack growth for pipes subjected to bending. The stability of radial crack growth (wall breakthrough) is assessed using the J-integral-based tearing modulus approach. The analysis is shown to be in agreement with experimental results on the stability of surface crack growth in Type 304 stainless stee pipes. Example quantitative results for fracture instability assessments for nuclear piping are presented. 23 refs
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.; Kanninen, M.F.
1981-07-01
A method of analyzing internal surface circumferential cracks in ductile reactor piping is presented. The method utilizes an alternate but equivalent definition of the J-integral based on nonlinear structural compliance. The analysis is valid for situations where the cross section containing the crack is fully yielded. Results are obtained for radial and circumferential crack growth for pipes subjected to bending. The stability of radial crack growth (wall breakthrough) is assessed using the J-integral-based tearing modulus approach. The analysis is shown to be in agreement with experimental results on the stability of surface crack growth in Type 304 stainless stee pipes. Example quantitative results for fracture instability assessments for nuclear piping are presented. 23 refs.
J-integral estimation analysis for circumferential throughwall cracked pipes
International Nuclear Information System (INIS)
Zahoor, A.
1988-01-01
J-integral estimation solution is derived for pipes containing a circumferential throughwall crack. Bending moment and axial tension loadings are considered. These solutions are useful for calculating J from single load-displacement record obtained as part of pipe fracture testing, and are applicable for a wide range of flaw length to pipe circumference ratios. Results for J at initiation of crack growth generated using the solution developed in this paper agree well with J results from finite elements analyses. (orig.)
J-integral estimation analysis for circumferential throughwall cracked pipes
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.
J-integral estimation solution is derived for pipes containing a circumferential throughwall crack. Bending moment and axial tension loadings are considered. These solutions are useful for calculating J from single load-displacement record obtained as part of pipe fracture testing, and are applicable for a wide range of flaw length to pipe circumference ratios. Results for J at initiation of crack growth generated using the solution developed in this paper agree well with J results from finite elements analyses.
Crack-opening area calculations for circumferential through-wall pipe cracks
Energy Technology Data Exchange (ETDEWEB)
Kishida, K.; Zahoor, A.
1988-08-01
This report describes the estimation schemes for crack opening displacement (COD) of a circumferential through-wall crack, then compares the COD predictions with pipe experimental data. Accurate predictions for COD are required to reliably predict the leak rate through a crack in leak-before-break applications.
Crack-opening area calculations for circumferential through-wall pipe cracks
International Nuclear Information System (INIS)
Kishida, K.; Zahoor, A.
1988-08-01
This report describes the estimation schemes for crack opening displacement (COD) of a circumferential through-wall crack, then compares the COD predictions with pipe experimental data. Accurate predictions for COD are required to reliably predict the leak rate through a crack in leak-before-break applications
Transient thermal stress problem for a circumferentially cracked hollow cylinder
Nied, H. F.; Erdogan, F.
1982-01-01
The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.
Ductile fracture of circumferentially cracked pipes subjected to bending loads
International Nuclear Information System (INIS)
Zahoor, A.; Kanninen, M.F.
1981-01-01
A plastic fracture mechanics methodology is presented for part-through cracks in pipes under bending. A previous analysis result on the behavior of part-through cracks in pipes is reviewed. Example quantitative results for the initiation and instability of radial growth of part-through cracks are presented and compared with the experimental data to demonstrate the applicability of the method. The analyses in our previous work are further developed to include the instability of circumferential growth of part-through cracks. Numerical results are then presented for a compliant piping system, under displacement controlled bending, which focus on (1) instability of radial growth (unstable wall breakthrough) and (2) instability of circumferential growth of the resulting throughthe-thickness crack. The combined results of the above two types of analyses are presented on a safety assessment diagram. This diagram defines a curve of critical combination of length and depth of part-through cracks which delineates leak from fracture. The effect of piping compliance on the leak-before-break assessment is discussed
Ductile fracture of circumferentially cracked pipes subjected to bending loads
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.; Kanninen, M.F.
1981-10-01
A plastic fracture mechanics methodology is presented for part-through cracks in pipes under bending. A previous analysis result on the behavior of part-through cracks in pipes is reviewed. Example quantitative results for the initiation and instability of radial growth of part-through cracks are presented and compared with the experimental data to demonstrate the applicability of the method. The analyses in our previous work are further developed to include the instability of circumferential growth of part-through cracks. Numerical results are then presented for a compliant piping system, under displacement controlled bending, which focus on (1) instability of radial growth (unstable wall breakthrough) and (2) instability of circumferential growth of the resulting throughthe-thickness crack. The combined results of the above two types of analyses are presented on a safety assessment diagram. This diagram defines a curve of critical combination of length and depth of part-through cracks which delineates leak from fracture. The effect of piping compliance on the leak-before-break assessment is discussed.
Fracture toughness evaluation of circumferentially-cracked round bars
International Nuclear Information System (INIS)
Scibetta, M.
1996-05-01
The measure of the fracture toughness of a circumferentially-cracked round bar is generally performed through approximate formulae. Comparison of existing formulae to finite element results does not always show good agreement. Therefore an eta factor is introduced in order to improve the existing analytical formula. The axisymmetrical geometry is generally considered to be a high constrained geometry. Finite element calculations are performed to verify and quantify the constraint relative to the three point bending configuration (precracked Charpy)
Directory of Open Access Journals (Sweden)
X. Liu
2018-01-01
Full Text Available In the oil and gas transportation system over long distance, application of high-strength pipeline steels can efficiently reduce construction and operation cost by increasing operational pressure and reducing the pipe wall thickness. Failure assessment is an important issue in the design, construction, and maintenance of the pipelines. The small circumferential surface cracks with constant depth in the welded pipelines are of practical interest. This work provides an engineering estimation procedure based upon the GE/EPRI method to determine the J-integral for the thin-walled pipelines with small constant-depth circumferential surface cracks subject to tension and bending loads. The values of elastic influence functions for stress intensity factor and plastic influence functions for fully plastic J-integral estimation are derived in tabulated forms through a series of three-dimensional finite element calculations for different crack geometries and material properties. To check confidence of the J-estimation solution in practical application, J-integral values obtained from detailed finite element (FE analyses are compared with those estimated from the new influence functions. Excellent agreement of FE results with the proposed J-estimation solutions for both tension and bending loads indicates that the new solutions can be applied for accurate structural integrity assessment of high-strength pipelines with constant-depth circumferential surface cracks.
Crack resistance of austenitic pipes with circumferential through-wall cracks
International Nuclear Information System (INIS)
Foerster, K.; Grueter, L.; Setz, W.; Bhandari, S.; Debaene, J.P.; Faidy, C.; Schwalbe, K.H.
1993-01-01
For monotonously increasing load the correct evaluation of the crack resistance properties of a structure is essential for safety analyses. Considerable attention has been given to the through-wall case, since this is generally believed to be the controlling case with regard to complete pipe failure. The maximum load conditions for circumferential crack growth in pipes under displacement-controlled loadings has been determined. The need for crack resistance curves, measured on circumferentially through-wall cracked straight pipes of austenitic stainless steel 316L under bending, is emphasized by the limitation in the data range on small specimens and by the differences in the procedures. To answer open questions and to improve calculational methods a joint fracture mechanics program is being performed by Electricite de France, Novatome and Siemens-Interatom. The working program contains experimental and theoretical investigations on the applicability of small-specimen data to real structures. 10 refs., 10 figs., 4 tabs
Crack shape developments and leak rates for circumferential complex-cracked pipes
Energy Technology Data Exchange (ETDEWEB)
Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)
1997-04-01
A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.
Recent evaluations of crack-opening-area in circumferentially cracked pipes
Energy Technology Data Exchange (ETDEWEB)
Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.
1997-04-01
Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.
Fracture behavior of short circumferentially surface-cracked pipe
International Nuclear Information System (INIS)
Krishnaswamy, P.; Scott, P.; Mohan, R.
1995-11-01
This topical report summarizes the work performed for the Nuclear Regulatory Comniission's (NRC) research program entitled ''Short Cracks in Piping and Piping Welds'' that specifically focuses on pipes with short, circumferential surface cracks. The following details are provided in this report: (i) material property deteminations, (ii) pipe fracture experiments, (iii) development, modification and validation of fracture analysis methods, and (iv) impact of this work on the ASME Section XI Flaw Evaluation Procedures. The material properties developed and used in the analysis of the experiments are included in this report and have been implemented into the NRC's PIFRAC database. Six full-scale pipe experiments were conducted during this program. The analyses methods reported here fall into three categories (i) limit-load approaches, (ii) design criteria, and (iii) elastic-plastic fracture methods. These methods were evaluated by comparing the analytical predictions with experimental data. The results, using 44 pipe experiments from this and other programs, showed that the SC.TNP1 and DPZP analyses were the most accurate in predicting maximum load. New Z-factors were developed using these methods. These are being considered for updating the ASME Section XI criteria
International Nuclear Information System (INIS)
Jang, Yoon-Young; Han, Tae-Song; Huh, Nam-Su; Jeong, Jae-Uk
2014-01-01
Among integrity assessment method based on a fracture mechanics concept for piping system, a limit load method is one of the important way to predict a maximum load carrying capacity in the materials with high ductility in the sense that it is used to either assess directly structural integrity of pipe based on fully plastic fracture mechanics or calculate elasticplastic fracture mechanics parameters based on reference stress concept. In nuclear power plants, piping system often involves elbows welded to straight pipe. Since welded regions are vulnerable to cracking, it is important to predict an accurate limit load for pipes with a crack in the interface between elbows and attached pipes. However, although extensive works have been made for developing limit analysis methods for cracked pipes, they were mainly for straight pipes. Recently, limit moment solutions for elbow that is attached to straight pipe with a circumferential through-wall crack(TWC) in the interface were proposed, whereas limit pressure for this geometry is not suggested yet. In this context, plastic limit pressures of circumferential TWCs between elbow and straight pipe were calculated in the present study considering geometric parameters such as an elbow curvature, a pipe size and a crack length. In the present study, the FE plastic limit analyses for circumferential TWC in the interface between elbow and pipe under internal pressure were conducted based on elastic perfectly plastic assumption. Based on the present FE results, it is found that plastic limit pressures of straight pipes with circumferential TWC are not appropriate for predicting plastic limit pressures of circumferential TWC in the interface between elbow and pipe for shorter crack length
Development of a J-estimation scheme for internal circumferential and axial surface cracks in elbows
International Nuclear Information System (INIS)
Mohan, R.; Brust, F.W.; Ghadiali, N.; Wilkowski, G.
1996-06-01
This report summarizes efforts to develop elastic and elastic-plastic fracture mechanics analyses for internal surface cracks in elbows. The analyses involved development of a GE/EPRI type J-estimation scheme which requires an elastic and fully plastic contribution to crack-driving force in terms of the J-integral parameter. The elastic analyses require the development of F-function values to relate the J e term to applied loads. Similarly, the fully plastic analyses require the development of h-functions to relate the J p term to the applied loads. The F- and h-functions were determined from a matrix of finite element analyses. To minimize the cost of the analyses, three-dimensional ABAQUS finite element analyses were compared to a simpler finite element technique called the line-spring method. The line-spring method provides a significant computational savings over the full three-dimensional analysis. The comparison showed excellent agreement between the line-spring and three-dimensional analysis. This experience was consistent with comparisons with circumferential surface-crack analyses in straight pipes during the NRC's Short Cracks in Piping and Piping Welds program
Thermal fatigue crack growth on a thick wall tube containing a semi elliptical circumferential crack
International Nuclear Information System (INIS)
Deschanels, H.; Wakai, T.; Lacire, M.H.; Michel, B.
2001-01-01
In order to check the ability of the simplified assessment procedure (A16 guide) to predict fatigue crack growth, a benchmark problem was conducted. This work is carried out under the project ''agreement on the Exchange of Information and Collaboration in the field of Research and Development of Fast Breeder Reactor (FBR) between Europe (EU) and Japan''. Experimental work is conducted by PNC using Air cooled Thermal transient Test Facility (ATTF). Specimen is a thick wall tube containing a semi elliptical (3-D) circumferential crack and subjected to cyclic thermal transients. The constitutive material is the 304 austenitic stainless steel type SUS304. Due to thermal shock (650 C-300 C) the stress distribution through the wall is non-linear and well approximated using a 3 rd order polynomial. When comparing computations and tests data we observe a good agreement for the crack propagation in length. In crack depth, accurate results are obtained in the first part of the test, but on the later stage of the experiment the computations slightly underestimate the propagation (deep crack). In addition, we notice the importance of good evaluation of fracture mechanics parameters for non-linear stress distribution through the wall. At present A16 guide handbook gives stress intensity factor solutions for non-linear stress distribution through the wall. (author)
International Nuclear Information System (INIS)
Rahman, S.; Brust, F.; Ghadiali, N.; Krishnaswamy, P.; Wilkowski, G.; Choi, Y.H.; Moberg, F.; Brickstad, B.
1995-04-01
Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet impingement shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. These leak rates depend on the crack-opening area of a through-wall crack in the pipe. In addition to LBB analyses, which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section 11. This study was requested by the NRC to review, evaluate, and refine current analytical models for crack-opening-area analyses of pipes with circumferential through-wall cracks. Twenty-five pipe experiments were analyzed to determine the accuracy of the predictive models. Several practical aspects of crack-opening such as; crack-face pressure, off-center cracks, restraint of pressure-induced bending, cracks in thickness transition regions, weld residual stresses, crack-morphology models, and thermal-hydraulic analysis, were also investigated. 140 refs., 105 figs., 41 tabs
Modification of the ASME code z-factor for circumferential surface crack in nuclear ferritic pipings
International Nuclear Information System (INIS)
Choi, Young Hwan; Chung, Yon Ki; Koh, Wan Young; Lee, Joung Bae
1996-01-01
The purpose of this paper is to modify the ASME Code Z-Factor, which is used in the evaluation of circumferential surface crack in nuclear ferritic pipings. The ASME Code Z-Factor is a load multiplier to compensate plastic load with elasto-plastic load. The current ASME Code Z-Factor underestimates pipe maximum load. In this study, the original SC. TNP method is modified first because the original SC. TNP method has a problem that the maximum allowable load predicted from the original SC. TNP method is slightly higher than that measured from the experiment. Then the new Z-Factor is developed using the modified SC. TNP method. The desirability of both the modified SC. TNP method and the new Z-Factor is examined using the experimental results for the circumferential surface crack in pipings. The results show that (1) the modified SC. TNP method is good for predicting the circumferential surface crack behavior in pipings, and (2) the Z-Factor obtained from the modified SC. TNP method well predicts the behavior of circumferential surface crack in ferritic pipings. 30 refs., 13 figs., 4 tabs. (author)
International Nuclear Information System (INIS)
Wu, Szu-Ying; Tsai, Bor-Jiun; Chen, Jien-Jong
2015-01-01
In this study, a 3-D automatic elastic-plastic finite element mesh generator is established to accurately predict the J-integral value of an arbitrary reducer with a constant-depth internal circumferential surface crack under bending and axial force. The contact pairs are used on the crack surfaces to simulate the actual contact behaviors of the crack model under loadings. In order to verify the accuracy of the proposed elastic-plastic finite element model for a reducer with a surface crack, the cracked straight pipe models are generated according to a special modeling procedure for a flawed reducer. The J-integral values along the crack front of surface crack are calculated and compared with the straight pipe models which have been verified in the previous published studies. Based on the comparison of computed results, good agreements are obtained to show the accuracy of present numerical models. More confidence on using the 3-D elastic-plastic finite element analysis for reducers with internal circumferential surface cracks can be thus established in this work
Ductile fracture of circumferentially cracked type-304 stainless steel pipes in tension
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.; Norris, D.M.
1984-11-01
Circumferentially cracked pipes subjected to tensile load were analyzed for finite length and constant depth part-through cracks located at the inside of the pipe wall. The analysis postulated loads sufficient to cause net-section yielding of the flawed section. It was demonstrated that a propensity for predominantly radial growth exists for part-through cracks loaded in tension. This result is similar to the result for bend loading, except that bend loading causes more favorable conditions for wall breakthrough than tension loading. Numerical results were developed for 4-in. and 24-in-dia pipes. Safety margins for displacement controlled loads were described by a safety assessment diagram. This diagram defines a curve delineating leak from fracture in a space of nondimensional crack length and crack depth. 4-india schedule 80 Type-304 stainless steel pipes with length to radius ratio (L/R) of up to 100 exhibited leak-before-break behavior.
Ductile fracture of circumferentially cracked type-304 stainless steel pipes in tension
International Nuclear Information System (INIS)
Zahoor, A.; Norris, D.M.
1984-01-01
Circumferentially cracked pipes subjected to tensile load were analyzed for finite length and constant depth part-through cracks located at the inside of the pipe wall. The analysis postulated loads sufficient to cause net-section yielding of the flawed section. It was demonstrated that a propensity for predominantly radial growth exists for part-through cracks loaded in tension. This result is similar to the result for bend loading, except that bend loading causes more favorable conditions for wall breakthrough than tension loading. Numerical results were developed for 4-in. and 24-in-dia pipes. Safety margins for displacement controlled loads were described by a safety assessment diagram. This diagram defines a curve delineating leak from fracture in a space of nondimensional crack length and crack depth. 4-india schedule 80 Type-304 stainless steel pipes with length to radius ratio (L/R) of up to 100 exhibited leak-before-break behavior
The stability of through-wall circumferential cracks in cylindrical pipes subjected to bending loads
International Nuclear Information System (INIS)
Smith, E.
1983-01-01
Tada, Paris and Gamble have used the tearing modulus approach to show that when a circumferential through-wall crack exists in a 304 SS circular cylindrical pipe, and the pipe is subjected to an applied bending moment, then crack growth requires the rotation at the pipe-ends to be increased, (i.e. crack growth is stable), unless the pipe length is unduly large. On this basis it was concluded that unstable fracture is unlikely to occur in BWR SS piping, when the system is designed in accord with the ASME Code load levels for normal operation and anticipated transients. The Tada-Paris-Gamble analysis focuses on the inter-relation between instability and the onset of crack extension, and does not specifically consider the possibility that a crack might become unstable after some stable crack extension. The paper addresses this aspect of the crack stability problem using a crack tip opening angle criterion for crack extension, which has similarities with the tearing modulus approach. The results show that unstable fracture should not occur even after some stable crack extension, again provided that the pipe length is not unduly large. In other words, guillotine failure of a pipe in a BWR system is unlikely, even though the ASME Code limiting stress levels as might be exceeded, as may be the case with a very severe earthquake. (orig./HP)
X. Liu; Z. X. Lu; Y. Chen; Y. L. Sui; L. H. Dai
2018-01-01
In the oil and gas transportation system over long distance, application of high-strength pipeline steels can efficiently reduce construction and operation cost by increasing operational pressure and reducing the pipe wall thickness. Failure assessment is an important issue in the design, construction, and maintenance of the pipelines. The small circumferential surface cracks with constant depth in the welded pipelines are of practical interest. This work provides an engineering estimation pr...
Dynamic circumferential ductile crack motion in finite length pipes with various end loadings
International Nuclear Information System (INIS)
Emery, A.F.; Kobayashi, A.S.; Love, W.J.; Perl, M.; Kistler, B.
1981-01-01
The computed time history, crack opening shape and tip velocity are presented for the ductile crack extension of circumferential cracks in finite length pipes. The pipes are loaded by: a) constant axial tension, b) constant axial displacement, c) constant end moment, and d) constant end rotation to study the effects of these significantly different types of loads. The crack extension is based upon a critical crack opening angle criterion. The results indicate that the extent of the crack movement and the extension velocity is primarily dependent upon the inertia of the moving pipe segments. With sufficient linear momentum, complete severance is obtained, while if the movement is more rotation than translation the cracks either do not extend or do so only slightly. Thus in tougher material, once it begins to extend, the crack may easily encircle the pipe while in more brittle materials it may not, since the moving segments of the pipe have not had time to develop sufficient momentum to force the continued extension of the crack into regions which are initially in compression. (orig.)
Directory of Open Access Journals (Sweden)
J. Toribio
2017-07-01
Full Text Available In this paper, the stress intensity factor (SIF is computed in a circumferentially-cracked round bar (CCRB subjected to tensile loading, considering that the resistant ligament is circular and exhibits certain eccentricity in relation to the cylinder axis. The computation was performed by means of the finite element method (FEM using a three dimensional (3D model and the J-integral, the analyzed variable being the eccentricity of the circular ligament. Results show that the SIF is higher at the deepest point of the crack and that an increase of eccentricity (in relation to the bar axis raises the difference between the SIF values along the crack front. From a certain value of the misalignment a bending effect appears, so that the crack remains closed in the area near the point of lower depth.
Interaction of thermal stress with mechanical stress in circumferentially cracked pipe
International Nuclear Information System (INIS)
Song, Tae Kwang; Kim, Yun Jae; Oh, Chang Kyun
2008-01-01
For the cracked component under combined primary and secondary stress, an interacion between the loads occurs and the secondary stress is relaxed by the primary load. To account for this phenomena, R6 code provides the correction factor which is called V-factor. However, evaluation corrected with V-factor need to be examined for its conservatism. In this paper the conservatism of the current V-factor is examined for the circumferentially cracked pipe under the combined load and new evaluation method is proposed to reduce the conservatism
International Nuclear Information System (INIS)
Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.
1982-04-01
This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models
Estimation of leak rate through circumferential cracks in pipes in nuclear power plants
Directory of Open Access Journals (Sweden)
Jai Hak Park
2015-04-01
Full Text Available The leak before break (LBB concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry–Fauske flow model and modified Henry–Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.
Energy Technology Data Exchange (ETDEWEB)
Chen, Y.L.; Wang, G.Z., E-mail: gzwang@ecust.edu.cn; Xuan, F.Z.; Tu, S.T.
2015-04-15
Highlights: • Solution of constraint parameter τ* for through-wall cracked pipes has been obtained. • Constraint increases with increasing crack length and radius–thickness ratio of pipes. • Constraint-dependent LBB curve for through-wall cracked pipes has been constructed. • For increasing accuracy of LBB assessments, constraint effect should be considered. - Abstract: The leak-before-break (LBB) concept has been widely applied in the structural integrity assessments of pressured pipes in nuclear power plants. However, the crack-tip constraint effects in LBB analyses and designs cannot be incorporated. In this paper, by using three-dimensional finite element calculations, the modified load-independent T-stress constraint parameter τ* for circumferential through-wall cracked pipes with different geometries and crack sizes has been analyzed under different loading conditions, and the solutions of the crack-tip constraint parameter τ* have been obtained. Based on the τ* solutions and constraint-dependent J–R curves of a steel, the constraint-dependent LBB (leak-before-break) curves have been constructed. The results show that the constraint τ* increases with increasing crack length θ, mean radius R{sub m} and radius–thickness ratio R{sub m}/t of the pipes. In LBB analyses, the critical crack length calculated by the J–R curve of the standard high constraint specimen for pipes with shorter cracks is over-conservative, and the degree of conservatism increases with decreasing crack length θ, R{sub m} and R{sub m}/t. Therefore, the constraint-dependent LBB curves should be constructed to modify the over-conservatism and increase accuracy of LBB assessments.
Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.
2000-01-01
Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.
International Nuclear Information System (INIS)
Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M.
1996-12-01
This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed
Energy Technology Data Exchange (ETDEWEB)
Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M. [and others
1996-12-01
This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed.
International Nuclear Information System (INIS)
Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin; Chang, Yoon Suk; Jhung, Myung Jo; Choi, Young Hwan
2010-01-01
This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H 1 values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading
Energy Technology Data Exchange (ETDEWEB)
Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of); Chang, Yoon Suk [Kyung Hee University, Yongin (Korea, Republic of); Jhung, Myung Jo; Choi, Young Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2010-03-15
This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H{sub 1} values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading
International Nuclear Information System (INIS)
Yoo, Yeon-Sik
2003-01-01
This study is concerned with crack opening displacements (CODs) of cylinders with a circumferential through-crack which is subjected to tension and in-plane bending loads. Most studies about crack opening behavior have performed on membrane and global bending stresses. Moreover, they cannot be valid for large-scale structures. For simplicity on evaluation for structural integrity, crack opening displacement has been often calculated by plate or pipe model considering almost stresses as a membrane component. However, it is important to investigate ones close to real crack opening behaviors under stress states for reliability on evaluation. The results must be directly related to evaluate leakage detection in reactor vessel and the primary piping system of FBR structures. From that purpose, a series of FEM analyses were performed, and hence the characteristics of COD under an in-plane bending stress were compared with those under a membrane stress. In addition, the plate model was indicated to be unreasonable for application on large-scale pipes by comparing the plate model with the pipe model. The results of this study are expected to be valid for leakage evaluation of high temperature structures especially. (author)
International Nuclear Information System (INIS)
Song, Tae-Kwang; Kim, Yun-Jae; Oh, Chang-Kyun; Jin, Tae-Eun; Kim, Jong-Sung
2009-01-01
This paper firstly presents net-section limit moments for circumferential through-wall and part-through surface cracks at the interface between elbows and attached straight pipes under in-plane bending. Closed-form solutions are proposed based on fitting results from small strain FE limit analyses using elastic-perfectly plastic materials. Net-section limit moments for circumferential cracks at the interface between elbows and attached straight pipes are found to be close to those for cracks in the centre of elbows, implying that the location of the circumferential crack within an elbow has a minimal effect on the net-section limit moment. Accordingly it is also found that the assumption that the crack locates in a straight pipe could significantly overestimate the net-section limit load (and thus maximum load-carrying capacity) of the cracked component. Based on the proposed net-section limit moment, a method to estimate elastic-plastic J based on the reference stress approach is proposed for circumferential cracks at the interface between elbows and attached straight pipes under in-plane bending.
International Nuclear Information System (INIS)
Song, Tae Kwang; Oh, Chang Kyun; Kim, Yun Jae; Kim, Jong Sung; Jin, Tae Eun
2007-01-01
This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes
International Nuclear Information System (INIS)
Song, Tae Kwang; Kim, Yun Jae; Oh, Chang Kyun; Kim, Jong Sung; Jin, Tae Eun
2007-01-01
This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes
International Nuclear Information System (INIS)
Zahoor, A.; Kanninen, M.F.
1980-01-01
A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. This method also permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. 18 refs
K{sub I}-T estimation for embedded flaws in pipes - Part II: Circumferentially oriented cracks
Energy Technology Data Exchange (ETDEWEB)
Qian Xudong, E-mail: cveqx@nus.edu.s [Department of Civil Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576 (Singapore)
2010-04-15
This paper, in parallel to the investigation on axially embedded cracks reported in the companion paper, presents a numerical study on the linear-elastic K{sub I} and T-stress values over the front of elliptical cracks circumferentially embedded in the wall of a pipe/cylindrical structure, under a uniform pressure applied on the inner surface of the pipe. The numerical procedure employs the interaction-integral approach to compute the linear-elastic stress-intensity factor (SIF) K{sub I} and T-stress values for embedded cracks with practical sizes at different locations in the wall of the pipe. The parametric study covers a wide range of geometric parameters for embedded cracks in the pipe, including: the wall thickness to the inner radius ratio (t/R{sub i}), the crack depth over the wall thickness ratio (a/t), the crack aspect ratio (a/c) and the ratio of the distance from the centerline of the crack to the outer surface of the pipe over the pipe wall thickness (e{sub M}/t). The parametric investigation identifies a significant effect of the remaining ligament length on both the T-stress and K{sub I} values at the crack-front location (denoted by point O) nearest to the outer surface of the pipe and at the crack-front location (denoted by point I) nearest to the inner surface of the pipe. The numerical investigation establishes the database to derive approximate functions from a nonlinear curve-fitting procedure to predict the T-stress and K{sub I} values at three critical front locations of the circumferentially embedded crack in a pipe: points O, I and M. The proposed T-stress and K{sub I} functions utilize a combined second-order polynomial and a power-law expression, which presents a close agreement with the T-stress and K{sub I} values computed from the very detailed finite element models. The comparison between the circumferentially embedded crack and the axially embedded crack indicates that both the T-stress and K{sub I} values at crack-front points O and
International Nuclear Information System (INIS)
Srivastava, A.; Prabhakaran, K.M.; Ghosh, A.K.
2011-01-01
Highlights: → Behavior of cracked elbows with part-through crack at intrados under bending moment is studied. → Some part of crack always opens and some part gets closed irrespective of mode of applied moment. → Fraction of the crack that opens basically decides the weakening effect of the cracked elbow. → Results will be useful for fracture studies and limit load estimation especially for LBB. - Abstract: This paper presents the behavior of part-through circumferential crack at intrados in elbows under in-plane bending moment. This is based on detailed non-linear (both material and geometric) finite element analysis performed on various sizes of elbows (generally used in piping industry), having different crack sizes. It is observed that some part of the crack always opens and some part gets closed irrespective of the mode of applied bending moment (opening/closing). The fraction of the crack that opens basically decides the weakening effect of the cracked elbow. It is observed that there is a threshold value of crack length and crack depth, before which no crack opening is observed under opening mode. Also as elbow becomes thinner, the threshold value of above two parameters increases. Quite interestingly, the part of crack which closes in opening mode opens under closing mode. The above mentioned study on the behavior of crack will be useful for fracture studies and limit load estimation especially when leak before break concept is to be employed.
Assessment of circumferential cracks in hypereutectic Al-Si clutch housings
Directory of Open Access Journals (Sweden)
M. Haghshenas
2017-04-01
Full Text Available As in situ natural composites with silicon phase acting as the reinforcing phase, Al-Si alloys are among most commonly used aluminum alloys in automotive applications (i.e. engine component. Silicon contributes to the strength of Al-Si alloys through load transfer from the Al matrix to the hard (rigid Si phase in the microstructure (load-carrying capacity. Casting parameters (i.e. solidification rate, elemental segregation, secondary dendrite spacing… as well as the size and distribution of the microstructural constituents in Al-Si alloys (i.e. morphology of Si particles, intermetallic compounds, secondary dendrite spacing contribute directly to the mechanical response and failure (or fracture behavior of the alloy within the service. In hyper-eutectic Al-Si alloys (i.e. B390.0, distribution of coarse pre-eutectic Si particle mainly contribute to stress concentration, crack initiation and propagation during the actual service condition. In the present paper, the parameters contribution to the formation of the circumferential cracks in clutch housings made of die cast hyper-eutectics B390.0 Al-Si alloys are assessed through optical microscopy and scanning electron microscopy. Casting variable, cooling rate, their effect on the cracks as well some of the possible causes are also discussed in detail.
Directory of Open Access Journals (Sweden)
Iman Eshraghi
Full Text Available Abstract In this paper, transient thermomechanical stress intensity factors for functionally graded cylinders with complete internal circumferential cracks are obtained using the weight function method. The finite difference method is used to calculate the time dependent temperature distribution and thermal stresses along the cylinder thickness. Furthermore, finite element analysis is performed to determine the weight function coefficients and to investigate the accuracy of the predicted stress intensity factors from the weight functions. Variation of the stress intensity factors with time and effects of the material gradation on the results are investigated, as well. It is shown that the proposed technique can be used to accurately predict transient thermomechanical stress intensity factors for functionally graded cylinders with arbitrary material gradation.
International Nuclear Information System (INIS)
Choi, Y.H.; Chung, Y.K.; Park, Y.W.; Lee, J.B.
1997-01-01
The purpose of this study is to develop new Z-factors to evaluate the behavior of a circumferential surface crack in nuclear pipe. Z-factor is a load multiplier used in the Z-factor method, which is one of the ASME Code Sec. XI's recommendations for the estimation of a surface crack in nuclear pipe. It has been reported that the load carrying capacities predicted from the current ASME Code Z-factors, are not well in agreement with the experimental results for nuclear pipes with a surface crack. In this study, new Z-factors for ferritic base metal, ferritic submerged arc welding (SAW) weld metal, austenitic base metal, and austenitic SAW weld metal are obtained by use of the surface crack for thin pipe (SC.TNP) method based on GE/EPRI method. The desirability of both the SC.TNP method and the new Z-factors is examined using the results from 48 pipe fracture experiments for nuclear pipes with a circumferential surface crack. The results show that the SC.TNP method is good for describing the circumferential surface crack behavior and the new Z-factors are well in agreement with the measured Z-factors for both ferritic and austenitic pipes. (orig.)
International Nuclear Information System (INIS)
Smith, E.
1987-01-01
Tada, Paris and Gamble have used the tearing modulus approach to examine the stability of growth of a through-wall circumferential crack in a 304 stainless steel circular cylindrical pipe subject to bending deformation. They showed that crack growth is stable, in the sense that growth requires the rotation imposed at the pipe-ends to be increased, provided the pipe length is less than a critical length Lsub(c), which is given by their analysis. The Tada-Paris-Gamble analysis focuses on the question of the stability, or otherwise, of crack growth at the onset of crack extension. The analysis does not consider the possibilities that (a) instability might occur after some stable crack growth, and (b) arrest might occur after some unstable growth. A study of these aspects of the circumferential crack growth problem using the tearing modulus approach is precluded by the geometry dependence of the J-crack growth resistance curve. Consequently the present paper uses a crack tip opening angle criterion to describe crack growth, and thereby demonstrates that possibilities (a) and (b) should both occur, depending on the initial crack length and pipe length. In terms of relevance to the technologically important problem of cracking in Boiling Water Reactor piping, the important conclusion stemming from the paper's analysis is that stability of crack growth after the onset of crack extension is assured if the pipe length is less than a critical length L'sub(c). L'sub(c) is less than Lsub(c), the critical length relevant to the onset of crack extension, but it is still appreciably greater than the pipe run lengths in actual reactor piping systems, and safety against guillotine failure of a pipe is therefore generally assured. (author)
Fully plastic solutions of semi-elliptical surface cracks
International Nuclear Information System (INIS)
Yagawa, Genki; Yoshimura, Shinobu; Kitajima, Yasumi; Ueda, Hiroyoshi.
1990-01-01
Nonlinear finite element analyses of semi-elliptical surface cracks are performed under the fully plastic condition. The power-law hardening materials and the deformation theory of plasticity are assumed. Either the penalty function method or the Uzawa's algorithm is utilized to treat the incompressibility of plastic strains. The local and global J-integral values are obtained using a virtual crack extension technique for plates and cylinders with semi-elliptical surface cracks subjected to uniform tensions. The fully plastic solutions for surface cracked plates are given in the form of polynominals with geometric parameters a/t, a/c and the strain hardening exponent (n). In addition, the effects of curvature on fully plastic solutions are discussed through the comparison between the results of plates and cylinders. (author)
Fully plastic crack opening analyses of complex-cracked pipes for Ramberg-Osgood materials
International Nuclear Information System (INIS)
Jeong, Jae Uk; Choi, Jae Boong; Huh, Nam Su; Kim, Yun Jae
2016-01-01
The plastic influence functions for calculating fully plastic Crack opening displacement (COD) of complex-cracked pipes were newly proposed based on systematic 3-dimensional (3-D) elastic-plastic Finite element (FE) analyses using Ramberg-Osgood (R-O) relation, where global bending moment, axial tension and internal pressure are considered separately as a loading condition. Then, crack opening analyses were performed based on GE/EPRI concept by using the new plastic influence functions for complex-cracked pipes made of SA376 TP304 stainless steel, and the predicted CODs were compared with FE results based on deformation plasticity theory of tensile material behavior. From the comparison, the confidence of the proposed fully plastic crack opening solutions for complex-cracked pipes was gained. Therefore, the proposed engineering scheme for COD estimation using the new plastic influence functions can be utilized to estimate leak rate of a complex-cracked pipe for R-O material.
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.; Kanninen, M.F.
1981-11-01
A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. It permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The influence of the system compliance on fracture instability is discussed in conjunction with the latter application. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. The possibility of a pipe fracture emanating from a stress corrosion crack in the heat-affected zones of girth-welds in Type 304 stainless steel pipes was investigated. The J-resistance curve was employed. A pipe fracture experiment was performed using a spring-loaded four-point bending system that simulated an 8.8-m long section of unsupported 102-mm-dia pipe. An initial through-wall crack of length equal to 104 mm was used. Fracture instability was predicted to occur between 15.2 and 22.1 mm of stable crack growth at each tip. In the actual experiment, the onset of fracture instability occurred beyond maximum load at an average stable crack growth of 11.7 to 19 mm at each tip. 24 refs.
International Nuclear Information System (INIS)
Zahoor, A.; Kanninen, M.F.
1981-01-01
A method of evaluating the J-integral for a circumferentially cracked pipe in bending is proposed. The method allows a J-resistance curve to be evaluated directly from the load-displacement record obtained in a pipe fracture experiment. It permits an analysis for fracture instability in a circumferential crack growth using a J-resistance curve and the tearing modulus parameter. The influence of the system compliance on fracture instability is discussed in conjunction with the latter application. The importance of using a J-resistance curve that is consistent with the type of constraint for a given application is emphasized. The possibility of a pipe fracture emanating from a stress corrosion crack in the heat-affected zones of girth-welds in Type 304 stainless steel pipes was investigated. The J-resistance curve was employed. A pipe fracture experiment was performed using a spring-loaded four-point bending system that simulated an 8.8-m long section of unsupported 102-mm-dia pipe. An initial through-wall crack of length equal to 104 mm was used. Fracture instability was predicted to occur between 15.2 and 22.1 mm of stable crack growth at each tip. In the actual experiment, the onset of fracture instability occurred beyond maximum load at an average stable crack growth of 11.7 to 19 mm at each tip. 24 refs
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.
1982-04-01
This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models.
International Nuclear Information System (INIS)
Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.
1982-04-01
This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.; Wilkowski, G.; Abou-Sayed, I.; Marschall, C.; Broek, D.; Sampath, S.; Rhee, H.; Ahmad, J.
1982-04-01
This report provides methods to predict margins of safety for circumferentially cracked Type 304 stainless steel pipes subjected to applied bending loads. An integrated combination of experimentation and analysis research was pursued. Two types of experiments were performed: (1) laboratory-scale tests on center-cracked panels and bend specimens to establish the basic mechanical and fracture properties of Type 304 stainless steel, and (2) full-scale pipe fracture tests under quasi-static and dynamic loadings to assess the analysis procedures. Analyses were based upon the simple plastic collapse criterion, a J-estimation procedure, and elastic-plastic large-deformation finite element models.
International Nuclear Information System (INIS)
Zareei, A.; Nabavi, S.M.
2016-01-01
In this paper, stress intensity factors are calculated at the deepest point of an internal circumferential semi-elliptical crack in a pipe subjected to any arbitrary load. Based on the three dimensional finite element analysis, a weight function is proposed for high aspect ratio semi-elliptical cracks in pipes. An effective expression is developed analytically to evaluate the stress intensity factor using the weight function method. For several crack face stress fields and welding residual stress distributions, the weight function is validated against finite element data and those in the literature. Based on the comparison results, it can be concluded that the solution proposed in this paper is effective in engineering applications. - Highlights: • Analysis of internal circumferential semi-elliptical cracks with high aspect ratio in pipes. • A weight function is proposed for the calculation of the stress intensity factors for the deepest point of the crack. • An effective closed form expression is proposed to evaluate the stress intensity factors. • Prediction of stress intensity factors for any applied stress gradients through the wall thickness without any limitations. • A three-dimensional finite element modeling employs to calculate the stress intensity factors for different geometries.
International Nuclear Information System (INIS)
Grebner, H.; Hoefler, A.; Hunger, H.
1989-01-01
The experiments carried out so far on straight pipes with circumferential cracks and results of subsequent calculations from this experiment are introduced. The subsequent calculations are not yet completed at all points. From the experiments one can record that the selected crack sizes and stresses have guaranteed stable crack behaviour in all cases. The comparison of experimental and calculated crack openings shows satisfactory agreement (difference about 20% for experiment E22.03. The compared leak rates show differences of up to about 50% (in isolated cases even more). For small leak rates (0.01 to 0.1 kg/sec), one can expect a difference of about 100% between calculation and experiment. For medium leak rates, we regard a maximum difference of about 30% as achievable. For large leak rates, the achievable accuracy plays no part for the detectability. (orig./DG) [de
International Nuclear Information System (INIS)
Xuan Fuzhen; Liu Changjun; Li Peining
2005-01-01
This paper is concerned with the prediction of limit load of the piping branch junctions with circumferential crack under internal pressure. Recently, we have developed a new approach for predicting the limit load of two-cylinder intersection structures with diameter ratio larger than 0.5, which has been successfully applied to defect free cases under various loading conditions. In the present work, we consider the extension of the approach to cover cracked piping branch junctions. On the basis of stress analysis in the vicinity of intersection line, a closed form of limit load solution for piping branch junctions with circumferential crack was developed. Then, 36 finite element (FE) models of piping branch junction with various dimensions of structure and crack were analyzed by using nonlinear finite element software. The limit loads from FE analysis and the proposed solution are compared with each other. Overall good agreement between the estimated solutions and the FE results provides confidence in the use of the proposed formulae for defect assessment of piping branch junctions in practice
International Nuclear Information System (INIS)
Park, Jeong Soon; Kim, Sun Hye; Kim, Jin Su and others
2013-01-01
PARTRIDGE (Probabilistic Analysis as a Regulatory Tool for Risk Informed Decision GuidancE) is an international research program, main purposes of which are to enhance PRO-LOCA (PRObabilistic-Loss Of Coolant Accident) code, a research piping probabilistic fracture mechanics code originally developed for USNRC, and to support the development of a new modular probabilistic fracture mechanics code, xLPR(Extremely Low Probability of Rupture). KINS, KHNP, and KEPCO E and C established a Korea Consortium to take part in the PARTRIDGE and have provided not only financial but also technical contribution to it. As part of the research in-kind contribution, Korea Consortium has developed new Mode I stress intensity factors (KI) and crack opening displacements (COD, δ) for non-idealized through-wall cracks along with EMC2 (Engineering Mechanics Corporation of Columbus). In this paper, the results of linear elastic fracture mechanics (LEFM) analysis for non-idealized circumferential through-wall cracks performed by Korea Consortium were provided. Korea Consortium, KINS, KHNP, and KEPCO E and C, performs LEFM analyses for non-idealized circumferential through-wall cracks as part of in-kind contribution to the international research program called PARTRIDGE
International Nuclear Information System (INIS)
Smith, E.
1989-01-01
Against the background of the problem of intergranular stress corrosion cracking of 304 stainless steel in Boiling Water Reactor piping systems, this paper presents a critical appraisal of procedures that are currently used to give the criterion for instability of a through-wall circumferential crack in a stainless steel piping system. Particular attention is focussed on a simple procedure developed by Cotter, Chang and Zahoor, which has been applied to specific piping systems, the objective being to underpin its viability. The considerations are applicable to not only Boiling Water Reactor piping systems, but to other piping systems where pipe failure due to circumferential cracking is a potential problem. (author)
International Nuclear Information System (INIS)
Scibetta, M.
1999-06-01
The subject of this PhD dissertation is the use of the Circumferentially-Cracked Round Bar (CRB) for fracture toughness measurements. The main advantages of CRB are the relatively small size requirements of the testing specimens, the low cost to machine the specimen, the rotating bending fatigue allowing for easy precracking of specimens, the use of standard tensile test fixture and the axisymmetry of the specimen that avoids time consuming 3D finite element calculations. An in-depth study of the most widely used precracking technique for CRB, namely the rotating bending fatigue, is made
Energy Technology Data Exchange (ETDEWEB)
Scibetta, M
1999-06-01
The subject of this PhD dissertation is the use of the Circumferentially-Cracked Round Bar (CRB) for fracture toughness measurements. The main advantages of CRB are the relatively small size requirements of the testing specimens, the low cost to machine the specimen, the rotating bending fatigue allowing for easy precracking of specimens, the use of standard tensile test fixture and the axisymmetry of the specimen that avoids time consuming 3D finite element calculations. An in-depth study of the most widely used precracking technique for CRB, namely the rotating bending fatigue, is made.
International Nuclear Information System (INIS)
Jang, Hyun Min; Cho, Doo Ho; Kim, Young Jin; Huh, Nam Su; Shim, Do Jun; Choi, Young Hwan; Park, Jung Soon
2011-01-01
On the basis of detailed 3D finite-element (FE) limit analyses, the plastic limit load solutions for pipes with slanted circumferential through-wall cracks (TWCs) subjected to axial tension, global bending, and internal pressure are reported. The FE model and analysis procedure employed in the present numerical study were validated by comparing the present FE results with existing solutions for plastic limit loads of pipes with idealized TWCs. For the quantification of the effect of slanted crack on plastic limit load, slant correction factors for calculating the plastic limit loads of pipes with slanted TWCs from pipes with idealized TWCs are newly proposed from extensive 3D FE calculations. These slant-correction factors are presented in tabulated form for practical ranges of geometry and for each set of loading conditions
International Nuclear Information System (INIS)
Olson, R.; Scott, P.; Wilkowski, G.M.
1992-01-01
As part of the US NRC's Degraded Piping Program, the concept of using a nonlinear spring element to simulate the response of cracked pipe in dynamic finite element pipe evaluations was initially proposed. The nonlinear spring element is used to represent the moment versus rotation response of the cracked pipe section. The moment-rotation relationship for the crack size and material of interest is determined from either J-estimation scheme analyses or experimental data. In this paper, a number of possible approaches for modeling the nonlinear stiffness of the cracked pipe section are introduced. One approach, modeling the cracked section moment rotation response with a series of spring-slider elements, is discussed in detail. As part of this discussion, results from a series of finite element predictions using the spring-slider nonlinear spring element are compared with the results from a series of dynamic cracked pipe system experiments from the International Piping Integrity Research Group (IPIRG) program
International Nuclear Information System (INIS)
Kim, Jin-Weon
2006-01-01
Most of the pipe crack evaluation procedures, including leak-before-break (LBB) analysis, assume that the cracked pipe subjected to remote bending or internal pressure is free to rotate. In this case, the pressure induced bending (PIB) enhances crack opening of a through-wall-crack (TWC) in a pipe. In a real piping system, however, the PIB will be restrained because the ends of the pipe are constrained by the rest of the piping system. Hence, the amount of restraint affects the crack opening of a TWC in a pipe, and the restraint effect on crack opening directly affects the results of LBB evaluation. Therefore, it is necessary to investigate the restraint effect of PIB on crack opening displacement (COD) to quantify the uncertainties in current analysis procedures and to ensure the application of LBB concepts to nuclear piping systems. Recently, several researches were conducted to investigate the restraint effect of PIB on COD, and they proposed a simplified model to evaluate COD under restrained conditions. However, these results are quite limited because the restraint effect was evaluated only in terms of linear-elastic crack opening. In practice, the TWC in a pipe behaves plastically under normal operating loads, and the current LBB analysis methodologies require elastic-plastic crack opening evaluation. Therefore, this study evaluates the restraint effect of PIB on the plastic crack opening of a TWC in a pipe using finite element analysis under various influencing parameters. Based on these results, a closed-from model to be able to estimate the restraint effect of PIB on plastic crack opening is proposed
International Nuclear Information System (INIS)
Goerner, F.; Munz, D.
1984-01-01
Simple criteria for local and global instabilities were used to calculate leak-before-break-diagrams for load-controlled deformations. Relations between the tension and bending stresses in the uncracked pipe and the critical crack angle α/sub c/, below which complete fracture cannot occur, were developed for combined loading by internal pressure and external tension and bending. The different assumptions made for local and global instability lead to similar conclusions about the allowable crack length for leak-before-break behavior. It was not the intention of this paper to compare the conclusions with experimental results available
Energy Technology Data Exchange (ETDEWEB)
Nam, Hyun Suk; Kim, Ji Soo; Ryu, Ho Wan; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Kim, Jin Weon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)
2016-10-15
This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.
International Nuclear Information System (INIS)
Park, Jeong Soon; Choi, Young Hwan; Im, Seyoung
2014-01-01
Fracture mechanics parameters such as the J-integral and crack opening displacement (COD), are necessary for Leak-Before-Break (LBB) evaluation. The famous two estimation methods, the GE/EPRI and the Reference Stress Method (RSM), have their applicability limit with regard to the ratio of a pipe mean radius to thickness (R m /t). In order to extend their applicability limit to a thin walled pipe, several finite element analyses are performed for the J-integral and COD, and then new plastic influence functions are developed for thin-walled pipes with a short circumferential through-wall crack. With the newly generated plastic influence functions, the GE/EPRI and the RSM give closer results with those obtained from detailed finite element analyses. In addition, C*-integral and COD rate are estimated by using the new plastic influence functions and they are well matched with elastic–creep finite element analysis results under the power-law creep condition. Since the LBB concept can be applied to a piping system in a Korean Sodium-cooled Fast Reactor (SFR) which is designed to have thin-walled pipes and to operate in high temperature enough to cause creep, this paper can be applied for the LBB assessment of thin-walled pipes with a short through-wall crack in the SFR
International Nuclear Information System (INIS)
Oh, Chang Young; Kim, Yun Jae; Oh, Young Jin; Song, Tae Kwang; Kim, Yong Beum; Oh, Young Jin; Song, Tae Kwang; Kim, Yong Beum
2012-01-01
Recently, stress corrosion cracking(SCC) have been found in dissimilar metal welds of nozzles in some pressurized water reactors and on low carbon stainless steel piping systems of boiling water reactors. The important factor of SCC is the residual stress field caused by weld. For the evaluation of crack growth analysis due to SCC, stress intensity factor under a residual stress field should be estimated. Several solutions for stress intensity factor under residual stress field were recommended in flaw assessment codes such as the American Society of Mechanical Engineers (ASME) Section XI, R6, American Petroleum Institute (API579). Some relevant works have been studied. Dong et al. evaluated stress intensity factors in welded structures. Miyazaki et al. estimated stress intensity factors of surface crack in simple stress fields. This paper presents a simple method to estimate stress intensity factors in welding residual stress field. For general application, results of structure integrity assessment codes KI solutions were compared Finite element analyses of welding simulation and cracked pipes are described. Comparison results of KI solutions and proposed simplified solution are presented in the works
Bobby Kannan, M; Singh Raman, R K; Witte, F; Blawert, C; Dietzel, W
2011-02-01
Applications of magnesium alloys as biodegradable orthopaedic implants are critically dependent on the mechanical integrity of the implant during service. In this study, the mechanical integrity of an AZ91 magnesium alloy was studied using a constant extension rate tensile (CERT) method. The samples in two different geometries that is, circumferentially notched (CN), and circumferentially notched and fatigue cracked (CNFC), were tested in air and in simulated body fluid (SBF). The test results show that the mechanical integrity of the AZ91 magnesium alloy decreased substantially (∼50%) in both the CN and CNFC samples exposed to SBF. Fracture surface analysis revealed secondary cracks suggesting stress corrosion cracking susceptibility of the alloy in SBF. Copyright © 2010 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Oh, Chang-Young; Kim, Yun-Jae; Oh, Young-Jin; Kim, Jong-Sung; Song, Tae-Kwang; Kim, Yong-Beum
2013-01-01
To investigate the applicability of existing methods to estimate stress intensity factors due to welding residual stresses, comparisons with finite element (FE) solutions are made for two types of generic welding residual stress profiles, generated by simulating repair welds. It is found that fitting residual stresses over the crack depth using third-order polynomials gives good estimates of stress intensity factors but fitting over the entire thickness can result in inaccurate estimates even with fourth-order polynomials. Noting that welding residual stresses are often determined from FE analyses, linearization of residual stresses to estimate stress intensity factors is proposed. Comparison with FE solutions shows good agreements. -- Highlights: ► Applicability of K estimation methods is investigated for welding residual stresses. ► Two types of generic residual stress profiles with repair welds are considered. ► Fitting residual stresses over the crack depth gives good estimates of K. ► A method to estimate K by linearising residual stress profiles is proposed
Energy Technology Data Exchange (ETDEWEB)
Jang, Youn Young; Huh, Nam Su [Dept. of Mechanical System Design Engineering, Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Jeong, Jae Uk [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)
2016-09-15
This paper provides plastic influence functions of GE/EPRI method for calculating J and Crack opening displacement (COD) of pipes with a circumferential Through-wall crack (TWC) in the interface between an elbow and a straight pipe by using 3-dimensional (3-D) elastic-plastic finite element analyses for Ramberg-Osgood (R-O) materials, in which internal pressure was considered as a loading condition. The proposed plastic influence functions are tabulated as a function of the pipe geometries, crack length and strain hardening exponent. In order to provide sufficient confidence for the proposed plastic influence functions, the estimation scheme using the proposed plastic influence functions for J and COD of cracked elbows was validated against FE results using R-O parameters for the SA312 TP316 stainless steel. Moreover, the predicted J and COD for elbows with a TWC in the interface between an elbow and a pipe by the proposed scheme were compared with those for cracked straight pipes to investigate the effect of the elbow geometries on crack behavior of elbows. One important point is that crack behaviors in the interface between an elbow and a straight pipe can be significantly different with those in straight pipes according to pipe thickness, crack length and bend radius of elbows. Thus, the proposed plastic influence functions can be useful to predict accurate J and COD for cracked elbows.
International Nuclear Information System (INIS)
Jang, Youn Young; Huh, Nam Su; Jeong, Jae Uk
2016-01-01
This paper provides plastic influence functions of GE/EPRI method for calculating J and Crack opening displacement (COD) of pipes with a circumferential Through-wall crack (TWC) in the interface between an elbow and a straight pipe by using 3-dimensional (3-D) elastic-plastic finite element analyses for Ramberg-Osgood (R-O) materials, in which internal pressure was considered as a loading condition. The proposed plastic influence functions are tabulated as a function of the pipe geometries, crack length and strain hardening exponent. In order to provide sufficient confidence for the proposed plastic influence functions, the estimation scheme using the proposed plastic influence functions for J and COD of cracked elbows was validated against FE results using R-O parameters for the SA312 TP316 stainless steel. Moreover, the predicted J and COD for elbows with a TWC in the interface between an elbow and a pipe by the proposed scheme were compared with those for cracked straight pipes to investigate the effect of the elbow geometries on crack behavior of elbows. One important point is that crack behaviors in the interface between an elbow and a straight pipe can be significantly different with those in straight pipes according to pipe thickness, crack length and bend radius of elbows. Thus, the proposed plastic influence functions can be useful to predict accurate J and COD for cracked elbows
Energy Technology Data Exchange (ETDEWEB)
Song, Tae Kwang; Jeon, Jun Young; Shim, Kwang Bo; Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Kim, Jong Sung [Sunchon University, Suncheon (Korea, Republic of); Jin, Tae Eun [Korea Power Engineering Company, Daejeon (Korea, Republic of)
2010-01-15
In this paper, limit load analyses and fracture mechanics analyses were conducted via finite element analyses for the welded pipe with circumferential crack at the center of the weldment. Systematic changes for strength mismatch ratio, width of weldment, crack shape and thickness ratio of the pipe were considered to provide strength mismatch limit load. And J-integral calculations based on reference stress method were conducted for two materials, stainless steel and ferritic steel. Reference stress defined by provided strength mis-match limit load gives much more accurate J-integral.
International Nuclear Information System (INIS)
Park, Jeong Soon; Jhung, Myung Jo
2012-01-01
Since the LBB(Leak-Before-Break) concept has been widely applied to high energy piping systems in the pressurized water reactors, a number of engineering estimation methods had been developed for J-integral and COD values. However, those estimation methods were mostly reliable for relatively thick-walled pipes about R m /t=5 or 10. As the LBB concept might be considered in the design stage of the SFR (Sodium-cooled Fast Reactor) which has relatively thin-walled pipes due to its low design pressure, the applicability of current estimation methods should be investigated for thin-walled pipes. Along with the J-integral and COD, the estimation method for creep fracture mechanics parameters, C*- integral and COD rate, is required because operating temperature of SFR is high enough to induce creep in the structural materials. In this study, the applicability of the current C*- integral and COD estimation methods to thin-walled pipes is studied for a circumferential through-wall crack using the finite element (FE) method. Based on the FE results, enhancement of the current estimation methods is made
Instability analysis of a fully plastic center-cracked strip of a power hardening material
International Nuclear Information System (INIS)
Zahoor, A.; Paris, P.C.
1978-01-01
An approach for predicting unstable crack growth in a power hardening material is discussed. A fully plastic center-cracked strip of finite width under plane strain conditions, which involves J-controlled crack growth, is analyzed. The conditions for unstable crack growth are identified in terms of a non-dimensional parameter, the Tearing Modulus, T, which incorporates the effect of elastic system compliance on the cracked structure as well as the influence of hardening. Numerical results also illustrate the strong influences on stability of both the strain hardening characteristics of the material and certain geometrical proportions which greatly influence the system compliance. (author)
A partly and fully cracked triangular XFEM element for modeling cohesive fracture
DEFF Research Database (Denmark)
Mougaard, Jens Falkenskov; Poulsen, Peter Noe; Nielsen, Leif Otto
2011-01-01
This paper discusses the build‐up of a partly cracked cohesive crack tip element. The crack tip element is based on the principles of the eXtended Finite Element Method (XFEM) and is of Linear Strain Triangle (LST) type. The composition of the enrichment has been in focus to achieve as complete...... as a fully cracked element with a few restrictions in the displacement field. The performance of the developed element has been tested in three examples. One example is an infinite sheet with an initial flaw in pure tension, where a semianalytical solution exists. The two other examples are the two benchmark...
International Nuclear Information System (INIS)
Li, Yuebing; Lei, Yuebao; Gao, Zengliang
2014-01-01
Global limit load solutions for thick-walled cylinders with circumferential internal/external surface and through-wall defects under combined positive/negative axial force, positive/negative global bending moment and internal pressure have been developed in Part I of this paper. In this Part II, elastic-perfectly plastic 3-D finite element (FE) analyses are performed for selected cases, covering a wide range of geometries and load combinations, to validate the developed limit load solutions. The results show that these limit load solutions can predict the FE data very well for the cases with shallow or deep and short cracks and are conservative. For the cases with very long and deep cracks, the predictions are reasonably accurate and more conservative. -- Highlights: • Elastic-perfectly plastic 3D finite element limiting analyses of cylinders. • Thin/thick-walled cylinders with circumferential surface defects. • Combined loading for pressure, end-force and global bending moment. • Totally 1458 cases analysed and tabulated normalised results provided. • Results used to validate the developed limit load solutions in Part I of this paper
On the mechanism of crack propagation resistance of fully lamellar TiAl alloy
International Nuclear Information System (INIS)
Cao, R.; Yao, H.J.; Chen, J.H.; Zhang, J.
2006-01-01
The study was done using notched two-colony thick tensile specimens of a directionally solidified cast fully lamellar TiAl alloy. In-situ observations of fracture processes in scanning electron microscope (SEM) were combined with section-to-section related observations of fracture surfaces to investigate the crack growth process. Finite element method (FEM) calculations are carried out to evaluate the stresses for propagating cracks. The results reveal that: (1) the reason why enhancement of applied load is required to propagate the main crack, was attributed to that the main crack observed at the surface did not extend all the way through the specimen's thickness thus the stress field was still controlled by the notch, in which a definite stress required for extending a crack tip should be kept by increasing the applied load. (2) Crack propagation resistance is enhanced at colony boundaries, only when a change occurs from an inter-lamellar propagation to a trans-lamellar propagation (3) Ligament bridging toughening phenomena can be integrated into aforementioned mechanism. As a whole the processes of new crack nucleation with bridging ligament formation decreases the crack propagation resistance rather than increasing it. (4) In case the majority of microcracks are surface cracks, the effect of microcrack shielding is not obvious
Energy Technology Data Exchange (ETDEWEB)
Kim, Yeji; Hwang, Il-Soon [Seoul National University, Seoul 08826 (Korea, Republic of); Oh, Young-Jin, E-mail: yjoh2@kepco-enc.com [KEPCO Engineering and Construction Co. Inc., Gimcheon 39660 (Korea, Republic of)
2016-05-15
Highlights: • Effective applied moment at pipe cracked section considering the pipe restraint effect. • Verification of the proposed evaluation methods using finite element analyses. • Applicability for distributed external load of the proposed methods. - Abstract: In the leak-before-break (LBB) design of nuclear power plants, crack opening displacement (COD) is an essential element for determining the length of the leakage size crack. Recent researches regarding the evaluation of COD have indicated that the current practice of the LBB evaluation without consideration of the pressure induced bending (PIB) restraint overestimates COD, which in turn gives non-conservative results. Under a free-ended boundary condition, however, the applied moment at cracked section also can be overestimated, which has conservative effects on LBB evaluation. Therefore, it is necessary to evaluate pipe restraint effects on the applied moment as well as on COD to keep the constancy. In this paper, an evaluation method for the effect of the PIB restraint on COD and an effective applied moment (=crack driving force) at cracked section was developed. Both the linear elastic and elastic–plastic behaviors of the crack were considered. By comparing the behaviors with 3-D finite element analysis results from earlier studies, it was confirmed that the proposed methods make accurate estimations of the PIB restraint effect on COD. Next, the applicability of the proposed method to other types of external loading conditions was examined.
Energy Technology Data Exchange (ETDEWEB)
Brust, F.W.; Scott, P.; Rahman, S. [Battelle, Columbus, OH (United States)] [and others
1995-04-01
This topical report summarizes the work performed for the Nuclear Regulatory Commission`s (NRC) research program entitled ``Short Cracks in Piping and Piping Welds`` that specifically focuses on pipes with short through-wall cracks. Previous NRC efforts, conducted under the Degraded Piping Program, focused on understanding the fracture behavior of larger cracks in piping and fundamental fracture mechanics developments necessary for this technology. This report gives details on: (1) material property determinations, (2) pipe fracture experiments, and (3) development, modification, and validation of fracture analysis methods. The material property data required to analyze the experimental results are included. These data were also implemented into the NRC`s PIFRAC database. Three pipe experiments with short through-wall cracks were conducted on large diameter pipe. Also, experiments were conducted on a large-diameter uncracked pipe and a pipe with a moderate-size through-wall crack. The analysis results reported here focus on simple predictive methods based on the J-Tearing theory as well as limit-load and ASME Section 11 analyses. Some of these methods were improved for short-crack-length predictions. The accuracy of the various methods was determined by comparisons with experimental results from this and other programs. 69 refs., 124 figs, 49 tabs.
International Nuclear Information System (INIS)
Brust, F.W.; Scott, P.; Rahman, S.
1995-04-01
This topical report summarizes the work performed for the Nuclear Regulatory Commission's (NRC) research program entitled ''Short Cracks in Piping and Piping Welds'' that specifically focuses on pipes with short through-wall cracks. Previous NRC efforts, conducted under the Degraded Piping Program, focused on understanding the fracture behavior of larger cracks in piping and fundamental fracture mechanics developments necessary for this technology. This report gives details on: (1) material property determinations, (2) pipe fracture experiments, and (3) development, modification, and validation of fracture analysis methods. The material property data required to analyze the experimental results are included. These data were also implemented into the NRC's PIFRAC database. Three pipe experiments with short through-wall cracks were conducted on large diameter pipe. Also, experiments were conducted on a large-diameter uncracked pipe and a pipe with a moderate-size through-wall crack. The analysis results reported here focus on simple predictive methods based on the J-Tearing theory as well as limit-load and ASME Section 11 analyses. Some of these methods were improved for short-crack-length predictions. The accuracy of the various methods was determined by comparisons with experimental results from this and other programs. 69 refs., 124 figs, 49 tabs
International Nuclear Information System (INIS)
Zheng Bin; Lu Yuechuan; Zang Fenggang; Sun Yingxue
2009-01-01
In order to widen the application of the engineering method of EPRI, with a series of analysis on the 3D elastic and elastic-plastic fracture mechanics finite element, the crack open displacements (COD) of cracked pipe were calculated and a key influence function h 2 in EPRI engineering method was studied against the COD results of FEM. A calculation method of h2 under the condition of tension and bending combined load was introduced in detail. In order to validate this method, the calculated h 2 results were compared with that of EPRI, and the calculated COD results based on the h 2 results were compared with that of PICEP. The compared results indicated that the calculated h 2 results as well as the COD results and the corresponding reference values were respectively accordant, and the calculation method in this paper was validated accordingly. (authors)
International Nuclear Information System (INIS)
Wilkowski, G.M.; Zahoor, A.; Kanninen, M.F.
1980-01-01
The possibility of a pipe fracture emanating from a stress corrosion crack in the heat-affected zones of girth-welds in Type 304 stainless steel pipes was investigated. The J-resistance curve--tearing modulus parameter for the prediction of crack initiation, stable growth and fracture instability--was employed. In the actual experiment, the onset of fracture instability occurred beyond maximum load at an average stable crack growth of 16 to 19 mm (0.63 to 0.75-in.) at each tip. 6 refs
... spending time in a rehab facility or getting cognitive-behavioral therapy or other treatments. Right now, there are no medicines to treat a crack addiction. If you smoke crack, talking with a counselor ...
International Nuclear Information System (INIS)
Michel, B.; Poette, C.
1997-01-01
For crack initiation assessment under creep fatigue loading, in high temperature Fast Reactor's components, specific approaches based on fracture mechanics analysis had to be developed. In the present paper the crack initiation assessment method proposed in the A16 document is presented. The so called ''σ d method'' is also validated on experimental results for tubular specimens with internal axisymmetric surface cracks. Experimental data are extracted from the TERFIS program carried out on a sodium test device at the CEA Cadarache. Metallurgical examinations on TERFIS specimens confirm that the initiation assessment of the ''σ d '' approach is conservative even for a different geometry than the CT specimen on which the method was set up. However, the conservatism is reduced when the creep residual stress field is relaxed during the hold time. An investigation concerning this last point is needed in order to know if relaxing the stress, when using a lower bound of the mechanical properties, always keeps a safety margin. (author). 14 refs, 10 figs, 4 tabs
Qin, Renyao; Duan, Zhaoling; He, Guo
2013-10-01
The large circumferential multipass dissimilar weld between 20MND5 steel and Z2CND18-12NS stainless steel welded with FM52 filler material was investigated in terms of the diluted composition, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility of the weld. The diluted composition of the weld is composed of 37 to 47 pct Ni, 21 to 24 pct Cr, and 28 to 40 pct Fe, which are inhomogeneous along the depth and over the width of the deep weld. The carbon content has a distribution in the region of the surface weld from a high level (~0.20 pct) in the zone near 20MND5 steel to a normal level (~0.03 pct) in the zone near Z2CND18-12NS stainless steel. The carbon distribution is corresponding to the grain boundary carbides. The minimum threshold strains for DDC occur in the temperature range of 1223 K to 1323 K (950 °C to 1050 °C), which are 0.5, 0.35, and 0.4 pct for the root weld, middle region, and the surface weld, respectively. The dissimilar weld has the largest susceptibility to the DDC compared to the filler metal 52 and the Inconel 690.
Fully Noncontact Wave Propagation Imaging in an Immersed Metallic Plate with a Crack
Directory of Open Access Journals (Sweden)
Jung-Ryul Lee
2014-01-01
Full Text Available This study presents a noncontact sensing technique with ultrasonic wave propagation imaging algorithm, for damage visualization of liquid-immersed structures. An aluminum plate specimen (400 mm × 400 mm × 3 mm with a 12 mm slit was immersed in water and in glycerin. A 532 nm Q-switched continuous wave laser is used at an energy level of 1.2 mJ to scan an area of 100 mm × 100 mm. A laser Doppler vibrometer is used as a noncontact ultrasonic sensor, which measures guided wave displacement at a fixed point. The tests are performed with two different cases of specimen: without water and filled with water and with glycerin. Lamb wave dispersion curves for the respective cases are calculated, to investigate the velocity-frequency relationship of each wave mode. Experimental propagation velocities of Lamb waves for different cases are compared with the theoretical dispersion curves. This study shows that the dispersion and attenuation of the Lamb wave is affected by the surrounding liquid, and the comparative experimental results are presented to verify it. In addition, it is demonstrated that the developed fully noncontact ultrasonic propagation imaging system is capable of damage sizing in submerged structures.
Ludwig, L. P. (Inventor)
1981-01-01
A circumferential shaft seal comprising two sealing rings held to a rotating shaft by means of a surrounding elastomeric band is disclosed. The rings are segmented and are of a rigid sealing material such as carbon or a polyimide and graphite fiber composite.
Control effect of fracture on hard coal cracking in a fully mechanized longwall top coal caving face
Energy Technology Data Exchange (ETDEWEB)
Jin-ping Wei; Zhong-hua Li; Pei-miao Sang; Shang-qiang Chen [Henan Polytechnic University, Jiaozuo (China). School of Energy Science and Engineering
2009-03-15
Through theoretical analysis, simulation test and practice, the law of a fracture's influence on hard top coal press cracking was studied. The study focused on the relation between fracture and coal strength, top coal caving ability and work face layout. Based on the investigation of the fracture system, the control of press cracking was achieved by matching working face to fracture orientation to improve top-coal caving ability and recovery. The matching principle was pointed out: the top-coal caving working face should be perpendicular to or obliquely cross the primary fracture at a large angle, and cross the secondary fracture at a small angle. The rational match can increase the recovery ratio of top-coal and avoid rib spalling. The application of control technology on hard top coal press cracking was introduced at the longwall top-coal caving face. 10 refs., 2 figs., 1 tab.
International Nuclear Information System (INIS)
Taheri, Said; Julan, Emricka; Tran, Xuan-Van; Robert, Nicolas
2017-01-01
Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in
Energy Technology Data Exchange (ETDEWEB)
Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)
2017-01-15
Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in
Stress corrosion cracking experience in steam generators at Bruce NGS
International Nuclear Information System (INIS)
King, P.J.; Gonzalez, F.; Brown, J.
1993-01-01
In late 1990 and through 1991, units 1 and 2 at the Bruce A Nuclear Generating Station (BNGS-A) experienced a number of steam generator tube leaks. Tube failures were identified by eddy current to be circumferential cracks at U-bend supports on the hot-leg side of the boilers. In late 1991, tubes were removed from these units for failure characterization. Two active failure modes were found: corrosion fatigue in both units 1 and 2 and stress corrosion cracking (SCC) in unit 2. In unit 2, lead was found in deposits, on tubes, and in cracks, and the cracking was mixed-mode: transgranular and intergranular. This convincingly indicated the involvement of lead in the stress corrosion cracking failures. A program of inspection and tube removals was carried out to investigate more fully the extent of the problem. This program found significant cracking only in lead-affected boilers in unit 2, and also revealed a limited extent of non-lead-related intergranular stress corrosion cracking in other boilers and units. Various aspects of the failures and tube examinations are presented in this paper. Included is discussion of the cracking morphology, measured crack size distributions, and chemical analysis of tube surfaces, crack faces, and deposits -- with particular emphasis on lead
Energy Technology Data Exchange (ETDEWEB)
Steinbuch, R [Fachhochschule fuer Technik und Wirtschaft Reutlingen (Germany). Fachbereich Maschinenbau
1998-11-01
Methods for calculation of critical, circumferential through-wall crack lengths in pipes have been developed and verified by several research projects. In applications during the last few years it has been found that the force or displacement-controlled loads have to be considered separately, and this approach was integrated into the recent methods. Methods so far assumed cracks to be located in welds joining straight pipes. But this approach starts from an incomplete picture of reality, as with today`s technology, circumferential welds are less frequent in straight pipes and much more frequent in pipework of other geometry, as for instance in welds joining straight pipes and bends, or bends with longer legs, nozzles, or T-pieces. The non-linear FEM parameter study presented in the paper, covering cases with internal pressure of pipes and one-dimensional bending loads, is based on current geometries of pipework in the primary and secondary loops of industrial plants and compares the conditions induced by circumferential through-wall cracks in welds joining only straight pipes and in those joining bended and straight pipes. At the relevant, displacement-controlled bending loads due to hampered thermal expansion of the pipe system, the critical through-wall cracks lengths occurring in pipe-to-bend welds are of about the same size and importance as those in pipe-to-pipe welds. As for the case of force-controlled loads, the technical codes calculate more serious effects and require lower bending load limits. Within the range of admissible loads given in the codes, the critical through-wall crack lengths occurring in pipe-to-bend welds are similar in size to those in straight pipe welds. It is therefore a conservative or realistic approach to apply the values determined for critical through-wall crack lengths in pipe-to-pipe joints also to pipe-to-bend welds. (orig./CB) [Deutsch] Verfahren zur Berechnung kritischer Umfangdurchrisslaengen in Rohrleitungen wurden in
Fatigue cracking on a steam generator tube
International Nuclear Information System (INIS)
Boccanfuso, M.; Lothios, J.; Thebault, Y.; Bruyere, B.; Duisabeau, L.; Herms, E.
2015-01-01
A circumferential fatigue crack was observed on a steam generator tube of the unit 2 of the Fessenheim plant. The results of destructive testing and the examination of the fracture surface show that the circumferential crack is linked to a large number of cycles with a very low stress intensity factor. Other aggravating factors like inter-granular corrosion have played a role in the initiating phase of fatigue cracking. The damage has been exacerbated by the lack of support of the tube at the level of the anti-vibration bars. (A.C.)
Hydride effect on crack instability of Zircaloy cladding
Energy Technology Data Exchange (ETDEWEB)
Tseng, Che-Chung, E-mail: cctseng@iner.gov.tw [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Sun, Ming-Hung [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Chao, Ching-Kong [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China)
2014-04-01
Highlights: • Radial hydrides near the crack tip had a significant effect on crack propagation. • For radial hydrides off the crack line vertically, the effect on crack propagation was notably reduced. • The longer hydride platelet resulted in a remarkable effect on crack propagation. • A long split in the radial hydride precipitate would enhance crack propagation. • The presence of circumferential hydride among radial hydrides may play an important role in crack propagation. - Abstract: A methodology was proposed to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation; both stress intensity factor K{sub I} and J integral were applied to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, number of hydrides, and the presence of circumferential hydride, etc. According to our study, the effective distance between a radial hydride and the assumed cladding surface crack for the enhancement of crack propagation proved to be no greater than 0.06 mm. For a hydride not on the crack line, it would induce a relatively minor effect on crack propagation if the vertical distance was beyond 0.05 mm. However, a longer hydride precipitate as well as double radial hydrides could have a remarkable effect on crack propagation. A combined effect of radial and circumferential hydrides was also discussed.
Finite element limit analysis based plastic limit pressure solutions for cracked pipes
International Nuclear Information System (INIS)
Shim, Do Jun; Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin
2002-01-01
Based on detailed FE limit analyses, the present paper provides tractable approximations for plastic limit pressure solutions for axial through-wall cracked pipe; axial (inner) surface cracked pipe; circumferential through-wall cracked pipe; and circumferential (inner) surface cracked pipe. Comparisons with existing analytical and empirical solutions show a large discrepancy in circumferential short through-wall cracks and in surface cracks (both axial and circumferential). Being based on detailed 3-D FE limit analysis, the present solutions are believed to be the most accurate, and thus to be valuable information not only for plastic collapse analysis of pressurised piping but also for estimating non-linear fracture mechanics parameters based on the reference stress approach
Crack initiation under generalized plane strain conditions
International Nuclear Information System (INIS)
Shum, D.K.M.; Merkle, J.G.
1991-01-01
A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab
Torsion of cracked nanorods using a nonlocal elasticity model
International Nuclear Information System (INIS)
Loya, J A; Aranda-Ruiz, J; Fernández-Sáez, J
2014-01-01
This paper presents a nonlocal cracked-rod model from which we have analysed the torsional vibrations of a carbon nanotube with a circumferential crack. Several types of boundary conditions, including the consideration of a buckyball at the end of the nanotube, have been studied. The nonlocal Eringen elasticity theory is used to formulate the problem. The cracked rod is modelled by dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to the crack severity. The effect of the nonlocal small-scale parameter, crack severity, cracked section position, different boundary conditions and attached mass are examined in this work. (paper)
Low cycle fatigue of pressurized pipes with circumferential flaws under cyclic bending moment
International Nuclear Information System (INIS)
Stoppler, W.; Sturm, D.
1993-01-01
Pipes of 706 mm inner diameter, 47 mm wall thickness and about 5,000 mm in length were provided with circumferential surface cracks and loaded by internal pressure of 15 MPa whilst being simultaneously subjected to an alternating external bending moment. Usually a load ratio R of -1 (M min /M max ), in one case R = 0.1, was applied. The pipes were fabricated of two types of ferritic steel: one, grade 20 MnMoNi 5 5, with a high upper shelf impact energy of about 200 J and one, MnMoNiV-special melt, with a low upper shelf impact energy of about 60 J. Deformation and crack growth in the wall thickness and circumferential direction were determined and compared with calculated values. 9 refs., 13 figs
The influences of mesh subdivision on nonlinear fracture analysis for surface cracked structures
International Nuclear Information System (INIS)
Shimakawa, T.
1991-01-01
The leak-before-break (LBB) concept can be expected to be applied not only to safety assessment, but also to the rationalization of nuclear power plants. The development of a method to evaluate fracture characteristics is required to establish this concept. The finite element method (FEM) is one of the most useful tools for this evaluation. However, the influence of various factors on the solution is not well understood and the reliability has not been fully verified. In this study, elastic-plastic 3D analyses are performed for two kinds of surface cracked structure, and the influence of mesh design is discussed. The first problem is surface crack growth in a carbon steel plate subjected to tension loading. A crack extension analysis is performed under a generation phase simulation using the crack release technique. Numerical instability of the J-integral solution is observed when the number of elements in the thickness direction of the ligament is reduced to three. The influence of mesh design in the ligament on the solution is discussed. The second problem is a circumferential part-through crack in a carbon steel pipe subjected to a bending moment. Two kinds of mesh design are employed, and a comparison between two sets of results shows that the number of elements on the crack surface also affects the solution as well as the number of elements in the ligament. (author)
International Nuclear Information System (INIS)
Streit, R.D.
1981-01-01
The failure evaluation of Pressurized Water Reactor (PWR) primary coolant loop pipe is often based on a plastic limit load criterion; i.e., failure occurs when the stress on the pipe section exceeds the material flow stress. However, in addition the piping system must be safe against crack propagation at stresses less than those leading to plastic instability. In this paper, elastic, elastic-plastic, and fully-plastic failure models are evaluated, and the requirements for piping integrity based on these models are compared. The model yielding the 'more' critical criteria for the given geometry and loading conditions defines the appropriate failure criterion. The pipe geometry and loading used in this study was choosen based on an evaluation of a guillotine break in a PWR primary coolant loop. It is assumed that the piping may contain cracks. Since a deep circumferential crack, can lead to a guillotine pipe break without prior leaking and thus without warning it is the focus of the failure model comparison study. The hot leg pipe, a 29 in. I.D. by 2.5 in. wall thickness stainless pipe, was modeled in this investigation. Cracks up to 90% through the wall were considered. The loads considered in this evaluation result from the internal pressure, dead weight, and seismic stresses. For the case considered, the internal pressure contributes the most to the failure loading. The maximum moment stress due to the dead weight and seismic moments are simply added to the pressure stress. Thus, with the circumferential crack geometry and uniform pressure stress, the problem is axisymmetric. It is analyzed using NIKE2D--an implicit, finite deformation, finite element code for analyzing two-dimensional elastic-plastic problems. (orig./GL)
Evaluation of creep-fatigue crack growth for large-scale FBR reactor vessel and NDE assessment
Energy Technology Data Exchange (ETDEWEB)
Joo, Young Sang; Kim, Jong Bum; Kim, Seok Hun; Yoo, Bong
2001-03-01
Creep fatigue crack growth contributes to the failure of FRB reactor vessels in high temperature condition. In the design stage of reactor vessel, crack growth evaluation is very important to ensure the structural safety and setup the in-service inspection strategy. In this study, creep-fatigue crack growth evaluation has been performed for the semi-elliptical surface cracks subjected to thermal loading. The thermal stress analysis of a large-scale FBR reactor vessel has been carried out for the load conditions. The distributions of axial, radial, hoop, and Von Mises stresses were obtained for the loading conditions. At the maximum point of the axial and hoop stress, the longitudinal and circumferential surface cracks (i.e. PTS crack, NDE short crack and shallow long crack) were postulated. Using the maximum and minimum values of stresses, the creep-fatigue crack growth of the proposed cracks was simulated. The crack growth rate of circumferential cracks becomes greater than that of longitudinal cracks. The total crack growth of the largest PTS crack is very small after 427 cycles. The structural integrity of a large-scale reactor can be maintained for the plant life. The crack depth growth of the shallow long crack is faster than that of the NDE short crack. In the ISI of the large-scale FBR reactor vessel, the ultrasonic inspection is beneficial to detect the shallow circumferential cracks.
Application of tearing instability analysis for complex crack geometries in nuclear piping
International Nuclear Information System (INIS)
Pan, J.; Wilkowski, G.
1984-01-01
The analysis of the experimental data of 304 stainless steel pipes using Zahoor and Kanninen's estimation scheme has shown that the J resistance curve of a circumferentially cracked pipe with a simulated internal surface crack around the remaining net section is much lower than the J resistance curve of pipes with a idealized through-wall crack (without a simulated internal surface crack). The implications of the low J at initiation and tearing modulus on the stability analysis of typical BWR piping systems are discussed on the condition that an internal circumferential surface crack is assumed to occur along with a circumferential through-wall crack due to stress corrosion. The results presented here show that the margin of safety is reduced and in some cases instability is predicted due to the low J resistance curve and tearing modulus
Guided Circumferential Waves in Layered Poroelastic Cylinders
Directory of Open Access Journals (Sweden)
Shah S.A.
2016-12-01
Full Text Available The present paper investigates the propagation of time harmonic circumferential waves in a two-dimensional hollow poroelastic cylinder with an inner shaft (shaft-bearing assembly. The hollow poroelastic cylinder and inner shaft are assumed to be infinite in axial direction. The outer surface of the cylinder is stress free and at the interface, between the inner shaft and the outer cylinder, it is assumed to be free sliding and the interfacial shear stresses are zero, also the normal stress and radial displacements are continuous. The frequency equation of guided circumferential waves for a permeable and an impermeable surface is obtained. When the angular wave number vanish the frequency equation of guided circumferential waves for a permeable and an impermeable surface degenerates and the dilatational and shear waves are uncoupled. Shear waves are independent of the nature of surface. The frequency equation of a permeable and an impermeable surface for bore-piston assembly is obtained as a particular case of the model under consideration when the outer radius of the hollow poroelastic cylinder tends to infinity. Results of previous studies are obtained as a particular case of the present study. Nondimensional frequency as a function of wave number is presented graphically for two types of models and discussed. Numerical results show that, in general, the first modes are linear for permeable and impermeable surfaces and the frequency of a permeable surface is more than that of an impermeable surface.
Application of the cracked pipe element to creep crack growth prediction
Energy Technology Data Exchange (ETDEWEB)
Brochard, J.; Charras, T.
1997-04-01
The modification of a computer code for leak before break analysis is very briefly described. The CASTEM2000 code was developed for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading. The modification extends the capabilities of the cracked pipe element to the determination of fracture parameters under creep conditions (C*, {phi}c and {Delta}c). The model has the advantage of evaluating significant secondary effects, such as those from thermal loading.
Status of the steam generator tube circumferential ODSCC degradation experienced at the Doel 4 plant
International Nuclear Information System (INIS)
Roussel, G.
1997-01-01
Since the 1991 outage, the Doel Unit 4 nuclear power plant is known to be affected by circumferential outside diameter intergranular stress corrosion cracking at the hot leg tube expansion transition. Extensive non destructive examination inspections have shown the number of tubes affected by this problem as well as the size of the cracks to have been increasing for the three cycles up to 1993. As a result of the high percentage of tubes found non acceptable for continued service after the 1993 in-service inspection, about 1,700 mechanical sleeves were installed in the steam generators. During the 1994 outage, all the tubes sleeved during the 1993 outage were considered as potentially cracked to some extent at the upper hydraulic transition and were therefore not acceptable for continued service. They were subsequently repaired by laser welding. Furthermore all the tubes not sleeved during the 1993 outage were considered as not acceptable for continued service and were repaired by installing laser welded sleeves. During the 1995 outage, some unexpected degradation phenomena were evidenced in the sleeved tubes. This paper summarizes the status of the circumferential ODSCC experienced in the SG tubes of the Doel 4 plant as well as the other connected degradation phenomena
The maximum possible stress intensity factor for a crack in an unknown residual stress field
International Nuclear Information System (INIS)
Coules, H.E.; Smith, D.J.
2015-01-01
Residual and thermal stress fields in engineering components can act on cracks and structural flaws, promoting or inhibiting fracture. However, these stresses are limited in magnitude by the ability of materials to sustain them elastically. As a consequence, the stress intensity factor which can be applied to a given defect by a self-equilibrating stress field is also limited. We propose a simple weight function method for determining the maximum stress intensity factor which can occur for a given crack or defect in a one-dimensional self-equilibrating stress field, i.e. an upper bound for the residual stress contribution to K I . This can be used for analysing structures containing defects and subject to residual stress without any information about the actual stress field which exists in the structure being analysed. A number of examples are given, including long radial cracks and fully-circumferential cracks in thick-walled hollow cylinders containing self-equilibrating stresses. - Highlights: • An upper limit to the contribution of residual stress to stress intensity factor. • The maximum K I for self-equilibrating stresses in several geometries is calculated. • A weight function method can determine this maximum for 1-dimensional stress fields. • Simple MATLAB scripts for calculating maximum K I provided as supplementary material.
International Nuclear Information System (INIS)
Goel, V.S.
1985-01-01
This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600
International Nuclear Information System (INIS)
Tayal, M.
1986-10-01
The finite element code ELESTRES models the two-dimensional axisymmetric behaviour of a CANDU fuel element during normal operation. The main focus of the code is to estimate temperatures, fission gas release, and axial variations of deformation/stresses in the pellet and in the sheath. Thus the code is able to predict details like stresses/strains at circumferential ridges. This paper describes the current version of ELESTRES. The emphasis is on a recent addition: multiaxial stresses in the sheath near circumferential ridges. For accuracy in the critical region, a fine mesh is used near the ridge. To keep computing costs low, a coarse mesh is used near the midplane of the pellet. Predictions of ELESTRES show good agreement with abouth 80 measurements of fission-gas-release. In this paper, we also present ELESTRES predictions of hoop strains in sheaths, for two irradiations: element ABS and bundle GB. For both irradiations, predictions, compare favourably with measurements. An illustrative example shows that near circumferential ridges, bending contributes to multiaxial stresses in the sheath. This can have a significant effect on sheath integrity, such as during stress-corrosion-cracking due to power-increases, or during corrosion-assisted-fatigue due to power cycling
Directory of Open Access Journals (Sweden)
Byung Mo Kang
2018-05-01
Full Text Available Summary: Background/Objective: The purpose of this study was to assess the impact of circumferential tumor location on circumferential resection margin (CRM status and the depth of tumor invasion in mid and low rectal cancer. Methods: We retrospectively analyzed whole-mount slides of 58 patients who underwent total mesorectal excision for mid and low rectal cancer. The rate of tumor-positive CRM was compared according to the circumferential tumor location. In 31 patients, morphometric analyses of whole-mount specimens were performed to measure the depth of tumor invasion according to circumferential tumor location. Results: Among 58 patients, 50% of tumors were anterior tumor and 50% were nonanterior. A tumor-positive CRM was more observed frequently in anterior tumors than in nonanterior tumors (41.1% vs. 10.3%, p = 0.007. In a multivariate analysis, anterior tumor was the only independent risk factor for a positive CRM (odds ratio 4.725, 95% confidence interval 1.102–20.261, p = 0.037. In a morphometric analysis of 31 patients, the depth of tumor invasion from the muscularis mucosa was greater (11.9 mm vs. 6.6 mm, p = 0.028 in those with anterior tumors. Conclusion: Anterior tumors are associated with a higher risk of tumor-positive CRM and tend to exhibit deeper invasion in mid and low rectal cancer. Keywords: circumferential resection margin, depth of invasion, rectal cancer, tumor location
Wu, Bin; Su, Yipin; Chen, Weiqiu; Zhang, Chuanzeng
2017-02-01
Soft electroactive (EA) tube actuators and many other cylindrical devices have been proposed recently in literature, which show great advantages over those made from conventional hard solid materials. However, their practical applications may be limited because these soft EA devices are prone to various failure modes. In this paper, we present an analysis of the guided circumferential elastic waves in soft EA tube actuators, which has potential applications in the in-situ nondestructive evaluation (NDE) or online structural health monitoring (SHM) to detect structural defects or fatigue cracks in soft EA tube actuators and in the self-sensing of soft EA tube actuators based on the concept of guided circumferential elastic waves. Both circumferential SH and Lamb-type waves in an incompressible soft EA cylindrical tube under inhomogeneous biasing fields are considered. The biasing fields, induced by the application of an electric voltage difference to the electrodes on the inner and outer cylindrical surfaces of the EA tube in addition to an axial pre-stretch, are inhomogeneous in the radial direction. Dorfmann and Ogden's theory of nonlinear electroelasticity and the associated linear theory for small incremental motion constitute the basis of our analysis. By means of the state-space formalism for the incremental wave motion along with the approximate laminate technique, dispersion relations are derived in a particularly efficient way. For a neo-Hookean ideal dielectric model, the proposed approach is first validated numerically. Numerical examples are then given to show that the guided circumferential wave propagation characteristics are significantly affected by the inhomogeneous biasing fields and the geometrical parameters. Some particular phenomena such as the frequency veering and the nonlinear dependence of the phase velocity on the radial electric voltage are discussed. Our numerical findings demonstrate that it is feasible to use guided circumferential
Failure behaviour of a piping system with a circumferentially orientated flaw
International Nuclear Information System (INIS)
Mikkola, T.P.J.; Diem, H.; Blind, D.; Hunger, H.
1987-01-01
The experiments were conducted on the recently installed feedwater line of the HDR reactor in Kahl. The investigations were focused on analysing both the crack propagation of a circumferentially flowed pipe under the influence of corrosion and cyclic load, together with the pipeline's subsequent failure behaviour. The experimental conditions were selected in a manner representing those which can, for example, prevait during start-up or shut-down of reactor. To this aim, the pipes were internally stressed with high pressure and temperature oxygenic water in conjunction with an externally applied bending moment. The investigations are supplemented by elastic-plastic triaxial finite element (FE) calculations for various assumed crack configurations, both prior to and following the experiments, thus granting a fracture-mechanical assessment of the structural behaviour. (orig./DG) [de
International Nuclear Information System (INIS)
Mikkola, T.P.J.; Diem, H.; Blind, D.; Hunger, H.
1989-01-01
At the german HDR-test-facility a pipe failure experiment was performed at a fullsize feedwater piping system under operating conditions of T=240 0 C, p=10.6 MPa and with an elevated oxygen content in the pressure medium. The loading was internal pressure and a cyclic varying bending moment with an R-ratio of 0.5. The in form of a circumferentially orientated notch initially weakened piping system failed after a total number of 4773 loaded cycles with different frequencies in form of a small leak. The analyses of the fracture surface indicated the strongly growing influence of corrosion effects on the crack propagation rate with decreasing loading frequency. The cyclic crack growth and the leak-before-break behavior of the piping system could be explained on the basis of results of finite element calculations using ADINA-code. (orig.)
Continuum damage mechanics method for fatigue growth of surface cracks
International Nuclear Information System (INIS)
Feng Xiqiao; He Shuyan
1997-01-01
With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth
International Nuclear Information System (INIS)
Rahman, S.; Wilkowski, G.M.; Bonora, N.
1996-01-01
Current models for the crack-opening-area analysis of pipes with circumferential through-wall cracks are based on various idealizations or assumptions which are often necessary to simplify the mathematical formulation and numerical calculation. This paper focuses on the validity of two such assumptions that involve off-centered cracks and the restraint of induced bending caused by pressure, and quantifies their effects on the crack-opening area analysis of pipes. Finite element and/or simple estimation methods were employed to compute the center-crack-opening displacement and crack-opening shape for a through-wall-cracked pipe, considering off-centered cracks and the restraint of induced bending caused by pressure. The results of the analyses show that, for both cases, the crack-opening area can be reduced significantly. For pipes with off-centered cracks, the crack-opening area can be evaluated from analyses of symmetrically centered cracks and assuming elliptical profile. For pipes with complete restraint of the induced bending caused by pressure, the reduction in crack-opening area depends on the crack size. When the crack size is small, the restraint effects can be ignored. However, when the crack size is large, the restrained crack opening can be significantly smaller than the unrestrained crack opening, depending on the length of pipe involved; hence, it may be important for the crack-opening-area and leak-rate analyses. (orig.)
Positioning means for circumferentially locating inspection apparatus in a nuclear reactor vessel
International Nuclear Information System (INIS)
Burns, D.C.
1979-01-01
Positioning means for locating inspection apparatus used to volumetrically examine a nuclear reactor vessel is disclosed. The positioning means is provided with a support ring having an annular key positioned longitudinally about its periphery. Three support legs are attached to the support ring by brackets adapted to fit the annular key. The support ring also carries three guide stud bushings which are movably mounted by clamps adapted to engage the support ring key. Prior to lowering the inspection apparatus into the vessel, the guide stud bushings are each moved to a point of alignment with one of three guide studs extending upwardly from the vessel. After alignment has been verified, the guide stud bushings are clamped in position. The inspection apparatus is lowered towards its fully seated position within the vessel and is coarsely circumferentially positioned with by the engagement of the guide studs within the guide stud bushings. A fine degree of circumferential positioning is achieved by providing a specially configured shoe for one of the support legs. With the core barrel internals in, the special shoe is adapted to key onto a core barrel pin the exact location of which is known. With the core barrel internals removed, the special shoe is adapted to place a locating key into a notch in a vessel flange, the location of which is known. As the inspection apparatus is lowered into its fully seated position, exact circumferential positioning with respect to the vessel is achieved. The other support legs rest on an inner circumferential flange so that no portion of the inspection apparatus touches or threatens the vessel's top flange. 19 claims
Clinical and endorectal ultrasound staging of circumferential rectal cancers
International Nuclear Information System (INIS)
Smith, A.; Farmer, K.C.; Chapple, K.
2008-01-01
Full text: Circumferential rectal cancers present at a more advanced stage than those located in a single quadrant. Although accurate staging is an important aspect of the preoperative management of the patient with a rectal cancer, the clinical and radiological staging of this subgroup of rectal cancer patients has been poorly studied. All patients with a rectal cancer were assessed clinically (by digital rectal examination and rigid sigmoidoscopy) before the radiological assessment by endorectal ultrasound (ERUS). Data collected included tumour height (distance from anal verge in centimetre) and tumour type (circumferential or non-circumferential). Radiological tumour staging was with the TNM system. Fifty-nine subjects (33 men, 26 women; median age 65 years (range 38-86 years)) were identified with a circumferential rectal cancer. Mean height of the cancer was 8 - 0.4 cm (standard error of the mean; range 2-13 cm). Forty-two cancers were palpable, and 17 cancers were impalpable. All cancers assessed clinically as circumferential were confirmed as circumferential on ERUS scanning. Tumour stage as assessed by ERUS was either T3 (n = 57) or T4 (n = 2). Nodal status was NO (n = 29) and N1 (n = 30). All rectal cancers assessed as circumferential on clinical examination have an ERUS stage of T3 or greater.
Fatigue crack growth behavior in equine cortical bone
Shelton, Debbie Renee
2001-07-01
Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber
Thermal Shock In Periodic Edge-Cracked Plate Supported By Elastic Foundation
Abd El-Fattah A. Rizk
2012-01-01
The study of the transient thermal stress problem for a periodic edge cracks in an elastic plate on an elastic foundations is investigated. This study may also be applied for circumferentially periodic cracked hollow cylinder under transient thermal stresses. Based on previous studies, the cylindrical shell may be modeled by a plate on an elastic foundation. The thermal stresses are generated due to sudden convective cooling on the boundary containing the edge cracks while the other boundary ...
International Nuclear Information System (INIS)
Smith, E.
1996-01-01
The failure of circumferentially cracked steel piping is often predicted by assuming that failure conforms to a net-section stress criterion using as input an appropriate value for the critical net-section stress together with a knowledge of the anticipated loadings. The stress at the cracked section is usually calculated via a purely elastic analysis based on the piping being uncracked. however, because the piping is built-in at the ends into a larger component, and since the onset of crack extension requires some plastic deformation, use of the net-section stress approach can give overly conservative failure predictions. In earlier work, the author has quantified the extent of this conservatism, and has shown how it depends on the geometry of the cracked section, the material ductility and the elastic flexibility of a piping system. This paper quantifies the conservatism with regard to the case where a through-wall crack extends over a prescribed fraction of the pipe circumference, while there is also an internal circumferential crack extending around the remainder of the pipe section. This is an extreme form of circumferential cracking but nevertheless, simulates the well-known Duane Arnold safe-end crack. (Author)
Application of the cracked pipe element to creep crack growth prediction
Energy Technology Data Exchange (ETDEWEB)
Brochard, J.; Charras, T. [C.E.A.-C.E.-Saclay DRN/DMT, Gif Sur Yvette (France); Ghoudi, M. [C.E.A.-C.E.-Saclay, Gif Sur Yvette (France)
1997-04-01
Modifications to a computer code for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading are very briefly described. The modifications extend the capabilities of the CASTEM2000 code to the determination of fracture parameters under creep conditions. The main advantage of the approach is that thermal loads can be evaluated as secondary stresses. The code is applicable to piping systems for which crack propagation predictions differ significantly depending on whether thermal stresses are considered as primary or secondary stresses.
International Nuclear Information System (INIS)
Li, Yinsheng; Hasegawa, Kunio; Miura, Naoki; Hoshino, Katsuaki
2010-01-01
When a flaw is detected in stainless steel pipes during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in these codes, the limit load criterion is only provided for pipes containing a flaw with uniform depth, although many flaws with complicated shape such as stress corrosion cracking have been actually detected in pipes. In order to evaluate the integrity of the flawed pipes for general case, a limit load estimation method has been proposed by authors considering a circumferential surface flaw with arbitrary shape. The plastic collapse bending moment and corresponding stress are obtained by dividing the surface flaw into several segmented sub-flaws. In this paper, the proposed method was verified by comparing with experimental results. Four-point bending experiments were carried out for full scale stainless steel pipes with a symmetrical or non-symmetrical circumferential flaw. Estimated failure bending moments by the proposed method were found to be in good agreement with the experimental results, and the proposed method was confirmed to be effective for evaluating bending failure of pipes with flaw. (author)
Influence of circumferential flaw length on internal burst pressure of a wall-thinned pipe
Energy Technology Data Exchange (ETDEWEB)
Tsuji, Masataka, E-mail: tsuji-m@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui (Japan); Meshii, Toshiyuki [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui (Japan)
2013-02-15
Highlights: ► The effect of θ on p{sub f} was examined by experimental analysis and FEA. ► Here θ is the circumferential angle of a flaw, p{sub f} is the internal burst pressure. ► p{sub f} decreased as θ increased in some cases. ► The effect of θ on p{sub f} should be taken into consideration in evaluating p{sub f}. -- Abstract: This paper examines the effect of the circumferential angle of a flaw θ on the internal burst pressure p{sub f} of pipes with artificial wall-thinned flaws. The effect of θ has conventionally been regarded as unimportant in the evaluation of the p{sub f} of wall-thinned straight pipes. Therefore, a burst pressure equation for an axial crack inside a cylinder (Fig. 1, left), such as Kiefner's equation (Kiefner et al., 1973), has been widely applied (ANSI/ASME B31.G., 1991; Hasegawa et al., 2011). However, the following implicit assumptions notably exist when applying the equation to planar flaws in situations with non-planar flaws. 1)The fracture mode of the non-planar flaw under consideration is identical to that of the crack. 2)The effect of θ on p{sub f}, which is not considered for an axial crack, is small or negligible. However, the experimental results from the systematic burst tests for carbon steel pipes with artificial wall-thinned flaws examined in this paper showed that these implicit assumptions may be incorrect. In this paper the experimental results are evaluated in further detail. The purpose of the evaluation was to clarify the effect of θ on p{sub f}. Specifically, the significance of the flaw configuration (axial length δ{sub z} and wall-thinning ratio t{sub 1}/t) was studied for its effects on θ and p{sub f}. In addition, a simulation of this effect was conducted using a large strain elastic-plastic Finite Element Analysis (FEA) model. As observed from the experimental results, θ tended to affect p{sub f} in cases with large δ{sub z}, and t{sub 1}/t was also correlated with a decrease in p{sub f
Bursting pressure of autofrettaged cylinders with inclined external cracks
International Nuclear Information System (INIS)
Seifi, Rahman; Babalhavaeji, Majid
2012-01-01
Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn’t any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: ► Modified J-Integral can be used for study of autofrettaged cracked cylinders. ► External axial cracks reduce considerably the pressure capacity of cylinders. ► External circumferential cracks have not considerable effects on bursting pressure. ► Autofrettage has contrary effects on external crack in compared with internal crack.
Bursting pressure of autofrettaged cylinders with inclined external cracks
Energy Technology Data Exchange (ETDEWEB)
Seifi, Rahman, E-mail: rseifi@basu.ac.ir [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Babalhavaeji, Majid [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)
2012-01-15
Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn't any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: Black-Right-Pointing-Pointer Modified J-Integral can be used for study of autofrettaged cracked cylinders. Black-Right-Pointing-Pointer External axial cracks reduce considerably the pressure capacity of cylinders. Black-Right-Pointing-Pointer External circumferential cracks have not considerable effects on bursting pressure. Black-Right-Pointing-Pointer Autofrettage has contrary effects on external crack in compared with internal crack.
Circumferential fusion improves outcome in comparison with instrumented posterolateral fusion
DEFF Research Database (Denmark)
Videbaek, Tina S; Christensen, Finn B; Soegaard, Rikke
2006-01-01
with respect to all four DPQ categories: daily activities, work/leisure, anxiety/depression, and social interest. The Oswestry Disability Index supported these results (P ...STUDY DESIGN: Prospective randomized clinical study with a 5- to 9-year follow-up period. OBJECTIVE: The aim of the present study was to analyze the long-term outcome with respect to functional disability, pain, and general health of patients treated by means of circumferential lumbar fusion...... in comparison with those treated by means of instrumented posterolateral lumbar fusion. SUMMARY OF BACKGROUND DATA: Circumferential fusion has become a common procedure in lumbar spinal fusion both as a primary and salvage procedure. However, the claimed advantages of circumferential fusion over conventional...
Tensile cracks in creeping solids
International Nuclear Information System (INIS)
Riedel, H.; Rice, J.R.
1979-02-01
The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen
Circumferential buckling instability of a growing cylindrical tube
Moulton, D.E.; Goriely, A.
2011-01-01
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common
A Critical Appraisal of Circumferential Resection Margins in Esophageal Carcinoma
Pultrum, Bareld B.; Honing, Judith; Smit, Justin K.; van Dullemen, Hendrik M.; van Dam, Gooitzen M.; Groen, Henk; Hollema, Harry; Plukker, John Th. M.
In esophageal cancer, circumferential resection margins (CRMs) are considered to be of relevant prognostic value, but a reliable definition of tumor-free CRM is still unclear. The aim of this study was to appraise the clinical prognostic value of microscopic CRM involvement and to determine the
Comparative Study on Crack Initiation and Propagation of Glass under Thermal Loading
Directory of Open Access Journals (Sweden)
Yu Wang
2016-09-01
Full Text Available This paper explores the fracture process based on finite element simulation. Both probabilistic and deterministic methods are employed to model crack initiation, and several commonly used criteria are utilized to predict crack growth. It is concluded that the criteria of maximum tensile stress, maximum normal stress, and maximum Mises stress, as well as the Coulomb-Mohr criterion are able to predict the initiation of the first crack. The mixed-mode criteria based on the stress intensity factor (SIF, energy release rate, and the maximum principal stress, as well as the SIF-based maximum circumferential stress criterion are suitable to predict the crack propagation.
Mixed-mode crack tip loading and crack deflection in 1D quasicrystals
Wang, Zhibin; Scheel, Johannes; Ricoeur, Andreas
2016-12-01
Quasicrystals (QC) are a new class of materials besides crystals and amorphous solids and have aroused much attention of researchers since they were discovered. This paper presents a generalized fracture theory including the J-integral and crack closure integrals, relations between J1, J2 and the stress intensity factors as well as the implementation of the near-tip stress and displacement solutions of 1D QC. Different crack deflection criteria, i.e. the J-integral and maximum circumferential stress criteria, are investigated for mixed-mode loading conditions accounting for phonon-phason coupling. One focus is on the influence of phason stress intensity factors on crack deflection angles.
Experimental circumferential canaloplasty with a new Schlemm canal microcatheter
Directory of Open Access Journals (Sweden)
Mao-Song Xie
2018-01-01
Full Text Available AIM: To present a new, simple, inexpensive Schlemm canal microcatheter for circumferential canaloplasty in a rabbit model. METHODS: A rabbit glaucoma animal model was established by intravitreal injection of triamcinolone acetonide. Circumferential canaloplasty with a new Schlemm canal microcatheter (patent license number: 201220029850.0 was performed. The Schlemm canal microcatheter was composed of microcatheter wall and lumen. The wall was made of high refractive index plastic optical fiber that could be attached to an illuminant so that the whole lighted microcatheter was visible during circumferential canaloplasty. The lumen could be attached to an injector for injection of viscoelastic during catheterization. Rabbits were divided randomly into the control, model and treatment groups. Intraocular pressure (IOP was measured with a Tono-pen tonometer pre-operation and 3, 7, 14, 21 and 28d post-operation. Ultrasound biomicroscopy was performed to visualize the Schlemm canal microcatheter in the Schlemm canal and the sclera pool. RESULTS: The Schlemm canal microcatheter could be used to perform circumferential canaloplasty in the rabbit glaucoma animal model. IOP was lower in the treatment group than that in the model group 3, 7, 14 and 28d after operation. There were no significant differences in IOP between the control group and treatment group. The differences among the three groups were statistically significant (3d: F=41.985, P<0.001; 7d: F=65.696, P<0.001; 14d: F=114.599, P<0.001; 28d: F=55.006, P<0.001. CONCLUSION: Circumferential canaloplasty is safe and effective in control of experimental glaucoma model in rabbits.
International Nuclear Information System (INIS)
Rahman, S.; Ghadiali, N.; Wilkowski, G.; Bonora, N.
1995-01-01
Estimation of leak rate is an important element in developing leak-before-break (LBB) methodology for piping integrity and safety analysis of nuclear power plants. Here, current models for the crack-opening-area analysis of pipes with circumferential through-wall cracks are based on various idealizations or assumption which are often necessary to simplify the mathematical formulation and numerical calculation. This paper focuses on the validity of two such assumptions involving off-centered cracks and restraint of induced bending due to pressure and quantifies their effects on the crack-opening analysis of pipes. Both finite element and/or simple estimation methods were employed to compute the center-crack-opening displacement and crack-opening shape for a through-wall-cracked pipe considering off-centered cracks and restrain of induced bending due to pressure. The results of analyses show that for both cases the crack-opening area can be reduced significantly. For pipes with off-centered cracks, the crack-opening area can be evaluated from analyses of symmetrically centered cracks and assuming elliptical profile. For pipes with complete restraint of induced bending due to pressure, the reduction of crack-opening area depends on the crack size. When the crack size is small, the restraint effects can be ignored. However, when the crack size is larger, the restrained crack-opening can be significantly smaller than the unrestrained crack-opening depending on the length of pipe involved, and hence, may be important for the crack-opening-area and leak-rate analyses
International Nuclear Information System (INIS)
Park, Jai Hak; Nikishkov, G. P.
2010-01-01
An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the above mentioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems
Χριστοφάκης, Μιχαήλ Κ.
2014-01-01
Information security is the next big thing in computers society because of the rapidly growing security incidents and the outcomes of those. Hacking and cracking existed even from the start of the eighties decade when there was the first step of the interconnection through the internet between humans. From then and ever after there was a big explosion of such incidents mostly because of the worldwide web which was introduced in the early nineties. Following the huge steps forward of computers...
Circumferential buckling instability of a growing cylindrical tube
Moulton, D.E.
2011-03-01
A cylindrical elastic tube under uniform radial external pressure will buckle circumferentially to a non-circular cross-section at a critical pressure. The buckling represents an instability of the inner or outer edge of the tube. This is a common phenomenon in biological tissues, where it is referred to as mucosal folding. Here, we investigate this buckling instability in a growing elastic tube. A change in thickness due to growth can have a dramatic impact on circumferential buckling, both in the critical pressure and the buckling pattern. We consider both single- and bi-layer tubes and multiple boundary conditions. We highlight the competition between geometric effects, i.e. the change in tube dimensions, and mechanical effects, i.e. the effect of residual stress, due to differential growth. This competition can lead to non-intuitive results, such as a tube growing to be thinner and yet buckle at a higher pressure. © 2011 Elsevier Ltd. All rights reserved.
Evaluation of stress corrosion crack growth in BWR piping systems
International Nuclear Information System (INIS)
Kassir, M.; Sharma, S.; Reich, M.; Chang, M.T.
1985-05-01
This report presents the results of a study conducted to evaluate the effects of stress intensity factor and environment on the growth behavior of intergranular stress corrosion cracks in type 304 stainless steel piping systems. Most of the detected cracks are known to be circumferential in shape, and initially started at the inside surface in the heat affected zone near girth welds. These cracks grow both radially in-depth and circumferentially in length and, in extreme cases, may cause leakage in the installation. The propagation of the crack is essentially due to the influence of the following simultaneous factors: (1) the action of applied and residual stress; (2) sensitization of the base metal in the heat affected zone adjacent to girth weld; and (3) the continuous exposure of the material to an aggressive environment of high temperature water containing dissolved oxygen and some levels of impurities. Each of these factors and their effects on the piping systems is discussed in detail in the report. The report also evaluates the time required for hypothetical cracks in BWR pipes to propagate to their critical size. The pertinent times are computed and displayed graphically. Finally, parametric study is performed in order to assess the relative influence and sensitivity of the various input parameters (residual stress, crack growth law, diameter of pipe, initial size of defect, etc.) which have bearing on the growth behavior of the intergranular stress corrosion cracks in type 304 stainless steel. Cracks in large-diameter as well as in small-diameter pipes are considered and analyzed. 27 refs., 25 figs., 10 tabs
DEFF Research Database (Denmark)
Ban, Ilija; Birkelund, Lasse; Palm, Henrik
2012-01-01
Fixation of unstable trochanteric fractures is challenging. Application of a circumferential wire may facilitate bone contact and avoid postoperative fracture displacement. However, the use of circumferential wires remains controversial due to possible disturbance of the blood supply to the under......Fixation of unstable trochanteric fractures is challenging. Application of a circumferential wire may facilitate bone contact and avoid postoperative fracture displacement. However, the use of circumferential wires remains controversial due to possible disturbance of the blood supply...... to the underlying bone. We evaluated the results of applied circumferential wires, concentrating mainly on complications and reoperations....
Energy Technology Data Exchange (ETDEWEB)
Forwood, G F; Lane, M; Taplay, J G
1921-10-07
In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.
International Nuclear Information System (INIS)
Kerkhof, K.; Bezdikian, G.; Moinereau, D.; Dahl, A; Wadier, Y.; Gilles, P.; Keim, E.; Chapuliot, S.; Taylor, N.; Lidbury, D.; Sharples, J.; Budden, P.; Siegele, D.; Nagel, G.; Bass, R.; Emond, D.
2005-01-01
The Reactor Pressure Vessel (RPV) is an essential component, which is liable to limit the lifetime duration of PWR plants. The assessment of defects in RPV subjected to pressurized thermal shock (PTS) transients made at an European level generally does not necessarily consider the beneficial effect of the load history (Warm Pre-stress, WPS). The SMILE project - Structural Margin Improvements in aged embrittled RPV with Load history Effects-aims to give sufficient elements to demonstrate, to model and to validate the beneficial WPS effect. It also aims to harmonize the different approaches in the national codes and standards regarding the inclusion of the WPS effect in a RPV structural integrity assessment. The project includes significant experimental work on WPS type experiments with C(T) specimens and a PTS type transient experiment on a large component. This paper deals with the results of the PTS type transient experiment on a component-like specimen subjected to WPS- loading, the so called Validation Test, carried out within the framework of work package WP4. The test specimen consists of a cylindrical thick walled specimen with a thickness of 40 mm and an outer diameter of 160 mm, provided with an internal fully circumferential crack with a depth of about 15 mm. The specified load path type is Load-Cool-Unload-Fracture (LCUF). No crack initiation occurred during cooling (thermal shock loading) although the loading path crossed the fracture toughness curve in the transition region. The benefit of the WPS-effect by final re-loading up to fracture in the lower shelf region, was shown clearly. The corresponding fracture load during reloading in the lower shelf region was significantly higher than the crack initiation values of the original material in the lower shelf region. The post test fractographic evaluation showed that the fracture mode was predominantly cleavage fracture also with some secondary cracks emanating from major crack. (authors)
Simplified method of calculating residual stress in circumferential welding of piping
International Nuclear Information System (INIS)
Umemoto, Tadahiro
1984-01-01
Many circumferential joints of piping are used in as-welded state, but in these welded joints, the residual stress as high as the yield stress of materials arises, and causes to accelerate stress corrosion cracking and corrosion fatigue. The experiment or the finite element method to clarify welding residual stress requires much time and labor, and is expensive, therefore, the author proposed the simplified method of calculation. The heating and cooling process of welding is very complex, and cannot be modeled as it is, therefore, it was assumed that in multiple layer welding, the welding condition of the last layer determines the residual stress, that material constants are invariable regardless of temperature, that the temperature distribution and residual stress are axisymmetric, and that there is repeated stress-strain relation in the vicinity of welded parts. The temperature distribution at the time of welding, thermal stress and welding residual stress are analyzed, and the material constants used for the calculation of residual stress are given. As the example of calculation, the effect of welding heat input and materials is shown. The extension of the method to a thick-walled pipe is discussed. (Kako, I.)
Estimations of creep behavior and failure life for a circumferentially notched specimen
International Nuclear Information System (INIS)
Kobayashi, Ken-ichi; Yokobori, Toshimitsu; Kikuchi, Kenji.
1997-01-01
No method with which to characterize and/or illustrate total creep behavior for specimens with notches, holes or cracks has been proposed. In this paper it is proposed that most creep curves can be drawn with a master curve for each creep test whenever test conditions and failure modes are similar to each other, and the lifetime ratio normalized by the rupture time is introduced. Using smooth and circumferentially notched specimens of 2.25 Cr-1 Mo steel, creep tests were performed at 600degC for examination of this concept. Furthermore, a θ projection method was used to describe creep curves for notched specimens and to extrapolate longer creep lives. Then, the whole creep curve shape for notched specimens could be easily drawn, except for that in the vicinity of the rupture point. However, longer creep lives of notched specimens were underestimated in comparison with a simple extrapolation of the experimental data. This resulted from the negative dependence of the parameter of θ 3 on the applied stress. (author)
International Nuclear Information System (INIS)
Charalambus, B.; Labes, M.
1993-01-01
It is postulated that a break of a thin-walled pipe does not cause a subsequent break in the pipe in the vicinity of a plastic hinge even when the wall is weakened by a 60 circumferential crack of a depth of 30% of the wall thickness on the tension side. This pipe behavior is the result of plastic buckling in the compression side and applies to pipes of diameter-to-thickness ratio larger than 20. For this type of pipe, the axial strains decrease with increasing diameter-to-thickness ratio in the tension side. As the pipe is only loaded in one direction, there is no cyclic behavior that can trigger a subsequent break. (orig.)
Improved circumferential shaft seal for aircraft gear transmissions
Ludwig, L. P.; Strom, T. N.
1973-01-01
Operation under simulated aircraft transmission conditions of speeds to 2850 m/min (9350 ft/min), lubricant temperatures to 394 K (250 F), shaft radial runouts to 0.254 mm (0.010 in.) F.I.R. (full indicator reading), and pressure differentials to 1.03 N/cm2 (1.5 psi) revealed that conventional circumferential seals leaked excessively. Modifying the conventional seal by adding helical grooves to the seal bore reduced leakage rates to within the acceptable level of 10 cm3/hr. The leakage rate of this modified seal was not significantly affected by lubricant flooding or by shaft radial runout.
DETERMINATION OF EFFICIENCY OF THE CIRCUMFERENTIAL DRAINAGE SYSTEM
Directory of Open Access Journals (Sweden)
Maciej Kroll
2015-11-01
Full Text Available One of the potential alternatives to improve the stability coefficient for an embankment structure is to flatten the filtration curve. As a result, we obtain lower body forces triggering the potential landslide and more advantageous soil strength parameters, which counteract landslide movements. In the case of waste dumps lowering the phreatic surface of waters is achieved thanks to the construction of auxiliary drainage systems, meeting the guidelines for their safe operation. The aim of this paper is to indicate a method facilitating the determination of the actual position of the phreatic surface within the deposited sediments and the assessment of efficiency of the circumferential drainage system in the waste dump. It was decided in this study to apply cone penetration test CPTU. The CPTU made it possible to measure dissipation of excess water pressure in pores identifying drainage conditions, which were compared with the results of piezometric measurements. The results of these tests made it possible to monitor changes in the position of the depression curve of supernatant waters in dams and to determine the efficiency of the circumferential drainage system.
Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle
McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.
2014-02-01
The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.
Cracking and bulk movement in irradiated uranium oxide fuel elements
International Nuclear Information System (INIS)
Bain, A.S.
1963-09-01
UO 2 pellets were fabricated with simulated circumferential or diametral cracks, and with voids formed by drilling axial or radial holes. Under irradiation the cracks healed in a region extending out slightly beyond the area of discernible grain growth. Cracks in the cooler outer annulus formed early and remained during the irradiation. Similarly voids in the outer annulus were unchanged, whereas those in the grain-growth region closed. Tungsten wire markers stayed in their original positions, demonstrating that the surrounding columnar grains in the UO 2 had not formed during the solidification of a melt. Decreases in diameter of 1 mm thick Zircaloy-2 sheathing assembled with large fuel/sheath diametral clearances were due to multi-axial stresses arising from axial elongation and the lack of diametral restraint. (author)
Cracking and bulk movement in irradiated uranium oxide fuel elements
Energy Technology Data Exchange (ETDEWEB)
Bain, A S
1963-09-15
UO{sub 2} pellets were fabricated with simulated circumferential or diametral cracks, and with voids formed by drilling axial or radial holes. Under irradiation the cracks healed in a region extending out slightly beyond the area of discernible grain growth. Cracks in the cooler outer annulus formed early and remained during the irradiation. Similarly voids in the outer annulus were unchanged, whereas those in the grain-growth region closed. Tungsten wire markers stayed in their original positions, demonstrating that the surrounding columnar grains in the UO{sub 2} had not formed during the solidification of a melt. Decreases in diameter of 1 mm thick Zircaloy-2 sheathing assembled with large fuel/sheath diametral clearances were due to multi-axial stresses arising from axial elongation and the lack of diametral restraint. (author)
Early development of the circumferential axonal pathway in mouse and chick spinal cord.
Holley, J A
1982-03-10
The early development of the circumferential axonal pathway in the brachial and lumbar spinal cord of mouse and chick embryos was studied by scanning and transmission electron microscopy. The cellular processes which comprise this pathway grow in the transverse plane and along the lateral margin of the marginal zone (i.e., circumferentially oriented), as typified by the early embryonic commissural axons. The first formative event observed was in the ventrolateral margin of the primitive spinal cord ventricular zone. Cellular processes were found near the external limiting membrane that appeared to grow a variable distance either dorsally or ventrally. Later in development, presumptive motor column neurons migrated into the ventrolateral region, distal to these early circumferentially oriented processes. Concurrently, other circumferentially oriented perikarya and processes appeared along the dorsolateral margin. Due to their aligned sites of origin and parallel growth, the circumferential processes formed a more or less continuous line or pathway, which in about 10% of the scanned specimens could be followed along the entire lateral margin of the embryonic spinal cord. Several specimens later in development had two sets of aligned circumferential processes in the ventral region. Large numbers of circumferential axons were then found to follow the preformed pathway by fasciculation, after the primitive motor column had become established. Since the earliest circumferential processes appeared to differentiate into axons and were found nearly 24 hours prior to growth of most circumferential axons, their role in guidance as pioneering axons was suggested.
Assessment of pressurized water reactor control rod drive mechanism nozzle cracking
International Nuclear Information System (INIS)
Shah, V.N.; Ware, A.G.; Porter, A.M.
1994-10-01
This report surveys the field experience related to cracking of pressurized water reactor (PWR) control rod drive mechanism nozzles (Alloy 600 material); evaluates design, fabrication, and operating conditions for the nozzles in US PWR; and evaluates the safety significance of nozzle cracking. Inspection at 78 overseas and one US PWR has revealed mainly axial cracks in 101 nozzles. The cracking is caused by primary water stress corrosion cracking, which requires the simultaneous presence of high tensile stresses, high operating temperatures, and susceptible microstructure. CRDM nozzle cracking is not a short-term safety issue. An axial crack is not likely to grow above the vessel head to a critical length because the stresses are not high enough to support the growth away from the attachment weld. Primary coolant leaking through an axial crack could cause a short circumferential crack on the outside surface. However, this crack is not likely to propagate through the nozzle wall to cause rupture. Leakage of the primary coolant from a through-wall crack could cause boric acid corrosion of the vessel head and challenge the structural integrity of the head, but it is very unlikely that the accumulated deposits of boric acid crystals resulting from such leakage could remain undetected
Prediction of crack coalescence of steam generator tubes in nuclear power plants
International Nuclear Information System (INIS)
Abou-Hanna, Jeries; McGreevy, Timothy E.; Majumdar, Saurin
2004-01-01
Prediction of failure pressures of cracked steam generator tubes of nuclear power plants is an important ingredient in scheduling inspection and repair of tubes. Prediction is usually based on nondestructive evaluation (NDE) of cracks. NDE often reveals two neighboring cracks. If the cracks interact, the tube pressure under which the ligament between the two cracks fails could be much lower than the critical burst pressure of an individual equivalent crack. The ability to accurately predict the ligament failure pressure, called ''coalescence pressure,'' is important. The failure criterion was established by nonlinear finite element model (FEM) analyses of coalescence of two 100% through-wall collinear cracks. The ligament failure is precipitated by local instability of the ligament under plane strain conditions. As a result of this local instability, the ligament thickness in the radial direction decreases abruptly with pressure. Good correlation of FEM analysis results with experimental data obtained at Argonne National Laboratory's Energy Technology Division demonstrated that nonlinear FEM analyses are capable of predicting the coalescence pressure accurately for 100% through-wall cracks. This failure criterion and FEA work have been extended to axial cracks of varying ligament width, crack length, and cases where cracks are offset by axial or circumferential ligaments
Energy Technology Data Exchange (ETDEWEB)
Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P. [Battelle, Columbus, OH (United States)
1995-04-01
This is the seventh progress report of the U.S. Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks in Piping and Piping Welds{close_quotes}. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports.
International Nuclear Information System (INIS)
Wilkowski, G.M.; Ghadiali, N.; Rudland, D.; Krishnaswamy, P.; Rahman, S.; Scott, P.
1995-04-01
This is the seventh progress report of the U.S. Nuclear Regulatory Commission's research program entitled open-quotes Short Cracks in Piping and Piping Weldsclose quotes. The program objective is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break (LBB) analyses and in-service flaw evaluations. All work in the eight technical tasks have been completed. Ten topical reports are scheduled to be published. Progress only during the reporting period, March 1993 - December 1994, not covered in the topical reports is presented in this report. Details about the following efforts are covered in this report: (1) Improvements to the two computer programs NRCPIPE and NRCPIPES to assess the failure behavior of circumferential through-wall and surface-cracked pipe, respectively; (2) Pipe material property database PIFRAC; (3) Circumferentially cracked pipe database CIRCUMCK.WKI; (4) An assessment of the proposed ASME Section III design stress rule changes on pipe flaw tolerance; and (5) A pipe fracture experiment on a section of pipe removed from service degraded by microbiologically induced corrosion (MIC) which contained a girth weld crack. Progress in the other tasks is not repeated here as it has been covered in great detail in the topical reports
Finite element limit loads for non-idealized through-wall cracks in thick-walled pipe
International Nuclear Information System (INIS)
Shim, Do-Jun; Han, Tae-Song; Huh, Nam-Su
2013-01-01
Highlights: • The lower bound bulging factor of thin-walled pipe can be used for thick-walled pipe. • The limit loads are proposed for thick-walled, transition through-wall cracked pipe. • The correction factors are proposed for estimating limit loads of transition cracks. • The limit loads of short transition cracks are similar to those of idealized cracks. - Abstract: The present paper provides plastic limit loads for non-idealized through-wall cracks in thick-walled pipe. These solutions are based on detailed 3-dimensional finite element (FE) analyses which can be used for structural integrity assessment of nuclear piping. To cover a practical range of interest, the geometric variables and loading conditions affecting the plastic limit loads of thick-walled pipe with non-idealized through-wall cracks were systematically varied. In terms of crack orientation, both circumferential and axial through-wall cracks were considered. As for loading conditions, axial tension, global bending, and internal pressure were considered for circumferential cracks, whereas only internal pressure was considered for axial cracks. Furthermore, the values of geometric factor representing shape characteristics of non-idealized through-wall cracks were also systematically varied. In order to provide confidence in the present FE analyses results, plastic limit loads of un-cracked, thick-walled pipe resulting from the present FE analyses were compared with the theoretical solutions. Finally, correction factors to the idealized through-wall crack solutions were developed to determine the plastic limit loads of non-idealized through-wall cracks in thick-walled pipe
Crack opening area estimates in pressurized through-wall cracked elbows under bending
International Nuclear Information System (INIS)
Franco, C.; Gilles, P.; Pignol, M.
1997-01-01
One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment
Crack opening area estimates in pressurized through-wall cracked elbows under bending
Energy Technology Data Exchange (ETDEWEB)
Franco, C.; Gilles, P.; Pignol, M.
1997-04-01
One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.
Measurements of the Exerted Pressure by Pelvic Circumferential Compression Devices
Knops, Simon P; van Riel, Marcel P.J.M; Goossens, Richard H.M; van Lieshout, Esther M.M; Patka, Peter; Schipper, Inger B
2010-01-01
Background: Data on the efficacy and safety of non-invasive Pelvic Circumferential Compression Devices (PCCDs) is limited. Tissue damage may occur if a continuous pressure on the skin exceeding 9.3 kPa is sustained for more than two or three hours. The aim of this study was to gain insight into the pressure build-up at the interface, by measuring the PCCD-induced pressure when applying pulling forces to three different PCCDs (Pelvic Binder® , SAM-Sling ® and T-POD® ) in a simplified model. Methods: The resulting exerted pressures were measured at four ‘anatomical’ locations (right, left, posterior and anterior) in a model using a pressure measurement system consisting of pressure cuffs. Results: The exerted pressure varied substantially between the locations as well as between the PCCDs. Maximum pressures ranged from 18.9-23.3 kPa and from 19.2-27.5 kPa at the right location and left location, respectively. Pressures at the posterior location stayed below 18 kPa. At the anterior location pressures varied markedly between the different PCCDs. Conclusion: The circumferential compression by the different PCCDs showed high pressures measured at the four locations using a simplified model. Difference in design and functional characteristics of the PCCDs resulted in different pressure build-up at the four locations. When following the manufacturer’s instructions, the exerted pressure of all three PCCDs tested exceeded the tissue damaging level (9.3 kPa). In case of prolonged use in a clinical situation this might put patients at risk for developing tissue damage. PMID:20361001
Assessment of crack opening area for leak rates
Energy Technology Data Exchange (ETDEWEB)
Sharples, J.K.; Bouchard, P.J.
1997-04-01
This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L{sub r} greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L{sub r} values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L{sub r} values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities.
Assessment of crack opening area for leak rates
International Nuclear Information System (INIS)
Sharples, J.K.; Bouchard, P.J.
1997-01-01
This paper outlines the background to recommended crack opening area solutions given in a proposed revision to leak before break guidance for the R6 procedure. Comparisons with experimental and analytical results are given for some selected cases of circumferential cracks in cylinders. It is shown that elastic models can provide satisfactory estimations of crack opening displacement (and area) but they become increasingly conservative for values of L r greater than approximately 0.4. The Dugdale small scale yielding model gives conservative estimates of crack opening displacement with increasing enhancement for L r values greater than 0.4. Further validation of the elastic-plastic reference stress method for up to L r values of about 1.0 is presented by experimental and analytical comparisons. Although a more detailed method, its application gives a best estimate of crack opening displacement which may be substantially greater than small scale plasticity models. It is also shown that the local boundary conditions in pipework need to be carefully considered when evaluating crack opening area for through-wall bending stresses resulting from welding residual stresses or geometry discontinuities
Modified Dugdale cracks and Fictitious cracks
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang
1998-01-01
A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... areas, so-called fictitious cracks, in front of the crack.The Modified Dugdale theory presented in this paper is also based on the concept of Dugdale cracks. Any cohesive stress distribution, however, can be considered in front of the crack. Formally the strength of a material weakened by a modified...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...
Crack growth in an austenitic stainless steel at high temperature
International Nuclear Information System (INIS)
Polvora, J.P.
1998-01-01
This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C* s . Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors)
Crack path in aeronautical titanium alloy under ultrasonic torsion loading
Directory of Open Access Journals (Sweden)
A. Nikitin
2016-01-01
Full Text Available This paper discusses features of fatigue crack initiation and growth in aeronautical VT3-1 titanium alloy under pure torsion loading in gigacycle regime. Two materials: extruded and forged VT3-1 titanium alloys were studied. Torsion fatigue tests were performed up to fatigue life of 109 cycles. The results of the torsion tests were compared with previously obtained results under fully reversed axial loading on the same alloys. It has been shown that independently on production process as surface as well subsurface crack initiation may appear under ultrasonic torsion loading despite the maximum stress amplitude located at the specimen surface. In the case of surface crack initiation, a scenario of crack initiation and growth is similar to HCF regime except an additional possibility for internal crack branching. In the case of subsurface crack, the initiation site is located below the specimen surface (about 200 μm and is not clearly related to any material flaw. Internal crack initiation is produced by shear stress in maximum shear plane and early crack growth is in Mode II. Crack branching is limited in the case of internal crack initiation compared to surface one. A typical ‘fish-eye’ crack can be observed at the torsion fracture surface, but mechanism of crack initiation seems not to be the same than under axial fatigue loading.
Positioning means for circumferentially locating inspection apparatus in a nuclear reactor vessel
International Nuclear Information System (INIS)
Burns, D.C.
1980-01-01
There is provided for a reactor vessel inspection device a support ring sized to accommodate the circular path defined by three or more guide studs extending upwardly from the vessel. The support ring has at least three movably mounted guide stud bushings which can be positionally adjusted to align each bushing with one of the studs. When engaged, the guide studs and bushings yield a coarse positioning of the inspection device relative to the reactor vessel. Also provided are three support legs which are clamped to the support ring and dimensioned to an appropriate length. Two of the support legs have shoes clamped thereto, configured to rest on an internal circumferential flange within the reactor vessel. The third support leg is provided with a specially adapted shoe configured to engage a locating element, the exact position of which is known, within the vessel to achieve fine positioning of the inspection device relative to the reactor vessel. The support ring is additionally provided with an annular key which runs longitudinally about its outer periphery. Clamping means utilized to secure the guide stud bushings and the support legs to the support ring are provided with keyways to insure automatic self-alignment when fully tightened. (auth)
International Nuclear Information System (INIS)
Dedhia, D.D.; Harris, D.O.
1982-06-01
A user-oriented computer program for the evaluation of stress intensity factors for cracks in pipes is presented. Stress intensity factors for semi-elliptical, complete circumferential and long longitudinal cracks can be obtained using this computer program. The code is based on the method of influence functions which makes it possible to treat arbitrary stresses on the plane of the crack. The stresses on the crack plane can be entered as a mathematical or tabulated function. A user's manual is included in this report. Background information is also included
... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... 69 KB) "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...
A new modeling method for natural PWSCC cracking simulation in a dissimilar metal weld
International Nuclear Information System (INIS)
Xu, Heqin; Mahmoud, Samer; Nana, Ashok; Killian, Doug
2014-01-01
Cracks found in a nuclear power plant reactor coolant system (RCS), such as primary water stress corrosion cracking (PWSCC) and intergranular stress corrosion cracking (IGSCC), usually have natural crack front shapes that can be very different from the idealized semi-elliptical or rectangular shapes considered in engineering handbooks and other analytical solutions based on limited shapes. Simplifications towards semi-elliptical shape or rectangular shape may potentially introduce unnecessary conservatism when the simplified shape has to contain the actual crack shape. On the other hand, it is very time-consuming to create a three-dimensional (3D) finite element (FE) model to simulate crack propagation in a natural shape using existing public-domain software like ABAQUS or ANSYS. In this study, a local deformation-based mesh-mapping (LDMM) method is proposed to model cracks with a natural front shape in any 3D structures. This methodology is first applied to model circumferential surface cracks with a natural crack front shape in the cross-sectional plane of a cylinder. The proposed new method can be applied to simulate both shallow and deep cracks. Also discussed in this paper is a direct method to reproduce welding residual stresses in the crack model using temperature fields combined with other sustained loads to predict crack propagations. With this novel LDMM method, natural crack fronts and non-planar crack faces can be easily modeled. The proposed new method can be used to generate a high-quality finite element model that can be used for both linear-elastic fracture mechanics (LEFM) and elastic–plastic fracture mechanics (EPFM) analyses. The study case illustrates that the proposed LDMM method is easy to implement and more efficient than the existing commercial software
Rectal cancer: involved circumferential resection margin - a root cause analysis.
Youssef, H; Collantes, E C; Rashid, S H; Wong, L S; Baragwanath, P
2009-06-01
An involved circumferential resection margin (CRM) following surgery for rectal cancer is the strongest predictor of local recurrence and may represent a failure of the multidisciplinary team (MDT) process. The study analyses the causes of positive CRM in patients undergoing elective surgery for rectal cancer with respect to the decision-making process of the MDT, preoperative rectal cancer staging and surgical technique. From March 2002 to September 2005, data were collected prospectively on all patients undergoing elective rectal cancer surgery with curative intent. The data on all patients identified with positive CRM were analysed. Of 158 patients (male:female = 2.2:1) who underwent potentially curative surgery, 16 (10%) patients had a positive CRM on postoperative histology. Four were due to failure of the pelvic magnetic resonance imaging (MRI) staging scans to predict an involved margin, two with an equivocal CRM on MRI did not have preoperative radiotherapy, one had an inaccurate assessment of the site of primary tumour and in one intra-operative difficulty was encountered. No failure of staging or surgery was identified in the remaining eight of the 16 patients. Abdominoperineal resection (APR) was associated with a 26% positive CRM, compared with 5% for anterior resection. No single consistent cause was found for a positive CRM. The current MDT process and/or surgical technique may be inadequate for low rectal tumours requiring APR.
Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications
Energy Technology Data Exchange (ETDEWEB)
Dong, P.; Rahman, S.; Wilkowski, G. [and others
1997-04-01
This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses.
Effects of weld residual stresses on crack-opening area analysis of pipes for LBB applications
International Nuclear Information System (INIS)
Dong, P.; Rahman, S.; Wilkowski, G.
1997-01-01
This paper summarizes four different studies undertaken to evaluate the effects of weld residual stresses on the crack-opening behavior of a circumferential through-wall crack in the center of a girth weld. The effect of weld residual stress on the crack-opening-area and leak-rate analyses of a pipe is not well understood. There are no simple analyses to account for these effects, and, therefore, they are frequently neglected. The four studies involved the following efforts: (1) Full-field thermoplastic finite element residual stress analyses of a crack in the center of a girth weld, (2) A comparison of the crack-opening displacements from a full-field thermoplastic residual stress analysis with a crack-face pressure elastic stress analysis to determine the residual stress effects on the crack-opening displacement, (3) The effects of hydrostatic testing on the residual stresses and the resulting crack-opening displacement, and (4) The effect of residual stresses on crack-opening displacement with different normal operating stresses
Surface crack growth in cylindrical hollow specimen subject to tension and torsion
Directory of Open Access Journals (Sweden)
V. Shlyannikov
2015-07-01
Full Text Available The subject for studies is an aluminium cylindrical hollow specimen with external axial and part circumferential semi-elliptical surface crack undergoing fatigue loads. Both the optical microscope measurements and the crack opening displacement (COD method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth behaviour is studied under cyclic axial tension, pure torsion and combined tension+torsion fatigue loading. For the particular surface flaw geometries considered, the elastic and plastic in-plane and out-of-plane constraint parameters, as well as the governing parameter for stress fields in the form of In-integral and plastic stress intensity factor, are obtained as a function of the aspect ratio, dimensionless crack length and crack depth. The combined effect of tension and torsion loading and initial surface flaw orientation on the crack growth for two type of aluminium alloys is made explicit. The experimental and numerical results of the present study provided the opportunity to explore the suggestion that fatigue crack propagation may be governed more strongly by the plastic stress intensity factor rather than the magnitude of the elastic SIFs alone. One advantage of the plastic SIF is its sensitivity to combined loading due to accounting for the plastic properties of the material.
Inelastic analysis of finite length and depth cracked tubes
International Nuclear Information System (INIS)
Reich, M.; Gardner, D.; Prachuktam, S.; Chang, T.Y.
1977-01-01
Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdown. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered since the material is non-notch sensitive. Non-linear finite element analyses are carried out to determine the burst pressures of steam generator tubes containing longitudinal cracks located on the outer surface of the tubes. The non-linearities considered herein include elastic-plastic material behaviour and large deformations. A non-proprietary general purpose non-linear finite element program, NFAP was adopted for the analysis. Due to the asymmetric nature of the cracks, two-dimensional as well as three-dimensional finite element analyses, were performed. The analysis clearly shows that for short cracks axial effects play a significant role. For long cracks, they are not important since two-dimensional conditions predominate and failure is governed by circumferential or hoop stress conditions. (Auth.)
Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang
2015-01-01
Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source
Directory of Open Access Journals (Sweden)
Xiaowei Feng
Full Text Available Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three
The ACR-program for automatic finite element model generation for part through cracks
International Nuclear Information System (INIS)
Leinonen, M.S.; Mikkola, T.P.J.
1989-01-01
The ACR-program (Automatic Finite Element Model Generation for Part Through Cracks) has been developed at the Technical Research Centre of Finland (VTT) for automatic finite element model generation for surface flaws using three dimensional solid elements. Circumferential or axial cracks can be generated on the inner or outer surface of a cylindrical or toroidal geometry. Several crack forms are available including the standard semi-elliptical surface crack. The program can be used in the development of automated systems for fracture mechanical analyses of structures. The tests for the accuracy of the FE-mesh have been started with two-dimensional models. The results indicate that the accuracy of the standard mesh is sufficient for practical analyses. Refinement of the standard mesh is needed in analyses with high load levels well over the limit load of the structure
Investigation of Helicopter Longeron Cracks
Newman, John A.; Baughman, James; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
LENUS (Irish Health Repository)
Mohamed, Seif
2010-05-01
This study was designed to evaluate the effect of surface contamination on osseointegration of dental implants surrounded by a circumferential bone defect and to compare osseointegration around Osseotite with that around Nanotite implants.
Karjalainen, T; He, M; Chong, A K S; Lim, A Y T; Ryhanen, J
2010-07-01
Nickel-titanium (NiTi) has been proposed as an alternative material for flexor tendon core suture. To our knowledge, its suitability as a circumferential suture of flexor tendon repair has not been investigated before. The purpose of this ex vivo study was to investigate the biomechanical properties of NiTi circumferential repairs and to compare them with commonly used polypropylene. Forty porcine flexor tendons were cut and repaired by simple running or interlocking mattress technique using 100 microm NiTi wire or 6-0 polypropylene. The NiTi circumferential repairs showed superior stiffness, gap resistance, and load to failure when compared to polypropylene repairs with both techniques. Nickel-titanium wire seems to be a potential material for circumferential repair of flexor tendons. Copyright 2010 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Gietelink, Lieke; Wouters, Michel W. J. M.; Tanis, Pieter J.; Deken, Marion M.; ten Berge, Martijn G.; Tollenaar, Rob A. E. M.; van Krieken, J. Han; de Noo, Mirre E.
2015-01-01
Background: The circumferential resection margin (CRM) is a significant prognostic factor for local recurrence, distant metastasis, and survival after rectal cancer surgery. Therefore, availability of this parameter is essential. Although the Dutch total mesorectal excision trial raised awareness
Variation in circumferential resection margin: Reporting and involvement in the South-Netherlands
Homan, J.; Bokkerink, G.M.J.; Aarts, M.J.; Lemmens, V.E.; Lijnschoten, G. van; Rutten, H.J.; Wijsman, J.H.; Nagtegaal, I.D.; Wilt, J.H.W. de
2015-01-01
BACKGROUND: Since the introduction of total mesorectal surgery the outcome of rectal cancer patients has improved significantly. Involvement of the circumferential resection margin (CRM) is an important predictor of increased local recurrence, distant metastases and decreased overall survival.
Gietelink, L.; Wouters, M.W.; Tanis, P.J.; Deken, M.M.; Berge, M.G. Ten; Tollenaar, R.A.; Krieken, J.H.J.M. van; Noo, M.E. de
2015-01-01
BACKGROUND: The circumferential resection margin (CRM) is a significant prognostic factor for local recurrence, distant metastasis, and survival after rectal cancer surgery. Therefore, availability of this parameter is essential. Although the Dutch total mesorectal excision trial raised awareness
International Nuclear Information System (INIS)
Deng Ming-Xi; Gao Guang-Jian; Li Ming-Liang
2015-01-01
The experimental observation of cumulative second-harmonic generation of the primary circumferential guided wave propagation is reported. A pair of wedge transducers is used to generate the primary circumferential guided wave desired and to detect its fundamental-frequency and second-harmonic amplitudes on the outside surface of the circular tube. The amplitudes of the fundamental waves and the second harmonics of the circumferential guided wave propagation are measured for different separations between the two wedge transducers. At the driving frequency where the primary and the double-frequency circumferential guided waves have the same linear phase velocities, the clear second-harmonic signals can be observed. The quantitative relationships between the second-harmonic amplitudes and circumferential angle are analyzed. It is experimentally verified that the second harmonics of primary circumferential guided waves do have a cumulative growth effect with the circumferential angle. (paper)
International Nuclear Information System (INIS)
Narita, Michiko; Aida, Shigekazu
1998-01-01
A penetration liquid or a slow drying penetration liquid prepared by mixing a penetration liquid and a slow drying liquid is filled to the inside of an artificial crack formed to a member to be detected such as of boiler power generation facilities and nuclear power facilities. A developing liquid is applied to the periphery of the artificial crack on the surface of a member to be detected. As the slow-drying liquid, an oil having a viscosity of 56 is preferably used. Loads are applied repeatedly to the member to be detected, and when a crack is caused to the artificial crack, the permeation liquid penetrates into the crack. The penetration liquid penetrated into the crack is developed by the developing liquid previously coated to the periphery of the artificial crack of the surface of the member to be detected. When a crack is caused, since the crack is developed clearly even if it is a small opening, the crack can be recognized visually reliably. (I.N.)
Crack-depth effects in the cylindrically guided wave technique for bolt and pump-shaft inspections
International Nuclear Information System (INIS)
Tsai, Y.M.; Liu, S.N.; Light, G.M.
1991-01-01
Nuclear power plants have experienced the failures of bolts and pump shafts. The industry is concerned about nondestructive evaluation (NDE) techniques that can be applied to these components. The cylindrically guided wave technique (CGWT) has been developed to detect the simulated circumferential defects in long bolts and studs. The ultrasonic CGWT employs the zero-degree longitudinal waves constrained to travel within the boundary of the components with cylindrical shape during inspection. When longitudinal waves are guided to travel along a cylinder, and impinge onto a circumferential defect, the waves are scattered at the crack on the cylinder surface. In this work, the wave scattering at the circumferential crack on a long cylinder is investigated. The transfer factor of the scattered waves is calculated for a wide range of frequency spectra. The scattered waveform at a distance away from a crack is calculated. The effect that crack depth exerts to the waveform in CGWT is shown. CGWT signals, waveform calculation and so on are reported. (K.I.)
Curvilinear crack layer propagation
Chudnovsky, Alexander; Chaoui, Kamel; Moet, Abdelsamie
1987-01-01
An account is given of an experiment designed to allow observation of the effect of damage orientation on the direction of crack growth in the case of crack layer propagation, using polystyrene as the model material. The direction of crack advance under a given loading condition is noted to be determined by a competition between the tendency of the crack to maintain its current direction and the tendency to follow the orientation of the crazes at its tip. The orientation of the crazes is, on the other hand, determined by the stress field due to the interaction of the crack, the crazes, and the hole. The changes in craze rotation relative to the crack define the active zone rotation.
Current results for the NRC's short cracks in piping and piping welds research program
International Nuclear Information System (INIS)
Wilkowski, G.; Krishnaswamy, P. Brust, F.; Francini, R.; Ghadiali, N.; Kilinski, T.; Marschall, C.; Rahman, S.; Rosenfield, A.; Scott, P.
1994-01-01
The overall objective of the Short Cracks in Piping and Piping Welds Program is to verify and improve engineering analyses to predict the fracture behavior of circumferentially cracked pipe under quasi-static loading with particular attention to crack lengths typically used in LBB or flaw evaluation criteria. The program consists of 8 technical tasks as listed below. Task 1 Short through-wall-cracked (TWC) pipe evaluations. Task 2 Short surface-cracked pipe evaluations. Task 3 Bi-metallic weld crack evaluations. Task 4 Dynamic strain aging and crack instabilities. Task 5 Fracture evaluations of anisotropic pipe. Task 6 Crack-opening-area evaluations. Task 7 NRCPIPE Code improvements. Task 8 Additional efforts. Since the last WRSM meeting several additional tasks have been initiated in this program. These are discussed in Task 8. Based on results to date, the first seven tasks have also been modified as deemed necessary. The most significant accomplishments in each of these tasks since the last WRSIM meeting are discussed below. The details of all the results presented here are published in the semiannual reports from this program
International Nuclear Information System (INIS)
Kobayashi, S.; Horikiri, M.
2001-06-01
This report shows the results of crack inspection in crack propagation tests that were carried out at the Air-cooling Thermal Transient Test Facility (ATTF). Test specimens were made of 304 type austenitic stainless steel, and they were the same cylindrical shape, 1,500 mm in height, 130 mm in outer diameter and 30 mm in thickness. And they had initial slits machined on inner surfaces. Firstly the specimens were heated up to 650degC in a furnace, then cooled by pressurized air blowing through the specimen for 90 seconds. These cyclic changes of temperature gradients in the wall of specimens were loaded. Specimens were tested for several years. The specimen No. CPTT-102 with machined two circumferential slits and two semi-elliptical slits was tested up to 10,000 cycles. And the specimen No. CPTT-103 with machined six semi-elliptical slits of different length respectively was tested up to 5,000 cycles. Cracks of specimens were inspected nondestructively for a giving cycle in these tests. Applied inspection methods were ultra-sonic testing, potential-drop method and inner surface observation. Ultra-sonic testing was carried out by applying the pulse-echo method. Potential-drop testing was carried out by measurement of localized constant direct current beyond cracks. Photographs of the inner surface of specimens were taken using a bore-scope. The results of ultra-sonic testing have been close to destructive test results. The depth of crack by the potential-drop method was almost corresponding to destructive test results, too. Photographs of the inner surface were synthesized by the computer, and connection between main crack and hair crack was observed. (author)
International Nuclear Information System (INIS)
Arora, Punit; Singh, P.K.; Bhasin, Vivek; Vaze, K.K.; Pukazhendhi, D.M.; Gandhi, P.; Raghava, G.
2011-01-01
The objective of the present study is to understand the fatigue crack growth behavior in austenitic stainless steel and carbon steel pipes and pipe welds by carrying out analysis/predictions and experiments. The Paris law has been used for the prediction of fatigue crack growth life. To carry out the analysis, Paris constants have been determined for pipe (base) and pipe weld materials by using Compact Tension (CT)/Three Point Bend (TPB) specimens machined from the actual pipe/pipe weld. Analyses have been carried out to predict the fatigue crack growth life of pipes/pipe welds having part through cracks on the outer surface. In the analyses, Stress Intensity Factors (K) have been evaluated through two different schemes. The first scheme considers the 'K' evaluations at two points of the crack front i.e. maximum crack depth and crack tip at the outer surface. The second scheme accounts for the area averaged root mean square stress intensity factor (K RMS ) at deepest and surface points. In order to validate the analytical procedure/results, experiments have been carried out on full scale pipe and pipe welds with part through circumferential crack. Fatigue crack growth life evaluated using both schemes have been compared with experimental results. Use of stress intensity factor (K RMS ) evaluated using second scheme gives better fatigue crack growth life prediction compared to that of first scheme. (author)
Fully portable blood irradiator
International Nuclear Information System (INIS)
Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.
1980-01-01
A fully portable blood irradiator was developed using the beta emitter thulium-170 as the radiation source and vitreous carbon as the body of the irradiator, matrix for isotope encapsulation, and blood interface material. These units were placed in exteriorized arteriovenous shunts in goats, sheep, and dogs and the effects on circulating lymphocytes and on skin allograft retention times measured. The present work extends these studies by establishing baseline data for skin graft rejection times in untreated animals
Crack identification for rotating machines based on a nonlinear approach
Cavalini, A. A., Jr.; Sanches, L.; Bachschmid, N.; Steffen, V., Jr.
2016-10-01
In a previous contribution, a crack identification methodology based on a nonlinear approach was proposed. The technique uses external applied diagnostic forces at certain frequencies attaining combinational resonances, together with a pseudo-random optimization code, known as Differential Evolution, in order to characterize the signatures of the crack in the spectral responses of the flexible rotor. The conditions under which combinational resonances appear were determined by using the method of multiple scales. In real conditions, the breathing phenomenon arises from the stress and strain distribution on the cross-sectional area of the crack. This mechanism behavior follows the static and dynamic loads acting on the rotor. Therefore, the breathing crack can be simulated according to the Mayes' model, in which the crack transition from fully opened to fully closed is described by a cosine function. However, many contributions try to represent the crack behavior by machining a small notch on the shaft instead of the fatigue process. In this paper, the open and breathing crack models are compared regarding their dynamic behavior and the efficiency of the proposed identification technique. The additional flexibility introduced by the crack is calculated by using the linear fracture mechanics theory (LFM). The open crack model is based on LFM and the breathing crack model corresponds to the Mayes' model, which combines LFM with a given breathing mechanism. For illustration purposes, a rotor composed by a horizontal flexible shaft, two rigid discs, and two self-aligning ball bearings is used to compose a finite element model of the system. Then, numerical simulation is performed to determine the dynamic behavior of the rotor. Finally, the results of the inverse problem conveyed show that the methodology is a reliable tool that is able to estimate satisfactorily the location and depth of the crack.
Chudnovsky, A.
1987-01-01
A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.
Atomistics of crack propagation
International Nuclear Information System (INIS)
Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.
1988-01-01
The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund
Method of evaluation of stress corrosion cracking susceptibility of clad fuel tubes
International Nuclear Information System (INIS)
Takase, Iwao; Yoshida, Toshimi; Ikeda, Shinzo; Masaoka, Isao; Nakajima, Junjiro.
1986-01-01
Purpose: To determine, by an evaluation in out-pile test, the stress corrosion cracking susceptibility of clad fuel tubes in the reactor environment. Method: A plurality of electrodes are mounted in the circumferential direction on the entire surface of cladding tubes. Of the electrodes, electrodes at two adjacent places are used as measuring terminals and electrodes at another two places adjacent thereto are used as constant-current terminals. With a specific current flowing in the constant-current terminals, measurements are made of a potential difference between the terminals to be measured, and from a variation in the potential difference the depth of cracking of the cladding tube surface is presumed to determine the stress corrosion cracking susceptibility of the cladding tube. To check the entire surface of the cladding tube, the cladding tube is moved by each block in the circumferential direction by a contact changeover system, repeating the measurements of the potential difference. Contact type electrodes are secured with an insulator and held in uniform contact with the cladding tube by a spring. It is detachable by use of a locking system and movable as desired. Thus the stress corrosion cracking susceptibility can be determined without mounting the cladding tube through and also a fuel failure can be prevented. (Horiuchi, T.)
Automated system for crack detection using infrared thermograph
International Nuclear Information System (INIS)
Starman, Stanislav
2009-01-01
The objective of this study was the development of the automated system for crack detection on square steel bars used in the automotive industry for axle and shaft construction. The automated system for thermographic crack detection uses brief pulsed eddy currents to heat steel components under inspection. Cracks, if present, will disturb the current flow and so generate changes in the temperature profile in the crack area. These changes of temperature are visualized using an infrared camera. The image acquired by the infrared camera is evaluated through an image processing system. The advantages afforded by the system are its inspection time, its excellent flaw detection sensitivity and its ability to detect hidden, subsurface cracks. The automated system consists of four IR cameras (each side of steel bar is evaluated at a time), coil, high frequency generator and control place with computers. The system is a part of the inspection line where the subsurface and surface cracks are searched. If the crack is present, the cracked place is automatically marked. The components without cracks are then deposited apart from defective blocks. The system is fully automated and its ability is to evaluate four meter blocks within 20 seconds. This is the real reason for using this system in real industrial applications. (author)
Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.
Kim, Hyunjun; Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu; Sim, Sung-Han
2017-09-07
Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.
Huddleston, Rob
2012-01-01
Fully loaded with the latest tricks and tips on your new Android! Android smartphones are so hot, they're soaring past iPhones on the sales charts. And the second edition of this muscular little book is equally impressive--it's packed with tips and tricks for getting the very most out of your latest-generation Android device. Start Facebooking and tweeting with your Android mobile, scan barcodes to get pricing and product reviews, download your favorite TV shows--the book is positively bursting with practical and fun how-tos. Topics run the gamut from using speech recognition, location-based m
Fatigue crack closure behavior at high stress ratios
Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.
1988-01-01
Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.
Energy Technology Data Exchange (ETDEWEB)
Abthoff, J; Schuster, H D; Gabler, R
1976-11-17
A small cracked-gas generator in a vehicle driven, in particular, by an air combustion engine has been proposed for the economic production of the gases necessary for low toxicity combustion from diesel fuel. This proceeds via catalytic crack-gasification and exploitation of residual heat from exhaust gases. This patent application foresees the insertion of one of the catalysts supporting the cracked-gas reaction in a container through which the reacting mixture for cracked-gas production flows in longitudinal direction. Further, air ducts are embedded in the catalyst through which exhaust gases and fresh air flow in counter direction to the cracked gas flow in the catalyst. The air vents are connected through heat conduction to the catalyst. A cracked gas constituting H/sub 2//CO/CO/sub 2//CH/sub 4/ and H/sub 2/O can be produced from the air-fuel mixture using appropriate catalysts. By the addition of 5 to 25% of cracked gas to the volume of air drawn in by the combustion engine, a more favourable combustion can be achieved compared to that obtained under normal combustion conditions.
Warrier, Satish K; Kong, Joseph Cherng; Guerra, Glen R; Chittleborough, Timothy J; Naik, Arun; Ramsay, Robert G; Lynch, A Craig; Heriot, Alexander G
2018-04-01
Rectal cancer outcomes have improved with the adoption of a multidisciplinary model of care. However, there is a spectrum of quality when viewed from a national perspective, as highlighted by the Consortium for Optimizing the Treatment of Rectal Cancer data on rectal cancer care in the United States. The aim of this study was to assess and identify predictors of circumferential resection margin involvement for rectal cancer across Australasia. A retrospective study from a prospectively maintained binational colorectal cancer database was interrogated. This study is based on a binational colorectal cancer audit database. Clinical information on all consecutive resected rectal cancer cases recorded in the registry from 2007 to 2016 was retrieved, collated, and analyzed. The primary outcome measure was positive circumferential resection margin, measured as a resection margin ≤1 mm. A total of 3367 patients were included, with 261 (7.5%) having a positive circumferential resection margin. After adjusting for hospital and surgeon volume, hierarchical logistic regression analysis identified a 6-variable model encompassing the independent predictors, including urgent operation, abdominoperineal resection, open technique, low rectal cancer, T3 to T4, and N1 to N2. The accuracy of the model was 92.3%, with an receiver operating characteristic of 0.783 (p risk associated with circumferential resection margin positivity ranged from risk factors) to 43% (6 risk factors). This study was limited by the lack of recorded long-term outcomes associated with circumferential resection margin positivity. The rate of circumferential resection margin involvement in patients undergoing rectal cancer resection in Australasia is low and is influenced by a number of factors. Risk stratification of outcome is important with the increasing demand for publicly accessible quality data. See Video Abstract at http://links.lww.com/DCR/A512.
International Nuclear Information System (INIS)
Comby, R.; Gourmelon, A.
1985-01-01
To avoid the risk of cracking on the secondary side of the roll expansion transition zone in steam generator (SG) tubes, tube profile at the upper face of the tube sheet must comply with specifications laid down by the manufacturer and EDF. EDF has developed an eddy current (EC) signal identification method, used for pre-service testing to detect any deviation in tube profile. Nevertheless, circumferential or longitudinal stress corrosion cracks (SCC), initiated on the primary side, have appeared on some SGs. A special rotating probe was used on these generators. The results of these checks have been correlated with metallurgical examination of the extracted tubes
Inspecting cracks in foam insulation
Cambell, L. W.; Jung, G. K.
1979-01-01
Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.
International Nuclear Information System (INIS)
Andersson, Peder; Segle, Peter; Samuelson, Lars Aa.
1999-04-01
A 3D finite element study of creep crack growth in cross-weld CT specimens with material properties of 2.25Cr1Mo at 550 deg C is carried out, where large strain and displacement theory is used. The creep crack growth rate is calculated using a creep ductility based damage model, in which the creep strain rate perpendicular to the crack plane ahead of the crack tip is integrated, considering the multiaxial stress state. The influence of specimen size on creep crack growth rate under constant load is given special attention, but the possibility to transfer results from cross-weld CT specimens to welded high temperature components is also investigated. The creep crack growth rate of a crack in a circumferentially welded pipe is compared with the creep crack growth rate of cross-weld CT specimens of three different sizes, cut out from the pipe. Although the constraint ahead of the crack tip is higher for a larger CT specimen, the creep crack growth rate is higher for a smaller specimen than for a larger one if they are loaded to attain the same stress intensity factor. If the specimens are loaded to the same C* value, however, a more complicated pattern occurs; depending on the material properties of the weldment constituents, the CT specimen with the intermediate size will either yield the highest or the lowest creep crack growth rate
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....
DEFF Research Database (Denmark)
Rennison, Betina Wolfgang
2016-01-01
extensive work to raise the proportion of women. This has helped slightly, but women remain underrepresented at the corporate top. Why is this so? What can be done to solve it? This article presents five different types of answers relating to five discursive codes: nature, talent, business, exclusion...... in leadership management, we must become more aware and take advantage of this complexity. We must crack the codes in order to crack the curve....
SSRI Facilitated Crack Dancing
Directory of Open Access Journals (Sweden)
Ravi Doobay
2017-01-01
Full Text Available Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as “crack dancing.” It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never “crack danced” before this episode. The authors have conducted a thorough literature review and cited studies that suggest “crack dancing” is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with “crack dancing.” The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for “crack dancing.” There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the “crack dance.”
Natural zeolite bitumen cracking
Energy Technology Data Exchange (ETDEWEB)
Kuznicki, S.M.; McCaffrey, W.C.; Bian, J.; Wangen, E.; Koenig, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering
2006-07-01
A study was conducted to demonstrate how low cost heavy oil upgrading in the field could reduce the need for diluents while lowering the cost for pipelining. Low cost field upgrading could also contribute to lowering contaminant levels. The performance of visbreaking processes could be improved by using disposable cracking agents. In turn, the economics of field upgrading of in-situ derived bitumen would be improved. However, in order to be viable, such agents would have to be far less expensive than current commercial cracking catalysts. A platy natural zeolite was selected for modification and testing due to its unique chemical and morphological properties. A catalyst-bearing oil sand was then heat-treated for 1 hour at 400 degrees C in a sealed microreactor. Under these mild cracking conditions, the catalyst-bearing oil sand produced extractable products of much lower viscosity. The products also contained considerably more gas oil and middle distillates than raw oil sand processed under the same conditions as thermal cracking alone. According to model cracking studies using hexadecane, these modified mineral zeolites may be more active cracking agents than undiluted premium commercial FCC catalyst. These materials hold promise for partial upgrading schemes to reduce solvent requirements in the field. tabs., figs.
Ultrasonic sizing of fatigue cracks
International Nuclear Information System (INIS)
Burns, D.J.
1983-12-01
Surface and buried fatigue cracks in steel plates have been sized using immersion probes as transmitters-receivers, angled to produce shear waves in the steel. Sizes have been estimated by identifying the ultrasonic waves diffracted from the crack tip and by measuring the time taken for a signal to travel to and from the crack tip. The effects of compression normal to a fatigue crack and of crack front curvature are discussed. Another diffraction technique, developed by UKAEA, Harwell, is reviewed
Fully electric waste collection
Anaïs Schaeffer
2015-01-01
Since 15 June, Transvoirie, which provides waste collection services throughout French-speaking Switzerland, has been using a fully electric lorry for its collections on the CERN site – a first for the region! Featuring a motor powered by electric batteries that charge up when the brakes are used, the new lorry that roams the CERN site is as green as can be. And it’s not only the motor that’s electric: its waste compactor and lifting mechanism are also electrically powered*, making it the first 100% electric waste collection vehicle in French-speaking Switzerland. Considering that a total of 15.5 tonnes of household waste and paper/cardboard are collected each week from the Meyrin and Prévessin sites, the benefits for the environment are clear. This improvement comes as part of CERN’s contract with Transvoirie, which stipulates that the firm must propose ways of becoming more environmentally friendly (at no extra cost to CERN). *The was...
Inelastic analysis of finite length and depth cracked tubes
International Nuclear Information System (INIS)
Reich, M.; Gardner, D.; Prachuktam, S.; Chang, T.Y.
1977-01-01
Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdowns. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered since the material is non-notch sensitive. Non-linear finite element analyses are carried out to determine the burst pressures of steam generator tubes containing longitudinal cracks located on the outer surface of the tubes. The non-linearities considered herein include elastic-plastic material behavior and large deformations. A non-proprietary general purpose non-linear finite element program, NFAP was adopted for the analysis. Due to the asymmetric nature of the cracks, two-dimensional, as well as three-dimensional finite element analyses, were performed. The two-dimensional element and its formulations are similar to those of NONSAP. The three-dimensional isoparametric element with elastic-plastic material characteristics together with the large deformation formulations used in NFAP are described in the Report BNL-20684. The numerical accuracy of the program was investigated and checked with known solutions of benchmark problems. In addition to the three-dimensional element which was specifically inserted into NFAP for this problem, other features such as direct pressure inputs for isoparametric elements, automatic load increment adjustments for convergent non-linear solutions, and automatic bandwidth reduction schemes are incorporated into the program thus allowing for a more economical evaluation of three-dimensional inelastic analysis. In summary the analysis clearly shows that for short cracks axial effects play a significant role. For long cracks, they are not important since two-dimensional conditions predominate and failure is governed by circumferential or hoop stress conditions
A consistent partly cracked XFEM element for cohesive crack growth
DEFF Research Database (Denmark)
Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto
2007-01-01
Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack-tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra...... enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle of the cracked element. With the extra enrichments, the crack-tip element becomes...... capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...
A crack growth evaluation method for interacting multiple cracks
International Nuclear Information System (INIS)
Kamaya, Masayuki
2003-01-01
When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e.g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks. (author)
Crack stability analysis of low alloy steel primary coolant pipe
Energy Technology Data Exchange (ETDEWEB)
Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others
1997-04-01
At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.
Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.
2007-07-01
In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.
Consideration on evaluation of internal pressure creep rupture for tube with circumferential joint
International Nuclear Information System (INIS)
Nagato, Kotaro; Satoh, Keisuke
1983-01-01
The behavior of internal pressure creep rupture of the thin-walled cylinders with circumferential joints is affected by the combination of creep characteristics of parent materials and weld metals. In particular, the compatibility of the creep strain rate of parent materials and weld metals becomes an important controlling factor. The behavior of internal pressure creep of the welded parts in circumferential joint cylinders can be evaluated simply with the uniaxial creep data of parent materials and weld metals, considering it by approximately substituting with the creep behavior of a uniaxial longitudinal joint. The method of evaluation is, first, to analyze the breaking behavior of uniaxial longitudinal joints using the uniaxial creep characteristic values of parent materials and weld metals, and next, by combining the equation for the relation between the rupture times of uniaxial creep and internal pressure creep with the analyzed breaking behavior of uniaxial joints, the internal pressure creep rupture behavior of the cylinders with circumferential joints can be evaluated. The internal pressure creep behavior of the thin-walled cylinders with circumferential joints, their rupture life and the uniaxial creep rupture life of longitudinal joints, and the examination of Hastelloy X cylinders are reported. (Kako, I.)
Energy Technology Data Exchange (ETDEWEB)
Abdallah, A M; El-Sherbiny, E M [Reactor Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)
1996-03-01
Swelling and thermal distortion of nuclear fuel elements due to depressurization of reactor coolant may cause contracts in points or finite regions between adjacent fuel elements in square and triangle lattices. This is very probable in Advanced Pressurized Water Reactors where the clearance between fuel elements is about 1 mm. This results in partial blocking of the coolant flow and formation of hot spots in the contact regions. In these regions, absence of coolant results in nonuniform clad circumferential temperature distribution. This causes excessive thermal stresses which may produce local melting or clad failure. An accurate prediction of the clad circumferential temperature distribution during these severe incidents is very important. This problem was studied numerically during transient and steady state conditions. Recently, a semi analytical solution for the underlying problem was derived assuming the heat transfer coefficient to vary linearly with the circumferential distance measured from the cusp point, and the heat flux at the fuel-clad interface to be a constant quantity. In the present work, an approximate analytic solution is obtained. The accuracy is tested by solving the problem numerically. Also the problem is reanalyzed by considering the heat flux at the fuel-clad interface to be a power function of the angular distance along the clad surface. Moreover, the heat transfer coefficient is assumed to be a function of both the circumferential coordinate and temperature of the clad. Discussion of the analytical solution and the assumptions are rationalized in the text. 4 figs.
Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Liang, Kaicheng; Wang, Zhao; Cleveland, Cody; Booth, Lucas; Potsaid, Benjamin; Jayaraman, Vijaysekhar; Cable, Alex E; Mashimo, Hiroshi; Langer, Robert; Traverso, Giovanni; Fujimoto, James G
2016-08-01
We demonstrate a micromotor balloon imaging catheter for ultrahigh speed endoscopic optical coherence tomography (OCT) which provides wide area, circumferential structural and angiographic imaging of the esophagus without contrast agents. Using a 1310 nm MEMS tunable wavelength swept VCSEL light source, the system has a 1.2 MHz A-scan rate and ~8.5 µm axial resolution in tissue. The micromotor balloon catheter enables circumferential imaging of the esophagus at 240 frames per second (fps) with a ~30 µm (FWHM) spot size. Volumetric imaging is achieved by proximal pullback of the micromotor assembly within the balloon at 1.5 mm/sec. Volumetric data consisting of 4200 circumferential images of 5,000 A-scans each over a 2.6 cm length, covering a ~13 cm(2) area is acquired in <18 seconds. A non-rigid image registration algorithm is used to suppress motion artifacts from non-uniform rotational distortion (NURD), cardiac motion or respiration. En face OCT images at various depths can be generated. OCT angiography (OCTA) is computed using intensity decorrelation between sequential pairs of circumferential scans and enables three-dimensional visualization of vasculature. Wide area volumetric OCT and OCTA imaging of the swine esophagus in vivo is demonstrated.
Circumferential Stent Fracture: Novel Detection and Treatment with the Use of StentBoost
Ramegowda, Raghu T.; Chikkaswamy, Srinivas B.; Bharatha, Ashalatha; Radhakrishna, Jayashree; Krishnanaik, Geetha B.; Nanjappa, Manjunath C.; Panneerselvam, Arunkumar
2012-01-01
Circumferential stent fracture is extremely uncommon, and in rare cases, it can cause stent thrombosis. Recognizing stent fracture can be difficult on conventional fluoroscopy because of poor stent radiopacity. We found that StentBoost image acquisition yields improved visibility of stent struts, enabling the identification of stent fracture and the precise positioning of new stents over previously stented segments.
Hulshoff, J. B.; Faiz, Z.; Karrenbeld, A.; Kats-Ugurlu, G.; Burgerhof, J. G. M.; Smit, J. K.; Plukker, J. Th. M.
2015-01-01
Background. Circumferential resection margins (CRM) for esophageal cancer (EC), defined by the College of American Pathologists (CAP; >0 mm) or the Royal College of Pathologists (RCP; >1 mm) as tumor-free (R0), are based on a surgery-alone approach. We evaluated the usefulness of both definitions in
Optimization of the axial compressor flow passage to reduce the circumferential distortion
Popov, G.; Kolmakova, D.; Shklovets, A.; Ermakov, A.
2015-08-01
This work is motivated by the necessity to reduce the effects of the flow circumferential distortion in the flow passage of the aircraft gas turbine engine (GTE). In previous research, the authors have proposed the approaches to decrease of the flow circumferential distortion arising from the mid-support racks of GTE compressor and having a negative impact on the blade rows, located upstream. In particular, the idea of introducing the circumferentially non-uniform blade pitch and profile stagger angle of guide vanes located in front of the support was contributed in order to redistribute the flow and decrease the dynamic stresses in the rotor wheel of the same stage. During the research presented in this paper, another principal of reduction of the flow circumferential distortion was chosen. Firstly, the variants of upgrading the existing support racks were found. Secondly, the new design of support was offered. Both the first and the second version of the support design variation took into account the availability of technological and structural limitations associated with the location of oil pipes, springs and others elements in the support racks. Investigations of modified design showed that the support with altered racks provides a reduction of dynamic stresses by 20% at resonance with the most dangerous harmonic, and the new design of support can give the decrease of 30%.
Shallow crack effect on brittle fracture of RPV during pressurised thermal shock
International Nuclear Information System (INIS)
Ikonen, K.
1995-12-01
This report describes the study on behaviour of postulated shallow surface cracks in embrittled reactor pressure vessel subjected to pressurised thermal shock loading in an emergency core cooling. The study is related to the pressure vessel of a VVER-440 type reactor. Instead of a conventional fracture parameter like stress intensity factor or J integral the maximum principal stress distribution on a crack tip area is used as a fracture criteria. The postulated cracks locate circumferentially at the inner surface of the reactor pressure wall and they penetrate the cladding layer and open to the inner surface. Axisymmetric and semielliptical crack shapes were studied. Load is formed of an internal pressure acting also on crack faces and of a thermal gradient in the pressure vessel wall. Physical properties of material and loading data correspond real conditions in VVER-440 RPV. The study was carried out by making lot of 2D- and 3D- finite element calculations. Analysing principles and computer programs are explained. Except of studying the shallow crack effect, one objective of the study has also been to develop further expertise and the in-house developed computing system to make effectively elastic-plastic fracture mechanical analyses for real structures under complicated loads. Though the study concerns VVER-440 RPV, the results are of more general interest especially related to thermal loads. (orig.) (11 refs.)
The effect of texture on delayed hydride cracking in Zr-2.5Nb alloy
Energy Technology Data Exchange (ETDEWEB)
Resta Levi, R.; Sagat, S
1999-09-01
Pressure tubes for CANDU reactors are made of Zr-2.5Nb alloy. They are produced by hot extrusion followed by cold work, which results in a material with a pronounced crystallographic texture with basal plane normals of its hexagonal structure around the circumferential direction. Under certain conditions, this material is susceptible to a cracking mechanism called delayed hydride cracking (DHC). Our work investigated the susceptibility of Zr-2.5Nb alloy pressure tube to DHC in this pressure tube material, in terms of crystallographic texture and grain shape. The results are presented in terms of crack velocity obtained on different planes and directions of the pressure tube. The results show that it is more difficult for a crack to propagate at right angles to crystallographic basal planes (which are close to the precipitation habit plane of hydrides) than for it to propagate parallel to the basal plane. However, if the cracking plane is oriented parallel to preexisting hydrides (hydrides formed as a result of the manufacturing process), the crack propagates along these hydrides easily, even if the hydride habit planes are not oriented favourably. (author)
Analysis and experimental validation of through-thickness cracked large-scale biaxial fracture tests
International Nuclear Information System (INIS)
Wiesner, C.S.; Goldthorpe, M.R.; Andrews, R.M.; Garwood, S.J.
1999-01-01
Since 1984 TWI has been involved in an extensive series of tests investigating the effects of biaxial loading on the fracture behaviour of A533B steel. Testing conditions have ranged from the lower to upper shelf regions of the transition curve and covered a range of biaxiality ratios. In an attempt to elucidate the trends underlying the experimental results, finite element-based mechanistic models were used to analyse the effects of biaxial loading. For ductile fracture, a modified Gunson model was used and important effects on tearing behaviour were found for through thickness cracked wide plates, as observed in upper shelf tests. For cleavage fracture, both simple T-stress methods and the Anderson-Dodds and Beremin models were used. Whilst the effect of biaxiality on surface cracked plates was small, a marked effect of biaxial loading was found for the through-thickness crack. To further validate the numerical predictions for cleavage fracture, TWI have performed an additional series of lower shelf through thickness cracked biaxial wide plate fracture tests. These tests were performed using various biaxiality loading conditions varying from simple uniaxial loading, through equibiaxial loading, to a biaxiality ratio equivalent to a circumferential crack in a pressure vessel. These tests confirmed the predictions that there is a significant effect of biaxial loading on cleavage fracture of through thickness cracked plate. (orig.)
Relevance of plastic limit loads to reference stress approach for surface cracked cylinder problems
International Nuclear Information System (INIS)
Kim, Yun-Jae; Shim, Do-Jun
2005-01-01
To investigate the relevance of the definition of the reference stress to estimate J and C* for surface crack problems, this paper compares finite element (FE) J and C* results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface cracks and finite internal axial cracks are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (i) a local limit load (ii), a global limit load, (iii) a global limit load determined from the FE limit analysis, and (iv) the optimised reference load. It is found that the reference stress based on a local limit load gives overall excessively conservative estimates of J and C*. Use of a global limit load clearly reduces the conservatism, compared to that of a local limit load, although it can sometimes provide non-conservative estimates of J and C*. The use of the FE global limit load gives overall non-conservative estimates of J and C*. The reference stress based on the optimised reference load gives overall accurate estimates of J and C*, compared to other definitions of the reference stress. Based on the present findings, general guidance on the choice of the reference stress for surface crack problems is given
International Nuclear Information System (INIS)
Khoroshun, L.P.
1995-01-01
The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero
Examination of the SG tube fatigue cracking at Fessenheim unit no.2 of EDF
International Nuclear Information System (INIS)
Boccanfuso, M.; Lorthios, J.; Thebault, Y.; Bruyere, B.; Duisabeau, L.; Herms, E.
2015-01-01
In February 2008, a primary-to-secondary leak occurred at Fessenheim Unit No.2 on a steam generator. A circumferential fatigue crack was observed at the upper tube support plate level of the R12C62 tube although the stability ratio evaluation performed to take into account some prior international events, concluded that this tube had no risk of fluid-elastic instability. A new tube pull process was developed and performed by AREVA in 2011 just before the SG replacement. The extraction at the uppermost TSP elevation was a first occurrence in the French EDF PWR. Destructive examinations were carried out in the EDF hot laboratory of CEIDRE/Chinon in order to characterize damage mechanisms at the initiation and propagation stage. The document relates the major results of laboratory examinations leading us to exclude the fluid-elastic instability scenario as previously reported in North-Anna (1987) and Mihama (1991) tube rupture incidents. Results analysis with particular focus on the fracture surface description using Scanning Electron microscopy observations and metallurgical investigations provide new elements concerning the aggravating factors of fatigue damage. Fracture surface investigations reveal that the circumferential crack was due to high cycle fatigue with a very low stress intensity factor. Some aggravating factors like intergranular corrosion appeared to be critical for the fatigue cracking initiation stage. The deterioration was also largely promoted by the lack of tube support at the Anti-Vibration Bars
Pan, Jie; Li, Lijun; Qian, Lie; Zhou, Wei; Tan, Jun; Zou, Le; Yang, Mingjie
2011-02-15
via Mini-TLIF, the outcome of which is equally gratifying to that of instrumented slip reduction and traditional midline approach. There is no need to fully reduce the slipped vertebrae. Circumferential release contributes to achieving spontaneous slip reduction partially, which aids sufficiently in the surgical treatment of low-grade isthmic spondylolisthesis.
Stage I surface crack formation in thermal fatigue: A predictive multi-scale approach
International Nuclear Information System (INIS)
Osterstock, S.; Robertson, C.; Sauzay, M.; Aubin, V.; Degallaix, S.
2010-01-01
A multi-scale numerical model is developed, predicting the formation of stage I cracks, in thermal fatigue loading conditions. The proposed approach comprises 2 distinct calculation steps. Firstly, the number of cycles to micro-crack initiation is determined, in individual grains. The adopted initiation model depends on local stress-strain conditions, relative to sub-grain plasticity, grain orientation and grain deformation incompatibilities. Secondly, 2-4 grains long surface cracks (stage I) is predicted, by accounting for micro-crack coalescence, in 3 dimensions. The method described in this paper is applied to a 500 grains aggregate, loaded in representative thermal fatigue conditions. Preliminary results provide quantitative insight regarding position, density, spacing and orientations of stage I surface cracks and subsequent formation of crack networks. The proposed method is fully deterministic, provided all grain crystallographic orientations and micro-crack linking thresholds are specified. (authors)
Fatigue crack growth in 2024-T3 aluminum under tensile and transverse shear stresses
Viz, Mark J.; Zehnder, Alan T.
1994-01-01
The influence of transverse shear stresses on the fatigue crack growth rate in thin 2024-T3 aluminum alloy sheets is investigated experimentally. The tests are performed on double-edge cracked sheets in cyclic tensile and torsional loading. This loading generates crack tip stress intensity factors in the same ratio as the values computed for a crack lying along a lap joint in a pressurized aircraft fuselage. The relevant fracture mechanics of cracks in thin plates along with the details of the geometrically nonlinear finite element analyses used for the test specimen calibration are developed and discussed. Preliminary fatigue crack growth data correlated using the fully coupled stress intensity factor calibration are presented and compared with fatigue crack growth data from pure delta K(sub I)fatigue tests.
Evaluation and Observation of Autogenous Healing Ability of Bond Cracks along Rebar
Directory of Open Access Journals (Sweden)
Choonghyun Kang
2014-04-01
Full Text Available Micro cracks occurring in concrete around tensile rebar is well known latent damage phenomenon. These micro cracks develop, and can be detected after reaching the surface of the concrete. Detection of these cracks before they are fully formed is preferable, but observing the whole crack structure is difficult. Another problem is repairing micro cracks under the concrete surface. The autogenous ability of bond cracks along rebar was evaluated using the air permeability test. Air permeability coefficients were measured before and after tensile loading, and experimental air permeability coefficients became larger near cracks along rebar as a result of tensile loading. Recuring for 28 days after tensile loading made the air permeability coefficients smaller, but this restriction only occurred during water recuring. Observation of crack patterns helped the understanding of change in the air permeability coefficients. Several small cracks along rebar were observed after tensile loading, and most cracks along rebar were not found after water recuring. On the other hand, the crack pattern did not change after air recuring. These results indicate that bond cracks along rebar can be closed by autogenous healing, and cause the air permeability coefficients.
International Nuclear Information System (INIS)
Dienes, J.K.
1993-01-01
Although it is possible to simulate the ground blast from a single explosive shot with a simple computer algorithm and appropriate constants, the most commonly used modelling methods do not account for major changes in geology or shot energy because mechanical features such as tectonic stresses, fault structure, microcracking, brittle-ductile transition, and water content are not represented in significant detail. An alternative approach for modelling called Statistical Crack Mechanics is presented in this paper. This method, developed in the seventies as a part of the oil shale program, accounts for crack opening, shear, growth, and coalescence. Numerous photographs and micrographs show that shocked materials tend to involve arrays of planar cracks. The approach described here provides a way to account for microstructure and give a representation of the physical behavior of a material at the microscopic level that can account for phenomena such as permeability, fragmentation, shear banding, and hot-spot formation in explosives
CERN. Geneva. Audiovisual Unit; Singh, Simon
2002-01-01
In the back of 'The Code Book', a history of cryptography, Simon Singh included a series of 10 encoded messages, each from a different period of history. The first person to crack all 10 messages would win a prize of Â£10,000. Now that the prize has been won, Simon can reveal the story behind the Cipher Challenge. Along the way he will show how mathematics can be used to crack codes, the role it played in World War Two and how it helps to guarantee security in the Information Age.
Effect of fully and semi austempering treatment on the fatigue properties of ductile cast iron
International Nuclear Information System (INIS)
Kim, Min Gun; Lim, Bok Kyu; Hwang, Jung Gak; Kim, Dong Youl
2005-01-01
Single phase bainite structure which is obtained by the conventional austempering treatment reduces the ductility of ductile cast iron. Because of the reduction of ductility it is possible to worsen the fatigue properties. Therefore, semi austempered ductile iron which is treated from α+γ is prepared to investigate the static strength and fatigue properties in comparison with fully austempered ductile iron (is treated from γ). In spite of semi austempered ductile iron shows the 86% increase of ductility. Also, semi austempered ductile iron shows the higher fatigue limit and lower fatigue crack growth rate as compared with fully austempered ductile iron. By the fractographical analysis, it is revealed that the ferrite obtained by semi austempering process brings about the plastic deformation (ductile striation) of crack tip and gives the prior path of crack propagation. The relatively low crack growth rate in semi austempered specimen is caused by above fractographical reasons
International Nuclear Information System (INIS)
Simonen, F.A.; Garnich, M.R.; Simonen, E.P.; Bian, S.H.; Nomura, K.K.; Anderson, W.E.; Pedersen, L.T.
1986-04-01
A fracture mechanics model was developed at the Pacific Northwest Laboratory (PNL) to predict the behavior of a reactor pressure vessel following a through-wall crack that occurs during a pressurized thermal shock (PTS) event. This study, which contributed to a US Nuclear Regulatory Commission (NRC) program to study PTS risk, was coordinated with the Integrated Pressurized Thermal Shock (IPTS) Program at Oak Ridge National Laboratory (ORNL). The PNL fracture mechanics model uses the critical transients and probabilities of through-wall cracks from the IPTS Program. The PNL model predicts the arrest, reinitiation, and direction of crack growth for a postulated through-wall crack and thereby predicts the mode of vessel failure. A Monte-Carlo type of computer code was written to predict the probabilities of the alternative failure modes. This code treats the fracture mechanics properties of the various welds and plates of a vessel as random variables. Plant-specific calculations were performed for the Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2 reactor pressure vessels for the conditions of postulated transients. The model predicted that 50% or more of the through-wall axial cracks will turn to follow a circumferential weld. The predicted failure mode is a complete circumferential fracture of the vessel, which results in a potential vertically directed missile consisting of the upper head assembly. Missile arrest calculations for the three nuclear plants predict that such vertical missiles, as well as all potential horizontally directed fragmentation type missiles, will be confined to the vessel enclosre cavity. The PNL failure mode model is recommended for use in future evaluations of other plants, to determine the failure modes that are most probable for postulated PTS events
Microstructural modelling of creep crack growth from a blunted crack
Onck, P.R.; Giessen, E. van der
1998-01-01
The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the
Fatigue crack propagation under elastic plastic medium at elevated temperature
International Nuclear Information System (INIS)
Asada, Y.; Yuuki, R.; Sakon, T.; Sunamoto, D.; Tokimasa, K.; Makino, Y.; Kitagawa, M; Shingai, K.
1980-01-01
The purposes of the present study are to establish the testing method to obtain compatible data on the low cycle fatigue crack propagation at elevated temperature, and to investigate the parameter controlling the crack propagation rate. In the present study, the preliminary experiments have been carried out on low cycle fatigue crack propagation behaviour in type 304 stainless steel in air at 550 0 C, using two types of specimen with a through thickness notch. Both strain controlled and stress controlled fatigue tests have been done under a fully reversed strain or stress cycling. The data obtained are correlated with some fracture mechanics parameters and are discussed with the appropriate parameter for evaluating the low cycle fatigue crack propagation behaviour at elevated temperature. (author)
International Nuclear Information System (INIS)
Norris, D.M. Jr.
1977-01-01
Ductile fracture in nuclear pressure vessel steel was characterized using a computer model of material damage. The model predicts crack initiation and growth and contains constants that are set by computer simulation of the following fracture tests: the simple tension test, the circumferentially notched round tension test, the blunt-notched compact tension test, and the Charpy V-notch test. The simulations provide the stress and strain states of these tests at fracture. The major goal of our characterization program is to determine the correlation between Charpy toughness and fracture toughness
Creep crack growth in phosphorus alloyed oxygen free copper
Energy Technology Data Exchange (ETDEWEB)
Wu, Rui; Seitisleam, Facredin (Swerea KIMAB (Sweden)); Sandstroem, Rolf; Jin, Lai-Zhe (Materials Science and Engineering, Royal Inst. of Technology (Sweden))
2011-01-15
Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial
Creep crack growth in phosphorus alloyed oxygen free copper
International Nuclear Information System (INIS)
Wu, Rui; Seitisleam, Facredin; Sandstroem, Rolf; Jin, Lai-Zhe
2011-01-01
Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial
A numerical analysis of crack growth in brittle microcracking composites
International Nuclear Information System (INIS)
Biner, S.B.
1993-01-01
A set of numerical analyses of crack growth was performed to elucidate the mechanism of microcracking on the observed fracture behavior of brittle solids and composites. The random nucleation, orientation and size effects of discrete microcracks and resulting interactions are fully accounted for in a hybrid finite element model. The results indicate that the energy expenditure due the microcrack nucleation seems not to contribute significantly to the resistance to crack growth. The main controlling parameter appears to be elastic interaction of the microcracks with the main crack in the absence of a reinforcing phase; therefore, the microcrack density plays an important role. In the case of the composites, the interaction of the main crack with the stress fields of the reinforcing phase, rather than interaction of microcracks, is the controlling parameter for the resistance to the crack growth even in the presence of a large population of microcracks. It will be also shown that the crack branching and crack kinking can readily develop as a result of microcracking
Linear Cracking in Bridge Decks
2018-03-01
Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete de...
Energy Technology Data Exchange (ETDEWEB)
Sasidharan, Sumesh; Arunachalam, Veerappan; Subramaniam, Shanmugam [Dept. of Mechanical Engineering, National Institute of Technology, Tiruchirappalli (India)
2017-02-15
Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked 90 .deg. pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.
International Nuclear Information System (INIS)
1986-01-01
The participants of the conference heard 36 papers of which 13 were incorporated in INIS. The incorporated papers deal with the quality control of the equipment of nuclear power plants, with technical specifications and possibilities of diverse crack detection devices, as well as with personnel training for nondestructive materials testing. (E.S.)
Adaptive Road Crack Detection System by Pavement Classification
Directory of Open Access Journals (Sweden)
Alejandro Amírola
2011-10-01
Full Text Available This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement.
International Nuclear Information System (INIS)
Miyazaki, Noriyuki; Watanabe, Takayuki; Yagawa, Genki.
1982-03-01
A finite element computer program EPAS-J1 was developed to calculate the stress intensity factors of three-dimensional cracks. In the program, the stress intensity factor is determined by the virtual crack extension method together with the distorted elements allocated along the crack front. This program also includes the connection elements based on the Lagrange multiplier concept to connect such different kinds of elements as the solid and shell elements, or the shell and beam elements. For the structure including three-dimensional surface cracks, the solid elements are employed only at the neighborhood of a surface crack, while the remainder of the structure is modeled by the shell or beam elements due to the reason that the crack singularity is very local. Computer storage and computational time can be highly reduced with the application of the above modeling technique for the calculation of the stress intensity factors of the three-dimensional surface cracks, because the three-dimensional solid elements are required only around the crack front. Several numerical analyses were performed by the EPAS-J1 program. At first, the accuracies of the connection element and the virtual crack extension method were confirmed using the simple structures. Compared with other techniques of connecting different kinds of elements such as the tying method or the method using anisotropic plate element, the present connection element is found to provide better results than the others. It is also found that the virtual crack extension method provides the accurate stress intensity factor. Furthermore, the results are also presented for the stress intensity factor analyses of cylinders with longitudinal or circumferential surface cracks using the combination of the various kinds of elements together with the connection elements. (author)
Crack closure, a literature study
Holmgren, M.
1993-08-01
In this report crack closure is treated. The state of the art is reviewed. Different empirical formulas for determining the crack closure are compared with each other, and their benefits are discussed. Experimental techniques for determining the crack closure stress are discussed, and some results from fatigue tests are also reported. Experimental data from the literature are reported.
Skin resurfacing in a circumferential full thickness burn to the penis: lessons learnt.
Jabir, Shehab; Frew, Quentin; Thompson, Richard; Dziewulski, Peter
2013-08-13
A circumferential full-thickness burn to the penis is a rarely encountered injury. However, when it does occur, it proves a management challenge to the plastic and burns surgeon in terms of reconstruction. This is due to the need of not only regaining adequate function of the organ, but also because of the need for a pleasing aesthetic outcome. Split-skin grafts have been utilised successfully to resurface full thickness burns of the penis and have given good results. Yet the success of split-skin grafts, especially those applied to an anatomically challenging region of the body such as the penis, depends on a number of carefully thought-out steps. We discuss the case of a circumferential full-thickness burn to the penis which was treated with split-skin grafting and highlight important pitfalls that the plastic and burns surgeon need to be aware of to ensure a successful outcome.
ISSLS prize winner: cost-effectiveness of two forms of circumferential lumbar fusion
DEFF Research Database (Denmark)
Freeman, Brian J C; Steele, Nicholas A; Sach, Tracey H
2007-01-01
employment was also monitored. Bootstrapped mean differences in discounted costs and benefits were generated in order to explore cost-effectiveness. RESULTS: A significant cost difference of pound 1950 (95% CI, pound 849 to pound 3145) in favor of FRA was found. Mean QALYs per patient over the 24-month trial......STUDY DESIGN: Economic evaluation alongside a prospective, randomized controlled trial from a secondary care National Health Service (NHS) perspective. OBJECTIVE: To determine the cost-effectiveness of titanium cages (TC) compared with femoral ring allografts (FRA) in circumferential lumbar spinal...... is less effective and, all things being equal, is assumed more costly than FRA. METHODS: Eighty-three patients were randomly allocated to receive either the TC or FRA as part of a circumferential lumbar fusion between 1998 and 2002. NHS costs related to the surgery and revision surgery needed during...
American Society for Testing and Materials. Philadelphia
2007-01-01
1.1 A qualitative estimate of the residual circumferential stress in thin-walled tubing may be calculated from the change in outside diameter that occurs upon splitting a length of the tubing. This practice assumes a linear stress distribution through the tube wall thickness and will not provide an estimate of local stress distributions such as surface stresses. (Very high local residual stress gradients are common at the surface of metal tubing due to cold drawing, peening, grinding, etc.) The Hatfield and Thirkell formula, as later modified by Sachs and Espey, provides a simple method for calculating the approximate circumferential stress from the change in diameter of straight, thin-walled, metal tubing. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Circumferential Ciliary Body Cysts Presenting as Acute Pigment Dispersion and Ocular Hypertension.
Sarıgül Sezenöz, Almila; Güngör, Sirel Gür; Kıratlı, Hayyam; Akman, Ahmet
2017-09-15
To report a case of circumferential neuroepithelial cyst of the ciliary body presenting with pigment dispersion (PD) and ocular hypertension. 48-year-old female patient presented with a complaint of pain in the left eye. On examination, visual acuity of the left eye was 0.9, and the intraocular pressure was 48 mmHg. Biomicroscopic anterior segment examination of the left eye revealed 4+ pigmented cells in the anterior chamber. Active PD from the pupillary region at 11 o'clock was noticed at the time of the examination. Ultrasound biomicroscopy demonstrated 360º cystic lesions of the ciliary body in the left eye. The patient was diagnosed as neuroepithelial cyst of the ciliary body. Our case is unique as it is the first case of circumferential neuroepithelial ciliary body cyst presenting with acute PD and ocular hypertension.
Nonlinear Analysis of Two-phase Circumferential Motion in the Ablation Circumstance
Xiao-liang, Xu; Hai-ming, Huang; Zi-mao, Zhang
2010-05-01
In aerospace craft reentry and solid rocket propellant nozzle, thermal chemistry ablation is a complex process coupling with convection, heat transfer, mass transfer and chemical reaction. Based on discrete vortex method (DVM), thermal chemical ablation model and particle kinetic model, a computational module dealing with the two-phase circumferential motion in ablation circumstance is designed, the ablation velocity and circumferential field can be thus calculated. The calculated nonlinear time series are analyzed in chaotic identification method: relative chaotic characters such as correlation dimension and the maximum Lyapunov exponent are calculated, fractal dimension of vortex bulbs and particles distributions are also obtained, thus the nonlinear ablation process can be judged as a spatiotemporal chaotic process.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sung Ho; Ha, Tae Woong [Gachon University, Seongnam (Korea, Republic of)
2016-05-15
The circumferential-groove seal is commonly used in various turbopumps to reduce leakage. The main goal of this paper is to develop the method of three-dimensional CFD analysis for determining leakage and rotordynamic coefficients of the circumferential-groovepump seal. A relative coordinate system was defined for steady-state simulation to calculate the velocity and pressure distributions of the seal clearance at each rotor whirl speed. Instead of setting the inlet and outlet pressures as the boundary conditions in the three dimensional CFD analysis, as it is more commonly done, we used the inlet velocity and outlet pressure obtained from a preliminary two dimensional CFD analysis. For prediction leakage, the presented analysis shows improvement from the bulk-flow model analysis. For the prediction of rotordynamic coefficients of K, k and C, the presented analysis provides results in closer agreement with the experimental values than those of the bulk-flow model analysis at several rotor speeds.
Multipartite fully nonlocal quantum states
International Nuclear Information System (INIS)
Almeida, Mafalda L.; Cavalcanti, Daniel; Scarani, Valerio; Acin, Antonio
2010-01-01
We present a general method for characterizing the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully nonlocal according to a given partition, as well as being (genuinely) multipartite fully nonlocal, are derived. These conditions allow us to identify all completely connected graph states as multipartite fully nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully nonlocal.
Effects of friction and high torque on fatigue crack propagation in Mode III
Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.
1982-12-01
Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are
Burnout in a channel with non-uniform circumferential heat flux
International Nuclear Information System (INIS)
Lee, D.H.
1966-03-01
Burnout experiments are reported for uniform flux and circumferential flux tilt (maximum/average flux about 1.25) with tubes and annuli, all the experiments having uniform axial heating. These show similar results, the burnout power with flux tilt being within 10% of that with uniform flux. For the same mean exit steam quality, the local maximum flux is higher than the predicted burnout value and generally a better prediction is obtained using the average flux. (author)
Effects of friction and high torque on fatigue crack propagation in mode III
International Nuclear Information System (INIS)
Nayeb-Hashemi, H.; McClintock, F.A.; Ritchie, R.O.
1982-01-01
Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (R /SUB B/ 88, 590 MN/m 2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) /SUB III/ can be related to the alternating stress intensity factor ΔK /SUB III/ for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (about 10 -6 to 10 -2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) /SUB III/ and ΔK /SUB III/ is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity GAMMA /SUB III/, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces A micro-mechanical model for the main radial Mode III growth is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔGAMMA /SUB III/) if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI 4140 steel from 10 -6 to 10 -2 mm per cycle
Esophageal circumferential en bloc endoscopic submucosal dissection: assessment of a new technique.
Barret, Maximilien; Pratico, Carlos Alberto; Beuvon, Frédéric; Mangialavori, Luigi; Chryssostalis, Ariane; Camus, Marine; Chaussade, Stanislas; Prat, Frédéric
2013-10-01
Endoscopic esophageal piecemeal mucosectomy for high-grade dysplasia on Barrett's esophagus leads to suboptimal histologic evaluation, as well as recurrence on remaining mucosa. Circumferential en bloc mucosal resection would significantly improve the management of dysplastic Barrett's esophagus. Our aim was to describe a new method of esophageal circumferential endoscopic en bloc submucosal dissection (CESD) in a swine model. After submucosal injection, circumferential incision was performed at each end of the esophageal segment to be removed. Mechanical submucosal dissection was performed from the proximal to the distal incision, using a mucosectomy cap over the endoscope. The removed mucosal ring was retrieved. Clinical, endoscopic, and histologic data were prospectively collected. Esophageal CESD was conducted on 5 pigs. A median mucosal length of 6.5 cm (range, 4 to 8 cm) was removed in the lower third of the esophagus. The mean duration of the procedure was 36 minutes (range, 17 to 80 min). No procedure-related complication, including perforation, was observed. All animals exhibited a mild esophageal stricture at day 7, and a severe symptomatic stricture at day 14. Necropsy confirmed endoscopic findings with cicatricial fibrotic strictures. On histologic examination, an inflammatory cell infiltrate, diffuse fibrosis reaching the muscular layer, and incomplete reepithelialization were observed. CESD enables expeditious resection and thorough examination of large segments of esophageal mucosa in safe procedural conditions, but esophageal strictures occur in the majority of the cases. Efficient methods for stricture prevention are needed for this technique to be developed in humans.
Sharma, Umesh; Yadav, Sher Singh; Tomar, Vinay; Garg, Amit
2016-01-01
This is a prospective study of the use and efficacy of a novel technique of circumferential tubularised lingual mucosal graft (LMG) in obliterative and near obliterative bulbar urethral stricture of >2 cm where excisional and augmented anastomotic urethroplasty are not feasible. The stenotic urethral segment was opened dorsally in midline and fibrosed urethra was excised taking care to preserve the healthy spongiosum tissue. LMG (av. Length 3 cm) was placed from one end of corporal body towards spongy tissue in a circumferential manner. Another LMG was placed in similar manner to deal with longer stricture. The urethra was tubularised over 14 Fr silicone catheter. A total of 12 men, of mean age 47 years underwent this procedure. The mean follow up period was 11 months starting from July 2014 till manuscript submission. Follow up included voiding cystourethrogram at 3 weeks, cystoscopy at 3 months (one patient didn't turned up) and subsequent follow up. Mean stricture length was 4.66 cm (range, 3-8.5 cm) and mean operative time was 195 min. (range, 160 to 200 min.). The technique was successful (normal voiding with no need for any post-operative procedure) in 11(91.6%) patients. One patient developed early recurrence at 4 month of surgery and had anastomotic stricture which was successfully managed by direct visual internal urethrotomy. Single stage circumferential tubularised graft urethroplasty is an excellent technique for strictures that include segments of obliterative and near obliterative diseased urethra. It provide a wider neourethra than patch graft urethroplasty.
Functional evaluation of repairs to circumferential labral lesions of the glenoid - Case series
Directory of Open Access Journals (Sweden)
Alexandre Tadeu do Nascimento
Full Text Available ABSTRACT OBJECTIVE: To evaluate the clinical results among patients undergoing arthroscopic repair of circumferential labral lesions. METHODS: This was a retrospective study on 10 patients who underwent arthroscopic repair to circumferential labral lesions of the shoulder, between September 2012 and September 2015. The patients were evaluated by means of the Carter-Rowe score, DASH score, UCLA score, visual analog scale (VAS for pain and Short-Form 36 (SF36. The average age at surgery was 29.6 years. The mean follow-up was 27.44 months (range: 12-41.3. RESULTS: The mean score was 16 points for DASH; 32 points for UCLA, among which six patients (60% had excellent results, three (30% good and one (10% poor; 1.8 points for VAS, among which nine patients (90% had minor pain and one (10% moderate pain; 79.47 for SF-36; and 92.5 for Carter-Rowe, among which nine patients (90% had excellent results and one (10% good. Joint degeneration was present in one case (10%, of grade 1. We did not observe any significant complications, except for grade 1 glenohumeral arthrosis, which one patient developed after the operation. CONCLUSION: Arthroscopic repair of circumferential labral lesions of the shoulder through use of absorbable anchors is effective, with improvements in all scores applied, and it presents low complication rates. Cases associated with glenohumeral dislocation have lower long-term residual pain.
Energy Technology Data Exchange (ETDEWEB)
Lubicz, Boris [Erasme University Hospital, Department of Neuroradiology, Brussels (Belgium); Hopital Erasme, Service de Radiologie (EA 2691), Brussels (Belgium); Collignon, Laurent; Baleriaux, Danielle [Erasme University Hospital, Department of Neuroradiology, Brussels (Belgium); Lefranc, Florence; Bruneau, Michael; Brotchi, Jacques; Witte, Olivier de [Erasme University Hospital, Department of Neurosurgery, Brussels (Belgium)
2008-06-15
We report our experience with endovascular treatment (EVT) of circumferential and fusiform intracranial aneurysms by a reconstructive approach with self-expandable stents. A retrospective review of our prospectively maintained database identified all circumferential and fusiform aneurysms treated by a reconstructive endovascular approach over a 3-year period. Clinical charts, procedural data, and angiographic results were reviewed. From April 2004 to May 2007, 13 patients were identified, of whom 12 were asymptomatic and 1 presented with a subarachnoid hemorrhage. Two patients with an aneurysm {<=}2 mm were treated by stent-within-stent placement without coiling (group 1). In 11 patients with a larger aneurysm, stenting with subsequent coiling was performed (group 2). In this latter approach, a balloon was temporarily inflated within the stent to ensure safe coil delivery. All patients showed an excellent clinical outcome. Asymptomatic procedural complications occurred in three patients, two with cervical internal carotid artery dissection and one with retroperitoneal hematoma. In patients of group 1, the aneurysm had completely disappeared at 6 months. In patients of group 2, aneurysm occlusion was complete in three and incomplete in eight. Follow-up angiography in 12 patients showed four with further thrombosis, six with stable results, and two with minor recanalization. Circumferential and fusiform intracranial aneurysms may be treated by a reconstructive endovascular approach with self-expandable stents. In small aneurysms, a stent-within-stent technique is effective, whereas stenting and subsequent coiling is indicated in larger aneurysms. This therapeutic protocol is associated with good clinical and anatomical results. (orig.)
Directory of Open Access Journals (Sweden)
Qing Wei Li
2015-01-01
Full Text Available A soft sensor for oxide scales on the steam side of superheater tubes of utility boiler under uneven circumferential loading is proposed for the first time. First finite volume method is employed to simulate oxide scales growth temperature on the steam side of superheater tube. Then appropriate time and spatial intervals are selected to calculate oxide scales thickness along the circumferential direction. On the basis of the oxide scale thickness, the stress of oxide scales is calculated by the finite element method. At last, the oxide scale thickness and stress sensors are established on support vector machine (SMV optimized by particle swarm optimization (PSO with time and circumferential angles as inputs and oxide scale thickness and stress as outputs. Temperature and stress calculation methods are validated by the operation data and experimental data, respectively. The soft sensor is applied to the superheater tubes of some power plant. Results show that the soft sensor can give enough accurate results for oxide scale thickness and stress in reasonable time. The forecasting model provides a convenient way for the research of the oxide scale failure.
Top of tubesheet cracking in Bruce A NGS steam generator tubing - recent experience
International Nuclear Information System (INIS)
Clark, M.A.; Lepik, O.; Mirzai, M.; Thompson, I.
1998-01-01
During the Bruce A Nuclear Generating Station (BNGS-A) Unit 1 1997 planned outage, a dew point search method identified a leak in one steam generator(SG) tube. Subsequently, the tube was inspected with all available eddy current probes and removed for examination. The initial inspection results and metallurgical examination of the removed tube confirmed that the leak was due to intergranular attack/stress corrosion cracking (IGA/SCC) emanating from the secondary side of the tube at the top of the tubesheet location. Subsequently, eddy current and ultrasonic indications were found at the top of the tubesheet of other Alloy 600 SG tubes. To investigate the source of the indications and to validate the inspection probes, sections of 40 tubes with various levels of damage were removed. The metallurgical examination of the removed sections showed that both secondary side and primary side initiated, circumferential, stress corrosion cracking and intergranular attack occurred in the BNGS-A SG tubing. Significant degradation from both mechanisms was found, invariably located in the roll transition region of the top expansion joint between the tube and the tubesheet on the hot leg (304 degrees C) side of the tube. Various aspects of the failures and tube examinations are presented in this paper, including presentation of the cracking morphology, measured crack size distributions, and discussion of some factors possibly affecting the cracking. (author)
Assessment of thermal fatigue crack propagation in safety injection PWR lines
International Nuclear Information System (INIS)
Simos, N.; Reich, M.; Costantino, C.J.; Hartzman, M.
1990-01-01
Cyclic thermal stratification resulting in alternating thermal stresses in pipe cross sections has been identified as the primary cause of high cycle thermal fatigue failure. A number of piping lines in operating plants around the world, susceptible to thermal stratification, have experienced circumferential cracking as a result of high levels of alternating bending stresses. This paper addresses the mechanisms of crack initiation and crack growth and provides estimates of fatigue cycles to failure for a typical safety injection line with such cyclic load history. Utilizing a 3-D finite element analysis, the temperature profile and the corresponding thermal stress field of a complete thermal cycle in a safety injection line consisting of a horizontal pipe section and an elbow, is obtained. Since the observed cracking occurred in the region of the elbow-to-horizontal pipe weld, the analysis performed assessed (1) the impact of the level of local geometric discontinuities on the initiation of an inside surface flaw is greatest and (2) the number of thermal cycles required to drive a small surface crack through the pipe wall. 12 refs., 14 figs., 2 tabs
International Nuclear Information System (INIS)
West, S.L.; Nelson, D.Z.; Louthan, M.R. Jr.
1992-01-01
The secondary cooling water system pressure boundary of Savannah River Site reactors includes expansion joints utilizing a thin-wall bellows. While successfully used for over thirty years, an occasional replacement has been required because of the development of small, circumferential fatigue cracks in a bellows convolute. One such crack was recently shown to have initiated from a weld heat-affected zone liquation microcrack. The crack, initially open to the outer surface of the rolled and seam welded cylindrical bellows section, was closed when cold forming of the convolutes placed the outer surface in residual compression. However, the bellows was placed in tension when installed, and the tensile stresses reopened the microcrack. This five to eight grain diameter microcrack was extended by ductile fatigue processes. Initial extension was by relatively rapid propagation through the large-grained weld metal, followed by slower extension through the fine-grained base metal. A significant through-wall crack was not developed until the crack extended into the base metal on both sides of the weld. Leakage of cooling water was subsequently detected and the bellows removed and a replacement installed
Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
An, Gyubaek; Jeong, Se-Min; Park, Jeongung
2018-03-01
Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.
Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends
International Nuclear Information System (INIS)
Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K.; Martin, P.; Bureau, J.F.
2006-01-01
A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)
Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends
Energy Technology Data Exchange (ETDEWEB)
Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)]. E-mail: obrutskyl@aecl.ca; Martin, P. [NB Power, Point Lepreau NGS, Point Lepreau, New Brunswick (Canada)]. E-mail: PMartin@nbpower.com; Bureau, J.F. [Zetec, Quebec, Quebec (Canada)]. E-mail: jean-francois.bureau@zetec.com
2006-07-01
A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)
International Nuclear Information System (INIS)
Yang, Sun Ho
2001-01-01
The detection of axial cracks using conventional MFL pig is a significant challenge in the gas pipeline inspection. In this study, a technique using interaction of circumferentially induced torrents with axial stress corrosion crack is presented. The feasibility of this technique is investigated using finite element modeling. Finite element analysis of such interaction is a difficult problem in terms of both computation time and memory requirements. The challenges arise due to the nonlinearity of material properties, the small sire of tight cracks relative to that of the magnetizer, and also time stepping involved in modeling velocity effects. This paper presents an approach based on perturbation methods. The overall analysis procedure is divided into 4 simple steps that can be performed sequentially. Modeling results show that this technique can effectively detect colonies of SCC as well as single SCC
Wallhead, Ian R.; Edwards, Lyndon; Poole, Peter
1994-01-01
The optical method of caustics has been successfully extended to enable stress intensity factors as low as 1MPa square root of m to be determined accurately for central fatigue cracks in 2024-T3 aluminium alloy test panels. The feasibility of using this technique to study crack closure, and to determine the effective stress intensity factor range, Delta K(sub eff), has been investigated. Comparisons have been made between the measured values of stress intensity factor, K(sub caus), and corresponding theoretical values, K(sub theo), for a range of fatigue cracks grown under different loading conditions. The values of K(sub caus) and K(sub theo) were in good agreement at maximum stress, where the cracks are fully open, while K(sub caus) exceeded K(sub theo) at minimum stress, due to crack closure. However, the levels of crack closure and values of Delta K(sub eff) obtained could not account for the variations of crack growth rate with loading conditions. It is concluded that the values of Delta K(sub eff), based on caustic measurements in a 1/square root of r stress field well outside the plastic zone, do not fully reflect local conditions which control crack tip behavior.
Madan, S S; Boeree, N R
2003-12-01
Posterior lumbar interbody fusion (PLIF) restores disc height, the load bearing ability of anterior ligaments and muscles, root canal dimensions, and spinal balance. It immobilizes the painful degenerate spinal segment and decompresses the nerve roots. Anterior lumbar interbody fusion (ALIF) does the same, but could have complications of graft extrusion, compression and instability contributing to pseudarthrosis in the absence of instrumentation. The purpose of this study was to assess and compare the outcome of instrumented circumferential fusion through a posterior approach [PLIF and posterolateral fusion (PLF)] with instrumented ALIF using the Hartshill horseshoe cage, for comparable degrees of internal disc disruption and clinical disability. It was designed as a prospective study, comparing the outcome of two methods of instrumented interbody fusion for internal disc disruption. Between April 1994 and June 1998, the senior author (N.R.B.) performed 39 instrumented ALIF procedures and 35 instrumented circumferential fusion with PLIF procedures. The second author, an independent assessor (S.M.), performed the entire review. Preoperative radiographic assessment included plain radiographs, magnetic resonance imaging (MRI) and provocative discography in all the patients. The outcome in the two groups was compared in terms of radiological improvement and clinical improvement, measured on the basis of improvement of back pain and work capacity. Preoperatively, patients were asked to fill out a questionnaire giving their demographic details, maximum walking distance and current employment status in order to establish the comparability of the two groups. Patient assessment was with the Oswestry Disability Index, quality of life questionnaire (subjective), pain drawing, visual analogue scale, disability benefit, compensation status, and psychological profile. The results of the study showed a satisfactory outcome (scorelife questionnaire) score of 71.8% (28 patients) in
International Nuclear Information System (INIS)
Feburie, V.; Giot, M.; Granger, S.; Seynhaeve, J.M.
1992-06-01
The leaks through steam-generator cracks are the subject of a research carried out in cooperation between EDF and UCL. A software called ECREVISSE to predict the mass flow rate has been developed and has been successfully validated. The purpose of the paper is to present the mathematical model used in ECREVISSE as well as some comparison between the results and the presently available data. The model takes into account the persistence of some metastable liquid in the crack and the special flow pattern which appears in such particular geometry. Although the model involves the use of several correlations (friction, heat transfer), no adjustment of parameters against the data has been needed, neither in the single-phase part of the flow, or in the two-phase part. (authors). 8 figs., 1 tab., 20 refs
Delayed hydride cracking: alternative pre-cracking method
International Nuclear Information System (INIS)
Mieza, Juan I.; Ponzoni, Lucio M.E.; Vigna, Gustavo L.; Domizzi, Gladys
2009-01-01
The internal components of nuclear reactors built-in Zr alloys are prone to a failure mechanism known as Delayed Hydride Cracking (DHC). This situation has triggered numerous scientific studies in order to measure the crack propagation velocity and the threshold stress intensity factor associated to DHC. Tests are carried out on fatigued pre-crack samples to ensure similar test conditions and comparable results. Due to difficulties in implementing the fatigue pre-crack method it would be desirable to replace it with a pre-crack produced by the same process of DHC, for which is necessary to demonstrate equivalence of this two methods. In this work tests on samples extracted from two Zr-2.5 Nb tubes were conducted. Some of the samples were heat treated to obtain a range in their metallurgical properties as well as different DHC velocities. A comparison between velocities measured in test samples pre-cracked by fatigue and RDIH is done, demonstrating that the pre-cracking method does not affect the measured velocity value. In addition, the incubation (t inc ), which is the time between the application of the load and the first signal of crack propagation, in samples pre-cracked by RDIH, was measured. It was found that these times are sufficiently short, even in the worst cases (lower speed) and similar to the ones of fatigued pre-cracked samples. (author)
Energy Technology Data Exchange (ETDEWEB)
Lee, Nam Kwon [Department of Radiation Oncology, Korea University Medical Center, Korea University College of Medicine, Seoul (Korea, Republic of); Kim, Chul Yong, E-mail: kcyro@korea.ac.kr [Department of Radiation Oncology, Korea University Medical Center, Korea University College of Medicine, Seoul (Korea, Republic of); Park, Young Je; Yang, Dae Sik; Yoon, Won Sup [Department of Radiation Oncology, Korea University Medical Center, Korea University College of Medicine, Seoul (Korea, Republic of); Kim, Seon Hahn; Kim, Jin [Division of Colorectal Surgery, Department of Surgery, Korea University Medical Center, Korea University College of Medicine, Seoul (Korea, Republic of)
2014-02-15
Objective: To evaluate the prognostic implication of the negative conversion of predicted circumferential resection margin status before surgery in patients with locally advanced rectal cancer with predicted circumferential resection margin involvement. Methods: Thirty-eight patients (28 men, 10 women; median age, 61 years; age range, 39–80 years) with locally advanced rectal cancer with predicted circumferential resection margin involvement who underwent preoperative chemoradiotherapy followed by radical surgery were analyzed. Involvement of the circumferential resection margin was predicted on the basis of pre- and post-chemoradiotherapy magnetic resonance imaging. The primary endpoints were 3-year local recurrence-free survival and overall survival. Results: The median follow-up time was 41.1 months (range, 13.9–85.2 months). The negative conversion rate of predicted circumferential resection margin status after preoperative chemoradiotherapy was 65.8%. Patients who experienced negative conversion of predicted circumferential resection margin status had a significantly higher 3-year local recurrence-free survival rate (100.0% vs. 76.9%; P = 0.013), disease-free survival rate (91.7% vs. 59.3%; P = 0.023), and overall survival rate (96.0% vs. 73.8%; P = 0.016) than those who had persistent circumferential resection margin involvement. Conclusions: The negative conversion of the predicted circumferential resection margin status as predicted by magnetic resonance imaging will assist in individual risk stratification as a predictive factor for treatment response and survival before surgery. These findings may help physicians determine whether to administer more intense adjuvant chemotherapy or change the surgical plan for patients displaying resistance to preoperative chemoradiotherapy.
1984-01-01
alloys (2). [--I Fig. 6. Fatigue fracture in Nitrile- butadien rubber ( NBR ). Fig. 7. The characteristic features of fatigue fracture in press moulded...in plastics and even in rubber . It follows therefore, that fatigue fractures must also occur in the mineral layers of our earth or in the rock on...effective until the weakest point yields and forms a crack. To get a feeling for this process, you can imagine that the stressed article is made of rubber
Crumpacker, John R.
2009-01-01
Approved for public release, distribution unlimited Password cracking requires significant processing power, which in today's world is located at a workstation or home in the form of a desktop computer. Berkeley Open Infrastructure for Network Computing (BOINC) is the conduit to this significant source of processing power and John the Ripper is the key. BOINC is a distributed data processing system that incorporates client-server relationships to generically process data. The BOINC structu...
2003-01-01
MGS MOC Release No. MOC2-339, 23 April 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a pattern of polygonal cracks and aligned, elliptical pits in western Utopia Planitia. The picture covers an area about 3 km (about 1.9 mi) wide near 44.9oN, 274.7oW. Sunlight illuminates the scene from the left.
International Nuclear Information System (INIS)
MacDonald, P.E.; Broughton, J.M.
1975-03-01
Fuel pellets crack extensively upon irradiation due both to thermal stresses induced by power changes and at high burnup, to accumulation of gaseous fission products at grain boundaries. Therefore, the distance between the fuel and cladding will be circumferentially nonuniform; varying between that calculated for intact operating fuel pellets and essentially zero (fuel segments in contact with the cladding wall). A model for calculation of temperatures in cracked pellets is proposed wherein the effective fuel to cladding gap conductance is calculated by taking a zero pressure contact conductance in series with an annular gap conductance. Comparisons of predicted and measured fuel centerline temperatures at beginning of life and at extended burnup are presented in support of the model. 13 references
Reactor pressure vessel behaviour with a small crack in the cladding
International Nuclear Information System (INIS)
Fayolle, P.; Churier-Bossennec, H.; Faidy, C.
1990-01-01
This paper reports on fracture mechanic analysis of a PWR reactor pressure vessel with a 3.5 mm embedded circumferential crack in the cladding under a small lost of cooling accident transient. Different RTNDT level and effect of irradiation on material properties are considered. The study compares simplified one-dimensional and two-dimensional elastic approach and complete elastoplastic approach using J-parameter. The results show: good correlation between the different elastic approaches, important conservatism of the elastic approach compared to elastoplastic approach, no influence of irradiated material properties. The behavior of a vessel with this type of crack is acceptable for RTNDT less than 135 deg and safety injection temperature of 60 deg
Cracking hydrocarbons. [British patent
Energy Technology Data Exchange (ETDEWEB)
Heyl, G E
1926-05-06
The vapors from a still in which oils, coal tar, pitch, creosote, and c. or solid carbonaccous material such as coal or shale are cracked by being heated to 600/sup 0/ to 1000/sup 0/C. are passed through a fractionating column to remove high-boiling constituents which are passed into a second cracking still. The vapors from this still are treated to separate high-boiling fractions which are passed into a third still. The sills preferably contain removable troughs or liners, which are freed from carbon deposits either after removal from the still or by a scraping disc which is rotated in and moved along the trough. Oil to be cracked is forced by a pump through a preheater to a still. Vapours pass through a carbon separator and dephlegmator to a condenser. The reflux from the dephlegmator is forced by a pump to a still, the vapors from which pass through a carbon separator and a dephlegmator, the reflux from which is passed into a third still fitted with a separate carbon separator, dephlegmator and final condenser.
Ductile fracture mechanics methodology for complex cracks in nuclear piping
Energy Technology Data Exchange (ETDEWEB)
Zahoor, A.
1988-02-01
Limit load and J-integral estimation solutions are developed for circumferentially complex-cracked pipes in bending. The limit load solution is developed using thick-walled cylinder analysis which included the effects of flaw depth accurately. J-integral estimation solutions are developed that are suitable for a wide range of loading from linear elastic, elastic-plastic to net-section yielding of the flawed section. Mode I stress intensity factor solution is developed from experimental compliance data. Two types of J solutions are developed. First, J solutions for determining the J-resistance curve from single load-displacement record are presented. Next, elastic-plastic J solution in the format of EPRI J estimation scheme is presented. The latter solution was used to predict the load carrying capacity of complex-cracked pipes made of Type-304 stainless steel, Inconel 600, and A106 GrB materials. Predictions were compared against pipe tests to demonstrate the accuracy of the limit load and J estimation solutions.
Ductile fracture mechanics methodology for complex cracks in nuclear piping
International Nuclear Information System (INIS)
Zahoor, A.
1988-01-01
Limit load and J-integral estimation solutions are developed for circumferentially complex-cracked pipes in bending. The limit load solution is developed using thick-walled cylinder analysis which included the effects of flaw depth accurately. J-integral estimation solutions are developed that are suitable for a wide range of loading from linear elastic, elastic-plastic to net-section yielding of the flawed section. Mode I stress intensity factor solution is developed from experimental compliance data. Two types of J solutions are developed. First, J solutions for determining the J-resistance curve from single load-displacement record are presented. Next, elastic-plastic J solution in the format of EPRI J estimation scheme is presented. The latter solution was used to predict the load carrying capacity of complex-cracked pipes made of Type-304 stainless steel, Inconel 600, and A106 GrB materials. Predictions were compared against pipe tests to demonstrate the accuracy of the limit load and J estimation solutions. (orig.)
3D multiscale crack propagation using the XFEM applied to a gas turbine blade
Holl, Matthias; Rogge, Timo; Loehnert, Stefan; Wriggers, Peter; Rolfes, Raimund
2014-01-01
This work presents a new multiscale technique to investigate advancing cracks in three dimensional space. This fully adaptive multiscale technique is designed to take into account cracks of different length scales efficiently, by enabling fine scale domains locally in regions of interest, i.e. where stress concentrations and high stress gradients occur. Due to crack propagation, these regions change during the simulation process. Cracks are modeled using the extended finite element method, such that an accurate and powerful numerical tool is achieved. Restricting ourselves to linear elastic fracture mechanics, the -integral yields an accurate solution of the stress intensity factors, and with the criterion of maximum hoop stress, a precise direction of growth. If necessary, the on the finest scale computed crack surface is finally transferred to the corresponding scale. In a final step, the model is applied to a quadrature point of a gas turbine blade, to compute crack growth on the microscale of a real structure.
Modelling of crack chemistry in sensitized stainless steel in boiling water reactor environments
International Nuclear Information System (INIS)
Turnbull, A.
1997-01-01
An advanced model has been used to predict the chemistry and potential in a stress corrosion crack in sensitized stainless steel in a boiling water reactor (BWR) environment. The model assumes trapezoidal crack geometry, incorporates anodic reaction and cathodic reduction within the crack, and takes into account the limited solubility of cations in high temperature water. The results indicate that the crack tip potential is not independent of the external potential, and that the reactions on the walls of the crack must be included for reliable prediction. Accordingly, both the modelling assumptions of Ford and Andresen and of Macdonald and Urquidi-Macdonald, whilst having merit, are not fully satisfactory. Extended application of the model for improved prediction of stress corrosion crack growth rate is constrained by limitations in electrochemical data which are currently inadequate. (author)
Investigation of Cracks Found in Helicopter Longerons
Newman, John A.; Baughman, James M.; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
Modified Dugdale crack models - some easy crack relations
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang
1997-01-01
the same strength as a plain Dugdale model. The critical energy release rates Gamma_CR, however, become different. Expressions (with easy computer algorithms) are presented in the paper which relate critical energy release rates and crack geometry to arbitrary cohesive stress distributions.For future...... lifetime analysis of viscoelastic materials strain energy release rates, crack geometries, and cohesive stress distributions are considered as related to sub-critical loads sigma stress-deformation tests......The Dugdale crack model is widely used in materials science to predict strength of defective (cracked) materials. A stable Dugdale crack in an elasto-plastic material is prevented from spreading by uniformly distributed cohesive stresses acting in narrow areas at the crack tips. These stresses...
Cracking in thin films of colloidal particles on elastomeric substrates
Smith, Michael; Sharp, James
2012-02-01
The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)
The effective compliance of spatially evolving planar wing-cracks
Ayyagari, R. S.; Daphalapurkar, N. P.; Ramesh, K. T.
2018-02-01
We present an analytic closed form solution for anisotropic change in compliance due to the spatial evolution of planar wing-cracks in a material subjected to largely compressive loading. A fully three-dimensional anisotropic compliance tensor is defined and evaluated considering the wing-crack mechanism, using a mixed-approach based on kinematic and energetic arguments to derive the coefficients in incremental compliance. Material, kinematic and kinetic parametric influences on the increments in compliance are studied in order to understand their physical implications on material failure. Model verification is carried out through comparisons to experimental uniaxial compression results to showcase the predictive capabilities of the current study.
Crack retardation by load reduction during fatigue crack propagation
International Nuclear Information System (INIS)
Kim, Hyun Soo; Nam, Ki Woo; Ahn, Seok Hwan; Do, Jae Yoon
2003-01-01
Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction
Ductile crack growth simulation from near crack tip dissipated energy
International Nuclear Information System (INIS)
Marie, S.; Chapuliot, S.
2000-01-01
A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)
Elastoplastic analysis of surface cracks in pressure vessels using slip-line theory
International Nuclear Information System (INIS)
Keskinen, R.P.
1983-01-01
The paper considers the aspects of engineering application of SLF theory to long surface cracks in pressure vessels. Green's upper-bound SLF for a bend specimen with deep wedge-shaped notch of small flank angle is adopted to analyse the remaining ligament of the cracked section. The SLF involves only one unknown variable, i.e., the radius of a circular slip-line arc, which can be evaluated from the equilibrium condition across the ligament. The stress distribution across the ligament is easily computed by Hencky's theorem and the respective stress resultants produce the boundary conditions for the solution of the neighboring elastic material. The elastic solution readily yields the rotation of the crack edges, COA, and it in turn geometrically defines the applied CTOD. Comparison has proved their relation to the stress resultants identical with that following from the customary single plastic hinge model when Tresca's yield condition prevails and the tensile side plastic constraint factor of the hinge model is chosen as 1.7. The SLF approach is demonstrated for an internal circumferential surface crack subjected to thermal gradient and axial load representative of overpressurization and emergency cooling conditions of a pressure vessel. Analytical formulas relating COA and CTOD to applied loading are derived and CTOD-R curve based stable crack propagation is solved iteratively. Generic numerical results are presented for COA and CTOD under arbitrary loading combination. The risk of crack growth initiation appears to increase with the linear dimensions of the pressure vessel, but remains small for a chosen BWR application. For a long axial surface crack the approach agrees with a previous plastic hinge analysis by Ranta-Maunus et al. suggesting instability under certain combinations of thermal gradient and internal pressure. (orig./HP)
Cracking of anisotropic cylindrical polytropes
Energy Technology Data Exchange (ETDEWEB)
Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)
2017-06-15
We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)
Directory of Open Access Journals (Sweden)
Filippo Berto
2016-10-01
Full Text Available The torsional fatigue behaviour of circumferentially notched specimens made of austenitic stainless steel, SUS316L, and carbon steel, SGV410, characterized by different notch root radii has been recently investigated by Tanaka. In that contribution, it was observed that the total fatigue life of the austenitic stainless steel increases with increasing stress concentration factor for a given applied nominal shear stress amplitude. By using the electrical potential drop method, Tanaka observed that the crack nucleation life was reduced with increasing stress concentration, on the other hand the crack propagation life increased. The experimental fatigue results, originally expressed in terms of nominal shear stress amplitude, have been reanalysed by means of the local strain energy density (SED averaged over a control volume having radius R0 surrounding the notch tip. To exclude all extrinsic effects acting during the fatigue crack propagation phase, such as sliding contact and/or friction between fracture surfaces, crack initiation life has been considered in the present work. In the original paper, initiation life was defined in correspondence of a 0.1÷0.4-mm-deep crack. The control radius R0 for fatigue strength assessment of notched components, thought of as a material property, has been estimated by imposing the constancy of the averaged SED for both smooth and cracked specimens at NA = 2 million loading cycles
International Nuclear Information System (INIS)
Shim, Do Jun; Son, Beom Goo; Kim, Young Jin; Kim, Yun Jae
2004-01-01
To investigate relevance of the definition of the reference stress to estimate J and C * for surface crack problems, this paper compares FE J and C * results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface crack and finite internal axial crack are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (I) the local limit load, (II) the global limit load, (III) the global limit load determined from the FE limit analysis, and (IV) the optimised reference load. It is found that the reference stress based on the local limit load gives overall excessively conservative estimates of J and C * . Use of the global limit load clearly reduces the conservatism, compared to that of the local limit load, although it can provide sometimes non-conservative estimates of J and C * . The use of the FE global limit load gives overall non-conservative estimates of J and C * . The reference stress based on the optimised reference load gives overall accurate estimates of J and C * , compared to other definitions of the reference stress. Based on the present finding, general guidance on the choice of the reference stress for surface crack problems is given
International Nuclear Information System (INIS)
Dong, Cong; Li, Dongshuang; Zheng, Youqu; Li, Guoneng; Suo, Yange; Chen, Yaping
2016-01-01
Highlights: • The novel cothHXf with circumferential overlap and folded baffles is first proposed. • The key sections of cylindrical and dumbbell are constructed to analyze local flow field characteristics. • The restricted leakage, easier to install and low resistant characteristics are emphasized. • The enhanced heat transfer mechanism of Dean Vortex secondary flow is analyzed. • A variety of comprehensive efficiency assessments are used. - Abstract: An efficient and low resistant circumferential overlap trisection helical baffle shell-and-tube heat exchanger with folded baffles (cothHXf) is presented. It is a modified trisection helical baffle heat exchanger with folded helical baffles for setting rods-and-spanning sleeves. It not only inherits all the merits of circumferential overlap helical baffle scheme, but also adds many additional advantages, such as supporting the inclined baffles with the least rods, simplifying the manufacturing process of spanning tubes and effectively inhibiting the reverse leakage at triangular areas between adjacent baffles. The improved flow characteristic and heat transfer enhancement mechanism of this heat exchanger were numerically investigated in comparison with conventional segmental baffles shell-and-tube heat exchanger (segHX). The flow fields within triangular area of adjacent baffles and nearby regions were depicted. The impacts of the folded baffles on shell-side helical flow, secondary vortex flow, and leakage pattern were analyzed. The distribution configurations of fields of velocity, pressure, temperature and local heat flow rate were revealed. The results show that the heat transfer performance and comprehensive performance evaluation indexes of the cothHXf are much better than those of the segHX while the pressure drop of the cothHXf is much lower than that of the segHX. The numerical simulation results of vivid distributions of flow and thermal fields of the cothHXf can provide theoretical basis for an
Directory of Open Access Journals (Sweden)
Umesh Sharma
2016-01-01
Full Text Available Aims: This is a prospective study of the use and efficacy of a novel technique of circumferential tubularised lingual mucosal graft (LMG in obliterative and near obliterative bulbar urethral stricture of >2 cm where excisional and augmented anastomotic urethroplasty are not feasible. Materials and Methods: The stenotic urethral segment was opened dorsally in midline and fibrosed urethra was excised taking care to preserve the healthy spongiosum tissue. LMG (av. Length 3 cm was placed from one end of corporal body towards spongy tissue in a circumferential manner. Another LMG was placed in similar manner to deal with longer stricture. The urethra was tubularised over 14 Fr silicone catheter. Results: A total of 12 men, of mean age 47 years underwent this procedure. The mean follow up period was 11 months starting from July 2014 till manuscript submission. Follow up included voiding cystourethrogram at 3 weeks, cystoscopy at 3 months (one patient didn't turned up and subsequent follow up. Mean stricture length was 4.66 cm (range, 3–8.5 cm and mean operative time was 195 min. (range, 160 to 200 min.. The technique was successful (normal voiding with no need for any post-operative procedure in 11(91.6% patients. One patient developed early recurrence at 4 month of surgery and had anastomotic stricture which was successfully managed by direct visual internal urethrotomy. Conclusion: Single stage circumferential tubularised graft urethroplasty is an excellent technique for strictures that include segments of obliterative and near obliterative diseased urethra. It provide a wider neourethra than patch graft urethroplasty.
Soft Tissue Reconstruction of Complete Circumferential Defects of the Upper Extremity
Directory of Open Access Journals (Sweden)
Zhi Yang Ng
2017-03-01
Full Text Available BackgroundUpper extremity soft tissue defects with complete circumferential involvement are not common. Coupled with the unique anatomy of the upper extremity, the underlying etiology of such circumferential soft tissue defects represent additional reconstructive challenges that require treatment to be tailored to both the patient and the wound. The aim of this study is to review the various options for soft tissue reconstruction of complete circumferential defects in the upper extremity.MethodsA literature review of PubMed and MEDLINE up to December 2016 was performed. The current study focuses on forearm and arm defects from the level at or proximal to the wrist and were assessed based on Tajima's classification (J Trauma 1974. Data reviewed for analysis included patient demographics, causality, defect size, reconstructive technique(s employed, and postoperative follow-up and functional outcomes (when available.ResultsIn accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, 14 unique articles were identified for a total of 50 patients (mean=28.1 years. Underlying etiologies varied from extensive thermal or electrical burns to high impact trauma leading to degloving or avulsion, crush injuries, or even occur iatrogenically after tumor extirpation or extensive debridement. Treatment options ranged from the application of negative pressure wound dressings to the opposite end of the spectrum in hand transplantation.ConclusionsWith the evolution of reconstructive techniques over time, the extent of functional and aesthetic rehabilitation of these complex upper extremity injuries has also improved. The proposed management algorithm comprehensively addresses the inherent challenges associated with these complex cases.
2014-01-01
While cracking a code might seem like something few of us would encounter in our daily lives, it is actually far more prevalent than we may realize. Anyone who has had personal information taken because of a hacked email account can understand the need for cryptography and the importance of encryption-essentially the need to code information to keep it safe. This detailed volume examines the logic and science behind various ciphers, their real world uses, how codes can be broken, and the use of technology in this oft-overlooked field.
International Nuclear Information System (INIS)
Dietzel, W.; Turnbull, A.
2007-01-01
Comprehensive Structural Integrity is a reference work which covers all activities involved in the assurance of structural integrity. It provides engineers and scientists with an unparalleled depth of knowledge in the disciplines involved. The new online Volume 11 is dedicated to the mechanical characteristics of materials. This paper contains the chapter 11.03 and is structured as follows: General aspects of SCC testing; Non-precracked specimens; Precracked specimens - the fracture mechanics approach to SCC; Crack growth measurement; Limitations of the LEFM approach to SCC; The use of SCC data; Guide to selection of mechanical scc test method
Circumferential skin folds in a child: A case of Michelin tire baby syndrome
Directory of Open Access Journals (Sweden)
Palit Aparna
2007-01-01
Full Text Available A six-month-old girl who presented with dermatitis was found to have multiple, symmetric, deep, gyrate skin folds involving her trunk and similar circumferential lesions on her extremities since birth. She had a characteristic round face with hypertelorism, depressed nasal bridge, thin, down-turned vermillion border of upper lip and short neck. Skin biopsy demonstrated increased smooth muscle fibers in the deeper dermis. A diagnosis of Michelin tire baby syndrome was made. Clinical features, histopathology, differential diagnosis and prognosis of this rare disorder have been discussed.
International Nuclear Information System (INIS)
Shewfelt, R.S.W.
1986-01-01
During some postulated loss-of-coolant accidents, the pressure tube temperature may rise before the internal pressure drops, causing the pressure tube to balloon. The temperature around the pressure tube circumference would likely be nonuniform, producing localized deformation that could possibly cause failure. The computer program, GRAD, was used to determine the circumferential temperature distribution required to cause an internally pressurized Zr-2.5% Nb pressure tube to fail before coming into full contact with its calandria tube. These results were used to construct failure maps. 7 refs
Heterogeneously Catalyzed Endothermic Fuel Cracking
2016-08-28
reactor was circumferentially delivered from a 4.2 kW array consisting of 4 independently PID controlled fiber insulated heaters (Zircar ceramics, FIH...the H-ZSM- 5 lattice and Brønsted acid site characteristics” Micropor . Mesopor. Mater., 222 (2016) 256−270. DISTRIBUTION A: Distribution...distribution on the H-ZSM-5 lattice and Brønsted acid site characteristics" Micropor . Mesopor. Mater., 222 (2016) 256-270. S. M. Opalka, H. Huang
Thermal fatigue crack growth tests and analyses of thick wall cylinder made of Mod.9Cr–1Mo steel
Energy Technology Data Exchange (ETDEWEB)
Wakai, Takashi, E-mail: wakai.takashi@jaea.go.jp [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan); Inoue, Osamu [IX Knowledge Inc., 3-22-23 MSC Center Bldg, Kaigan Minato-ku, Tokyo 1080022 Japan (Japan); Ando, Masanori; Kobayashi, Sumio [Japan Atomic Energy Agency, 4002 Narita-cho Oarai, Ibaraki 3111393 (Japan)
2015-12-15
Highlights: • A thermal fatigue crack growth test was performed using Mod.9Cr–1Mo steel cylinder. • Axial/circumferential notches were machined on the inner surface of the cylinder. • Simplified analytical results were compared to the test data. • Crack length could not be predicted by the analyses because of crack conjunctions. • If there are no surface cracks, the calculations might agree with the observations. - Abstract: In Japan, the basic designing works for a demonstration plant of Japan Sodium cooled Fast Reactor (JSFR) are now conducted. JSFR is an advanced loop type reactor concept. To enhance the safety and the economic competitiveness, JSFR employs modified 9% chromium–1% molybdenum (Mod.9Cr–1Mo) steel as a material for coolant pipes and components, because the steel has both excellent high temperature strength and thermal properties. The steel has been standardized as a nuclear material in Japan Society of Mechanical Engineers (JSME) code in 2012. In JSFR pipes, demonstration of Leak Before Break (LBB) aspect is strongly expected because the safety assessment may be performed on the premise of leak rate where the LBB aspect is assured. Although the authors have already performed a series of thermal fatigue crack growth tests of austenitic stainless steel cylinders (Wakai et al., 2005), crack growth behavior in the structures made of Mod.9Cr–1Mo steel has not been investigated yet. Especially for the welded joints of Mod.9Cr–1Mo steel, “Type-IV” cracking may occur at heat affected zone (HAZ). Therefore, this study performed a series of thermal fatigue crack growth tests of thick wall cylinders made of Mod.9Cr–1Mo steel including welds, to obtain the crack growth data under cyclic thermal transients. The test results were compared to the analytical results obtained from JAEA's simplified methods (Wakai et al., 2005).
Catalytic cracking of lignites
Energy Technology Data Exchange (ETDEWEB)
Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)
2013-11-01
A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)
International Nuclear Information System (INIS)
Lee, Shin Young; Song, Ji Ho
2000-01-01
Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow-and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks
International Nuclear Information System (INIS)
Gomez, M.P.; McMeeking, R.M.; Parks, D.M.
1980-06-01
Contributions were made toward developing a new methodology to assess the stability of cracks in pressure vessels made from materials that exhibit a significant increase in toughness during the early increments of crack growth. It has a wide range of validity from linear elastic to fully plastic behavior
Crack Tip Parameters for Growing Cracks in Linear Viscoelastic Materials
DEFF Research Database (Denmark)
Brincker, Rune
In this paper the problem of describing the asymptotic fields around a slowly growing crack in a linearly viscoelastic material is considered. It is shown that for plane mixed mode problems the asymptotic fields must be described by 6 parameters: 2 stress intensity factors and 4 deformation...... intensity factors. In the special case of a constant Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions are given both for a slowly growing crack and for a crack that is suddenly arrested at a point at the crack extension path. Two examples are studied; a stress boundary...... value problem, and a displacement boundary value problem. The results show that the stress intensity factors and the displacement intensity factors do not depend explicitly upon the velocity of the crack tip....
Evaluation of intergranular cracks on the ring header cross at Grand Gulf Unit No. 1
International Nuclear Information System (INIS)
Czajkowski, C.J.
1987-01-01
A metallurgical investigation was performed on a sample of cracked ring header cross material from the Grand Gulf Unit No. 1 Nuclear Power Station. The cracks were located in a 6-7 in (15-17.5 cm) width band running circumferentially below the cross to cap weld with a similar band above the cross to discharger pipe weld. The indications were up to 19 mm in length and 6.0 mm in depth. This particular sample was cut from a cross which had not seen actual service but which had been used to qualify the induction heating stress improvement (IHSI) technique for the Grand Gulf units. The base material was SA 182 material manufactured to SA 403-type WP 304 stainless steel. The investigation consisted of visual/dye penetrant examination, chemical analysis, hardness testing, optical microscopy, scanning electron microscopy and energy dispersive spectroscopy. The evaluated cracks were intergranular and initiated on the forging's exterior surface. The grain size of the material was larger than ASTM 00 and no definitive corrosive species were found by Energy Dispersive Spectroscopy (EDS). The cracking is considered to be the result of the forging having been overheated/burned during manufacture. (author)
Results of a bench mark test on the crack opening and leak rate calculation
International Nuclear Information System (INIS)
Grebner, H.
1995-01-01
Results of a bench mark test on the standard problem calculation of crack opening and leak rate in piping components are presented. The bench mark test is based on two experiments performed in phase III of the German HDR safety program. The pipe sections considered in these experiments were a straight pipe with an 80 mm diameter containing a circumferential wall penetrating crack and a pipe branch DN 100/DN 25 with a crack in the weldment between the nozzle and the main pipe. Both test pieces were made of austenitic steel and were loaded by internal pressure and bending moment. For the evaluation of the crack opening either analytical methods or estimation schemes or the finite element method were used, while leak rates were calculated by means of two-phase flow methods. The compilation of the results shows very large scatter bands in general, with deviations between calculated and measured values of up to some one hundred percent. Reasons for this behaviour are uncertainties in the measured data and their evaluation as well as the different methods of calculation and their uncertainties. (author)
Analysis of cracks in stainless steel TIG [tungsten inert gas] welds
International Nuclear Information System (INIS)
Nakagaki, M.; Marschall, C.; Brust, F.
1986-12-01
This report contains the results of a combined experimental and analytical study of ductile crack growth in tungsten inert gas (TIG) weldments of austenitic stainless steel specimens. The substantially greater yield strength of the weld metal relative to the base metal causes more plastic deformation in the base metal adjacent to the weld than in the weld metal. Accordingly, the analytical studies focused on the stress-strain interaction between the crack tip and the weld/base-metal interface. Experimental work involved tests using compact (tension) specimens of three different sizes and pipe bend experiments. The compact specimens were machined from a TIG weldment in Type 304 stainless steel plate. The pipe specimens were also TIG welded using the same welding procedures. Elastic-plastic finite element methods were used to model the experiments. In addition to the J-integral, different crack-tip integral parameters such as ΔT/sub p/* and J were evaluated. Also, engineering J-estimation methods were employed to predict the load-carrying capacity of the welded pipe with a circumferential through-wall crack under bending
Fixation of revision implants is improved by a surgical technique to crack the sclerotic bone rim.
Kold, Søren; Bechtold, Joan E; Mouzin, Olivier; Elmengaard, Brian; Chen, Xinqian; Søballe, Kjeld
2005-03-01
Revision joint replacement has poorer outcomes compared with primary joint replacement, and these poor outcomes have been associated with poorer fixation. We investigated a surgical technique done during the revision operation to improve access from the marrow space to the implant interface by locally cracking the sclerotic bone rim that forms during aseptic loosening. Sixteen implants were inserted bilaterally by distal femur articulation of the knee joint of eight dogs, using our controlled experimental model that replicates the revision setting (sclerotic bone rim, dense fibrous tissue, macrophages, elevated cytokines) by pistoning a loaded 6.0-mm implant 500 microm into the distal femur with particulate PE. At 8 weeks, one of two revision procedures was done. Both revision procedures included complete removal of the membrane, scraping, lavaging, and inserting a revision plasma-spray Ti implant. The crack revision procedure also used a splined tool to circumferentially locally perforate the sclerotic bone rim before insertion of an identical revision implant. Superior fixation was achieved with the cracking procedure in this experimental model. Revision implants inserted with the rim cracking procedure had a significantly higher pushout strength (fivefold median increase) and energy to failure (sixfold median increase), compared with the control revision procedure. Additional evaluation is needed of local perforation of sclerotic bone rim as a simple bone-sparing means to improve revision implant fixation and thereby increase revision implant longevity.
International Nuclear Information System (INIS)
Gulshani, P.; So, C.B.
1986-10-01
In a number of postulated accident scenarios in a CANDU reactor, some of the horizontal fuel channels are predicted to experience periods of stratified channel coolant condition which can lead to a circumferential temperature gradient around the pressure tube. To study pressure tube strain and integrity under stratified flow channel conditions, it is, necessary to determine the pressure tube circumferential temperature distribution. This paper presents an algebraic model, called AMPTRACT (Algebraic Model for Pressure Tube TRAnsient Circumferential Temperature), developed to give the transient temperature distribution in a closed form. AMPTRACT models the following modes of heat transfer: radiation from the outermost elements to the pressure tube and from the pressure to calandria tube, convection between the fuel elements and the pressure tube and superheated steam, and circumferential conduction from the exposed to submerged part of the pressure tube. An iterative procedure is used to solve the mass and energy equations in closed form for axial steam and fuel-sheath transient temperature distributions. The one-dimensional conduction equation is then solved to obtain the pressure tube circumferential transient temperature distribution in a cosine series expansion. In the limit of large times and in the absence of convection and radiation to the calandria tube, the predicted pressure tube temperature distribution reduces identically to a parabolic profile. In this limit, however, radiation cannot be ignored because the temperatures are generally high. Convection and radiation tend to flatten the parabolic distribution
Karimi, Alireza; Navidbakhsh, Mahdi; Haghighatnama, Maedeh; Haghi, Afsaneh Motevalli
2015-01-01
The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention.
Directory of Open Access Journals (Sweden)
Đurović Aleksandar
2005-01-01
Full Text Available Background. The use of orthoses is a questionable rehabilitation method for patients with the distal radius fracture at typical site. The aim of this study was to compare the effects of the rehabilitation on patients with radius fracture at the typical site, who wore circumferential static wrist orthoses, with those who did not wear them. Methods. Thirty patients were divided into 3 equal groups, 2 experimental groups, and 1 control group. The patients in the experimental groups were given the rehabilitation program of wearing serially manufactured (off-the-shelf, as well as custom-fit orthoses. Those in the control group did not wear wrist orthoses. Evaluation parameters were pain, edema, the range of the wrist motion, the quality of cylindrical, spherical, and pinch-spherical grasp, the strength of pinch and hand grasp, and patient's assessment of the effects of rehabilitation. Results. No significant difference in the effects of rehabilitation on the patients in experimental groups as opposed to control group was found. Patients in the first experimental group, and in control group were more satisfied with the effects of rehabilitation, as opposed to the patients in the second experimental group (p<0,05. Conclusion. The effects of circumferential static wrist orthoses in the rehabilitation of patients with distal radius fracture at the typical site were not clinically significant. There was no significant difference between the custom and off-the-shelf orthoses.
Oh, Sung Jin; Shin, Jin Yong
2012-03-01
Currently, circumferential resection margins (CRM) are used as a clinical endpoint in studies on the prognosis of rectal cancer. Although the concept of a circumferential resection margin in extraperitoneal rectal cancer differs from that in intraperitoneal rectal cancer due to differences in anatomical and biologic behaviors, previous reports have provided information on CRM involvement in all types of rectal cancer including intraperitoneal lesions. Therefore, the aim of this study was to analyze risk factors of CRM involvement in extraperitoneal rectal cancer. From January 2005 to December 2008, 306 patients with extraperitoneal rectal cancer were enrolled in a prospectively collected database. Multivariate logistic regression analysis was used to identify predictors of CRM involvement. The overall rate of CRM involvement was found to be 16.0%. Multivariate analysis showed that male sex, larger tumor size (≥4 cm), stage higher than T3, nodal metastasis, tumor perforation and non-sphincter preserving proctectomy (NSPP) were risk factors for CRM involvement. Male sex, larger tumor size (≥4 cm), advanced T stage, nodal metastasis, tumor perforation, and NSPP are significant risk factors of CRM involvement in extraperitoneal rectal cancer. Given that postoperative chemoradiotherapy is recommended for patients with a positive CRM, further oncologic studies are warranted to ascertain which patients with these risk factors would require adjuvant therapy.
Directory of Open Access Journals (Sweden)
Tsung-Mao Huang
2012-03-01
Full Text Available Dermatofibrosarcoma protuberans (DFSP is an uncommon soft-tissue tumor involving the dermis and subcutaneous tissue with a high local recurrence rate after standard excision. Mohs micrographic surgery offers a lower recurrence rate. However, the procedure requires multiple stages of excision with intraoperative histopathological mapping, which is time consuming and expensive. We report our experience of using circumferential scouting punch biopsy technique in five patients to determine in advance the resection margins for DFSP prior to wide excision. Multiple 4 mm punches, usually eight in number, were performed 1–2.5 cm around the palpable borders of DFSP to delineate the resection margins in five consecutive patients. Tumors were excised at a later date along the margin defined by these biopsies and the wounds were repaired with skin graft. The operation was completed in 2 hours in all cases excluding one that required frozen sections for deep margin. No recurrence was noted 2–10 years after the operations. The results suggest that circumferential scouting punch biopsies before wide excision may be an alternative method to define the resection margins for DFSP when Mohs surgery is not available.
Li, Yanmin; Liu, Hao; Hao, Siwen; Li, Hongyi; Han, Jianda; Yang, Yunsheng
2017-03-01
Robot-assisted manipulation is promising for solving problems such as understaffing and the risk of infection in gastro-intestinal endoscopy. However, the commonly used friction rollers in few existing systems have a potential risk of deforming flexible endoscopes for non-uniform clamping. This paper presents a robotic system for a standard flexible endoscope and focuses on a novel gastroscope intervention mechanism (GIM), which provides circumferentially uniform clamping with an airbag. The GIM works with a relay-on mechanism in a way similar to manual operation. The shear stiffness of airbag and the critical slipping force (CSF) were analysed to determine the parameters of the airbag. A fuzzy PID controller was employed to realize a fast response and high accuracy of pneumatic actuation. Experiments were performed to evaluate the accuracy, stiffness and CSF. In vitro and in vivo animal experiments were also carried out. The GIM realized an accuracy of 0.025 ± 0.2 mm and -0.03 ± 0.25° for push-pull and rotation without delivery resistance. Under polynomial could be used to describe the relationship between the CSF and pneumatic pressure. The novel GIM could effectively deliver gastroscopes. The pneumatic-driven clamping method proposed could protect the gastroscope by circumferentially uniform clamping force and the CSF could be properly controlled to guarantee operating safety. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji
2015-01-01
The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.
Physics of fully ionized regions
International Nuclear Information System (INIS)
Flower, D.
1975-01-01
In this paper the term fully ionised regions is taken to embrace both planetary nebulae and the so-called 'H II' regions referred to as H + regions. Whilst these two types of gaseous nebulae are very different from an evolutionary standpoint, they are physically very similar, being characterised by photoionisation of a low-density plasma by a hot star. (Auth.)
Cracking in Drying Colloidal Films
Singh, Karnail B.; Tirumkudulu, Mahesh S.
2007-05-01
It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.
International Nuclear Information System (INIS)
Francois, D.
1975-01-01
The study of potential energy variations in a loaded elastic solid containing a crack leads to determination of the crack driving force G. Generalization of this concept to cases other than linear elasticity leads to definition of the integral J. In a linear solid, the crack tip stress field is characterized by a single parameter: the stress-intensity factor K. When the crack tip plastic zone size is confined to the elastic singularity J=G, it is possible to establish relationship between these parameters and plastic strain (and in particular the crack tip opening displacement delta). The stress increases because of the triaxiality effect. This overload rises with increasing strain hardening. When the plastic zone size expands, using certain hypotheses, delta can be calculated. The plastic strain intensity is exclusively dependent on parameter J [fr
Prediction of Crack Growth Aqueous Environments.
1983-06-01
ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS SRI International 333 Ravenswood Avenue Menlo Park, CA 94025 II...34no crack" has at least a vestigial rupture, associated with cyclic loading of the oxide film at the crack tip. The curve labeled "crack" was obtained...be an effect of crack opening. For the data set labeled "crack", the vestigial crack, although short, is very tight and the impedance is large. Under
Buckling Analysis of Edge Cracked Sandwich Plate
Directory of Open Access Journals (Sweden)
Rasha Mohammed Hussein
2016-07-01
Full Text Available This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.
Transport of lead to crack tips in steam generator tubes
International Nuclear Information System (INIS)
Adler, G.D.; Marks, C.R.; Fruzzetti, K.
2009-01-01
The mechanisms by which lead is transported from its ultimate source to steam generator tubes and into cracks are not well understood and, to date, a comprehensive evaluation of possible mechanisms has not previously been performed. Specifically, local lead concentrations up to 20 wt. percent have been measured at crack tips, and it is not fully understood how lead concentrations of this magnitude occur, since lead concentrations in SG feedwater are typically quite low (on the order of a few parts per trillion). Additionally, there is evidence that at secondary side conditions, lead is essentially entirely adsorbed onto solid surfaces. Furthermore, if lead were present in the liquid phase, it would not be expected to be in a form that would facilitate concentration in a crevice (crack) by electrochemical means. There has previously been some speculation that lead transport to crack tips may occur through surface diffusion of adsorbed species. It has also been postulated that lead transport may occur via diffusion through the oxide layer along crack walls or via diffusion of lead out of the bulk Alloy 600 to grain boundaries exposed to secondary water by advancing cracks. However, there have been no critical evaluations of these hypotheses. With the current state of knowledge, it is difficult for utilities to determine whether additional efforts to further reduce the inventory of lead in the secondary system are justified. Furthermore, specific sources of lead that are especially likely to accelerate SCC cannot be identified (e.g., significant masses of lead are present in SG deposits, but it is not known if this lead can be transported to crack tips). The work presented in this paper quantitatively evaluates (based on the published literature, not new experimental work) a number of hypothesized lead transport mechanisms, including: Liquid phase diffusion; Electrochemically influenced diffusion of cations and anions; Bulk alloy diffusion; Surface diffusion; Solid
Experimental and theoretical analysis of cracking in drying soils
Lakshmikantha, M.R.
2009-01-01
The thesis focuses on the experimental and theoretical aspects of the process of cracking in drying soils. The results and conclusions were drawn from an exhaustive experimental campaign characterised by innovative multidisciplinary aspects incorporating Fracture Mechanics and classical Soil mechanics, aided with image analysis techniques. A detailed study of the previous works on the topic showed the absence of large scale fully monitored laboratory tests, while the existing studies were per...
Analysis of short and long crack behavior and single overload effect by crack opening stress
International Nuclear Information System (INIS)
Song, Sam Hong; Lee, Kyeong Ro
1999-01-01
The study analyzed the behaviors of short and long crack as well as the effect of single tensile overload on the crack behaviors by using fatigue crack opening behavior. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many data using strain gages during experiment. The unusual growth behaviors of short crack and crack after the single tensile overload applied, was explained by the variations of crack opening stress. In addition, fatigue crack growth rate was expressed as a linear form for short crack as for long crack by using effective stress intensity factor range as fracture mechanical parameter, which is based on crack closure concept. And investigation is performed with respect to the relation between plastic zone size formed at the crack tip and crack retardation, crack length and the number of cycles promoted or retarded, and the overload effect on the fatigue life
Experimental and numerical modelling of ductile crack propagation in large-scale shell structures
DEFF Research Database (Denmark)
Simonsen, Bo Cerup; Törnquist, R.
2004-01-01
plastic and controlled conditions. The test specimen can be deformed either in combined in-plane bending and extension or in pure extension. Experimental results are described for 5 and 10 mm thick aluminium and steel plates. By performing an inverse finite-element analysis of the experimental results......This paper presents a combined experimental-numerical procedure for development and calibration of macroscopic crack propagation criteria in large-scale shell structures. A novel experimental set-up is described in which a mode-I crack can be driven 400 mm through a 20(+) mm thick plate under fully...... for steel and aluminium plates, mainly as curves showing the critical element deformation versus the shell element size. These derived crack propagation criteria are then validated against a separate set of experiments considering centre crack specimens (CCS) which have a different crack-tip constraint...
International Nuclear Information System (INIS)
Oh, Chang Kyun; Myung, Man Sik; Kim, Yun Jae; Park, Jin Moo
2005-01-01
For the last four decades, tension test of notched bars has been performed to investigate the effect of stress triaxiality on ductile fracture. To quantify the effect of the notch radius on stress triaxiality, the Bridgman equation is typically used. However, recent works based on detailed finite element analysis have shown that the Bridgman equation is not correct, possibly due to his assumption that strain is constant in the necked ligament. Up to present, no systematic work has been performed on fully plastic stress fields for notched bars in tension. This paper presents fully plastic results for tension of notched bars and plates in plane strain, via finite element limit analysis. The notch radius is systematically varied, covering both un-cracked and cracked cases. Comparison of plastic limit loads with existing solutions shows that existing solutions are accurate for notched plates, but not for notched bars. Accordingly new limit load solutions are given for notched bars. Variations of stress triaxiality with the notch radius and depth are also given, which again indicates that the Bridgman solution for notched bars is not correct and inaccuracy depends on the notch radius and depth
Directory of Open Access Journals (Sweden)
Panos G. Charalambides
2016-05-01
Full Text Available This study addresses the mechanics of a cracked cantilever beam subjected to a transverse force applied at it’s free end. In this Part A of a two Part series of papers, emphasis is placed on the development of a four-beam model for a beam with a fully embedded horizontal sharp crack. The beam aspect ratio, crack length and crack centre location appear as general model parameters. Rotary springs are introduced at the crack tip cross sections as needed to account for the changes in the structural compliance due to the presence of the sharp crack and augmented load transfer through the near-tip transition regions. Guided by recent finite element findings reported elsewhere, the four-beam model is advanced by recognizing two key observations, (a the free surface and neutral axis curvatures of the cracked beam at the crack center location match the curvature of a healthy beam (an identical beam without a crack under the same loading conditions, (b the neutral axis rotations (slope of the cracked beam in the region between the applied load and the nearest crack tip matches the corresponding slope of the healthy beam. The above observations led to the development of close form solutions for the resultant forces (axial and shear and moment acting in the beams above and below the crack. Axial force and bending moment predictions are found to be in excellent agreement with 2D finite element results for all normalized crack depths considered. Shear force estimates dominating the beams above and below the crack as well as transition region length estimates are also obtained. The model developed in this study is then used along with 2D finite elements in conducting parametric studies aimed at both validating the model and establishing the mechanics of the cracked system under consideration. The latter studies are reported in the companion paper Part B-Results and Discussion.
Probabilistic Analysis of Crack Width
Directory of Open Access Journals (Sweden)
J. Marková
2000-01-01
Full Text Available Probabilistic analysis of crack width of a reinforced concrete element is based on the formulas accepted in Eurocode 2 and European Model Code 90. Obtained values of reliability index b seem to be satisfactory for the reinforced concrete slab that fulfils requirements for the crack width specified in Eurocode 2. However, the reliability of the slab seems to be insufficient when the European Model Code 90 is considered; reliability index is less than recommended value 1.5 for serviceability limit states indicated in Eurocode 1. Analysis of sensitivity factors of basic variables enables to find out variables significantly affecting the total crack width.
Multispecimen fatigue crack propagation testing
International Nuclear Information System (INIS)
Ermi, A.M.; Bauer, R.E.; Chin, B.A.; Straalsund, J.L.
1981-01-01
Chains of miniature center-cracked-tension specimens were tested on a conventional testing machine and on a prototypic in-reactor fatigue machine as part of the fusion reactor materials alloy development program. Annealed and 20 percent cold-worked 316 stainless steel specimens were cycled under various conditions of temperature, frequency, stress ratio and chain length. Crack growth rates determined from multispecimen visual measurements and from an electrical potential technique were consistent with those obtained by conventional test methods. Results demonstrate that multispecimen chain testing is a valid method of obtaining fatigue crack propagation information for alloy development. 8 refs
Monitoring crack growth using thermography
International Nuclear Information System (INIS)
Djedjiga, Ait Aouita; Abdeldjalil, Ouahabi
2008-01-01
The purpose of this work is to present a novel strategy for real-time monitoring crack growth of materials. The process is based on the use of thermal data extracted along the horizontal axis of symmetry of single edge notch tension (SENT) specimens, during fatigue tests. These data are exploited using an implemented program to detect in situ the growth of fatigue crack, with the critical size and propagation speed of the crack. This technique has the advantage to be applicable to a wide range of materials regardless of their electrical conductivity and their surface texture. (authors)
Password Cracking Using Sony Playstations
Kleinhans, Hugo; Butts, Jonathan; Shenoi, Sujeet
Law enforcement agencies frequently encounter encrypted digital evidence for which the cryptographic keys are unknown or unavailable. Password cracking - whether it employs brute force or sophisticated cryptanalytic techniques - requires massive computational resources. This paper evaluates the benefits of using the Sony PlayStation 3 (PS3) to crack passwords. The PS3 offers massive computational power at relatively low cost. Moreover, multiple PS3 systems can be introduced easily to expand parallel processing when additional power is needed. This paper also describes a distributed framework designed to enable law enforcement agents to crack encrypted archives and applications in an efficient and cost-effective manner.
Surface crack detection by magnetic particle inspection
International Nuclear Information System (INIS)
Goebbels, K.
1988-01-01
For ferromagnetic materials magnetic particle inspection is without doubt the most sensitive method to detect surface cracks and the least sensitive method referring to disturbing boundary conditions. Up to now the technique is based on experiments, experience, on empirical facts and on a subjective evaluation. This contribution for the first time presents a concept which allows the objective, reproducible as well as reliable magnetic particle inspection: Modelling of testing based on Maxwell's equations by finite element calculation; objective setting of test-parameters and their surveillance, handling systems, illumination and sensors, image processing and fully automated evaluation. Economy and safety of magnetic particle inspection are strongly improved by this procedure. (orig./HP) [de
A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.
Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming
2017-07-01
To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.
Time displacement pictures with multi-mode probes from circumferential welds
International Nuclear Information System (INIS)
Wustenberg, H.; Jaffrey, D.; Ludwig, B.; Bertus, N.; Erhard, A.
1985-01-01
If a creeping wave probe is applied to butt welds typical echo patterns from weld defects can be received. It seems possible that echoes from the geometric shape of the root or the crown and defect echoes can be separated by simple means. This has been the reason for the development of a special presentation of the echo patterns received by this multi-mode creeping wave probe. The so called time displacement pictures show the AD-converted A-scans in a gray scale along a line corresponding to the time axis of the propagation. Perpendicular to this time axis results obtained from displacement of the probe parallel to the weld are presented. This kind of picture immediately provides the whole A-scan information. This paper presents some first results on simulated welds with artificial defects and on circumferential welds with typical geometric imperfections
Shen, Xiaoqin; Ren, Dawei; Cao, Xiaoshan; Wang, Ji
2018-03-01
In this study, cut-off frequencies of the circumferential SH waves in functionally graded piezoelectric-piezomagnetic material (FGPPM) cylinder shells with traction free, electrical and magnetic open boundary conditions are investigated analytically. The Wentzel-Kramers-Brillouin (WKB) method is employed for solving differential equations with variable coefficients for general cases. For comparison, Bessel functions and Kummer functions are used for solving cut-off frequency problems in homogenous and ideal FGPPM cylinder shells. It is shown that the WKB solution for the cut-off frequencies has good precise. The set of cut-off frequencies is a series of approximate arithmetic progressions, for which the difference is a function of the density and the effective elastic parameter. The relationship between the difference and the gradient coefficient is described. These results provide theoretical guidance for the non-destructive evaluation of curved shells based on the cut-off frequencies. Copyright © 2017 Elsevier B.V. All rights reserved.
A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor
Directory of Open Access Journals (Sweden)
Huayu Zhang
2017-07-01
Full Text Available To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor, magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.
Energy Technology Data Exchange (ETDEWEB)
Meydanlik, N. [Mechanical Engineering Department, Trakya University, Edirne (Turkey)
2013-07-01
Fracture toughness (K{sub Ic} ) is the most important parameter that defines mechanical behaviour of the materials using machine design. Since, fracture tests are both difficult and time consuming, the researchers have been investigating for the easier evaluation of K{sub Ic} for many years. In this work; K{sub Ic} values have been obtained by using ANSYS software based on the experimental values evaluated in the previous studies. It was shown that there is no significant difference between the experimental ones and the ones obtained by ANSYS. This procedure can provide an important advantage on obtaining of the K{sub IC} values. Key words: Fracture toughness (K{sub Ic} ), circumferential notched tensile specimens, ANSYS.
International Nuclear Information System (INIS)
Reutov, V.F.; Farkhutdinov, K.G.
1977-01-01
The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls
Mordi, Ify; Bezerra, Hiram; Carrick, David; Tzemos, Nikolaos
2015-05-01
This study aimed to assess the incremental prognostic value of global circumferential strain (GCS), as measured using cardiac magnetic resonance (CMR) tagging, in addition to baseline clinical characteristics, left ventricular ejection fraction (LVEF), and late gadolinium enhancement (LGE), in the prediction of major adverse cardiovascular events (MACE) in an unselected cohort of patients. LVEF is a powerful predictor of mortality and is used for guiding treatment decisions. It is, however, subject to limitations. The value of GCS measured by CMR tagging in patients with suspected cardiac disease has not been fully explored despite its being considered as the gold standard noninvasive method of assessment of LV deformation. We prospectively evaluated data from 539 consecutive patients referred for CMR who underwent a CMR protocol that included cine imaging, tagging, and LGE. The primary endpoint was the prevalence of MACE, defined as a composite of all-cause mortality, heart failure-related hospitalization, and aborted sudden cardiac death. MACE occurred in 62 of 539 patients (11.5%) over a mean follow-up period of 2.2 years. History of ischemic heart disease (IHD) and beta-blocker use were both significant clinical predictors of adverse outcomes. All 3 CMR parameters were significant multivariate predictors of the primary outcome when added to significant clinical predictors (LVEF, hazard ratio [HR]: 0.96 [95% confidence interval [CI]: 0.94 to 0.99; p = 0.005]; presence of LGE, HR: 2.07 [95% CI: 1.03 to 4.14; p = 0.04]; GCS, HR: 1.11 [95% CI: 1.02 to 1.21; p = 0.041]). Global chi-square increased significantly with the addition of both LGE and GCS. Both the presence of LGE and reduced GCS had independent prognostic value in the overall cohort. Patients with LVEF ≥35% but LGE present and reduced GCS had a poor outcome similar to that in those with LVEF value. This measure could provide further risk stratification, especially in patients with mild LV impairment
Subsurface metals fatigue cracking without and with crack tip
Directory of Open Access Journals (Sweden)
Andrey Shanyavskiy
2013-07-01
Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.
Barret, Maximilien; Pratico, Carlos Alberto; Camus, Marine; Beuvon, Frédéric; Jarraya, Mohamed; Nicco, Carole; Mangialavori, Luigi; Chaussade, Stanislas; Batteux, Frédéric; Prat, Frédéric
2014-01-01
The prevention of esophageal strictures following circumferential mucosal resection remains a major clinical challenge. Human amniotic membrane (AM) is an easily available material, which is widely used in ophthalmology due to its wound healing, anti-inflammatory and anti-fibrotic properties. We studied the effect of AM grafts in the prevention of esophageal stricture after endoscopic submucosal dissection (ESD) in a swine model. In this prospective, randomized controlled trial, 20 swine underwent a 5 cm-long circumferential ESD of the lower esophagus. In the AM Group (n = 10), amniotic membrane grafts were placed on esophageal stents; a subgroup of 5 swine (AM 1 group) was sacrificed on day 14, whereas the other 5 animals (AM 2 group) were kept alive. The esophageal stent (ES) group (n = 5) had ES placement alone after ESD. Another 5 animals served as a control group with only ESD. The prevalence of symptomatic strictures at day 14 was significantly reduced in the AM group and ES groups vs. the control group (33%, 40% and 100%, respectively, p = 0.03); mean esophageal diameter was 5.8±3.6 mm, 6.8±3.3 mm, and 2.6±1.7 mm for AM, ES, and control groups, respectively. Median (range) esophageal fibrosis thickness was 0.87 mm (0.78-1.72), 1.19 mm (0.28-1.95), and 1.65 mm (0.7-1.79) for AM 1, ES, and control groups, respectively. All animals had developed esophageal strictures by day 35. The anti-fibrotic effect of AM on esophageal wound healing after ESD delayed the development of esophageal stricture in our model. However, this benefit was of limited duration in the conditions of our study.
Directory of Open Access Journals (Sweden)
Maximilien Barret
Full Text Available The prevention of esophageal strictures following circumferential mucosal resection remains a major clinical challenge. Human amniotic membrane (AM is an easily available material, which is widely used in ophthalmology due to its wound healing, anti-inflammatory and anti-fibrotic properties. We studied the effect of AM grafts in the prevention of esophageal stricture after endoscopic submucosal dissection (ESD in a swine model.In this prospective, randomized controlled trial, 20 swine underwent a 5 cm-long circumferential ESD of the lower esophagus. In the AM Group (n = 10, amniotic membrane grafts were placed on esophageal stents; a subgroup of 5 swine (AM 1 group was sacrificed on day 14, whereas the other 5 animals (AM 2 group were kept alive. The esophageal stent (ES group (n = 5 had ES placement alone after ESD. Another 5 animals served as a control group with only ESD.The prevalence of symptomatic strictures at day 14 was significantly reduced in the AM group and ES groups vs. the control group (33%, 40% and 100%, respectively, p = 0.03; mean esophageal diameter was 5.8±3.6 mm, 6.8±3.3 mm, and 2.6±1.7 mm for AM, ES, and control groups, respectively. Median (range esophageal fibrosis thickness was 0.87 mm (0.78-1.72, 1.19 mm (0.28-1.95, and 1.65 mm (0.7-1.79 for AM 1, ES, and control groups, respectively. All animals had developed esophageal strictures by day 35.The anti-fibrotic effect of AM on esophageal wound healing after ESD delayed the development of esophageal stricture in our model. However, this benefit was of limited duration in the conditions of our study.
Energy Technology Data Exchange (ETDEWEB)
Choi, Joon Young; Lee, Kyung Han; Kim, Sang Eun; Kim, Byung Tae; Hwang, Jee Hea; Lee, Byung Boong [Samsung Medical Center, Seoul (Korea, Republic of)
1997-07-01
An objective measure for the severity and progression is important for the management of lymphedema. To evaluate the usefulness of lympho-scintigraphy in this regard, we compared various quantitative indices from upper extremity lymphoscintigraphy with circumferential measurements, before and after physiotheraphy. Upper extremity lymphoscintigraphy was performed in 38 patients with unilateral postmastectomy lymphedema. Tc-99m antimony sulfide colloid (37 MBq) was injected s.c. into the second and third interdigital spaces. The injection sites were imaged immediately after injection. After standardized exercise for 15 min, upper extremity images were acquired 30 min, 1 hr and 2 hr after injection. The clearance of the injection site (CL), and % uptake in regional lymph nodes (%LN) and soft tissue of the extremity (i.e., the degree of dermal backflow) (%EXT) compared to the initial injection site were calculated. Circumference of each extremity was measured at 7 levels; the severity of lymphedema was expressed as the percentage difference of total circumferential difference (TCD) between healthy and edematous extremities compared to the total circumference of healthy extremity (%TCD). In 19 patients who received physiotherapy, the therapeutic effect was measured by % decrease of TCD (%DTCD) before and after therapy (Raines. et al., 1977). The quantitative indices calculated in the image at 2 hr p.i. had better correlation with either %TCD or %DTCD than those from earlier images (Table). The CL, %LN and %EXT of edematous extremity had a significant correlation with TCD. The %EXT was correlated best with either TCD or %DTCD. The results suggest that the %EXT which corresponds to the degree of dermal backflow may be a simple and useful quantitative index for evaluating the severity and progression in lymphedema and predicting the effect of therapy.
Jiao, Yang; Li, Guangxin; Korneva, Arina; Caulk, Alexander W; Qin, Lingfeng; Bersi, Matthew R; Li, Qingle; Li, Wei; Mecham, Robert P; Humphrey, Jay D; Tellides, George
2017-05-01
Williams syndrome is characterized by obstructive aortopathy attributable to heterozygous loss of ELN , the gene encoding elastin. Lesions are thought to result primarily from excessive smooth muscle cell (SMC) proliferation and consequent medial expansion, although an initially smaller caliber and increased stiffness of the aorta may contribute to luminal narrowing. The relative contributions of such abnormalities to the obstructive phenotype had not been defined. We quantified determinants of luminal stenosis in thoracic aortas of Eln -/- mice incompletely rescued by human ELN . Moderate obstruction was largely because of deficient circumferential growth, most prominently of ascending segments, despite increased axial growth. Medial thickening was evident in these smaller diameter elastin-deficient aortas, with medial area similar to that of larger diameter control aortas. There was no difference in cross-sectional SMC number between mutant and wild-type genotypes at multiple stages of postnatal development. Decreased elastin content was associated with medial fibrosis and reduced aortic distensibility because of increased structural stiffness but preserved material stiffness. Elastin-deficient SMCs exhibited greater contractile-to-proliferative phenotypic modulation in vitro than in vivo. We confirmed increased medial collagen without evidence of increased medial area or SMC number in a small ascending aorta with thickened media of a Williams syndrome subject. Deficient circumferential growth is the predominant mechanism for moderate obstructive aortic disease resulting from partial elastin deficiency. Our findings suggest that diverse aortic manifestations in Williams syndrome result from graded elastin content, and SMC hyperplasia causing medial expansion requires additional elastin loss superimposed on ELN haploinsufficiency. © 2017 American Heart Association, Inc.
International Nuclear Information System (INIS)
Choi, Joon Young; Lee, Kyung Han; Kim, Sang Eun; Kim, Byung Tae; Hwang, Jee Hea; Lee, Byung Boong
1997-01-01
An objective measure for the severity and progression is important for the management of lymphedema. To evaluate the usefulness of lympho-scintigraphy in this regard, we compared various quantitative indices from upper extremity lymphoscintigraphy with circumferential measurements, before and after physiotheraphy. Upper extremity lymphoscintigraphy was performed in 38 patients with unilateral postmastectomy lymphedema. Tc-99m antimony sulfide colloid (37 MBq) was injected s.c. into the second and third interdigital spaces. The injection sites were imaged immediately after injection. After standardized exercise for 15 min, upper extremity images were acquired 30 min, 1 hr and 2 hr after injection. The clearance of the injection site (CL), and % uptake in regional lymph nodes (%LN) and soft tissue of the extremity (i.e., the degree of dermal backflow) (%EXT) compared to the initial injection site were calculated. Circumference of each extremity was measured at 7 levels; the severity of lymphedema was expressed as the percentage difference of total circumferential difference (TCD) between healthy and edematous extremities compared to the total circumference of healthy extremity (%TCD). In 19 patients who received physiotherapy, the therapeutic effect was measured by % decrease of TCD (%DTCD) before and after therapy (Raines. et al., 1977). The quantitative indices calculated in the image at 2 hr p.i. had better correlation with either %TCD or %DTCD than those from earlier images (Table). The CL, %LN and %EXT of edematous extremity had a significant correlation with TCD. The %EXT was correlated best with either TCD or %DTCD. The results suggest that the %EXT which corresponds to the degree of dermal backflow may be a simple and useful quantitative index for evaluating the severity and progression in lymphedema and predicting the effect of therapy
1999-01-01
Many of the craters found on the northern plains of Mars have been partly filled or buried by some material (possibly sediment). The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presented here (MOC2-136b, above left) shows a high-resolution view of a tiny portion of the floor of one of these northern plains craters. The crater, located in Utopia Planitia at 44oN, 258oW, is shown on the right (MOC2-136a)with a small white box to indicate the location of the MOC image. The MOC image reveals that the material covering the floor of this crater is cracked and pitted. The origin and source of material that has been deposited in this crater is unknown.The MOC image was acquired in June 1999 and covers an area only 1.1 kilometers (0.7 miles) wide at a resolution of 1.8 meters (6 feet) per pixel. The context picture is a mosaic of Viking 2 orbiter images 010B53 and 010B55, taken in 1976. Both images are illuminated from the left. Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.
International Nuclear Information System (INIS)
Mulraney, D.
1997-01-01
The conversion of residual fuel oil to usable middle distillates was discussed. The residue conversion processing paths are usually based on separation, carbon rejection, or hydrogen addition principles. Super Oil Cracking (SOC) uses a slurry catalyst system in a new, tubular reactor to achieve high levels of hydrothermal conversion. SOC can upgrade a variety of heavy, high metals residue feedstocks with high yields of middle distillates. The SOC products can also be further treated into feedstocks for FCC or hydrocracking. The SOC process can be incorporated easily into a refinery to obtain incremental residue conversion directly. It can also be integrated with other residue processes, acting as a demetallization and decarbonization step which results in enhanced overall conversion. The relative rate of coke formation and its handling are distinguishing characteristics between residue upgrading technologies. The SOC process operates at higher temperatures that other residue hydrocracking processes resulting in higher rates of thermal decomposition, thus preventing coke formation. SOC process can operate as a stand-alone upgrader or can be integrated with other bottoms processing steps to extend the refiner's range of options for increasing bottoms conversion.3 tabs., 14 figs
Metallurgy of stress corrosion cracking
International Nuclear Information System (INIS)
Donovan, J.A.
1973-01-01
The susceptibility of metals and alloys to stress corrosion is discussed in terms of the relationship between structural characteristics (crystal structure, grains, and second phases) and defects (vacancies, dislocations, and cracks) that exist in metals and alloys. (U.S.)
Peridynamic model for fatigue cracking.
Energy Technology Data Exchange (ETDEWEB)
Silling, Stewart Andrew; Abe Askari (Boeing)
2014-10-01
The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.
Shapes formed by interacting cracks
Daniels, Karen
2012-02-01
Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed ``en passant'' crack pattern by fracturing a rectangular slab which is notched on each long side and subjected to quasi-static uniaxial strain from the short side. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. We find that, for materials with diverse mechanical properties, each curve has an approximately square-root shape, and that the length of each fragment is twice its width. We are able to explain the origins of this universal shape with a simple geometrical model.
The crack growth mechanism in asphaltic mixes
Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.
1995-01-01
The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive
Dynamic Crack Branching - A Photoelastic Evaluation,
1982-05-01
0.41 mPai and a 0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well with experimentally measured angle. After crack kinking...Consistent crack branching’at KIb = 2.04 MPaI -i- and r = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by--.’ DD
21 CFR 137.190 - Cracked wheat.
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...
Axiomatisation of fully probabilistic design
Czech Academy of Sciences Publication Activity Database
Kárný, Miroslav; Kroupa, Tomáš
2012-01-01
Roč. 186, č. 1 (2012), s. 105-113 ISSN 0020-0255 R&D Projects: GA MŠk(CZ) 2C06001; GA ČR GA102/08/0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian decision making * Fully probabilistic design * Kullback–Leibler divergence * Unified decision making Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 3.643, year: 2012 http://library.utia.cas.cz/separaty/2011/AS/karny-0367271.pdf
Crack propagation in dynamic thermoelasticity
International Nuclear Information System (INIS)
Bui, H.D.
1980-01-01
We study the singular thermoelastic fields near the crack tip, in the linear strain assumption. The equations are coupled and non linear. The asymptotic expansions of the displacement and the temperature are given for the first and the second order. It is shown that the temperature is singular when the crack propagates. However, this field does not change the dominant singularity of the mechanical field which is the same as that obtained in the theory of isothermal elasticity [fr
International Nuclear Information System (INIS)
Smith, E.
1994-01-01
The technological problem of intergranular stress corrosion cracking (IGSCC) of type 304 stainless steel piping in boiling water reactor piping systems, has provided the motivation for the considerable research interest in the integrity of cracked piping systems that are fabricated by ductile materials. IGSCC cracks are able to form at the inner surfaces of pipes. The cracks are circumferential and are able to grow slowly in service by a time dependent environmentally assisted mechanism. From a safety standpoint, it is important to know whether accident condition loadings will drive a part-through IGSCC crack unstably across the pipe thickness by a non-environmentally assisted fracture mechanism, and the resulting through-wall crack then propagate around the pipe circumference leading to a complete pipe severance. A methodology that has been developed to address this problem is a net-section stress methodology. The net-section stress approach for predicting the onset of crack extension in a piping system can give overly conservative predictions because a piping system is built-in at its end points and because crack extension requires some plastic deformation. The present paper is concerned with identifying the role of system pressure on the degree of conservatism, and two effects are important. Firstly, by inducing an axial tensile force at the cracked section, it is shown that the factor of conservatism can be increased. Secondly it is shown that the pressure induced moment at the cracked section behaves no differently to other contributions to this moment, in that all sources are associated with the same limited amount of elastic follow-up. All sources are associated with the same elastic flexibility parameter L*, which depends solely on the flexibility of the system and not on the nature of the loading
DEFF Research Database (Denmark)
Andersen, P. S.; Jensen, A.; Mannov, G.
1974-01-01
Measurements of (1) burn-out, (2) circumferential film flow distribution, and (3) pressure drop in a 17 × 27.2 × 3500 mm concentric and eccentric annulus geometry are presented. The eccentric displacement was varied between 0 and 3 mm. The working fluid was water. Burn-out curves at 70 bar...... flow variation on burn-out is discussed....
Gietelink, Lieke; Henneman, Daniel; van Leersum, Nicoline J.; de Noo, Mirre; Manusama, Eric; Tanis, Pieter J.; Tollenaar, Rob A. E. M.; Wouters, Michel W. J. M.
2016-01-01
This population-based study evaluates the association between hospital volume and CRM (circumferential resection margin) involvement, adjusted for other confounders, in rectal cancer surgery. A low hospital volume ( <20 cases/year) was independently associated with a higher risk of CRM involvement
Energy Technology Data Exchange (ETDEWEB)
Fayssoil, A. [Cardiologie, Hopital europeen Georges Pompidou, 20, rue le blanc, Paris (France)], E-mail: fayssoil2000@yahoo.fr; Renault, G. [CNRS UMR 8104, Inserm, U567, Institut Cochin, Universite Paris Descartes, Paris (France); Fougerousse, F. [Genethon, RD, Evry (France)
2009-08-15
Traditionally, analysing left ventricular (LV) performance relies on echocardiography by evaluating shortening fraction (SF) in mice. SF is influenced by load conditions. End-systolic stress-velocity (ESSV) relation and circumferential fiber velocity (VcF) shortening are more relevant parameters for evaluating systolic function regardless load conditions particularly in mice's models of heart failure.
Chen, X.; Qin, G.; Ai, Z.; Ji, Y.
2017-08-01
As an effective and economic method for flow range enhancement, circumferential groove casing treatment (CGCT) is widely used to increase the stall margin of compressors. Different from traditional grooved casing treatments, in which the grooves are always located over the rotor in both axial and radial compressors, one or several circumferential grooves are located along the shroud side of the diffuser passage in this paper. Numerical investigations were conducted to predict the performance of a low flow rate centrifugal compressor with CGCT in diffuser. Computational fluid dynamics (CFD) analysis is performed under stage environment in order to find the optimum location of the circumferential casing groove in consideration of stall margin enhancement and efficiency gain at design point, and the impact of groove number to the effect of this grooved casing treatment configuration in enhancing the stall margin of the compressor stage is studied. The results indicate that the centrifugal compressor with circumferential groove in vaned diffuser can obtain obvious improvement in the stall margin with sacrificing design efficiency a little. Efforts were made to study blade level flow mechanisms to determine how the CGCT impacts the compressor’s stall margin (SM) and performance. The flow structures in the passage, the tip gap, and the grooves as well as their mutual interactions were plotted and analysed.
Fan, Lihong; Ge, Zhaogang; Zhang, Chen; Li, Jia; Yu, Zefeng; Dang, Xiaoqian; Wang, Kunzheng
2015-03-01
The purpose of this meta-analysis and systematic review was to identify and assess whether circumferential electrocautery is useful for improving outcomes after primary total knee replacement(TKR). We searched MEDLINE, EMBASE, PubMed, SpringerLink, Web of Knowledge, OVID CINAHL, OVID EBM and Google Scholar and included articles published through January 2014. A total of 6 articles met the inclusion criteria. Of the 776 cases included in the analysis, 388 cases involved patellar denervation, and 388 cases were designated as the control group. The meta-analysis revealed no significant difference in the incidence of anterior knee pain (AKP, p = 0.18) or in the visual analogue scale score (VAS, p = 0.23) between the two groups. In addition, AKSS Function Score indicated no significant difference between the two groups (p = 0.28). However, the OKS (p = 0.02), patellar score (p = 0.01), AKSS-Knee Score (p = 0.004), range of motion (ROM, p electrocautery. The results indicate that circumferential electrocautery of the patella does not significantly improve AKP compared with non-electrocautery techniques but that circumferential electrocautery significantly improves patients' knee function after surgery. Therefore, we believe that circumferential electrocautery is beneficial to the outcome of primary TKR surgery without patellar replacement.
International Nuclear Information System (INIS)
Huh, Nam Su; Choi, Suhn; Park, Keun Bae; Kim, Jong Min; Choi, Jae Boong; Kim, Young Jin
2008-01-01
The crack-tip stress fields and fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Such a crack interaction effect due to multiple cracks can magnify the fracture mechanics assessment parameters. There are many factors to be considered, for instance the relative distance between adjacent cracks, crack shape and loading condition, to quantify a crack interaction effect on the fracture mechanics assessment parameters. Thus, the current guidance on a crack interaction effect (crack combination rule), including ASME Sec. XI, BS7910, British Energy R6 and API RP579, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates a crack interaction effect by evaluating the elastic stress intensity factor of adjacent surface cracks in a plate along the crack front through detailed 3-dimensional elastic finite element analyses. The effects of the geometric parameters, the relative distance between cracks and the crack shape, on the stress intensity factor are systematically investigated. As for the loading condition, only axial tension is considered. Based on the elastic finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed
Kroon, Martin
2012-01-01
In the present study, a computational framework for studying high-speed crack growth in rubber-like solids under conditions of plane stress and steady-state is proposed. Effects of inertia, viscoelasticity and finite strains are included. The main purpose of the study is to examine the contribution of viscoelastic dissipation to the total work of fracture required to propagate a crack in a rubber-like solid. The computational framework builds upon a previous work by the present author (Kroon in Int J Fract 169:49-60, 2011). The model was fully able to predict experimental results in terms of the local surface energy at the crack tip and the total energy release rate at different crack speeds. The predicted distributions of stress and dissipation around the propagating crack tip are presented. The predicted crack tip profiles also agree qualitatively with experimental findings.
Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework
Energy Technology Data Exchange (ETDEWEB)
Brett, S.J.; Smith, P.A. [National Power plc, Swindon (United Kingdom)
1998-12-31
The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.
Type IIIa cracking at 2CrMo welds in 1/2CrMoV pipework
Energy Technology Data Exchange (ETDEWEB)
Brett, S J; Smith, P A [National Power plc, Swindon (United Kingdom)
1999-12-31
The most common form of in-service defect found today on the welds of National Power`s 1/2CrMoV pipework systems is Type IV cracking which occurs in intercritically transformed material at the edge of the heat affected zone. However an alternate form of cracking, termed IIIa, which occurs close to the weld fusion line in fully grain refined heat affected zones, has also been observed. The incidence of Type IIIa cracking has increased in recent years and these defects now constitute a significant part of the total recorded crack population. This presentation describes Type IIIa cracking and compares and contrasts it with the better documented Type IV cracking. Particular reference is made to the role of carbon diffusion at the weld fusion line in promoting Type IIIa damage in preference to Type IV. (orig.) 5 refs.
DEFF Research Database (Denmark)
Soegaard, Rikke; Bünger, Cody E; Christiansen, Terkel
2007-01-01
STUDY DESIGN: Cost-utility evaluation of a randomized, controlled trial with a 4- to 8-year follow-up. OBJECTIVE: To investigate the incremental cost per quality-adjusted-life-year (QALY) when comparing circumferential fusion to posterolateral fusion in a long-term, societal perspective. SUMMARY...... OF BACKGROUND DATA: The cost-effectiveness of circumferential fusion in a long-term perspective is uncertain but nonetheless highly relevant as the ISSLS prize winner 2006 in clinical studies reported the effect of circumferential fusion superior to the effect of posterolateral fusion. A recent trial found...... no significant difference between posterolateral and circumferential fusion reporting cost-effectiveness from a 2-year viewpoint. METHODS: A total of 146 patients were randomized to posterolateral or circumferential fusion and followed 4 to 8 years after surgery. The mean age of the cohort was 46 years (range...
Physics of fully depleted CCDs
International Nuclear Information System (INIS)
Holland, S E; Bebek, C J; Kolbe, W F; Lee, J S
2014-01-01
In this work we present simple, physics-based models for two effects that have been noted in the fully depleted CCDs that are presently used in the Dark Energy Survey Camera. The first effect is the observation that the point-spread function increases slightly with the signal level. This is explained by considering the effect on charge-carrier diffusion due to the reduction in the magnitude of the channel potential as collected signal charge acts to partially neutralize the fixed charge in the depleted channel. The resulting reduced voltage drop across the carrier drift region decreases the vertical electric field and increases the carrier transit time. The second effect is the observation of low-level, concentric ring patterns seen in uniformly illuminated images. This effect is shown to be most likely due to lateral deflection of charge during the transit of the photo-generated carriers to the potential wells as a result of lateral electric fields. The lateral fields are a result of space charge in the fully depleted substrates arising from resistivity variations inherent to the growth of the high-resistivity silicon used to fabricate the CCDs
Compressive failure with interacting cracks
International Nuclear Information System (INIS)
Yang Guoping; Liu Xila
1993-01-01
The failure processes in concrete and other brittle materials are just the results of the propagation, coalescence and interaction of many preexisting microcracks or voids. To understand the real behaviour of the brittle materials, it is necessary to bridge the gap from the relatively matured one crack behaviour to the stochastically distributed imperfections, that is, to concern the crack propagation and interaction of microscopic mechanism with macroscopic parameters of brittle materials. Brittle failure in compression has been studied theoretically by Horii and Nemat-Nasser (1986), in which a closed solution was obtained for a preexisting flaw or some special regular flaws. Zaitsev and Wittmann (1981) published a paper on crack propagation in compression, which is so-called numerical concrete, but they did not take account of the interaction among the microcracks. As for the modelling of the influence of crack interaction on fracture parameters, many studies have also been reported. Up till now, some researcher are working on crack interaction considering the ratios of SIFs with and without consideration of the interaction influences, there exist amplifying or shielding effects of crack interaction which are depending on the relative positions of these microcracks. The present paper attempts to simulate the whole failure process of brittle specimen in compression, which includes the complicated coupling effects between the interaction and propagation of randomly distributed or other typical microcrack configurations step by step. The lengths, orientations and positions of microcracks are all taken as random variables. The crack interaction among many preexisting random microcracks is evaluated with the help of a simple interaction matrix (Yang and Liu, 1991). For the subcritically stable propagation of microcracks in mixed mode fracture, fairly known maximum hoop stress criterion is adopted to compute branching lengths and directions at each tip of the crack
Energy Technology Data Exchange (ETDEWEB)
Dillstroem, Peter; Bergman, Mats; Brickstad, Bjoern; Weilin Zang; Sattari-Far, Iradj; Andersson, Peder; Sund, Goeran; Dahlberg, Lars; Nilsson, Fred (Inspecta Technology AB, Stockholm (Sweden))
2008-07-01
SSM has supported research work for the further development of a previously developed procedure/handbook (SKI Report 99:49) for assessment of detected cracks and tolerance for defect analysis. During the operative use of the handbook it was identified needs to update the deterministic part of the procedure and to introduce a new probabilistic flaw evaluation procedure. Another identified need was a better description of the theoretical basis to the computer program. The principal aim of the project has been to update the deterministic part of the recently developed procedure and to introduce a new probabilistic flaw evaluation procedure. Other objectives of the project have been to validate the conservatism of the procedure, make the procedure well defined and easy to use and make the handbook that documents the procedure as complete as possible. The procedure/handbook and computer program ProSACC, Probabilistic Safety Assessment of Components with Cracks, has been extensively revised within this project. The major differences compared to the last revision are within the following areas: It is now possible to deal with a combination of deterministic and probabilistic data. It is possible to include J-controlled stable crack growth. The appendices on material data to be used for nuclear applications and on residual stresses are revised. A new deterministic safety evaluation system is included. The conservatism in the method for evaluation of the secondary stresses for ductile materials is reduced. A new geometry, a circular bar with a circumferential surface crack has been introduced. The results of this project will be of use to SSM in safety assessments of components with cracks and in assessments of the interval between the inspections of components in nuclear power plants
Stability of cracked pipe under inertial stresses. Subtask 1.1 final report
International Nuclear Information System (INIS)
Scott, P.; Wilson, M.; Olson, R.; Marschall, C.; Schmidt, R.; Wilkowski, G.
1994-08-01
This report presents the results of the pipe fracture experiments, analyses, and material characterization efforts performed within Subtask 1.1 of the IPIRG Program. The objective of Subtask 1.1 was to experimentally verify the analysis methodologies for circumferentially cracked pipe subjected primarily to inertial stresses. Eight cracked-pipe experiments were conducted on 6-inch nominal diameter TP304 and A106B pipe. The experimental procedure was developed using nonlinear time-history finite element analyses which included the nonlinear behavior due to the crack. The model did an excellent job of predicting the displacements, forces, and times to maximum moment. The comparison of the experimental loads to the predicted loads by the Net-Section-Collapse (NSC), Dimensionless Plastic-Zone Parameter, J-estimation schemes, R6, and ASME Section XI in-service flaw assessment criteria tended to underpredict the measured bending moments except for the NSC analysis of the A106B pipe. The effects of flaw geometry and loading history on toughness were evaluated by calculating the toughness from the pipe tests and comparing these results to C(l) values. These effects were found to be variable. The surface-crack geometry tended to increase the toughness (relative to CM results), whereas a negative load-ratio significantly decreased the TP304 stainless steel surface-cracked pipe apparent toughness. The inertial experiments tended to achieve complete failure within a few cycles after reaching maximum load in these relatively small diameter pipe experiments. Hence, a load-controlled fracture mechanics analysis may be more appropriate than a displacement-controlled analysis for these tests
Energy Technology Data Exchange (ETDEWEB)
Zhou, Shiyuan, E-mail: redaple@bit.edu.cn; Sun, Haoyu, E-mail: redaple@bit.edu.cn; Xu, Chunguang, E-mail: redaple@bit.edu.cn; Cao, Xiandong, E-mail: redaple@bit.edu.cn; Cui, Liming, E-mail: redaple@bit.edu.cn; Xiao, Dingguo, E-mail: redaple@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China NO.5 Zhongguancun South Street, Haidian District, Beijing 100081 (China)
2015-03-31
The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.
Directory of Open Access Journals (Sweden)
Chang-Gi Han
2016-12-01
Full Text Available Austenitic stainless steels (ASSs are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.
On the investigation of cracking in safety injection PWR lines due to thermal stratification
International Nuclear Information System (INIS)
Simos, N.; Reich, M.; Philippacopoulos, A.J.; Hartzmann, M.
1990-01-01
Circumferential cracking in injection lines as well as feedwater lines has been observed in a number of PWRs around the world while its exact cause has been continuously sought through a number of independent investigations. The comprehensive conclusion of all studies is that the primary but not the only, cause of pipe failure is the thermal stratification phenomenon that occurs in pipes experiencing temperature differentials across their cross section. This phenomenon becomes more critical when it occurs in a cyclic manner and is associated with a number of transients as well as thermal shocks during each cycle. The resulting fatigue loading mechanism and its impact on the integrity of an auxiliary injection line is the focus of the present analysis. Thermal loadings which can simulate real temperature conditions are imposed on a 3-D finite element model of a portion of an injection line that has already experienced cracking. The induced thermal stress field is utilized to obtain excessive fatigue damage in the vicinity of the observed cracks. Finally, the impact of different levels and types of stratification as well as the geometric configuration of such lines on the pipe integrity is addressed. 12 refs., 12 figs
Creep fracture mechanics analysis for through-wall cracked pipes under widespread creep condition
International Nuclear Information System (INIS)
Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin
2003-01-01
This paper compares engineering estimation schemes of C * and creep COD for circumferential and axial through-wall cracked pipes at elevated temperatures with detailed 3-D elastic-creep finite element results. Engineering estimation schemes included the GE/EPRI method, the reference stress method where reference stress is defined based on the plastic limit load and the enhanced reference stress method where the reference stress is defined based on the optimized reference load. Systematic investigations are made not only on the effect of creep-deformation behaviour on C * and creep COD, but also on effects of the crack location, the pipe geometry, the crack length and the loading mode. Comparison of the FE results with engineering estimations provides that for idealized power law creep, estimated C * and COD rate results from the GE/EPRI method agree best with FE results. For general creep-deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the enhanced reference stress method provides more accurate and robust estimations for C * and COD rate than the reference stress method
Energy Technology Data Exchange (ETDEWEB)
Han, Chang Gi; Chang, Yoon Suk [Dept. of Nuclear Engineering, College of Engineering, Kyung Hee University, Yongin (Korea, Republic of); Kim, Jong Sung [Dept. of Mechanical Engineering, Sunchon National University, Sunchon (Korea, Republic of); Kim, Maan Won [Central Research Institute, Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of)
2016-12-15
Austenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.
A Crack Closure Model and Its Application to Vibrothermography Nondestructive Evaluation
Schiefelbein, Bryan Edward
saying that the effective crack tip is located where the stress singularity vanishes. If the closure stresses are unknown, the model provides an algorithm with which to solve for the distribution, given measurements of the effective crack length as a function of external load. Within literature, a number of heating mechanisms have been proposed as being dominant in vibrothermography. These include strain hysteresis, adhesion hysteresis, plastic flow, thermoelasticity, and sliding friction. Based on experimental observation and theory, this work eliminates strain hysteresis, thermoelasticity, and plastic flow as plausible heating mechanisms. This leaves friction and adhesion hysteresis as the only plausible mechanisms. Frictional heating is based on the classical Coulomb friction model, while adhesion hysteresis heating comes from irreversibility in surface adhesion. Adhesion hysteresis only satisfies the experimental observation that heating vanishes for high compressive loading if surface roughness and the instability of surface adhesion is considered. By understanding the fundamental behavior of a partially closed crack in response to non-uniform loading, and the link between crack surface motion and heat generation, we are one step closer to a fully predictive vibrothermography heat generation model. Future work is needed to extend the crack closure model to a two-dimensional semi-elliptical surface crack and better understand the distinction between frictional and adhesion heating.
Improvement of elastic-plastic fatigue crack growth evaluation method. 2. Crack opening behavior
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Yukio [Central Research Inst. of Electric Power Industry, Tokyo (Japan)
2001-05-01
Evaluation of crack growth behavior under cyclic loading is often required in the structural integrity assessment of cracked components. Closing and re-opening of the crack give large influence on crack growth rate through the change of fracture mechanics parameters. Based on the finite element analysis for a center-cracked plate, dependency of crack opening ratio on applied stress range and mean stress was examined. Simple formulae for representing the results were derived for plane stress and plane strain conditions. (author)
Helium-induced weld cracking in austenitic and martensitic steels
International Nuclear Information System (INIS)
Lin, H.T.; Chin, B.A.
1991-01-01
Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)
Cracking in Flexural Reinforced Concrete Members
DEFF Research Database (Denmark)
Rasmussen, Annette Beedholm; Fisker, Jakob; Hagsten, Lars German
2017-01-01
The system of cracks developing in reinforced concrete is in many aspects essential when modelling structures in both serviceability- and ultimate limit state. This paper discusses the behavior concerning crack development in flexural members observed from tests and associates it with two different...... existing models. From the investigations an approach is proposed on how to predict the crack pattern in flexural members involving two different crack systems; primary flexural cracks and local secondary cracks. The results of the approach is in overall good agreement with the observed tests and captures...... the pronounced size effect associated with flexural cracking in which the crack spacing and crack widths are approximately proportional to the depth of the member....
Dynamic ductile fracture of a central crack
Tsai, Y. M.
1976-01-01
A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.
Fatigue cracking in road pavement
Mackiewicz, P.
2018-05-01
The article presents the problem of modelling fatigue phenomena occurring in the road pavement. The example of two selected pavements shows the changes occurring under the influence of the load in different places of the pavement layers. Attention is paid to various values of longitudinal and transverse strains generated at the moment of passing the wheel on the pavement. It was found that the key element in the crack propagation analysis is the method of transferring the load to the pavement by the tire and the strain distribution in the pavement. During the passage of the wheel in the lower layers of the pavement, a complex stress state arises. Then vertical, horizontal and tangent stresses with various values appear. The numerical analyses carried out with the use of finite element methods allowed to assess the strain and stress changes occurring in the process of cracking road pavement. It has been shown that low-thickness pavements are susceptible to fatigue cracks arising "bottom to top", while pavements thicker are susceptible to "top to bottom" cracks. The analysis of the type of stress allowed to determine the cracking mechanism.
Steel weldability. Underbead cold cracking
International Nuclear Information System (INIS)
Marquet, F.; Defourny, J.; Bragard, A.
1977-01-01
The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking
Role of hydrogen in stress corrosion cracking
International Nuclear Information System (INIS)
Mehta, M.L.
1981-01-01
Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)
A crack opening stress equation for fatigue crack growth
Newman, J. C., Jr.
1984-01-01
A general crack opening stress equation is presented which may be used to correlate crack growth rate data for various materials and thicknesses, under constant amplitude loading, once the proper constraint factor has been determined. The constraint factor, alpha, is a constraint on tensile yielding; the material yields when the stress is equal to the product of alpha and sigma. Delta-K (LEFM) is plotted against rate for 2024-T3 aluminum alloy specimens 2.3 mm thick at various stress ratios. Delta-K sub eff was plotted against rate for the same data with alpha = 1.8; the rates correlate well within a factor of two.
Seismic behaviour of un-cracked and cracked thin pipes
International Nuclear Information System (INIS)
Blay, N.; Brunet, G.; Gantenbein, F.; Aguilar, J.
1995-01-01
In order to evaluate the seismic behaviour of un-cracked and cracked thin pipes, subjected to high acceleration levels, seismic tests and calculations have been performed on straight thin pipes made of 316L stainless steel, loaded in pure bending by a permanent static and dynamic loading. The seismic tests were carried out on the AZALEE shaking table of the CEA laboratory TAMARIS. The influence of the elasto-plastic model with isotropic or kinematic hardening are studied. 5 refs., 7 figs., 2 tabs
Energy Technology Data Exchange (ETDEWEB)
Scott, P.; Olson, R.; Marschall, C.; Rudland, D. [and others
1997-02-01
This report presents the results from Task 1 of the Second International Piping Integrity Research Group (IPIRG-2) program. The IPIRG-2 program is an international group program managed by the US Nuclear Regulatory Commission (US NRC) and funded by a consortium of organizations from 15 nations including: Bulgaria, Canada, Czech Republic, France, Hungary, Italy, Japan, Republic of Korea, Lithuania, Republic of China, Slovak Republic, Sweden, Switzerland, the United Kingdom, and the United States. The objective of the program was to build on the results of the IPIRG-1 and other related programs by extending the state-of-the-art in pipe fracture technology through the development of data needed to verify engineering methods for assessing the integrity of nuclear power plant piping systems that contain defects. The IPIRG-2 program included five main tasks: Task 1 - Pipe System Experiments with Flaws in Straight Pipe and Welds Task 2 - Fracture of Flawed Fittings Task 3 - Cyclic and Dynamic Load Effects on Fracture Toughness Task 4 - Resolution of Issues From IPIRG-1 and Related Programs Task 5 - Information Exchange Seminars and Workshops, and Program Management. The scope of this report is to present the results from the experiments and analyses associated with Task 1 (Pipe System Experiments with Flaws in Straight Pipe and Welds). The rationale and objectives of this task are discussed after a brief review of experimental data which existed after the IPIRG-1 program.
International Nuclear Information System (INIS)
Scott, P.; Olson, R.; Marschall, C.; Rudland, D.
1997-02-01
This report presents the results from Task 1 of the Second International Piping Integrity Research Group (IPIRG-2) program. The IPIRG-2 program is an international group program managed by the US Nuclear Regulatory Commission (US NRC) and funded by a consortium of organizations from 15 nations including: Bulgaria, Canada, Czech Republic, France, Hungary, Italy, Japan, Republic of Korea, Lithuania, Republic of China, Slovak Republic, Sweden, Switzerland, the United Kingdom, and the United States. The objective of the program was to build on the results of the IPIRG-1 and other related programs by extending the state-of-the-art in pipe fracture technology through the development of data needed to verify engineering methods for assessing the integrity of nuclear power plant piping systems that contain defects. The IPIRG-2 program included five main tasks: Task 1 - Pipe System Experiments with Flaws in Straight Pipe and Welds Task 2 - Fracture of Flawed Fittings Task 3 - Cyclic and Dynamic Load Effects on Fracture Toughness Task 4 - Resolution of Issues From IPIRG-1 and Related Programs Task 5 - Information Exchange Seminars and Workshops, and Program Management. The scope of this report is to present the results from the experiments and analyses associated with Task 1 (Pipe System Experiments with Flaws in Straight Pipe and Welds). The rationale and objectives of this task are discussed after a brief review of experimental data which existed after the IPIRG-1 program
Energy Technology Data Exchange (ETDEWEB)
Polvora, J.P
1998-12-31
This study deals with crack propagation at 650 deg C on an austenitic stainless steel referenced by Z2 CND 17-12 (316L(NN)). It is based on an experimental work concerning two different cracked specimens: CT specimens tested at 650 deg C in fatigue, creep and creep-fatigue with load controlled conditions (27 tests), tube specimens containing an internal circumferential crack tested in four points bending with displacement controlled conditions (10 tests). Using the fracture mechanics tools (K, J and C* parameters), the purpose here is to construct a methodology of calculation in order to predict the evolution of a crack with time for each loading condition using a fracture mechanics global approach. For both specimen types, crack growth is monitored by using a specific potential drop technique. In continuous fatigue, a material Paris law at 650 deg C is used to correlate crack growth rate with the stress intensity factor range corrected with a factor U(R) in order to take into account the effects of crack closure and loading ratio R. In pure creep on CT specimens, crack growth rate is correlated to the evolution of the C* parameter (evaluated experimentally) which can be estimated numerically with FEM calculations and analytically by using a simplified method based on a reference stress approach. A modeling of creep fatigue growth rate is obtained from a simple summation of the fatigue contribution and the creep contribution to the total crack growth. Good results are obtained when C* parameter is evaluated from the simplified expression C*{sub s}. Concerning the tube specimens tested in 4 point bending conditions, a simulation based on the actual A 16 French guide procedure proposed at CEA. (authors) 104 refs.
Mechanics of quasi-static crack growth
Energy Technology Data Exchange (ETDEWEB)
Rice, J R
1978-10-01
Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.
Cracking on anisotropic neutron stars
Setiawan, A. M.; Sulaksono, A.
2017-07-01
We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.
Restaurant No. 1 fully renovated
2007-01-01
The Restaurant No. 1 team. After several months of patience and goodwill on the part of our clients, we are delighted to announce that the major renovation work which began in September 2006 has now been completed. From 21 May 2007 we look forward to welcoming you to a completely renovated restaurant area designed with you in mind. The restaurant team wishes to thank all its clients for their patience and loyalty. Particular attention has been paid in the new design to creating a spacious serving area and providing a wider choice of dishes. The new restaurant area has been designed as an open-plan space to enable you to view all the dishes before making your selection and to move around freely from one food access point to another. It comprises user-friendly areas that fully comply with hygiene standards. From now on you will be able to pick and choose to your heart's content. We invite you to try out wok cooking or some other speciality. Or select a pizza or a plate of pasta with a choice of two sauces fr...
Fully Employing Software Inspections Data
Shull, Forrest; Feldmann, Raimund L.; Seaman, Carolyn; Regardie, Myrna; Godfrey, Sally
2009-01-01
Software inspections provide a proven approach to quality assurance for software products of all kinds, including requirements, design, code, test plans, among others. Common to all inspections is the aim of finding and fixing defects as early as possible, and thereby providing cost savings by minimizing the amount of rework necessary later in the lifecycle. Measurement data, such as the number and type of found defects and the effort spent by the inspection team, provide not only direct feedback about the software product to the project team but are also valuable for process improvement activities. In this paper, we discuss NASA's use of software inspections and the rich set of data that has resulted. In particular, we present results from analysis of inspection data that illustrate the benefits of fully utilizing that data for process improvement at several levels. Examining such data across multiple inspections or projects allows team members to monitor and trigger cross project improvements. Such improvements may focus on the software development processes of the whole organization as well as improvements to the applied inspection process itself.
Wang, Cun; Zhou, Zong-guang; Yu, Yong-yang; Shu, Ye; Li, Yuan; Yang, Lie; Li, Li
2009-04-01
Total mesorectal excision (TME) was advocated owning to the reduction in local failure, while deficiency in pathologic details limited monitoring of surgical quality assurance. Here, we aimed to examine circumferential resection margin (CRM) by large tissue slice, discussing its rule in occurrence and relationship with prognosis, thus providing proof for the adoption of TME principles and the application of adjuvant therapy. Specimens of 106 patients with rectal cancer, who underwent potentially curative resection from December 2001 to September 2002, were examined. Follow-up data were collected. Altogether, 2,068 mesorectal nodes were examined with 272 involved by tumor. CRM involvement (CRMI) was examined in 20 specimens. In these 20 cases, seven, nine, and four were caused by tumor infiltration, lymph node metastasis, and both, respectively. Occurrence of CRMI was more common for lower-located cancers while also statistically related to tumor differentiation, infiltration, and lymph node metastasis. The difference in local recurrence rate, general recurrence rate, disease-free survival rate, and overall survival rate between the group with CRMI and the group without were all proven to be significant. Detailed pathologic examination, including status of CRM, is advocated since it provides accurate prognostic information. Surgeons could maximize the probability of cure by following the principle of TME. Preoperative adjuvant therapy was essential for advanced staged and lower-located lesions, which implied likelihood of CRMI.
Directory of Open Access Journals (Sweden)
GholamReza Havaei
2015-09-01
Full Text Available Reinforced concrete reservoirs (RCR have been used extensively in municipal and industrial facilities for several decades. The design of these structures requires that attention be given not only to strength requirements, but to serviceability requirements as well. These types of structures will be square, round, and oval reinforced concrete structures which may be above, below, or partially below ground. The main challenge is to design concrete liquid containing structures which will resist the extremes of seasonal temperature changes, a variety of loading conditions, and remain liquid tight for useful life of 50 to 60 years. In this study, optimization is performed by particle swarm algorithm basd on structural design. Firstly by structural analysis all range of shell thickness and areas of rebar find. In the second step by parameter identification system interchange algorithm, source code which developed in particle swarm algorithm by MATLAB software linked to analysis software. Therefore best and optimized thicknesses and total area of bars for each element find. Lastly with circumferential stiffeners structure optimize and show 19% decrease in weight of rebar, 20% decrease in volume of concrete, and 13% minimum cost reduction in construction procedure compared with conventional 10,000 m3 RCR structures.
Ultrasonic phased array examination of circumferential weld joint in reactor pressure vessel of BWR
Energy Technology Data Exchange (ETDEWEB)
Nanekar, Paritosh, E-mail: pnanekar@barc.gov.in [Quality Assurance Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jothilakshmi, N. [Quality Assurance Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)
2013-12-15
Highlights: • Phased array technique developed for weld joint inspection in BWR pressure vessel. • Simulation studies were carried out for conventional and phased array probe. • Conventional ultrasonic test shows in-adequate weld coverage and poor resolution. • Focused sound beam in phased array results in good resolution and sensitivity. • Ultrasonic phased array technique is validated on mock-up with reference defects. - Abstract: The weld joints in the reactor pressure vessel (RPV) of Boiling Water Reactors (BWR) are required to be examined periodically for assurance of structural integrity. Ultrasonic phased array examination technique has been developed in authors’ laboratory for inspection of the top flange to shell circumferential weld joint in RPV of BWRs, which are in operation in India since the late 1960s. The development involved detailed simulation studies for computation of focal laws followed by validation on mock-up. The paper brings out the limitations of the conventional ultrasonic technique and how this can be overcome by the phased array approach for the weld joint under consideration. The phased array technique was successfully employed for field examination of this weld joint in RPV during the re-fuelling outage.
International Nuclear Information System (INIS)
Miyanaga, Hajime
1982-01-01
A quantitative analysis of thallium-201 myocardial perfusion image (MPI) was attempted by using circumferential profile method (CPM) and the first purpose of this study is to assess the clinical utility of this method for the detection of myocardial ischemia. In patients with coronary artery disease, CPM analysis to exercise T1-MPI showed high sensitivity (9/12, 75%) and specificity (9/9, 100%), whereas exercise ECG showed high sensitivity (9/12, 75%), but relatively low specificity (7/9, 78%). In patients with myocardial infarction, CPM also showed high sensitivity (34/38, 89%) for the detection of myocardial necrosis, compared with visual interpretation (31/38, 81%) and with ECG (31/38, 81%). Defect score was correlated well with the number of abnormal Q waves. In exercise study, CPM was also sensitive to the change of perfusion defect in T1-MPI produced by exercise. So the results indicate that CPM is a good method not only quantitatively but also objectively to analyze T1-MPI. Although ECG is the most commonly used diagnostic tool for ischemic heart disease, several exercise induced ischemic changes in ECG have been still on discussion as criteria. So the second purpose of this study is to evaluate these ischemic ECG changes by exercise T1-MPI analized quantitatively. ST depression (ischemic 1 mm and junctional 2 mm or more), ST elevation (1 mm or more), and coronary T wave reversion in exercise ECG were though to be ischemic changes. (J.P.N.)
Circumferential tensile test method for mechanical property evaluation of SiC/SiC tube
Energy Technology Data Exchange (ETDEWEB)
Yu, Ju-Hyeon, E-mail: 15096018@mmm.muroran-it.ac.jp [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kishimoto, Hirotatsu [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Park, Joon-soo [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Nakazato, Naofumi [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan)
2016-11-01
Highlights: • NITE SiC/SiC cooling channel system to be a candidate of divertor system in future. • Hoop strength is one of the important factors for a tube. • This research studies the relationship between deformation and strain of SiC/SiC tube. - Abstract: SiC fiber reinforced/SiC matrix (SiC/SiC) composite is expected to be a candidate material for the first-wall, components in the blanket and divertor of fusion reactors in future. In such components, SiC/SiC composites need to be formed to be various shapes. SiC/SiC tubes has been expected to be employed for blanket and divertor after DEMO reactor, but there is not established mechanical investigation technique. Recent progress of SiC/SiC processing techniques is likely to realize strong, having gas tightness SiC/SiC tubes which will contribute for the development of fusion reactors. This research studies the relationship between deformation and strain of SiC/SiC tube using a circumferential tensile test method to establish a mechanical property investigation method of SiC/SiC tubes.
Leak before break behaviour of austenitic and ferritic pipes containing circumferential defects
Energy Technology Data Exchange (ETDEWEB)
Stadtmueller, W.; Sturm, D.
1997-04-01
Several research projects carried out at MPA Stuttgart to investigate the Leak-before-Break (LBB) behavior of safety relevant pressure bearing components are summarized. Results presented relate to pipes containing circumferential defects subjected to internal pressure and external bending loading. An overview of the experimentally determined results for ferritic components is presented. For components containing postulated or actual defects, the dependence of the critical loading limit on the defect size is shown in the form of LBB curves. These are determined experimentally and/or by calculation for through-wall slits, and represent the boundary curve between leakage and massive fracture. For surface defects and a given bending moment and internal pressure, no fracture will occur if the length at leakage remains smaller than the critical defect length given by the LBB curve for through-wall defects. The predictive capability of engineering calculational methods are presented by way of example. The investigation programs currently underway, testing techniques, and initial results are outlined.
Shin, Dong Woo; Shin, Jin Yong; Oh, Sung Jin; Park, Jong Kwon; Yu, Hyeon; Ahn, Min Sung; Bae, Ki Beom; Hong, Kwan Hee; Ji, Yong Il
2016-04-01
The prognostic influence of circumferential resection margin (CRM) status in extraperitoneal rectal cancer probably differs from that of intraperitoneal rectal cancer because of its different anatomical and biological behaviors. However, previous reports have not provided the data focused on extraperitoneal rectal cancer. Therefore, the aim of this study was to examine the prognostic significance of the CRM status in patients with extraperitoneal rectal cancer. From January 2005 to December 2008, 248 patients were treated for extraperitoneal rectal cancer and enrolled in a prospectively collected database. Extraperitoneal rectal cancer was defined based on tumors located below the anterior peritoneal reflection, as determined intraoperatively by a surgeon. Cox model was used for multivariate analysis to examine risk factors of recurrence and mortality in the 248 patients, and multivariate logistic regression analysis was performed to identify predictors of recurrence and mortality in 135 patients with T3 rectal cancer. CRM involvement for extraperitoneal rectal cancer was present in 29 (11.7%) of the 248 patients, and was the identified predictor of local recurrence, overall recurrence, and death by multivariate Cox analysis. In the 135 patients with T3 cancer, CRM involvement was found to be associated with higher probability of local recurrence and mortality. In extraperitoneal rectal cancer, CRM involvement is an independent risk factor of recurrence and survival. Based on the results of the present study, it seems that CRM involvement in extraperitoneal rectal cancer is considered an indicator for (neo)adjuvant therapy rather than conventional TN status.
Negm, Hesham; Mosleh, Mohamed; Fathy, Hesham
2013-09-01
The objective of this study is to evaluate the results of circumferential tracheal and cricotracheal resection with primary anastomosis for the treatment of post-intubation tracheal and cricotracheal stenosis. This is a retrospective analytical study. A total number of 24 patients were included in this study. The relevant preoperative, operative and postoperative records were collected and analyzed. Twenty patients were finally symptom-free reflecting an anastomosis success rate of 83.3 %. Variable grades of anastomotic restenosis occurred in 11 (45.8 %) patients, three patients were symptom-free and eight had airway obstructive symptoms. Four out of the eight patients with symptomatic restenosis were symptom-free with endoscopic dilatation while the remaining four patients required a permanent airway appliance (T-tube, tracheostomy) for the relief of airway obstruction and this group was considered as anastomotic failure. Cricoid involvement, associated cricoid resection and the type of anastomosis were the variables that had statistical impact on the occurrence of restenosis (P = 0.017, 0.017, 0.05; respectively). Tracheal resection with primary anastomosis is a safe effective treatment method for post-intubation tracheal stenosis in carefully selected patients. Restenosis does not always mean failure of the procedure since it may be successfully managed with endoscopic dilatation.
Energy Technology Data Exchange (ETDEWEB)
Miyanaga, Hajime [Kyoto Prefectural Univ. of Medicine (Japan)
1982-08-01
A quantitative analysis of thallium-201 myocardial perfusion image (MPI) was attempted by using circumferential profile method (CPM) and the first purpose of this study is to assess the clinical utility of this method for the detection of myocardial ischemia. In patients with coronary artery disease, CPM analysis to exercise T1-MPI showed high sensitivity (9/12, 75%) and specificity (9/9, 100%), whereas exercise ECG showed high sensitivity (9/12, 75%), but relatively low specificity (7/9, 78%). In patients with myocardial infarction, CPM also showed high sensitivity (34/38, 89%) for the detection of myocardial necrosis, compared with visual interpretation (31/38, 81%) and with ECG (31/38, 81%). Defect score was correlated well with the number of abnormal Q waves. In exercise study, CPM was also sensitive to the change of perfusion defect in T1-MPI produced by exercise. So the results indicate that CPM is a good method not only quantitatively but also objectively to analyze T1-MPI. Although ECG is the most commonly used diagnostic tool for ischemic heart disease, several exercise induced ischemic changes in ECG have been still on discussion as criteria. So the second purpose of this study is to evaluate these ischemic ECG changes by exercise T1-MPI analized quantitatively. ST depression (ischemic 1 mm and junctional 2 mm or more), ST elevation (1 mm or more), and coronary T wave reversion in exercise ECG were though to be ischemic changes.
Dynamic experiments on cracked pipes
International Nuclear Information System (INIS)
Petit, M.; Brunet, G.; Buland, P.
1991-01-01
In order to apply the leak before break concept to piping systems, the behavior of cracked pipes under dynamic, and especially seismic loading must be studied. In a first phase, an experimental program on cracked stainless steel pipes under quasi-static monotonic loading has been conducted. In this paper, the dynamic tests on the same pipe geometry are described. These tests have been performed on a shaking table with a mono frequency input signal. The main parameter of the tests is the frequency of excitation versus the frequency of the system
Cracking and corrosion recovery boiler
Energy Technology Data Exchange (ETDEWEB)
Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)
1998-12-31
The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.
Cracking and corrosion recovery boiler
Energy Technology Data Exchange (ETDEWEB)
Suik, H [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)
1999-12-31
The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.
Gearbox Instrumentation for the Investigation of Bearing Axial Cracking
Energy Technology Data Exchange (ETDEWEB)
Keller, Jonathan A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lambert, Scott R [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2018-03-27
Failures in gearbox bearings have been the primary source of reliability issues for wind turbine drivetrains, leading to costly downtime and unplanned maintenance. The most common failure mode is attributed to so-called axial cracks or white-etching cracks, which primarily affect the intermediate and high-speed-stage bearings. The high-speed-shaft and bearing loads and sliding will be measured with a specially instrumented gearbox installed in a 1.5-megawatt turbine at the National Wind Technology Center in an upcoming test campaign. Additional instrumentation will also measure the tribological environment of these bearings, including bearing temperatures, lubricant temperature and water content, air temperature and humidity, and stray electrical current across the bearings. This paper fully describes the instrumentation package and summarizes initial results.
The Reflective Cracking in Flexible Pavements
Directory of Open Access Journals (Sweden)
Pais Jorge
2013-07-01
Full Text Available Reflective cracking is a major concern for engineers facing the problem of road maintenance and rehabilitation. The problem appears due to the presence of cracks in the old pavement layers that propagate into the pavement overlay layer when traffic load passes over the cracks and due to the temperature variation. The stress concentration in the overlay just above the existing cracks is responsible for the appearance and crack propagation throughout the overlay. The analysis of the reflective cracking phenomenon is usually made by numerical modeling simulating the presence of cracks in the existing pavement and the stress concentration in the crack tip is assessed to predict either the cracking propagation rate or the expected fatigue life of the overlay. Numerical modeling to study reflective cracking is made by simulating one crack in the existing pavement and the loading is usually applied considering the shear mode of crack opening. Sometimes the simulation considers the mode I of crack opening, mainly when temperature effects are predominant.
Recent advances in modelling creep crack growth
International Nuclear Information System (INIS)
Riedel, H.
1988-08-01
At the time of the previous International Conference on Fracture, the C* integral had long been recognized as a promising load parameter for correlating crack growth rates in creep-ductile materials. The measured crack growth rates as a function of C* and of the temperature could be understood on the basis of micromechanical models. The distinction between C*-controlled and K I -controlled creep crack growth had been clarified and first attempts had been made to describe creep crack growth in the transient regime between elastic behavior and steady-state creep. This paper describes the progress in describing transient crack growth including the effect of primary creep. The effect of crack-tip geometry changes by blunting and by crack growth on the crack-tip fields and on the validity of C* is analyzed by idealizing the growing-crack geometry by a sharp notch and using recent solutions for the notch-tip fields. A few new three-dimensional calculations of C* are cited and important theoretical points are emphasized regarding the three-dimensional fields at crack tips. Finally, creep crack growth is described by continuum-damage models for which similarity solutions can be obtained. Crack growth under small-scale creep conditions turns out to be difficult to understand. Slightly different models yield very different crack growth rates. (orig.) With 4 figs
Shear-mode Crack Initiation Behavior in the Martensitic and Bainitic Microstructures
Directory of Open Access Journals (Sweden)
Wada Kentaro
2018-01-01
Full Text Available Fully reversed torsional fatigue tests were conducted to elucidate the behaviour of shear-mode crack initiation and propagation in one martensitic and two bainitic steels. The relationship between the crack initiation site and microstructure was investigated by means of an electron backscatter diffraction (EBSD technique. From the S-N diagram, two notable results were obtained: (i the shear-mode crack was initiated on the prior austenitic grain boundary in martensitic steel, while in bainitic steels, the crack was initiated along the {110} plane; one of the slip planes of bcc metals, and (ii the torsional fatigue limit of lower bainitic steel with finer grains was 60 MPa higher than that of upper bainitic steel with coarser grains even though the hardnesses were nearly equivalent. The mechanism determining the torsional fatigue strength in these steels is discussed from the viewpoint of microstructure morphology.
The use of COD and plastic instability in crack propagation and arrest in shells
Erdogan, F.; Ratwani, M.
1974-01-01
The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.
International Nuclear Information System (INIS)
Ferner, J.; Rondeau, R.K.; Rosinger, H.E.
1983-07-01
A failure model for Zircaloy-4 fuel sheaths has been developed and used to predict the effect of circumferential temperature variations (ΔT) on fuel-sheath strain behaviour in an inert atmosphere. In addition, experimental data were generated for fuel-sheath failures in the α and (α+β)-phase regions and compared to the predictions of the model. For both the experimental data and the model predictions it was found that increasing ΔT decreases sheath strain. Most of the reduction in burst strain with increasing ΔT occurs in the first 15 K to 20 K. For high ΔT values, burst strains in the α- and (α+β)-phase regions tend to an asymptotic value in the range 5 to 20 percent, irrespective of both heating rate and circumferential temperature variation. The BURST-2 computer code was used for these calculations
Stress intensity factors for complete internal and external cracks in spherical shells
International Nuclear Information System (INIS)
Chao, Y.J.; Chen, H.
1989-01-01
Cracks or flows found in the nuclear structure must be fully evaluated to assure the safety of the plant. The weight function method has been widely used in the determination of stress intensity factors for cracks under stress gradient e.g. for thermal shock loading. The unique features of the weight function method is that once the weight function for a particular cracked geometry is determined the stress intensity factors at the crack tip for any loading applied to the flawed structure can be calculated by a simple integration. In this paper the stress intensity factors of the complete, part-through internal and external cracks in a spherical shell are determined. The finite element method was used to develop the weight functions for the flawed geometry. The approximate crack surface profile was used to derive the weight functions. The stress intensity factors associated with the cracks in spherical shells under internal pressure are determined by both the weight functions and the direct finite element method
On multiple crack detection in beam structures
Energy Technology Data Exchange (ETDEWEB)
Moradi, Shapour; Kargozarfard, Mohammad [Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)
2013-01-15
This study presents an inverse procedure to identify multiple cracks in beams using an evolutionary algorithm. By considering the crack detection procedure as an optimization problem, an objective function can be constructed based on the change of the eigenfrequencies and some strain energy parameters. Each crack is modeled by a rotational spring. The changes in natural frequencies due to the presence of the cracks are related to a damage index vector. Then, the bees algorithm, a swarm-based evolutionary optimization technique, is used to optimize the objective function and find the damage index vector, whose positive components show the number and position of the cracks. A second objective function is also optimized to find the crack depths. Several experimental studies on cracked cantilever beams are conducted to ensure the integrity of the proposed method. The results show that the number of cracks as well as their sizes and locations can be predicted well through this method.
International Nuclear Information System (INIS)
Heerens, J.
1990-01-01
A procedure is developed which allows to estimate crack tip blunting using the stress-strain curve of the material and the J-integral. The second part deals with cleavage fracture in a quenched and tempered pressure vessel steel. It was found that within the ductile to brittle transition regime the fracture toughness is controlled by cleavage initiated at 'weak spots of the material' and by the normal stresses at the weak spots. In the last part of the paper the influence of specimen size on J-, Jm- and δ 5 -R-curves for side grooved CT-specimens under fully plastic condition is investigated. In order to characterize constraint-effects the necking of the specimens was measured. For specimens having similar constraint the parameters Jm and δ 5 yielded size independent R-curves over substantial larger amounts of crack extension than the J-integral. (orig.) With 114 figs., 10 tabs [de
The influence of microstructure on fatigue crack initiation in spheroidal graphite cast irons
International Nuclear Information System (INIS)
Starkey, M.S.; Irving, P.E.
1979-01-01
This paper reports the first stage of this work which concentrates on fatigue crack initiation with particular emphasis on the influence of microstructure. The fatigue lives of three fully ferritic and two fully pearlitic irons, each with different graphite nodule size distributions, have been determined at two strain amplitudes, 0.005 and 0.00018. The tests were carried out in fully reversed strain control on smooth cylindrical specimens in a servohydraulic testing machine. The effects of matrix structure and strength were clearly seen in that the pearlitic irons were superior at both strain levels. Nodule size on the other hand appeared to have no significant effect. The crack initiation sites in the specimens were located by interrupting the tests on detection of a 5% tensile load drop and heat tinting, before continuing. After failure, which was defined as complete separation, the fracture faces were examined on the scanning electron microscope. In the majority of the specimens the major crack origin was found to be a surface micropore with depths ranging from 50 to 250 μm. It is suggested that these micropores and not the graphite modules strongly influence the crack initiation behaviour in SG iron. These findings were confirmed by monitoring the initiation and growth of surface cracks from micropores using surface replica techniques. The influence of microstructure on the percentage of life spent in initiating and propagating a crack was thus determined. Hence the factors contributing to the fatigue behaviour of SG irons can be quantified. Their influence on predictions of cycles to crack initiation using the local approach is discussed. (orig.) 891 RW/orig. 892 RKD [de
The fully Mobile City Government Project (MCity)
DEFF Research Database (Denmark)
Scholl, Hans; Fidel, Raya; Mai, Jens Erik
2006-01-01
The Fully Mobile City Government Project, also known as MCity, is an interdisciplinary research project on the premises, requirements, and effects of fully mobile, wirelessly connected applications (FWMC). The project will develop an analytical framework for interpreting the interaction and inter......The Fully Mobile City Government Project, also known as MCity, is an interdisciplinary research project on the premises, requirements, and effects of fully mobile, wirelessly connected applications (FWMC). The project will develop an analytical framework for interpreting the interaction...
A study on fatigue crack growth in dual phase martensitic steel in air
Indian Academy of Sciences (India)
Dual phase (DP) steel was intercritically annealed at different temperatures from fully martensitic state to achieve martensite plus ferrite, microstructures with martensite contents in the range of 32 to 76%. Fatigue crack growth (FCG) and fracture toughness tests were carried out as per ASTM standards E 647 and E 399, ...
Huang, Alex S; Belghith, Akram; Dastiridou, Anna; Chopra, Vikas; Zangwill, Linda M; Weinreb, Robert N
2017-06-01
The purpose was to create a three-dimensional (3-D) model of circumferential aqueous humor outflow (AHO) in a living human eye with an automated detection algorithm for Schlemm’s canal (SC) and first-order collector channels (CC) applied to spectral-domain optical coherence tomography (SD-OCT). Anterior segment SD-OCT scans from a subject were acquired circumferentially around the limbus. A Bayesian Ridge method was used to approximate the location of the SC on infrared confocal laser scanning ophthalmoscopic images with a cross multiplication tool developed to initiate SC/CC detection automated through a fuzzy hidden Markov Chain approach. Automatic segmentation of SC and initial CC’s was manually confirmed by two masked graders. Outflow pathways detected by the segmentation algorithm were reconstructed into a 3-D representation of AHO. Overall, only time and time with 1.4% false positive detection. 3-D representation of AHO pathways demonstrated variably thicker and thinner SC with some clear CC roots. Circumferential (360 deg), automated, and validated AHO detection of angle structures in the living human eye with reconstruction was possible.
Simpson, G S; Eardley, N; McNicol, F; Healey, P; Hughes, M; Rooney, P S
2014-05-01
The management of rectal cancer relies on accurate MRI staging. Multi-modal treatments can downstage rectal cancer prior to surgery and may have an effect on MRI accuracy. We aim to correlate the findings of MRI staging of rectal cancer with histological analysis, the effect of neoadjuvant therapy on this and the implications of circumferential resection margin (CRM) positivity following neoadjuvant therapy. An analysis of histological data and radiological staging of all cases of rectal cancer in a single centre between 2006 and 2011 were conducted. Two hundred forty-one patients had histologically proved rectal cancer during the study period. One hundred eighty-two patients underwent resection. Median age was 66.6 years, and male to female ratio was 13:5. R1 resection rate was 11.1%. MRI assessments of the circumferential resection margin in patients without neoadjuvant radiotherapy were 93.6 and 88.1% in patients who underwent neoadjuvant radiotherapy. Eighteen patients had predicted positive margins following chemoradiotherapy, of which 38.9% had an involved CRM on histological analysis. MRI assessment of the circumferential resection margin in rectal cancer is associated with high accuracy. Neoadjuvant chemoradiotherapy has a detrimental effect on this accuracy, although accuracy remains high. In the presence of persistently predicted positive margins, complete resection remains achievable but may necessitate a more radical approach to resection.
International Nuclear Information System (INIS)
Joo, Young Sang; Jung, Hyun Kyu; Cheong, Yong Moo; Ih, Jeong Guon
1999-01-01
The resonance scattering of acoustic waves from the cylindrical shells of nuclear fuel rods coated with oxide layers has been theoretically modeled and numerically analyzed for the propagation characteristics of the circumferential waves. The normal mode solutions of the scattering pressure of the coated shells have been obtained. The pure resonance components have been isolated using the newly proposed inherent background coefficients. The propagation characteristics of resonant circumferential waves for the shells coated with oxide layers are affected by the presence and the thickness of an oxide layer. The characteristics have been experimentally confirmed through the method of isolation and identification of resonances. The change of the phase velocity of the A 1 circumferential wave mode for the coated shell is negligible at the specified partial waves in spite of the presence of the oxide layer and the increase in coating thickness. Utilizing the invariability characteristics of the phase velocity of the A 1 mode, the oxide layer thickness of the coated shells can be estimated. A new nondestructive technique for the relative measurement of the coating thickness of coated shells has been proposed
Huang, Alex S.; Belghith, Akram; Dastiridou, Anna; Chopra, Vikas; Zangwill, Linda M.; Weinreb, Robert N.
2017-06-01
The purpose was to create a three-dimensional (3-D) model of circumferential aqueous humor outflow (AHO) in a living human eye with an automated detection algorithm for Schlemm's canal (SC) and first-order collector channels (CC) applied to spectral-domain optical coherence tomography (SD-OCT). Anterior segment SD-OCT scans from a subject were acquired circumferentially around the limbus. A Bayesian Ridge method was used to approximate the location of the SC on infrared confocal laser scanning ophthalmoscopic images with a cross multiplication tool developed to initiate SC/CC detection automated through a fuzzy hidden Markov Chain approach. Automatic segmentation of SC and initial CC's was manually confirmed by two masked graders. Outflow pathways detected by the segmentation algorithm were reconstructed into a 3-D representation of AHO. Overall, only <1% of images (5114 total B-scans) were ungradable. Automatic segmentation algorithm performed well with SC detection 98.3% of the time and <0.1% false positive detection compared to expert grader consensus. CC was detected 84.2% of the time with 1.4% false positive detection. 3-D representation of AHO pathways demonstrated variably thicker and thinner SC with some clear CC roots. Circumferential (360 deg), automated, and validated AHO detection of angle structures in the living human eye with reconstruction was possible.
Comparison of crack arrest methodologies
International Nuclear Information System (INIS)
Anon.
1979-01-01
The ASTM Cooperative Test Program Data were used to compare the static (K/sub Ia/) and dynamic (K/sud ID/, K/sub IDm/) approaches to crack arrest. K/sub Ia/ is not dependent on K/sub Q/. This is consistent with the requirements of the static approach, but not the dynamic one which requires that K/sub Ia/ decrease with K/sub Q/ if K/sub ID/ (= K/sub IDm/) is a constant. K/sub ID/ increases systematically with K/sub Q/ at a rate that is consistent with calculations based on the use of a constant value for K/sub Ia/ which is equal to its measured mean value. Only in the limiting case of very short crack jumps (associated with very low average crack speeds) can K/sub ID/ be identified as a minimum value at which K/sub ID/ = K/sub IDm/. In this case K/sub IDm/ approx. K/sub Ia/ approx. K/sub Im/. The latter is the idealized minimum value of K that will support the continued propagation of a running crack
The analysis of cracked structures
International Nuclear Information System (INIS)
Davidson, I.
1974-01-01
A brief review of the general problem of stable crack systems in many classes of structures, notably reinforced concrete structures, is made. Very simple methods of analysis are derived and some elaboration is described, as well as methods of optimising the calculations. Analytical methods are compared with experiments
Cracks in functionally graded materials
International Nuclear Information System (INIS)
Bahr, H.-A.; Balke, H.; Fett, T.; Hofinger, I.; Kirchhoff, G.; Munz, D.; Neubrand, A.; Semenov, A.S.; Weiss, H.-J.; Yang, Y.Y.
2003-01-01
The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages: vertical cracking→delamination→blistering→spalling. This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage
Severity parameters for steam cracking
Golombok, M.; Bijl, J.L.M.; Kornegoor, M.
2001-01-01
There are several ways to measure severity in steam cracking which are all a function of residence time, temperature, and pressure. Many measures of severity are not practicable for experimental purposes. Our experimental study shows that methane make is the best measure of severity because it is an
Steam hydrocarbon cracking and reforming
Golombok, M.
2004-01-01
Many industrial chemical processes are taught as distinct contrasting reactions when in fact the unifying comparisons are greater than the contrasts. We examine steam hydrocarbon reforming and steam hydrocarbon cracking as an example of two processes that operate under different chemical reactivity
Petrochemical promoters in catalytic cracking
International Nuclear Information System (INIS)
Gomez, Maria; Vargas, Clemencia; Lizcano, Javier
2010-01-01
This study is based on the current scheme followed by a refinery with available Catalytic Cracking capacity to process new feedstocks such as Straight Run Naphtha and Naphthas from FCC. These feedstocks are of petrochemical interest to produce Ethane, Ethylene, Propylene, i-Butane, Toluene and Xylene. To evaluate the potential of these new streams versus the Cracking-charged Residues, it was performed a detailed chemical analysis on the structural groups in carbons [C1-C12] at the reactor product obtained in pilot plant. A catalyst with and without Propylene Promoter Additive was used. This study analyzes the differences in the chemical composition of the feedstocks, relating them to the yield of each petrochemical product. Straight Run Naphthas with a high content of Naphthenes, and Paraffines n[C5-C12] and i[C7-C12] are selective to the production of i-Butane and Propane, while Naphthas from FCC with a high content of n[C5-C12]Olefins, i-Olefins, and Aromatics are more selective to Propylene, Toluene, and Xylene. Concerning Catalytic Cracking of Naphthas, the Additive has similar selectivity for all the petrochemical products, their yields increase by about one point with 4%wt of Additive, while in cracking of Residues, the Additive increases in three points Propylene yield, corresponding to a selectivity of 50% (?C3= / ?LPG).
Fatigue crack growth in fiber reinforced plastics
Mandell, J. F.
1979-01-01
Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.
Dynamic photoelastic investigation of crack arrest
International Nuclear Information System (INIS)
Irwin, G.R.; Dally, J.W.; Kobayashi, T.; Fourney, W.L.
1977-01-01
Crack arrest and crack arrest toughness are of great interest, particularly for studies pertaining to safety of nuclear reactor pressure vessels. Investigations are needed in which the instantaneous values of stress intensity factor (K) can be observed during crack propagation and arrest. Such observations are possible if the test specimens are made from plates of a transparent photoelastic sensitive material. Values of K as a function of crack speed are shown for Homalite 100 and various epoxy blends. 9 figures
Crack Propagation by Finite Element Method
H. Ricardo, Luiz Carlos
2017-01-01
Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...
Crack detection using image processing
International Nuclear Information System (INIS)
Moustafa, M.A.A
2010-01-01
This thesis contains five main subjects in eight chapters and two appendices. The first subject discus Wiener filter for filtering images. In the second subject, we examine using different methods, as Steepest Descent Algorithm (SDA) and the Wavelet Transformation, to detect and filling the cracks, and it's applications in different areas as Nano technology and Bio-technology. In third subject, we attempt to find 3-D images from 1-D or 2-D images using texture mapping with Open Gl under Visual C ++ language programming. The fourth subject consists of the process of using the image warping methods for finding the depth of 2-D images using affine transformation, bilinear transformation, projective mapping, Mosaic warping and similarity transformation. More details about this subject will be discussed below. The fifth subject, the Bezier curves and surface, will be discussed in details. The methods for creating Bezier curves and surface with unknown distribution, using only control points. At the end of our discussion we will obtain the solid form, using the so called NURBS (Non-Uniform Rational B-Spline); which depends on: the degree of freedom, control points, knots, and an evaluation rule; and is defined as a mathematical representation of 3-D geometry that can accurately describe any shape from a simple 2-D line, circle, arc, or curve to the most complex 3-D organic free-form surface or (solid) which depends on finding the Bezier curve and creating family of curves (surface), then filling in between to obtain the solid form. Another representation for this subject is concerned with building 3D geometric models from physical objects using image-based techniques. The advantage of image techniques is that they require no expensive equipment; we use NURBS, subdivision surface and mesh for finding the depth of any image with one still view or 2D image. The quality of filtering depends on the way the data is incorporated into the model. The data should be treated with
BWR pipe crack remedies evaluation
International Nuclear Information System (INIS)
Shack, W.J.; Kassner, T.F.; Maiya, P.S.; Park, J.Y.; Ruther, W.; Kuzay, T.; Rybicki, E.F.; Stonesifer, R.B.
1988-01-01
Piping in light-water-reactor power systems has been affected by several types of environmental degradation. This paper presents results from studies of (1) stress corrosion crack growth in fracture mechanics specimens of modified Type 347 SS and Type 304/308L SS weld overlay material, (2) heat-to-heat variations in stress corrosion cracking (SCC) of Types 316NG and 347 SS, (3) SCC of sensitized Type 304 SS in water with cupric ion or organic acid impurities, (4) electrochemical potential (ECP) measurements under gamma irradiation, (5) SCC of ferritic steels, (6) strain-controlled fatigue of Type 316NG SS in air at ambient temperature, and (7) through-wall residual stress measurements and finite-element calculation of residual stresses in weldments treated by a mechanical stress improvement process (MSIP). Fracture-mechanics crack-growth-rate tests on Type 316NG SS have shown that transgranular cracking can occur even in high purity environments, whereas no crack growth was observed in Type 347 SS even in impurity environments. In tests on weld overlay specimens, no cracks penetrated into the overlay even in impurity environments. Instead, the cracks branched when they approached the overlay, and then grew parallel to interface. In SCC tests on sensitized Type 304 SS, cupric ions at concentrations greater than ∼1 ppm were found to be deleterious, whereas organic acids at this concentration were not detrimental. Tests on several ferritic steels indicate a strong correlation between the sulfur content of the steels and susceptibility to SCC. External gamma radiation fields produced a large positive shift in the ECP of Type 304 SS at low dissolved-oxygen concentrations (<5 ppb), whereas in the absence of an external gamma field there was no difference in the ECP values of irradiated and nonirradiated material. Fatigue data for Type 316NG SS are consistent with the ASME code mean curve at high strains, but fall below the curve at low strains. Calculations of the
Correction to the crack extension direction in numerical modelling of mixed mode crack paths
DEFF Research Database (Denmark)
Lucht, Tore; Aliabadi, M.H.
2007-01-01
In order to avoid introduction of an error when a local crack-growth criterion is used in an incremental crack growth formulation, each straight crack extension would have to be infinitesimal or have its direction corrected. In this paper a new procedure to correct the crack extension direction...
Fatigue crack growth from a cracked elastic particle into a ductile matrix
Groh, S.; Olarnrithinun, S.; Curtin, W. A.; Needleman, A.; Deshpande, V. S.; Van der Giessen, E.
2008-01-01
The monotonic and cyclic crack growth rate of cracks is strongly influenced by the microstructure. Here, the growth of cracks emanating from pre-cracked micron-scale elastic particles and growing into single crystals is investigated, with a focus on the effects of (i) plastic confinement due to the
Assessment of cracking in dissimilar metal welds
International Nuclear Information System (INIS)
Jenssen, Anders; Norrgaard, K.; Lagerstroem, J.; Embring, G.; Tice, D.R.
2001-08-01
During the refueling in 2000, indications were observed by non-destructive testing at four locations in the reactor pressure vessel (RPV) nozzle to safe end weld in Ringhals 4. All indications were confined to the outlet nozzle (hotleg) oriented at 25 deg, a nozzle with documented repair welding. Six boat samples were removed from the four locations, and the samples were subsequently subjected to a metallographic examination. The objectives were to establish the fracture morphology, and if possible the root cause for cracking. The examination revealed that cracks were present at all four boat sample locations and that they all were confined to the weld metal, alloy 182. Cracking extended in the axial direction of the safe-end. There was no evidence of any cracks extending into the RPV-steel, or the stainless steel safe-end. All cracking was interdendritic and significantly branched. Among others, these observations strongly suggested crack propagation mainly was caused by interdendritic stress corrosion cracking. In addition, crack type defects and isolated areas on the fracture surfaces suggested the presence of hot cracking, which would have been formed during fabrication. The reason for crack initiation could not be established based on the boat samples examined. However, increased stress levels due to repair welding, cold work from grinding, and defects produced during fabrication, e. g. hot cracks, may alone or in combination have contributed to crack initiation
Solidification cracking in austenitic stainless steel welds
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
Hot cracking in stainless steel welds is caused by low-melting eutectics containing impurities such as S, ... Total crack length (TCL), used extensively in hot cracking assessment, exhibits greater variability due to ... behaviour appear to be complex and the mechanisms thereof are not completely under- stood. Development of ...
Universal Shapes formed by Interacting Cracks
Fender, Melissa; Lechenault, Frederic; Daniels, Karen
2011-03-01
Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated curvature and stress geometries, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths known in the geologic literature as en passant cracks. While the fragmentation of solids via many interacting cracks has seen wide investigation, less attention has been paid to the details of individual crack-crack interactions. We investigate the origins of this widely observed crack pattern using a rectangular elastic plate which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until the pass each other, after which they curve and release a lenticular fragment. We find that, for materials with diverse mechanical properties, the shape of this fragment has an aspect ratio of 2:1, with the length scale set by the initial cracks offset s and the time scale set by the ratio of s to the pulling velocity. The cracks have a universal square root shape, which we understand by using a simple geometric model and the crack-crack interaction.
Problems of procedure for studying crack resistance
International Nuclear Information System (INIS)
Babak, A.V.; Uskov, E.I.
1984-01-01
Procedures are developed for studying crack resistance in sintered hot-worked tungsten within 20-2200 deg C. Certain structural properties of the installation for studying high-temperature crack resistance of tungsten are considered. Technological peculiarities of eccentric tensile strength of tungsten specimens and methodical peculiarities of initjation and fixation of initial cracks in specimens of different tungsten alloys are studied
Chambers, W; Collins, G; Warren, B; Cunningham, C; Mortensen, N; Lindsey, I
2010-09-01
Circumferential resection margin (CRM) involvement (R1) is used to audit rectal cancer surgical quality. However, when downsizing chemoradiation (dCRT) is used, CRM audits both dCRT and surgery, its use reflecting a high casemix of locally advanced tumours. We aimed to evaluate predictors of R1 and benchmark R1 rates in the dCRT era, and to assess the influence of failure of steps in the multidisciplinary team (MDT) process to CRM involvement. A retrospective analysis of prospectively collected rectal cancer data was undertaken. Patients were classified according to CRM status. Uni- and multivariate analysis was undertaken of risk factors for R1 resection. The contribution of the steps of the MDT process to CRM involvement was assessed. Two hundred and ten rectal cancers were evaluated (68% T3 or T4 on preoperative staging). R1 (microscopic) and R2 (macroscopic) resections occurred in 20 (10%) and 6 patients (3%), respectively. Of several factors associated with R1 resections on univariate analysis, only total mesorectal excision (TME) specimen defects and threatened/involved CRM on preoperative imaging remained as independent predictors of R1 resections on multivariate analysis. Causes of R1 failure by MDT step classification found that less than half were associated with and only 15% solely attributable to a suboptimal TME specimen. Total mesorectal excision specimen defects and staging-predicted threatened or involved CRM are independent strong predictors of R1 resections. In most R1 resections, the TME specimen was intact. It is important to remember the contribution of both the local staging casemix and dCRT failure when using R1 rates to assess purely surgical competence.
Grover, Davinder S; Smith, Oluwatosin; Fellman, Ronald L; Godfrey, David G; Gupta, Aditi; Montes de Oca, Ildamaris; Feuer, William J
2018-05-01
The purpose of this study was to provide 24-month follow-up on surgical success and safety of an ab interno circumferential 360-degree trabeculotomy. Chart review of patients who underwent a gonioscopy-assisted transluminal trabeculotomy (GATT) procedure was performed by 4 of the authors (D.S.G., O.S., R.L.F., and D.G.G.). The surgery was performed in adults with various types of open-angle glaucoma with preoperative intraocular pressures (IOPs) of ≥18 mm Hg. In total, 198 patients aged 24 to 89 years underwent the GATT procedure with at least 18 months follow-up. Patients with primary open-angle glaucoma had an average IOP decrease of 9.2 mm Hg at 24 months with an average decrease of 1.43 glaucoma medications. The mean percentage of IOP decrease in these primary open-angle glaucoma groups at 24 months was 37.3%. In secondary open-angle glaucoma, at 24 months there was an average decrease in IOP of 14.1 mm Hg on an average of 2.0 fewer medications. The mean percentage of IOP decrease in the secondary open-angle glaucoma groups at 24 months was 49.8%. The cumulative proportion of failure at 24 months ranged from 0.18 to 0.48, depending on the group. In all 6 study groups, at all 5 postoperative time points (3, 6, 12, 18, and 24 mo) the mean IOP and reduction in glaucoma medications was significantly reduced from baseline (P<0.001) with the exception of one time point. The 24-month results demonstrate that GATT is relatively safe and effective in treating various forms of open-angle glaucoma. The long-term results for GATT are relatively equivalent to those previously reported for GATT and ab externo trabeculotomy studies.
Gietelink, Lieke; Wouters, Michel W J M; Tanis, Pieter J; Deken, Marion M; Ten Berge, Martijn G; Tollenaar, Rob A E M; van Krieken, J Han; de Noo, Mirre E
2015-09-01
The circumferential resection margin (CRM) is a significant prognostic factor for local recurrence, distant metastasis, and survival after rectal cancer surgery. Therefore, availability of this parameter is essential. Although the Dutch total mesorectal excision trial raised awareness about CRM in the late 1990s, quality assurance on pathologic reporting was not available until the Dutch Surgical Colorectal Audit (DSCA) started in 2009. The present study describes the rates of CRM reporting and involvement since the start of the DSCA and analyzes whether improvement of these parameters can be attributed to the audit. Data from the DSCA (2009-2013) were analyzed. Reporting of CRM and CRM involvement was plotted for successive years, and variations of these parameters were analyzed in a funnelplot. Predictors of CRM involvement were determined in univariable analysis and the independent influence of year of registration on CRM involvement was analyzed in multivariable analysis. A total of 12,669 patients were included for analysis. The mean percentage of patients with a reported CRM increased from 52.7% to 94.2% (2009-2013) and interhospital variation decreased. The percentage of patients with CRM involvement decreased from 14.2% to 5.6%. In multivariable analysis, the year of DSCA registration remained a significant predictor of CRM involvement. After the introduction of the DSCA, a dramatic improvement in CRM reporting and a major decrease of CRM involvement after rectal cancer surgery have occurred. This study suggests that a national quality assurance program has been the driving force behind these achievements. Copyright © 2015 by the National Comprehensive Cancer Network.
Effect of the circumferential resection margin on survival following rectal cancer surgery.
Kelly, S B; Mills, S J; Bradburn, D M; Ratcliffe, A A; Borowski, D W
2011-04-01
The aim was to determine the effect of the circumferential resection margin (CRM) on overall survival following surgical excision of rectal cancer. The effect of CRM on survival was examined by case mix-adjusted analysis of patients undergoing potentially curative excision of a rectal cancer between 1998 and 2002. Of 1896 patients, 1561 (82.3 per cent) had recorded data on the CRM. In 232 patients (14.9 per cent) tumour was found 1 mm or less from the CRM. In 370 patients (23.7 per cent) it was over 1 mm but no more than 5 mm from the CRM, and in 288 (18.4 per cent) it was over 5 mm but no more than 10 mm from the CRM. The remaining 671 patients (43.0 per cent) had a CRM exceeding 10 mm. Overall 5-year survival rates for these groups were 43.2, 51.7, 66.6 and 66.0 per cent respectively. Compared with patients with a CRM exceeding 10 mm, the adjusted risk of death was significantly increased for patients with a CRM of 1 mm or less (hazard ratio (HR) 1.61, P CRM (HR 1.02, P = 0.873). The adverse effect of a CRM greater than 1 mm but no larger than 5 mm was found particularly in mid-rectal cancers. A predicted CRM of 5 mm or less on preoperative staging should be considered for neoadjuvant treatment. Copyright © 2011 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
Trakarnsanga, Atthaphorn; Gonen, Mithat; Shia, Jinru; Goodman, Karyn A; Nash, Garrett M; Temple, Larissa K; Guillem, José G; Paty, Philip B; Garcia-Aguilar, Julio; Weiser, Martin R
2013-04-01
The circumferential resection margin (CRM) is highly prognostic for local recurrence in rectal cancer surgery without neoadjuvant treatment. However, its significance in the setting of long-course neoadjuvant chemoradiotherapy (nCRT) is not well defined. Review of a single institution's prospectively maintained database from 1998 to 2007 identified 563 patients with locally advanced rectal cancer (T3/T4 and/or N1) receiving nCRT, followed after 6 weeks by total mesorectal excision (TME). Kaplan-Meier, Cox regression, and competing risk analysis were performed. The authors noted that 75 % of all patients had stage III disease as determined by endorectal ultrasound (ERUS) and/or magnetic resonance imaging (MRI). With median follow-up of 39 months after resection, local and distant relapse were noted in 12 (2.1 %) and 98 (17.4 %) patients, respectively. On competing risk analysis, the optimal cutoff point of CRM was 1 mm for local recurrence and 2 mm for distant metastasis. Factors independently associated with local recurrence included CRM ≤1 mm, and high-grade tumor (p = 0.012 and 0.007, respectively). CRM ≤2 mm, as well as pathological, nodal, and overall tumor stage are also significant independent risk factors for distant metastasis (p = 0.025, 0.010, and dataset of locally advanced rectal cancer treated with nCRT followed by TME, CRM ≤1 mm is an independent risk factor for local recurrence and is considered a positive margin. CRM ≤2 mm was associated with distant recurrence, independent of pathological tumor and nodal stage.
Li, Mingliang; Deng, Mingxi; Gao, Guangjian; Xiang, Yanxun
2018-05-01
This paper investigated modeling of second-harmonic generation (SHG) of circumferential guided wave (CGW) propagation in a composite circular tube, and then analyzed the influences of interfacial properties on the SHG effect of primary CGW. Here the effect of SHG of primary CGW propagation is treated as a second-order perturbation to its linear wave response. Due to the convective nonlinearity and the inherent elastic nonlinearity of material, there are second-order bulk driving forces and surface/interface driving stresses in the interior and at the surface/interface of a composite circular tube, when a primary CGW mode propagates along its circumference. Based on the approach of modal expansion analysis for waveguide excitation, the said second-order driving forces/stresses are regarded as the excitation sources to generate a series of double-frequency CGW modes that constitute the second-harmonic field of the primary CGW propagation. It is found that the modal expansion coefficient of each double-frequency CGW mode is closely related to the interfacial stiffness constants that are used to describe the interfacial properties between the inner and outer circular parts of the composite tube. Furthermore, changes in the interfacial stiffness constants essentially influence the dispersion relation of CGW propagation. This will remarkably affect the efficiency of cumulative SHG of primary CGW propagation. Some finite element simulations have been implemented of response characteristics of cumulative SHG to the interfacial properties. Both the theoretical analyses and numerical simulations indicate that the effect of cumulative SHG is found to be much more sensitive to changes in the interfacial properties than primary CGW propagation. The potential of using the effect of cumulative SHG by primary CGW propagation to characterize a minor change in the interfacial properties is considered.
Delayed hydride cracking: theoretical model testing to predict cracking velocity
International Nuclear Information System (INIS)
Mieza, Juan I.; Vigna, Gustavo L.; Domizzi, Gladys
2009-01-01
Pressure tubes from Candu nuclear reactors as any other component manufactured with Zr alloys are prone to delayed hydride cracking. That is why it is important to be able to predict the cracking velocity during the component lifetime from parameters easy to be measured, such as: hydrogen concentration, mechanical and microstructural properties. Two of the theoretical models reported in literature to calculate the DHC velocity were chosen and combined, and using the appropriate variables allowed a comparison with experimental results of samples from Zr-2.5 Nb tubes with different mechanical and structural properties. In addition, velocities measured by other authors in irradiated materials could be reproduced using the model described above. (author)
Comparison of thermal cracking and hydro-cracking yield distributions
Energy Technology Data Exchange (ETDEWEB)
Romero, S.; Sayles, S. [KBC Advanced Technologies Inc., Houston, TX (United States)
2009-07-01
Operators of bitumen upgraders are faced with the challenge of obtaining maximum performance from existing equipment whose performance is already pushed to the limits. The main constraint is the primary upgrader processes, notably coking and hydrocracking. Under the current economic conditions, funding for new equipment is difficult. However, changes can be made to optimize unit performance by better understanding the basic kinetics in thermal cracking and hydrocracking. This paper reviewed the yield distribution differences between thermal cracking and hydrocracking to provide insight into the basic components of operational changes. The objective was to compare yields, product quality distributions and the elemental balances. The opportunities to increase production and improve performance were then analyzed quantitatively within the existing unit equipment limits. tabs., figs.
Analysis of crack opening stresses for center- and edge-crack tension specimens
Directory of Open Access Journals (Sweden)
Tong Di-Hua
2014-04-01
Full Text Available Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displacement equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry dependence.
Crack modeling of rotating blades with cracked hexahedral finite element method
Liu, Chao; Jiang, Dongxiang
2014-06-01
Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.
Acquisition of Inertia by a Moving Crack
Goldman, Tamar; Livne, Ariel; Fineberg, Jay
2010-03-01
We experimentally investigate the dynamics of “simple” tensile cracks. Within an effectively infinite medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66, 2484 (1991)PRLTAO0031-900710.1103/PhysRevLett.66.2484].
Factors controlling nitrate cracking of mild steel
International Nuclear Information System (INIS)
Donovan, J.A.
1977-01-01
Nitrite and hydroxide ions inhibit the growth of nitrate stress corrosion cracks in mild steel. Crack growth measurements showed that sufficient concentrations of nitrite and hydroxide ions can prevent crack growth; however, insufficient concentrations of these ions did not influence the Stage II growth rate or the threshold stress intensity, but extended the initiation time. Stage III growth was discontinuous. Oxide formed in the grain boundaries ahead of the crack tip and oxide dissolution (Stage II) and fracture (Stage III) are the proposed mechanisms of nitrate stress corrosion crack growth
Crack Propagation by Finite Element Method
Directory of Open Access Journals (Sweden)
Luiz Carlos H. Ricardo
2018-01-01
Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed
Koch, L. Danielle
2012-01-01
Fan inflow distortion tone noise has been studied computationally and experimentally. Data from two experiments in the NASA Glenn Advanced Noise Control Fan rig have been used to validate acoustic predictions. The inflow to the fan was distorted by cylindrical rods inserted radially into the inlet duct one rotor chord length upstream of the fan. The rods were arranged in both symmetric and asymmetric circumferential patterns. In-duct and farfield sound pressure level measurements were recorded. It was discovered that for positive circumferential modes, measured circumferential mode sound power levels in the exhaust duct were greater than those in the inlet duct and for negative circumferential modes, measured total circumferential mode sound power levels in the exhaust were less than those in the inlet. Predicted trends in overall sound power level were proven to be useful in identifying circumferentially asymmetric distortion patterns that reduce overall inlet distortion tone noise, as compared to symmetric arrangements of rods. Detailed comparisons between the measured and predicted radial mode sound power in the inlet and exhaust duct indicate limitations of the theory.
Elastic-plastic analysis of local and integral straining behaviour in a cracked plate
International Nuclear Information System (INIS)
Grueter, L.; Ruettenauer, B.
1982-01-01
For components of the primary coolant system of the German LMFBR prototype reactor SNR-300, integrity against anticipated accidents (Bethe-Tait) has to be shown for a cracked structure. Within this programme a number of tests with cracked wide plate specimens yielding overall limit strains of approximately 15% have been run; finite element calculations have been infinated for the wide plate geometry. The paper discusses the straining behaviour of a cracked plate by considering the numerical simulation of structures strained up to such high levels. The stress-strain diagram of the weldment of the austenitic stainless steel X6 CrNi 18 at 450 0 C has been used. Plane strain and stress conditions have been prescribed. The original plate dimensions (t = thickness = 40 mm; h = height = 400 mm) have been used as well as a similar, but smaller plate of t = 8.8 mm width. The crack length is defined as 0.1 t. The results show that for a cracked plate under high plastic strain the near-crack-tip-field values still govern the structural mechanical behaviour. Concerning the absolute dimensions the effects known for elasticity retain their influence in the plastic regime; however, the crack location becomes more unimportant with increasing strain, i.e. the appropriate pure geometry factor tends to unity in the plastic regime. The center-crack, defined as 2a = 0.1 t, corresponds to an equivalent edge crack of depth a = 0.05 t in the elastic case. It can be shown that for high plastic strains this correspondence remains fully valid. (orig.)
International Nuclear Information System (INIS)
Kamaya, Masayuki; Hojo, Tomohiro; Mochizuki, Masahito
2015-01-01
Load carrying capacity of austenitic stainless steel component is increased due to hardening caused by neutron irradiation if no crack is included in the component. On the other hand, if a crack is initiated in the reactor components, the hardening may decrease the load carrying capacity due to reduction in fracture toughness. In this paper, in order to develop a failure assessment procedure of irradiated cracked components, characteristics of change in failure strength of stainless steels due to cold working were investigated. It was experimentally shown that the proof and tensile strengths were increased by the cold working, whereas the fracture toughness was decreased. The fracture strengths of a cylinder with a circumferential surface crack were analyzed using the obtained material properties. Although the cold working altered the failure mode from plastic collapse to the unsteady ductile crack growth, it did not reduce failure strengths even if 50% cold working was applied. The increase in failure strength was caused not only by increase in flow stress but also by reduction in J-integral value, which was brought by the change in stress-strain curve. It was shown that the failure strength of the hardened stainless steel components could be derived by the two-parameter method, in which the change in material properties could be reasonably considered. (author)
Environmentally assisted cracking of LWR materials
International Nuclear Information System (INIS)
Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.
1995-12-01
Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289 degree C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 degree C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections
Finite element simulation for creep crack growth
International Nuclear Information System (INIS)
Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.
1992-01-01
A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)
Do cracks melt their way through solids?
International Nuclear Information System (INIS)
Okamoto, P. R.
1998-01-01
Real-time, in situ fracture studies in the high-voltage electron microscope (HVEM) show that microscopically thin regions of amorphous NiTi form ahead of moving crack tips in the B2-NiTi intermetallic compound during tensile straining at temperatures equal to or below 600K. The upper cutoff temperature of 600K for this stress-induced melting (or amorphization) is identical to the upper cutoff temperatures reported in the literature for both heavy-ion-induced amorphization of the intermetallic NiTi and ion-beam-mixing-induced amorphization of Ni and Ti multilayer. These results, together with the fact that the higher crystallization temperatures (∼800K)of unrelaxed amorphous NiTi alloys obtained by rapid quenching can also be reduced to, but not lower than 600K, by heavy-ion irradiation, strongly suggest that structural relaxation processes enhanced or induced by dynamic atomic disordering allow the formation of a unique, fully-relaxed glassy state which is characterized by a unique isothermal crystallization temperature. We believe that this unique temperature is the Kauzmann glass-transition temperature, corresponding to the ideal glass having the same entropy as the crystalline state. As the glassy state with the lowest global free energy, the preferential formation of this ideal glass by disorder-induced amorphization processes can be understood as the most energetically-favored, kinetically-constrained melting response of crystalline materials driven far from equilibrium at low temperatures
Nonlocal Effects of Crack Curving.
1982-07-01
close vTcinity of the crack tip. Supported by the Office of Naval Research. 2 For brittle solids, a fracture criterion based on the maximum tensile...Reidel Pubi. Co. Dordrecht. Holland. pp. 271-318, 1978. [13] A.S. Jayatilaka, Fracture of Engineering Brittle Materials, Appl. Sci. Publishers, London...Crescent leach Road, Glen Cove * Long Island, New Tork 11542 Commanding Officer (2) U.s Amy Research Office PO, Sax 12211 Research Triangle Park. C 27709 8
International Nuclear Information System (INIS)
Bass, B.R.; Bryson, J.W.; Mcafee, W.J.; Pennell, W.E.; Theiss, T.J.
1993-01-01
Pressurized-thermal-shock loading in a reactor pressure vessel produces significant positive out-of-plane stresses along the crack front for both circumferential and axial cracks. Experimental evidence, while very limited, seems to indicate that a reduction in toughness is associated with out-of-plane biaxial loading when compared with toughness values obtained under uniaxial conditions. A testing program is described that seeks to determine the effects of out-of-plane biaxial tensile loading on fracture toughness of RPV steels. A cruciform bend specimen that meets specified criteria for the testing pregam is analyzed using three-dimensional elastic-plastic finite-element techniques. These analysis results provide the basis for proposed test conditions that are judged likely to produce a biaxial loading effect in the cruciform bend specimen
International Nuclear Information System (INIS)
Puls, M.P.
1984-12-01
There is a strong motivation for understanding the factors controlling zirconium hydride reorientation under stress because of the important role this plays in hydrogen-induced crack growth and/or crack initiation in zirconium and its alloys, particularly under thermal cycling conditions. Following an approach developed by Sauthoff, an analysis of the orienting effect of external stress on the nucleation, growth and coarsening of γ- and delta-zirconium hydride precipitates in zirconium and its alloys is presented. The analysis is based on a previous theoretical study of some of the factors affecting hydride solubility in stressed and unstressed solids. Expressions are derived for the effect of stress on nucleation, growth and coarsening. We conclude, on the basis of these that the preferential orientation of hydride precipitates under stress is most efficient during the nucleation stage. The reason for this is that the overall driving force for nucleation, for the chosen parameters and the usual experimental conditions, is fairly small. Therefore, the driving force for orientating under stress can be a substantial fraction of the overall driving force. The analysis shows that hydride growth is unlikely to play a role in preferential orientation, but coarsening could be important under carefully chosen experimental conditions, which may be relevant to the hydride-cracking process
The Growth of Small Corrosion Fatigue Cracks in Alloy 7075
Piascik, Robert S.
2015-01-01
The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.
Energy Technology Data Exchange (ETDEWEB)
Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)
2014-06-15
Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.
Hughes, Cris E; White, Crystal A
2009-03-01
This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.
Behzad, Mehdi; Ghadami, Amin; Maghsoodi, Ameneh; Michael Hale, Jack
2013-11-01
In this paper, a simple method for detection of multiple edge cracks in Euler-Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm. The main accomplishment of the presented algorithm is the capability to detect the location, severity and type of each crack in a multi-cracked beam. Concise and simple calculations along with accuracy are other advantages of this method. A number of numerical examples for cantilever beams including one and two cracks are presented to validate the method.
Modeling of hydrogen induced cold cracking in a ferritic steel
International Nuclear Information System (INIS)
Chen, Qianqiang
2015-01-01
This thesis is aimed at studying the hydrogen induced cold cracking (HICC) in the heated affected zone (HAZ) of weldments and at proposing a criterion to predict this phenomenon. HICC is attributable to three factors: i) a susceptible microstructure; ii) hydrogen concentration; and iii) a critical stress. To this end, first tensile tests on smooth specimens charged with hydrogen were performed to investigate hydrogen embrittlement of martensite. According to these results, a ductile-brittle damage model is proposed in order to establish a HICC criterion. In order to validate this criterion, we performed the modified Tekken tests. The Tekken test was chosen because one can control the welding parameters in order to induce cold cracking. The modified Tekken tests have then been modeled using a fully coupled thermo-metallo-mechanical-diffusion model using the finite element method. This model allows to compute martensite's portion, residual stress level and hydrogen concentration in the HAZ. By applying the HICC criterion to these tests, cold cracking phenomenon has been correctly predicted. (author)
You, Sung H; Granata, Kevin P; Bunker, Linda K
2004-08-01
Cross-sectional repeated-measures design. Determine the effects of circumferential ankle pressure (CAP) intervention on proprioceptive acuity, ankle stiffness, and postural stability. The application of CAP using braces, taping, and adaptive shoes or military boots is widely used to address chronic ankle instability (CAI). An underlying assumption is that the CAP intervention might improve ankle stability through increased proprioceptive acuity and stiffness in the ankle. METHOD AND MEASURES: A convenience sample of 10 subjects was recruited from the local university community and categorized according to proprioceptive acuity (high, low) and ankle stability (normal, CAI). Proprioceptive acuity was measured when blindfolded subjects were asked to accurately reproduce a self-selected target ankle position before and after the application of CAP. Proprioceptive acuity was determined in 5 different ankle joint position sense tests: neutral, inversion, eversion, plantar flexion, and dorsiflexion. Joint position angles were recorded electromechanically using a potentiometer. Passive ankle stiffness was computed from the ratio of applied static moment versus angular displacement. Active ankle stiffness was determined from biomechanical analyses of ankle motion following a mediolateral perturbation. Postural stability was quantified from the center of pressure displacement in the mediolateral and the anteroposterior directions in unipedal stance. All measurements were recorded with and without CAP applied by a pediatric blood pressure cuff. Data were analyzed using a separate mixed-model analysis of variance (ANOVA) for each dependent variable. Post hoc comparison using Tukey's honestly significant difference (HSD) test was performed if significant interactions were obtained. Significance level was set at P<.05 for all analyses. Significant group (high versus low proprioceptive acuity) x CAP interactions were identified for postural stability. Passive ankle stiffness was
J evaluation by simplified method for cracked pipes under mechanical loading
International Nuclear Information System (INIS)
Lacire, M.H.; Michel, B.; Gilles, P.
2001-01-01
The integrity of structures behaviour is an important subject for the nuclear reactor safety. Most of assessment methods of cracked components are based on the evaluation of the parameter J. However to avoid complex elastic-plastic finite element calculations of J, a simplified method has been jointly developed by CEA, EDF and Framatome. This method, called Js, is based on the reference stress approach and a new KI handbook. To validate this method, a complete set of 2D and 3D elastic-plastic finite element calculations of J have been performed on pipes (more than 300 calculations are available) for different types of part through wall crack (circumferential or longitudinal); mechanical loading (pressure, bending moment, axial load, torsion moment, and combination of these loading); different kind of materials (austenitic or ferritic steel). This paper presents a comparison between the simplified assessment of J and finite element results on these configurations for mechanical loading. Then, validity of the method is discussed and an applicability domain is proposed. (author)
International Nuclear Information System (INIS)
Meyer, P.A.; Carodiskey, T.J.
1988-01-01
Periodic inspection of steam generator tubing is an important consideration in the efficient operation of a power generating facility. Since the operating life of these generators is finite, failures will occur. Due to the chemistry of the environment, thermal cycling, and other factors, flaws may develop that can cause rapid deterioration of the tubing while the overall performance of the unit may appear normal. In earlier presentation, the authors presented an ultrasonic bore-side array transducer which can be used with a conventional flaw detector instrument for the location of circumferential crack type defects on the outside tube surface. since that time, much additional experience has been gained on the performance of these probes. Probe performance has been characterized using fatigue crack samples and these results are reviewed. Probes have also been developed having 16 elements for use in larger diameter (25 mm) tubes. The bore-side array concept has been expanded to normal incidence tube well inspection allowing simultaneous wall thickness and eccentricity measurement which is very useful in the assessment of tube wastage and deformation. Preliminary data obtained in this area is presented
Application of acoustic emission to hydride cracking
International Nuclear Information System (INIS)
Sagat, S.; Ambler, J.F.R.; Coleman, C.E.
1986-07-01
Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking
Fatigue crack propagation behavior under creep conditions
International Nuclear Information System (INIS)
Ohji, Kiyotsugu; Kubo, Shiro
1991-01-01
The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)
Lu, Ming; Shi, Guang-Ying; Wang, Guo-Qiang; Wu, Yan; Liu, Yang; Wen, Hao
2013-01-01
AIM: To identify a more effective treatment protocol for circumferential mixed hemorrhoids. METHODS: A total of 192 patients with circumferential mixed hemorrhoids were randomized into the treatment group, where they underwent Milligan-Morgan hemorrhoidectomy with anal cushion suspension and partial internal sphincter resection, or the control group, where traditional external dissection and internal ligation were performed. Postoperative recovery and complications were monitored. RESULTS: The time to wound healing was 12.96 ± 2.25 d in the treatment group shorter than 19.58 ± 2.71 d in the control group. Slight pain rate was 58.3% in the treatment group higher than 22.9% in the control group; moderate pain rate was 33.3% in the treatment group lower than 56.3% in the control group severe pain rate was 8.4% in the treatment group lower than 20.8% in the control group. No edema rate was 70.8% in the treatment group higher than 43.8% in the control group; mild local edema rate was 26% in the treatment group lower than 39.6% in the control group obvious local edema was 3.03% in the treatment group lower than 16.7% in the control group. No stenosis rate was 85.4% in the treatment group higher than 63.5% in the control group; moderate stenosis rate was 14.6% in the treatment group Lower than 27.1% in the control group severe anal stenosis rate was 0% in the treatment group lower than 9.4% in the control group. CONCLUSION: Milligan-Morgan hemorrhoidectomy with anal cushion suspension and partial internal sphincter resection is the optimal treatment for circumferential mixed hemorrhoids and can be widely applied in clinical settings. PMID:23946609
El-Sharkawi, Mohammad Mostafa; Said, Galal Zaki
2012-02-01
The purpose of this study was to present our experience in treating dorso-lumbar tuberculosis by one-stage posterior circumferential fusion and to compare this group with a historical group treated by anterior debridement followed by postero-lateral fusion and stabilization. Between 2003 and 2008, 32 patients with active spinal tuberculosis were treated by one-stage posterior circumferential fusion and prospectively followed for a minimum of two years. Pain severity was measured using Visual Analogue Scale (VAS). Neurological assessment was done using the Frankel scale. The operative data, clinical, radiological, and functional outcomes were also compared to a similar group of 25 patients treated with anterior debridement and fusion, followed 10-14 days later by posterior stabilization and postero-lateral fusion. The mean operative time and duration of hospital stay were significantly longer in the two-stage group. The mean estimated blood loss was also larger, though insignificantly, in the two-stage group. The incidence of complications was significantly lower in the one-stage group. At final follow-up, all 34 patients with pre-operative neurological deficits showed at least one Frankel grade of neurological improvement, all 57 patients showed significant improvement of their VAS back pain score, the mean kyphotic angle has significantly improved, all patients achieved solid fusion and 43 (75.4%) patients returned to their pre-disease activity level or work. Instrumented circumferential fusion, whether in one or two stages, is an effective treatment for dorso-lumbar tuberculosis. One-stage surgery, however, is advantageous because it has lower complication rate, shorter hospital stay, less operative time and blood loss.
International Nuclear Information System (INIS)
Seehaus, A.; Fatal Jaef, V.; Pietrani, M.; Ocantos, J.
2009-01-01
Purpose: To determine whether magnetic resonance imaging (MRI) can predict tumor involvement of the circumferential resection margin (CRM) in patients with rectal cancer. Materials and methods: Between april 2005 and march 2008, 70 consecutive patients (mean age 64, range 34-78 years), 40 F and 30 M, with endoscopy and biopsy- proven middle and lower rectal cancer. Non contrast enhanced MRI was performed on a Siemens Avanto 1.5 T. A phased array coil was used and T2 weighted thin section sequences (TR/TE 4200/88, slice thickness 3mm, gap 0, matrix 256 x 256, field of view 150 x 150 mm) were performed in axial, sagittal and coronal orientations. Patients received a 150 ml glycerin enema before examination. No air insufflations or intramuscular antispasmodic was used. The shortest distance from the tumor edge to the circumferential margin was measured. A distance ≤ ?2 mm, analyzed in axial slices, was considered as definition of circumferential margin involvement. Results: The CRM was 2 mm in both MRI and histopathological findings in 26 patients. In 8 cases the CRM was shorter on MRI than in histopathological sections. In 32 patients the CRM was respected in both exams and 4 patients were considered positive on histopathological findings but negative in MRI. The sensitivity, specificity, positive and negative predictive values for prediction of tumor involvement of CRM were 86%, 80%, 76% and 88%, respectively. Conclusions: MRI gives reliable information on tumor involvement of the CRM in patients with rectal cancer. This may provide accurate identification of an important prognostic risk factor in patients prior to surgical treatment. (authors) [es
Energy Technology Data Exchange (ETDEWEB)
Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)
2013-08-15
Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.
Directory of Open Access Journals (Sweden)
Malý Milan
2017-01-01
Full Text Available The spray symmetry is an important aspect in most practical applications. However, it is often an overlooked parameter. A measurement of circumferential distribution was carried out by a circular-sectored vessel on several pressure-swirl atomizers with spill-line over a wide range of injection pressure. The obtained results show that the spray uniformity improves markedly with the injection pressure. The increase in a number of tangential entry ports has only a minor effect on the spray uniformity. Even a small mechanical corruption of the atomizer internal parts negatively affects the spray patternation.
Malý, Milan; Janáčková, Lada; Jedelský, Jan; Jícha, Miroslav
The spray symmetry is an important aspect in most practical applications. However, it is often an overlooked parameter. A measurement of circumferential distribution was carried out by a circular-sectored vessel on several pressure-swirl atomizers with spill-line over a wide range of injection pressure. The obtained results show that the spray uniformity improves markedly with the injection pressure. The increase in a number of tangential entry ports has only a minor effect on the spray uniformity. Even a small mechanical corruption of the atomizer internal parts negatively affects the spray patternation.
International Nuclear Information System (INIS)
Choi, M.S.; Yang, M.S.; Kim, H.C.
1992-01-01
A new ultrasonic technique for detecting the infiltrated water in leaked fuel rods is developed. Propagation characteristics of the circumferential Lamb waves in the cladding tubes are estimated by the resonance scattering theory. The Lamb waves are excited by the resonance backscattering of ultrasonic pulses. In sound fuel rods, the existence of the Lamb waves is revealed by a series of periodic echoes. In leaked fuel rods, however, the Lamb waves are perturbed strongly by the scattered waves from the surface of fuel pellets, thus the periodic echoes are not observed. (author)
International Nuclear Information System (INIS)
Schuett, K.; Speck, F.E.
1993-01-01
Prestressed concrete pressure vessels for nuclear power stations need post-tensioning systems of large capacity. For the circumferential prestressing, the continuous winding of prestressing steel has several advantages when compared to the use of large numbers of single tendons. About 15 years ago Bureau BBR Ltd (Zuerich) developed the winding system SW 8500. The further development work interrupted at that time for lack of immediate applications was resumed 4 years ago by Bureau BBR together with SUSPA on the ground of new projects being evaluated
International Nuclear Information System (INIS)
Hermann, N.; Mueller, H.S.; Niklasch, C.; Michel-Ponnelle, S.; Bento, C.; Masson, B.
2015-01-01
As an intermediate sized experiment the PACE-1450 experiment aims to investigate the behavior of a curved specimen (length: 3.5 m, width: 1.8 m, height: 1.2 m) which is representative for a 1450 MWe nuclear power plant containment under accidental loading conditions. One focus of this experimental test campaign is the consideration of the ageing of the structure which among other effects leads to a pre-stressing loss. The crack behavior of the realistically reinforced specimen is of as much interest as it is the leakage behavior when an inner pressure occurs within the containment. The reinforcement layout of the specimen is very similar to the original geometry and consists mainly of reinforcement meshes of bars near the inner and outer surface and four pre-stressing cables in the circumferential direction. During the tests the specimen is loaded by pressure which simulates the internal accidental containment pressure of up to 6 bars (absolute pressure). The resulting ring tensile stress in the cylindrical part of the containment is externally applied by hydraulic jacks. An initial pre-stressing of the specimen of 12 MPa is realized in such a way that decreasing the pre-stressing force for the purpose of simulating the ageing of the structure is possible. The facility allows for the cracking of the pre-stressed specimen and for leakage measurements at different controlled crack widths. The specimen is equipped with embedded optical fiber strain and temperature sensors and a sound detection system to record the initiation of cracks. The paper explains the test set-up and presents results of the ongoing test series regarding the cracking and leakage behavior of the specimen
Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.
2018-02-01
During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.
Crack turning in integrally stiffened aircraft structures
Pettit, Richard Glen
Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture
On applicability of crack shape characterization rules for multiple in-plane surface cracks
International Nuclear Information System (INIS)
Kim, Jong Min; Choi, Suhn; Park, Keun Bae; Choi, Jae Boong; Huh, Nam Su
2009-01-01
The fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Regarding such an interaction effect, the relative distance between adjacent cracks, crack aspect ratio and loading condition were known to be important factors for multiple cracks, which affects the fracture mechanics assessment parameters. Although several guidance (ASME Sec. XI, BS7910, British Energy R6 and API RP579) on a crack interaction effect (crack combination rule) have been proposed and used for assessing the interaction effect, each guidance provides different rules for combining multiple surface cracks into a single surface crack. Based on the systematic elastic and elastic-plastic finite element analyses, the present study investigated the acceptability of the crack combination rules provided in the existing guidance, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed. To quantify the interaction effect, the elastic stress intensity factor and elastic-plastic J-integral along the crack front were used. As for the loading condition, only axial tension was considered. As a result, BS7910 seems to provide the most relevant crack combination rule for in-plane dual surface cracks, whereas API RP579 provides the most conservative results. In particular, ASME Sec. XI still seems to have some room for a revision to shorten the critical distance between two adjacent cracks for a crack combination. The overall tendency of the elastic-plastic analyses results is identical to that of the elastic analyses results.
The fatigue life and fatigue crack through thickness behavior of a surface cracked plate, 2
International Nuclear Information System (INIS)
Nam, Ki-Woo; Fujibayashi, Shinpei; Ando, Kotoji; Ogura, Nobukazu.
1987-01-01
Most structures have a region where stresses concentrate, and the probability of fatigue crack initiation may be higher than in other parts. Therefore, to improve the reliability of an LBB design, it is necessary to evaluate the growth and through thickness behavior of fatigue cracks in the stress concentration part. In this paper, a fatigue crack growth test at a stress concentration region has been made on 3 % NiCrMo and HT 80 steel. Stress concentration is caused by a fillet on the plate. The main results obtained are as follows : (1) Before cracking through the plate thickness, stress concentration has a remarkable effect on the fatigue crack growth behavior and it flatens the shape of a surface crack. The crack growth behavior can be explained quantatively by using the Newman-Raju equation and the stress resolving method proposed by ASME B and P Code SecXI. (2) The da/dN-ΔK relation obtained in a stress concentration specimen shows good agreement with that obtained in a surface cracked smooth specimen. (3) It is shown that stress concentration caused by a fillet has little effect on the crack growth rate after cracking through the plate thickness. (4) By using the K value based on eq. (1), (2), particular crack growth behavior and the change in crack shape after cracking through thickness can be explained quantatively. (author)
Crack formation and prevention in colloidal drops
Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook
2015-08-01
Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.
Online Bridge Crack Monitoring with Smart Film
Directory of Open Access Journals (Sweden)
Benniu Zhang
2013-01-01
Full Text Available Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.
Fluid structural response of axially cracked cylinders
International Nuclear Information System (INIS)
Garnich, M.R.; Simonen, F.A.
1985-03-01
The fluid structural (FS) response of a cylindrical pressure vessel to a suddenly occurring longitudinal through-wall crack is predicted. The effects of vessel internals and depressurization of the compressed water on dynamic crack opening displacements are investigated. A three dimensional (3D) structural finite element model is used as a basis for the development of a two dimensional (2D) FS model. A slice of the vessel taken at the crack midspan and normal to the cylinder axis is modeled. Crack opening displacements are compared between the 2D and 3D models, between the different assumptions about fluid depressurization, and between the static and dynamic solutions. The results show that effects of dynamic amplification associated with the sudden opening of the crack in the cylinder are largely offset by the local depressurization of the fluid adjacent to the crack
Adaptive numerical modeling of dynamic crack propagation
International Nuclear Information System (INIS)
Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.
2006-01-01
We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)
A probabilistic model of brittle crack formation
Chudnovsky, A.; Kunin, B.
1987-01-01
Probability of a brittle crack formation in an elastic solid with fluctuating strength is considered. A set Omega of all possible crack trajectories reflecting the fluctuation of the strength field is introduced. The probability P(X) that crack penetration depth exceeds X is expressed as a functional integral over Omega of a conditional probability of the same event taking place along a particular path. Various techniques are considered to evaluate the integral. Under rather nonrestrictive assumptions, the integral is reduced to solving a diffusion-type equation. A new characteristic of fracture process, 'crack diffusion coefficient', is introduced. An illustrative example is then considered where the integration is reduced to solving an ordinary differential equation. The effect of the crack diffusion coefficient and of the magnitude of strength fluctuations on probability density of crack penetration depth is presented. Practical implications of the proposed model are discussed.
Noncontact fatigue crack evaluation using thermoelastic
Energy Technology Data Exchange (ETDEWEB)
Kim, Ji Min; An, Yun Kyu; Sohn, Hoon [KAIST, Daejeon (Korea, Republic of)
2012-12-15
This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.
Numerical Study of Corrosion Crack Opening
DEFF Research Database (Denmark)
Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan
2008-01-01
is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...... for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...
Energy analysis of crack-damage interaction
Chudnovsky, A.; Wu, Shaofu
1989-01-01
The energy release rates associated with a main crack propagating into a surrounding damage zone, and a damage zone translation relative to the main crack, as well as an energy of interaction between the two are analyzed. The displacement and stress fields for the crack-damage interaction problem are reconstructed employing a semi-empirical stress analysis and experimental evaluation of the average craze density in the crazed zone.
Measuring Crack Length in Coarse Grain Ceramics
Salem, Jonathan A.; Ghosn, Louis J.
2010-01-01
Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.
Outcome of Endodontically Treated Cracked Teeth
2016-06-01
directed by: CAPT Te!Ty Webb, D.D.S., M.S. A " cracked tooth" is defined as a thin surface enamel and dentin disruption of unknown depth, and is often...OUTCOME OF ENDODONTICALL Y TREATED CRACKED TEETH by David Michael Dow II, D.D.S. Lieutenant Commander, Dental Corps United States Navy A thesis...copyrighted material in the thesis manuscript titled: "Outcome ofEndodontically Treated Cracked Teeth" is appropriately acknowledged and, beyond
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Masashi, E-mail: m.nakamura1230@gmail.com [Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295 (Japan); Kido, Tomoyuki [Department of Radiology, Saiseikai Matsuyama Hospital, Ehime 791-0295 (Japan); Kido, Teruhito; Tanabe, Yuki; Matsuda, Takuya; Nishiyama, Yoshiko; Miyagawa, Masao; Mochizuki, Teruhito [Department of Radiology, Ehime University Graduate School of Medicine, Shitsukawa, Toon-city, Ehime 791-0295 (Japan)
2015-08-15
Highlights: • Infarcted segments could be differentiated from non-ischemic and ischemic segments with high sensitivity and specificity under at rest conditions. • The time-to-peak circumferential strain values in infarcted segments were more significantly delayed than those in non-ischemic and ischemic segments. • Both circumferential strain and circumferential systolic strain rate values under ATP-stress conditions were significantly lower in ischemic segments than in non-ischemic segments. • Subtracting stress and rest circumferential strain had a higher diagnostic capability for ischemia relative to only utilizing rest or ATP-stress circumferential strain values. • A circumferential strain analysis using tagged MR can quantitatively assess contractile dysfunction in ischemic and infarcted myocardium. - Abstract: Purpose: We evaluated whether a quantitative circumferential strain (CS) analysis using adenosine triphosphate (ATP)-stress/rest 3-T tagged magnetic resonance (MR) imaging can depict myocardial ischemia as contractile dysfunction during stress in patients with suspected coronary artery disease (CAD). We evaluated whether it can differentiate between non-ischemia, myocardial ischemia, and infarction. We assessed its diagnostic performance in comparison with ATP-stress myocardial perfusion MR and late gadolinium enhancement (LGE)-MR imaging. Methods: In 38 patients suspected of having CAD, myocardial segments were categorized as non-ischemic (n = 485), ischemic (n = 74), or infarcted (n = 49) from the results of perfusion MR and LGE-MR. The peak negative CS value, peak circumferential systolic strain rate (CSR), and time-to-peak CS were measured in 16 segments. Results: A cutoff value of −12.0% for CS at rest allowed differentiation between infarcted and other segments with a sensitivity of 79%, specificity of 76%, accuracy of 76%, and an area under the curve (AUC) of 0.81. Additionally, a cutoff value of 477.3 ms for time-to-peak CS at rest
Catalytic cracking of hydrocarbon oils
Energy Technology Data Exchange (ETDEWEB)
1940-09-12
A process is described for the vapor phase catalytic cracking of hydrocarbon oils boiling substantially in the gas oil range. The reaction takes place in the presence of a solid catalyst between 700 to 900/sup 0/F under pressure between atmospheric and 400 psi. A gas containing between 20 and 90 mol % of free hydrogen is used. The reaction is allowed to proceed until consumption of the free begins. The reaction is discontinued at that point and the catalyst is regenerated for further use.
Modelling of environmentally assisted cracking
International Nuclear Information System (INIS)
Aaltonen, P.; Saario, T.; Ehrnsten, U.; Haenninen, H.; Itaeaho, M.; Piippo, J.
1998-01-01
During the use of nuclear reactors the properties of the structural materials change. Variations in the operation environment, such as changes in water chemistry, may enhance the development and growth of flaws. Neutron radiation causes embrittlement for in-core vessel materials. Radiation, together with water chemistry, increases the possibility of stress corrosion cracking in stainless steels and superalloys used in the reactor internal parts. Research on structural materials endeavours to study the ageing mechanisms of materials, and the possibilities and methods of preventing or forecasting the damage caused to structures by ageing. (orig.)
T-stresses for internally cracked components
International Nuclear Information System (INIS)
Fett, T.
1997-12-01
The failure of cracked components is governed by the stresses in the vicinity of the crack tip. The singular stress contribution is characterised by the stress intensity factor K, the first regular stress term is represented by the so-called T-stress. T-stress solutions for components containing an internal crack were computed by application of the Bundary Collocation Method (BCM). The results are compiled in form of tables or approximative relations. In addition a Green's function of T-stresses is proposed for internal cracks which enables to compute T-stress terms for any given stress distribution in the uncracked body. (orig.) [de
The detectability of cracks using sonic IR
Morbidini, Marco; Cawley, Peter
2009-05-01
This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.
Semi-empirical crack tip analysis
Chudnovsky, A.; Ben Ouezdon, M.
1988-01-01
Experimentally observed crack opening displacements are employed as the solution of the multiple crack interaction problem. Then the near and far fields are reconstructed analytically by means of the double layer potential technqiue. Evaluation of the effective stress intensity factor resulting from the interaction of the main crack and its surrounding crazes in addition to the remotely applied load is presented as an illustrative example. It is shown that crazing (as well as microcracking) may constitute an alternative mechanism to Dugdale-Berenblatt models responsible for the cancellation of the singularity at the crack tip.
On governing equations for crack layer propagation
Chudnovsky, A.; Botsis, J.
1988-01-01
Results of analysis on damage distribution of a crack layer, in a model material, supported the self-similarity hypothesis of damage evolution which has been adopted by the crack layer theory. On the basis of measurements of discontinuity density and the double layer potential technique, a solution to the crack damage interaction problem has been developed. Evaluation of the stress intensity factor illustrated the methodology. Analysis of experimental results showed that Arrhenius type constitutive relationship described very well the expansion of the active zone of a crack layer.